
5. CPU Registers and Instruction Cache

The TMS34010's on-chip CPU includes two general-purpose register files, file
A and file B. Each register file contains 15 32-bit registers. The two files share
a 32-bit hardware stack pointer (SP) that automatically manages the system
stack during interrupts and subroutine calls. The CPU also contains two
dedicated 32-bit registers - a program counter and a status register. An on-
chip cache memory holds up to 128 instruction words, and is transparent to
software. The CPU registers and instruction cache are discussed in the fol-
lowing sections:

Section Page
5.1 General-Purpose Registers 	 5-2
5.2 Status Register 	 5-20
5.3 Program Counter 	 5-22
5.4 Instruction Cache 	 5-23
5.5 Internal Parallelism 	 5-28

In addition to the CPU registers, the TMS34010 contains 28 memory-mapped
registers that are dedicated to I/O functions. These are described in Section
6.

5-1

CPU Registers and Instruction Cache - General-Purpose Registers

5.1 General-Purpose Registers

The TMS34010 has 30 32-bit general-purpose registers, divided into register
files A and B. In addition, a single stack pointer (SP) is common to both re-
gister files.

The multiple internal data paths linking the ALU and general-purpose registers
provide single machine state execution of most register-to-register in-
structions. Single-state instructions include add, subtract, Boolean oper-
ations, and shifts (1 to 32 bits). During a single-state instruction, the
following actions occur:

1) Two 32-bit operands are read in parallel from the general-purpose reg-
isters.

2) The specified operation is performed by the ALU.

3) The 32-bit result is stored in the specified general-purpose register.

The general-purpose registers are dual-ported to permit operands to be read
from two independent registers at the same time.

5.1.1 Register File A

Fifteen of the 30 general-purpose registers, AO-A14, form register file A.
These registers can be used for data storage and manipulation. No hard-
ware-dedicated functions are associated with these general-purpose registers.

All register-to-register instructions (except MOVE RS,RD) require both regis-
ters to be in the same file. Instructions used to manipulate registers AO-A14
can also be used to manipulate the stack pointer. The SP can be specified in
place of an A-file register in any of these instructions. Figure 5-1 illustrates
register file A.

31(MSB) 	 O(LSB)

AO

Al

A2

AS

A5

A8

A7

A8

A9

A10

All

Al2

A13

A14

SP Stack Pointer

Figure 5-1. Register File A

5 -2

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.2 Register File B

Register file B consists of 15 general-purpose registers, BO-B14. All regis-
ter-to-register instructions (except MOVE RS,RD) require both registers to be
in the same file. Instructions used to manipulate registers BO-B14 can also
be used to manipulate the stack pointer. The SP can be specified in place of
a B-file register in any of these instructions.

Registers BO-B14 can be used for general-purpose functions such as data
storage and manipulation. During PixBIt and other pixel operations, however,
these registers are assigned hardware-dedicated functions.

31(MSB)
	

o(LE0)

BO

82

B3

B4

85

B8

B7

B8

89

B10

B11

B12

1313

B14

SP

SADDR
I

SPTCH
I

DADDR
I

DPTCH
I

OFFSET
I

WSTART
I

WEND
I

DYDX
I

COLORO
I

COLOR1
I

COUNT
I

INC1
I

INC2
I

PATTRN
I

TEMP
I

Stack Pointer

Destination Pitch

Offset

Window Start

Window End

Delta Y / Delta X
COLORO
(Pl•BLT Bs)
COLOR1
(PIXBLT Bs, FILLS AND DRAY)

These are used as temporary
storage for PIAB-T and
FILL instructions.

S ource Address
(PABLTs)

Source Pitch
• :pition Address

fa and FILLS)

Figure 5-2. Register File B

As Figure 5-2 shows, registers BO-B9 are used as special-purpose registers
during pixel operations. These registers must be loaded with specific param-
eters before execution of pixel operations. Registers B10-B14 are used as
special-purpose registers for the LINE instruction. During pixel operations,
registers B10-B14 are used for temporary storage; their previous contents are
destroyed. Register functions may vary for individual instructions.

The B - file registers are described in detail in Section 5.1.4.

5-3

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.3 Stack Pointer

The stack pointer (SP), shown in Figure 5-3, is a 32-bit register that contains
the bit address of the top of the system stack. Section 3.3 describes stack
operation in detail. The SP appears as a member of both the A and B files,
and can be specified as the operand in any instruction that manipulates the
general-purpose registers. The machine contains only a single SP, but this
SP can be addressed as a member of either register file, A or B.

31 	4 3 	0
Word Addrwo, 	Bit Addr

14 	28 bits 	► 14 4 lolts—■1

Figure 5-3. Stack Pointer Register

The system stack grows in the direction of smaller addresses. During an in-
terrupt, the PC and ST are pushed onto the stack to permit the interrupted
routine to resume execution when interrupt processing is completed. A sub-
routine call saves the PC on the stack to allow the calling routine to resume
execution when subroutine execution is completed.

The stack pointer always points to the value at the top of the stack. Specif-
ically, the SP contains the 32-bit address of the LSB of that value. While the
four LSBs of the SP may be set to an arbitrary value, stack operations execute
more efficiently when the four LSBs are Os. Setting these bits to Os aligns the
stack pointer to 16-bit word boundaries in memory, reducing to two the
number of memory cycles necessary to push or pop the contents of a 32-bit
register.

The SP can be specified as the source or destination operand in any instruc-
tion that operates on the general-purpose registers. The SP can be accessed
as register 15 in file A or B. Refer to the descriptions of the specific in-
structions for details.

5-4

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.4 Implied Graphics Operands

Table 5-1 summarizes the B-file register functions during pixel operations.
These registers are referred to as implied graphics operands. Several I/O reg-
isters, described in Section 6, are also implied graphics operands. Individual
descriptions of the B-file registers follow Table 5-1.

Table 5-1. B-File Registers Summary

Reg. Function Description

BO SADDR Source Address. 	Address of the upper left corner of the source pixel array
(lowest pixel address in the array). 	SADDR is a linear or XY address, depend-
ing on the instruction which uses it.

B1 SPTCH Source Pitch. 	Difference in linear start addresses between adjacent rows of a
source pixel array.

B2 DADDR Destination Address. 	Address of the upper left corner of the destination pixel
array (lowest pixel address in the array). 	DADDR is a linear or XY address,
depending on the instruction which uses it.

B3 DPTCH Destination Pitch. 	Difference in linear start addresses between adjacent rows
of a destination pixel array.

B4 OFFSET Offset. 	Linear bit address corresponding to XY-coordinate origin (X.--- 0, Y=0).

B5 WSTART Window Start Address. 	XY address of the upper left corner of the window
(smallest X and Y coordinate values in the array).

31 	 16 	15 	 01

Starting Y 	 Starting X 	 I
B6 WEND Window End Address. 	XY address of the lower right corner of the window

(largest X and Y coordinate values in the array).

16 	15 	 0

1
31

Ending Y 	 Ending X

67 DYDX Delta Y IDefta X. The 16 LSBs of this register specify the width (X dimension)
of the source array in terms of either pixels or bits, depending on the instruc-
tion. The 16 MSBs specify the height (Y dimension) of the source array. If
either DY = 0 or DX = 0 then nothing is moved.

	

31 	 16 	15 	 0

Delta Y 	 1 	 Delta X 	 I

5-5

CPU Registers and Instruction Cache - General-Purpose Registers

Table 5-1. B-File Registers Summary (Concluded)

Reg. Function Description

B8 Color 0 Pixel value corresponding to "color 0". 	COLORO contains the source back-
ground color to be used during a bit-expand operation (PIXBLT B,XY or
PIXBLT B,L). 	The pixel value should be replicated throughout the '16 LSBs
of register B8 (see note below). 	Non replicated patterns may be entered for
dithering effects. The 16 MSBs are ignored during the expand operation. 	For
example, at four bits per pixel, COLORO contains four identical pixel values,
as shown below.

31 	2827 	24 23 	20 19 	16 	15 	12 	11 	8 7 	4 3 	0

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	 I 	 I 	I 	I

Each of the 16 LSBs of COLORO is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLORO bit 0 is associated with
bit 0 of the data bus (the bit transferred on LADO), COLORO bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLORO are
output over a portion of the data bus, including a bit n of the bus, as an ex-
ample, bus bit n contains the value from bit n of COLORO.

B9 Color 1 Pixel value corresponding to "color 1". 	COLOR1 contains the source fore-
ground color to be used during a bit-expand, fill, or draw-and-advance oper-
ation. 	The pixel value should be replicated throughout the 16 LSBs of register
B9 (see note below). 	Nonreplicated patterns may be entered for dithering ef-
fects. The 16 MSBs are ignored during the expand operation. For example,
at four bits per pixel, COLOR1 contains four identical pixel values, as shown
below.

31 	28 27 	24 23 	20 19 	16 	15 	12 	11 	8 7 	43 	0

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	I 	 I

Each of the 16 LSBs of COLOR1 is associated with the corresponding pin of
the local address/data bus, LADO-LAD15. COLOR1 bit 0 is associated with
bit 0 of the data bus (the bit transferred on LADO), COLOR1 bit 1 is associated
with bit 1 of the data bus, and so on. When the contents of COLOR1 are
output over a portion of the data bus, including bit n of the bus, bus bit n
contains the value from bit n of COLOR1.

B1 0-B1 4 PixBlt temporary registers. 	PixBlt instructions use these registers for storing
temporary values and context information necessary to resume execution of a
partially-completed PixBlt operation in the event of an interrupt.

SP SP Stack pointer. 	SP contains the bit address of the top of the stack.

Notes: To provide upward compatibility with future versions of the GSP, replicate the pixel value
throughout all 32 bits of COLORO or COLOR1, as shown.

5-6

BO

Syntax

Format

SADDR - Source Address Register BO

BO

31 16 15 0

X

or

31
	

0

Linear Bit Address

Description 	SADDR contains the source array address pointer for PIXBLTs. Generally,
SADDR points to the pixel with the lowest address in the source array.
When a corner adjust is necessary, the GSP automatically adjusts SADDR
to point to the selected starting corner of the source array. (For PIXBLT
L,L, however, you must manually adjust SADDR to point to the starting
corner. This feature allows you to use PIXBLT L,L for manipulating pixel
arrays with pitches that are not powers of two.)

SADDR is in either XY or linear format. If the first operand of a PIXBLT
instruction is an L (such as PIXBLT L,XY), then SADDR is in linear format.
If the first operand of a PIXBLT instruction is an XV (such as PIXBLT XY,L),
then SADDR is in XY format.

During PIXBLT operations, SADDR is used in linear format. When the
PIXBLT is completed, SADDR points to the starting location of the row that
follows the last row in the array. If a PIXBLT is interrupted, SADDR points
to the next word of pixels to be read.

During LINE operation, SADDR contains the current decision variable va-
lue.

The following instructions use SADDR as an implied operand:

Instruction 	SADDR Format and Function
LINE 	 Contains d=2b-a, used for the line draw.
PIXBLT B,L 	Linear address; points to the beginning of a binary source

array.
PIXBLT B,XY 	Linear address; points to the beginning of a binary source

array.
PIXBLT L,L 	Linear address with special requirements when PBH = 1

or PBV = 1. Refer to the PIXBLT L,L for a description of
its unique requirements.

PIXBLT L,XY 	Linear address; points to the beginning of a source array.
PIXBLT XY,L 	XY address; points to the beginning of a source array.
PIXBLT XY,XY XY address; points to the beginning of a source array.

Example SADDR .set BO
*

MOVE >00080015,SADDR 	;Move XY value >15,>8 into
;BO

MOVE >00010AFC,SADDR ;Move linear value >10AFC
;into BO

5-7

Bi

Format

SPTCH - Source Pitch Register B1

31

0

Linear Bit Address

Description 	SPTCH specifies the linear difference in the start addresses of adjacent lines
of the source array for PIXBLT and FILL instructions. The GSP uses the
value in SPTCH to move from row to row through the source array. SPTCH
must be an integer multiple of 16 (except for the special cases of PIXBLT
B,L and PIXBLT B,XY). SPTCH is constrained in some cases to be a power
of two; this allows XY addressing and automatic corner adjust operations.

Some PIXBLTs store an adjusted value of SPTCH during instruction exe-
cution. This mechanism is transparent unless the PIXBLT is interrupted.
However, the original contents of SPTCH are restored if the instruction is
allowed to complete normally.

The following instructions use SPTCH as an implied operand.

Instruction 	SPTCH Format and Function
PIXBLT B,L 	Linear; unconstrained otherwise.
PIXBLT B,XY 	Linear; power of two for windowing; unconstrained oth-

erwise.
PIXBLT L,L 	Unconstrained except as previously noted. SPTCH is not

related to CONVSP for this instruction; therefore, it is not
constrained to be a power of two.

PIXBLT L,XY 	Linear; power of two for windowing and PBV = 1; un-
constrained otherwise except as previously noted.

PIXBLT XY,L 	Power of two.
PIXBLT XY,XY Power of two.

Example 	SPTCH .set Bl

MOVE >00001000,SPTCH 	;Power of two for
;PIXBLT XY,L

MOVE >00010AFC,SPTCH 	;Unconstrained value for
;PIXBLT B,L

5-8

B2
	

DADDR - Destination Address Register
	

B2

Format
	

31
	

16 15
	

0

Y
	

X

or

31
	

0

Linear Bit Address

Description 	DADDR specifies the address of the least significant pixel in the destination
array for PIXBLTs. Generally, DADDR points to the pixel with the lowest
address in the destination array. When a corner adjust is necessary, the
GSP automatically adjusts DADDR to point to the selected starting corner
of the destination array. (For PIXBLT L,L, however, you must manually
adjust DADDR to point to the starting corner. This feature allows you to
use PIXBLT L,L for manipulating pixel arrays with pitches that are not
powers of two.)

DADDR is also used in conjunction with DYDX to perform a common rec-
tangle function for some instructions (FILL XY, PIXBLT B<XY, PIXBLT
L,XY, and PIXBLT XY,XY, with window option 1). In these cases, DADDR
is set to the starting XY address of the common pixel block described by the
intersection of the original destination array and the pixel block indicated
by WSTART and WEND. No drawing is performed. If there is no common
array, the V bit is not set and the value of DAD DR is indeterminate.

DADDR is in either XY or linear format. If the second operand of the
PIXBLT instruction is an L (such as PIXBLT XY,L), then DADDR is in linear
format. If the second operand of the PIXBLT instruction is an XY (such as
PIXBLT XY,XY), then DAD DR is in XY format.

During PIXBLT operation, DADDR is maintained in linear format. When the
PIXBLT completes, DADDR points to the linear starting address of the row
following the last row in the array. If a PIXBLT is interrupted, DADDR
points to the next word of pixels to be read.

For the LINE instruction, DADDR contains the XY address of the next DDA
drawing point.

The following instructions use DADDR as an implied operand.

Instruction
FILL L
FILL XY
LINE
PIXBLT B,L
PIXBLT B,XY
PIXBLT L,L

PIXBLT L,XY
PIXBLT XY,L
PIXBLT XY,XY

DADDR Format and Function
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.
XY; points to the current pixel.
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.
Linear with special requirements when PBH=1 or PBV=1.
Refer to the PIXBLT L,L for a description of its unique re-
quirements.
XY; points to the beginning of the destination array.
Linear; points to the beginning of the destination array.
XY; points to the beginning of the destination array.

5 -9

B2 	DADDR - Destination Address Register 	B2

Example 	DADDR .set B2
*

MOVE >00080015,DADDR ;Move XY value >l5,>8 into
;B2

MOVE >00010AFC,DADDR ;Move linear value >10AFC
;into 02

5-10

DPTCH - Destination Pitch Register
	

B3

31
	

0

Linear Bit Address

DPTCH specifies the linear difference in the start addresses of adjacent lines
of the destination array for PIXBLT and FILL instructions. The TMS34010
uses the value in DPTCH to move from row to row through the destination
array. DPTCH must be an integer multiple of 16 (except for FILL L when
DX=1). DPTCH is also constrained in some cases to be a power of two to
allow XY addressing and automatic corner adjust.

Some PIXBLTs store an adjusted value in DPTCH during instruction exe-
cution. This mechanism is transparent, unless the PIXBLT is interrupted.
The original contents of DPTCH are restored if the instruction is allowed to
complete normally.

The following instructions use DPTCH as an implied operand.

B3

Format

Description

Example

Instruction
L L

FILL XY
PIXBLT B,L
PIXBLT B,XY

PIXBLT L,L

PIXBLT L,XY
PIXBLT XY,L

PIXBLT XY,XY

DPTCH .set
*

MOVE

MOVE

DPTCH Format and Function
Linear; unconstrained for DX=1.
Linear; power of two.
Linear; unconstrained except as previously noted.
Linear; power of two for windowing; unconstrained oth-
erwise except as noted above.
Linear; unconstrained except as previously noted. DPTCH
is not related to CONVDP for this instruction; therefore, it
is not constrained to be a power of two.
Linear; power of two.
Linear; power of two for PBV = 1; unconstrained other-
wise except as previously noted.
Linear; power of two.

B3

>00001000,DPTCH

>00010AFC,DPTCH

;Power of two for
;PIXBLT XY,L
;Unconstrained value for
;PIXBLT L,L

5-11

B4 	OFFSET - XY Addressing Offset Register 	E14

Format 	31
	

0

Linear Bit Address

Description 	OFFSET contains the linear address of the first pixel in the XY coordinate
space for instructions using XY addressing. This corresponds to the linear
address of the XY origin (X=0,Y=0). This value is used as the memory base
for performing XY to linear address conversions.

OFFSET is always in linear format. It may be placed at any position in the
TMS34010 linear address space and should contain a pixel-aligned value
for proper XY address conversions, transparency, pixel processing, and
plane masking. OFFSET is not modified by instruction execution.

The following instructions use OFFSET as an implied operand.

OFFSET Format and Function Instruction
CVXYL 	RD
DRAV RS,RD
FILL XY
LINE
PIXBLT B,XY
PIXBLT L,XY
PIXBLT XY,L
PIXBLT XY,XY
PIXT RS,RD.XY
PIXT RS.XY,RD
PIXT RS.XY,RD.XY

Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address
Linear address

of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin
of XY origin

Example
	

OFFSET.set B4

MOVE >00042000,OFFSET ;Linear value on pixel
* 	 ;boundary

5-12

31
	

16 15
	

0

Window start Y Window start X

B5

Format

Description

WSTART - Window Start Address Register 	B5

WSTART specifies the XY address of the least significant pixel contained
in the rectangular destination clipping window. WSTART is valid for in-
structions that use an XY destination address and a window option. The
least significant pixel is the pixel with the lowest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the upper left corner of the pixel array.

WSTART may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WSTART is included in the window. The value in
WSTART is used with WEND, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WSTART is not modified by instruction execution.

The following instructions use WSTART as an implied operand.

Instruction 	WSTART Format and Function
RD 	XY value of least significant window corner

DRAV RS,RD 	XY value of least significant window corner
FILL XY 	 XY value of least significant window corner
LINE 	 XY value of least significant window corner
PIXBLT B,XY 	XY value of least significant window corner
PIXBLT L,XY 	XY value of least significant window corner
PIXBLT XY,XY 	XY value of least significant window corner
PIXT RS,RD.XY 	XY value of least significant window corner
PIXT RS.XY,RD.XY XY value of least significant window corner

Example 	WSTART . set 05

MOVE >00400100,WSTART ;XY value (256,64) stored
;in WSTART

5-13

B6 	WEND - Window End Address Register
	

B6

Format 	31
	

16 15
	

0

Window end Y Window end X

Description 	WEND specifies the XY address of the most significant pixel contained in
the rectangular destination clipping window. WEND is valid for in-
structions that use an XY destination address and a window option. The
most significant pixel is the pixel with the highest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the lower right corner of the pixel array.

WEND may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WEND is included in the window. The value in
WEND is used with WSTART, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WEND is not modified by instruction execution.

The following instructions use WEND as an implied operand.

Instruction 	WEND Format and Function
(PA RS,RD 	XY value of most significant window corner
DRAV RS,RD 	XY value of most significant window corner
FILL XY 	 XY value of most significant window corner
LINE 	 XY value of most significant window corner
PIXBLT B,XY 	XY value of most significant window corner
PIXBLT L,XY 	XY value of most significant window corner
PIXBLT XY,XY 	XY value of most significant window corner
PIXT RS,RD.XY 	XY value of most significant window corner
PIXT RS.XY,RD.XY XY value of most significant window corner

Example 	WEND .set B6

MOVE >00400100,WEND 	;XY value (256,64) stored
;in WEND

5-14

B7

Format

Description

DYDX - Delta Y/Delta X Register
	

B7

31
	

16 15
	

0

Delta Y Delta X

DYDX specifies the X and Y dimensions of the rectangular destination array
for PIXBLT and FILL instructions. Both the X and Y dimensions are in
pixels; that is, the DX value is number of pixels in width of the array, and
DY is the number of lines of pixels in the destination array.

When the window clipping option is selected, the pixel block dimensions
for the transfer are determined by the relationships between WSTART,
WEND, DADDR, and DYDX. If either the X or Y dimension is 0, then the
block is interpreted as having a dimension of 0; no transfer is performed.

The values for DY and DX may range up to the coordinate extent of the
display (up to 65,535, depending on the display pitch and pixel size se-
lected). For window operations, the relationship between DYDX,
WSTART, and WEND is such that DY = WEND, - WSTARTy + 1 and DX
= WEND x - WSTARTx + 1. The value in DYIOX is used with WSTART,
DADDR, and DYDX to preclip pixels, lines, and pixel arrays.

Most instructions do not modify the contents of DYDX. For FILL XY,
PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY,XY, with window option 1,
however, DYDX is used with DADDR to perform a common rectangle
function. In this case, DYDX is set to the dimensions of the common pixel
block described by the intersection of the original destination array and the
window identified by WSTART and WEND. No drawing is performed. If
there is no common rectangle, the V bit is not set and the value of DYDX
is indeterminate. See these instructions for further information.

The following instructions use DYDX as an implied operand.

DYDX Format and Function
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
W=1 is selected, as previously noted.
Dimensions of the rectangle described by the line to be
drawn.
Array dimensions in XY format
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.
Array dimensions in XY format.
Array dimensions in XY format; special requirements when
pick is selected, as previously noted.

Instruction
FILL L
FILL XY

LINE

PIXBLT B,L
PIXBLT B,XY

PIXBLT L,L
PIXBLT L,XY

PIXBLT XY,L
PIXBLT XY,XY

5-15

B7 	 DYDX - Delta Y/Delta X Register 	 B7

Example 	This example illustrates the relationship of DYDX to WSTART and WEND.

WSTART.set B5
WEND 	.set B6
DYDX 	.set B7

MOVE WEND,DYDX
SUBXY WSTART,DYDX
ADDI >10001,DYDX

;Put WEND into DYDX
;Generate (WEND - WSTART)
;Increment by 1 in each
;dimension

5-16

B8

Format

Description

COLORO - Background Color Register
	

B8

31 28 27 24 23 20 19 16 15 12 11
	

8 7
	

4 3
	

0

Pixel
	

Pixel
	

Pixel
	

Pixel
	

Pixel
	

Pixel I Pixel
	

Pixel

COLORO specifies the replacement color for 0 bits in the source array for
PIXBLT B,L and PIXBLT B,XY instructions. These two instructions trans-
form binary pixel array information to multiple bits per pixel arrays using the
color information in COLOR1 and COLORO. The lower 16 bits of COLORO
are used for the 0 or background color. There is a direct correspondence
between the alignment of pixels within the COLORO register and pixels
within memory words to be altered. That is, individual pixels within
COLORO are used as they align with destination pixels in the destination
word.

COLORO is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLORO as an implied operand.

Instruction 	COLORO Contents
B,L 	Background pixel color for expanded array

PIXBLT B,XY 	Background pixel color for expanded array

Example 	COLORO .set B8

MOVI >00005555,COLORO ;store uniform pixel value
;in COLORO

5-17

B9

Format

Description

COLOR1 - Foreground Color Register
	

B9

31 	28 27 24 23 20 19 16 15 12 11
	

8 7
	

4 3
	

0

Pixel I Pixel
	

Pixel
	

Pixel I Pixel I Pixel I Pixel I Pixel

COLOR1 specifies the replacement color for pixels to be altered at the des-
tination pixel or pixel block for FILL, DRAV and LINE instructions.

For PIXBLT B,L and PIXBLT B,XY instructions, COLOR1 specifies the re-
placement color for 1 bits in the source array. These two instructions
transform binary pixel array information to multiple-plane pixel arrays using
color information in COLOR1 and COLORO. There is a direct correspond-
ence between the alignment of pixels within the COLOR1 register and pix-
els within memory words to be altered. That is, individual pixels within
COLOR1 are used as they align with destination pixels in the destination
word.

COLOR1 is not modified by instruction execution.

Note:

The example format above is for four bits per pixel.

The following instructions use COLOR1 as an implied operand.

Example

Instruction
DRAV RS,RD
FILL L
FILL XY
LINE
PIXBLT B,L
PIXBLT B,XY

COLORl.set

CO LORI Contents
Pixel color for pixel draw
Pixel color for filled array
Pixel color for filled array
Pixel color for line draw
Foreground pixel color for expanded array
Foreground pixel color for expanded array

B9

MOVI >00003333,COLOR1 ;Store uniform pixel value
;in COLOR1

5-18

B10 - B14

Format

Description

- Reserved Registers
	

B10 - B14

31
	

0

Various Formats

B10 — B14 are used as implied operands for the LINE instruction and as
temporary registers for PIXBLTs and FILLs. B13 (PATTRN register) is re-
served for future LINE draw enhancement. It should be set to >FFFFFFFF
before executing the LINE instruction to ensure software compatibility.

5-19

F
E
0

F61 F80

3130 29 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F
E
1

Reserved V C N z
P
B
X E

CPU Registers and Instruction Cache - Status Register

5.2 Status Register

The status register (ST) is a special-purpose, 32-bit register that specifies the
processor status. The ST also contains several parameters that specify the
characteristics of two programmable data types, fields 0 and 1. The ST is ini-
tialized to >00000010 at reset.

Figure 5-4 illustrates the status register. Table 5-2 lists the functions associ-
ated with the status bits. Table 5-3 describes the encoding of the field size
bits in FSO and FS1.

Note: The status register bits marked reserved (bits 12-20, 22-24 and 26-27)
are currently unused. When read, a reserved bit returns the last value
written to it. At reset, all reserved bits are forced to Os.

Figure 5-4. Status Register

Table 5-2. Definition of Bits in Status Register

Bit
No.

Field
Name F Function

0-4 FS0 Field Size 0. 	Length in bits of first memory data field (see Table 5-3 for values).

5 FE0 Field Extend 0. 	Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.

FEO = 0 — Zero extension
FEO = 1 — Sign extension

6-10 FS1 Field Size 1. 	Length in bits of second memory data field (see Table 5-3 for values).

11 FE1 Field Extend 1. 	Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.

FE1 = 0 — Zero extension
FE1 = 1 — Sign extension

12-20 — Reserved

21 IE Interrupt Enable. 	Master interrupt enable/disable bit.

IE = 0 — All maskable interrupts disabled
IE = 1 — All maskable interrupts enabled

22-24 — Reserved

5 - 20

CPU Registers and Instruction Cache - Status Register

Table 5-2. Definition of Bits in Status F 	(Concluded)

Bit
No.

Field
Name Function

2I PBX PixBit Executing. 	Indicates upon return from an interrupt that the interrupt occurred
between instructions or in the middle of a PIXBLT or FILL instruction.

0 = Indicates interrupt occurred at PIXBLT or FILL instruction boundary
1 = Indicates interrupt occurred in the middle of a PIXBLT or FILL instruction

26-27 — Reserved

28 V Overflow. 	Set according to instruction execution.

29 Z Zero. 	Set according to instruction execution.

30 C Carry. 	Set according to instruction execution.

31 N Negative. 	Set according to instruction execution.

Table 5-3. Decoding of Field-Size Bits in Status Register

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

Five FS
Bits

Field
Sizet

00001 01001 10001 11001

L
.0

 (
0

 N
 co

 c
) o

 ,-
N

N

 tN
 C

N
 (N

 C
V

 C
n

 cn
 el

00010 01010 10010 11010
00011 01011 10011 11011
00100 01100 10100 11100
00101

1
0

 01101

C') 10101

,-.
C

V
 11101

00110 01110 10110 11110
00111 01111 10111 11111
01000 10000 11000 00000

t In bits

5-21

CPU Registers and Instruction Cache - Program Counter

5.3 Program Counter

The program counter (PC) is a dedicated 32-bit register that points to the next
instruction word to be executed. Instructions are always aligned on even
16-bit word boundaries, and as shown in Figure 5-5, the four LSBs of the PC
are always Os.

31
	

43
	

0
%aid sid•enn 	 l0 0 0 01

14 	

bite

►io 4 Weil

Figure 5-5. Program Counter

An instruction consists of one or more instruction words. The first word
contains the opcode for the instruction. Additional words may be required for
immediate data or absolute addresses. As each instruction word is fetched, the
PC is incremented by 16 to point to the next instruction word. The PC con-
tents are replaced during a branch instruction, subroutine call instruction, re-
turn instruction, or interrupt. Instructions may be categorized according to
their effect on the PC, as indicated in Table 5-4.

Table 5-4. Instruction Effects on the PC

Category Description

Non-branch The PC is incremented by 16 at the end of the instruction,
allowing execution to proceed sequentially to the next in-
struction.

Absolute Branch
(TRAP, CALL, JAcc)

The PC is loaded with an absolute address; the four LSBs
of the address are set to Os.

Relative Branch
(JRcc, DSJxx)

The signed displacement (8 or 16 bits) is added to the
current contents of the PC. 	The signed displacement is
treated as a word displacement; that is, it is shifted left four
bit positions before it is added to the PC.

Indirect Branch
(JUMP, CALL,

EXCPC)

The PC is loaded with the register contents.The four LSBs
are set to Os.

5-22

Subsegment 0

2
3

6
7

Subsegment 0

2
3
4
5
6
7

Segment 0

lo

LRU
Stack

Segment Start Address

• , •...j.ster 0
23 --so

•ips 	 1 	I

I 	SSA Register 2 I

SSA Registe• 3 I

Subsegment 2
of segment 1

Nino
Re..r

I..f..1

Least
RecentI/

Ubea

} Segment 2

} Segment 3

Data Registers

64

2
3
4
5
6
7

Subsepment 0

Subsegment 0

2
3
4
5
6
7

P
Flags

T

5

til

1

-.
4
 M

 M
 •

CPU Registers and Instruction Cache - Instruction Cache

5.4 Instruction Cache

Most program execution time is spent on repeated execution of a few main
procedures or loops. Program execution can be speeded up by placing these
often used code segments in a fast memory. The TMS34010 uses a 256-byte
instruction cache for this purpose.

Only memory words that are pointed to by the PC can be accessed from the
cache. This includes opcodes, immediate operands, and absolute addresses.
Instructions and data may reside in the same area of memory; therefore, data
could be copied into the instruction cache. However, the processor cannot
access data from the cache. All reads and writes of data in memory bypass the
cache.

5.4.1 Cache Hardware

The instruction cache contains 256 bytes of RAM, used to store up to 128
1 6-bit instruction words. Each instruction word in cache is aligned on an even
word boundary. Figure 5-6 illustrates cache organization.

Figure 5 - 6. TMS34010 Instruction Cache

5-23

CPU Registers and Instruction Cache - Instruction Cache

The cache is divided into four 32-word segments. Each cache segment may
contain up to 32 words of a 32-word segment in memory. This memory seg-
ment is a block of 32 contiguous words beginning at an even 32-word
boundary in memory.

Each cache segment is divided into eight subsegments; each subsegment
contains four words. Dividing each segment into subsegments reduces the
number of word fetches required from memory when fewer than 32 words of
a memory segment are used. Each of the four cache segments is associated
with a segment start address (SSA) register. Figure 5-7 shows how an in-
struction word is partitioned into the components used by the cache control
algorithm.

32 Bit Linear Address

	Pi

23 Bite 	 ► 3 Bits aft, 01010101

	The four L6Bs of an Instruction
word address are always 0.

..::uotion word address
vntl m subsegment

	Subsegment address

	 -r•rhpnent start address
(SSA register)

Figure 5-7. Segment Start Address

The 23 bits of the SSA register correspond to the 23 MSBs of the segment's
memory address. These 23 MSBs are common to all eight subsegments within
a segment. The next three bits (bits 6-8) identify one of the eight subseg-
ments. Bits 4 and 5 identify one of the four words contained in a subsegment.
The four LSBs are always Os because instructions are aligned on word boun-
daries.

5.4.2 Cache Replacement Algorithm

When the TMS34010 requests an instruction word from a segment that is not
in the cache, the contents of one of the four cache-resident segments must
be discarded to make room for the segment that contains the requested word.
A modified form of the least-recently-used (LRU) replacement algorithm is
used to select the segment to be discarded.

The LRU segment manager (an element of the cache control logic) maintains
an LRU stack to track use of the four segments. The LRU stack contains a
queue of segment numbers, 0 through 3. Each time a segment is accessed, its
segment number is placed on the top of the stack, pushing the other three
segment numbers down by one position. Thus, the number at the top of the
LRU stack identifies the most-recently-used segment and the number at the
bottom identifies the least-recently-used segment.

When a new segment must be loaded into cache, the least-recently-used
segment is discarded. The eight P flags (described in Section 5.4.3) of the
selected segment are set to Os, and the segment's SSA register is loaded with
the new segment address. After the requested subsegment has been loaded
from memory, its P flag is set to 1, and the requested instruction fetch is al-
lowed to complete.

Following a reset, all P flags in the cache are set to 0 and the four segment
numbers in the LRU stack are stored in numerical order (0-3).

5-24

CPU Registers and Instruction Cache - Instruction Cache

5.4.3 Cache Operation

When the TMS34010 requests an instruction word, it checks to see if the word
is contained in cache. First, it compares the 23 MSBs of the instruction ad-
dress to the four SSA registers. If a match is found, the processor searches for
the appropriate subsegment. A present (P) flag, associated with each sub-
segment, indicates the presence of a particular subsegment within a cache
segment. P=1 indicates that the requested word is in cache; this is called a
cache hit. If there is no match, or if there is a match and P=O, the word is not
in cache; this is called a cache miss.

• Cache Hit

The cache contains the requested instruction word. The processor performs
the following actions:

1) A short access cycle reads the instruction word from cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

• Cache M iss

The cache does not contain the instruction word. There are two types of cache
miss - subsegment miss and segment miss.

Subsegment Miss. The 23 MSBs of the instruction word address match one
of the four SSA registers' 23 MSBs; that is, the appropriate segment is in the
cache. However, the P flag for the requested subsegment is not set. The
processor performs the following actions:

1) The four-word subsegment containing the requested instruction word is
read from local memory into the cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

3) The subsegment's P flag is set.

4) The instruction word is read from the cache.

Segment Miss. The instruction word address does not match any of the SSA
registers. The processor performs the following actions:

1) The least-recently-used segment is selected for replacement; the P flags
of all eight subsegments are cleared.

2) The SSA register for the selected segment is loaded with the 23 MSBs
of the address of the requested instruction word.

3) The four-word subsegment in memory that contains the requested in-
struction word is read into the cache. It is placed in the appropriate
subsegment of the least-recently-used segment. The subsegment's P
flag is set to 1.

4) The LRU stack is adjusted by moving the number of the new segment
from the bottom (indicating that it is least recently used) to the top (in-
dicating that it is most recently used). This pushes the other three seg-
ment numbers in the stack down one position.

5) The instruction word is read from the cache.

5-25

CPU Registers and Instruction Cache - Instruction Cache

5.4.4 Self-Modifying Code

Avoid using self-modifying code; it can cause unpredictable results. When a
program modifies its own instructions, only the copy of the instruction that
resides in external memory is affected. Copies of the instructions that reside
in cache are not modified, and the internal control logic does not attempt to
detect this situation.

5.4.5 Flushing the Cache

Flushing the cache sets it to an initial state which is identical to the state of
the cache following reset. The cache is empty and all 32 P flags are set to 0.

The cache is flushed by setting the CF (cache flush) bit in the HSTCTL register
to 1. The CF bit retains the last value loaded until a new value is loaded or
until the GSP is reset. The contents of the cache remain flushed as long as the
CF bit is set to 1. All instruction fetches bypass the cache and are accessed
directly from memory.

Unless the cache is disabled, normal cache operation will resume when the
CF bit is set to 0.

One use for flushing the cache is to facilitate downloading new code from a
host processor to GSP local memory. The host typically halts the GSP during
downloading by writing a 1 to the HLT bit in the HSTCTL register. Before
allowing the GSP to execute downloaded code, the host should flush the
cache as described in Section 5.4.5.

5.4.6 Cache Disable

Disabling the cache facilitates program debugging and emulation. The cache
is disabled by setting the CD (cache disable) bit in the CONTROL register to
1. While disabled, the cache is bypassed and all instructions are fetched from
external memory.

CD=1 has the same effect as CF=1 with one exception. While CD=1 and
CF=0, data already in the cache are protected from change. When the CD bit
is set back to 0, the state of the cache prior to setting the CD bit to 1 is re-
stored. The instructions in the cache are once again available for execution.
If the contents of the cache become invalid while CD=1, they can be flushed
by setting CF to 1.

The CD bit can be manipulated to preserve code in the cache for faster exe-
cution in some time-critical applications. For example, if an inner loop just
exceeds 256 bytes, most of the loop, but not all of it, can fit in the cache.
'During execution of the few instructions that are not in the cache, the CD bit
can be set to 1 to prevent the code in the cache from being replaced. In this
instance, the loop's execution speed is improved by eliminating the thrashing
of cache contents. Use this technique carefully; in some cases, it can nega-
tively affect execution speed.

5-26

CPU Registers and Instruction Cache - Instruction Cache

5.4.7 Performance with Cache Enabled versus Cache Disabled

When the instruction cache is disabled, instruction words are fetched from
external memory. Assuming no wait states are necessary, each instruction
fetch from external memory adds 3 machine cycles to the access time. This is
considerably slower than a program which uses the cache efficiently (when
each word in cache is used several times before it is replaced).

An inefficient use of cache occurs when words in cache are used only once
before replacement. This produces a cache miss every fourth word. With the
cache enabled, the time penalty due to cache misses in this case is 2.25 ma-
chine states per instruction, calculated as follows:

• Eight machine cycles are required to load four words into cache from
memory

• An additional machine state is required to process the instruction

• Dividing the total of nine machine states by four instructions yields an
average of 2.25 machine states per instruction

Performance using the cache is nearly always better than performance with the
cache disabled. The only exception occurs when the code contains so many
jumps that only a portion of each subsegment is executed before control is
transferred to another subsegment.

5-27

TM634010

1

General-
Purpose
Registers

Instruction
Cache

Instructions

NA, r. ,r;
.111eINI

External
Memory CPU

	Data

CPU Registers and Instruction Cache - Internal Parallelism

5.5 Internal Parallelism

Figure 5-8 illustrates the internal data paths associated with TMS34010 pro-
cessor functions. The TMS34010 has a single, logical memory space for sto-
rage of both data and instructions. However, internal parallelism provides the
GSP with the benefits found in architectures which contain separate data and
instruction storage. The ability to fetch instructions from cache in parallel with
data accesses from memory greatly enhances execution speed. Hardware
parallelism allows the following three storage areas to be accessed simultane-
ously:

• Instruction cache

• Dual-ported, general-purpose register files A and B

• External memory

Figure 5-8. Internal Data Paths

Each storage area can also be accessed independently of the other two. This
allows the GSP to perform the following actions in parallel during each pair
of machine states:

• One external memory cycle

• Two instruction fetches from cache

• Four reads and two writes to the general-purpose register files

The need to schedule conflicting internal operations can limit the GSP's ability
to perform these actions in parallel. For example, an instruction which requires
the memory controller to perform a read must complete before the next in-
struction can be executed.

5 - 28

CPU Registers and Instruction Cache - Internal Parallelism

Figure 5-9 illustrates an example of internal parallelism. Figure 5-9 a shows
three activities occurring in parallel:

• Instructions are fetched from cache.

• Instructions are executed through the general-purpose registers and the
ALU.

• The local memory interface controller performs memory accesses.

Figure 5-9 a represents execution of the code in Figure 5-9 b, which is the
inner loop of a graphics routine. The memory controller accesses pixels while
the ALU fetches instructions from cache. The memory controller completes a
write cycle while execution begins on the next instruction.

(a) I4 	

One iteration

state: —.14.- 1 —elf- 2 -01- 3 -.0-4--.14-5-04-6-40-7-14-8-04-9 -014-10 -Pk-1144-12 411—

MeAC 	 ADD FHYT 	 ADD 1_111. 	 MOVE
Instruction Fetch:
	 B 	C

	
ID 	E I

Execution: 	E 	A::A IA 	B l C i i • C • 	D 	EIE A

Memory Interface: 	 I A ! A l 	I C • C

Read Cycle Read 	Write
(b)

A
	

L1: 	MOVE 	*81+ B10,0 	Get DELTAX
B
	

ADD 	B1C.BI! 	 Adjust pixel pointer
C
	

FIXT 	*B1,:i38 	 Draw next pixel
D
	

ADD 	BO,B1 	 Add field size
E
	

D6J6 	B11,L1 	 Loop N Times

Figure 5 - 9. Parallel Operation of Cache, Execution Unit, and Memory Interface

5-29

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

