
5. CPU Registers and Instruction Cache 

The TMS34010's on-chip CPU includes two general-purpose register files, file 
A and file B. Each register file contains 15 32-bit registers. The two files share 
a 32-bit hardware stack pointer (SP) that automatically manages the system 
stack during interrupts and subroutine calls. The CPU also contains two 
dedicated 32-bit registers - a program counter and a status register. An on-
chip cache memory holds up to 128 instruction words, and is transparent to 
software. The CPU registers and instruction cache are discussed in the fol- 
lowing sections: 

Section Page 
5.1 General-Purpose Registers 	  5-2 
5.2 Status Register 	  5-20 
5.3 Program Counter 	  5-22 
5.4 Instruction Cache 	  5-23 
5.5 Internal Parallelism 	  5-28 

In addition to the CPU registers, the TMS34010 contains 28 memory-mapped 
registers that are dedicated to I/O functions. These are described in Section 
6. 
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CPU Registers and Instruction Cache - General-Purpose Registers 

5.1 General-Purpose Registers 

The TMS34010 has 30 32-bit general-purpose registers, divided into register 
files A and B. In addition, a single stack pointer (SP) is common to both re-
gister files. 

The multiple internal data paths linking the ALU and general-purpose registers 
provide single machine state execution of most register-to-register in-
structions. Single-state instructions include add, subtract, Boolean oper-
ations, and shifts (1 to 32 bits). During a single-state instruction, the 
following actions occur: 

1) Two 32-bit operands are read in parallel from the general-purpose reg-
isters. 

2) The specified operation is performed by the ALU. 

3) The 32-bit result is stored in the specified general-purpose register. 

The general-purpose registers are dual-ported to permit operands to be read 
from two independent registers at the same time. 

5.1.1 Register File A 

Fifteen of the 30 general-purpose registers, AO-A14, form register file A. 
These registers can be used for data storage and manipulation. No hard- 
ware-dedicated functions are associated with these general-purpose registers. 

All register-to-register instructions (except MOVE RS,RD) require both regis-
ters to be in the same file. Instructions used to manipulate registers AO-A14 
can also be used to manipulate the stack pointer. The SP can be specified in 
place of an A-file register in any of these instructions. Figure 5-1 illustrates 
register file A. 
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Figure 5-1. Register File A 
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CPU Registers and Instruction Cache - General-Purpose Registers 

5.1.2 Register File B 

Register file B consists of 15 general-purpose registers, BO-B14. All regis-
ter-to-register instructions (except MOVE RS,RD) require both registers to be 
in the same file. Instructions used to manipulate registers BO-B14 can also 
be used to manipulate the stack pointer. The SP can be specified in place of 
a B-file register in any of these instructions. 

Registers BO-B14 can be used for general-purpose functions such as data 
storage and manipulation. During PixBIt and other pixel operations, however, 
these registers are assigned hardware-dedicated functions. 
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Figure 5-2. Register File B 

As Figure 5-2 shows, registers BO-B9 are used as special-purpose registers 
during pixel operations. These registers must be loaded with specific param-
eters before execution of pixel operations. Registers B10-B14 are used as 
special-purpose registers for the LINE instruction. During pixel operations, 
registers B10-B14 are used for temporary storage; their previous contents are 
destroyed. Register functions may vary for individual instructions. 

The B - file registers are described in detail in Section 5.1.4. 

5-3 



CPU Registers and Instruction Cache - General-Purpose Registers 

5.1.3 Stack Pointer 

The stack pointer (SP), shown in Figure 5-3, is a 32-bit register that contains 
the bit address of the top of the system stack. Section 3.3 describes stack 
operation in detail. The SP appears as a member of both the A and B files, 
and can be specified as the operand in any instruction that manipulates the 
general-purpose registers. The machine contains only a single SP, but this 
SP can be addressed as a member of either register file, A or B. 

31 	4  3 	0 
Word Addrwo, 	Bit Addr  

14 	28 bits 	► 14  4 lolts—■1 

Figure 5-3. Stack Pointer Register 

The system stack grows in the direction of smaller addresses. During an in-
terrupt, the PC and ST are pushed onto the stack to permit the interrupted 
routine to resume execution when interrupt processing is completed. A sub-
routine call saves the PC on the stack to allow the calling routine to resume 
execution when subroutine execution is completed. 

The stack pointer always points to the value at the top of the stack. Specif-
ically, the SP contains the 32-bit address of the LSB of that value. While the 
four LSBs of the SP may be set to an arbitrary value, stack operations execute 
more efficiently when the four LSBs are Os. Setting these bits to Os aligns the 
stack pointer to 16-bit word boundaries in memory, reducing to two the 
number of memory cycles necessary to push or pop the contents of a 32-bit 
register. 

The SP can be specified as the source or destination operand in any instruc-
tion that operates on the general-purpose registers. The SP can be accessed 
as register 15 in file A or B. Refer to the descriptions of the specific in-
structions for details. 
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CPU Registers and Instruction Cache - General-Purpose Registers 

5.1.4 Implied Graphics Operands 

Table 5-1 summarizes the B-file register functions during pixel operations. 
These registers are referred to as implied graphics operands. Several I/O reg-
isters, described in Section 6, are also implied graphics operands. Individual 
descriptions of the B-file registers follow Table 5-1. 

Table 5-1. B-File Registers Summary 

Reg. Function Description 

BO SADDR Source Address. 	Address of the upper left corner of the source pixel array 
(lowest pixel address in the array). 	SADDR is a linear or XY address, depend- 
ing on the instruction which uses it. 

B1 SPTCH Source Pitch. 	Difference in linear start addresses between adjacent rows of a 
source pixel array. 

B2 DADDR Destination Address. 	Address of the upper left corner of the destination pixel 
array (lowest pixel address in the array). 	DADDR is a linear or XY address, 
depending on the instruction which uses it. 

B3 DPTCH Destination Pitch. 	Difference in linear start addresses between adjacent rows 
of a destination pixel array. 

B4 OFFSET Offset. 	Linear bit address corresponding to XY-coordinate origin (X.--- 0, Y=0). 

B5 WSTART Window Start Address. 	XY address of the upper left corner of the window 
(smallest X and Y coordinate values in the array). 

31 	 16 	15 	 01  

Starting Y 	 Starting X 	 I  
B6 WEND Window End Address. 	XY address of the lower right corner of the window 

(largest X and Y coordinate values in the array). 

16 	15 	 0 

1
31 

Ending Y 	 Ending X 

67 DYDX Delta Y IDefta X. The 16 LSBs of this register specify the width (X dimension) 
of the source array in terms of either pixels or bits, depending on the instruc- 
tion. The 16 MSBs specify the height (Y dimension) of the source array. If 
either DY = 0 or DX = 0 then nothing is moved. 

	

31 	 16 	15 	 0 

Delta Y 	 1 	 Delta X 	 I 
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CPU Registers and Instruction Cache - General-Purpose Registers 

Table 5-1. B-File Registers Summary (Concluded) 

Reg. Function Description 

B8 Color 0 Pixel value corresponding to "color 0". 	COLORO contains the source back- 
ground color to be used during a bit-expand operation (PIXBLT B,XY or 
PIXBLT B,L). 	The pixel value should be replicated throughout the '16 LSBs 
of register B8 (see note below). 	Non replicated patterns may be entered for 
dithering effects. The 16 MSBs are ignored during the expand operation. 	For 
example, at four bits per pixel, COLORO contains four identical pixel values, 
as shown below. 

31 	2827 	24 23 	20 19 	16 	15 	12 	11 	8 7 	4 3 	0  

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	 I 	 I 	I 	I 

Each of the 16 LSBs of COLORO is associated with the corresponding pin of 
the local address/data bus, LADO-LAD15. COLORO bit 0 is associated with 
bit 0 of the data bus (the bit transferred on LADO), COLORO bit 1 is associated 
with bit 1 of the data bus, and so on. When the contents of COLORO are 
output over a portion of the data bus, including a bit n of the bus, as an ex-
ample, bus bit n contains the value from bit n of COLORO. 

B9 Color 1 Pixel value corresponding to "color 1". 	COLOR1 contains the source fore- 
ground color to be used during a bit-expand, fill, or draw-and-advance oper- 
ation. 	The pixel value should be replicated throughout the 16 LSBs of register 
B9 (see note below). 	Nonreplicated patterns may be entered for dithering ef- 
fects. The 16 MSBs are ignored during the expand operation. For example, 
at four bits per pixel, COLOR1 contains four identical pixel values, as shown 
below. 

31 	28 27 	24 23 	20 19 	16 	15 	12 	11 	8 7 	43 	0 

Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel 	Pixel I 	I 	 I 

Each of the 16 LSBs of COLOR1 is associated with the corresponding pin of 
the local address/data bus, LADO-LAD15. COLOR1 bit 0 is associated with 
bit 0 of the data bus (the bit transferred on LADO), COLOR1 bit 1 is associated 
with bit 1 of the data bus, and so on. When the contents of COLOR1 are 
output over a portion of the data bus, including bit n of the bus, bus bit n 
contains the value from bit n of COLOR1. 

B1 0-B1 4 PixBlt temporary registers. 	PixBlt instructions use these registers for storing 
temporary values and context information necessary to resume execution of a 
partially-completed PixBlt operation in the event of an interrupt. 

SP SP Stack pointer. 	SP contains the bit address of the top of the stack. 

Notes: To provide upward compatibility with future versions of the GSP, replicate the pixel value 
throughout all 32 bits of COLORO or COLOR1, as shown. 
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BO  

Syntax 

Format 

 

SADDR - Source Address Register BO 

  

BO 

31 16 15 0 

X 

or 

31 
	

0 

Linear Bit Address 

Description 	SADDR contains the source array address pointer for PIXBLTs. Generally, 
SADDR points to the pixel with the lowest address in the source array. 
When a corner adjust is necessary, the GSP automatically adjusts SADDR 
to point to the selected starting corner of the source array. (For PIXBLT 
L,L, however, you must manually adjust SADDR to point to the starting 
corner. This feature allows you to use PIXBLT L,L for manipulating pixel 
arrays with pitches that are not powers of two.) 

SADDR is in either XY or linear format. If the first operand of a PIXBLT 
instruction is an L (such as PIXBLT L,XY), then SADDR is in linear format. 
If the first operand of a PIXBLT instruction is an XV (such as PIXBLT XY,L), 
then SADDR is in XY format. 

During PIXBLT operations, SADDR is used in linear format. When the 
PIXBLT is completed, SADDR points to the starting location of the row that 
follows the last row in the array. If a PIXBLT is interrupted, SADDR points 
to the next word of pixels to be read. 

During LINE operation, SADDR contains the current decision variable va-
lue. 

The following instructions use SADDR as an implied operand: 

Instruction 	SADDR Format and Function  
LINE 	 Contains d=2b-a, used for the line draw. 
PIXBLT B,L 	Linear address; points to the beginning of a binary source 

array. 
PIXBLT B,XY 	Linear address; points to the beginning of a binary source 

array. 
PIXBLT L,L 	Linear address with special requirements when PBH = 1 

or PBV = 1. Refer to the PIXBLT L,L for a description of 
its unique requirements. 

PIXBLT L,XY 	Linear address; points to the beginning of a source array. 
PIXBLT XY,L 	XY address; points to the beginning of a source array. 
PIXBLT XY,XY XY address; points to the beginning of a source array. 

Example SADDR .set BO 
* 

MOVE >00080015,SADDR 	;Move XY value >15,>8 into 
;BO 

MOVE >00010AFC,SADDR ;Move linear value >10AFC 
;into BO 
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Bi  

Format 

 

SPTCH - Source Pitch Register B1 

  

31 

 

0 

Linear Bit Address 

Description 	SPTCH specifies the linear difference in the start addresses of adjacent lines 
of the source array for PIXBLT and FILL instructions. The GSP uses the 
value in SPTCH to move from row to row through the source array. SPTCH 
must be an integer multiple of 16 (except for the special cases of PIXBLT 
B,L and PIXBLT B,XY). SPTCH is constrained in some cases to be a power 
of two; this allows XY addressing and automatic corner adjust operations. 

Some PIXBLTs store an adjusted value of SPTCH during instruction exe-
cution. This mechanism is transparent unless the PIXBLT is interrupted. 
However, the original contents of SPTCH are restored if the instruction is 
allowed to complete normally. 

The following instructions use SPTCH as an implied operand. 

Instruction 	SPTCH Format and Function  
PIXBLT B,L 	Linear; unconstrained otherwise. 
PIXBLT B,XY 	Linear; power of two for windowing; unconstrained oth- 

erwise. 
PIXBLT L,L 	Unconstrained except as previously noted. SPTCH is not 

related to CONVSP for this instruction; therefore, it is not 
constrained to be a power of two. 

PIXBLT L,XY 	Linear; power of two for windowing and PBV = 1; un- 
constrained otherwise except as previously noted. 

PIXBLT XY,L 	Power of two. 
PIXBLT XY,XY Power of two. 

Example 	SPTCH .set Bl 

MOVE >00001000,SPTCH 	;Power of two for 
;PIXBLT XY,L 

MOVE >00010AFC,SPTCH 	;Unconstrained value for 
;PIXBLT B,L 
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B2 
	

DADDR - Destination Address Register 
	

B2 

Format 
	

31 
	

16 15 
	

0 

Y 
	

X 

or 

31 
	

0 

Linear Bit Address 

Description 	DADDR specifies the address of the least significant pixel in the destination 
array for PIXBLTs. Generally, DADDR points to the pixel with the lowest 
address in the destination array. When a corner adjust is necessary, the 
GSP automatically adjusts DADDR to point to the selected starting corner 
of the destination array. (For PIXBLT L,L, however, you must manually 
adjust DADDR to point to the starting corner. This feature allows you to 
use PIXBLT L,L for manipulating pixel arrays with pitches that are not 
powers of two.) 

DADDR is also used in conjunction with DYDX to perform a common rec-
tangle function for some instructions (FILL XY, PIXBLT B<XY, PIXBLT 
L,XY, and PIXBLT XY,XY, with window option 1). In these cases, DADDR 
is set to the starting XY address of the common pixel block described by the 
intersection of the original destination array and the pixel block indicated 
by WSTART and WEND. No drawing is performed. If there is no common 
array, the V bit is not set and the value of DAD DR is indeterminate. 

DADDR is in either XY or linear format. If the second operand of the 
PIXBLT instruction is an L (such as PIXBLT XY,L), then DADDR is in linear 
format. If the second operand of the PIXBLT instruction is an XY (such as 
PIXBLT XY,XY), then DAD DR is in XY format. 

During PIXBLT operation, DADDR is maintained in linear format. When the 
PIXBLT completes, DADDR points to the linear starting address of the row 
following the last row in the array. If a PIXBLT is interrupted, DADDR 
points to the next word of pixels to be read. 

For the LINE instruction, DADDR contains the XY address of the next DDA 
drawing point. 

The following instructions use DADDR as an implied operand. 

Instruction  
FILL L 
FILL XY 
LINE 
PIXBLT B,L 
PIXBLT B,XY 
PIXBLT L,L 

PIXBLT L,XY 
PIXBLT XY,L 
PIXBLT XY,XY 

DADDR Format and Function  
Linear; points to the beginning of the destination array. 
XY; points to the beginning of the destination array. 
XY; points to the current pixel. 
Linear; points to the beginning of the destination array. 
XY; points to the beginning of the destination array. 
Linear with special requirements when PBH=1 or PBV=1. 
Refer to the PIXBLT L,L for a description of its unique re-
quirements. 
XY; points to the beginning of the destination array. 
Linear; points to the beginning of the destination array. 
XY; points to the beginning of the destination array. 

5 -9 



B2 	DADDR - Destination Address Register 	B2 

Example 	DADDR .set B2 
* 

MOVE >00080015,DADDR ;Move XY value >l5,>8 into 
;B2 

MOVE >00010AFC,DADDR ;Move linear value >10AFC 
;into 02 
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DPTCH - Destination Pitch Register 
	

B3 

31 
	

0 

Linear Bit Address 

DPTCH specifies the linear difference in the start addresses of adjacent lines 
of the destination array for PIXBLT and FILL instructions. The TMS34010 
uses the value in DPTCH to move from row to row through the destination 
array. DPTCH must be an integer multiple of 16 (except for FILL L when 
DX=1). DPTCH is also constrained in some cases to be a power of two to 
allow XY addressing and automatic corner adjust. 

Some PIXBLTs store an adjusted value in DPTCH during instruction exe-
cution. This mechanism is transparent, unless the PIXBLT is interrupted. 
The original contents of DPTCH are restored if the instruction is allowed to 
complete normally. 

The following instructions use DPTCH as an implied operand. 

B3 

Format 

Description 

Example 

Instruction  
L L 

FILL XY 
PIXBLT B,L 
PIXBLT B,XY 

PIXBLT L,L 

PIXBLT L,XY 
PIXBLT XY,L 

PIXBLT XY,XY 

DPTCH .set 
* 

MOVE 

MOVE 

DPTCH Format and Function  
Linear; unconstrained for DX=1. 
Linear; power of two. 
Linear; unconstrained except as previously noted. 
Linear; power of two for windowing; unconstrained oth-
erwise except as noted above. 
Linear; unconstrained except as previously noted. DPTCH 
is not related to CONVDP for this instruction; therefore, it 
is not constrained to be a power of two. 
Linear; power of two. 
Linear; power of two for PBV = 1; unconstrained other-
wise except as previously noted. 
Linear; power of two. 

B3 

>00001000,DPTCH 

>00010AFC,DPTCH 

;Power of two for 
;PIXBLT XY,L 
;Unconstrained value for 
;PIXBLT L,L 
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B4 	OFFSET - XY Addressing Offset Register 	E14 

Format 	31 
	

0 

Linear Bit Address 

Description 	OFFSET contains the linear address of the first pixel in the XY coordinate 
space for instructions using XY addressing. This corresponds to the linear 
address of the XY origin (X=0,Y=0). This value is used as the memory base 
for performing XY to linear address conversions. 

OFFSET is always in linear format. It may be placed at any position in the 
TMS34010 linear address space and should contain a pixel-aligned value 
for proper XY address conversions, transparency, pixel processing, and 
plane masking. OFFSET is not modified by instruction execution. 

The following instructions use OFFSET as an implied operand. 

OFFSET Format and Function Instruction 
CVXYL 	RD 
DRAV RS,RD 
FILL XY 
LINE 
PIXBLT B,XY 
PIXBLT L,XY 
PIXBLT XY,L 
PIXBLT XY,XY 
PIXT RS,RD.XY 
PIXT RS.XY,RD 
PIXT RS.XY,RD.XY 

Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 
Linear address 

of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 
of XY origin 

Example 
	

OFFSET.set B4 

MOVE >00042000,OFFSET ;Linear value on pixel 
* 	 ;boundary 
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31 
	

16 15 
	

0 

Window start Y Window start X 

B5  

Format 

Description 

WSTART - Window Start Address Register 	B5 

WSTART specifies the XY address of the least significant pixel contained 
in the rectangular destination clipping window. WSTART is valid for in-
structions that use an XY destination address and a window option. The 
least significant pixel is the pixel with the lowest address in the array. For 
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds 
to the pixel in the upper left corner of the pixel array. 

WSTART may be placed at any position in the positive quadrant of the XY 
address space. It describes an inclusive pixel; that is, the pixel at the XY 
location contained in WSTART is included in the window. The value in 
WSTART is used with WEND, DADDR, and DYDX to preclip pixels, lines, 
and pixel arrays. WSTART is not modified by instruction execution. 

The following instructions use WSTART as an implied operand. 

Instruction 	WSTART Format and Function  
RD 	XY value of least significant window corner 

DRAV RS,RD 	XY value of least significant window corner 
FILL XY 	 XY value of least significant window corner 
LINE 	 XY value of least significant window corner 
PIXBLT B,XY 	XY value of least significant window corner 
PIXBLT L,XY 	XY value of least significant window corner 
PIXBLT XY,XY 	XY value of least significant window corner 
PIXT RS,RD.XY 	XY value of least significant window corner 
PIXT RS.XY,RD.XY XY value of least significant window corner 

Example 	WSTART . set 05 

MOVE >00400100,WSTART ;XY value (256,64) stored 
;in WSTART 
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B6 	WEND - Window End Address Register 
	

B6 

Format 	31 
	

16 15 
	

0 

Window end Y Window end X 

Description 	WEND specifies the XY address of the most significant pixel contained in 
the rectangular destination clipping window. WEND is valid for in-
structions that use an XY destination address and a window option. The 
most significant pixel is the pixel with the highest address in the array. For 
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds 
to the pixel in the lower right corner of the pixel array. 

WEND may be placed at any position in the positive quadrant of the XY 
address space. It describes an inclusive pixel; that is, the pixel at the XY 
location contained in WEND is included in the window. The value in 
WEND is used with WSTART, DADDR, and DYDX to preclip pixels, lines, 
and pixel arrays. WEND is not modified by instruction execution. 

The following instructions use WEND as an implied operand. 

Instruction 	WEND Format and Function  
(PA RS,RD 	XY value of most significant window corner 
DRAV RS,RD 	XY value of most significant window corner 
FILL XY 	 XY value of most significant window corner 
LINE 	 XY value of most significant window corner 
PIXBLT B,XY 	XY value of most significant window corner 
PIXBLT  L,XY 	XY value of most significant window corner 
PIXBLT XY,XY 	XY value of most significant window corner 
PIXT RS,RD.XY 	XY value of most significant window corner 
PIXT RS.XY,RD.XY XY value of most significant window corner 

Example 	WEND .set B6 

MOVE >00400100,WEND 	;XY value (256,64) stored 
;in WEND 
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B7 

Format 

Description 

DYDX - Delta Y/Delta X Register 
	

B7 

31 
	

16 15 
	

0 

Delta Y Delta X 

DYDX specifies the X and Y dimensions of the rectangular destination array 
for PIXBLT and FILL instructions. Both the X and Y dimensions are in 
pixels; that is, the DX value is number of pixels in width of the array, and 
DY is the number of lines of pixels in the destination array. 

When the window clipping option is selected, the pixel block dimensions 
for the transfer are determined by the relationships between WSTART, 
WEND, DADDR, and DYDX. If either the X or Y dimension is 0, then the 
block is interpreted as having a dimension of 0; no transfer is performed. 

The values for DY and DX may range up to the coordinate extent of the 
display (up to 65,535, depending on the display pitch and pixel size se-
lected). For window operations, the relationship between DYDX, 
WSTART, and WEND is such that DY = WEND, - WSTARTy  + 1 and DX 
= WEND x  - WSTARTx  + 1. The value in DYIOX is used with WSTART, 
DADDR, and DYDX to preclip pixels, lines, and pixel arrays. 

Most instructions do not modify the contents of DYDX. For FILL XY, 
PIXBLT B,XY, PIXBLT L,XY, and PIXBLT XY,XY, with window option 1, 
however, DYDX is used with DADDR to perform a common rectangle 
function. In this case, DYDX is set to the dimensions of the common pixel 
block described by the intersection of the original destination array and the 
window identified by WSTART and WEND. No drawing is performed. If 
there is no common rectangle, the V bit is not set and the value of DYDX 
is indeterminate. See these instructions for further information. 

The following instructions use DYDX as an implied operand. 

DYDX Format and Function  
Array dimensions in XY format. 
Array dimensions in XY format; special requirements when 
W=1 is selected, as previously noted. 
Dimensions of the rectangle described by the line to be 
drawn. 
Array dimensions in XY format 
Array dimensions in XY format; special requirements when 
pick is selected, as previously noted. 
Array dimensions in XY format. 
Array dimensions in XY format; special requirements when 
pick is selected, as previously noted. 
Array dimensions in XY format. 
Array dimensions in XY format; special requirements when 
pick is selected, as previously noted. 

Instruction 
FILL L 
FILL XY 

LINE 

PIXBLT B,L 
PIXBLT B,XY 

PIXBLT L,L 
PIXBLT L,XY 

PIXBLT XY,L 
PIXBLT XY,XY 

5-15 



B7 	 DYDX - Delta Y/Delta X Register 	 B7 

Example 	This example illustrates the relationship of DYDX to WSTART and WEND. 

WSTART.set B5 
WEND 	.set B6 
DYDX 	.set B7 

MOVE WEND,DYDX 
SUBXY WSTART,DYDX 
ADDI >10001,DYDX 

;Put WEND into DYDX 
;Generate (WEND - WSTART) 
;Increment by 1 in each 
;dimension 
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B8  

Format 

Description 

COLORO - Background Color Register 
	

B8 

31 28 27 24 23 20 19 16 15 12 11 
	

8 7 
	

4 3 
	

0 

Pixel 
	

Pixel 
	

Pixel 
	

Pixel 
	

Pixel 
	

Pixel I Pixel 
	

Pixel 

COLORO specifies the replacement color for 0 bits in the source array for 
PIXBLT B,L and PIXBLT B,XY instructions. These two instructions trans-
form binary pixel array information to multiple bits per pixel arrays using the 
color information in COLOR1 and COLORO. The lower 16 bits of COLORO 
are used for the 0 or background color. There is a direct correspondence 
between the alignment of pixels within the COLORO register and pixels 
within memory words to be altered. That is, individual pixels within 
COLORO are used as they align with destination pixels in the destination 
word. 

COLORO is not modified by instruction execution. 

Note: 

The example format above is for four bits per pixel. 

The following instructions use COLORO as an implied operand. 

Instruction 	COLORO Contents  
B,L 	Background pixel color for expanded array 

PIXBLT B,XY 	Background pixel color for expanded array 

Example 	COLORO .set B8 

MOVI >00005555,COLORO ;store uniform pixel value 
;in COLORO 
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B9  

Format 

Description 

COLOR1 - Foreground Color Register 
	

B9 

31 	28 27 24 23 20 19 16 15 12 11 
	

8 7 
	

4 3 
	

0 

Pixel I Pixel 
	

Pixel 
	

Pixel I Pixel I Pixel I Pixel I Pixel 

COLOR1 specifies the replacement color for pixels to be altered at the des-
tination pixel or pixel block for FILL, DRAV and LINE instructions. 

For PIXBLT B,L and PIXBLT B,XY instructions, COLOR1 specifies the re-
placement color for 1 bits in the source array. These two instructions 
transform binary pixel array information to multiple-plane pixel arrays using 
color information in COLOR1 and COLORO. There is a direct correspond-
ence between the alignment of pixels within the COLOR1 register and pix-
els within memory words to be altered. That is, individual pixels within 
COLOR1 are used as they align with destination pixels in the destination 
word. 

COLOR1 is not modified by instruction execution. 

Note: 

The example format above is for four bits per pixel. 

The following instructions use COLOR1 as an implied operand. 

Example 

Instruction  
DRAV RS,RD 
FILL L 
FILL XY 
LINE 
PIXBLT B,L 
PIXBLT B,XY 

COLORl.set 

CO LORI Contents  
Pixel color for pixel draw 
Pixel color for filled array 
Pixel color for filled array 
Pixel color for line draw 
Foreground pixel color for expanded array 
Foreground pixel color for expanded array 

B9 

MOVI >00003333,COLOR1 ;Store uniform pixel value 
;in COLOR1 
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B10 - B14 

Format 

Description 

- Reserved Registers 
	

B10 - B14 

31 
	

0 

Various Formats 

B10 — B14 are used as implied operands for the LINE instruction and as 
temporary registers for PIXBLTs and FILLs. B13 (PATTRN register) is re-
served for future LINE draw enhancement. It should be set to >FFFFFFFF 
before executing the LINE instruction to ensure software compatibility. 
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CPU Registers and Instruction Cache - Status Register 

5.2 Status Register 

The status register (ST) is a special-purpose, 32-bit register that specifies the 
processor status. The ST also contains several parameters that specify the 
characteristics of two programmable data types, fields 0 and 1. The ST is ini-
tialized to >00000010 at reset. 

Figure 5-4 illustrates the status register. Table 5-2 lists the functions associ-
ated with the status bits. Table 5-3 describes the encoding of the field size 
bits in FSO and FS1. 

Note: The status register bits marked reserved (bits 12-20, 22-24 and 26-27) 
are currently unused. When read, a reserved bit returns the last value 
written to it. At reset, all reserved bits are forced to Os. 

Figure 5-4. Status Register 

Table 5-2. Definition of Bits in Status Register 

Bit 
No. 

Field 
Name F Function  

0-4 FS0 Field Size 0. 	Length in bits of first memory data field (see Table 5-3 for values). 

5 FE0 Field Extend 0. 	Bit determines whether field from memory is extended with Os or 
with the sign bit when loaded into 32-bit general-purpose register. 

FEO = 0 — Zero extension 
FEO = 1 — Sign extension 

6-10 FS1 Field Size 1. 	Length in bits of second memory data field (see Table 5-3 for values). 

11 FE1 Field Extend 1. 	Bit determines whether field from memory is extended with Os or 
with the sign bit when loaded into 32-bit general-purpose register. 

FE1 = 0 — Zero extension 
FE1 = 1 — Sign extension 

12-20 — Reserved 

21 IE Interrupt Enable. 	Master interrupt enable/disable bit. 

IE = 0 — All maskable interrupts disabled 
IE = 1 — All maskable interrupts enabled 

22-24 — Reserved 
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Table 5-2. Definition of Bits in Status F 	(Concluded) 

Bit 
No. 

Field 
Name Function 

2I PBX PixBit Executing. 	Indicates upon return from an interrupt that the interrupt occurred 
between instructions or in the middle of a PIXBLT or FILL instruction. 

0 = Indicates interrupt occurred at PIXBLT or FILL instruction boundary 
1 = Indicates interrupt occurred in the middle of a PIXBLT or FILL instruction 

26-27 — Reserved 

28 V Overflow. 	Set according to instruction execution. 

29 Z Zero. 	Set according to instruction execution. 

30 C Carry. 	Set according to instruction execution. 

31 N Negative. 	Set according to instruction execution. 

Table 5-3. Decoding of Field-Size Bits in Status Register 

Five FS 
Bits 

Field 
Sizet 

Five FS 
Bits 

Field 
Sizet 

Five FS 
Bits 

Field 
Sizet 

Five FS 
Bits 

Field 
Sizet 

00001 01001 10001 11001 

L
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 N
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) o

  ,-
N

 
N

 tN
  C

N
  (N

  C
V

  C
n

  cn
 el 

00010 01010 10010 11010 
00011 01011 10011 11011 
00100 01100 10100 11100 
00101 

1
0

  01101 

C') 10101 

,-. 
C

V
  11101 

00110 01110 10110 11110 
00111 01111 10111 11111 
01000 10000 11000 00000 

t In bits 
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5.3 Program Counter 

The program counter (PC) is a dedicated 32-bit register that points to the next 
instruction word to be executed. Instructions are always aligned on even 
16-bit word boundaries, and as shown in Figure 5-5, the four LSBs of the PC 
are always Os. 

31 
	

43 
	

0 
%aid sid•enn 	 l0  0 0 01 

14 	 

 

bite 

 

►io  4 Weil 

  

Figure 5-5. Program Counter 

An instruction consists of one or more instruction words. The first word 
contains the opcode for the instruction. Additional words may be required for 
immediate data or absolute addresses. As each instruction word is fetched, the 
PC is incremented by 16 to point to the next instruction word. The PC con-
tents are replaced during a branch instruction, subroutine call instruction, re-
turn instruction, or interrupt. Instructions may be categorized according to 
their effect on the PC, as indicated in Table 5-4. 

Table 5-4. Instruction Effects on the PC 

Category Description 

Non-branch The PC is incremented by 16 at the end of the instruction, 
allowing execution to proceed sequentially to the next in-
struction. 

Absolute Branch 
(TRAP, CALL, JAcc) 

The PC is loaded with an absolute address; the four LSBs 
of the address are set to Os. 

Relative Branch 
(JRcc, DSJxx) 

The signed displacement (8 or 16 bits) is added to the 
current contents of the PC. 	The signed displacement is 
treated as a word displacement; that is, it is shifted left four 
bit positions before it is added to the PC. 

Indirect Branch 
(JUMP, CALL, 

EXCPC) 

The PC is loaded with the register contents.The four LSBs 
are set to Os. 
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CPU Registers and Instruction Cache - Instruction Cache 

5.4 Instruction Cache 

Most program execution time is spent on repeated execution of a few main 
procedures or loops. Program execution can be speeded up by placing these 
often used code segments in a fast memory. The TMS34010 uses a 256-byte 
instruction cache for this purpose. 

Only memory words that are pointed to by the PC can be accessed from the 
cache. This includes opcodes, immediate operands, and absolute addresses. 
Instructions and data may reside in the same area of memory; therefore, data 
could be copied into the instruction cache. However, the processor cannot 
access data from the cache. All reads and writes of data in memory bypass the 
cache. 

5.4.1 Cache Hardware 

The instruction cache contains 256 bytes of RAM, used to store up to 128 
1 6-bit instruction words. Each instruction word in cache is aligned on an even 
word boundary. Figure 5-6 illustrates cache organization. 

Figure 5 - 6. TMS34010 Instruction Cache 
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The cache is divided into four 32-word segments. Each cache segment may 
contain up to 32 words of a 32-word segment in memory. This memory seg-
ment is a block of 32 contiguous words beginning at an even 32-word 
boundary in memory. 

Each cache segment is divided into eight subsegments; each subsegment 
contains four words. Dividing each segment into subsegments reduces the 
number of word fetches required from memory when fewer than 32 words of 
a memory segment are used. Each of the four cache segments is associated 
with a segment start address (SSA) register. Figure 5-7 shows how an in-
struction word is partitioned into the components used by the cache control 
algorithm. 

 

32 Bit Linear Address 

  

	Pi 

   

     

23 Bite 	 ► 3 Bits aft, 01010101 

	The four L6Bs of an Instruction 
word address are always 0. 

..::uotion word address 
vntl m subsegment 

	Subsegment address 

	 -r•rhpnent start address 
(SSA register) 

Figure 5-7. Segment Start Address 

The 23 bits of the SSA register correspond to the 23 MSBs of the segment's 
memory address. These 23 MSBs are common to all eight subsegments within 
a segment. The next three bits (bits 6-8) identify one of the eight subseg-
ments. Bits 4 and 5 identify one of the four words contained in a subsegment. 
The four LSBs are always Os because instructions are aligned on word boun-
daries. 

5.4.2 Cache Replacement Algorithm 

When the TMS34010 requests an instruction word from a segment that is not 
in the cache, the contents of one of the four cache-resident segments must 
be discarded to make room for the segment that contains the requested word. 
A modified form of the least-recently-used (LRU) replacement algorithm is 
used to select the segment to be discarded. 

The LRU segment manager (an element of the cache control logic) maintains 
an LRU stack to track use of the four segments. The LRU stack contains a 
queue of segment numbers, 0 through 3. Each time a segment is accessed, its 
segment number is placed on the top of the stack, pushing the other three 
segment numbers down by one position. Thus, the number at the top of the 
LRU stack identifies the most-recently-used segment and the number at the 
bottom identifies the least-recently-used segment. 

When a new segment must be loaded into cache, the least-recently-used 
segment is discarded. The eight P flags (described in Section 5.4.3) of the 
selected segment are set to Os, and the segment's SSA register is loaded with 
the new segment address. After the requested subsegment has been loaded 
from memory, its P flag is set to 1, and the requested instruction fetch is al-
lowed to complete. 

Following a reset, all P flags in the cache are set to 0 and the four segment 
numbers in the LRU stack are stored in numerical order (0-3). 
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5.4.3 Cache Operation 

When the TMS34010 requests an instruction word, it checks to see if the word 
is contained in cache. First, it compares the 23 MSBs of the instruction ad-
dress to the four SSA registers. If a match is found, the processor searches for 
the appropriate subsegment. A present (P) flag, associated with each sub-
segment, indicates the presence of a particular subsegment within a cache 
segment. P=1 indicates that the requested word is in cache; this is called a 
cache hit. If there is no match, or if there is a match and P=O, the word is not 
in cache; this is called a cache miss. 

• Cache Hit 

The cache contains the requested instruction word. The processor performs 
the following actions: 

1) A short access cycle reads the instruction word from cache. 

2) The segment number is moved to the top of the LRU stack, pushing the 
other three segment numbers toward the bottom of the stack. 

• Cache M iss 

The cache does not contain the instruction word. There are two types of cache 
miss - subsegment miss and segment miss. 

Subsegment Miss. The 23 MSBs of the instruction word address match one 
of the four SSA registers' 23 MSBs; that is, the appropriate segment is in the 
cache. However, the P flag for the requested subsegment is not set. The 
processor performs the following actions: 

1) The four-word subsegment containing the requested instruction word is 
read from local memory into the cache. 

2) The segment number is moved to the top of the LRU stack, pushing the 
other three segment numbers toward the bottom of the stack. 

3) The subsegment's P flag is set. 

4) The instruction word is read from the cache. 

Segment Miss. The instruction word address does not match any of the SSA 
registers. The processor performs the following actions: 

1) The least-recently-used segment is selected for replacement; the P flags 
of all eight subsegments are cleared. 

2) The SSA register for the selected segment is loaded with the 23 MSBs 
of the address of the requested instruction word. 

3) The four-word subsegment in memory that contains the requested in-
struction word is read into the cache. It is placed in the appropriate 
subsegment of the least-recently-used segment. The subsegment's P 
flag is set to 1. 

4) The LRU stack is adjusted by moving the number of the new segment 
from the bottom (indicating that it is least recently used) to the top (in-
dicating that it is most recently used). This pushes the other three seg-
ment numbers in the stack down one position. 

5) The instruction word is read from the cache. 
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5.4.4 Self-Modifying Code 

Avoid using self-modifying code; it can cause unpredictable results. When a 
program modifies its own instructions, only the copy of the instruction that 
resides in external memory is affected. Copies of the instructions that reside 
in cache are not modified, and the internal control logic does not attempt to 
detect this situation. 

5.4.5 Flushing the Cache 

Flushing the cache sets it to an initial state which is identical to the state of 
the cache following reset. The cache is empty and all 32 P flags are set to 0. 

The cache is flushed by setting the CF (cache flush) bit in the HSTCTL register 
to 1. The CF bit retains the last value loaded until a new value is loaded or 
until the GSP is reset. The contents of the cache remain flushed as long as the 
CF bit is set to 1. All instruction fetches bypass the cache and are accessed 
directly from memory. 

Unless the cache is disabled, normal cache operation will resume when the 
CF bit is set to 0. 

One use for flushing the cache is to facilitate downloading new code from a 
host processor to GSP local memory. The host typically halts the GSP during 
downloading by writing a 1 to the HLT bit in the HSTCTL register. Before 
allowing the GSP to execute downloaded code, the host should flush the 
cache as described in Section 5.4.5. 

5.4.6 Cache Disable 

Disabling the cache facilitates program debugging and emulation. The cache 
is disabled by setting the CD (cache disable) bit in the CONTROL register to 
1. While disabled, the cache is bypassed and all instructions are fetched from 
external memory. 

CD=1 has the same effect as CF=1 with one exception. While CD=1 and 
CF=0, data already in the cache are protected from change. When the CD bit 
is set back to 0, the state of the cache prior to setting the CD bit to 1 is re-
stored. The instructions in the cache are once again available for execution. 
If the contents of the cache become invalid while CD=1, they can be flushed 
by setting CF to 1. 

The CD bit can be manipulated to preserve code in the cache for faster exe-
cution in some time-critical applications. For example, if an inner loop just 
exceeds 256 bytes, most of the loop, but not all of it, can fit in the cache. 
'During execution of the few instructions that are not in the cache, the CD bit 
can be set to 1 to prevent the code in the cache from being replaced. In this 
instance, the loop's execution speed is improved by eliminating the thrashing 
of cache contents. Use this technique carefully; in some cases, it can nega-
tively affect execution speed. 
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5.4.7 Performance with Cache Enabled versus Cache Disabled 

When the instruction cache is disabled, instruction words are fetched from 
external memory. Assuming no wait states are necessary, each instruction 
fetch from external memory adds 3 machine cycles to the access time. This is 
considerably slower than a program which uses the cache efficiently (when 
each word in cache is used several times before it is replaced). 

An inefficient use of cache occurs when words in cache are used only once 
before replacement. This produces a cache miss every fourth word. With the 
cache enabled, the time penalty due to cache misses in this case is 2.25 ma-
chine states per instruction, calculated as follows: 

• Eight machine cycles are required to load four words into cache from 
memory 

• An additional machine state is required to process the instruction 

• Dividing the total of nine machine states by four instructions yields an 
average of 2.25 machine states per instruction 

Performance using the cache is nearly always better than performance with the 
cache disabled. The only exception occurs when the code contains so many 
jumps that only a portion of each subsegment is executed before control is 
transferred to another subsegment. 
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CPU Registers and Instruction Cache - Internal Parallelism 

5.5 Internal Parallelism 

Figure 5-8 illustrates the internal data paths associated with TMS34010 pro-
cessor functions. The TMS34010 has a single, logical memory space for sto-
rage of both data and instructions. However, internal parallelism provides the 
GSP with the benefits found in architectures which contain separate data and 
instruction storage. The ability to fetch instructions from cache in parallel with 
data accesses from memory greatly enhances execution speed. Hardware 
parallelism allows the following three storage areas to be accessed simultane-
ously: 

• Instruction cache 

• Dual-ported, general-purpose register files A and B 

• External memory 

Figure 5-8. Internal Data Paths 

Each storage area can also be accessed independently of the other two. This 
allows the GSP to perform the following actions in parallel during each pair 
of machine states: 

• One external memory cycle 

• Two instruction fetches from cache 

• Four reads and two writes to the general-purpose register files 

The need to schedule conflicting internal operations can limit the GSP's ability 
to perform these actions in parallel. For example, an instruction which requires 
the memory controller to perform a read must complete before the next in-
struction can be executed. 
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Figure 5-9 illustrates an example of internal parallelism. Figure 5-9 a shows 
three activities occurring in parallel: 

• Instructions are fetched from cache. 

• Instructions are executed through the general-purpose registers and the 
ALU. 

• The local memory interface controller performs memory accesses. 

Figure 5-9 a represents execution of the code in Figure 5-9 b, which is the 
inner loop of a graphics routine. The memory controller accesses pixels while 
the ALU fetches instructions from cache. The memory controller completes a 
write cycle while execution begins on the next instruction. 

(a) I4 	 

 

One iteration 

 

   

state: —.14.- 1 —elf- 2 -01- 3 -.0-4--.14-5-04-6-40-7-14-8-04-9 -014-10 -Pk-1144-12 411— 

MeAC 	 ADD FHYT 	 ADD 1_111. 	 MOVE 
Instruction Fetch: 
	 B 	C 

	
ID 	E I 

Execution: 	E 	A::A IA 	B l C i i • C • 	D 	EIE A 

Memory Interface: 	 I  A ! A l 	I  C • C 

Read Cycle Read 	Write 
(b) 

A 
	

L1: 	MOVE 	*81+ B10,0 	Get DELTAX 
B 
	

ADD 	B1C.BI! 	 Adjust pixel pointer 
C 
	

FIXT 	*B1,:i38 	 Draw next pixel 
D 
	

ADD 	BO,B1 	 Add field size 
E 
	

D6J6 	B11,L1 	 Loop N Times 

Figure 5 - 9. Parallel Operation of Cache, Execution Unit, and Memory Interface 
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