
3. Memory Organization

This section presents details of physical and logical addresses, illustrates the
TMS34010 memory map, and describes stack operation.

Section 	 Page
3.1 Memory Addressing 	 3-2
3.2 Memory Map 	 3-4
3.3 Stacks 	 3-6

3-1

Memory Organization - Memory Addressing

3.1 Memory Addressing

The TMS34010 is a bit-addressable machine with a 32-bit internal memory
address. Each 32-bit address points to an individual bit within memory. Fig-
ure 3-1 shows the logical memory structure. Memory is accessed as a con-
tinuously addressable string of bits. Groups of adjacent bits form data
structures called fields (see Section 4). The GSP supports field lengths from
1 to 32 bits. The total memory capacity is four gigabits (or 512 megabytes);
the TMS34010 supports external addressing of 128 megabytes. Bit addresses
range from >0000 0000 to >FFFF FFFF.

32-Bit
Logical Address

N 4 	

Memory

Bit
232 -1

Bit Bit Blt
N+1 N N-1

Bit Bit
1 0

Figure 3-1. Logical Memory Address Space

Figure 3-2 shows the physical memory organization. The GSP communicates
with memory over a 16-bit data bus, and always reads or writes a complete
16-bit word from or to memory. The word accessed during a memory cycle
always begins on an even 16-bit boundary. That is, the four LSBs of the
32-bit starting address of the word are Os. Bits within a word are numbered
from 0 to 15; bit 15 is the MSB and bit 0 is the LSB. A word is identified by
the address of its LSB. In this document, the LSB of a memory word will be
depicted as the rightmost bit in the word.

32-Bit Logical Address 	
4

26-Bit LSBa
►Physical Address

N 	 4 3 0

Not Used
Externally

Select Bit Boundary
Within Word

2 0,
MSBs

31 30 1429

Memory A 	Word N+1 Word N 	I 	Word N-1

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
11[11111111111111

MSB 	 LSB

Figure 3 - 2. Physical Memory Addressing

3-2

Memory Organization - Memory Addressing

The four LSBs of the 32-bit logical address in Figure 3-2 do not appear on the
local memory bus. When the GSP extracts data that does not begin and end
on even word boundaries these four LSBs are used internally to indicate a bit
boundary within an accessed word. Control logic at the local memory inter-
face automatically performs the bit alignment and masking necessary to extract
the data structure from physical memory. This is completely transparent to
software. If the data structure being extracted straddles the boundary between
two or more words, multiple read cycles are required. Similarly, inserting a
data structure into memory may require a series of read and write cycles, ac-
companied again by the internal masking and shifting of data to properly align
the data structure within memory.

The two MSBs of the 32-bit logical address are not output. The TMS34010
supports an external address range of 128 megabytes of physical memory.

3-3

Memory Organization - Memory Map

3.2 Memory Map

Figure 3-3 shows the TMS34010 memory map. The memory is divided into
three regions:

• Trap vectors

• I/O registers (on chip)

• General use

Memory is logically organized as four gigabits, but is physically accessed 16
bits at a time. Locations are shown as 16-bit words, identified by 32-bit ad-
dresses whose four LSBs are Os. Word addresses range from >0000 0000 to
>FFFF FFFO. Bit address >0000 0000 is the rightmost bit in the word at the
bottom of the map; bit address >FFFF FFFF is the leftmost bit in the word at
the top of the map.

Reading or writing to an address in the range >C000 0000 to >C000 01 F0
accesses an internal I/O register. Reading or writing to any address outside
this range accesses off-chip memory (or a memory-mapped device) external
to the TMS34010.

Address
>FFFF FFFO

>FFFF FC00
>FFFF FBFO

>FFFF E000
>FFFF DFFO

>C000 2000
>C000 1F=0

>C000 0200
>C000 01F0

>c000 . .:J
>BFFF FFFO

> 0000 0000

Bit 2 32 -1
(Last bit In memory)

t
84 Words

512 Words

228-1024 Words

512 Words

32 Words

3x226 Words

1

Interrupt
Veotors

Reserved

General
Use

Reserved

Internal I/O
Registers

General
Use

16 --11
Bit 0
(First bit In memory)

Figure 3-3. TMS34010 Memory Map

3-4

Memory Organization - Memory Map

Addresses >FFFF FC00 through >FFFF FFEO are reserved for 32 interrupt,
reset, and trap vectors. A vector is a 32-bit address that points to the starting
location in memory of the appropriate interrupt, reset, or trap service routine.
Each address is stored in physical memory as two consecutive 16-bit words,
with the 16 LSBs at the lower address.

The 480 words from >C000 0200 to >C000 1 FF0 are reserved for future ex-
pansion of the I/O registers. The 448 words from >FFFF E000 to
>FFFF FBFO are reserved for future expansion of the interrupt vectors.

3-5

Memory Organization - Stacks

3.3 Stacks

The TMS34010's system stack is implemented in local memory via a dedicated
stack pointer (SP) register. The system stack is managed in hardware, and is
used to store return addresses and processor status information during inter-
rupts, traps, and subroutine calls. The contents of selected registers in the A
and B files can be pushed onto the stack and popped off the stack. The sys-
tem stack area can also be used for dynamically allocated data storage. The
SP is a dedicated 32-bit internal register that points to the top of the system
stack. The SP can be accessed by instructions that manipulate registers in
either register file.

In addition to the system stack, one or more auxiliary stacks can be managed
in software. The system stack always grows toward lower memory addresses,
while the auxiliary stack can be defined to grow toward either lower or higher
addresses. The MOVE and MOVB instructions, combined with the automatic
predecrement and postincrement addressing modes, facilitate pushing and
popping auxiliary stack data. One or more registers in the A or B files can be
used by software as auxiliary stack pointers and frame pointers. The indexed
addressing modes can be used in conjunction with a frame pointer to access
variables embedded within the stack.

3.3.1 System Stack

Figure 3-4 shows the structure of the system stack, which grows in the di-
rection of lower memory addresses. The SP points to the top of the stack.
That is, it contains the 32-bit address of the LSB (bit 0) of the value on top
of the stack. The SP may contain any 32-bit value; however, stack operations
execute more efficiently when the four LSBs of the SP are Os. This aligns the
SP to word boundaries in memory, reducing the number of memory cycles
necessary to push values onto the stack or pop values off the stack.

During an interrupt, the PC (program counter) and ST (status register) are
pushed onto the stack. Instructions that push values onto the system stack
include:

• MMTM SP,<register list>

• CALL RS

• CALLA <absolute address>

• CALLR <relative address>

• TRAP <number>

• PUSHST

• MOVE RS,-*SP

3-6

Memory Organization - Stacks

Instructions that pop values off the system stack include:

• MMFM SP,<register list>

• RETI

• RETS
• POPST

• MOVE "SP+,RD

Memory

14-16 -1.1

Stack Bottom

System
Stack
Area

14-3241
SP 1• 	I 	

Lowest Address

Figure 3 -4. System Stack

From one to 16 registers in the A or B file can be moved to or from the stack
in a single instruction. The MMTM instruction may be used to push multiple
registers onto the stack, and the MMFM instruction may be used to pop mul-
tiple registers from the stack. The second word of either instruction is a 16-bit
mask, generated from a register list, that specifies which registers in the A or
• file are being moved.

The SP can be specified as the source or destination operand in any in-
struction that operates on the general-purpose registers. Instructions that
manipulate registers in the A file or B file can also be used to manipulate the
SP.

Highest Address

3-7

Memory

(a)

SP

Lowest Address

(b)

Stack Bottom

32

Lowest Address

NEM

Stack Bottom

14— 32 —41
SP

Memory

16

Stack

:,AFF2

Stack

>OFE2

0

(c)

Stack Bottom

14— 32 -41
SPI N 	

Memory

4-- 18 --4

I 	Stack

6.7 70TO=.1 N

N
N-18
N-32

0

IOnsMI -Pippo*,
(MMTM SP,A .C.)

(MMFM SP,A"D

Memory Organization - Stacks

The contents of 32-bit registers pushed onto the stack are stored in two con-
secutive words, with the 16 MSBs at the higher memory address, and the 16
LSBs at the lower address. This is shown in Figure 3-5, which demonstrates
the effects of the following instruction sequence:

MMTM SP,AO 	Push register AO onto stack
MMFM SP,Al 	Pop stack into register Al

The original state of the stack and registers is shown in Figure 3-5 a. Figure
3-5 b illustrates the state after AO has been pushed onto the stack, and Figure
3-5 c shows the results of popping the top of the stack into A1.

Lowest Address 	10

Figure 3-5. Stack Operations

3-8

Memory Organization - Stacks

The GSP pushes the contents of a 32-bit register onto the top of the stack
according to the following sequence of events:

1) The SP is decremented by 32.
2) The register is pushed onto the stack.

The GSP pops the top of stack into a 32-bit register according to the follow-
ing sequence of events:

1) The 32 bits at the top of the stack are popped into the register.
2) The SP is incremented by 32.

During an interrupt, the PC and ST are pushed onto the stack to permit the
interrupted routine to resume execution when the interrupt processing is
completed. The following actions occur during an interrupt routine:

1) The SP is decremented by 32.
2) The PC is pushed onto the stack.
3) The SP is again decremented by 32.
4) The ST is pushed onto the stack.

During a return from an interrupt:

1) The 32 bits at the top of the stack are popped into the ST.
2) The SP is incremented by 32.
3) The 32 bits at the top of the stack are popped into the register.
4) The SP is again incremented by 32.

A subroutine call saves the state of the calling routine on the stack to allow
the routine to resume execution when subroutine execution is completed.
During a subroutine call, the following actions are taken:

1) The SP is decremented by 32.
2) The PC is pushed onto the stack.

During a return from a subroutine,

1) The 32 bits at the top of the stack are popped into the PC.
2) The SP is incremented by 32.

3-9

Memory Organization - Stacks

3.3.2 Auxiliary Stacks

Auxiliary stacks may be managed in software. Any A- or B-file register, except
the SP, may be used as the auxiliary stack pointer. Auxiliary stacks are typi-
cally used to contain dynamically allocated data storage.

In the following discussion, the symbol STK denotes the auxiliary stack poin-
ter. The STK may contain any 32-bit value; however, stack operations execute
more efficiently when the four LSBs of the STK are Os. This aligns the STK
to word boundaries in memory, reducing the number of memory cycles nec-
essary to push values onto the stack or pop values off the stack.

As shown in Figure 3-6 and Figure 3-7, the auxiliary stack can be configured
to grow in either direction in memory. The memory is shown in these figures
as a large set of continuously addressable bits (ignoring for the moment the
fact that memory is physically organized as 16-bit words).

The stack shown in Figure 3-6 grows toward lower memory addresses. The
original stack is shown in Figure 3-6 a. In b, a field of arbitrary size is pushed
onto the stack via a MOVE RS , * - STK instruction (where RS and STK represent
general-purpose registers). The field is popped off the stack by a MOVE
*STK+,RD instruction in c. Between instructions, the STK always points to
the lowest bit address in the stack - this corresponds to the very top of the
stack.

The MMTM STK, <register list> instruction can be used to save multiple
registers on the stack in Figure 3-6. Later, the registers can be restored to their
former values by means of an MMFM STK, <register list> instruction.

Stack

(a)

S

4— . ••
Address

STK

Stack

Lower

Address

(b) Field

T1
STK

S

Stack

(C)

STK

Figure 3-6. Auxiliary Stack Grows toward Lower Addresses

3 - 10

Memory Organization - Stacks

The stack shown in Figure 3-7 grows toward higher memory addresses. The
original stack is shown in Figure 3-7 a. In b, a field of arbitrary size is pushed
onto the stack via a MOVE RS, *STK+ instruction, and in c the field is popped
off the stack by a MOVE * - STK , RD instruction. Between instructions, the STK
always points to one plus the highest bit address in the stack - this location
is one bit beyond the very top of the stack.

Stack

4— Hluh 	 LOW
Aadr063,00 	 Addresses

STK

Stack
	 A 	

	■J■1••■•=t,. 	. .

Stack

(a)

• • • •• • • •"..Z •e n"•••• n '.:.

STK

Figure 3-7. Auxiliary Stack Grows toward Higher Addresses

(a)

(b)

Field

STK

3-1 1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

