

Dat	a Sh	eets

Product Previews

3

2

Design Considerations	4
RESEARCH CHERRY AND SERVICE	

 Alternation of the second state o	and why of hearing the second of a started of the second
en e	
Machanical Liata	
그는 것 같아요. 이 이렇게 가지 않는 것이 가지 않는 것 같이 많이 가지 않는 것 같이 있다.	
국민이는 방송에서 집에서 가지 않는 것이 아니는 아이가 많이 하셨다.	
and the second	

Contents

Supervisor Functions Series-Pass Voltage Regulators Shunt Regulators Voltage References DC-to-DC Converters PWM Controllers

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5 MICROPOWER VOLTAGE REFERENCES

D3189, JANUARY 1989

- Operating Current Range . . . 20 µA to 20 mA
- 1.5% and 3% Initial Voltage Tolerance
- Reference Impedance ... LM185...0.6 Ω Max at 25°C LM385...1 Ω Max at 25°C All Devices ...1.5 Ω Max Over Full Temperature Range
- Very Low Power Consumption
- Applications:
 Portable Meter References
 Portable Test Instruments
 Battery-Operated Systems
 Current-Loop Instrumentation
 Panel Meters
- Designed to be Interchangeable with National LM185-2.5, LM285-2.5, and LM385-2.5

description

These micropower terminal bandgap voltage references operate over a $20-\mu A$ to 20-mA current range and feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming provides tight voltage tolerance. The LM185-2.5 series bandgap reference has low noise and good long-term stability.

Careful design of the LM185-2.5 series has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating temperature range allows its use with widely varying supplies with excellent regulation.

The extremely low-power drain of the LM185-2.5 series makes it useful for micropower circuitry. These voltage references can be used to make portable meters, regulators, or general-purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current range allows them to replace older references with a tighter tolerance part.

The LM185-2.5 is characterized for operation over the full military temperature range of -55° C to 125°C. The LM285-2.5 is characterized for operation from -40° C to 85°C. The LM385-2.5 and LM385B-2.5 are characterized for operation from 0°C to 70°C.

PRODUCTION 1:414 • LC is contain contain the operation of a state of the state of t

Copyright © 1989, Texas Instruments Incorporated

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5 MICROPOWER VOLTAGE REFERENCES

		AVAILABLE OPTI	ONS	
			PACKAGE	
Тд	Vz TOLERANCE	SMALL OUTLINE (D)	METAL CAN (LD)	PLASTIC (LP)
0°C	3%	LM385D-2.5		LM385LP-2.5
to 70℃	1.5%	LM385BD-2.5		LM385BLP-2.5
-40°C to 85°C	1.5%	LM285D-2.5	LM285LD-2.5	LM285LP-2.5
-55°C to 125°C	1.5%		LM185LD-2.5	

The D package is available taped and reeled. Add the suffix R to the device type (i.e., LM385DR-2.5).

2 Data Sheets

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range

Reverse current				30 mA
Forward current				10 mA
Operating free-air temperature range:	LM185-2.5			55°C to 125°C
	LM285-2.5			40°C to 85°C
	LM385-2.5	, LM385B-2.5		0°C to 70°C
Storage temperature range				65°C to 150°C
Lead temperature 1,6 mm (1/16 inch)	from case fe	or 10 seconds:	D or LP package	260°C
Lead temperature 1,6 mm (1/16 inch)	from case for	or 10 seconds:	LD package	300°C

electrical characteristics at specified free-air temperature

	PARAMETER	TEST CONDITIONS	TAT	LN LN	LM185-2.5, LM285-2.5		LM185-2.5, LM285-2.5 LM385-2.5 LM385B-2.5		LM385B-2.5		2.5	UNIT	
		<u></u>		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	12,00
Vz	Reference voltage	$I_z = 20 \ \mu A \text{ to } 20 \ m A$	25°C	2.462	2.5	2.538	2.425	2.5	2.575	2.462	2.5	2.538	V
ανΖ	Average temperature coefficient of reference voltage [‡]	$I_{Z} = 20 \ \mu A \text{ to } 20 \ m A$	25°C		±20			±20			±20		ppm/°C
		L = 20 + 4 to 1 m4	25°C			1			2			2	
41/	Change in reference	$I_Z = 20 \mu\text{A to 1 mA}$	Full range			1.5			2.5			2.5	
Avz	voltage with current		25°C			10			20	1		20	mv
		12 - 1 HA 10 20 HA	Full range			20			25		1	25	
$\Delta V_Z / \Delta t$	erm change in the voltage	l _Z = 100 μA	25°C		±20			±20			±20		ppm/khr
^I z(min)	Minimum reference current		Full range		8	20		8	20		8	20	μA
7	Bafaranaa imnadanaa	1 - 100 -	25°C		0.2	0.6		0.4	1		0.4	1	-
4z	Reference impedance	$I_Z = 100 \mu A$	Full range			1.5			1.5			1.5	12
v _n	B ind noise	$I_z = 100 \ \mu A$, f = 10 Hz to 10 kHz	25°C		120			120			120		μV

[↑] Full range is -55°C to 125°C for the LM185M-2.5, -40°C to 85°C for the LM285-2.5, and 0°C to 70°C for the LM385-2.5 and LM385B-2.5.

⁺ The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5 MICROPOWER VOLTAGE REFERENCES

TYPICAL CHARACTERISTICS[†]

[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5 MICROPOWER VOLTAGE REFERENCE

TYPICAL CHARACTERISTICS REFERENCE IMPEDANCE REFERENCE IMPEDANCE vs vs FREQUENCY REFERENCE CURRENT 1000 10 k ΠĪΠ $I_z = 100 \ \mu A$ f 25 Hz TA = 25°C TA = MIN to MAX 11111 1 k $\mathbf{Z_Z} - \mathbf{Reference}$ impedance $-\Omega$ $\mathbf{Z}_{\mathbf{Z}}$ -Reference Impedance- Ω 100 100 10 10 1 0.1 0.1 100 0.01 0.1 1 10 100 1000 0.01 0.1 1 10 Iz-Reference Current-mA f-Frequency-kHz **FIGURE 5** FIGURE 6 NOISE VOLTAGE FILTERED RMS OUTPUT NOISE VOLTAGE vs vs FREQUENCY FREQUENCY 1400 120 100 µA Ш 100 AA ١z Filtered RMS Output Noise Voltage $-\mu V$ 25 °C T۵ RC LOW PASS 1200 100 С Vn-Noise Voltage-nV//Hz 1000 80 800 60 600 40 400 20 200 0 0 10 100 1 k 10 k 100 k 0.1 1 10 100 f-Frequency-kHz f-Frequency-Hz FIGURE 7 FIGURE 8

Data Sheets

LM185-2.5, LM285-2.5, LM385-2.5, LM385B-2.5 MICROPOWER VOLTAGE REFERENCE

TYPICAL APPLICATION DATA

D2212, SEPTEMBER 1977-REVISED FEBRUARY 1988

- Output Voltage Range Adjustable from 1.2 V to 37 V
- Output Current Capability of 1.5 A Max
- Input Regulation Typically 0.01% Per Input-Volt Change
- Output Regulation Typically 0.1%

terminal assignments

- Peak Output Current Constant Over Temperature Range of Regulator
- Popular 3-Lead TO-220AB Package
- Ripple Rejection Typically 80 dB
- Direct Replacement for National LM217 and LM317

description

The LM217 and LM317 are adjustable 3-terminal positive-voltage regulators capable of supplying 1.5 A over a differential voltage range of 3 V to 40 V. They are exceptionally easy to use and require only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators. The devices are packaged in a standard transistor package that is easily mounted and handled.

In addition to higher performance than fixed regulators, these regulators offer full overload protection available only in integrated circuits. Included on the chip are current limit, thermal overload protection, and safe-area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, these regulators are useful in a wide variety of other applications. The primary applications of each of these regulators is that of a programmable output regulator, but by connecting a fixed resistor between the adjustment terminal and the output terminal, each device can be used as a precision current regulator. Even though the regulator is floating and sees only the input-to-output differential voltage, use of these devices to regulate output voltages that would cause the maximum-rated differential voltage to be exceeded if the output became shorted to ground is not recommended. The TL783 is recommended for output voltages exceeding 37 V. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, which programs the output to 1.2 V where most loads draw little current.

|'1,11,1,1,1,10,11,4.'' :scuments contain information 1..., for f: '1... on date. Products conform to ..., i, i, ···, put i..., terms of Taxas Instruments ..., '1., renty. Production processing does not ..., i.l, nclude testing of all parameters.

The LM217 and LM317 are characterized for operation from -25 °C to 150 °C and from 0 °C to 125 °C, respectively.

schematic

absolute maximum ratings over operating temperature range (unless otherwise noted)

	LM217	LM317	UNIT
Input-to-output differential voltage, VI - VO	40	40	V
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2000	2000	mW
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	20	15	w
Operating free-air, case, or virtual junction temperature range	- 25 to 150	0 to 125	°C
Storage temperature range	-65 to 150	-65 to .	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	0° I

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 15 and 16. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	LN	1217	LN	1317	
	MIN	MAX	MIN	MAX	UNIT
Output current, IO	5	1500	10	1500	mA
Operating virtual junction temperature, Tj	-25	150	0	125	°C

	TERT CONDITIONOT		1.11.17						
	TEST CON	DITIONS	111	• • • •	MA.	T MIL	140	MAX	UNIT
Input regulation	$V_{I} - V_{O} = 3 V \text{ to } 40 V,$	$T_J = MIN \text{ to MAX}$	1122	0.01	U.UZ	Γ	0.01	0.04	0/ 0/
(See Note 3)	See Note 4	IO = 10 mA to 1.5 A		0.02	0.05		0.02	0.07	%/V
	$V_0 = 10 V$,	f = 'lz	1	65			65		
Ripple rejection	$V_0 = 10 V$, 10- μ F capacitor between	$f = \cdot Hz$, ADJ and ground	66	80		66	80		dB
	$I_0 = 10 \text{ mA to } 1.5 \text{ A},$	V ₀ ≤ 5 V	1.00	5	15		5	25	mV
	TJ = 25°C, See Note 4	$V_0 > 5 V$		0.1	0.3	data artista	0.1	0.5	%
Output regulation	$l_0 = 10 \text{ mA to } 1.5 \text{ A},$	V ₀ ≤ 5 V		20	50		20	70	mV
	See Note 4	V ₀ > 5 V	C	0.3	1		0.3	1.5	%
Output voltage change with temperature	TJ = MIN to MAX			1			1		%
Output voltage long-term drift (see Note 5)	After 1000 h at T _J = M/ and V _I - V _O = 40 V	After 1000 h at $T_J = MAX$ and $V_I - V_O = 40 V$		0.3	1		0.3	1	%
Output noise voltage	f = 10 Hz to 10 kHz, Tj	= 25°C	-	0.003			0.003		%
Minimum output current to maintain regulation	$V_{\rm I} - V_{\rm O} = 40 {\rm V}$			3.5	5		3.5	10	mA
	$V_{\rm I} - V_{\rm O} \le 15 {\rm V}$		1.5	2.2		1.5	2.2		
Peak output current	$V_{I} - V_{O} \le 40 \text{ V}, \text{T}_{J} =$	25°C		0.4	0.4		0.15 0.4		A
Adjustment-terminal current			1	50	100		50	100	μA
Change in adjustment- terminal current	$V_{I} - V_{O} = 2.5 V \text{ to } 40$ $I_{O} = 10 \text{ mA to } 1.5 \text{ A}$	V,	1	0.2	5		0.2	5	μA
Reference voltage (output to ADJ)	$V_{I} - V_{O} = 3 V \text{ to } 40 V,$ IO = 10 mA to 1.5 A,	P ≤ 15 W	1.2	1.25	1.3	1.2	1.25	1.3	v

electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted) (see Note 2)

[†]Unless otherwise noted, these specifications apply for the following test conditions; $V_I - V_O = 5$ V and $I_O = 0.5$ A. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

- NOTES: 2. All characteristics are measured with a $0.1-\mu F$ capacitor across the input and a $1-\mu F$ capacitor across the output.
 - 3. Input regulation is expressed here as the percentage change in output voltage per 1-V change at the input.
 - 4. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.
 - 5. Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

- B. Use of an output capacitor improves transient response but is optional.
 - C. Output voltage is calculated from the equation: $V_{O} = V_{ref} \left(1 + \frac{R2}{R1}\right)$ V_{ref} equals the difference between the output and adjustment terminal voltages.

Data Sheets

$$Z_{OUT} = R_{S} \left(1 + \frac{R2}{R1}\right) \quad \cdot$$

The use of R_S allows low charging rates with a fully-charged battery.

FIGURE 8. BATTERY CHARGER CIRCUIT FIGURE 9. 50-mA CONSTANT-CURRENT BATTERY CHARGER CIRCUIT

2

Data Sheets

6-V CHARGER

Data Sheets

REGULATOR

2-15

Data Sheets

N Data Sheets

٠

NOVEN: 1981-REVISED FEBRUARY 1988

- Output Voltage Range Adjustable from - 1.2 V to - 37 V
- IO Capability of 1.5 A Max
- Input Regulation Typically 0.01% per Input-Volt Change
- Output Regulation Typically 0.3%
- Peak Output Current Constant Over Temperature Range of Regulator
- Ripple Rejection Typically 77 dB
- Direct Replacement for National Semiconductor LM237, LM337

description

The LM237 and LM337 are adjustable 3-terminal negative-voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V. They are exceptionally easy to use, requiring only two external resistors to set the output voltage and one output capacitor for frequency compensation. The current design has been optimized for excellent regulation and low thermal transients. In addition, the LM237 and LM337 feature internal current limiting, thermal shutdown, and safe-area compensation, making them virtually immune to blowout by overloads.

The LM237 and LM337 serve a wide variety of applications including local on-card regulation, programmable output voltage regulation, or precision current regulation. They are ideal complements to the LM217 and LM317 adjustable positive-voltage regulators.

schematic diagram

PRIND***TION DATA documents contain information c irreat se in publication date, Products conform to sperifications por the trans of Texas Instruments standard derranty. Pri drivi on processing does not pecessarily include trating all parameters.

Copyright © 1983, Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input-to-output differential voltage, VI - VO4	οv
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2 W
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	5 W
Operating free-air, case, or virtual junction temperature range: LM23725°C to 150	O⁰C
LM337 0°C to 12	5°C
Storage temperature range	O°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	O°C

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		LM237		LM337		
		MIN	MAX	MIN	MAX	UNIT
	$ V_{I} - V_{O} \le 40 V,$ P $\le 15 W$	10	1500	10	1500	
Output current, IO	$ V_{I} - V_{O} \le 10 V,$ P $\le 15 W$	6	1500	6	1500	mΑ
Operating virtual junction temperation	ature, Tj	- 25	150	0	125	°C

electrical characteristics over recommended ranges of operating virtual junction temperature (unless otherwise noted)

DADAMETED	TTOT CONDITIONOT		LM237				LIBUT		
PARAMETER	TEST CONDI	TIONS	MIN	TIP	MAX	MIN	TYP	MAX	UNH
the second		TJ = 25°C		0.01	с.		0.01	0.04	
Input regulation*	$v_1 - v_0 = -3 v t_0 - 40 v$	TJ = MIN to MAX		0.02	0		0.02	0.07	%/V
	$V_0 = -10 V_1$	f=120 Hz		60			60		
Ripple rejection	$V_0 = -10 V$,	f = 120 Hz			20				dB
	$C_{ADJ} = 10 \mu F$		66	11	A	66	11		
	IO = 10 mA to 1.5 A,	V0 ≤5 V			and sold			50	mV
0	TJ = 25°C	V ₀ ≥5 V			0.0			1	%
Output regulation		V ₀ ≤5 V			50	1		70	mV
	10 10 114 10 1.5 4	V0 ≥5 V			1	£		1.5	%
Output voltage change with temperature	$T_J = MIN \text{ to MAX}$			0.6			0.6		%
Output voltage long-term drift (see Note 2)	After 1000 h at T _J = MAX V _I - V _O = -40 V	(and		0.3	1		0.3	1	%
Output noise voltage	f = 10 Hz to 10 kHz,	Tj = 25°C		0.003	1. J.		0		%
Minimum output	V _I -V _O ≤40 V			2.5	5		2.5	10	
regulation	V ₁ -V ₀ ≤10 V			1.2	3	10.00	1.5	6	MA
Duali andrea anna	V _I -V _O ≤15 V		1.5	2.2		1.5	2.2		
Peak output current	$ V_1 - V_0 \le 40 V$,	Tj = 25°C	0.24	0.4		0.15	0.4		A
Adjustment- terminal current				65	100		65	100	μA
Change in adjustment terminal current	$V_{ } - V_{0} = -2.5 V \text{ to } -40 V$ io = 10 mA to MAX.	/, . Ti = 25°C		2	5		2	5	μA
Reference voltage	$V_{1}-V_{0} = -3$ to -40 V, lo = 10 mA to 1.5 A	Tj = 25°C	-1.225	- 1.250	- 1.275	-1.213	- 1.25	- 1.287	v
(output to ADJ)	$P \leq rated dissipation$	$T_J = MIN \text{ to MAX}$	- 1.2	-1.25	- 1.3	- 1.2	-1.25	- 1.3	v
Thermal regulation	Initial TJ = 25°C,	10-ms pulse		0.002	0.02		0.003	0.04	%/W

[†]Unless otherwise noted, these specifications apply for the following test conditions $|V_1 - V_0| = 5$ V and $I_0 = 0.5$ A. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. All characteristics are measured with a 0.1- μ F capacitor across the input and a 1- μ F capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.

NOTE 2: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL APPLICATION DATA

R1 is typically 120 Ω.

R2 = R1
$$\begin{pmatrix} -V_0 \\ -1.25 \end{pmatrix}$$
 where V₀ is the output in volts.

C1 is a 1- μ F solid tantalum required only if the regulator is more than 10 cm (4 in.) from the power supply filter capacitor.

C2 is a 1- μ F solid tantalum or 10- μ F aluminum electrolytic required for stability.

FIGURE 3. ADJUSTABLE NEGATIVE-VOLTAGE REGULATOR

D2700, APRIL 1983-REVISED

- Input-Output Differential Less than 0.6 V
- Output Current of 150 mA
- Reverse Polarity Protection
- Line Transient Protection
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Mirror-Image Insertion Protection
- Direct Replacement for National LM330T-5.0

description

The LM330 3-terminal positive regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 volt or less. Familar regulator features such as current limit and thermal overload protection are also provided.

The LM330 has low dropout voltage making it useful for certain battery applications. For example, since the low dropout voltage allows a longer battery discharge before the output falls out of regulation, a battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the system and load voltage. The LM330 protects both itself and the regulated system from reverse installation of batteries.

Other protection features include line transient protection above 40 V, where the output actually shuts down to avoid damaging internal and external circuits. The LM330 regulator cannot be harmed by temporary mirror-image insertion.

schematic diagram

PRODUCTION DATA documents contain information i the fublication date. Products conform to i the the terms of Texas Instruments i the term of the terms of Texas Instruments i the term of the texas ing des net include tosting of all peramoters.

Data Sheets

FREE-AIR TEMPERATURE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Continuous input voltage	26 V
Transient input voltage t = 1 s	. 40 V
Continuous total dissipation at 25 °C free-air temperature (see Note 1)	. 2 W
Continuous total dissipation at (or below) case temperature (see Note 1)	15 W
Operating free-air, case, or virtual junction temperature	150°C
Storage temperature	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

CASE TEMPERATURE

150

125

recommended operating conditions

		MIN	MAX	UNIT
10	Output current	5	150	mA
TA	Operating virtual junction temperature	0	100	°C

PARAMETERS	TEST CO	TEST CONDITIONS [†] MIN TYP			MAX	UNIT
0	$V_{I} = 6 V \text{ to } 26 V$	$l_0 = 5 \text{ mA to } 150 \text{ mA},$	4.8	5	5.2	
Output voltage	$T_J = 0^{\circ}C$ to C		1.			v
1		V _I = 9 V to 16 V		7	25	
Input regulation	1	$V_{I} = 6 V \text{ to } 26 V$		30	60	mv
Ripple rejection	f = 120 Hz			56		dB
Output regulation	IO = 5 mA to 150 mA			14	50	mV
Output voltage long- term drift [‡]	After 1000 h at $T_J = 1!$	After 1000 h at TJ = 150 °C		20		тV
Dropout voltage	$l_0 = 150 mA$			0.32	0.6	v
Output noise voltage	f = 10 Hz to 100 kHz		50		μV	
Output voltage with	D 100.0	$V_1 = -30 V, t = 100 ms$	>	-0.3		
input polarity reversed	$H_{L} = 100 \Omega$	$V_{1} = -12 V, DC$	>	-0.3		v
Output voltage with	$V_{I} = 60 V,$	t = 100 ms	< 5.5		-	v
input transient	$V_{I} = 50 V,$	t = 1 s		< 5.5		v
Bias current with input	B: - 100.8	$V_{I} = 40 V, t = 1 s$		14		
transient		$V_{I} = -6 V, t = 1 s$		- 80		mA
Overvoltage shutdown voltage			26	45		v
Output impedance	$I_0 = 100 \text{ mA}, I_0 = 10$	mA (rms), f = 100 Hz to 10 kHz	1.00	-		mΩ
	$I_0 = 10 \text{ mA}$		1.1	J.J	7	
Bias current	$I_0 = 50 \text{ mA}$		1	5	11	mA
	lo = 150 mA			18	40	
Bias current change	$V_{ } = 6 V \text{ to } 26 V$			10	1	%
Peak output current			150	420	700	mA

electrical characteristics at 25 ^{o}C virtual junction temperature, VI = 14 V, IO = 150 mA, (unless otherwise noted)

[†] Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor across the output.

* Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS

TF:XAS VI INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

NOTES: A. Use of C1 is required if the regulator is not located in close proximity to the supply filter.

B. Capacitor C2 must be located as close as possible to the regulator and may be an aluminum or tantalum type capacitor. The minimum capacitance that will provide stability is 10-µF. The capacitor must be rated for operation at -40 °C to assure stability to that extreme.

FIGURE 20

D2733 APRIL 1983-REVISED JUNE 1988

- Input-Output Differential Less than 0.6 V
- Output Current of 150 mA
- Reverse Battery Protection
- Line Transient Protection
- 40-V Load-Dump Protection
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Mirror-Image Insertion Protection
- Direct Replacement for National LM2930 Series

description

The LM2930-5 and LM2930-8 are 3-terminal positive regulators that provide fixed 5-V and 8-V regulated outputs. Each features the ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.

The LM2930 series has low voltage dropout making it useful for certain battery applications. For example, the low voltage dropout feature allows a longer battery discharge before the output falls out of regulation; the battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the system and load voltage. Supporting this feature, the LM2930 series protects both itself and the regulated system from reverse battery installation or 2-battery jumps.

Other protection features include line transient protection for load-dump of up to 40 V. In this case, the regulator shuts down to avoid damaging internal and external circuits. The LM2930 series regulator cannot be harmed by temporary mirror-image insertion.

schematic diagram

All component values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Continuous input voltage			26 V
Transient input voltage: t = 1 s			. 40 V
Continuous reverse input voltage			6 V
Transient reverse input voltage: t = 100 ms			-12 V
Continuous total dissipation (see Note 1) See Dissipat	ion	Rating	Table 1
Continuous total dissipation (see Note 1) See Dissipat	ion	Rating	Table 2
Operating free-air, case, or virtual junction temperature	-4	0°C t	o 150°C
Storage temperature range	-6	5°C t	o 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds			260°C

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	TA ≤ POWER	25°C Rating	DERATING FACTOR	DERATE ABOVE TA	TA = POWIN	70°C Rating
КС		mW	16 mW/°C	25 °C		mW
LP	775	mW	6.2 mW/°C	25 °C	496	mW

PACKAGE	T _C ≤ 25 °C POWER RATING	DERATING FACTOR	DERATE ABOVE TC	T _C = 125°C POWER RATING
KC	20 W	0.25 W/°C	70°C	6.25 W
LP	1600 mW	28.6 mW/°C	94 °C	715 mW

recommended operating conditions

		MIN	MAX	UNIT
10	Output current		•	mA
TJ	Operating virtual junction temperature	-40	125	°C

LM2930-5 electrical characteristics at 25 °C virtual junction temperature, $V_I = 14 V$, $I_0 = 150 mA$, (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Output voltage	$V_{I} = 6 V \text{ to } 26 V,$ $T_{J} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$	$I_{O} = 5 \text{ mA to } 150 \text{ mA},$	4.5	5	5.5	v
İnput regulation	$I_0 = 5 \text{ mA}$ $V_1 = V_1$	V ₁ = 9 V to 16 V		7	25	
		$V_{1} = 6 V \text{ to } 26 V$		30	80	mV
Ripple rejection	f = 120 Hz			56		dB
Output regulation	IO = 5 mA to 150 mA			14	50	mV
Output voltage long-term drift [‡]	After ' h at T _J = 125°C			20		mV
Dropout voltage	lo = ' nA			0.32	0.6	v
Output noise voltage	f = 10 Hz to 100 kHz	f = 10 Hz to 100 kHz		60		μV
Output voltage during line transients	$V_{1} = -12 V \text{ to } 40 V,$	$R_L = 100 \Omega$	-0.3		5.5	v
Output impedance	IO = ' TIA, IO = 10 m/	A (rms), 100 Hz to 10 kHz	1	200		MΩ
Bias current	lo = iv mA			4	7	
	IO = 150 mA			18	40	mA
Peak output current			150	300	700	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor across the output.

⁺Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is intended to be an engineering estimate of the average drift to be expected from lot to lot.

LM2930-8 electrical characteristics at 25 °C virtual junction temperature, $V_I = 14 V$, $I_O = 150 mA$, (unless otherwise noted)

PARAMETER	TEM CO	NDITIONS	MIN	TYP	MAX	UNIT
Output voltage	$V_{I} = 6 V \text{ to } 26 V,$ $T_{J} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$	$I_0 = 5 \text{ mA to } 150 \text{ mA},$	7.2	8	8.8	v
	la - 5 mA	$V_1 = 9.4 V$ to 16 V	1	12	50	m\/
	10 - 5 114	$V_{ } = 9.4 V \text{ to } 26 V$		50	100	niv
Ripple rejection	f = 120 Hz			52		dB
Output regulation	IO = 5 mA to 150 mA	IO = 5 mA to 150 mA		25	50	mV
Output voltage long-term drift [‡]	After 1000 h at T」 = 125°C		11	30		mV
Dropout voltage	IO = 150 mA			0.32	0.6	V
Output noise voltage	f = 10 Hz to · <hz< td=""><td></td><td>90</td><td></td><td>μV</td></hz<>			90		μV
Output voltage during line transients	$V_1 = -12 V \text{ to } 40 V,$	R _L = 100 Ω	-0.3		8.8	v
Output impedance	10 = 100 mA, I0 = 10 mA	(rms), f = ** Hz to 10 kHz	1	300		MΩ
Bing surgest	l ₀ = 10 mA			4	7	0.00
Blas current	l ₀ = 150 mA			18	40	mA
Peak output current			Γ.	1	700	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor across the output.

[‡]Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is intended to be an engineering estimate of the average drift to be expected from lot to lot.

TYPICAL CHARACTERISTICS

2

TEXAS TEXAS INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS INPUT CURRENT OUTPUT VOLTAGE VS vs **REVERSE INPUT VOLTAGE REVERSE INPUT VOLTAGE** 50 0.1 1 $T_{.1} = 25^{\circ}C$ RL =∞ Tj = 25°C 0 0 V₀-Output Voltage-V I -Input Current-mA 2 -50 Data Sheets -100 -0.1 -150 -0.2-200-250 -0.3 -12 -10-8 --6 -4 -2 0 -12 -10--8 -6 -4 -2 0 VI-Input Voltage-V VI-Input Voltage-V **FIGURE 11 FIGURE 12 BIAS CURRENT** vs OUTPUT CURRENT LOAD TRANSIENT RESPONSE 35 VI-VO = 9 V V₀-Output Voltage 40 V1 = 14 V Deviation-mV CL = 10 µF 30 $T_J = 25^\circ C$ 0 Bias Current-mA 25 -40 20 15 Load Current-mA 10 150 5 0 0 0 15 30 45 0 30 60 90 120 150 IO-Output Current-mA t-Time-us FIGURE 13 FIGURE 14

TYPICAL CHARACTERISTICS

NOTES: A. Use of C1 is required if the regulator is not located in close proximity to the supply filter.

B. Capacitor C2 must be located as close as possible to the regulator and may be an aluminum or tantalum type capacitor. The minimum value required for stability is 10 μF. The capacitor must be rated for operation at -40 °C to guarantee stability to that extreme.

FIGURE 17

LM2931-5AQ 3-TERMINAL POSITIVE VOLTAGE REGULATOR

D2828, AUGUST 1988-REVISED OCTOBER 1988

- Input-Output Differential Less than 0.6 V
- Output Current of 150 mA
- Reverse Battery Protection
- Very Low Quiescent Current
- 60-V Load-Dump Protection

- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Mirror-Image Insertion Protection
- Reverse Transient Protection
- Direct Improved Replacement for National LM2931-5 and LM2931A-5

.

description

The LM2931-5AQ is a 3-terminal positive voltage regulator that provides a 5-V regulated output. It features the ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.

This device also has a low dropout voltage making it useful for certain battery applications. For example, because the low dropout voltage allows a longer battery discharge before the output falls out of regulation, the battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the 5-V load voltage. Supporting this feature, the LM2931-5AQ protects both itself and the regulated system from reverse battery installation or 2-battery jumps. The very low quiescent current feature is especially useful in battery-powered applications.

Other protection features include line transient protection from load-dump of up to 60 V. In this case, the regulator shuts down to avoid damaging internal and external circuits. The LM2931-5AQ regulator is virtually immune to temporary mirror-image insertion.

The Q suffix indicates that the device is characterized for operation from -40 °C to 125 °C.

LM2931-5AQ 3-TERMINAL POSITIVE VOLTAGE REGULATOR

absolute maximum ratings over operating junction temperature range (unless otherwise noted)

Continuous input voltage	. 26 V
Transient input voltage: t = 1 s	. 60 V
Continuous reverse input voltage	-15 V
Transient reverse input voltage: t = 100 ms	– 50 V
Continuous total dissipation (see Note 1) See Dissipation Rating Tables	1 and 2
Operating virtual junction temperature40°C to	125°C
Storage temperature range	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

2

Data Sheets

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	TA = 125°C POWER RATING
D	825 mW	6.6 mW/°C	165 mW
кс	2000 mW	16 mW/ °C	400 mW
LP	775 mW	6.2 mW/°C	155 mW

DISSIPATION RATING TABLE 2 - CASE TEMPERATURE

PACKAGE	T _C ≤ 25°C POWER RATING	DERATING	DERATE ABOVE To	T _C = 125°C PO∴ · ∃ATING
D	1600 mW	29.4 mW/°C	96°C	
кс	20 W	0 18 W/°C	39 °C	4.5 W
LP	1600 mW	28.6 mW/ °C	94 °C	715 mW

recommended operating conditions

	MIN	MAX	UNIT
Output current, Io		150	mA
Operating virtual junction temperature, TJ	-40	125	°C

electrical characteristics at 25 °C virtual junction temperature, VI = 14 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Output voltage	$V_i = 6 V \text{ to } 26 V, I_0 \le 150 \text{ mA},$ $T_{,i} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		4.75	5	5.25	v
	1 10 - 1	V ₁ = 9 V to 16 V		2	10	
Input regulation	$I_0 = 10 \text{ mA}$	V ₁ = 6 V to 26 V		4	30	mv
Ripple rejection	$l_0 = 10 \text{ mA}, f = 120 \text{ hz}$		60	80		dB
Output regulation	IO = 5 mA to	- nA		14	50	mV
Output voltage long-term drift [‡]	IQ = 10 mA, Arter 1000 h at TJ = 125 °C			20	_	mV
D	lo = 10 mA			0.05	0.2	N
Dropout voitage	IO = 150 mA			03	0.6	, v
Output noise voltage	$I_0 = 10 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}$		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			μV rms
Bias current	$V_{I} = 6 V \text{ to } 26 V, I_{O} = 10 \text{ mA},$ $T_{.I} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			0.4	1	mA
	$V_1 = 14 V, I_0 = 100$ $nA, T_1 = 25 °C$			10	12	

[†] Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input to common and a 100-μF capacitor, with equivalent series resistance of less then 1 Ω, across the output to common.

[‡]Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

- Initial Accuracy . . . ±4 mV for LT1004-1.2 ±20 mV for LT1004-2.5
- Micropower Operation
- · Operates Up to 20 mA
- Very Low Reference Impedance
- Applications: Portable Meter References Portable Test Instruments
 - Battery Operated Systems Current-Loop Instrumentation

description

The LT1004 micropower voltage references are two-terminal bandgap reference diodes designed to provide high accuracy and excellent temperature characteristics at very low operating currents. Optimizing the key parameters in the design, processing, and testing of the devices results in specifications previously attainable only with selected units.

The LT1004 is a pin-for-pin replacement for the LM185 series of references with improved specifications. The LT1004 is an attractive device for use in systems in which accuracy was previously attained at the expense of power consumption and trimming.

The LT1004M is characterized for operation over the full military temperature range of -55° C to 125°C. The LT1004C is characterized for operation from 0°C to 70°C.

LT1004C ... D PACKAGE (TOP VIEW) J8 CATHODE NC 1 NC 2 7 NC NC 3 6 CATHODE ANODE 4 5 NC

. .

ſ

LT1004M, LT1004C . . . LD PACKAGE

The anode is in electrical contact with the case.

NC-No internal connection

symbol

ANODE CATHODE

тд			PACKAGE	
	NOM Vz	SMALL OUTLINE (D)	METAL CAN (LD)	PLASTIC (LP)
0°C	1.2 V	LT1004CD-1.2	LT1004CLD-1.2	LT1004CLP-1.2
to 70°C	2.5 V	LT1004CD-2.5	LT1004CLD-2.5	LT1004CLP-2.5
-55°C	1.2 V		LT1004MLD-1.2	
to 125°C	2.5 V		LT1004MLD-2.5	

AVAILABLE OPTIONS

The D package is available taped and reeled. Add suffix R to the device type (i.e., LT1004CDR0.

Int TIDN DATA documents contain information Int Int Soft publication date. Products conform to operative tions per the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematic

Data Sheets

absolute maximum ratings over operating free-air temperature range

Reverse current	30 mA
Forward current	10 mA
Operating free-air temperature range: LT1004M55°C to	125°C
LT1004C 0°C to	⊃ 70°C
Storage temperature range	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or LP package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: LD package	300°C

electrical characteristics at specified free-air temperature

	DADAMETED	TEST CONDITIONS		L	T1004-1	.2	Ľ	T1004-2	.5	1007	
	PARAMETER	-ADAMETED TEST CONDITIONS	PARAMETER TEST CONDITIONS TAT	14,	MIN	TYP	MAX	MIN	TYP	MAX	
			25°C	1.231	1.235	1.239	2.48	2.5	2.52		
Vz	Reference voltage	$I_z = 100 \mu\text{A},$	0°C to 70°C	1.225		1.245	2 47		2.53	V	
		See Note 1	-55°C to 125°C	1.22		1.245	2.46		2.535	1	
	Average temperature	$I_z = 10 \ \mu A$		1	20						
ανΖ	coefficient of reference voltage‡	l _z = 20 μA	25°C				1	20		ppm/°C	
	Change in reference voltage with current	$i_z = 10 \ \mu A$ to 1 mA	25°C			1			1	1	
41/			Full range			1.5			1.5		
Avz ve		ent	25°C			10			10		
			Full range			20			20		
$\Delta V_Z / \Delta t$	Long-term change in reference voltage	l _z = 100 μA	25°C		20			20		ppm/khr	
^I Z(min)	Minimum reference current		Full range		8	10		12	20	μΑ	
7	Defenence immediance	1 100.04	25°C		0.2	0.6		0.2	0.6	-	
2Z	Reference impedance		Full range			1.5	1		1.5	12	
v _n	Broadband noise voltage	$f_z = 100 \ \mu A$, f = 10 Hz to 10 kHz	25°C		60			120		μ∨	

† Full range is -55°C to 125°C for the LT1004M and 0°C to 70°C for the LT1004C.

[‡] The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.

NOTE 1: The 0°C to 70°C limits apply for both M- and C-suffix devices. The -55°C to 125°C limits apply only for M-suffix devices.

Data Sheets N

TYPICAL CHARACTERISTICS[†]

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] 1% metal film resistors

FIGURE 18. VPP GENERATOR FOR EPROMS (NO TRIM REQUIRED)

FIGURE 19. 0°C TO 100°C LINEAR OUTPUT THERMOMETER

TYPICAL APPLICATION DATA

[†] R1 sets trip point, 60.4 k Ω per cell for 1.8 V per cell.

FIGURE 30. LEAD-ACID LOW-BATTERY-VOLTAGE DETECTOR

D3191. MAY 1987 - REVISED JANUARY 1989

- Excellent Temperature Stability
- Initial Tolerance . . . 0.2% Max
- Dynamic Impedance . . . 0.6 Ω Max
- Wide Operating Current Range
- Directly Interchangeable with LM136
- Needs No Adjustment for Minimum Temperature Coefficient

description

The LT1009 is a precision trimmed 2.5-V shunt regulator featuring a maximum initial tolerance of only ± 5 mV, low dynamic impedance, and a wide operating current range. The 0.2% reference tolerance is achieved by on-chip trimming, which minimizes the initial voltage tolerance and the temperature coefficient α_{VZ} .

Even though the LT1009 needs no adjustments, a third terminal allows the reference voltage to be adjusted 5% to eliminate system errors. In many applications, the LT1009 can be used as a pinfor-pin replacement for the LM136H-2.5, which eliminates the external trim network.

The uses of the LT1009 include a 5-V system reference, an 8-bit ADC and DAC reference, or a power supply monitor. The LT1009 can also be used in applications such as digital voltmeters and current-loop measurement and control systems.

The LT1009M is characterized for operation over the full military temperature range of -55° C to 125°C. The LT1009C is characterized for operation from 0°C to 70°C.

The anode is in electrical contact with the case.

symbol

PRODUCTION DATA documents entruin information current as of publication data. Proce et a conform to specifications par the terms of first. Instruments stendard warranty. Production (recover does not necessarily include testing of all justueters.

schematic

All component values shown are nominal.

absolute maximum ratings over operating free-air temperature range

Reverse current	mA
Forward current	mA
Operating free-air temperature range: LT1009M55°C to 12	25°C
LT1009C	O°C
Storage temperature range	50°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or LP package	30°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: LD package 30)0°C

electrical characteristics at specified free-air temperature

	DADAMETED	TEST CONDITIONS	T . †	1	LT1009	M		LT10090	2	
	PARAMETER	TEST CONDITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reference voltage	l _z = 1 mA	25°C	2.495	2.5	2.505	2.495	2.5	2.505	V
ΔV _{z(temp)}	Change in reference voltage with temperature		MIN to MAX			15			4	mV
1	Average temperature		0°C to 70°C	1	15	25		15	25	ppm/°C
αvz	C nt of reference		-55°C to 125°C		25	35				
A.V.	Change in reference	1 - 400 - 4 to 10 - 4	25°C		2.6	6		2.6	10	
Δvz	voltage with current	$I_{Z} = 400 \mu A 10 \text{mA}$	Full range			10			12	mv
$\Delta V_Z / \Delta t$	Long-term change in reference voltage	l _z = 1 mA	25°C		20			20		ppm/khr
7	Deference impedance	1 - 1 - 1	25°C		0.3	0.6		0.3	1	Ω
4 <u>z</u>	neierence impedance	z = 1 mA	Full range			1	1		1.4	

[†] Full range is -55°C to 125°C for the LT1009M and 0°C to 70°C for the LT1009C.

[‡] The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature range.

[†] Data at the high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL APPLICATION DATA

 † Does not affect temperature coefficient. Provides $\pm 5\%$ trim range.

FIGURE 8. 2.5-V REFERENCE

FIGURE 9. ADJUSTABLE REFERENCE WITH WIDE-SUPPLY RANGE

FIGURE 10. POWER REGULATOR WITH LOW TEMPERATURE COEFFICIENT

FIGURE 11. SWITCHABLE ±1.25-V BIPOLAR REFERENCE

FIGURE 12. LOW-NOISE 2.5-V BUFFERED REFERENCE

2 Data Sheets

LTC1044M . . . JG PACKAGE LTC1044C . . . D, JG, OR P PACKAGE

(TOP VIEW)

L PACKAGE

(TOP VIEW)

VDD

8 VDD

7 Dosc

6 [] LV

5 TVn

OSC

IV

BOOST 1

CAP + 12

GND 3

CAP - 14

BOOS

CAP+

GNI

D3193, JANUARY 1989

- Plug-In Compatible with the 7660 with These Additional Features:
 - Operation to 9 V Over Full Temperature Range with No External Protection Diodes
 - Boost Pin for Higher Switching Frequency
 - 2 1/2 Times Lower Quiescent Power
 - Efficient Voltage Doubler
- No-Load Supply Current at 5 V... 200 μA Max
- Open-Circuit Voltage Conversion Efficiency . . . 97% Min
- Power Conversion Efficiency . . . 95% Min
- Operating Supply Voltage Range ... 1.5 V to 9 V
- Commercial Device Operates from -40°C to 85°C

description

The LTC1044 is a monolithic CMOS switched-capacitor voltage converter manufactured using CMOS silicongate technology. The LTC1044 provides several voltage conversion functions; the input voltage can be inverted ($V_O = -V_I$), doubled ($V_O = 2V_I$), divided ($V_O = V_I/2$), or multiplied ($V_O = \pm nV_I$).

Designed to be pin-for-pin and functionally compatible with the 7660, the LTC1044 offers significant new design and performance advantages while still maintaining compatibility with existing 7660 designs.

The LTC1044M is characterized for operation over the full military temperature range of -55° C to 125° C. The LTC1044C is characterized for operation from -40° C to 85° C.

absolute maximum ratings over operating free-air temperature ranget

Out of the M	
Supply voltage, VDD	9.5 V
Input voltage range (pins 1, 6, and 7, see Note 1)	-0.3 V to V_DD + 0.3 V
Input current, I ₁ (pin 6)	20 μA
Duration of output short circuit (V _{CC+} \leq 5.5 V)	unlimited
Operating free-air temperature range: LTC1044M	55°C to 125°C
LTC1044C	
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P pack	kage 260°C
L package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		LTO	LTC1044M		LTC1044C		
		MIN	MAX	MIN	MAX	UNIT	
VDD	Supply voltage ($R_L = 10 \text{ k}\Omega$, see Note 1)	1.5	9	1.5	9	v	
VI	Input voltage (pins 1, 6, and 7, see Note 2)	-0.3	V _{DD} +0.3	-0.3	V _{DD} +0.3	V	
TA	Operating free-air temperature	-55	125	-40	85	<u>°C</u>	

NOTES: 1. The LTC1044 operates with alkaline, mercury, or NiCad 9-V batteries, even when the initial battery voltage is slightly higher than 9 V. 2. Connecting any input terminal to voltages substantially greater than VDD or less than ground may cause destructive latch-up. It is

recommended that no inputs from sources operating from external supplies be applied prior to power-up of the LTC1044.

electrical characteristics at specified free-air temperature, $V_{DD} = 5 V$ (u	inless otherwise noted, see
Figure 1)	

	PARAMETER	TEST CONDITIONS	TAT	LTC1044M			LTC1044C			111117
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
ro	Output resistance	$I_{O} = 20 \text{ mA}, f_{OSC} = 5 \text{ kHz}$	25°C			100			100	Ω
			Full range			150			130	
		$V_{DD} = 2 V$, $I_L = 3 mA$, $f_{OSC} = 1 kHz$	Full range			400			325	
fosc	Oscillator frequency	VDD = 5 V, Cosc = 1 pF, See Note 3	- Full range	5			5			kHz
		V _{DD} = 2 V, C _{OSC} = 1 pF, See Note 3		1			1			
ηp	Power efficiency	$R_L = 5 k\Omega$, $f_{OSC} = 5 kHz$	25°C	95	98		95	98		%
nvo	Voltage conversion efficiency	RL = ∞	25°C	97	99.9		97	99.9		%
losc	Oscillator sink or	Vosc = 0 or VDD, Pin 1 at 0 V	Full range			3			3	μA
	source current	Vosc = 0 or VDD, Pin 1 at VDD				20			20	
lod	Supply current	$R_L = \infty$, Pins 1 and 7 no connection	- 25°C		60	200		60	200	
		$R_L = \infty$, Pins 1 and 7 V _{DD} = 3 V		20		20			μΑ	

Full range is -55°C to 125°C for the LTC1044M and -40°C to 85°C for the LTC1044C.

NOTE 3: fosc is tested with Cosc at 100 pF to minimize the effects of test fixture capacitance loading. The 1-pF frequency is correlated to this 100-pF test point and is intended to simulate the capacitance at pin 7 when the device is plugged into a test socket and no external capacitor is used.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TEST CIRCUIT

2

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the two devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the two devices.

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

theory of operation

To understand the theory of operation of the LTC1044, a review of a basic switched-capacitor building block is helpful. In Figure 14, when the switch is in the left position, capacitor C1 charges to voltage V1. The total charge on C1 is $q1 = C1 \cdot V1$. The switch then moves to the right, discharging C1 to voltage V2. After this discharge time, the charge on C1 is $q2 = C1 \cdot V2$. Note that charge has been transferred from the source, V1, to the output, V2. The amount of charge transferred is calculated as follows:

 $\Delta q = q1 - q2 = C1(V1 - V2).$

If the switch is cycled f times per second, the charge transfer per unit time (i.e., current) is calculated as follows:

 $1 = f \times \Delta q = f \times C1(V1 - V2).$

Rewriting in terms of voltage and impedance equivalence,

$$I = \frac{V1 - V2}{(1/fC1)} = \frac{V1 - V2}{R_{eq}}$$

where R_{eq} is defined as $R_{eq} = 1/fC1$. The equivalent circuit for the switched-capacitor network is shown in Figure 15.

FIGURE 14. SWITCHED-CAPACITOR BUILDING BLOCK

Examination of Figure 16 shows that the LTC1044 has the same switching action as the basic switchedcapacitor building block, with the addition of finite switch on-state resistance and output voltage ripple.

The simple theory, although not exact, helps illustrate how the device operates. For example, it explains how the LTC1044 behaves in Figure 9. The loss, and hence the efficiency, is determined by the output impedance. As frequency is decreased, the output impedance is eventually dominated by the 1/fC1 term, and power efficiency drops. Figure 9 shows this effect for various capacitor values.

Note also that power efficiency decreases as frequency increases. This is caused by internal switching losses that occur because some finite charge is lost in each switching cycle. This charge loss per unit cycle, when multiplied by the switching frequency, becomes a current loss. At high frequency, this loss becomes significant, and the power efficiency starts to decrease.

2

TYPICAL APPLICATION DATA

FIGURE 16. LTC1044 SWITCHED-CAPACITOR VOLTAGE CONVERTER BLOCK DIAGRAM

LV (pin 6)

The internal logic of the LTC1044 runs between V_{DD} and LV (pin 6). For V_{DD} \ge 3 V, an internal switch shorts LV to GND (pin 3). The LV pin can be tied to ground or left floating. For V_{DD} \le 3 V, the LV pin should be tied to GND.

OSC (pin 7) and BOOST (pin 1)

The switching frequency can be raised, lowered, or driven from an external source. Figure 17 shows a functional diagram of the oscillator circuit. By connecting the boost pin (pin 1) to V_{DD}, the charge and discharge current is increased, thereby increasing the frequency by a factor of approximately 7. Increasing the frequency decreases output impedance and ripple for higher load currents. Loading pin 7 with more capacitance lowers the frequency. Using the boost pin (pin 1) in conjunction with external capacitance on pin 7 allows the user to select the frequency over a wide range.

Driving the LTC1044 from an external frequency source can easily be achieved by driving pin 7 and leaving the boost pin open, as shown in Figure 18. The output current from pin 7 is small, typically 0.5 μ A, so a logic gate can drive this current. Using a CMOS logic gate is preferable because it can operate over a wide supply voltage range (3 V to 15 V) and has enough voltage swing to drive the internal Schmitt trigger shown in Figure 17. For 5-V applications, a TTL logic gate can be used by simply adding an external pull-up resistor (see Figure 18).

2

TYPICAL APPLICATION DATA

external diode (D_x)

Previous circuits of this type have required a diode between V_O (pin 5) and the external capacitor C2 for voltages above 6.5 V (5 V for military temperature range). The improvements in the LTC1044 circuit design and Texas Instruments LinCMOS[™] silicon-gate process have eliminated the need for this diode. The LTC1044 operates from 1.5 V to 9 V without the protection diode over all temperature ranges. The LTC1044 will operate without any problems in existing LTC7660 designs that use the protection diode as long as the maximum recommended supply voltage of 9 V is not exceeded.

LinCMOS is a trademark of Texas Instruments Incorporated.

TYPICAL APPLICATION DATA

capacitor selection

External capacitors C1 and C2 are not critical. They do not have to be high quality or have tight tolerance, nor is matching required. Aluminum or tantalum electrolytics are excellent choices, with cost and size being the only consideration.

negative voltage converter

Figure 19 shows a typical connection that provides a negative supply from an available positive supply. This circuit operates over full temperature and power supply ranges without the need for external diodes. The LV pin (pin 6) is shown grounded, but for $V_{DD} \ge 3 V$, it may be floated, since LV is internally switched to ground (pin 3) for $V_{DD} \ge 3 V$.

The output voltage (pin 5) characteristics of the circuit are those of a nearly ideal voltage source in series with an 80- Ω resistor. The 80- Ω output impedance is composed of two terms—the equivalent switched-capacitor resistance (see Theory of Operation) and a term related to the on-state resistance of the MOS switches. At an oscillator frequency of 10 kHz and C1 = 10 μ F, the first term is:

$$R_{eq} = \frac{1}{(f_{osc}/2) \times C1} = \frac{1}{5 \times 10^3 \times 10 \times 10^{-6}} = 20 \Omega$$

Notice that the equation for R_{eq} is not a capacitive reactance equation ($X_C = 1/\omega C$) and does not contain a 2π term. While the exact expression for output impedance is extremely complex, the dominant effect of the capacitor is clearly shown in the typical curves of output impedance and power efficiency versus frequency. For C1 = C2 = 10 μ F, the output impedance goes from 60 Ω at f_{OSC} = 10 kHz to 200 Ω at f_{OSC} = 1 kHz. As the 1/fC term becomes large compared to the switch on-state resistance term, the output resistance is determined by 1/fC only.

voltage doubling

Figure 20 illustrates two methods of voltage doubling. In Figure 20(a), doubling is achieved by simply rearranging the connection of the two external capacitors. When the input voltage is less than 3 V, an external 1- $M\Omega$ resistor is required to ensure that the oscillator starts; it is not required for higher input voltages.

In this application, the ground input (pin 3) is taken above V_{DD} (pin 8) during power-on, making it prone to latch-up. The latch-up, while not destructive, prevents the circuit from doubling. Resistor R1 is added to eliminate this problem; in most cases, 200 Ω is sufficient. It may be necessary in a particular application to increase this value to guarantee start-up. The voltage drop across R1 is V_{R1} = 2 × I_O × R2. If this voltage exceeds two diode drops (1.4 V for silicon, 0.8 V for Schottky), the circuit in Figure 20(a) is recommended because it will never have a start-up problem.

TYPICAL APPLICATION DATA

FIGURE 20. VOLTAGE DOUBLER

ultra-precision voltage divider

An ultra-precision voltage divider is shown in Figure 21. To achieve the 0.0002% accuracy indicated, the load current should be kept below 100 nA. However, with a slight loss in accuracy, the load current can be increased.

TYPICAL APPLICATION DATA

battery splitter

Obtaining positive and negative supplies from a single battery or single power supply is a common need in many systems. Where current requirements are small, the circuit shown in Figure 22 is a simple solution. It provides symmetrical positive and negative output voltages, both equal to one half the input voltage. The output voltages are both referenced to pin 3 (output common). If the input voltage between pin 8 and pin 5 is less than 6 V, pin 6 should also be connected to pin 3, as shown by the dashed line.

paralleling for lower output resistance

Figures 23, 24, and 25 illustrate the flexibility of the LTC1044. Figure 23 shows two LTC1044s connected in parallel to provide a lower effective output resistance. If, however, the output resistance is dominated by 1/fC1, increasing the size of C1 or increasing the frequency is more beneficial than the paralleling circuit shown.

NOTE: The exclusive NOR gate synchronizes both LTC1044s to minimize ripple.

FIGURE 23. PARALLELING FOR LOWER OUTPUT RESISTANCE

TYPICAL APPLICATION DATA

Figures 24 and 25 "stack" two LTC1044s to provide even higher voltages. As shown schematically in Figure 24, a negative voltage doubler or tripler can be achieved depending upon how pin 8 of the second LTC1044 is connected. Figure 25 illustrates a similar circuit that can be used to obtain positive tripling, or even quadrupling [the doubler circuit appears in Figure 20(a)]. In both of these circuits, the available output current is a function of the product of the individual power conversion efficiencies and the voltage step-up ratio.

FIGURE 24. STACKING FOR HIGHER VOLTAGE

NOTE: Required for V_{DD} < 3 V

FIGURE 25. VOLTAGE TRIPLER/QUADRUPLER

NOTE: 1% film resistor pressure transducer BLH/DHF-350 (Circled letter is pin number)

FIGURE 26. SINGLE 5-V STRAIN GAUGE BRIDGE SIGNAL CONDITIONER

LTC1044 SWITCHED-CAPACITOR VOLTAGE CONVERTER

FIGURE 29. LOW-OUTPUT-IMPEDANCE VOLTAGE CONVERTER

2

LTC1044 SWITCHED-CAPACITOR VOLTAGE CONVERTER

FIGURE 30. LOW-DROPOUT 5-V REGULATOR

MC3423 OVERVOLTAGE-SENSING CIRCUIT

7 VEE

6

D. JG. OR P PACKAGE

(TOP VIEW)

4 5

SENSE 1 12

SENSE 2 3

CURR SOURCE

D2439, APRIL 1978-REVISED MARCH 1988

IND OUT

REMOTE ACTIVATE

- Separate Outputs for "Crowbar" and Logic Circuitry
- Programmable Time Delay to Eliminate Noise Triggering
- TTL-Level Activation Isolated from Voltage-Sensing Inputs
- 2.6-Volt Internal Voltage Reference with Temperature Coefficient Typically 0.08%/°C

description

The MC3423 overvoltage-sensing circuit is designed to protect sensitive electronic circuitry by monitoring the supply rail and triggering an external "crowbar" SCR in the event of a voltage transient or loss of regulation. The protective mechanism may be activated by an overvoltage condition at the Sense 2 input or by application of a TTL high level to the Remote Activate terminal. Separate outputs are available to trigger the crowbar circuit and to provide a logic pulse to indicator or power supply control circuitry. The Sense 2 input provides a direct control of the output circuitry. The Sense 1 input controls an internal current source that may be utilized to implement a delayed trigger by connecting its output to an external capacitor and the Sense 2 input. This protects against false triggering due to noise at the Sense 1 input.

The MC3423 is characterized for operation from 0°C to 70°C.

functional block diagram

PRON 1 111 14 14 1 seuments contain information curre 1 11 in date. Products conform to specif 1 11 in terms of Texas Instruments standard war anty. Production processing does not necessarily include testing of all parameters.

MC3423 OVERVOLTAGE-SENSING CIRCUIT

absolute maximum ratings

Supply voltage, VCC (see Note 1)	40 V
Sense 1 voltage	.5 V
Sense 2 voltage	i.5 V
Remote activate input voltage	7 V
Output current, IO) mA
Continuous total dissipation:	Fable
Operating free-air temperature range 0°C to 7	70°C
Storage temperature range	30°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 26	30°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 30	0°C

NOTE 1: Voltage values are measured with respect to the VEE terminal.

DISSIFATION RATING TABLE								
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	TA = 70°C POWER RATING					
D	725 mW	5 8 mW/°C	464 mW					
JG	825 mW	6.6 mW/°C	528 mW					
Р	1000 mW	8.0 mW/°C	640 mW					

DICORATION DATING TABLE

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC}	4.5	40	V
High-level input voltage, remote activate input	2		V
Low-level input voltage, remote activate input		0.5	v

electrical characteristics over operating free-air temperature range, V_{CC} = 5 V to 36 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage	Remote Activate at 2 V, $I_0 = 100 \text{ mA}$	V _{CC} -2.2	Vcc-1	.8	v
Indicator low-level output voltage	Remote Activate at 2 V, $I_0 = 1.6 \text{ mA}$		0.1	0.4	v
Threshold voltage of either sense input	$T_A = 25 ^{\circ}C$	2.45	2.6	2.75	v
Temperature coefficient of input threshold voltage			0.06	< 3 H	%/°C
Source current (pin 4)	Sense 1 at 3 V, Pin 4 at 1.3 V	0.1	0.22	0.3	mA
High-level input current, Remote Activate input	$V_{CC} = 5 V$, $V_1 = 2 V$	· · · · · · ·	5	40	μA
Low-level input current, Remote Activate input	V _{CC} = 5 V, V ₁ = 0.8 V	A 10 10	- 120	- 180	μA
Supply current	Outputs open		6	10	mA
Propagation delay time, Remote Activate input to output	$T_A = 25 ^{\circ}C$		0.5		μs
Output current rate of rise	$T_A = 25 ^{\circ}C$		400		mA/μs

SERIES MC79L00 NEGATIVE-VOLTAGE REGULATORS

D2565, OCTOBER 1982-REVISED APRIL 1988

- 3-Terminal Regulators
- Output Current Up to 100 mA
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Direct Replacement for Motorola MC79L00 Series
- Available in 5% or 10% Selections

description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These include on-card regulation for elimination of noise and distribution problems associated with singlepoint regulation. In addition, they can be used to control series pass elements to make highcurrent voltage-regulator circuits. One of these regulators can deliver up to 100 mA of output current. The internal current-limiting and thermal-shutdown features make them essentially immune to overload. When used as a replacement for a Zener-diode and resistor combination, these devices can provide an effective improvement in output impedance of two orders of magnitude and lower bias current.

schematic

NC-No internal connection

INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TEXAS

SERIES MC79L00 NEGATIVE-VOLTAGE REGULATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	MC79L05	MC79L12 MC79L15	UNIT	
Input voltage	- 30	- 35	V	
Continuous total dissipation	See Dissipation	See Dissipation Rating Tables 1		
Operating free-air, case, or virtual junction temperature range	0 to 150	0 to 150	°C	
Storage temperature range	-65 to	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C	

Mine all'	
- Z	
0.550	

DISSIPATION RATING TABLE 1-FREE AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FAC I	DERATE ABOVE TA	T _A = 70°C POWER RATING
D	825 mW	6.6 л .	25 °C	528 mW
LPT	775 mW	6.2 mW/°C	25 °C	496 mW

[†]The LP package dissipation rating is based on thermal resistance measured in still air with the device mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in.) above the socket.

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGĘ	T _C ≤ 25°C / POWER RATING	DERATING FACTOR	DERATE ABOVE TC	T _C = 125°C POWER RATING
D	1600 mW	29.0 mW/°C	95°C	725 mW
LP	1600 mW	28.6 mW/°C	94 °C	715 mW

recommended operating conditions

		MIN	MAX	UNIT
	MC79L05	- 7	- 20	
Input voltage, Vi	112 TL12	- 14.5	- 27	v
	1. 1L15	-17.5	- 30	
Output current, IO		· .	mA	
Operating virtual junction temperature, TJ		0	_ ·. ·]	°C

DADAMETED	TEST CONDITIONS [†]		MCCHUC			MC; 1C			
PARAMETER			MIN	- 1-9	MAX	MIN	1.1	MAX	UNIT
1		25°C	-4.6	-5	-5.4	-4.8	- 5	- 5.2	
Output voltage‡	$V_1 = -7 V \text{ to } -20 V,$ $I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	-4.5		- 5.5	4.75		-5.25	v
	$V_{I} = -10 V,$ IQ = 1 mA to 70 mA	0°C to 125°C	-4.5		-5.5	-4.75		- 5.25	
Input regulation	$V_{I} = -7 V \text{ to } -20 V$	25°C		11					
	$V_{I} = -8 V \text{ to } -20 V$					1.000			mv
Ripple rejection	$V_{j} = -8 V \text{ to } -18 V,$ f = 120 Hz	25°C	40	49		41	49		dB
0	IO = 1 mA to 100 mA		1		60	1		60	
Output regulation	$l_0 = 1 \text{ mA to } 40 \text{ mA}$	25°C			30			30	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C	1.000	40		1.000	40		μV
Dropout voltage	$l_0 = 40 \text{ mA}$	25 °C	1	1.7			1.7		V
8		25°C			6			6	
Bias current	In a long of the	125°C			5.5			5.5	[mA
Dias anna tha	$V_{I} = -8 V \text{ to } -20 V$	000 10500		1.00	1.5			1.5	
Bias current change	$l_0 = 1 \text{ mA to } 40 \text{ mA}$	- 0°C to 125°C			0.2	1		0.1	1 mA

MC79L05 electrical characteristics at specified virtual junction temperature, $V_I = -10 V$, $I_O = 40 mA$ (unless otherwise noted)

MC79L12 electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 40 mA$ (unless otherwise noted)

DADAMETER	TEAT CONDITI	TEST CONDITIONS [†]		MC79L12C			MC79L12AC			
PARAMETER	TEST CONDITI			TYP	MAX	MIN	TYP	MAX	UNIT	
		25°C	- ; ; , ,	-12	-12.9	-11.5	-12	- 12.5		
Output voltage [‡]	$V_{I} = -14.5 V \text{ to } -27 V,$ I_O = 1 mA to 40 mA	0°C to 125°C	- 10.8		- 13.2	-11.4		-12.6	v	
	$V_{I} = -19 V,$ $I_{O} = 1 mA to 70 mA$	0°C to 125°C	- 10.8		- 13.2	- 11.4		- 12.6		
Input regulation	$V_1 = -14.5 \text{ V to } -27 \text{ V}$	25°C			1.0			250		
	$V_{\rm I} = -16 {\rm V} {\rm to} - 27 {\rm V}$				-			200	mv	
Ripple rejection	$V_{I} = -15 V \text{ to } -25 V,$ f = 120 Hz	25°C	36	42		37	42		dB	
0 · · · · · · · · ·	IO = 1 mA to 100 mA	1		-	100			100		
Output regulation	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	25°C			50	1		50	mV	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		80			80		μV	
Dropout voltage	$I_0 = 40 \text{ mA}$	25°C		1.7			1.7		V	
		25°C			6.5		-	6.5		
Bias current		125°C	1		6			6	mA	
D '	$V_{I} = -16 V \text{ to } -27 V$				1.5			1.5		
Bias current change	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C			0.2			0.1	mA	

[†]All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

				C: 1 1	c	M			
PARAMETER	TEST CONDITION	UNS	T V. 1.	1.0	MAX	Mr.	TYP	MAX	UNIT
		25 °C	- 10.0	-15	- 16.2	+. +	- 15	- 15.6	
Output voltage [‡]	$V_{ } = -17.5 V \text{ to } -30 V,$ $I_{0} = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C	- 13.5		16.5	- 14.25		- 15.75	v
	$V_{I} = -23 V,$ I _O = 1 mA to 70 mA	0°C to 125°C	- 13.5		- 16.5	- 14.25		- 15.75	
Input regulation	$V_{\rm I} = -17.5 \text{ V to } -30 \text{ V}$	25°C			300			300	mV
input regulation	$V_{I} = -20 V \text{ to } -30 V$							250	
Ripple rejection	$V_{I} = -18.5 V \text{ to } -28.5 V,$ f = 120 Hz	25 °C	33	39		34	39		dB
0	$I_0 = 1 \text{ mA to } 100 \text{ mA}$				150			150	mV
Output regulation	Io = 1 mA to 40 mA	25*0			75			75	
Output noise voltage	f = 10 Hz to <hz< td=""><td>25 °C</td><td></td><td>90</td><td></td><td></td><td>90</td><td></td><td>μV</td></hz<>	25 °C		90			90		μV
Dropout voltage	$I_0 = 40 \text{ mA}$	25 °C		1.7			1.7		V
		25°C	h i		6.5			6.5	
Bias current		125°C	1.272.00		6			6	
	$V_{I} = -20 V \text{ to } -30 V$	0.00 to 125.00			1.5			1.5	mA
Bias current change	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	0°C to 125°C			0.2			0.1	

MC79L15 electrical characteristics at specified virtual junction temperature, $V_I = -23 V$, $I_O = 40 mA$ (unless otherwise noted)

[†]All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

D2714, MARCH 1983-REVISED FEBRUARY 1988

- Complete PWM Power Control Circuitry
- Uncommitted Output for 200-mA Sink or Source Current
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply
- Circuit Architecture Provides Easy Synchronization
- Direct Replacement for Motorola MC34060

D OR N PACKAGE (TOP VIEW) ERROR JNONINV INPUT 1 U14 NONINV INPUT FRROR INV INPUT 13 TINV INPUT AMP 1 AMP 2 12 REF OUT FEEDBACK 3 DEAD-TIME CONTROL 11 NC СтП5 10 VCC эŪс RT 6 8 T E GND

NC-No internal connections

description

The MC34060 incorporates on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, the device contains an on-chip 5-V regulator, two error amplifiers, an adjustable oscillator, and a dead-time control comparator. The uncommitted output transistor provides either common-emitter or emitter-follower output capability. The internal amplifiers exhibit a common-mode voltage range from -0.3 V to V_{CC} -2 V. The dead-time control comparator has a fixed offset that provides approximately 5% dead time unless externally altered. The on-chip oscillator may be bypassed by terminating RT (pin 6) to the reference output and providing a sawtooth input to CT (pin 5), or it may be used to drive the common MC34060 circuitry and provide a sawtooth input for associated control circuitry in multiple rail power supplies.

The MC34060 is characterized for operation from 0°C to 70°C.

functional block diagram

All voltage and current values shown are nominal.

PRODUCTION DATA documents contain information current as of publication date. Products conform to ,..., 'nons per the terms of 1..., 'n'uments 'n''' warrenty. Production pi ..., oss not ..., 's uny include testing of all ..., is ins.

TEXAS VI INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

absolute maximum ratings over operating temperature range (unless otherwise noted)

		UNIT
Supply voltage, V _{CC} (see Note 1)	42	V
Amplifier input voltages	V _{CC} +0.3	<
Collector output voltage	42	V
Collector output current	250	
Continuous total dissipation	See Dissipation Rati Table	
Operating free-air temperature range	0 to 70	°C
Storage temperature range	-65 to I	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	260	°C

NOTE 1: All voltage values except differential voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE					
PACKAGE $T_A \le 25^{\circ}C$ DERATING DERATE $T_A =$ POWER RATING FACTOR ABOVE T_A POWER					
D	900 mW	7.6 mW/°C	31 °C	608 mW	
N	1000 mW	9.2 mW/°C	41 °C	736 mW	

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{CC}	7	40	V
Amplifier input voltages, V	-0.3	V _{CC} -2	V
Collector output voltage, VO		40	V
Collector output current (each transistor)			mA
Reference output current		iv	mA
Current into feedback terminal		0.3	mA
Timing capacitor, CT	0.47	1	nF
Timing resistor, RT	1.8		kΩ
Oscillator frequency	1		kHz
Operating free-air temperature, TA	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 25 kHz (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
Output voltage (Vref)	$I_0 = 1 \text{ mA}$	4.75	5	5.25	v
Input regulation	$V_{CC} = 7 V \text{ to } 40 V, T_A = 25 ^{\circ}C$		2	25	mV
Output regulation	10 = 1 to 10 mA, T _A = 25 °C		1	15	mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$		0.2%	2.6%	
Short-circuit output current§	$V_{ref} = 0, T_A = 25^{\circ}C$		35		mA

oscillator section

PARAMETER	TEST CONDITIONS [†]	MIN TYP [‡] MAX	UNIT
Frequency	$C_{T} = 0.001 \ \mu F$, $R_{T} = 47 \ k\Omega$	25	kHz
Standard deviation of frequency	$C_{T} = 0.001 \ \mu F, R_{T} = 47 \ k\Omega$	3%	
Frequency change with voltage	$V_{CC} = 7 V \text{ to } 40 V, T_A = 25 °C$	0.1%	6
Frequency change with temperature	$C_T = 0.001 \ \mu F$, $R_T = 47 \ k\Omega$, $\Delta T_A = MIN \text{ to MAX}$	± 2%	

dead-time control-section (see Figure 1)

PARAMETER	TEST CONDITIONS		MIN	TYP [‡]	MAX	UNIT
Input bias current (pin 4)	$V_{\rm I} = 0$ to 5.25 V			-2	- 10	μA
Maximum duty cycle		$C_{T} = 0.1 \mu F, R_{T} = 12 k\Omega$	90%	96%	100%	
	V_{I} (pin 4) = 0 C_{T} = 0.001 μ F, R_{T} = 47 k Ω		92%	100%		
Input threshold voltage (pin 4)	Zero duty cycle			3	3.3	
	Maximum duty c	ycle	0			

error-amplifier sections

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Input offset voltage	VO (pin 3) = 2.5 .		2	10	mV
Input offset current	VO (pin 3) = 2.5 V		25	250	nA
Input bias current	VO (pin 3) = 2.5 V		0.2	1	μA
Common-mode input voltage range	V _{CC} = 7 V to 40 V			-0.3 to V _{CC} -2	v
Open-loop voltage amplification	$\Delta V_0 = 3 V$, $R_L = 2 k\Omega$, $V_0 = 0.5 V$ to 3.5 V	70	95		dB
Unity gain bandwidth	$V_0 = 0.5 V$ to 3.5 V, $R_L = 2 k\Omega$		800		kHz
Phase margin at unity gain	$V_0 = 0.5 V$ to 3.5 V, $R_L = 2 k\Omega$		65 °	-	
Common-mode rejection ratio	$V_{CC} = 40 V$	65	80		dB
Output sink current (pin 3)	$V_{ID} = -15 \text{ mV to } -5 \text{ V}, V_{(pin 3)} = 0.7 \text{ V}$	0.3	0.7		mA
Output source current (pin 3)	$V_{1D} = 15 \text{ mV to } 5 \text{ V}, \qquad V_{(pin 3)} = 3.5 \text{ V}$	-2			mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values except for "change with temperature" characteristics are at $T_A = 25 \,^{\circ}C$.

[§] Duration of the short-circuit should not exceed one second.

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula

MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 25 kHz (unless otherwise noted) (continued)

output section

PARAN	ETER	TE	ST CONDITIONS	MIN TYP	MAX **	UNIT
Collector off-state	current	$V_{CE} = 40 V_{e}$	+uu - ÷0 V		2 100	μA
Emitter off-state c	urrent	$V_{CC} = V_{C} =$	$= 40 \text{ V}, \text{ V}_{\text{E}} = 0$		- 100	μA
Collector-emitter	Common-emitter	$V_E = 0,$	$I_C = 200 \text{ mA}$	1	1 1.3	
saturation voltage	Emitter follower	$V_{\rm C} = 15 \rm V_{c}$	$I_{E} = -200 \text{ mA}$	1	5 2.5	l v

pwm comparator section (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
input threshold voltage (pin 3)	Zero duty cycle		4	4.5	v
Input sink current (pin 3)	V(pin 3) = 0.7 V	0.3	0.7		mA

total device

PARAMETER	TEST CONDITIONS	TEST CONDITIONS			MAX	UNIT
Standby supply current	Pin 6 at V _{ref} ,	$V_{CC} = 15 V$		6	10	m۸
Standby supply current	All other inputs and outputs open	$V_{CC} = 40 V$		9	15	IIIA
Average supply current	$V_{(pin 4)} = 2 V, C_T = 0.001 \ \mu F,$	$R_T = 47 k\Omega$, See Figure 1		7.5		mA

switching characteristics, $T_A = 25 \,^{\circ}C$

PARAMETER	TEST CONDITIONS		TYPT	MAX	UNIT
Output voltage rise time	Common emitter configuration for Figure 2		100	200	ns
Output voltage fall time	Common-emitter configuration, see Figure S		25	- · · ·]	ns
Output voltage rise time	Emitter fellower configuration. Can Figure 4		100	200	ns
Output voltage fall time	Emitter-follower configuration, See Figure 4		40	100	ns

tAll typical values are at $T_A = 25 \,^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

FIGURE 4. EMITTER-FOLLOWER CONFIGURATION

2

MC34060 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

TYPICAL CHARACTERISTICS

[†]Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

SG2524, SG3524 REGULATING PULSE-WIDTH MODULATORS

J OR N PACKAGE (TOP VIEW)

OSC OUT 13

CURR LIM + 14

CURR LIM - 15

D2294, APRIL 1977-REVISED OCTOBER 1988

U16 REF OUT

14 EMIT 2

13 COL 2

12 COL 1

11 EMIT 1

9 COMP

10 SHUTDOWN

15 VCC

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for Single-Ended or Push-Pull Applications
- Low Standby Current . . . 8 mA Typ
- Interchangeable with Silicon General SG2524 and SG3524

description

The SG2524 and SG3524 incorporate on single monolithic chips all the functions required in the construction of a regulating power supply,

inverter, or switching regulator. They can also be used as the control element for high-power-output applications. The SG2524 and SG3524 were designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers, and polarity converter applications employing fixed-frequency, pulse-width-modulation techniques. The complementary output allows either single-ended or push-pull application. Each device includes an on-chip regulator, error amplifier, programmable oscillator, pulse-steering flip-flop, two uncommitted pass transistors, a high-gain comparator, and current-limiting and shut-down circuitry.

The SG2524 is characterized for operation from -25 °C to 85 °C, and the SG3524 is characterized for operation from 0 °C to 70 °C.

functional block diagram

PRODUCTION DATA documents contain information c ··· · s of publication date. /· ··· · conform to s, ··· i tions per the terms of i ···· unstruments star · · · warranty. Production ····· · · · g does not nucuus/ily include testing of un puralitetes.

SG2524, SG3524 Regulating Pulse-Width Modulators

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Notes 1 and 2) 4	10 V
Collector output current	mA
Reference output current	mA
Current through CT terminal	mA
Continuous total dissipation See Dissipation Rating T	able
Operating free-air temperature range: SG252425°C to 8	5°C
SG3524	0°C
Storage temperature range	0°C

NOTES: 1. All voltage values are with respect to network ground terminal.

 The reference regulator may be bypassed for operation from a fixed 5-V supply by connecting the V_{CC} and reference output pins both to the supply voltage. In this configuration, the maximum supply voltage is 6 V.

TA = 70°C

POT I K RATING

... nW

736 mW

TA = 85 °C

POWIE RATING

598 mW

nW

			DISSIPATIO	N RATING TAE	BLE
PACKAGE	T _A ≤ POWER	25°C RATING	DERATING FA(10R		F
J		mW	8.2 r .:	28°C	
N	1000	mW	9.2 mW/°C	41 °C	

recommended operating conditions

	SG2524		SG3524		LINUT
	MIN		MIN	MAX	UNIT
Supply voltage, V _{CC}	8	40	8	40	V
Reference output current	0	50	0	50	mA
Current thru CT terminal	-0.03	-2	-0.03	-2	mA
Timing resistor, RT	1 8	100	1.8	100	kΩ
Timing capacitor, CT	0	0.1	0.001	0.1	μF
Operating free-air temperature	40	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 20 V$ (unless otherwise noted)

reference section

			\$62524			\$634.24		
PARAMETER	TEST CONDITIONS	MIN	The'	MAX	MIN	1.1.1.1	MA+	UNIT
Output voltage	1	4.8	5	5.2	4.6	5	U. 4	V
Input regulation	V _{CC} = 8 to 40 V		10	20		10	30	mV
Ripple rejection	f = 120 Hz	1	66		1-0	66		dB
Output regulation	IO = 0 to 20 mA		20	50		20	50	mV
Output voltage change with temperature	$T_A = MIN \text{ to MAX}$		0.3	1	-	0.3	1	%
Short-circuit output current [§]	V _{ref} = 0		100		1	100		mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values, except output voltage change with temperature, are at $T_A = 25 \,^{\circ}C$.

[§]Duration of the short circuit should not exceed one second.

2

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 20 V$, f = 20 kHz (unless otherwise noted)

oscillator section

PARAMETER	TEST CONDITIONS [†]	MIN TYP [‡] MAX	UNIT
Frequency	$C_{T} = 0.001 \ \mu F, R_{T} = 2 \ k\Omega$	450	kHz
Standard deviation of frequency§	All values of voltage, temperature, resistance, and capacitance constant	5	%
Frequency change with voltage	$V_{CC} = R to 40 V, T_A = 25 °C$	1	%
Frequency change with temperature	T _A = to MAX	2	%
Output amplitude at pin 3	$T_A = \cdots$	3.5	V
Output pulse duration (width) at pin 3	$C_{T} = 0.01 \ \mu F, \qquad T_{A} = 25 \ ^{\circ}C$	0.5	μs

error amplifier section

PAGAMETER	THAT COMPLETIONS	11111-4		1022	UNIT			
PARAMETER	TEST CONDITIONS	MIN	T.P.	MAX	MIN	7 10	MA 6	UNIT
Input offset voltage	VIC = 2.5 V		0.5	5		2	:5	mV
Input bias current	$V_{1C} = 2.5 V$		2	10	and a	2	10	μA
Open-loop voltage amplification		72	80		60	80		dB
		1.8	C		1.8			
Common-mode input voltage range	$T_A = 25 ^{\circ}C$	to			to			V
		3.4			3.4			100
Common-mode rejection ratio			70			70		dB
Unity-gain bandwidth			3	2		3		MHz
Output swing	TA = 25 °C	0.5	1	3.8	0.5	-	3.8	V

output section

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Collector-emitter breakdown voltage		40	Contraction of the		V
Collector off-state current	V _{CE} = 40 V		0.01	50	μA
Collector-emitter saturation voltage	I _C = 50 mA		1	2	V
Emitter output voltage	$V_{\rm C} = 20 V, \qquad I_{\rm E} = -250 \mu {\rm A}$	17	18	·	V
Turn-off voltage rise time	$R_{C} = 2 k\Omega$		0.2		μs
Turn-on voltage fall time	$R_{C} = 2 k\Omega$	and the second	0.1	1	μs

comparator section

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
Maximum duty cycle, each output	and the second sec	45		2.001	%
Maximum duty cycle, each output Input threshold voltage at pin 9	Zero duty cycle		1		
Input threshold voltage at pin 9	Maximum duty cycle		3.5		v
Input bias current		-	-1		μA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values, except for temperature coefficients, are at $T_A = 25$ °C.

[§]Standard deviation is a measure of the statistical distribution about the mean as derived from the formula σ

 $(X_n - \overline{X})^2$ N-1

SG2524, SG3524 Regulating Pulse-Width Modulators

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 20 V$, f = 20 kHz (unless otherwise noted)

current limiting section

DADAMETED	TEST CONDITIONS		\$62524			\$1,35.4			
PARAMETER	MIN	INP"	MAX	MIN	DIS	MAX	UNIT		
		- 1			- 1				
Input voltage range (either input)	to		to		to			v	
		+ 1			+1				
Sense voltage at T _A = 25 °C	View and Merry and E0 mV	190	200	210	180	200	220	mV	
Temperature coefficient of sense voltage	V(pin 2) = V(pin 1) 2 50 mV, V(pin 9) = 2 V		0.2			0.2		mV/°C	

total device

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Standby current	V _{CC} = 40 V, Pins 1,4,.,.,9, i i, i 4 gronded, Pin 2 at 2 V, All other inputs and outputs open		8	10	mA

[†]All typical values, except for temperature coefficients, are at $T_A = 25 \,^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. GENERAL TEST CIRCUIT

SG2524, SG3524 REGULATING PULSE-WIDTH MODULATORS

SG2524, SG3524 REGULATING PULSE-WIDTH MODULATORS

PRINCIPLES OF OPERATION[†]

The SG2524 is a fixed-frequency pulse-width-modulation voltage-regulator control circuit. The regulator operates at a fixed frequency that is programmed by one timing resistor RT and one timing capacitor CT. RT establishes a constant charging current for CT. This results in a linear voltage ramp at CT, which is fed to the comparator providing linear control of the output pulse duration (width) by the error amplifier. The SG2524 contains an on-board 5-V regulator that serves as a reference as well as supplying the SG2524 internal regulator control circuitry. The internal reference voltage is divided externally by a resistor ladder network to provide a reference within the common-mode range of the error amplifier as shown in Figure 6, or an external reference may be used. The output is sensed by a second resistor divider network and the error signal is amplified. This voltage is then compared to the linear voltage ramp at CT. The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output pass transistor (Q1 or Q2) by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both outputs are never on simultaneously during the transition times. The duration of the blanking pulse is controlled by the value of CT. The outputs may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current-limiting and shut-down circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate the error amplifier, or to provide additional control to the regulator.

[†]Throughout these discussions, references to the SG2524 apply also to the SG3524.

2-94

TYPICAL APPLICATION DATA[†]

oscillator

The oscillator controls the frequency of the SG2524 and is programmed by RT and CT as shown in Figure 4.

$$f \approx \frac{1.15}{R_T C_T}$$

where R_T is in kΩ C_T is in μF f is in kHz

Practical values of CT fall between 0.001 and 0.1 μ F. Practical values of RT fall between 1.8 and 100 k Ω . This results in a frequency range typically from 140 Hz to 500 kHz.

blanking

The output pulse of the oscillator is used as a blanking pulse at the output. This pulse duration is controlled by the value of C_T as shown in Figure 5. If small values of C_T are required, the oscillator output pulse duration may still be maintained by applying a shunt capacitance from pin 3 to ground.

synchronous operation

When an external clock is desired, a clock pulse of approximately 3 V can be applied directly to the oscillator output terminal. The impedance to ground at this point is approximately 2 k Ω . In this configuration, R_T C_T must be selected for a clock period slightly greater than that of the external clock.

If two or more SG2524 regulators are to be operated synchronously, all oscillator output terminals should be tied together. The oscillator programmed for the minimum clock period will be the master from which all the other SG2524s operate. In this application, the C_T R_T values of the slaved regulators must be set for a period approximately 10% longer than that of the master regulator. In addition, C_T (master) = 2 C_T (slave) to ensure that the master output pulse, which occurs first, has a longer pulse duration and will subsequently reset the slave regulators.

[†]Throughout these discussions, references to the SG2524 apply also to the SG3524.

SG2524, SG3524 Regulating Pulse-Width Modulators

TYPICAL APPLICATION DATA[†]

voltage reference

The 5-V internal reference may be employed by use of an external resistor divider network to establish a reference within the error amplifiers common-mode voltage range (1.8 to 3.4 V) as shown in Figure 6, or an external reference may be applied directly to the error amplifier. For operation from a fixed 5-V supply, the internal reference may be bypassed by applying the input voltage to both the V_{CC} and V_{REF} terminals. In this configuration, however, the input voltage is limited to a maximum of 6 V.

FIGURE 6. ERROR AMPLIFIER BIAS CIRCUITS

error amplifier

The error amplifier is a differential-input transconductance amplifier. The output is available for dc gain control or ac phase compensation. The compensation node (pin 9) is a high-impedance node ($R_L = 5 M\Omega$). The gain of the amplifier is $A_V = (0.002 \Omega^{-1}) R_L$ and can easily be reduced from a nominal 10,000 by an external shunt resistance from pin 9 to ground. Refer to Figure 3 for data.

compensation

Pin 9, as discussed above, is made available for compensation. Since most output filters will introduce one or more additional poles at frequencies below 200 Hz, which is the pole of the uncompensated amplifier, introduction of a zero to cancel one of the output filter poles is desirable. This can best be accomplished with a series RC circuit from pin 9 to ground in the range of 50 k Ω and 0.001 μ F. Other frequencies can be canceled by use of the formula f $\approx 1/RC$.

shut-down circuitry

Pin 9 can also be employed to introduce external control of the SG2524. Any circuit that can sink 200 μ A can pull the compensation terminal to ground and thus disable the SG2524.

In addition to constant-current limiting, pins 4 and 5 may also be used in transformer-coupled circuits to sense primary current and shorten an output pulse should transformer saturation occur. Pin 5 may also be grounded to convert pin 4 into an additional shut-down terminal.

[†]Throughout these discussions, references to the SG2524 also apply to the SG3524.

TYPICAL APPLICATION DATA[†]

current limiting

A current-limiting sense amplifier is provided in the SG2524. The current-limiting sense amplifier exhibits a threshold of 200 mV and must be applied in the ground line since the voltage range of the inputs is limited to +1 V to -1 V. Caution should be taken to ensure the -1 V limit is not exceeded by either input, otherwise damage to the device may result.

Fold-back current limiting can be provided with the network shown in Figure 7. The current-limit schematic is shown in Figure 8.

FIGURE 7. FOLDBACK CURRENT LIMITING FOR SHORTED OUTPUT CONDITIONS

output circuitry

The SG2524 contains two identical n-p-n transistors, the collectors and emitters of which are uncommitted. Each transistor has antisaturation circuitry that limits the current through that transistor to a maximum of 100 mA for fast response.

[†]Throughout these discussions, references to the SG2524 also apply to the SG3524.

SG2524, SG3524 **REGULATING PULSE WIDTH MODULATORS**

TYPICAL APPLICATION DATA[†]

general

There are a wide variety of output configurations possible when considering the application of the SG2524 as a voltage regulator control circuit. They can be segregated into three basic categories:

- 1. Capacitor-diode-coupled voltage multipliers
- 2. Inductor-capacitor-implemented single-ended circuits
- 3. Transformer-coupled circuits

Examples of these categories are shown in Figures 9, 10 and 11, respectively. Detailed diagrams of specific applications are shown in Figures 12 through 15.

FIGURE 10. SINGLE-ENDED INDUCTOR CIRCUIT

PUSH-PULL

FIGURE 9. CAPACITOR-DIODE-COUPLED

VOLTAGE-MULTIPLIER OUTPUT STAGES

[†]Throughout these discussions, references to the SG2524 also apply to the SG3524.

[†]Throughout these discussions, references to the SG2524 also apply to the SG3524.

2

SG2524, SG3524 Regulating Pulse-Width Modulators

TYPICAL APPLICATION DATA[†]

FIGURE 15. PUSH-PULL TRANSFORMER-COUPLED CIRCUIT

[†]Throughout these discussions, references to the SG2524 also apply to the SG3524.

- Output Voltage Range Adjustable from 1.2 V to 32 V
- Output Current Capability of 100 mA
- Input Regulation Typically 0.01% Per Input-Volt Change
- Output Regulation Typically 0.5%
- Ripple Rejection Typically 80 dB

description

The TL317 is an adjustable 3-terminal positivevoltage regulator capable of supplying 100 mA over an output-voltage range of 1.2 V to 32 V. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Both input and output regulation are better than standard fixed regulators. The device is packaged in standard packages that are easily mounted and handled.

In addition to higher performance than fixed regulators, this regulator offers full overload protection available only in integrated circuits. Included on the chip are current limiting and thermal overload protection. All overload protection circuitry remains fully functional even

NC-No internal connection

if the adjustment terminal is disconnected. Normally, no capacitors are needed unless the device is situated far from the input filter capacitors, in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection, which is difficult to achieve with standard 3-terminal regulators.

In addition to replacing fixed regulators, the TL317 regulator is useful in a wide variety of other applications. Since the regulator is floating and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded. Its primary application is that of a programmable output regulator, but by connecting a fixed resistor between the adjustment terminal and the output terminal, this device can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground, programming the output to 1.2 V where most loads draw little current.

The TL317M is characterized for operation over the full military temperature range from -55 °C to 125 °C. The TL317C is characterized for operation from 0 °C to 125 °C.

TL317M, TL317C 3-TERMINAL ADJUSTABLE REGULATOR

All component values shown are nominal

absolute maximum ratings over operating temperature range (unless otherwise noted)

Continuous total dissipation
Operating free-air, case, or virtual junction temperature range: TL317M55°C to 150°C
TL317C 0°C to 150°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or LP package 260 °C

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	145 mW
JG	1050 mW	8.4 mW/°C	210 mW
LPT	775 mW	6.2 mW/°C	155 mW

[†]The LP package dissipation rating is based on thermal resistance measured in still air with the device mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in.) above the socket.

PACKAGE	T _C ≤ 2 PC:A=5-13	5°C ATING	DERATING FACTOR	DERATE ABOVE TC	T _C = 125°C PO∴: - RATING
D		mW	29.6 mW/°C	96°C	.∹ mW
JG	1600 1	mW	38.4 mW/°C	108 °C	960 mW
LP	1600 1	mW	28.6 mW/°C	94 °C	715 mW

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

recommended operating conditions

	TL317M	TL	317C	UNIT
	MIN MA	MIN	MAX	
Output current, IO	2.5 100	1 4.0	100	mA
Operating virtual junction temperature, Tj	-55 125	0	125	°C

electrical characteristics over recommended operating virtual junction temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Insuit menulation (and Name 2)	$V_{\rm L} = 2V_{\rm T} = 25^{\circ}{\rm C}$			0.01	0.02	DV IN
Input regulation (see Note 2)	$v_1 - v_0 = 3 v to 35 v$	Io = 2.5 mA to 100 m	A	0.02		70/V
Ripple rejection	$V_0 = 10 V$,	f = 120 Hz		65		
	$V_{O} = 10 V$, $f = 120 Hz$, 10-µF capacitor between ADJ and ground			80		dB
Output regulation	IO = 2.5 mA to 100 mA,	V ₀ ≤ 5 V		25		mV
	Tj = 25°C,	V ₀ ≥ 5 V	1.	0.5		%
		V ₀ ≤ 5 V		50	1	mV
	$10 \approx 2.5$ mA to 100 mA,	$V_0 \ge 5V$ 1				%
Output voltage change with temperature	T _J = 0°C to 125°C			1	2	%
Output voltage long-term drift (see Note 3)	After 1000 h at T _J = 125	5°C and VI-V0 = 35 V		0.3	1	%
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C		0.003		%
Minimum output current to maintain regulation	$V_{\rm I} - V_{\rm O} = 35 \ V$			1.5	2.5	mA
Peak output current	$V_{I} - V_{O} \leq 35 V$		100	200		mA
Adjustment-terminal current				50	100	μA
Change in adjustment-terminal current	$V_{\rm I} - V_{\rm O} = 2.5 \text{ V to } 35 \text{ V},$	lo = 2.5 mA to • 1	A	0.2	5	μA
Reference voltage (output to ADJ)	$V_I - V_O = 3 V \text{ to } 35 V,$ P \leq rated dissipation	lo = 2.5 mA to T	IA, 1.2	1.25	1.3	v

[†] Unless otherwise noted, these specifications apply for the following test conditions: $V_I - V_O = 5 V$ and $I_O = 40$ mA. Pulse testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible. All characteristics are measured with a 0.1- μ F capacitor across the input and a 1- μ F capacitor across the output.

NOTES: 2. Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.

3. Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

TL317M, TL317C 3-TERMINAL ADJUSTABLE REGULATOR

TYPICAL APPLICATION DATA

FIGURE 1. ADJUSTABLE VOLTAGE REGULATOR

[†]D1 discharges C2 if output is shorted to ground.

FIGURE 3. ADJUSTABLE REGULATOR CIRCUIT WITH IMPROVED RIPPLE REJECTION

FIGURE 2. 0-V TO 30-V REGULATOR CIRCUIT

FIGURE 4. PRECISION CURRENT LIMITER CIRCUIT

NOTES: A. Use of an input bypass capacitor is recommended if regulator is far from filter capacitors.

- B. Use of an output capacitor improves transient response but is optional.
- C. Vref equals the difference between the output and adjustment terminal voltages.
- D. Output voltage is calculated from the equation: $V_0 = V_{ref} \left(1 + \frac{R2}{R1}\right)$

TEXAS V INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TYPICAL APPLICATION DATA

FIGURE 7. 50-mA CONSTANT-CURRENT BATTERY CHARGER CIRCUIT

FIGURE 6. SLOW-TURN-ON 15-V REGULATOR CIRCUIT

[†]This resistor sets peak current (100 mA for 6 Ω).

FIGURE 8. CURRENT-LIMITED 6-V CHARGER

TL317M, TL317C 3-TERMINAL ADJUSTABLE REGULATOR

[†]Minimum load current is 30 mA. [‡]Optional capacitor improves ripple rejection

FIGURE 9. HIGH-CURRENT ADJUSTABLE REGULATOR

TL430I, TL430C ADJUSTABLE SHUNT REGULATORS

D2165, JUNE 1976-REVISED MARCH 1988

- Temperature Compensated
- Programmable Output Voltage
- Low Output Resistance
- Low Output Noise
- Sink Capability to 100 mA

description

The TL430 is a three-terminal adjustable shunt regulator featuring excellent temperature stability, wide operating current range, and low output noise. The output voltage may be set by two external resistors to any desired value between 3 volts and 30 volts. The TL430 can replace zener diodes in many applications providing improved performance.

The TL430I is characterized for operation from -40 °C to 85 °C, and the TL430C is characterized for operating from 0 °C to 70 °C.

functional block diagram

Regulator voltage (see Note 1)
Continuous regulator current
Continuous dissipation at (or below) 25 °C free-air temperature (see Note 2)
Operating free-air temperature range: TL430I40 °C to 85 °C
TL430C 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

recommended operating conditions

	MIN	MAX	UNIT
Regulator voltage, VZ	Vref	30	V
Regulator current, IZ	2	100	mA

Notes: 1. All voltage values are with respect to the anode terminal.

2. For operation above 25 °C free-air temperature, derate at 6.2 mW/ °C.

TL430I, TL430C Adjustable shunt regulators

PARAMETER		TEST	E TEST CONDITIONS		TL4301			TL430C		
		FIGURE			TYP	MAX	MIN	TYP	MAX	UNIT
Vref	Reference input voltage 1		$V_Z = V_{ref}$, $I_Z = 10 \text{ mA}$	2.6	2.75	2.9	2.5	2.75	3	V
^α V _{ref}	Temperature coefficient of reference input voltage	1	$V_Z = V_{ref}$, $I_Z = 10 mA$ $T_A = 0^{\circ}C$ to 70°C		120	200		120		ppm/°C
I _{ref}	Reference input current	2	$I_Z = 10 \text{ mA},$ $R1 = 10 \text{ k}\Omega,$ $R2 = \infty$		3	10		3	10	μA
Izк	Regulator current near lower knee of regulation range	1	V _Z = V _{ref}		0.5	2		0.5	2	mA
	Regulator current at maximum 1		Vz = Vref	50			50	6		
ZM	limit of regulation range	2	$V_Z = 5 V$ to 30 V, See Note 3	100			100			
٢z	Differential regulator resistance (see Note 4)	1	$V_Z = V_{ref}$, $\Delta I_Z = (52-2) mA$		1.5	3		1.5	3	Ω
V _{nz}			V _Z = 3 V		50			50		
	Noise voltage	2	f = 0.1 Hz to 10 Hz Vz = 12 V		200			200		μV
			V _Z = 30 V		650		1	650		

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

NOTES: 3. The average power dissipation, V_Z • I_Z • duty cycle, must not exceed the maximum continuous rating in any 10-ms interval.
4. The regulator resistance for V_Z > V_{ref}, r_z, is given by:

$$r_{z}' = r_{z} \left(1 + \frac{R1}{R2}\right)$$

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TEST CIRCUIT FOR VZ = Vref

FIGURE 2. TEST CIRCUIT FOR $V_Z > V_{ref}$

TL430I, TL430C Adjustable shunt regulators

FIGURE 5. SHUNT REGULATOR

 $V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{ref}$ FIGURE 6. SERIES REGULATOR

R1

₹**R**2

/0

30 Ω

FIGURE 7. CURRENT LIMITER

TL430I, TL430C Adjustable shunt regulators

TL431M, TL431I, TL431AI, TL431C, TL431AC Adjustable precision shunt regulators

D2410, JULY 1978-REVISED AUGUST 1988

- Equivalent Full-Range Temperature Coefficient . . . 30 ppm/°C
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Adjustable Output Voltage
- Fast Turn-On Response
- Sink Current Capability . . . 1 mA to 100 mA
- Low (0.2 Ω Typ) Dynamic Output Impedance
- Low Output Noise

description

The TL431 and TL431A are three-terminal adjustable shunt regulators with specified thermal stability over applicable industrial and commercial temperature ranges. The output voltage may be set to any value between V_{ref} (approximately 2.5 V) and 36 V with two external resistors (see Figure 16). These devices have a typical output impedance of 0.2 Ω . Active output circultry provides a very sharp turn-on characteristic, making these devices excellent replacements for zener diodes in many applications.

The TL431M is characterized for operation over the full military temperature range of -55° C to 125° C. The TL431I and TL431AI are characterized for operation from -40° C to 85° C, and the TL431C and TL431AC are characterized for operation from 0° C to 70° C.

(TO	P VIEW)
CATHODE	
ANODE 🗌 2	7 🗋 ANODE
ANODE 🔤 3	6 🗋 ANODE
NC 🛛 4	5 🗍 NC

THE ANODE IS IN ELECTRICAL CONTACT WITH THE CASE.

TL431I, TL431AI, TL431C, TL431AC . . . LP PACKAGE (TOP VIEW)

TL431I, TL431AI, TL431C, TL431AC . . . P PACKAGE

NC-No internal connection

symbol

Component values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Cathode voltage (see Note 1)	
Continuous cathode current range	
Reference input current range	50 μA to 10 mA
Continuous power dissipation	See Dissipation Rating Tables 1 and 2
Operating free-air temperature range:	TL431C, TL431AC 0°C to 70°C
	TL431I, TL431AI
	TL431M
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch)	from case for 60 seconds: LD or JG package 300 °C
Lead temperature 1,6 mm (1/16 inch)	from case for 10 seconds: D, LP, or P package 260 °C

NOTE 1: Voltage values are with respect to the anode terminal unless otherwise noted.

DISSIFATION NATING TABLE I-FREE-AIN TENIFERATUR	DISSIPATION	RATING	TABLE	1-FREE-AIR	TEMPERATU	RE
---	-------------	--------	-------	------------	-----------	----

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING	TA = 85°C POWER RATING	TA = 125°C POWER RATING
D	825 mW	6.6 mW/°C	528 mW	429 mW	
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
LD	275 mW	2.2 mW/°C	176 mW	143 mW	55 mW
LP	775 mW	6.2 mW/°C	496 mW	403 mW	
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGE	T _C ≤ 25°C	DERATING FACTOR	T _C = 125°C
	POWER RATING	ABOVE T _C = 25°C	PO∴: H RATING
LD	1550 mW	12.4 mW/°C	· mW

recommended operating conditions

	MIN MAX	UNIT
Cathode voltage, VKA	V _{ref} 36	V
Cathode current, IK (for regulation)	1 100	mA

Vref	DADAARTED				TL43	W	5	4311		TL43	10	_	-
Vref	PARAMETER	CIRCUIT		TEST CONDITIONS	MIN TY	P MAX	N.	LYP M	AX M	IN TY	W M	×	
	Reference input voltage	1	VKA = Vref.	I _K = 10 mA	2400 249	5 2600	2440 24	495 25	50 244	40 249	5 25	20	٨u
Vref(dev)	Deviation of reference input voltage over full temperature range [‡]	1	VKA = V _{ref} ,	$I_{K} = 10 \text{ mA}, T_{A} = \text{full range}^{\dagger}$	8	8		۵	30		4	17	Уш
ΔVref	Ratio of change in reference			$\Delta V KA = 10 V - V_{ref}$	Ī	4 - 3		1.4 -	2.7	i i	4 - 2	r:	> 8
AVKA	input voltage to the change in cathode voltage	7	IK = 10 mA	ΔVKA = 36 V - 10 V	1	1 -2.3		5	-2		-	2	>
Iref	Reference input current	2	lk = 10 mA.	R1 = 10 kΩ, R2 = ∞		2 8		2	4		2	4	Ψd
lref(dev)	Deviation of reference input current over full temperature range [‡]	2	lk = 10 mA, T _A = full rand	R1 = 10 k00, R2 = ∞, le [†]				0.8	2.5	0	4	2	μĄ
min	Minimum cathode current for regulation	-	Vka = V _{ref}		ö	4 1.5		0.4	-	0	4	-	mA
loff	Off-state cathode current	9	VKA = 36 V,	Vref = 0	0	1 3		0.1	-	ò	-	-	Åμ
[zka]	Dynamic impedance [§]	-	VkA = V _{ref} , f ≲ 1 kHz	lk = 1 mA to 100 mA,	.0	2 0.9		0.2	05	0	5	u,	c
				M	ax Vref	ì	ľ	-1/	-				
	$\left \alpha Vref\right \begin{pmatrix} ppm \\ \sigma C \end{pmatrix} = \frac{\left(\frac{Vref(dev}{\partial 2} 2 \right)}{\Delta T_A}$	5°C X 106		×	in Vref		1	/		[ve			
where Δ]	${\sf r}_{\sf A}$ is the rated operating free-air tempera	ature range	of the device,		_ ±	1	ATA	1					
«Vref car	n be positive or negative depending on w cxample: Max V _{ref} = 2496 mV @ 30° ⁽	vhether min C, Min Vref	iimum V _{re} f or r : = 2492 mV (naxımum V _{ref} , respactively, occurs ậ 0°C, V _{ref} = 2495 mV @ 25°C,	at the lowe $\Delta T_A = 70^{\circ}$	r temperal °C for TL4	ture (see F 31C	igure 8	Q.				
				$\alpha_{Vref} = \frac{\left(\frac{4 \text{ mV}}{2495 \text{ mV}}\right) \times 106}{70^{\circ}\text{C}} \approx 2$	3 ppm/ °C								
	3ecause minimum V_{ref} occurs at the low	ver tempera	ture, the coeffi	cient is positive.									
The dyna	mic impedance is defined as												
				$ z_{ka} = \frac{\Delta V_{kA}}{\Delta V_{kA}}$									

ų

TEXAS V INSTRUMENTS

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

When the device is operated with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

 $\left(1 + \frac{R1}{R2}\right)$

 $|z'| = \frac{\Delta V}{\Delta I} \approx |z_{ka}|$

Data Sheets N

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

		TEST				TL431AI		H H	431AC		
	PARAMETER	CIRCUIT		TEST CONDITIONS	N.	TYP	MAX	MIN	TYP	MAX	
Vref	Reference input voltage	1	VKA = Vref.	IK = 10 mA	2410	2495	2520	2470	2495	2520	>m
N	Deviation of reference input voltage	1	VKA = Vraf.	$I_K = 10 \text{ mA}$. $T_A = full range†$		ш	25		4	15	>E
vap)rar.	over full temperature range [‡]										
AVref	Ratio of change in reference			$\Delta V K A = 10 V - V ref$		- 1.4	-2.7		- 1.4	-2.7	٨
	input voltage to the change	2	IK = 10 mA				1.4			100	I
AVKA	in cathode voltage			$\Delta K_{VA} = 36 V - 10 V$		-1	-2		-	-2	>
Iref	Reference input current	2	IK = 10 mA,	R1 = 10 kΩ, R2 = ∞		2	4		2	4	Åμ
	Deviation of reference input current	c	IK = 10 mA.	R1 = 10 kΩ, R2 = ∞,		a c	3 C		a	1 2	Q
Iref(dev)	over full temperature range [‡]	7	TA = full ran	ge [†]		5	2.4		2	1	4
	Minimum cathode current	•	V V			40	0.7		40	90	Αm
uim'	for regulation	-	VKA - Vret							25	
loff	Off-state cathode current	3	VKA = 36 V,	V _{ref} = 0		0.1	0.5		0.1	0.5	ΨĦ
Zka	Dynamic impedance [§]	1	VKA = Vref.	IK = 1 mA to 100 mA.		0.2	0.5		0.2	0.5	a

[†]Full temperature range is -40°C to 85°C for TL431AI and 0°C to 70°C for TL431AC.

Tr

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

⁺The deviation parameters V_{refidev}) and I_{refidev}) are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{ref} , is defined as:

$$|\alpha Vref| \left(\frac{ppm}{\sigma C} \right) = \frac{\left(\frac{Vref(dev)}{Vref @ 25 \sigma C} \right) \times 10^6}{\Delta T_A}$$

where ΔT_A is the rated operating free-air temperature range of the device.

α_{Vref} can be positive or negative depending on whether minimum V_{ref} or maximum V_{ref}, respectively, occurs at the lower temperature.

§The dynamic impedance is defined as: $|z_{ka}|=\frac{\Delta VKA}{\Delta i K}$

When the device is operating with two external resistors, see figure 2, the total dynamic impedance of the circuit is given by:

$$|z'| = \frac{\Delta V}{\Delta l}$$
 , which is approximately equal to $|z_{ka}| \left(1 + \frac{R1}{R2}\right)$

FIGURE 2. TEST CIRCUIT FOR VKA > Vref

TYPICAL CHARACTERISTICS

[†]For TL431I, TL431AI, TL431C, and TL431AC, the data applies only for the portions of the curves that lie within their recommended operating temperature ranges.

[‡]Data is for devices having the indicated value of V_{ref} at I_K = 10 mA, T_A = 25 °C.

FIGURE 12

[†]For TL431I, TL431AI, TL431AC, and TL431AC, the data applies only for the portions of the curves that lie within their recommended operating temperature ranges.

TYPICAL CHARACTERISTICS

[†] The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V + were adjusted to establish the initial V_{KA} and I_K conditions with $C_L = 0$. V + and C_L were then adjusted to determine the ranges of stability.

FIGURE 15

Data Sheets N

TYPICAL APPLICATIONS

FIGURE 16. SHUNT REGULATOR

FIGURE 18. SERIES REGULATOR

FIGURE 19. OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

TYPICAL APPLICATIONS

TL431M, TL431I, TL431AI, TL431C, TL431AC Adjustable precision shunt regulators

FIGURE 25. CURRENT LIMITER OR CURRENT SOURCE

TYPICAL APPLICATIONS

 $Delay = R \cdot C \cdot \ln \frac{V + V}{(V + V - V_{ref})}$

FIGURE 24. DELAY TIMER

FIGURE 26. CONSTANT-CURRENT SINK

2

TL493C ... D OR N PACKAGE

D2535, JANUARY 1983-REVISED OCTOBER 1988

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply, 5%
- Circuit Architecture Allows Easy Synchronization
- TL493 has Output Current-Limit Sensing
- TL495 has On-Chip 39-V Zener and External Control of Output Steering

description

The TL493, TL494, and TL495 each incorporate on a single monolithic chip all the functions required in the construction of a pulse-widthmodulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application.

The TL493 contains an error amplifier, currentlimiting amplifier, an on-chip adjustable oscillator, a dead-time control comparator, pulsesteering control flip-flop, a 5-volt, 5%-precision regulator, and output-control circuits.

The error amplifier exhibits a common-mode voltage range from -0.3 volts to V_{CC} -2 volts. The current-limit amplifier exhibits a common-mode voltage range from -0.3 volts to 3 volts with an offset voltage of approximately 80 millivolts in series with the inverting input to ease circuit design requirements. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth input to C_T (pin 5), or it may be used to drive the common circuits in synchronous multiple-rail power supplies.

(TOP	VIEW)
ERROR AMP 1 FEEDBACK 3 DEAD-TIME CONTROL 4 CT BRT 6 GND 7 C1 8	CURRENT 15 INV INPUT 14 REF OUT 13 OUTPUT CONTROL 12 VCC 11 C2 10 E2 9 E1

TL494I, TL494C . . . D, J, OR N PACKAGE (TOP VIEW)

FEEDBACK 3	14 REFOUT
DEAD-TIME CONTROL	13 OUTPUT CONTROL
Ст[]5	12 VCC
RT[6	11 C2
GND 7	10 E2
C1[[8	9 E1

TL495C . . . N PACKAGE (TOP VIEW)

ERROR NONINV INPUT	UIB NONINV INPUT ERROR
AMP 1 INVINPUT	17 DINV INPUT AMP 2
FEEDBACK	16 REFOUT
DEAD-TIME CONTROL	15 VZ
СтДэ	14 OUTPUT CONTROL
RTC	13 STEERING INPUT
GND 7	12 VCC
C1 🗋 8	11]C2
E1[]9	10 E2

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL493	TL494	TL495
TL49-1	•	D,J,N	
TL49-C	D,N	D,J,N	N

*These combinations are not defined by this data sheet.

FUNCTION TABLE

1	NPUTS	
OUTPUT CONTROL	STEERING INPUT (TL495 only)	OUTPUT FUNCTION
$V_{I} = 0$	Open	Single-ended or parallel output
VI = Vref	Open	Normal push-pull operation
VI = Vref	$V_I = 0$	PWM Output at Q1
$V_i = V_{ref}$	$V_{I} = V_{ref}$	PWM Output at Q2

Data Sheets

and the second se

*1 1.110 . * 1 - sourcents contain information -- s of -- on date. Products conform to -- - - - on -- μ₀, ..., terms of Texas Instruments sta..., and eventy. Production processing does not necessarily include testing of all parameters.

TEXAS V INSTRUMENTS

description (continued)

The uncommited output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, which may be selected through the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation.

The TL493 and TL494 are similar except that an additional error amplifier is included in the TL494 instead of a current-limiting amplifier. The TL495 provides the identical functions found in the TL494. In addition, it contains an on-chip 39-volt diode for high-voltage applications where V_{CC} is greater than 40 volts, and an output-steering control that overrides the internal control of the pulse-steering flip-flop.

The TL494I is characterized for operation from -25 °C to 85 °C. The TL493C, TL494C, and TL495C are characterized for operation from 0 °C to 70 °C.

functional block diagram

2

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL494I	TL493C TL494C	TL495C	UNIT
Supply voltage, VCC (see Note 1)	41	41	41	V
Amplifier input voltage	V _{CC} +0.3	V _{CC} +0.3	V _{CC} +0.3	V
Collector output voltage	41	41	41	V
Collector output current	250		250	mA
Continuous total dissipation See Dis.		e Disapanon F	tating Table	
Operating free-air temperature range	- 25 to 85	0 to 70	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch)	300	300	300	00
from case for 60 seconds: J package	300	500	500	0
Lead temperature 1,6 mm (1/16 inch)	260	260	260	۰۲
from case for 10 seconds: D or N package	200	200	200	C

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING	DERATE	T _A = 70°C	TA = 85°C
D	900	7.6 mW/°C	25°C	608 mW	494 mW
J	1000	8.2 mW/°C	28 °C	656 mW	533 mW
N	1000	9.2 mW/°C	41 °C	736 mW	598 mW

recommended operating conditions

	TI	TL494I		TL493C TL494C TL 495C	
	MIN	MAX	MIN	MAX	5
Supply voltage, VCC	7	40	,	40	V
Amplifier input voltages, VI	-0.3	V _{CC-2}	-0.3	V _{CC} -2	V
Collector output voltage, VO		40		40	V
Collector output current (each transistor)		200		200	mA
Current into feedback terminal		0.3		0.3	mA
Timing capacitor, CT	0.47	10 000	0.47	10 000	nF
Timing resistor, RT	1.8		1.8		kΩ
Oscillator frequency	1		1		kHz
Operating free-air temperature, TA	- 25	85	0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 10 kHz (unless otherwise noted)

reference section

Data Sheets

PARAMETER	TEST CONDITIONS [†]	TL493C TL4941, TL494C TL495C			UNIT
the second s		MIN	TYP [‡]	MAX	
Output voltage (Vref)	$I_0 = 1 \text{ mA}$	4.75	5	5.25	V
Input regulation	V _{CC} = 7 V to 40 V		2	25	mV
Output regulation	$I_0 = 1$ to 10 mA		1	15	mV
Output voltage change with temperature	$\Delta T_A = MIN$ to MAX		0.2%	1%	
Short-circuit output current§	$V_{ref} = 0$		35		mA

oscillator section (see Figure 1)

PARAMETER	TEST CONDITIONS [†]	TL493C TL494I, TL494C TL495C	UNIT
		MIN TYP [‡] MAX	
Frequency	$C_T = 0.01 \ \mu F$, $R_T = 12 \ k\Omega$	10	kHz
Standard deviation of frequency¶	All values of V _{CC} , C _T , R _T , and T _A constant	10%	
Frequency change with voltage	$V_{CC} = 7 V \text{ to } 40 V, T_A = 25 ^{\circ}C$	0.1%	
Frequency change with temperature #	$C_T = 0.01 \ \mu F$, $R_T = 12 \ k\Omega$, $\Delta T_A = MIN \text{ to MAX}$	1%	

amplifier sections (see Figure 2)

PARAMETE	R	TEST CONDIT	IONS	MIN	TYP [‡]	MAX	UNIT	
	Error				2	10		
Input offset voltage	Current-limit (TL493 only)	V _O (pin 3) = 2.5 V			80		mν	
Input offset current		Vo (pin 3) = 2.5 V			25	1.5	nA	
Input bias current		Vo (pin 3) = 2.5 V			0.2	:	μA	
Common-mode input				-0.3 to V _{CC} -2			v	
voltage range	Current limit (TL493 only)	$v_{CC} = 7 v \text{ to } 40 v$	-0.3 to 3	1				
0	Error			70	95			
Open-loop voltage Current-lin amplification (TL493 on	Current-limit (TL493 only)	$\Delta V_{O} = 3 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega V_{O} = 0.5 \text{ V} \text{ to } 3.5 \text{ V}$		90		dB		
Unity-gain bandwidth		$V_0 = 0.5 V \text{ to } 3.5 V$	$R_L = 2 k\Omega$				kHz	
A	Error			65	ช่ง			
rejection ratio	Current-limit (TL493 only)	$\Delta V_{0} = 40 V,$	V, $T_A = 25 ^{\circ}C$		70		dB	
Output sink current (pin 3)	$V_{ID} = -15 \text{ mV to } -5 \text{ V}$	V(pin 3) = 0.7 V	0.3	0.7		mA	
Output source current (pir	n 3)	$V_{ID} = 15 \text{ mV}$ to 5 V,	V(pin 3) = 3.5 V	-2			mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values except for parameter changes with temperature are at $T_A = 25 \,^{\circ}\text{C}$.

S Duration of the short-circuit should not exceed one second.

 $\int_{n}^{\infty} (x_n - \overline{X})^2$

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula #Temperature coefficient of timing capacitor and timing resistor not taken into account.

> TEXAS V INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 10 kHz (unless otherwise noted)

output section

PARAMETER Collector off-state current VCE =		TEST CONDITIONS		TL493C TL494I, TL494C TL495C		UNIT
				MIN TYPT	24.	
		$V_{CE} = 40 V,$	Vcc = 40 V	2		μA
Emitter off-state c	urrent	$V_{CC} = V_C = 40$	$V, V_E = 0$		- 100	μA
Collector-emitter	Common-emitter	$V_E = 0,$	$l_{\rm C} = .$ nA	1.1	1.3	v
saturation voltage	Emitter-follower	$V_{\rm C} = 15 \rm V,$	IE = - LOU mA	1.5	2.5	v
Output control inp	out current	$V_I = V_{ref}$			3.5	mA

dead-time control-section (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input bias current (pin 4)	$V_{ } = 0$ to 5.25 V		- 2	-10	μA
Maximum duty cycle, each output	$V_{ }(pin 4) = 0, C_{T} = 0.1 \ \mu F, R_{T} = 12 \ k\Omega$		45%		
Input threshold voltage (pin 4)	Zero duty cycle	1.0	3	3.3	
	Maximum duty cycle	0			v

pwm comparator section (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	$V_{(pin 3)} = 0.7 V$	0.3	0.7		mA

steering control (TL495 only)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
	$V_{I} = 0.4 V$			
Input current	VI = 2.4 V		200	μΑ

zener-diode circuit (TL495 only)

PARAMETER	TEST CONDITIONS	MIN TYP [†] MAX	UNIT
Breakdown voltage	$V_{CC} = 41 V$, $I_Z = 2 mA$	39	v
Sink current	$V_{I(pin 15)} = 1 V$	0.3	mA

total device

PARAMETER	TEST CONDITIONS			TYP [†]	MAX	UNIT
Chan dhu avan hu avana at	Pin 6 at V _{ref} ,	V _{CC} = 15 V		6	10	
Standby supply current	All other inputs and outputs open	$V_{CC} = 40 V$		9	15	mA
Average supply current	$V_{I(pin 4)} = 2 V,$	See Figure 1		7.5		mA

switching characteristics, $T_A = 25 \,^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN TYPT	MAX	UNIT
Output voltage rise time	Common-emitter configuration,	100	200	ns
Output voltage fail time	See Figure 3	25	100	ns
Output voltage rise time	Emitter-follower configuration,	100		ns
Output voltage fall time	See Figure 4	40	100	ns

[†]All typical values except for temperature coefficient are at $T_A = 25$ °C.

TEXAS TE INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

Data Sheets

TYPICAL CHARACTERISTICS

[†]Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

Data Sheets

TL496C 9-VOLT POWER-SUPPLY CONTROLLER

D2486, AUGUST 1978-REVISED FEBRUARY 1988

- Internal Step-Up Switching Regulator
- Fixed 9-Volt Output
- Charges Battery Source During Transformer-Coupled-Input Operation
- Minimum External Components Required (1 Inductor, 1 Capacitor, 1 Diode)
- 1- or 2-Cell-Input Operation

(TOP VIEW)					
FEEDB.			PUT		
INPUT	1C 🛛 3 T 🗌 4	6] SW 5] GND			

D OR P PACKAGE

Pins 5 and 7 are connected together internally.

description

The TL496 power supply control circuit is designed to provide a 9-volt regulated supply from a variety of input sources. Operable from a 1- or 2-cell battery input, the TL496 performs as a switching regulator with the addition of a single inductor and filter capacitor. When ac coupled with a step-down transformer, the TL496 operates as a series regulator to maintain the regulated output voltage and, with the addition of a single catch diode, time shares to recharge the input batteries.

The design of the TL496 allows minimal supply current drain during stand-by operation ($125 \,\mu$ A typical). With most battery sources this allows a constant bias to be maintained on the power supply. This makes power instantly available to the system thus eliminating power-up sequencing problems.

functional block diagram

NOTE 1: Pins 5 and 7, though connected together internally, must both be terminated to ground to ensure proper circuit operation.

absolute maximum ratings

Input voltage:	
Pin 2	5 V
Pin 3	5 V
Pin 4	O V
Output voltage (Pin 6)	2 V
Diode reverse voltage (Pin 8) 1	2 V
Switch current (Pin 6) 1.	2 A
Diode current (Pin 8) 1.	2 A
Continuous total dissipation See Dissipation Rating T	able
Operating free-air temperature range	0°C
Storage temperature range	0°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 26	0°C

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Data Sheets

2-131

TL496C 9-VOLT POWER-SUPPLY CONTROLLER

DISSIPATION RATING TABLE								
PACKAGE	T _A ≤ 25°C PO∴FP RATING	DERATING FA(.1.0P	T _A = 70°C POWER RATING					
D	nW	5.8 r 😘 🗄	464 mW					
Р	1000 mW	8.0 mW/°C	640 mW					

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, one-cell operation (pins 2 and 3 to ground)	1.1	1.5	V
Input voltage, two-cell operation (pin 2 to ground)	2.3	3	v
Input voltage, one-cell or two-cell operation (pin 4 to ground)	V ₀ +2	20	v

electrical characteristics at 25 °C free-air temperature

series regulator section (input is pin 4)

PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
Dropout voltage	$V_1 = 5 V, I_0 = -$	- 50 mA		1.5	2	v
	N 20 M	$I_0 = -50 \ \mu A$	9.5	10.1	11.2	
	V = 20 V	$I_0 = -80 \text{ mA}$ 9.0	9.0	10.0	11.0	
Regulated output voltage	$V_{1} = 20 V_{2}$	$I_0 = -50 \mu A$	8.5	9.0	9.7	v
	Pin 1 shorted to pin 8	$I_0 = -80 \text{ mA}$	6.7	8.6	9.5	
Standby current (pin 4)	V _I = 20 V, Pin 8 a	it 12 V			400	μA
Reverse current thru pin 4	$V_{I} = -1.5 V$, 1 mA i	nto pin 8	3	and the second	- 25	μA

output switch

PARAMETER		TEST	MIN	TYP	MAX	MAX	
V _{CE(sat)}	Collector-emitter saturation voltage	800 mA into pin 6,	Pin 2 at 2.25 V		0.35	0.6	V

diode (pin 6 to pin 8)

PARAMETER		TE	MIN	TYP	MAX	UNIT	
VF	Forward voltage	IF = 1.5 A		-51.	1.6	2.5	v
IR	Reverse current thru pin 6	Pin 6 at 0 V,	1 mA into pin 8	- 1 (¹		- 20	μA

control section

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
On-state current (pin 2)		60	100	mA	
Standby current (pin 1)	Pin 1 at 8.65 V, Pins 2 and 6 at 3 V			40	μA
Standby current (pin 2 and 6)	Pin 1 at 8.65 V, Pins 2 and 6 at 3 V			400	μA
Start-up current (current into pin 6 to initiate cycle)	Pins 1, 2, 6 and 8 at 2.25 V	16			mA

TYPICAL APPLICATION DATA

CF: 330 to 470 µF, 10 V, electrolytic L: 40 to 50 μ H, Q \approx 3, R < 0, 15 Ω T1: V_{sec} = 6.8 V RMS typ., R_{sec} = 11 Ω typ.

FIGURE 1. ONE-CELL OPERATION

FIGURE 2. TWO-CELL OPERATION

typical electrical characteristics for circuits above

PARAMETER		ONE-CELL OPERATION (FIGURE 1)	TWO-CELL OPERATION (FIGURE 2)
No load		125 uA	125 uA
Input current	P₁ = 120 Ω	525 mA	405 mA
	∴ ·· out T1	7.2 V	8.6 V
Output voltage	view T1	8.6 V	10 V
Output current capab	ility	40 mA	80 mA
Efficiency		66%	66%
Battery life (AA NiCad) no load		60 days	166 days

TL496C 9-VOLT POWER-SUPPLY CONTROLLER

functional description

The TL496 is designed to operate from either a single-cell or two-cell source. To operate the device from a single-cell (1.1 V to 1.5 V) the source must be connected to both inputs 1C and 2C as shown in Figure 1. For two-cell operation (2.3 V to 3.0 V), the input is applied to the 2C input only and the 1C input is left open (see Figure 2).

battery operation

The TL496 operates as a switching regulator from a battery input. The cycle is initiated when a low voltage condition is sensed by the internal feedback (the thresholds at pin 1 and pin 8 are approximately 7.2 and 8.6 volts respectively). An internal latch is set and the output transistor is turned "on." This causes the current in the external inductor (L) to increase linearly until it reaches a peak value of approximately 1 ampere. When the peak current is sensed the internal latch is reset and the output transistor is turned "off." The energy developed in the inductor is then delivered to the output storage capacitor through the blocking diode. The latch remains in the off state until the feedback signal indicates the output voltage is again deficient.

transformer-coupled operation

The TL496 operates on alternate half cycles of the ac input during transformer-coupled operation to, first, sustain the output voltage and, second, recharge the batteries. The TL496 performs like a series regulator to supply charge to the output filter/storage capacitor during the first half cycle. The output voltage of the series regulator is slightly higher voltage than that created by the switching circuit; this maintains the feedback voltage above the switching regulator control circuit threshold. This effectively inhibits the switching control circuitry. During the second half cycle an external diode (1N4001) is used to clamp the negative going end of the transformer secondary to ground thus allowing the positive-going end (end connected to V+side of battery) to pump charge into the stand-by batteries.

D2225, JUNE 1976-REVISED OCTOBER 1988

- High Efficiency . . . 60% or Greater
- Output Current . . . 500 mA
- Input Current Limit Protection
- TTL Compatible Inhibit
- Adjustable Output Voltage
- Input Regulation . . . 0.2% Typ
- Output Regulation . . . 0.4% Typ
- Soft Start-up Capability

NC-No internal connection

[†] The Base pin (#11) and Base Drive pin (#12) are used for device testing only. They are not normally used in circuit applications of the device.

description

The TL497A incorporates on a single monolithic chip all the active functions required in the construction of a switching voltage regulator. It can also be used as the control element to drive external components for high-power-output applications. The TL497A was designed for ease of use in step-up, step-down, or voltage inversion applications requiring high efficiency.

The TL497A is a fixed-on-time variable-frequency switching voltage regulator control circuit. The on-time is programmed by a single external capacitor connected between the frequency control pin and ground. This capacitor, C_T , is charged by an internal constant-current generator to a predetermined threshold. The charging current and the threshold vary proportionally with V_{CC}, thus the one time remains constant over the specified range of input voltage (5 to 12 V). Typical on-times for various values of C_T are as follows:

TIMING CAPACITOR, CT (pF)	200	250	350	400	500	750	1000	1500	2000
ON-TIME (µs)	19	22	26	32	44	56	80	120	180

The output voltage is controlled by an external resistor ladder network (R1 and R2 in Figures 1, 2, and 3) that provides a feedback voltage to the comparator input. This feedback voltage is compared to the reference voltage of 1.2 V (relative to the substrate pin) by the high-gain comparator. When the output voltage decays below the value required to maintain 1.2 V at the comparator input, the comparator enables the oscillator circuit, which charges and discharges CT as described above. The internal pass transistor is driven on during the charging of CT. The internal transistor may be used directly for switching currents up to 500 mA. Its collector and emitter are uncommitted and it is current driven to allow operation from the positive supply voltage or ground. An internal Schottky diode matched to the current characteristics of the internal transistor is also available for blocking or commutating purposes. The TL497A also has on-chip current-limit circuitry that senses the peak currents in the switching regulator and protects the inductor against saturation and the pass transistor against overstress. The current limit is adjustable and is programmed by a single sense resistor, RCL, connected between pin 14 and pin 13. The current-limit circuitry is activated when 0.7 V is developed across RCL. External gating is provided by the inhibit input. When the inhibit input is high, the output is turned off.

Simplicity of design is a primary feature of the TL497A. With only six external components (three resistors, two capacitors, and one inductor), the TL497A will operate in numerous voltage conversion applications (step-up, step-down, invert) with as much as 85% of the source power delivered to the load. The TL497A replaces the TL497 in all applications.

The TL497AM is characterized for operation over the full military temperature range of -55 °C to 125 °C, the TL497AI is characterized for operation from -25 °C to 85 °C, and the TL497AC from 0 °C to 70 °C.

functional block diagram

[†] The Base pin (#11) and Base Drive pin (#12) are used for device testing only. They are not normally used in circuit applications of the device.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Input voltage, V _{CC} (see Note 1)	15 V
Output voltage	35 V
Comparator input voltage	5 V
Inhibit input voltage	5 V
Diode reverse voltage	35 V
Power switch current	750 mA
Diode forward current	750 mA
Continuous total dissipation See Dissipation	n Rating Table
Continuous total dissipation	n Rating Table 5°C to 125°C
Continuous total dissipation	n Rating Table 5°C to 125°C 25°C to 85°C
Continuous total dissipation	n Rating Table 5°C to 125°C 25°C to 85°C 0°C to 70°C
Continuous total dissipation See Dissipation Operating free-air temperature range: TL497AM TL497AI - TL497AC - Storage temperature range -	n Rating Table 5°C to 125°C 25°C to 85°C 0°C to 70°C 5°C to 150°C
Continuous total dissipation See Dissipation Operating free-air temperature range: TL497AM TL497AI - TL497AC - Storage temperature range - Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package J package	n Rating Table 5°C to 125°C 25°C to 85°C 0°C to 70°C 5°C to 150°C 300°C

NOTE 1. All voltage values except diode voltages are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	25 °C	- mW	494 mW	
J (TL AM)	1000 mW	11.0 mW/°C	59 °C	880 mW	715 mW	275 mW
J (TL AI)	1000 mW	8.2 mW/°C	28 °C	656 mW	533 mW	
N	1000 mW	9.2 mW/°C	41 °C	736 mW	598 mW	

recommended operating conditions

		MIN	MAX	UNIT
Input voltage, V		4.5	12	v
High-level inhibit	input voltage, VIH	2.5		v
Low-level inhibit	input voltage, VIL		0.8	V
	Step-up configuration (see Figure 1)	V ₁ +2	30	
Output voltage	Step-down configuration (see Figure 2)	Vref	V1-1	v
	Inverting regulator (see Figure 3)	-V _{ref}	- 25	
Power switch current			•	mA
Diode forward c	bde forward current			mA

electrical characteristics at specified free-air temperature, $V_I = 6 V$ (unless otherwise noted)

DADAMETER	TTOT CONDITIONS!		TL40 AM TL407AL			TL497AC			
PARAMETER	TEST CONDITION	5'	MIN	1114	MA •	MIN	1.1.	MAX	UNIT
High-level inhibit input current	$V_{I(I)} = 5 V$	Full range		0.8	1.5		0.8	1.5	mA
Low-level inhibit input current	$V_{I(I)} = 0 V$	Full range		5	20		5	10	μA
Comparator reference voltage	$V_{\rm I} = 4.5 \text{ V to } 6 \text{ V}$	Full range	1.14	1.20	1.26	1.08	1.20	1.32	V
Comparator input bias current	V = 6 V	Full range		40	100		40	100	μA
Switch on-state voltage	10 = 100 mA	25°C		0.13	0.2		0.13	0.2	
	V = 4.5 V IO = 500 mA	Full range			1		-	0.85	1 *
Switch off-state current	$V_1 = 4.5 V, V_0 = 30 V$	25 °C		10	50		10	50	- μΑ
		Full range			500			- · ·	
Current-limit sense voltage	$V_{1} = 6 V$	25°C	0.45		1	0.45	1.000		V
	$I_0 = 10 \text{ mA}$	Full range		0.75	0.95		0.75	0.85	
Diode forward voltage	$I_0 = 100 \text{ mA}$	Full range		0.9	1.1		0.9	1	V
	IO = 500 mA	Full range	1	1.33	1.75		1.33	1.55	
Diode reverse voltage	$I_0 = 500 \mu A$	Full range	30						
	I _O = 200 μA	Full range				30			1 °
On-state supply current		25 °C		11	14		11	14	
		Full range			16	1		15	mA
Off state sumply surrent		25 °C		6	9		6	9	-
On-state supply current		Full range			11			10	

[†]Full range for TL497AM is -55 °C to 125 °C, for TL497AI is -25 °C to 85 °C, and for TL497AC is 0 °C to 70 °C. [‡]All typical values are at $T_A = 25$ °C.

FIGURE 1. POSITIVE REGULATOR, STEP-UP CONFIGURATIONS

TYPICAL APPLICATION DATA

EXTENDED POWER CONFIGURATION (USING EXTERNAL TRANSISTOR)

FIGURE 2. POSITIVE REGULATOR, STEP-DOWN CONFIGURATIONS

DESIGN EQUATIONS

IPK = 2 IO max

•
$$L(\mu H) = \frac{V_I - V_O}{IPK} t_{on}(\mu s)$$

Choose L (50 to 500 μ H), calculate ton (10 to 150 µs)

- $C_T(pF) \approx 12 t_{op}(\mu s)$
- R1 = (V₀ 1.2) kΩ

$$R_{CL} = \frac{0.5 \text{ V}}{I_{PK}}$$

$$C_{F}(\mu F) \approx t_{OI}(\mu s) = \frac{\left[\frac{V_{I}}{V_{O}} | PK + I_{O}\right]}{V_{rinole} (PK)}$$

ripple (PK)

Data Sheets

CURRENT LIMIT FOR EXTENDED INPUT CONFIGURATION $\label{eq:FIGURE4} FIGURE\ 4.\ EXTENDED\ INPUT\ VOLTAGE\ RANGE\ (V_I\ >\ 15\ V)$

Data Sheets N

.

ï

.

D2712, APRIL 1983-REVISED OCTOBER 1988

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
- Circuit Architecture allows Easy Synchronization
- Under-Voltage Lockout for Low VCC Conditions
- TL595 has On-Chip 39-V Zener and External Control of Output Steering

description

The TL594 and TL595 devices each incorporates on a single monolithic chip all the functions required in the construction of a pulse-widthmodulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application.

The TL594 contains two error amplifiers, an onchip adjustable oscillator, a dead-time control comparator, pulse-steering control flip-flop, 5-V regulator with a precision of 1%, an undervoltage lockout control circuit, and output control circuitry.

The error amplifiers exhibit a common-mode voltage range from -0.3 V to V_{CC} -2 V. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth input to C_T (pin 5), or it may be used to drive the common circuitry in synchronous multiple-rail power supplies.

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation with selection by

FUNCTION TABLE

1	VPUTS	
OUTPUT CONTROL	STEERING INPUT (TL595 ONLY)	OUTPUT FUNCTION
V _I ≤ 0	Open	Single-ended or parallel output
$V_I \ge V_{ref}$	Open	Normal push-pull operation
$V_{I} \ge V_{ref}$	$V_{l} < 0$	PWM Output at Q1
$V_{ } \ge V_{ref}$	$V_j \ge V_{ref}$	PWM Output at Q2

PRODUCTION, 11. ocuments ... n information current as of ... ion date. I. 's conform to specifications p.s. t... terms of I. Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

2-143

description (continued)

means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The undervoltage lockout control circuit locks the outputs off until the internal circuitry is operational.

The TL595 provides the identical functions found in the TL594. In addition, the TL595 also contains an on-chip 39-V zener diode for high-voltage applications where V_{CC} is greater than 40 V, and an output steering control that overrides the internal control of the pulse-steering flip-flop.

The TL594I is characterized for operation from -25° C to 85° C. The TL594C and TL595C are characterized for operation from 0°C to 70°C.

functional block diagram

2

TE VAS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL5941	TL594C TL595C	UNIT
Supply voltage, VCC Note 1)	41	41	V
Amplifier input voltague	V _{CC} +0.3	VCC+0.3	V
Collector output voltage	41	41	V
Collector output current	250	250	mA
Continuous total dissipation	See Diss	pation Rating Ta	ible
Operating free-air temperature range	-25 to 85	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temps 1,6 mm (1/16 inch) from case for 60 seconds: J pa	ackage 300	300	0°
Lead temperators 1,6 mm (1/16 inch) from case for 10 seconds: D or	N package 260	260	°C

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE							
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING		
D	950 mW	7.6 mW/°C	25°C	608 mW	494 mW		
J	1000 mW	8 2 mW/°C	28°C	656 mW	533 mW		
N	1000 mW	9.2 mW/°C	41°C	736 mW	598 mW		

recommended operating conditions

	TL	TL5941		TL594C TL595C	
	MIN	MAX	MIN	MAX	
Supply voltage, VCC	7	40	7	40*	V
Amplifier input voltages, VI	-0.3	VCC-2	-0.3	V _{CC} -2	V
Collector output voltage, VO		40		40	V
Collector output current (each transistor)		200	1.	200	mA
Current into feed · II		0.3		0.3	mA
Timing capacitor, U	0.47	10 000	0.47	10 000	nF
Timing resistor, RT	1.8	500	1.8	500	kΩ
Oscillator frequency	1	300	1	300	kHz
Operating free-air temperature, TA	-25	85	0	70	°C

TEXAS INSTRUMENTS POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$ (unless otherwise noted)

reference section

PARAMETER	TE	ST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
Output voltage (Vref)	$I_0 = 1 \text{ mA},$	T _A = 25°C	4.95	5	5.05	V
Input regulation	V _{CC} = 7 V to 40 V,	T _A = 25°C		2	25	mV
Output regulation	IO = 1 to 10 mA,	T _A = 25°C	1	14	35	mV
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			0.2%	1%	
Short-circuit output current§	V _{ref} = 0		10	35	50	mA

oscillator section (see Figure 2)

PARAMETER	TEST CONDITIONS [†]	MIN TYP [‡] MAX	UNIT
Frequency		10	kHz
Standard deviation of frequency	All values of VCC, CT, RT, TA constant	10%	11.00
F voltage	$V_{CC} = 7 V \text{ to } 40 V$, $T_A = 25^{\circ}C$	0.1%	
Frequency change with temperature	$\Delta T_A = MIN \text{ to MAX}$		

amplifier sections (see Figure 1)

PARAMETER	TEST CO	ONDITIONS	MIN	TYP‡	MAX	UNIT
Input offset voltage, error amplifier	Feedback pin at 2.5 V			2	10	mV
Input offset current	Feedback control at 2.5 V			25	250	nA
Input bias current	Feedback control at 2.5 V			0.2	1	μA
Common-mode input voltage range, error amplifier	V _{CC} = 7 V to 40 V		-0.3 to V _{CC} -2			v
Open-loop voltage amplification, error amplifier	$\Delta V_{O} = 3 V,$ $R_{L} = 2 k\Omega$	$V_{O} = 0.5 V \text{ to } 3.5 V$	70	95		dB
Unity-gain bandwidth	Vo = 0.5 V to 3.5 V,	$R_L = 2 k\Omega$		800		kHz
Common-mode rejection ratio, error amplifier	V _{CC} = 40 V,	$T_A = 25^{\circ}C$	65	80		dB
Output sink current (pin 3)	$V_{ID} = -15 \text{ mV} \text{ to } -5 \text{ V},$	Feedback control at 0.5 V	0.3	0.7		mA
Output cource current (pin 3)	$V_{ID} = 15 \text{ mV} \text{ to } 5 \text{ V},$	Feedback at 3.5 V	-2			mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values except for parameter changes with temperature are at $T_A = 25^{\circ}C$.

§ Duration of the short-circuit should not exceed one second.

[¶] Standard deviation is a measure of the statistical distribution about the mean as derived from the formula

 $\sum_{n=1}^{\Sigma} (x_n - \overline{X})^2$

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$ (unless otherwise noted)

dead-time control section (see Figure 2)

PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
Input bias current • 1)	VI = 0 to 5.25 V		-2	-10	μΑ
····· · · · · · · · · · · · · · · · ·	Dead-time control at 0 V	45%			
Incut threshold voltage (sin 4)	Zero duty cycle	2.22	3	3.3	
input threshold voltage (pin 4)	Mineman aug tat t	0			v

output section

		TEST C	ONDITIONS	MIN	TYPT	MAX	UNIT
		VCE = 40 V,	V _{CC} = 40 V	1.1.1	2	100	
Collector off-state current		$V_{C} = 15 V$, $V_{CC} = 1 \text{ to } 3 V$, Dead-time and output	$V_E = 0 V$, it control pins at 0 V		4	200	μA
Emitter off-state current		$V_{CC} = V_C = 40 V$,	V _E = 0		100	-100	μA
Collector-emitter	Common ·	VE = 0,	IC = 200 mA	1	1.1	1.3	
saturation voltage	Emitter-fc	VC = 15 V,	IE = -200 mA		1.5	2.5	v
Output control input curre	ent	VI = Vref				3.5	mA

pwm comparator section (see Figure 2)

PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	V _(pin 3) = 0.5 V	0.3	0.7		mA

under-voltage lockout section (see Figure 2)

PARAMETER	TEST CONDITION [‡]	MIN	MAX	UNIT
Threshold voltage	$T_A = 25^{\circ}C$		6	
	$\Delta T_A = MIN \text{ to MAX}$	3.5	6.9	v
Hysteresis§		100		mV

total device (see Figure 2)

PARAMETER	TEST CONDITIONS		MIN	TYPT	MAX	UNIT
Standby supply current	Pin 6 at V _{ref} ,	V _{CC} = 15 V		9	15	
	All other inputs and outputs open	V _{CC} = 40 V		11	18	mA
Average supply current	Dead-time Control at 2 V, See Figure 2			12.4		mA

[†] All typical values except for parameter changes with temperature are at T_A = 25°C.

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

switching characteristics, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Output voltage rise time	Common-emitter configuration,		100	200	
Output al	See Figure 3		30	100	ns
Output voitage rise time	Emitter-follower configuration,		200	400	
Output voltage fall time	See Figure 4		45	100	ns

[†] All typical values are at $T_A = 25^{\circ}C$.

TEST CIRCUIT

OUTPUT VOLTAGE WAVEFORM

FIGURE 4. EMITTER-FOLLOWER CONFIGURATION

Data Sheets

TYPICAL CHARACTERISTICS

[†] Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

2 Data Sheets

- Complete PWM Power Control Function
- Totem-Pole Outputs for 200-mA Sink or Source Current
- Output Control Selects Parallel or Push-Pull
 Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply, Trimmed to 1% Tolerance
- On-Board Output Current-Limiting Protection
- Under-Voltage Lockout for Low VCC Conditions
- Independent Power and Signal Grounds
- TL598Q Has Extended Temperature Range . . . - 40 °C to 125 °C

description

ription The TL598 incorporates all the functions required in the construction of pulse-width-modulated controlled systems on a single monolithic chip. Designed primarily for power supply control, the TL598 provides the systems engineer with the flexibility to tailor the power supply control circuits to a specific application.

The TL598 contains two error amplifiers, an internal oscillator (externally adjustable), a dead-time control comparator, a pulse-steering flip-flop, a 5-V precision reference, an under-voltage lockout control, and output control circuits. Two totem-pole outputs provide exceptional rise and fall time performance for power FET control. The outputs are designed with the collectors sharing a common source supply and common power grounds and are independent of V_{CC} and signal ground.

The error amplifier has a common-mode voltage range from -0.3 V to V_{CC} -2 V. The dead-time control comparator has a fixed offset that prevents overlap of the outputs during push-pull operation. Synchronous multiple supply operation may be achieved by connecting pin 6 to the reference output and providing a sawtooth input to pin 5.

The TL598 device provides an output control function to select either push-pull or parallel operation. Circuit architecture prevents either output from being pulsed twice during push-pull operation.

The TL598Q is characterized for operation from -40 °C to 125 °C. The TL598C is characterized for operation from 0 °C to 70 °C.

I still-lik TION DATA documents r start information start as of publication date. Prostate conform to start as a start of the start of the start of the start start of the start of the start of the start of the start start of the start start of the

D3026, FEBRUARY 1988-REVISED OCTOBER 1988

FUNCTION TABLE

INPUT	
OUTPUT CONTROL	OUTPUT FUNCTION
$V_{ } = GND$	Single-ended or parallel output
VI = Vref	Normal push-pull operation

TL598 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 41 V
Amplifier input voltage, VI
Collector voltage
Output current (each output), sink or source, IO 250 mA
Continuous total dissipation
Operating virtual junction temperature range, TJ: TL598Q40°C to 150°C
TL598C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR	ABOVE TA	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	25°C	608 mW	190 mW
N	1200 mW	13 mW/°C	58 °C	1040 mW	325 mW

recommended operating conditions

			MIN	MAX	UNIT
Supply voltage, V _{CC}			7	40	V
Amplifier input voltage, V			-0.3	V _{CC} -2	V
Collector voltage			-	40	V
Output current (each output), sink or source, IO				200	mA
Current into feedback terminal, IIL				0.3	mA
Timing capacitor, CT		C	4	10	μF
Timing resistor, RT			1.0	500	kΩ
Oscillator frequency, fosc			1	300	kHz
	TL598Q		-40		00
	TL598C		0		-0

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 10 kHz (unless otherwise noted), see Note 2

reference section

	TEST CONDITIONS [†]		TUMM		TL598C				
PARAMETER			MIN	1.10	MAN	MP.	TYP [‡]	MAN	UNIT
	Second State	TA = 25°C	4.95	5	0.00	4.00	5	0.00	v
Output voltage (Vref)	$T_A = \cdots$ To MAX	4.9		5.1	4.9		5.1	v	
Input regulation	$V_{CC} = 7 V \text{ to } 40 V$,	$T_A = .$		2	22		2	25	mV
Output regulation	$I_0 = 1 \text{ to } 10 \text{ mA},$ $T_A = \frac{25°C}{T_A}$ to MAX	TA = 25°C		1	15		1	15	
				80	1			IIIV	
Output voltage change with temperature	$\Delta T_A = MIN \text{ to MAX}$			0.2	1		0.2	1	%
Short-circuit output current§	$V_{ref} = 0$		- 10	- 35		- 10	- 35		mA

oscillator section (see Figure 1) CT = 0.001 $\mu\text{F},\,\text{RT}$ = 12 k Ω

PARAMETER	TEST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
Frequency		A			kHz
Standard deviation of frequency1	All values of VCC, CT, RT, TA constant		10		%
Frequency change with voltage	$V_{CC} = 7 V \text{ to } 40 V, T_A = 25 ^{\circ}C$		0.1	1	%
Frequency change with temperature #	$\Delta T_A = MIN \text{ to MAX}$		2	5	%

error amplifier section

PARAMETER	TEST CON	DITIONS	MIN	TYP [‡]	MAX	UNIT
Input offset voltage	Feedback pin at 2.5 V			2	10	mV
Input offset current	Feedback pin at 2.5 V		-	25	250	nA
Input bias current	Feedback pin at 2.5 V			0.2	1	μA
Common-mode input voltage range	$V_{CC} = 7 V \text{ to } 40 V$		-0.3 to V _{CC} -2			v
Open-loop voltage amplification	ΔV_{O} (pin 3) = 3 V,	V_{O} (pin 3) = 0.5 V to 3.5 V	70	95		dB
Unity-gain bandwidth			1	800		kHz
Common-mode rejection ratio	$V_{CC} = 40 V,$	$\Delta V_{\text{IC}} = 36.5 \text{ V}, \text{ T}_{\text{A}} = 25 ^{\circ}\text{C}$	65	80		dB
Output sink current (pin 3)	Feedback pin at 0.5 V		0.3	0.7	1.1	mA
Output source current (pin 3)	Feedback pin at 3.5 V		-2	A		mA
Phase margin at unity gain	Feedback pin = 0.5 V to 3.5 V,	$R_L = 2 k\Omega$		AR 0		
Supply voltage rejection ratio	Feedback pin at 2.5 V,	$\Delta V_{CC} = 33 V$, $R_L = 2 k\Omega$				dB

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values except for parameter changes with temperature are at T_A = 25 °C.

§ Duration of the short-circuit should not exceed one second.

Σ a =

Standard deviation is a measure of the statistical distribution about the mean as derived from the formula $\sigma =$ [#]Effects of temperature on external R_T and C_T are not taken into account.

NOTE 2: Pulse testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 V$, f = 10 kHz (unless otherwise noted), see Note 2

under-voltage lockout section

PARAMETER		TL5	TL598Q		TL598C		
	TEST CONDITIONS	MIN	MA -	MIN	MAX	UNIT	
Threshold voltage	$T_A = 25 ^{\circ}C$	4		4	6	v	
	$\Delta T_A = MIN \text{ to MAX}$	3.8	6.9	3	6.9	v	
Hysteresis [‡]	TA = 25°C	100		100			
	TA = :o MAX	30		50			

output section

PARAMETER	TEST CO	ONDITIONS	MIN	ТҮР§	MAX	UNIT
Collector off-state current	V _{CE} = 40 V, Dead-time pin is conn	$V_{CC} = 40 V,$ ected to REF		2	100	μA
High-level output voltage	Vcc = 15 V,	$l_0 = -200 mA$	12			
	$V_{C} = 15 V_{z}$	$I_0 = -20 mA$	13			v
	VCC = 15 V,	IO = 200 mA	1.1		2	
Low-level output voltage	$V_{\rm C} = 15 \text{V},$ $I_{\rm O} = 20 \text{mA}$				0.4	v
Output control input current	VI = Vref				3.5	mA
	$V_{I} = 0.4 V$				100	μA

dead-time control section (see Figure 1)

PARAMETER			TL5980		TL598C			LINUT
	TEST CONDITIONS	MIN	TYPS	MAX	MIN	TYPS	MAX	UNIT
Input bias current (pin 4)	$V_1 = 0$ to 5.25 V		-2	- 25		- 2	-10	μA
Maximum duty cycle, each output	Dead-time control at 0 V	45	1. S. C. S.		45	2 C		%
input threshold voltage (pin 4)	Zero duty cycle	1.5	3	3.2		3	3.3	
	Maximum duty cycle	0			0			v

pwm comparator section

PARAMETER	TEST CONDITIONS	MIN	UNIT
Input threshold voltage (pin 3)	Zero duty cycle		V
Input sink current (pin 3)	V(pin 3) = 0.5 V	0.3	mA

total device (see Figure 1)

PARAMETER	TEST CONDITIONS		MIN TYP	§ MAX	UNIT
Standby supply current All other inp and outputs	Pin 6 at V _{ref} ,	V _{CC} = 15 V	1	5 21	mA
	and outputs open	$V_{CC} = 40 V$	1	7 23	
Average supply current	Dead-time control at 2	V	1	5	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

*Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

 $^{\$}$ All typical values except for parameter changes with temperature are at T_A = 25 °C

NOTE 2: Pulse testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

switching characteristics, $T_A = 25 \,^{\circ}C$

PARAMETER	TE	ST CONDITIONS	MIN	TYP	MAX	UNIT
Output voltage rise time	CL = 1500 pF,		1 2.5	100	150	пѕ
Output voltage fall time	$V_{C} = 15 V,$	V _{CC} = 15 V, See Figure 2		50	75	ns

TL598 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. SWITCHING OUTPUT CONFIGURATION AND VOLTAGE WAVEFORM

Reverse Transient Protection to -50 V

Internal Thermal Overload Protection

Internal Over-Current Limiting Circuitry

Over-Voltage Protection

D3017, SEPTEMBER 1987-REVISED FEBRUARY 1988

- Very Low Dropout Voltage, Less than 0.6 V at 150 mA
- Very Low Quiescent Current
- TTL- and CMOS-Compatible Enable On TL751L Series
- 60-V Load-Dump Protection

terminal assignments

6 COMMON

5 ENABLE

COMMON 13

NC 4

•

NC-No internal connection

NC 3

NC 14

SILECT is a trademark of Texas Instruments Incorporated.

6 COMMON

5 NC

NC 3

NC 4

COMMON

6

5 ENABLE

description

The TL750L and TL751L series are low-dropout positive voltage regulators specifically designed for batterypowered systems. The TL750L and the TL751L incorporate over-voltage and current-limiting protection circuitry along with internal reverse-battery protection circuitry to protect both itself and the regulated system. Both series are fully protected against 60-volt load-dump and reverse-battery conditions. Extremely low quiescent current during full-load conditions makes the TL750L and TL751L series ideal for standby power systems.

The TL750L series of fixed-output voltage regulators offer 5-volt, 8-volt, 10-volt, and 12-volt options. They are available in TO-226AA (formerly TO-92) (LP) packages, TO-220AB (KC) packages, 8-pin "small outline" plastic packages (D), and 8-pin plastic dual-in-line packages (P).

The TL751L series of fixed-output voltage regulators also offer 5-volt, 8-volt, 10-volt, and 12-volt options with the addition of an enable input. The enable input, when taken high, places the regulator output in a high-impedance state. This gives the designer complete control over power up, power down, or emergency shut down. This series is offered in the 8-pin "small outline" plastic package and the 8-pin plastic dual-in-line package.

absolute maximum ratings over operating junction temperature range (unless otherwise noted)

		TL750L	TL751L	UNIT
Continuous input voltage		26	26	V
Transient input voltage, T _A = 25 °C (see Note 1)		60	60	V
Continuous reverse input voltage	an ministra	-15	- 15	V
Transient reverse input voltage: t ≤ 100 ms	A A R A R A L A L A L A L A L A L A L A	- 50	- 50	V
	D package		825	1.
Continuous total dissipation at (or below) 25 °C free-air	KC package			
temperature (see Note 1):	LP package			mvv
	P package	1000	1000	
Operating virtual junction temperature range		-40 to 150	-40 to 150	°C
Storage temperature range		-65 to .	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) for 10 seconds		27		°C

NOTES: 1. The transient input voltage rating applies for the waveform described in Figure 1.

 For operation above 25 °C free-air temperature, linearly derate the D package at the rate of 6.6 mW/°C, the KC package at 15.2 mW/°C, the LP package at 6.2 mW/°C, and the P package at 8 mW/°C.

recommended operating conditions over recommended operating junction temperature range (unless otherwise noted)

		MIN	MAX	UNITS
	TL75_	6	26	
have been the	' TL75_L00	9	26	
Input voltage, V _I High-level ENABLE input voltage, V _{IH} Low-level ENABLE voltage, V _{IL} † Output current, IO Operating virtual junction temperature, TJ	TL75_L10	11	26	v
	TL75_L12	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	26	
High-level ENABLE input voltage, VIH	TL751L	2	15	v
Low-level ENABLE voltage, VIL [†]	TL751L	-0.3	0.8	v
Output current, IO	TL75_L	0		mA
	TL75_L_C	0		90
ligh-level ENABLE input voltage, V _{IH} .ow-level ENABLE voltage, V _{IL} † Dutput current, IO Deparating virtual junction temperature, TJ	TL75_L_Q	-40		

[†]The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for ENABLE voltage levels and temperature only.

TL750L05 and TL751L05 electrical characteristics at 25 °C virtual junction temperature, $V_I = 14 V$, $I_Q = 10 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
0	$V_{I} = 6 V \text{ to } 26 V,$ $T_{J} = 25 ^{\circ}\text{C}$	4.80	5	5.2	
Output voltage	IO = 0 to 150 mA TJ = TJ min to 125 °C	4.75	100	5.25	v
1	$V_{ } = 9 V \text{ to } 16 V$		5	10	-11
input regulation	$V_{I} = 6 V \text{ to } 26 V$		6	30	mv
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V$ f = 120 Hz	60	65	C	dB
Output regulation	$I_0 = 5 \text{ mA tc}$ mA		20	50	mV
Deserves	$l_0 = 10 \text{ mA}$			0.2	
Dropout voltage	lo = 150 mA			0.6	v
Output noise voltage	f = 10 Hz to 100 kHz				μV
Diag augusta	$I_0 = \cdot \cdot nA$		iv	12	-
bias current	V ₁ = 6 V to 26 V, I ₀ = 10 mA, T _J = T _J min to 125 °C	:	1	2	mA

TL750L08 and TL751L08 electrical characteristics at 25 °C virtual junction temperature, $V_I = 14 V$, $I_0 = 10 mA$ (unless otherwise noted)

PARAMETER		EST CONDITIONS	t	MIN	TYP	MAX	UNIT
Outside units	$V_{I} = 9 V \text{ to } 26 V,$	TJ = 25°C		7.8	8	8.2	
Output voitage	$I_0 = 0 \text{ to } 150 \text{ mA}$ $T_J =$	Tj = Tj min t	o'.· C	7.6		8.4	v .
In such as a substant	$V_{1} = 10 \text{ V to } 17 \text{ V}$			1	10	20	
input regulation	VI = 9 V to 26 V				25	50	mv
Ripple rejection	$V_{I} = 11 \text{ V to } 21 \text{ V},$	f = 120 Hz		60	65		dB
Output regulation	io = 5 mA to 150 mA				40	80	mV
Desperaturalitaria	lo = 10 mA					0.2	Ň
Dropout voltage	lo = 🔅 mA					8.2 8.4 20 50 80 0.2 0.6 12 2	v
Output noise voltage	f = 10 112 to 100 kHz				2.000	1.435	μV
Diaman	$l_0 = 150 \text{ mA}$	- 0			- 10	12	-
bias current	$V_{I} = 9 V to 26 V,$	$l_0 = 10 mA$,	T _J = T _J min to 125°C		1	2	

TL750L10 and TL751L10 electrical characteristics at 25 °C virtual junction temperature, VI = 14 V, IO = 10 mA (unless otherwise noted)

PARAMETER	TEST CONLITIONS [†]	MIN	TYP	MAX	UNIT
0	$V_{I} = 11 V \text{ to } 26 V$, $T_{J} = 25 \circ C$	9.75	10	10.25	
Output voltage	$I_0 = 0$ to 150 mA $T_J = T_J$ min to $\cdot \cdot C$	9.50		10.50	v
land an indian	V ₁ = 12 V to 19 V		10	25	
Input regulation	$V_{ } = 11 V \text{ to } 26 V$		30	60	mv
Ripple rejection	V ₁ = 12 V to 22 V f = 120 Hz	60	65		dB
Output regulation	$I_0 = 5 \text{ mA to}$ mA		50	100	m٧
Deserve	$I_0 = 10 \text{ mA}$		-	0.2	
Dropout voltage	IO = 150 mA			10.50 25 60 100 0.2 0.6 12	V
Output noise voltage	$f = 10 Hz$ to \cdot Hz		700	10	μV
Dies summer	lo = nA		10	12	-
bias current	V ₁ = to 26 V, I ₀ = 10 mA, T _J = T _J min 125 °C	1	1	2	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 1 ohm, across the output.

Data Sheets

TL750L12 and TL751L12 electrical characteristics at 25 °C virtual junction temperature, VI = 14 V, $I_0 = 10 \text{ mA}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIG	TYP	MAX	UNIT
	V _I = 13 V to 26 V, T _J = .	::	12	12.3	
Output voltage	$I_0 = 0$ to 150 mA $T_J = T_J$ min to 125 °C	11.4		12.6	v
han a second at an	V _I = 14 V to 19 V		15	30	
input regulation	V ₁ = 13 V to 26 V	1	20	40	mv
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	50	55		dB
Output regulation	$I_0 = 5 \text{ mA to } 150 \text{ mA}$		50	120	mV
Descention	$I_0 = 10 \text{ mA}$			0.2	
Dropout voltage	lo = '· mA			0.6	v
Output noise voltage	f = 1, 112 to 100 kHz		700		μV
Dies surrout	$I_0 = 150 \text{ mA}$		10	12	
bias current	V _I = 13 V to 26 V, I _O = 10 mA, T _J = T _J min to 125 °C		1	2	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-µF capacitor across the input and a 10-µF capacitor, with equivalent series resistance of less than 1 ohm, across the output.

2

ABSOLUTE MAXIMUM RATINGS

D3017, JANUARY 1988-REVISED OCTOBER 1988

- Very Low Dropout Voltage, Less than 0.6 V at 750 mA
- Low Quiescent Current
- TTL- and CMOS-Compatible Enable on TL751M Series
- 60-V Load-Dump Protection
- Over-Voltage Protection
- Internal Thermal Overload Protection
- Internal Over-Current Limiting Circuitry

description

The TL750M and TL751M series are lowdropout positive voltage regulators specifically designed for battery-powered systems. The TL750M and TL751M incorporate on-board over-voltage and current-limit protection circuitry to protect both themselves and the regulated system. Both series are fully protected against 60-V load-dump and reverse battery conditions. Extremely low quiescent current, even during full-load conditions, makes the TL750M and TL751M series ideal for standby power systems.

The TL750M series of fixed-output voltage regulators offer 5-V, 8-V, 10-V, and 12-V options available in 3-lead KC (TO-220AB) plastic packages.

The TL751M series of fixed-output voltage regulators also offer 5-V, 8-V, 10-V, and 12-V options with the addition of an enable input. The enable input gives the designer complete control over power-up, allowing for sequential power-up or emergency shutdown. When taken high, the enable input places the regulator output in a high-impedance state. It is completely TTL- and CMOS-compatible. The TL751M series is offered in 5-lead KC plastic packages.

The TL750M and TL751M series are characterized for operation from -40 °C to 125 °C free-air temperature.

Data Sheets

PRODUCTION ...41A cocuments contain information current as of μ -l h==ion date. Products conform to specifications μ -: the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Continuous input voltage	v
Transient input voltage (see Figure 1) 60	V
Continuous reverse input voltage	iν
Transient reverse input voltage: t = 100 ms	v
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 1) 2	W
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 20	W
Operating free-air, case, or virtual junction temperature40 °C to 150	°C
Storage temperature range	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260	°C

2

Note 1: For operation above 25 °C free-air temperature, refer to Figures 2 and 3. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variation in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions over recommended operating free-air temperature range (unless otherwise noted)

	DEVICE	MIN	MAX	UNITS
	TL75_ MOS	6	26	
	TL75_ 🖬 🕴	9	26	
nput voitage range, vį	TL75_Miu	11	26	l v
	TL75_M12	13	26	
High-level FNABLE input voltage, VIH	TL751M_	2	15	
Low-level BLE input voltage, VIL (see Note 2)	TL751M_	-0.3	0.8	v
Output current range, IO	TL75_M		750	mA
0	TL75_M_C	0	1.1	
Operating virtuar junction temperature range, 1 J	TL75_M_Q	-40		

TL750M05 and TL751M05 electrical characteristics at 25 °C free-air temperature, V_I = 14 V, I_Q = 300 mA, ENABLE at 0 V for TL751M05 (unless otherwise noted)

PARAMETER	TEST CONDITIONS (se	ee Note 3)	MIN	TYP	MAX	UNIT
0	V	$T_A = 25 °C$	4.95	5	5.05	
Output voltage	$v_1 = 6 v to 26 v, I_0 = 0 to 750 mA$	T _A = T _J min to 125°C	4.9		5.1	v
to a second address	VI = 9 V to 16 V, IO = 250 mA			10	25	
input regulation	$V_{I} = 6 V \text{ to } 26 V, I_{O} = . mA$			12	MAX 5.05 5.1 25 50 50 0.5 0.6 75 5	mv
Ripple rejection	$V_{1} = 8 V \text{ to } 18 V, f = \frac{1}{2} U_{11} z$			55		dB
Output regulation	IO = 5 mA to 750 mA			20	50	mV
Output regulation	$I_0 = nA$				0.5	N
Dropout voltage	10 = '· mA		~		MAX 5.05 5.1 25 50 50 0.5 0.6 75 5	
Output noise voltage	f = 10 Hz to 100 kHz		(500		μV
Bine manad	Io = 750 mA	2		60	75	mA
bias current	I ₀ = 10 mA				MAX 5.05 5.1 25 50 50 0.5 0.6 75 5	

NOTE 3: Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-µF capacitor across the input and a 10-µF capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

TL750M08 and TL751M08 electrical characteristics at 25 °C free-air temperature, $V_I = 14 V$, $I_O = 300 \text{ mA}$, ENABLE at 0 V for TL751M08 (unless otherwise noted)

PARAMETER	IFST CONDITIONS	i (see Note 3)	MIN	TYP	MAX	UNIT
Outra under a		A = 25°C	7.92	8	8.08	V
Output voltage	$v_1 = 9 v to 26 v, I_0 = 0 to 750 mA$	TA = TJ min to 125°C	7.84		8.16	v
tion of the second s	$V_{I} = 10 \text{ V to } 17 \text{ V}, I_{O} = 250 \text{ mA}$			12		
input regulation	VI = 9 V to 26 V, IO = 250 mA			15		mv
Ripple rejection	V ₁ = 11 V to 21 V, f = 120 Hz			55		dB
Output regulation	Io = 5 mA to 750 mA		1.0	24	Carriel .	mV
D	10 = ··· mA				0.5	v
Dropout voitage	10 = '' '''A				MAX 8.08 8.16 0.5 0.6 75 5	v
Output noise voltage	f = 10 Hz to 100 kHz			500		μV
Dies ausses	IO = 750 mA			60	75	-
bias current	Io = 10 mA				5	mA

TL750M10 and TL751M10 electrical characteristics at 25 °C free-air temperature, $V_I = 14 V$, $I_Q = 300 mA$, ENABLE at 0 V for TL751M10 (unless otherwise noted)

PARAMETER	TEST CONDITIONS	see Note 3)	MIN	TYP	MAX	UNIT
Outrast uniterat	V 11 V + 26 V I - 0 + 750 -	TA = 25°C	9.9	10	10.1	N
Output voltage	$y_1 = 11 v to 20 v, t_0 = 0 to 750 H$	TA = TJ min to 125°C	9.8		10.2	v
In mus us av laster.	V ₁ = 12 V to 18 V, I ₀ = mA			15		
input regulation	VI = 11 V to 26 V, IO = mA			20	1	mv
Ripple rejection	VI = 13 V to 23 V, f = 120 112		55	60	<u> </u>	dB
Output regulation	IO = 5 mA to 750 mA			30		mV
Dropaut voltage	10 = · · · mA			-	0.5	v
Dropout voltage	10 = ''···'nA				0.5	v
Output noise voltage	f = 10 Hz to 100 kHz			1000		μV
D :	IO = 750 mA			60	75	-
DIAS CUTIENT	lo = 10 mA				5	mA

TL750M12 and TL751M12 electrical characteristics at 25 °C free-air temperature, $V_I = 14 V$, $I_O = 300 \text{ mA}$, ENABLE at 0 V for TL751M12 (unless otherwise noted)

PARAMETER	TEST CONDITIONS (see Note 3)	MIR	TYP	MAX	UNIT	
0	V 12 V 12 28 V 1 0 1 750 - 1 TA = 25 °C	11.00	12	12.12		
Output voltage	$V_{I} = 13 V \text{ to } 26 V, I_{O} = 0 \text{ to } 750 \text{ mA}$ $T_{A} = T_{J} \text{ min to } 125 ^{\circ}\text{C}$	11.76		12.24	v	
In such as an instant	$V_{\rm I} = 14 \text{ V to } 19 \text{ V}, I_{\rm O} = .$ nA		15	15		
input regulation	VI = 13 V to 26 V, IO =	20				
Ripple rejection	VI = 13 V to 23 V, f = 120 112	55	60	1	dB	
Output regulation	IO = 5 mA to 750 mA		30		mV	
Dressut veltage	lo ≈ 500 mA	A		0.5		
Dropout voitage	lo = 750 mA			0.6	v	
Output noise voltage	f = :: to 100 kHz		1000		μV	
Bias current	lo - ' mA		60	75		
				mA		

NOTE 3: Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

TL751Mxx electrical characteristics at 25 °C free-air temperature, VI = 14 V, IO = 300 mA

MIN TYP MAX	UNIT
50	μs
	<u>MIN TYP MAX</u> 50

Data Sheets

O Data Sheets

SERIES TL780 POSITIVE VOLTAGE REGULATORS

D2643, APRIL 1981-REVISED AUGUST 1988

- ±1% Output Tolerance at 25°C
- ±2% Output Tolerance Over Full Operating Range
- Thermal Shutdown
- Internal Short-Circuit Current Limiting
- Pinout Identical to uA7800 Series
- Improved Version of uA7800 Series

description

Each fixed-voltage precision regulator in this series is capable of supplying 1.5 amperes of load current. A unique temperaturecompensation technique coupled with an internally trimmed bandgap reference has resulted in improved accuracy when compared to other three-terminal regulators. Advanced layout techniques provide excellent line, load, and thermal regulation. The internal current limiting and thermal shutdown features make the devices essentially immune to overload.

schematic

KC PACKAGE

SERIES TL780 POSITIVE VOLTAGE REGULATORS

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input voltage
Continuous total dissipation at 25 °C free-air temperature (see Note 1) 2 W
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 15 W
Operating free-air, case, or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	MAX	UNIT
	TL780-05C	7	25	
Input voltage, V	TL780 .	14.5	30	V
	TL780-15C	17.5	30	
Output current, IO			1.5	A
Operating virtual junction temperature, TJ		0	125	°C

PARAMETER	TEST	TEST CONDITIONS [†]					UNIT
Output uplage	$I_0 = 5 \text{ mA to } 1A,$	P ≤ 15 W,	25°C	4.95	5	5.05	
Output voltage	$V_{I} = 7 V \text{ to } 20 V$		0°C to 125°C	4.9		5.1	
	V ₁ = 7 V to 25 V		25.00		0.5	5	
input regulation	V _I = 8 V to 12 V		25 %		0.5	5	mv
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V,$	f = 120 Hz	0°C to '. · C	70	85		db
0	IO = 5 mA to 1.5 A		05.00		4	25	
Output regulation	IO = 250 mA to 750 m	nA	25°C		15	15	1 mv
Output resistance	f = 1 kHz		0°C to 125°C	C			ß
Temperature coefficient	lo = 5 mA		0%C to 125%C	1	0.25		m)//9C
of output voltage	10 = 5 mA		0 0 10 120 0		0.25		1 mor c
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75		μV
Dropout voltage	IO = 1 A		25°C		2	-	V
Bias current			25°C	1	5	8	mA
Bire annual about a	V ₁ = 7 V to 25 V		0.00 ++ 1.05.00		07	1.3	
Blas current change	$I_0 = 5 \text{ mA to 1 A}$	0 0 125 0		ō.	0.5	mA	
Short-circuit output current	V ₁ = 35 V		25°C		1.5		mA
Peak output current			25 °C		2.2		A

TL780-05C electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 500 mA$ (unless otherwise noted)

TL780-12C electrical characteristics at specified virtual junction temperature, $V_1 = 19 V$, $I_0 = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDIT	MIN	TYP	MAX	UNIT		
	$I_0 = 5 \text{ mA to 1 A}, P \leq$	15 W,	25 °C	11.88	12	12.12	
Output voltage	$V_{i} = 14.5 V \text{ to } 27 V$		0°C to 125°C	11.76	-	12.24	v
	Vi = 14.5 V to 30 V		05.00		1.2	12	
	V ₁ = 16 V to 22 V		25-0	1000	1.2	12	mv
Ripple rejection	V _I = 15 V to 25 V, f =	120 Hz	0°C to 125°C	65	80		dB
Quite it considetion	IO = 5 mA to 1.5 A	Io = 5 mA to 1.5 A			6.5	60	
Output regulation	IO 250 mA to 750 mA	25 %		2.5	36	mv	
Output resistance	f = 1 kHz	-	0°C to 125°C	0	.0035		Ω
Temperature coefficient		1.1	0.9C to 125.9C	1	0.6		
of output voltage	10 = 5 MA		0-0 10 125-0		0.0		mv/-C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C				μV
Dropout voltage	$I_0 = 1 A$		25°C				V
Bias current			25 °C		5.5	8	mA
Bias current change	$V_{I} = 14.5 V \text{ to } 30 V$	0.00 ++ 105.00		0.4	1.3		
	$I_0 = 5 \text{ mA to 1 A}$	0°C to 125°C		0.03	0.5	mA	
Short-circuit output current	V ₁ = 35 V		25°C		350		mA
Peak output current			25°C		2.2		Α

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with 0.33 μF capacitor across the input and a 0.22 μF capacitor across the output.

PARAMETER	TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Output valtage	$I_0 = 5 \text{ mA to 1 A}, P \le 15 \text{ W},$	25 °C	14.85	15		
Output voltage	$V_{\rm I} = 17.5 V$ to 30 V	0°C to 125°C	14.7		10.5	v
	V _I = 17.5 V to 30 V	25.00		1.5	15	
input regulation	V _I = 20 V to . · .	25-0		1.5	15	mv
Ripple rejection	V _I = 18.5 V to ≟o.5 V, f = ∵ Hz	0°C to C	60	75		dB
Querest considention	IO = 5 mA to 1.5 A	25.00		7	75	
	IO = 250 mA to 750 mA	25-0		2.5	45	тv
Output resistance	f = 1 kHz	0°C to 125°C	0.0	0035		Ω
Temperature coefficient		0.9C to 125.9C		0.60		m)//0C
of output voltage	10 = 5 mA			0.62		mv/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C	(;;	225		μV
Dropout voltage	$I_0 = 1 A$	25°C		2		V
Bias current		25°C		5.5	8	mA
Diag automatication	V _I = 17.5 V to 30 V	000 +- 10500		0.4	1.3	
bias current change	$I_0 = 5 \text{ mA to 1 A}$	0-0 125-0			0.5	mA
Short-circuit output current	V _I = 35 V	25°C				mA
Peak output current		25 °C		2.2		Α

TL780-15C electrical characteristics at specified virtual junction temperature, $V_I = 23 V$, $I_O = 500 mA$ (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33 μF capacitor across the input and a 0.22 μF capacitor across the output.

TYPICAL APPLICATION DATA

Notes: A. C1 required if regulator is far from power supply filter.

B. C2 not required for stability, however transient response is improved.

C. Permanent damage can occur if output is pulled below ground.

D2659, SEPTEMBER 1981-REVISED SEPTEMBER 1988

- Output Adjustable from 1.25 V to 125 V
- 700-mA Output Current
- Full Short-Circuit, Safe-Operating-Area, and Thermal Shutdown Protection
- 0.001 %/V Typical Input Regulation
- 0.15% Typical Output Regulation
- 76-dB Typical Ripple Rejection
- Standard TO-220AB Package

description

The TL783C is an adjustable three-terminal positive-voltage regulator with an output range of 1.25 V to 125 V and a DMOS output transistor capable of sourcing more than 700 mA. It is designed for use in high-voltage applications where standard bipolar regulators cannot be used. Excellent performance specifications ... superior to those of most bipolar regulators ... are achieved through circuit design and advanced layout techniques.

As a state-of-the-art regulator, the TL783C combines standard bipolar circuitry with high-voltage doublediffused MOS transistors on one chip to yield a device capable of withstanding voltages far higher than standard bipolar integrated circuits. Because of its lack of secondary breakdown and thermal runaway characteristics usually assoicated with bipolar outputs, the TL783C maintains full overload protection while operating at up to 125 V from input to output. Other features of the device include current limiting, safeoperating-area (SOA) protection, and thermal shutdown. Even if the adjustment pin is inadvertently disconnected, the protection circuitry remains functional.

Only two external resistors are required to program the output voltage. An input bypass capacitor is necessary only when the regulator is situated far from the input filter. An output capacitor, although not required, will improve transient response and protection from instantaneous output short-circuits. Excellent ripple rejection can be achieved without a bypass capacitor at the adjustment terminal.

functional block diagram

PRODUCTION DATA documents contain information current as af publication date. Protects conform to specifications par the terms of Trois. Instruments standerd werrenty. Preduction protections does not necessarily include testing of all protections to second the second
INSTRUMENTS POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

Copyright © 1983, Texas Instruments Incorporated

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input-to-output differential voltage, VI – VO	125 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 1)	. 2W
Continuous total dissipation at (or below) 25°C case temperature (see Note 1)	20 W
Operating free-air, case, or virtual junction temperature range	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: For operation above 25°C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Input-to-output voltage differential, VI – VO		125	V
Output current In	15	700	mA
Operating vir ction temperature, TJ	0	125	°C

electrical	characteristics a	at V _I ·	- Vo =	= 25 V,	10 =	0.5 A,	$T_J =$	0°C to	125°C	(unless	otherwise
noted)			-								

PARAMETER		TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT	
	N N 00 M 100 M	0	T _J = 25°C		0 001	0.01	
Input regulation+	$V_{\rm I} - V_{\rm O} = 20$ V to 125 V,	P ≤ rated dissipation	T _J = 0°C to 125°C		0.004	0 02	%/V
Ripple rejection	$\Delta V_{I(p-p)} = 10 V,$	$V_0 = 10 V$,	f = 120 Hz	66	76		dB
Output regulation	15	T 05%0	V _O ≤ 5 V		7.5	25	mV
	10 = 15 mA to 700 mA,	1 = 25.0	$V_0 \ge 5 V$		0.15	0.5	%
	$l_0 = 15 \text{ mA to } 700 \text{ mA},$	D is used disaturation	V ₀ ≤ 5 V		20	70	mV
		P ≤ rated dissipation	$V_{O} \ge 5 V$		03	1.5	%
Output voltage change with temperature					0.4		%
Output voltage	1000 h at T _{.1} = 125°C,	$V_{1} - V_{0} = 125 V_{1}$					
long-term drift	See Note 2				0.2		%
Output noise voltage	f = 10 Hz to 10 kHz,	Tj = 25°C					%
Minimum output current to maintain regulation	$V_{\rm I} - V_{\rm O} = 125 \rm V$		<u></u>			15	mA
	$V_{\rm I} - V_{\rm O} = 25 \rm V,$	t = 1 ms		1 Contractor	1100	A. State	
Dook output ouropt	$V_{\rm I} - V_{\rm O} = 15 \rm V,$	t = 30 ms		715		1	
reak output current	$V_{\rm I} - V_{\rm O} = 25 \rm V_{\rm c}$	t = 30 ms	700	900		InA	
	$V_{\rm I} - V_{\rm O} = 125 V_{\rm O}$	t = 30 ms			250		1
Adjustment-terminal current					83	110	μΑ
Change in adjustment- terminal current	$V_{\rm I} - V_{\rm O} = 15$ V to 125 V,	$I_{O} = 15 \text{ mA to 700 mA},$	P ≤ rated dissipation	1	0.5	5	μΑ
Reference voltage (output to ADJ)	$V_{\rm I} - V_{\rm O} = 10$ V to 125 V,	$I_{O} = 15$ mA to 700 mA,	P ≤ rated dissipation	1.2	1.27	1.3	v

[†] Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

* Input regulation is expressed here as the percentage change in output voltage per 1-volt change at the input.

NOTE 2: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

Data Sheets

TYPICAL CHARACTERISTICS

DESIGN CONSIDERATIONS

The internal reference (see functional block diagram) is used to generate 1.25 V nominal (V_{ref}) between the output and adjustment terminals. This voltage is developed across R1 and causes a constant current to flow through R1 and the programming resistor R2, giving an output voltage of:

 $V_{O} = V_{ref} (1 + R2/R1) + I_{adj} (R2)$

or

 $V_O \sim V_{ref} (1 + R2/R1).$

The TL783C was designed to minimize I_{adj} and maintain consistency over line and load variations, thereby minimizing the I_{adj} (R2) error term.

To maintain I_{adj} at a low level, all quiescent operating current is returned to the output terminal. This quiescent current must be sunk by the external load and is the minimum load current necessary to prevent the output from rising. The recommended R1 value of 82 Ω will provide a minimum load current of 15 mA. Larger values may be used if the input-to-output differential voltage is less than 125 V (see minimum operating current curve) or if the load will sink some portion of the minimum current.

bypass capacitors

The TL783C regulator is stable without bypass capacitors; however, any regulator will become unstable with certain values of output capacitance if an input capacitor is not used. Therefore, the use of input bypassing is recommended whenever the regulator is located more than four inches from the power-supply filter capacitor. A 1-μF tantalum or electrolytic capacitor is usually sufficient.

Adjustment-terminal capacitors are not recommended for use on the TL783C because they can seriously degrade load transient response as well as create a need for extra protection circuitry. Excellent ripple rejection is presently achieved without this added capacitor.

Due to the relatively low gain of the MOS output stage, output voltage drop-out may occur under large load transient conditions. Addition of an output bypass capacitor will greatly enhance load transient response as well as prevent drop-out. For most applications, it is recommended that an output bypass capacitor be used with a minimum value of:

 $C_{O}(\mu F) = 15/V_{O}$

Larger values will provide proportionally better transient response characteristics.

protection circuitry

The TL783C regulator includes built-in protection circuits capable of guarding the device against most overload conditions encountered in normal operation. These protective features are current limiting, safeoperating-area protection, and thermal shutdown. These circuits are meant to protect the device under occasional fault conditions only. Continuous operation in the current limit or thermal shutdown mode is not recommended.

The internal protection circuits of the TL783C will protect the device up to maximum rated V_I as long as certain precautions are taken. If V_I is instantaneously switched on, transients exceeding maximum input ratings may occur, which can destroy the regulator. These are usually caused by lead inductance and bypass capacitors causing a ringing voltage on the input. In addition, if rise times in excess of 10 V/ns are applied to the input, a parasitic n-p-n transistor in parallel with the DMOS output can be turned on causing the device to fail. If the device is operated over 50 V and the input is switched on rather than ramped on, a low-Q capacitor, such as a tantalum or electrolytic should be used rather than ceramic, paper, or plastic bypass capacitors. A Q factor of 0.015 or greater will usually provide adequate damping to suppress ringing. Normally, no problems will occur if the input voltage is allowed to ramp upward through the action of an ac line rectifier and filter network.

Similarly, if an instantaneous short circuit is applied to the outputs, both ringing and excessive fall times can result. A tantalum or electrolytic bypass capacitor is recommended to eliminate this problem. However, if a large output capacitor is used and the input is shorted, addition of a protection diode may be necessary to prevent capacitor discharge through the regulator. The amount of discharge current delivered is dependent on output voltage, size of capacitor, and fall time of V_I. A protective diode (see Figure 17) is required only for capacitance values greater than

 $C_O(\mu F) = 3 \times 10^4 / (V_O)^2$.

Care should always be taken to prevent insertion of regulators into a socket with power on. Power should be turned off before removing or inserting regulators.

load regulation

The current set resistor (R1) should be located close to the regulator output terminal rather than near the load. This eliminates long line drops from being amplified through the action of R1 and R2 to degrade load regulation. To provide remote ground sensing, R2 should be near the load ground.

FIGURE 18. REGULATOR WITH CURRENT-SET RESISTOR

TYPICAL APPLICATION DATA

[†]NEEDED IF DEVICE IS MORE THAN 4 INCHES FROM FILTER CAPACITOR

FIGURE 20. 125-V SHORT-CIRCUIT-PROTECTED OFF-LINE REGULATOR

2

TL783C HIGH-VOLTAGE ADJUSTABLE REGULATOR

TL783C HIGH-VOLTAGE ADJUSTABLE REGULATOR

TYPICAL APPLICATION DATA

FIGURE 25. HIGH-VOLTAGE UNITY-GAIN OFFSET AMPLIFIER

FIGURE 26. 48-V, 200-mA FLOAT CHARGER

2 Data Sheets

D2730, FEBRUARY 1983-REVISED OCTOBER 1988

- Complete PWM Power Control Circuitry
- Completely Synchronized Operation
- Internal Undervoltage Lockout Protection
- Wide Supply Voltage Range
- Internal Short-Circuit Protection
- Oscillator Frequency . . . 500 kHz Max
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 2.5-V Reference Supply

description

The TL1451AC incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation control circuits. Designed primarily for power supply control, the TL1451AC contains an on-chip 2.5-V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common-emitter output transistor circuits.

The uncommitted output transistors provide common-emitter output capability for each controller. The internal amplifiers exhibit a common-mode voltage range from 1.04 V to 1.45 V. The dead-time control comparator has no offset unless externally altered and may be used to provide 0% to 100% dead time. The on-chip oscillator may be operated by terminating R_T (pin 2) and C_T (pin 1). During low V_{CC} conditions, the undervoltage lockout control circuit feature locks the outputs off until the internal circuitry is operational.

The TL1451AC is characterized for operation from -20°C to 85°C.

functional block diagram

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TEXAS V INSTRUMENTS Data Sheets

absolute maximum ratings over operating free-air temperature range

Supply voltage, V _{CC}	1 V
Amplifier input voltage	vc
Collector output voltage	1 V
Collector output current	mΑ
Continuous total dissipation	ble
Operating free-air temperature range	5°C
이는 것은 것은 것이 아이에 집에 집에 있는 것은 것이 같이 다. 이는 것이 아이에 있는 것이 아이에 있는 것이 같이 가지 않는 것이 같이 아이에 있는 것이 있는 것이 있는 것이 같이 많이	
Storage temperature range	0°C

DISSIPATION	RATING	TABLE
-------------	--------	-------

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	TA = 85°C POWER RATING
D	500 mW	4.0 mW/°C	320 mW	260 mW
N	1000 mW	8.0 mW/°C	640 mW	520 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, VCC	3.6	40	V
Amplifier input voltage, VI	1.05	1.45	V
Collector output voltage, VO		50	V
Collector output current		20	mA
Current into feedback terminal		45	μΑ
Feedback resistor, RF	100		kΩ
Timing cepecitor, CT	150	15000	pF
Timing ·· ·· · · · · · · · · · · · · · · · ·	5.1	100	kΩ
Oscillator Hugouncy	1	500	kHz
Operating free-air temperature, TA	-20	85	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 V$, f = 200 kHz (unless otherwise noted)

reference section

PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
Output voltage (pin 16)	IO = 1 mA	2.4	25	2.6	V
Output voltage change with temperature	T _A = -20°C to 25°C		<u> </u>	±1%	
Output voltage change with temperature	T _A = 25°C to 85°C			±1%	
Input regulation	V _{CC} = 3.6 V to 40 V		2	12.5	mV
Output regulation	10 = 0.1 mA to 1 mA		1	7.5	mV
Short-circuit output current	V _O = 0	3	10	30	mV

undervoltage lockout section

	PARAMETER		TEST (CONDITIONS	MIN TYPT MAX	UNIT
th	pin 9)		loref = 0.1 mA,	TA = 25°C	2.72	V
. tł	,pin 9)	•	lOref = 0.1 mA,	T _A = 25°C	2.6	V
H is	(pii) v)		loref = 0.1 mA,	T _A = 25°C	80 120	mV
Ruun tines	hold voltage (pin 9)		loref = 0.1 mA,	$T_A = 25^{\circ}C$	1.5 1.8	V

[†] All typical values are at T_A = 25°C.

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 V$, f = 200 kHz (unless otherwise noted) (continued)

protection control section

PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
l voltage (pin 15)	$T_A = 25^{\circ}C$	0.65	0.7	0.75	V
Surrady votage (pin 15)	No pullup	140	185	230	mV
Latched input voltage (pin 15)	•. Juliup		60	120	mV
Input (source) current	$T_A = 25^{\circ}$	C -10	-15	-20	μA
Comparator threshold voltage (pins 5 and 12)			1.18	_	V

oscillator section

PARAMETER			TEST	CONDITIONS	MIN T	YPT M	X UNIT
Frequency	Sector and the sector of the s	CT =	ΣF,	$R_T = 10 k\Omega$		200	kHz
Standard deviat	ion of frequency	CT =	DF,	$R_T = 10 k\Omega$		10%	
Frequency cl	vith voltage	V _{CC} = 3.	6 V to 40	V		1%	
Frequency char	an with temperature	$T_A = -20$	°C to 25	°C	-().4% ±2	%
Frequency change with temperature		$T_{A} = 25^{\circ}$	C to 85°C)	-().2% ±2	%

dead-time control section

PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
Input bias current (pins 6 and 11)				1	μΑ
Latch mode (source) current (pins 6 and 11)	T _A = 25°C	-80	-145		μA
Latched input voltage (pins 6 and 11)	l _O = 40 μA	2.3	1. C.		V
Input threshold voltage at $f = 10$ kHz (size C and 11)	Zero duty cycle	10.00	2.05	2.25	
input threshold voltage at t = 10 kHz (pins 6 and 11)	Maximum duty cycle	1.2	1.45		V

error-amplifier section

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
Input	offset voltage	Vo (nins 5 and 12) = 1.25 V			±6	mV
Input	offset current	Vo i and 12) = 1.25 V			±100	nA
Input	bias current	VO (مانس j and 12) = 1.25 V	-	160	500	nA
Com	mon-mode input voltage range	V _{CC} = 3.6 V to 40 V	1.05 to 1.45	2.,		v
Oper	n-loop voltage amplification	$R_F = 200 k\Omega$	70	80		dB
Unity	-gain bandwidth			1.5		MHz
Com	mon-mode rejection ratio		60	80		dB
Posit	ive output voltage swing		Vref-0.1			V
۲.	+ output voltage swing				1	V
C	sink) current (pins 5 and 12)	$V_{ID} = -0.1 V$, $V_O = 1.25 V$	0.5	1.6		mA
O	source) current (pins 5 and 12)	$V_{ID} = 0.1 V, V_{O} = 1.25 V$	-45	-70		μA

† An typical values are at TA = 25°C

2

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 6 V$, f = 200 kHz (unless otherwise noted) (continued)

output section

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Collector of	current	$V_0 = 50 V$			10	μA
Output saturation,	voltage	i _O = 10 mA		1.2	2	V
Short-circuit output	ut current	$V_{O} = 6 V$		90		mA

pwm comparator section

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Input threshold voltage	Zero duty cycle		2.05	2.25	
at f = 10 kHz (pins 5 and 12)	Maximum duty cycle	1.2	1.45		v
Input (sink) current (pins 5 and 12)	V _I = 1.25 V	0.5	1.6		mA
Input (source) current (pins 5 and 12)	V _l = 1.25 V	-45	-70		μA

total device

TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Off-state		1.3	1.8	mA
$R_T = 10 k\Omega$		1.7	2.4	mA
	TEST CONDITIONS Off-state R _T = 10 kΩ	TEST CONDITIONS MIN Off-state R _T = 10 kΩ	TEST CONDITIONS MIN TYPT Off-state 1.3 R _T = 10 kΩ 1.7	TEST CONDITIONS MIN TVPT MAX Off-state 1.3 1.8 R _T = 10 kΩ 1.7 2.4

[†] All typical values are at T_A = 25°C.

Values for R1 through R7, C1 through C4, and L1 and L2 depend upon inidividual application.

Data Sheets

1

GND 4

D2722, APRIL 1983-REVISED OCTOBER 1988

- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Wide Supply Voltage Range . . . 3 V to 18 V
- Precision Voltage Sensor
- Temperature-Compensated Voltage Reference
- True and Complement Reset Outputs
- Externally Adjustable Pulse Width

description

The TL7702A series are monolithic integrated circuit supply voltage supervisors specifically designed for use as reset controllers in microcomputer and microprocessor systems. To ensure that the microcomputer system has reset, the TL7702A series initiates an internal time delay that delays the return of the reset outputs to their inactive states. Since the time delay for most microcomputers and microprocessors is in the order of several machine cycles, the device internal time delay is determined by an external capacitor connected to the CT input (pin 3).

 t_d = 1.3 \times 104 \times C_T Where: C_T is in farads (F) and t_d is in seconds(s)

During power-up, the outputs are undefined until the supply voltage V_{CC} reaches a minimum value of 3.6 V. During power-down, with the SENSE input below the threshold voltage, the outputs remain active until the supply voltage V_{CC} falls below a maximum of 2 V after which the outputs are undefined. See Timing Diagram. Suggested circuits to eliminate undefined states are shown in Figures 3 and 4.

In addition, when the supply voltage drops below the nominal value, the outputs will be active until the supply voltage returns to the nominal value. An external capacitor (typically 0.1 μ F) must be connected to the REF output (pin 1) to reduce the influence of fast transients in the supply voltage.

The TL7702AI series is characterized for operation from -25 °C to 85 °C; the TL7702AC series is characterized from 0 °C to 70 °C.

5 RESET

functional block diagram

Data Sheets

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, V _{CC} · · Note 1)
Input voltage range at 14IN
Input voltage at SENSE: TL7702A (see Note 2)
TL7705A
TL7709A
TL7712A
TL7715A
High-level output current at ·····ET
Low-level output current at · t · T
Continuous total dissipation See Dissipation Rating Table
Operating free-air temperature range: TL77_125°C to 85°C
TL77_C
Storage temperature range

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

	T _A ≤ 25°C	DERATING FACTOR	TA - 70°C	TA = 85°C
PACKAGE	POWER RATING	ABOVE TA = 25°C	POWER RATING	PO I: RATING
D	725 mW	5.8 mW/°C	464 mW	'mW
P	1000 mW	8.0 mW/°C	640 mW	520 mW

recommended operating conditions

		MIN	NOM MAX	UNIT
Supply voltage, V _{CC}		3.6	18	V
High-level input voltage at RESIN, VIH		2		V
Low-level input voltage at RESIN, VIL			0.6	V
	TL: . ·	0	See Note 2	
	TL7 ·	0	10	
Voltage at SENSE, V	TL7709A	0	15	V
	TL7712A	0	20	
	TL7715A	0	20	
High-level output current at RESET, IOH			- 16	mA
Low-level output current at RESET, IOL			16	mA
Oranatian fan sit transmitter and T	TL77_I	- 25	85	
Operating free-air temperature range, 1A	TL77_C	0	70	°C

NOTE 2: For proper operation of the TL7702A, the voltage applied to the SENSE terminal should not exceed V_{CC} - 1 V or 6 V, whichever is less.

1200	PARAMETER		TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
VOH	OH High-level output voltage at RESET		$I_{OH} = -16 \text{ mA}$	Vcc-1	.5		v
VOL	Low-level output voltage at ·		loL = 16 mA		1.11	0.4	V
Vref	Reference voltage		T _A = 25°C	2.48	2.53	2.58	v
		TL7702A		2.48	2.53	2.58	
	Negative-going	TL7705A	No 2 6 M +- 18 M	4.5	4.55	4.6	
VT-	threshold voltage	TL7709A	$v_{CC} = 3.8 v to 18 v,$	7.5	7.6	7.7	v
	at SENSE input	TL7712A	$1A = 25^{\circ}C$	10.6	10.8	11	
		TL7715A		13.2	13.5	13.8	
-		TL7:			10		
	Hysteresis [‡] at SENSE input	TL7: • •	$V_{CC} = 3.6 V \text{ to } 18 V,$	15 20 35			m∨
Vhvs		TL7: UJA					
		TL7712A	$I_{A} = 25^{\circ}C$				
		TL7715A			45		
			$V_I = 2.4 V$ to V_{CC}			20	
4	Input current at RESIN input		$V_{\rm I} = 0.4 V$		1944	- 100	μA
4	Input current at SENSE input	TI 7702A	$V_{ref} < V_{1} < V_{CC} - 1.5 V$		0.5	2	μA
IOH	High-level output current at · : · · · Low-level output current at F		V _O = 18 V			50	μA
IOL			V ₀ =0		mária a	- 50	μA
ICC	Supply current		All inputs and outputs open		1.8	3	mA

electrical characteristics over recommended ranges of supply voltage, input voltage, output current, and free-air temperature (unless otherwise noted)

[†]All electrical characteristics are measured with 0.1-µF capacitors connected at pins 1, 3, and 8 to GND.

⁺Hysteresis is the difference between the positive-going input threshold voltage, V_T + , and the negative-going input threshold voltage, V_T - .

switching characteristics over recommended ranges of supply voltage, input voltage, output current, and free-air temperature (unless otherwise noted)

1	PARAMETER	TEST CONDITIONS [§]	MIN TYP MAX	UNIT
^t wS(min)	Minimum pulse duration at SENSE input to switch outputs	$V_{IH} = V_{T-} + 200 \text{ mV},$ $V_{IL} = V_{T-} - 200 \text{ mV}$	2	μs
tpd	Propagation delay time from	$V_{CC} = 5 V$	1.5	μs
	1. 1 I		0.2	
tr	<u>अन्त</u>	V EV Contractor	3.5	μs
tf	Here (VCC = 5 V, See Note 3	0.2	
			3.5	μs

§All switching characteristics are measured with 0.1-μF capacitors connected at pins 1 and 8 to GND.

NOTE 3: The rise and fall times are measured with a 4.7-k Ω load resistor at RESET (pin 5) and RESET (pin 6).

FIGURE 2. MULTIPLE POWER SUPPLY SYSTEM RESET GENERATION

2

Data Sheets

FIGURE 4. ELIMINATING UNDEFINED STATES USING A P-CHANNEL JFET

FIGURE 5. ELIMINATING UNDEFINED STATES USING A P-N-P TRANSISTOR

Data Sheets

D3035, OCTOBER 1987-REVISED MAY 1988

- Power-On Reset Generator
- Automatic Reset Generation After Voltage
 Drop
- RESET Defined When VCC Exceeds 1 V
- Wide Supply Voltage Range . . . 3.5 V to 18 V
- Precision Overvoltage and Undervoltage Sensing
- 250-mA Peak Output Current for Driving SCR Gates
- 2-mA Active-Low SCR Gate Drive for False Trigger Protection
- Temperature-Compensated Voltage Reference
- True and Complementary Reset Outputs
- Externally Adjustable Output Pulse Duration

description

The TL7770 is a monolithic integrated circuit system supervisor designed for use as a reset controller in microcomputer and microprocessor power supply systems. This device contains two independent supply-voltage supervisors that monitor the supplies for overvoltage and undervoltage conditions at \cdot VSO and VSU pins, respectively. When V_{CC} attains the minimum voltage of 1 V during power-up, the $\bar{1}$... : $\bar{1}$ output ... :1 • is active (low). As V_{CC} approaches 3.5 V, the delay timer function activates latching RESET and '1 • active (high and low respectively) for a time delay, t_d, after system voltages have achieved normal levels. Above V_{CC} = 3.5 V, taking RESIN low will activate the time delay function, RESET and RESET, during normal system voltage levels. To ensure that the microcomputer system has reset, the outputs remain active until the voltage at VSU exceeds the threshold value V_T + for a time delay, t_d, which is determined by an external timing capacitor such that:

$$t_d \approx 20 \times 10^3 \times capacitance$$

where td is in seconds and capacitance is in farads.

The overvoltage-detection circuit is programmable for a wide range of user designs. During an overvoltage condition, an internal SCR is triggered, providing 250 mA peak instantaneous current and 25 mA continuous current to the SCR gate drive pin, which can be used to drive an external high-current SCR gate or an overvoltage warning circuit.

The TL7770Q series is characterized for operation from -40 °C to 125 °C. The TL7770C series is characterized for operation from 0 °C to 70 °C.

logic diagram (each channel)

typical timing diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	20 V
Input voltage range, VI: 1VSU, 2VSU, 1VSO, and 2VSO	0.3 V to 18 V
Low-level output current (1RESET and 2RESET), IOL	20 mA
High-level output current (1RESET and 2RESET), IOH	– 20 mA
Continuous total dissipation See Dissip	bation Rating Table
Operating virtual junction temperature range (see Note 2)	-40°C to 150°C
Storage temperature range	-65°C to 150°C
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds	260°C

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_A \leq 25^{\circ}C$ POWER RATING	DERATING FACTOR	DERATE ABOVE TA	T _A = 70°C POWFR RATING	T _A = 125°C POWER RATING
DW	1000 mW	8.2 mW/°C	25 °C	mW	205 mW
Ν	1000 mW	12.4 mW/°C	69 °C	992 mW	310 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, VCC		3.5	18	v
Input voltage range, VI (see Note 2)	1 · · · · · · 1VSU, 2VSU, 2VSO, 1VSO	0	18	v
Output voltage (1CT and 2CT), VO			5	V
Output sink current (1CT			50	μA
High-level output current and 2RESET), IOH			- 16	mA
Low-level output current (1RESET and 2RESET), IOL			16	mA
Continuous output current (1SCR GAT	Continuous output current (1SCR GATE DRIVE 2SCR GATE DRIVE), IO			mA
	TL77, June Series	-40		00
operating nee-an temperature, 1A	TL7770C Series	0		2

NOTE 2: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels and temperature only.

Data Sheets N

electrical characteristics over recommended ranges of supply voltage, input voltage, output current, and free-air temperature (unless otherwise noted)

supply supervisor section

	PA	RAMEER	TEST CONDITIONS [†]	MIN	TYP [‡]	MAX	UNIT
Very High lovel output voltage			IOH = -15 mA	V _{CC} -1.	5		N
VOH	righ-level output voltage	- ATE DRIVE	IOH = -20 mA	Vcc-1.	5		V
VOL	Low-level output voltage	••	IOL = 15 mA			0.4	V
		.L.: .U-5 (5-V sense, 1.		4.5	4.55	4.6	
		TL7770-12 (12-V sense, '. J)		10.8	10.9	11.02	
		TL7770-15 (15-V sense, 1VSU)	$T_A = 25 °C$	13.5	13.64	13.77	
	Undervoltage threshold	TL7770-5, TL7770-12, TL7770-15 (programmable sense, 2VSU)		1.485	1.5	1.515	
VT-	(negative-going)	TL7770-5 (5-V sense, 1VSU)		4.46		4.64	V
		TL7770-12 (12-V sense, 1VSU)		10.68		11.12	
		TL7770-15 (15-V sense, 1VSU)	1	13.36		13.91	
		TL7770-5, TL7770-12, TL7770-15 (pr.: mable sense, 2VSU)		1.47		1.53	
1.1		TL 5, TL7770-12, TL7770-15	$T_A = 25^{\circ}C$	2.53	2.58	2.63	1.00
VT	Overvoltage threshold	(VSU)	$T_A = MIN \text{ to MAX}$	2.48		2.68	v
		T ')-5 (5-V sense, 1\. •			15		
		TL7770-12 (12-V sense, . ·J)	1		36		
Vhys	$\frac{1}{1} + \frac{1}{1} + \frac{1}$	TL7770-15 (15-V sense, 1VSU)	$T_A = 25^{\circ}C$	45			mV
1195	at VSU	TL7770-5, TL7770-12, TL7770-15 (programmable sense, 2VSU)			5		
	Active Active Section	RESIN	VI = 5.5 V or 0.4 V			- 10	12.10
4	Input current	VSO	V ₁ = 2.4 V		0.5	2	μA
юн	High-level output current	16:11	V ₀ = 18 V			50	μA
IOL	Low-level output current	7 (* n [.]	V ₀ = 0			- 50	μA
IOH	Peak output current	SCR GATE DRIVE	Duration = 1 ms	250			mA

total device

N Data Sheets

PARAMETER	TEST CONDITIONS ¹	MIN TYP*	MAX	UNIT	
ICC Supply current	1VSU and 2VSU at > VT+,	TA = 25°C	5		
	1VSO and 2VSO at 0 V	$T_A = MIN \text{ to MAX}$		6.5	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified in the recommended operating conditions.

[‡]Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$.

switchi	ng characteristics, N PARAMETER	$V_{CC} = 5 V,$ FROM (INPUT)	CT open, TA	= 25 °C	MIN	түр	мах	UNIT
^t PLH	Propagation delay time, low-to-high-level output	RESIN	RESET	See Figure 1		270	500	ns
^t PHL	Propagation delay time, high-to-low-level output	RESIN	RESET			270	500	ns
^t PLH	Propagation delay time, low-to-high-level output	RESIN	RESET			270	500	ns
^t PHL	Propagation delay time, high-to-low-level output	RESIN	RESET			270	500	ns
tr	Rise time	lise time RESET					75	
tf	Fall time				150		ns	
tr	Rise time					75		
t _f	Fall time		RESET				50	ns
	Minimum effective	RESIN		See Figure 2(a)		150		
tw(min)	pulse duration	VSU		See Figure 2(b)		100		ns

PARAMETER MEASUREMENT INFORMATION

TL7780-5, TL7780-12, TL7780-15 SYSTEM SUPERVISORS

- Power-On Reset Generator
- Automatic Reset Generation After Voltage
 Drop
- Wide Supply Voltage Range . . . 3.5 V to 18 V
- Dual Precision Undervoltage Comparators
- Temperature-Compensated Voltage Reference
- True and Complementary Reset Outputs
- Externally Adjustable Pulse Duration
- Outputs Valid When VCC Exceeds 1 V
- Precision Watchdog Function
- Externally Set Timing Window
- Externally Set Delay

description

The TL7780 is a monolithic integrated circuit system supervisor designed for use as a reset controller in microcomputer and microprocessor power supply systems. This device contains two independent supply-voltage supervisors and one watchdog function. The voltage supervisors monitor the supply. s at the VSU pins. When V_{CC} attains the minimum voltage of 1 V during power-up, the RESET and \therefore π^- outputs become active (high and low, respectively) to prevent undefined operation. Taking RESIN low has the same effect. To ensure that the microcomputer system has reset, the outputs remain active after the voltage at VSU exceeds the threshold value V_{T+} for a time delay (t_d) determined by an external timing capacitor such that:

td = (constant to be determined) X capacitance

where td is in seconds and capacitance is in farads

The "watchdog" function monitors the system activity by sensing the positive edge of a programmergenerated signal at WCLK. An on-board current source generates a voltage ramp v_{CWd} across the external capacitor connected to CWD, which is compared to a timing window (set by external resistors connected to RWL and RWH) at the instant of the occurrence of the positive edge of the programmer-generated signal WCLK. If the positive edge of WCLK occurs before v_{CWd} reaches the voltage at RWL or after v_{CWd} reaches the voltage at RWH, then 1RESET and 1RESET become active, resetting the system for a period t_d. A precision current source, which tracks with the CWD charging current, allows RWL and RWH to be set by external resistors, creating a temperature-compensated "watchdog" window.

To set up the required frequency window for WCLK, the following conditions must exist:

2)
$$f_L = \frac{1}{RWH} \times C_{WD}, f_H = \frac{1}{RWL} \times C_{WD}$$

The TL7780Q series is characterized for operation from −40°C to 125°C. The TL7780C series is characterized for operation from 0°C to 70°C.

02	n	1	6
00	v		v.

D OR N PACKAGE (TOP VIEW)									
RESIN	Ti	U 16]Vcc						
1CT	2	15	2RESIN						
RESET [3	14]2CT						
RESET [4	13	2RESET						
1VSU	5	12	2RESET						
RWL [6	11	2VSU						
RWH [7	10	WCLK						
GND [8	9	TCWD						

1

TL7780-5, TL7780-12, TL7780-15 SYSTEM SUPERVISORS

logic diagram (each channel)†

[†] Pin numbers for channel 1 are shown; pin 16 is common to both channels.

functional timing diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, V _{CC} (see Note 1) .	20 V
	Input voltage range 1RESIN, 2RESIN, 1VSU, 2VSU)) VCC
	High-level output current 1RESET and 2RESET, IOH:	20 mA
	Low-level output current 1RESET and 2RESET, IOL: 2	20 mA
	Continuous total dissipation See Dissipation Rating	Table
•	Operating virtual junction temperature range	150°C
	Storage temperature range	150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE									
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA =25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING					
D	950 mW	7 6 mW/°C	608 mW	190 mW					
N	1000 mW	12.5 mW/°C	1000 mW	312 mW					

recommended operating conditions

		MIN	MAX	UNIT
Supply VCC		3.5	18	v
Input voliage, V	1RESIN, 2RESIN, 1VSU, 2VSU, VI, See Note 2	-0.3	18	٧
Output voltage (1CT and 2CT), VO		5	V	
Output sink current (1CT and 2CT), IO		50	μA	
High-level output current (1RESET and 2RE	SET), IOH		-16	mA
Low-level output current (IRESET and 2RE		16	mA	
Operating free six temperature T	TL7780Q Series	-40	125	
Operating free-air temperature, 1A	TL7780C Series	0	70	-0

NOTE 2: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for input voltage levels and temperature only.

electrical characteristics over recommended ranges of supply voltage, input voltage, output current, and operating free-air temperature (unless otherwise noted)

supply supervisor section

	PAR	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VOH	OH High-level output voltage RESET		IOH = -15 mA	Vcc-1.5	- 4-		V
VOL	Low-level output voltage	RESET	IOL = 15 mA			0.4	V
		TL7780-5 (5-V sense, 1VSU)		4.5	4.55	4.6	
		TL7780-12 (12-V sense, 1VSU)		10.8	10.9	11.02	
		TL7780-15 (15-V sense, 1VSU)	T _A = 25°C	13.5	13.64	13.77	
	Undervoltage threshold	TL7780-5, TL7780-12, TL7780-15 (programmable sense, 2VSU)		1.485	1.5	1.515	
vt-	(negative-going)	TL7780-5 (5-V sense, 1VSU)		4.46		4.64	V
		TL7780-12 (12-V sense, 1VSU)	1	10.68		11.12	
		TL7780-15 (15-V sense, 1VSU)		13.36		13.91	
		TL7780-5, TL7780-12, TL7780-15 (programmable sense, 2VSU)	1	1.47		1.53	
1		TL7780-5 (5-V sense, 1VSU)		1.	15		
	and and and	TL7780-12 (12-V sense, 1VSU)		36			
Vhys	Hysteresis ($V_{T+} - V_{T-}$)	TL7780-15 (15-V sense, 1VSU)	T _A = 25°C	1	45		mV
	at vsu	TL7780-5, TL7780-12, TL7780-15 (n nmable sense, 2VSU)			5		
կ	Input current	·	V ₁ = 5.5 V or 0.4 V			-10	μА
юн	High-level output current	RESET	V _O = 18 V			50	μA
IOL	Low-level output current	RESET	$V_0 = 0$			-50	μA

electrical characteristics over recommended ranges of supply voltage, input voltage, output current, and operating free-air temperature, Ct at 0.1 μF to GND (unless otherwise noted)

"watchdog" section

0	PARAN	NETER	TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT
VT	Input threshold voltage	WCLK	V _{CC} = 3.5 V to 18 V	0.4		1.8	٧
	Input current	WOLK	VI = 2.4 V			100 200	
4		WULK	V ₁ = 0.4 V	1.0000	10.25		μА
3.8	Charging current	CWD	V _{CC} = 3.5 V to 18 V	45		55	μΑ
10	Output current	RWL and RWH	V _{CC} = 3.5 V to 18 V	45		55	μA

total device

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
1	Succhu ourrant	VELLand DEPIN at Van	$T_A = 25^{\circ}C$			5	m A
1°CC	Supply current	VSO and RESIN at VCC	$T_A = MIN$ to MAX			6.5	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified in the recommended operating conditions.

switching characteristics, $V_{CC} = 5 V$, Cr open, $T_A = 25^{\circ}C$ (see Figure 1)

supply supervisor section

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	F •.	1RESET			100	500	ns
tPHL	Propagation delay time, high-to-low-level output	Г ·. `	2RESET]		100	500	ns
TPLH	Propagation delay time, low-to-high-level output	2 .	2RESET]		100	500	ns
tPHL	Propagation delay time, high-to-low-level output	1 RESIN	1RESET	Ci = 15 pE		100	500	ns
tr	Rise time	IDECET.	ODECET				75	
tr	Fall time	.INESEI (DI ZRESET				50	ns
tr	Rise time	IDECET	AT ODECET	1			75	-
tf	Fall time	INCOLI	JI ZNEGEI				50	ns

"watchdog" section

	PARAMETER	FROM TO (INPUT) (OUTPUT)		TEST CONDITIONS	MIN TYP		МАХ	UNIT
t PLH	Propagation delay time, low-to-high-level output	WCLK	1RESET	CL = 15 pF,		100	500	ns
tPHL	Propagation delay time, high-to-low-level output	WCLK	1RESET	$R_{WL} = 60 k\Omega$,		100	500	ns
t PLH	Propagation delay time, low-to-high-level output	WCLK	1RESET	$R_{WH} = 60 k\Omega$		100	500	ns
tPHL	Propagation delay time, high-to-low-level output	WCLK	1RESET	CWD = 2 V		100	500	ns
t PLH	Propagation delay time, low-to-high-level output	WCLK	CWD	C _{WD} = 15 pF		100	500	ns
TPHL	Propagation delay time, high-to-low-level output	WCLK	CWD	(probe capacitance)		100	500	ns

2 Data Sheets

•

uA723M, uA723C PRECISION VOLTAGE REGULATORS

D1063, AUGUST 1972-REVISED OCTOBER 1988

- 150-mA Load Current Without External Power Transistor
- Typically 0.02% Input Regulation and 0.03% Load Regulation (uA723M)
- Adjustable Current Limiting Capability
- Input Voltages to 40 V
- Output Adjustable from 2 to 37 V
- Direct Replacement for Fairchild μA723M and μA723C

description

The uA723M and uA723C are monolithic integrated circuit voltage regulators featuring high ripple rejection, excellent input and load regulation, excellent temperature stability, and low standby current. The circuit consists of a temperature-compensated reference voltage amplifier, an error amplifier, a 150-mA output transistor, and an adjustable output current limiter.

Data Sheets

The uA723M and uA723C are designed for use in positive or negative power supplies as a series, shunt, switching, or floating regulator. For output currents exceeding 150 mA, additional pass elements may be connected as shown in Figures 4 and 5.

The uA723M is characterized for operation over the full military temperature range of -55 °C to 125 °C. The uA723C is characterized for operation from 0 °C to 70 °C.

functional block diagram

PRO: I'I'N' comments contain information on dris, Products conform to out the petitive of Texar ents stundard watranty. Production proces inot necessarily include testing of all par

uA723M, uA723C PRECISION VOLTAGE REGULATORS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Peak voltage from V _{CC+} to V _{CC-} ($t_W \le 50 \text{ ms}$)
Continuous voltage from V_{CC+} to V_{CC-} 40 V
Input-to-output voltage differential
Differential input voltage to error amplifier $\dots \pm 5$ V
Voltage between noninverting input and V _{CC} - · · · · · · · · · · · · · · · · · ·
Current from Vz
Current from REF
Continuous total dissipation (see Note 1) See Dissipation Rating Table
Operating free-air temperature range: uA723M Circuits55°C to 125°C
uA723C Circuits
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or U package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

NOTE 1: Power dissipation = $[I_{(standby)} + I_{(ref)}] V_{CC} + [V_C - V_O] I_O$.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	T _A = 70°C POWER RATING	TA = 125°C POWER RATING
D	950 mW	7.6 mW/°C	25 °C	608 mW	
J (uA-M)	1000 mW	11.0 mW/°C	59 °C	880 mW	275 mW
J (uA-C)	1000 mW	8.2 mW/°C	28 °C	656 mW	
N	1000 mW	9.2 mW/°C	41 °C	736 mW	
U	675 mW	5.4 mW/°C	25 °C	432 mW	135 mW

recommended operating conditions

	MIN	MAX	UNIT
Input voltage, VI	9.5	40	V
Output voltage, VO	2	37	V
Input-to-output voltage differential, VC - VO	3	38	V
Output current, IO		150	mA

DADAMETER	TEAT CONDITIONAL				uA723M					
PARAMETER	iest G	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
Input regulation	$V_{\rm I} = 12$ V to $V_{\rm I} = 15$ V	25°C	12000	0.01%	0.1%		0.01%	0.1%		
	$V_{ } = 12 V \text{ to } V_{ } = 40 V$		25 °C	0.02% 0.2%						
	$V_{I} = 12 V \text{ to } V_{I} = 15 V$		Full range			0.3%				
Ripple rejection	f = 50 Hz to 10 kHz,	25 °C	74							
	f = 50 Hz to 10 kHz,	C(ref) = 5 µF	25°C	10.5	86		5.00	qB		
Output regulation		25°C	25°C -0.03% -0.15% Il range -0.6%			1				
	10 = 1 mA to 10 = 50 mA	Full range				1	1.7			
Reference voltage, V(ref)			25°C	6.95	7.15	7.35	6.8	7.15	7.5	v
Standby current	V ₁ = 30 V,	l ₀ ≈ 0	25°C		2.3	3.5	1	2.3	4	mA
Temperature coefficient of output voltage			Fuil range		0.002	0.015		0.003	0.015	%/°C
Short-circuit output current	$R_{SC} = 10 \Omega,$	V ₀ ≈ 0	25°C		65			65		mA
Output noise voltage	BW = 100 Hz to 10 kHz,	$C_{(ref)} = 0$	25°C	20						
	BW = 100 Hz to 10 kHz,	25°C		2.5		1	μV			

electrical characteristics at specified free-air temperature (see Notes 2 and 3)

 $^{\dagger}\text{Full}$ range for uA723M is $-55\,^{o}\text{C}$ to 125 ^{o}C and for uA723C is 0 ^{o}C to 70 $^{o}\text{C}.$

NOTES: 2. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier \leq 10 k Ω . Unless otherwise specified, V_I = V_{CC+} = V_C = 12 V, V_{CC-} = 0, V₀ = 5 V, I₀ = 1 mA, R_{SC} = 0, and C_{ref} = 0.

3. Pulse testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

schematic

uA723M, uA723C Precision Voltage Regulators

TYPICAL APPLICATION DATA

OUTPUT VOLTAGE (V)	APPLICABLE FIGURES (SEE NOTE 3)	FIXED OUTPUT ± 5%		OUTPUT ADJUSTABLE ± 10% (SEE NOTE 4)		OUTPUT VOLTAGE	APPLICABLE FIGURES	FIXED OUTPUT ±5%		OUTPUT ADJUSTABLE ± 10% (SEE NOTE 4)			
		R1 (kΩ)	R2 (kΩ)	R1 (kΩ)	Ρ1 (kΩ)	P2 (kΩ)	(V)	(SEE NOTE 3)	R1 (kΩ)	R2 (kΩ)	R1 (kΩ)	Ρ1 (kΩ)	P2 (kΩ)
+ 3.0	1,5,6,9,11, 12 (4)	4.12	3.01	1.8	0.5	1.2	+ 100	7	3.57	105	2.2	10	91
+ 3.6	1,5,6,9,11, 12 (4)	3.57	3.65	1.5	0.5	1.5	+ 250	7	3.57	255	2.2	10	240
+5.0	1,5,6,9,11, 12 (4)	2.15	4.99	0.75	0.5	2.2	- 6 (Note 5)	3, (10)	3.57	2.43	1.2	0.5	0.75
+6.0	1,5,6,9,11, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	2,4, (5,6, 9, 12)	1.87	7.15	0.75	10	2.7	- 12	3, 10	3.57	8.45	1.2	0.5	3.3
+ 12	2,4, (5,6, 9, 12)	4.87	7.15	2.0	1.0	3.0	- 15	3, 10	3.57	11.5	1.2	0.5	4.3
+15	2,4, (5, 6, 9, 12)	7.87	7.15	3.3	1.0	3.0	- 28	3, 10	3.57	24.3	1.2	0.5	10
+ 28	2,4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	- 45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	- 100	8	3.57	95.3	2.2	10	91
+ 75	7	3.57	78.7	2.2	10	68	- 250	8	3.57	249	2.2	10	240

TABLE 1. RESISTOR VALUES ($k\Omega$) FOR STANDARD OUTPUT VOLTAGES

NOTES: 3. The R1/R2 divider may be across either VO or V(ref). If the divider is across V(ref), use the figure numbers without parentheses. If the divider is across VO, use the figure numbers in parentheses.

4. To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown below.

ADJUSTABLE OUTPUT CIRCUIT

5. The device requires a minimum of 9 V between V_{CC+} and V_{CC-} when V_O is equal to or more positive than -9 V.

TYPICAL APPLICATION DATA

TABLE 2. FORMULAS FOR INTERMEDIATE OUTPUT VOLTAGES

NOTES: 3. The R1/R2 divider may be across either V₀ or V_{ref}. If the divider is across V_{ref} and uses figures without parentheses, use figures with parentheses when the divider is across V₀.

4. To make the voltage adjustable, the R1/R2 divider shown in the figures must be replaced by the divider shown at the right.

5. The device requires a minimum of 9 V between V_{CC+} and V_{CC-} when V_O is equal to or more positive than -9 V.

uA723M, uA723C Precision Voltage Regulators

B. R3 may be eliminated for minimum component count.

Use direct connection (i.e., $R_3 = 0$).

FIGURE 3. NEGATIVE-VOLTAGE REGULATOR

NOTES: A. R3 = $\frac{R1 \cdot R2}{R1 + R2}$ for minimum α_{VO} .

VI

B. R3 may be eliminated for minimum component count. Use direct connection (i.e., $R_3 = 0$).

FIGURE 2. BASIC HIGH-VOLTAGE REGULATOR $(V_0 = 7 \text{ TO } 37 \text{ VOLTS})$

FIGURE 4. POSITIVE-VOLTAGE REGULATOR (EXTERNAL N-P-N PASS TRANSISTOR)

NOTE 6: When 10-lead uA723U devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series with the OUT terminal.

TYPICAL APPLICATION DATA

uA723M, uA723C PRECISION VOLTAGE REGULATORS

TYPICAL APPLICATION DATA

FIGURE 7. POSITIVE FLOATING REGULATOR

FIGURE 6. FOLDBACK CURRENT LIMITING

FIGURE 8. NEGATIVE FLOATING REGULATOR

NOTE 6: When 10-lead uA723U devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series with the OUT terminal.

Data Sheets

uA723M, uA723C PRECISION VOLTAGE REGULATORS

FIGURE 10. NEGATIVE SWITCHING REGULATOR

- NOTES: 5. The device requires a minimum of 9 V between V_{CC+} and V_{CC-} when V_0 is equal to or more positive than -9 V.
 - When 10-lead uA723U devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series with the OUT terminal.
 - 7. L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with an 0.009-inch air gap.

TYPICAL APPLICATION DATA

NOTE A: Current limit transistor may be used for shutdown if current limiting is not required.

FIGURE 11. REMOTE SHUTDOWN REGULATOR WITH CURRENT LIMITING

NOTE 6: When 10-lead uA723U devices are used in applications requiring V_Z, an external 6.2-V regulator diode must be connected in series with the OUT terminal.

2 Data Sheets

D2154, MAY 1976-REVISED APRIL 1988

- 3-Terminal Regulators
- Output Current Up to 1.5 A
- No External Components
- Internal Thermal Overload Protection
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild µA7800 Series

description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the powerpass element in precision regulators.

schematic

NOMINAL OUTPUT VOLTAGE	REGULATOR
5 V	uA7805C
6 V	uA7806C
8 V	uA7808C
8.5 V	uA7885C
10 V	uA7810C
12 V	uA7812C
15 V	uA7815C
18 V	uA7818C
24 V	uA7824C

KC PACKAGE

14 [1]1. [1]0], [14] A sourcents contain information - .reading and the letter of fexes instruments standard warranty. Pro- "unin processing does not necessarily include texts - of all parameters.

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input voltage uA7824C 40 V All others 35 V Continuous total dissipation at 25 °C free-air temperature (see Note 1) 2 W Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 15 W Operating free-air, case, or virtual junction temperature range 0 to 150 °C			uA78C	UNIT
All others 35 Continuous total dissipation at 25 °C free-air temperature (see Note 1) 2 W Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 15 W Operating free-air, case, or virtual junction temperature range 0 to 150 °C	Input voltage	uA7824C	40	
Continuous total dissipation at 25 °C free-air temperature (see Note 1) 2 W Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 15 W Operating free-air, case, or virtual junction temperature range 0 to 150 °C	where courses	All others	35	v
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1) 15 W Operating free-air, case, or virtual junction temperature range 0 to 150 °C	Continuous total dissipation at 25 °C free-air temperature (see Note 1)	2	w	
Operating free-air, case, or virtual junction temperature range 0 to 150 °C	Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)	15	w	
	Operating free-air, case, or virtual junction temperature range	0 to 150	°C	
Storage temperature range -85 to 150 °C	Storage temperature range		-85 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds			°C

N

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MP	MAX	UNIT
	uA7805C		25	
	uA78060	8	25	10-11
	u:	10.5	25	
	uA -	10.5	25	
nput voltage, Vj uA7810C			28	v
	uA7812C	14.5	30	1
	uA7815C	17.5	30]
	uA	21	33	
	UAivetu	27	38	
Output current, IO			1.5	A
Operating virtual junction temperature, TJ		0	125	°C

uA7805C electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETER	TERT CONDITIONS		uA7805	C	
PARAMETER	TEST CONDITIONS ¹		MIN TYP	MAX	UNIT
		25 °C	4.8 5	5.2	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 7 \text{ V to 20 V},$ P $\leq 15 \text{ W}$	0°C to 125°C	4.75	5.25	V
Input segulation	V _I = 7 V to 25 V	05.00	3	100	
input regulation	V ₁ = 8 V to 12 V	25°C	1	50	mv
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	0°C to . C	62 78		dB
Output regulation	IO = 5 mA to 1.5 A		15	100	
	IO = 250 mA to 750 mA	25-C	5	50	mv
Output resistance	f = 1 kHz	0°C to 125°C	0.017		Ω
Temperature coefficient of output voltage	$I_0 = 5 \text{ mA}$	0°C to 125°C	-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C	40		μV
Dropout voltage	I ₀ = 1 A	25 °C	2.0	. i	V
Bias current		25 °C	4.2	8	mA
Bias current change	$V_{I} = 7 V \text{ to } 25 V$	0.00 += 1.05.00		1.3	
	$I_0 = 5 \text{ mA to 1 A}$	0°C to 125°C		0.5	mA
Short-circuit output current		25 °C	750		mA
Peak output current		25°C	L.L		A

uA7806C electrical characteristics at specified virtual junction temperature, $V_I = 11 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS		u	A7800	C .	
FANAMETEN	TEST CONDITIONS		Mr.	THE	MAX	
		25°C	0.70	6	6.25	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 8 \text{ V to 21 V}, P \le 15 \text{ W}$	0°C to 125°C	5.7	2	6.3	V
	V ₁ = 8 V to 25 V	0500		5	120	12.00
input regulation	V ₁ = 9 V to 13 V	25°C		1.5	60	mV
Ripple rejection	$V_{I} = 9 V \text{ to } 19 V$, $f = 120 \text{ Hz}$	0°C to 125°C	59	75		dB
Output regulation	IO = 5 mA to 1.5 A	05.00		14	120	1
Output regulation	IO = 250 mA to 750 mA	20-0		4	60	mV
Output resistance	f = 1 kHz	0 °C to 125 °C		0.019		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0 °C to 125 °C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		45		μV
Dropout voltage	I ₀ = 1 A	25°C		2.0		V
Bias current		25 °C		4.3	8	mA
Bias outrant change	V ₁ = 8 V to 25 V	0.00 + 1.05.00			1.3	
bias current change	$I_0 = 5 \text{ mA to 1 A}$	0 * 0 125 * 0		-	0.5	1 mA
Short-circuit output current		25°C		550		mA
Peak output current		25°C		2.2		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

2

uA7808C, uA7885C POSITIVE-VOLTAGE REGULATORS

uA7808C electrical characteristics at specified virtual junction temperature, $V_I = 14 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETER	TEST CONDITIONS!		u	A7808	0	1.00.07
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	
		25°C	7.7	8	0.3	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = 10.5 \text{ V to 23 V},$ P $\leq 15 \text{ W}$	0°C to 125°C	7.6		8.4	V
1	V ₁ = 10.5 V to 25 V	0500		6	160	
input regulation	V _I = 11 V to 17 V'	7 20°0		2	80	1 mv
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	55	72		dB
0	Io = 5 mA to 1.5 A	05.00		12	- i '	
Output regulation	lo = 250 mA to 750 mA	7 20-0		4	60	
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	lo = 5 mA	0°C to 125°C	- 1	-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV
Dropout voltage	1 ₀ = 1 A	25°C		U		V
Bias current		25°C		4.3	8	mA
Disa success shares	V _I = 10.5 V to 25 V	000 + 10500			1	
Bias current change	$I_0 = 5 \text{ mA to } 1 \text{ A}$	70-0 10 125-0			0.5	Am
Short-circuit output current		25 °C	19-19-19-19-19-19-19-19-19-19-19-19-19-1	450	-	mA
Peak output current		25°C		2.2		A

uA7885C electrical characteristics at specified virtual junction temperature, $V_I = 15 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETER	TECT CONDITIONS		u	A7885	C	LIAUT
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		25°C	8.15	8.5	0.30	
Output voltage [‡]	$I_0 = 5 \text{ mA to 1 A}, V_i = 11 \text{ V to } 23.5 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	8.1		8.9	V
	V _I = 10.5 V to 25 V	25.00		6	170	
Input regulation	V _I = 11 V to 17 V	25%		2	85	1 mv
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	54	70	1	dB
	Io = 5 mA to 1.5 A	05.00		12	170	
Output regulation	lo = 250 mA to 750 mA	7 25 1	a	4	85	1 mv
Output resistance	f = 1 kHz	0°C to 125°C	0.000	0.016		Ω
Temperature coefficient of output voltage	I ₀ = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		55		μV
Dropout voltage	10 = 1 A	25°C		2.0		V
Bias current		25°C		4.3	8	mA
Bias current change	VI = 10.5 V to 25 V	000 10 125.00		10	1	
	$i_0 = 5 \text{ mA to } 1 \text{ A}$				0.5	InA
Short-circuit output current		25°C		- e - 1		mA
Peak output current		25°C		4.4		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

N Data Sheets

				uA7810C		
PARAMETER	TEST CONDITIONS'		MIN	TYP	MAX	UNIT
Server and server and	time and the second second second second	25°C	9.6	10	10.4	
Output voltage [‡]	$I_0 = 5 \text{ mA to 1 A}, V_1 = 12.5 \text{ V to } 25 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	9.5	10	10.5] v
1	V ₁ = 12.5 V to 28 V	0500		7	200	
Input regulation	VI = 14 V to 20 V	7 25 %		2	100	mv
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	0°C to . C	55	71		dB
Output constantion	IO = 5 mA to 1.5 A	25.00	1	12	200	
Output regulation	lo = . • mA to 750 mA	7 20-0		4	100	mv
Output resistance	f = 1 sol 1z	0°C to C		c ·		Ω
Temperature coefficient of output voltage	$i_0 = 5 \text{ mA}$	0°C to 125°C		- 1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C	1	70		μV
Dropout voltage	IO = 1 A	25°C		2.0	And the second s	V
Bias current		25°C	1000	4.3	8	mA
D'as success also as	V ₁ = 12.5 V to 28 V	000 + 105 00	č	1.1	1	-
Bias current change	$I_0 = 5 \text{ mA to 1 A}$	- 0°C to 125°C	1.00		0.5	
Short-circuit output current		25°C		400		mA
Peak output current		25 °C		2.2		A

uA7810C electrical characteristics at specified virtual junction temperature, $V_I = 17 V$, $I_O = 500 mA$ (unless otherwise noted)

uA7812C electrical characteristics at specified virtual junction temperature, $V_I = 19 V$, $I_O = 500 mA$ (unless otherwise noted)

	TECT CONDITIONS		U	A7812	C	LIANT
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNIT
		25 °C	11.5	12	12.5	
Output voltage‡	$I_0 = 5 \text{ mA to 1 A}, V_1 = 14.5 \text{ V to 27 V}, P \le 15 \text{ W}$	0°C to 125°C	11.4		12.6	
1	V _I = 14.5 V to 30 V	05.00		10	240	
Input regulation	V _I = 16 V to 22 V	25%	11.1.4	3	120	mv
Ripple rejection	V _I = 15 V to 25 V, f = 120 Hz	0°C to 125°C	55	71		dB
Output regulation	IO = 5 mA to 1.5 A	25.90		12	240	
Output regulation	Ig = 250 mA to 750 mA	7 25-0	1	4	120	mv
Output resistance	f = 1 kHz	0°C to 125°C		0.018		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		- 1.0		mV/ºC
Output noise voltage	f = 10 Hz to 100 kHz	25°C		75		μV
Dropout voltage	I ₀ = 1 A	25°C		2.0		V
Bias current		25°C		4.3	8	mA
Dies ausses about	V ₁ = 14.5 V to 30 V	000 10500			1	
Bias current change	IO = 5 mA to 1 A	0°C to 125°C		0.		mA
Short-circuit output current		25°C		350		mA
Peak output current		25°C		2.2		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA7815C electrical characteristics at specified virtual junction temperature, VI = 23 V, I_O = 500 mA (unless otherwise noted)

DADAMETER	TEAT ADDITIONAL			47411.	c	
PARAMETER	TEST CONDITIONS'		MIN	TYP	MAX	UNIT
		25°C	14.4	15	15.6	
Output voltage [‡]	$I_0 = 5 \text{ mA to 1 A}, V_1 = 17.5 \text{ V to 30 V},$ P $\leq 15 \text{ W}$	0°C to 125°C	14.25		15.75	V
fam. A standard and	V _I = 17.5 V to 30 V	05.00		11	300	
input regulation	V ₁ = 20 V to 26 V	7 25%		3	150	mv
Ripple rejection	V ₁ = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
	IO = 5 mA to 1.5 A			12	300	
Output regulation	IO = 250 mA to 750 mA	25%		4	150	mv
Output resistance	f = 1 kHz	0°C to '. C	(0.019		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		- 1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		90		μV
Dropout voltage	I ₀ = 1 A	25 °C	1	2.0		V
Bias current		25°C	·	4.4	8	mA
Disa anna a baasa	V _I = 17.5 V to 30 V	000 + 10500			1	
Bias current change	IO = 5 mA to 1 A				0.5	1 mA
Short-circuit output current		25 °C		230	1	mA
Peak output current		25°C	1	2.1		A

uA7818C electrical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETER	TEST CONDITIONS		12.	uA7818C		
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNIT
		25 °C	17.5	18	10.7	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 21 \text{ V to 33 V},$ P $\leq 15 \text{ W}$	0°C to 125°C	17.1		18.9	v
lana and at a	VI = 21 V to 33 V	05.00		15		
Input regulation	V _I = 24 V to 30 V	25%		5	- Sterij	mv
Ripple rejection	V _I = 22 V to 32 V, f = 'Iz	0°C to 125°C	53	69		dB
0	lo = 5 mA to 1.5 A	05.00		12		
Output regulation	IO = 250 mA to 750 mA	25%	4 .			mv
Output resistance	f = 1 kHz	0°C to 125°C		0.022		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		- 1.0		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		110	-	μV
Dropout voltage	I ₀ = 1 A	25°C		2.0		V
Bias current		25°C		4.5	8	mA
Bias current change	$V_{ } = 21 V \text{ to } 33 V$	0.00 + 125.00			1	
	$I_0 = 5 \text{ mA to } 1 \text{ A}$	0°C to 125°C		762 7.	0.5	MA
Short-circuit output current		25°C		200		mA
Peak output current		25°C		2.1		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

	TEST CONDITIONS		u	A7824	C	LINUT
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	
		25 °C	23	24	25	
Output voltage [‡]	$I_0 = 5 \text{ mA to 1 A}, V_1 = 27 \text{ V to 38 V},$ P $\leq 15 \text{ W}$	0°C to 125°C	22.8		25.2	v
	V ₁ = 27 V to 38 V	05.00		18	480	
Input regulation	VI = 30 V to 36 V	20°C		6	240	mv
Ripple rejection	V ₁ = 28 V to 38 V, f = 120 Hz	0°C to 125°C	50	66		dB
.	$I_0 = 5 \text{ mA to } 1.5 \text{ A}$	25.90		12	480	
Output regulation	IO = 250 mA to 750 mA	25-0		4	240	1
Output resistance	f = 1 kHz	0°C to 125°C		0.028		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		- 1.5		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		170		μV
Dropout voltage	$I_0 = 1 A$	25 °C		2.0		V
Bias current		25 °C		4.6	8	mA
Bias current change	V _I = 27 V to 38 V				1	
	I ₀ = 5 mA to 1 A	0°C to 125°C	Sec. al		0.5	
Short-circuit output current		25°C		150		mA
Peak output current		25°C		2.1		A

uA7824C electrical characteristics at specified virtual junction temperature, $V_I = 33 V$, $I_O = 500 mA$ (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

Data Sheets N

2 Data Sheets

D2203, JANUARY 1976-REVISED FI RY 1988

- 3-Terminal Regulators
- Output Current Up to 100 mA
- No External Components
- Internal Thermal Overload Protection
- Internal Short-Circuit Limiting
- Direct Replacement for Fairchild µA78L00 Series

NOMINAL OUTPUT VOLTAGE	5% OUTPUT VOLTAGE TOLERANCE	10% OUTPUT VOLTAGE TOLERANCE
2.6 V	uA78L02AC	uA78L02C
5 V	uA78L05AC	uA78L05C
6.2 V	UA78L06AC	uA78L06C
8 V	uA78L08AC	uA78L08C
9 V	uA78L09AC	uA78L09C
10 V	uA78L10AC	uA78L10C
12 V	uA78L12AC	uA78L12C
15 V	uA78L15AC	uA78L15C

NC - No internal connection

description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power-pass elements to make high-current voltage regulators. One of these regulators can deliver up to 100 mA of output current. The internal limiting and thermal shutdown features of these regulators make them essentially immune to overload. When used as a replacement for a Zener diode-resistor combination, an effective improvement in output impedance can be obtained together with lower-bias current.

PRODUCTION I-A1* iscuments contain information current as of p:1 'on date. Products conform to spt i' i' as put two terms of Texas r***, ents sta ' I a, rrenty. Production processon; I ** snot netwar:II, include testing of all para; I -.

schematic

Resistor values shown are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)

	uA78L02AC, uA78L02C THRU uA78L10AC, uA78L10C	uA78L12AC, uA78L12C uA78L15AC, uA78L15C	UNIT				
Input voltage	30	35	V				
Continuous total dissipation (see Note 1)	See Dissipation Rating Tables 1 and 2						
Operating free-air, case, or virtual junction temperature range	0 to 150	0 to 150	°C				
Storage temperature range	-65 to 150	-65 to 150	°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C				

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FAL II	DERATE ABOVE TA	T _A = 70°C POWER RATING
D	825 mW	5.8 r	25 °C	464 mW
JG	825 mW	6.6 mW/°C	25 °C	528 mW
LPT	775 mW	6.2 mW/°C	25 °C	496 mW

DISSIPATION RATING TABLE 1 - FREE-AIR TEMPERATURE

[†]The LP package dissipation rating is based on thermal resistance R_{ØJA} measured in still air with the device mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in) above the socket.

DISSIPATION	RATING	TABLE 2 -	CASE	TEMPERATURE

DACKACE	T _C ≤	25°C	DERATING	DERATE	Tc =	125°C
PACKAGE	PO 🙃	ATING	FACTOR	ABOVE TC	PO	RATING
D		mW	19.6 mW/°C	65 °C		nW
JG	1600	mW	17.2 mW/°C	57 °C	430	mW
LP	1600	Wm (28.6 mW/°C	94 °C	715	i mW

recommended operating conditions

		MIN	MAX	UNIT
	uA78L02C, uA78L02AC	4.75	20	
	uA78L05C, uA78L05AC	7	20	1
	uA78L06C, uA78L06AC	8.5	20	1
Input voltage. Ve	uA78I UA78L08AC	10.5	23	1 .
input voltage, vi	uA78I uA78L09AC	11.5	24	1 V
	uA78L10C, uA78L10AC	12.5	25	1
	uA78L ¹ . uA78L12AC	14.5	27	1
	uA78L,, uA78L15AC	17.5	30	1
Output current, IO		1	100	mA
Operating virtual junction temperature, TJ		0	125	°C

DA DA METER	TEAT COMPLETIONAL		uA	179102	AC	020187An			LIAUT
PARAMETER	TEST CONDITIONS			1.0	MAX	T vary	1.1	MAX	UNIT
		25 °C	2.5	2.6	2.7	÷	2.6	2.8	
Output voltage [‡]	VI = 4.75 V to 20 V, IO = 1 mA to 40 mA	0°C to	2.45		2.75	2.35		2.85	v
	Io = 1 mA to 70 mA	125°C	2.45		2 75	2.35			
Input regulation	VI = 4.75 V to 20 V	05.00	1.	20	•		20		
	$V_{1} = 5 V \text{ to } 20 V$	25-0		16			16	- · · ·	mv
Ripple rejection	VI = 6 V to 16 V f = 120 Hz	25°C	43	51		42	51		dB
0	lo = 1 mA to * mA	0500		12	50		12	50	
Output regulation	Io = 1 mA to to thA	25 %	1	6	25		6	25	mv
Output noise voltage	f = 10 Hz to 100 kHz	25°C		30			30		μV
Dropout voltage		25 °C	1	1.7			1.7		V
		25 °C		3.6	6		3.6	6	1
Bias current		125°C			5.5			5.5	mA
and the second second	V ₁ = 5 V to 20 V	0°C to			2.5			2.5	1
Bias current change	lo = 1 mA to 40 mA	125°C		-	0.1			0.2	mA

uA78L02AC, uA78L02C electrical characteristics at specified virtual junction temperature, $V_1 = 9 V$, $I_0 = 40 \text{ mA}$ (unless otherwise noted)

uA78L05AC, uA78L05C electrical characteristics at specified virtual junction temperature, VI \approx 10 V, IO = 40 mA (unless otherwise noted)

BARA METER			114	ATHL:	AC.		A78L05	C	LIAUT	
PARAMETER	TEST CONDITIONS'		T sars.	T .P	MA+	MIN	TYP	MAX	UNIT	
		25°C	4.0	5	U.2	4.u	5	5.4	1.5.5	
Output voltage [‡]	$V_{I} = 7 V \text{ to } 20 V, I_{O} = 1 \text{ mA to } 40 \text{ mA}$	0°C to	4.75		5.25	4.5		5.5	v	
	IO = 1 mA to 70 mA	125°C	4.75		100	4.5		55		
	V ₁ = 7 V to 20 V	0500		32			32	-		
	V1 = 8 V to 20 V			26	- · 1		26		mv	
Ripple rejection	V ₁ = 8 V to 18 V, f = 120 Hz	25 °C	41	49		40	49	-	dB	
	Io = 1 mA to 100 mA	05.00		15	60		15	60		
Output regulation	Ig = 1 mA to 40 mA	25%		8	30		8	30	mv	
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		42			42		μV	
Dropout voltage		25 °C		1.7			1.7		V	
		25°C		3.8	6		3.8	6		
Bias current		125°C	-		5.5		100	5.5	mA	
Bias current change	V1 = 8 V to 20 V	0°C to			1.5			1.5	1.11	
	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	125°C			0.1			0.2	mA	

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

DADAMETED	TEST CONDITIONS		uA		AC	u.	A '. 1. I	C	-	
FARAINETER	TEST CONDITIONS.		MIN	11	MAX	MIN	11	MAX	UNIT	
		25°C	5.95	6.2	6.45	5.7	6.2	6.7		
Output voltage [‡]	V ₁ = 8.5 V to 20 V, I ₀ = 1 mA to 40 mA	0°C to	5.9		6.5	5.6		6.8	v	
	Io = 1 mA to 70 mA	125°C	5.9		6.5	5.6		6.8		
In a second as to a	V ₁ = 8.5 V to 20 V	05.00		35	175		35	200		
Ripple rejection	$V_{I} = 9 V$ to 20 V	25 °C	1	29	125		29	150	mV	
Ripple rejection	VI = 10 V to 20 V f = 120 Hz	25°C	40	48	100	39	48		dB	
Output regulation	IO = 1 mA to ' mA	05.00		16	80		16	80		
Output regulation	Io = 1 mA to to mA	25 °C		9	40		9	40	mV	
Output noise voltage	f = 10 Hz to 100 kHz	25°C	1	46			46		μV	
Dropout voltage		25°C	1	1.7			1.7		V	
Pine automat		25°C	1	3.9	6	1	3.9	6		
Bias current		125°C	1		5.5			5.5	mA	
	V ₁ = 9 V to 20 V	0°C to			1.5	1		1.5	10.000	
Bias current change	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	125°C			0.1			0.2	mA	

uA78L06AC, uA78L06C electrical characteristics at specified virtual junction temperature, $V_I = 12 V$, $I_O = 40 \text{ mA}$ (unless otherwise noted)

uA78L08AC, uA78L08C electrical characteristics at specified virtual junction temperature, VI = 14 V, $I_0 = 40$ mA (unless otherwise noted)

DADAMETED	TEST CONDITIONS		114	78L08	AC	u			
PARAMETER	TEST CONDITIONS		TAP.	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C		8	8.3	7.36	8	8.64	
Output voltage [‡]	$V_{\rm I} = 10.5$ V to 23 V, $I_{\rm O} = 1$ mA to 40 mA	0°C to	7.6		8.4	7.2		8.8	v
	IO = 1 mA to 70 mA	125°C	7.6	() () ()	8.4	7.2		8.8	1
(Income an inclusion)	VI = 10.5 V to 23 V	05.00		42	175		42	- · · ·	
nput regulation -	V _I = 11 V to 23 V	25°C		36	125	1	36	100	mV
Ripple rejection	VI = 13 V to 23 V, f = 120 Hz	25°C	37	46		36	46		dB
<u></u>	IO = 1 mA to 100 mA	0500		18	80		18	80	
Output regulation	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	25-0	1	10	40		10	40	mv
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		54			54		μV
Dropout voltage		25°C		1.7			1.7		V
Dies ourset		25°C		4	6		4	6	
Bias current		.c			5.5			5.5	mA
Dies survey about	V ₁ = 11 V to 23 V	to			1.5		- inchance	1.5	12.11
bias current change	Io = 1 mA to 40 mA	125°C			0.1			0.2	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

DADAMETED	TEST CONDITIONS!		uA7 11 HAC			uA78L09C			LIMIT	
PARAMETER	TEST CONDITIONS,		MIN	·	14.	MIN	TYP	MAX	UNIT	
		25 °C	8.6	9	J.+	8.3	9	9.7		
Output voltage [‡]	$V_{ } = 12 V \text{ to } 24 V, I_{0} = 1 \text{ mA to } 40 \text{ mA}$	0°C to	8.55		9.45	8.1		9.9	v	
	IO = 1 mA to 70 mA	125°C	8.55	-	9.45	8.1		٩q		
la sua su desta s	V ₁ = 12 V to 24 V	25.00		45	175		45	-:: -		
input regulation	V ₁ = 13 V to 24 V	25%		40	125		40		mv	
Ripple rejection	VI = 15 V to 25 V, f = 120 Hz	25°C	38	45		36	45		dB	
0	10 = 1 mA to 100 mA	05.00		19	90		19	90		
Output regulation	10 = 1 mA to 40 mA	25 °C	1 Carlot	11	40	1000	11	40	1 "	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		58		1	58	_	μV	
Dropout voltage		25°C		1.7		-	1.7		v	
B ¹		25°C		4.1	6	1	4.1	6		
Bias current	the second second and the	125°C			5.5			5.5	mA	
Bias current change	V ₁ = 13 V to 24 V	0°C to			1.5			1.5		
	$l_0 = 1 \text{ mA to } 40 \text{ mA}$	125°C			0.1			0.2	mA	

uA78L09AC, uA78L09C electrical characteristics at specified virtual junction temperature, $V_1 = 16 V$, $I_0 = 40 mA$ (unless otherwise noted)

uA78L10AC, uA78L10C electrical characteristics at specified virtual junction temperature, VI = 17 V, $I_0 = 40$ mA (unless otherwise noted)

				78L10	AC	u	AT.4L10	С		
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	111	MAX	UNIT	
		25°C	9.6	10	10.4	9.2	10	10.8		
Output voltage [‡]	$V_{I} = 13 V$ to 25 V, $I_{O} = 1 mA$ to 40 mA	0°C to	9.5		10.5	9		11	v	
	IO = 1 mA to 70 mA	125°C	9.5	1.00	10.5	9	1.00	11	(
	V ₁ = 13 V to 25 V	05.00		51	175	1	51	— .		
input regulation	V ₁ = 14 V to 25 V	25°C		42	125		42		mv	
Ripple rejection	V ₁ = 15 V to 25 V f = 120 Hz	25°C	37	44	1	36	44		dB	
0	$I_0 = 1 \text{ mA tc} \cdot \text{mA}$	25°C		20	90		20	90		
Output regulation	Io = 1 mA to +v mA			11	40		11	40	mv	
Output noise voltage	f = 10 Hz to 100 kHz	25°C		62			62		μV	
Dropout voltage		25°C		1.7			1.7	2.004	V	
and the second second		25°C		4.2	6	100	4.2	6		
Bias current		125°C			5.5			5.5	mΑ	
Bias current change	VI = 14 V to 25 V	0°C to			1.5			1.5		
	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	125°C			0.1			0.2	mA	

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

OADAMETER	TEAT CONDITIONAT		uA	78L12	AC	u.	A78L12	C	
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX 12.9 13.2 13.2	UNIT
		25°C	11.5	12	12.5	11.1	12	12.9	
Output voltage [‡]	V _I = 14 V to 27 V, i _O = 1 mA to 40 mA	0°C to	11.4		12.6	10.8		13.2	v
	Io = 1 mA to 70 mA	125°C	11.4		12.6	10.8		13.2 	
1	V ₁ = 14.5 V to 27 V	05.00		55	250	1000	55		
Input regulation $V_I = 16 \ V \ to \ 27 \ V$ Ripple rejection $V_I = 15 \ V \ to \ 25 \ V, \ f = 120 \ Hz$	25°C		49	200		49		mv	
Ripple rejection	V ₁ = 15 V to 25 V, f = 120 Hz	25 °C	37	42		36	42	7	dB
	Io = 1 mA to 100 mA			22	100		22	100 50	
Output regulation	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	25 %		13	50	1.1	13		mv
Output noise voltage	f = 10 Hz to 100 kHz	25°C		70			70		μV
Dropout voltage		25°C		1.7			1.7	1.2	V
		25°C		4.3	6.5		4.3	6.5	
Bias current		125°C			6	2		6	mA
	$V_1 = 16 V \text{ to } 27 V$	0°C to			1.5			1.5	1.2.2.2.1
Bias current change	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	125 °C			0.1			0.2	1 mA

uA78L12AC, uA78L12C electrical characteristics at specified virtual junction temperature, $V_1 = 19 V$, $I_0 = 40 \text{ mA}$ (unless otherwise noted)

uA78L15AC, uA78L15C electrical characteristics at specified virtual junction temperature, V_I = 23 V, $I_O = 40$ mA (unless otherwise noted)

DADAMETER	TERT CONDITIONS		114	78L15	AC	u	A78L15	C	
PARAMETER	TEST CONDITIONS		T	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	T . +	15	15.6	13.8	15	16.2	
Output voltage [‡]	VI = 17.5 V to 30 V, IO = 1 mA to 40 mA	0°C to	14.25		15.75	13.5		16.5	v
	lo = 1 mA to 70 mA	125°C	14.25		15.75	13.5		16.2 16.5 16.5 300 250 150 75	
den de ser de de se	VI = 17.5 V to 30 V	05.00		65	300		65	300	
input regulation	V ₁ = 20 V to 30 V	25°C		58	250		58	250	mv
Ripple rejection	VI = 18.5 V to 28.5 V, f = 120 Hz	25 °C	34	39		33	39	1.1	dB
	IO = 1 mA to 100 mA			25	150		25	150	
Output regulation	$I_0 = 1 \text{ mA to } 40 \text{ mA}$	25 %		15	75	1	15	75	mv
Output noise voltage	f = 10 Hz to ' <hz< td=""><td>25 °C</td><td></td><td>82</td><td></td><td></td><td>82</td><td></td><td>μV</td></hz<>	25 °C		82			82		μV
Dropout voltage		25 °C		1.7			1.7		V
Bias current		25°C	1. 1	4.6	6.5		4.6	6.5	
		·. c			6			6	mA
Rice ourset change	$V_{ } = 10 V \text{ to } 30 V$:0			1.5			1.5	
Dias current change	IO = 1 mA to 40 mA	125°C			0.1	5		0.2	mA

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-µF capacitor across the input and a 0.1-µF capacitor across the output.

2 Data Sheats

D2214, JUNE 1976-REVISED APRIL 1988

- **3-Terminal Regulators**
- Output Current Up to 500 mA
- **No External Components**
- Internal Thermai Overload Protection
- **High Power Dissipation Capability**
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**
- Direct Replacements for Fairchild µA78M00 Series

description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

terminal assignments

NOMINAL OUTPUT	- 55°C TO 150°C OPERATING	0°C TO 125°C OPERATING
VOLTAGE	TEMPERATURE RANGE	TEMPERATURE RANGE
5 V	uA78M05M	uA78M05C
6 V		uA78M06C
8 V		uA78M08C
9 V		uA78M09C
10 V		uA78M10C
12 V	uA78M12M	uA78M12C
15 V	uA78M15M	uA78M15C
20 V	10, 00, 00, 10, 10, 10, 10, 10, 10, 10,	uA78M20C
24 V		uA78M24C
PACKAGES	JG	КС

schematic

Resistor values shown are nominal.

Data Sheets

absolute maximum ratings over operating temperature range (unless otherwise noted)

			uA78M05M uA78M12M uA78M15M	u A78M05C THRU uA78M24C	UNIT
lanut uniteres .	uA78	M20, uA:		-40	
input voitage	All of	hers	35	35 35	1 *
Continuous total dissipation (see Note 1)			See D i	on Rating . 1 a	and 2
Operating free-air, case or virtual junction temperature ra	nge		-55 to '	0 to .	°C
Storage temperature range		50.000 a.m. 5	-65 to	-65 to 100	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 s	econds	JG package	300		°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 s	econds	KC package			°C

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated

at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
JG	1050 mW	8.4 mW/ °C	672 mW
кс	2000 mW	16 mW/ °C	1280 mW

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGE	T _C ≤ 50°C	DERATING FACTOR	T _C = 125°C
	POWER RATING	ABOVE T _C = 50°C	POWER RATING
кс	20 W	200 mW/°C	5 W

recommended operating conditions

	MIN	MAX	UNIT
uA78****, uA	- ,	25	
uA, of."	8	25	
uA78M08C	10.5	25	1
u^- ···	11.5	26	
u' • 😯	12.5	28	v
uA78M12M, u-	14.5	30	
uA78M15M, uA78M15C	17.5	30	
uA78M20C	23	35	
uA78M24C	27	38	
All • .			mA
u4 thru uA78M	- 55		00
uA hru uA	0		
	uA78 uA uA78 uA uA78M08C uA uA78M08C uA uA78M08C uA uA78M08C uA uA78M12M, u uA uA78M15M, uA78M15C uA78M20C uA78M24C uA78M24C Al ¹ uA uA hru uA ⁷⁸ M	uA78 uA uA78 uA uA78 8 uA78M08C 10.5 uA78M08C 11.5 uA78M08C 12.5 uA78M12M, u 14.5 uA78M15M, uA78M15C 17.5 uA78M20C 23 uA78M24C 27 Al ¹ -55 uA hru uA7PM uA hru uA	uA78 uA AIII MAX uA78 .uA . .25 uA78M08C 10.5 25 uA78M08C 10.5 25 uA78M08C 11.5 26 u 11.5 26 u 12.5 28 uA78M12M, u 14.5 30 uA78M15M, uA78M15C 17.5 30 uA78M20C 23 35 uA78M24C 27 38 uA uA 0

uA78M05M, uA78M05C electrical characteristics at specified virtual junction temperature, V₁ = 10 V, IO = 350 mA (unless

		+		".:.ZAu	2	uA7	8M05C	=	LIN
PARAMETER		TEST CONDITIONS		MIN		MIN	TYP MI	XX	
			25°C	4.8	5	4.8	5	2.5	
Output voltage [‡]		$V_{1} = 8 V \text{ to } 20 V$	-55°C to 'C	4.7	5.3				>
	10 = 5 mA to 350 mA	$V_{1} = 7 V to 20 V$	0°C to			4.75	5.	25	
		$V_{\rm I} = 7 V \text{ to } 25 V$			3 50		3	00	
Input regulation	In = 200 mA	$V_{\rm l} = 8 V \text{ to } 20 V$	25°C		1 25			-	Nu
•	•	VI = 8 V to 25 V					1	50	
			-55°C to 150°C	62				1	
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V$,	10 = 100 mA	0°C to 125°C			62			ab B
	f = 120 Hz	IO = 300 mA	25°C	62	30	62	80		
	IO = 5 mA to 500 mA		oreo		20 50		20 1	8	114
Output regulation	10 = 5 mA to 200 mA		ے۔ 1207		10 25		10	50	
			-55°C to 25°C		-2				
Temperature coefficient	In = 5 mA		25°C to 150°C		-1.5			E	Jol1
of output voltage	>		0°C to 125°C				1 -		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40 200		40 2	00	μV
Dropout voltage			25°C		2 2.5		2	-22	>
Bias current			25°C		.5 7		4.5	6	hA
			- 55°C to 150°C		0.8				
	$ I_0 = 200 \text{ mA}, V_1 = 8$	/ to 25 V	0°C to 125°C					8.	~~~
Bias current change			-55°C to 150°C		0.5				(
	IO = 5 mA to 350 mA		0°C to 125°C					0.5	
Short-circuit output current	V ₁ = 35 V		25°C	e	009 00		300	_	An
Peak output current			25°C	0.5 0	1.4		0.7		A

uA78M05M, uA78M05C POSITIVE-VOLTAGE REGULATORS

uA78M06C, uA78M06C Positive-voltage regulators

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Outras un la mat		100	25 °C	5.75	6	6.25	
Output voitage*	IO = 5 mA to 350 mA	VI = 8 V to 21 V	0°C to 125°C	5.7		MAX 6.25 6.3 100 50 120 60 60 60 60 60 60 50	1 V
1	1	V _j = 8 V to 25 V	05.00		5	100	
	IO ≈ 200 mA	V _I = 9 V to 25 V	25 %		1.5	50	mv
Ripple rejection	$V_{ } = 9 V \text{ to } 19 V,$	Io = 100 mA	0°C to 125°C	59		1.00	10
Ripple rejection	f = 120 Hz	10 = 300 mA	25°C	59	80	MAX 6.25 6.3 100 50 120 60 60 60 60 60 50	
	$I_0 = 5 \text{ mA to } 500 \text{ mA}$		05.00		20	120	
utput regulation emperature coefficient f output voltage	$l_0 \approx 5 \text{ mA to } 200 \text{ mA}$		25 00		10 60		mv
Temperature coefficient of output voltage	l ₀ ≈ 5 mA		0°C to 125°C	1	-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		45		μV
Dropout voltage			25°C		2		V
Bias current			25 °C		4.5	6	mA
D:	Io = 200 mA,	VI = 9 V to 25 V	0°C to 125°C			0.8	
Bias current change	Io = 5 mA to 350 mA		0°C to 125°C			0.5	mA
Short-circuit output current	VI = 35 V		25°C	1	270		mA
Peak output current			25°C		0.7		A

uA78M06C electrical characteristics at specified virtual junction temperature, VI = 11 V, IO = 350 mA (unless otherwise noted)

uA78M08C electrical characteristics at specified virtual junction temperature, V_I = 14 V, $I_0 = 350$ mA (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Ot			25°C	7.7	8	8.3	
Output Voltage*	$I_0 = 5 \text{ mA to } \text{mA}$	VI = 10.5 V to 23 V	0°C to 125°C	7.6		8.4	v
	1	V ₁ = 10.5 V to 25 V	25.00	1000	6	100	
input regulation	10 ≈ 200 mA	Vj = 11 V to 25 V	25-0		2	8.3 8.4 100 50 160 80 6 0.8 0.5	mv
Pieple rejection	VI = 11.5 V to 21.5 V,	IO = 100 mA	0°C to 125°C	56		8.3 8.4 100 50 160 80 6 0.8 0.5	40
hippie rejection	f = 120 Hz	$I_0 = \cdot nA$	25°C	56 80 25 160 10 80 °C −1 m ²			
Output regulation	$I_0 = 5 \text{ mA to } 500 \text{ mA}$		25.90		25	160	
Output regulation	lo = 5 mA to 200 mA 10 80	mv					
Temperature coefficient of output voltage	1 ₀ = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		52		μV
Dropout voltage			25°C		2		V
Bias current			25°C		4.6	6	mA
	10 = 200 mA	VI = 10.5 V to 25 V	0°C to 125°C			0.8	
Bias current change	lo = 5 mA to · mA		0°C to 125°C	0.5			MA
Short-circuit output current	Vi ≈ 35 V		25°C	-	250		mA
Peak output current		SR	25 °C		0.7	2019	A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA78M09C, uA78M10C POSITIVE-VOLTAGE REGULATORS

uA78M09C electrical characteristics at specified virtual junction temperature, $V_I = 16 V$, $I_O = 350 mA$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Outrast units and t	and the second second		25°C	8.6	9	9.4	
Output voltage +	Io = 5 mA to I mA	V ₁ = 11.5 V to 24 V	0°C to 125°C	8.5		MAX 9.4 9.5 100 50 50	v
Input regulation	1 200 - 4	V _I = 11.5 V to 26 V	25.00	1	6	100	
Input regulation	10 = 200 mA	V ₁ = 12 V to 26 V	25*0		2	MAX 9.4 9.5 100 50	1 "
Dinale valenting	$V_{i} = 13 V \text{ to } 23 V,$	lo = nA	0°C to 125°C	56		9.4 9.5 100 50 30 6 0.8 0.5	10
Ripple rejection	f = 120 Hz	lo = 300 mA	25°C	56	80		
Output regulation	IO = 5 mA to 500 mA		05.00		25		
Output regulation	lo = 5 mA to .: mA		25 %	1	10	- 30	1 mv
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		58		μV
Dropout voltage			25 °C		2		V
Bias current			25°C		4.6	6	mA
Binn numerat shares	lo = 200 mA	VI = 11.5 V to 26 V	000 . 10500			0.8	1.000
Bias current change	lo = 5 mA to " mA		0°C to 125°C			0.5	mA
Short-circuit output current	V _I = 35 V		25°C		250		mA
Peak output current			25°C	1	0.7		A

uA78M10C electrical characteristics at specified virtual junction temperature, VI = 17 V, IQ = 350 mA (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
0t			25 °C	9.6	10	10.4	
Output voitage*	Io = 5 mA to 350 mA	VI = 12.5 V to 25 V	0°C to 125°C	9.5		MAX 10.4 - 50 200 100 - - - - - - - - - - - - - - - - -	1 V
la international de la composition	1- 200 - i	$V_{I} = 12.5 V \text{ to } 28 V$	25.00		7		
input regulation	10 = 200 mA	$V_{I} = 14 V \text{ to } 28 V$	25 °C		2	MAX 10.4 50 200 100 6 0.8 0.5	mv
Dinale rejection	V ₁ = 15 V to 25 V,	lo = 100 mA	0°C to 125°C	59			-10
hipple rejection	f = 120 Hz	lo = mA	25 °C	55	80	MAX 10.4 - 50 200 100 100 6 6 0.8 0.5	08
Output regulation	Io = 5 mA to 500 mA		25.00		25	200	
Output regulation	$I_0 = 5 \text{ mA to } 200 \text{ mA}$		25-0		10	50 200 100 6 0.8 0.5	mv
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C	E	- 1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		64	1	μV
Dropout voltage			25 °C	1	2		V
Bias current			25 °C		4.7	6	mA
Bias current change	I _O = 200 mA	$V_{I} = 13.5 V \text{ to } 28 V$ $V_{I} = 12.5 V \text{ to } 28 V$	0°C to 125°C			0.8	mA
	Io = 5 mA to 350 mA		0°C to 125°C	1		0.5	
Short-circuit output current	V _I = 35 V	1	25 °C		245		mA
Peak output current	1		25°C		0.7		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Data Sheets N

2 **Data Sheets**

uA78M12M, uA78M12C electrical characteristics at specified virtual junction temperature, VI = 19 V, IO = 350 mA (unless

		tomornamot		uA78M1	Ņ,	4	178M1.:C		TUNIT
PARAMETER		IESI CONDITIONS		VIN 11	MAX .	N.	11	MAX	
			25°r	11.5 1	2 12.5	11.5	12	12.5	
utput voltage [‡]	- 010	$V_{I} = 15.5 V \text{ to } 27 V$	-55°C to · C	11.4	12.6				>
	WILL DOC 01 WILL C = 01	$V_{I} = 14.5 V \text{ to } 27 V$	0°C to 1.			11.4			
		$V_{\rm I} = 14.5 V \text{ to } 30 V$			8 60		8		
put regulation	IO = 200 mA	$V_{\rm J} = 16 V \text{ to } 25 V$	25°C		2 30				Nm
		$V_{I} = 16 V to 30 V$					2	50	
			- 55°C to 150°C	55					
pple rejection	$v_{1} = 15 V to 25 V,$	10 = 100 mA	0°C to . ; °C			55			đB
	1 = 120 Hz	lo = 300 mA	25	55 8(55	80		
	$I_0 = 5 \text{ mA to } 500 \text{ mA}$		JE BC	2			25	240	1
utput regulation	$I_0 = 5 \text{ mA to } 200 \text{ mA}$		2.62	10	3		10	120	
			-55°C +1 75°C		-4.8				
emperature coetticient	IO = 5 mA		25°C to ³ C		- 3.6				D°//m
output voltage			0°C to . C				-		
utput noise voltage	f = 10 Hz to 100 kHz		25°C	i.L	480		75		Nμ
ropout voltage			25°C		2.5		2		>
as current			25°C	4.8	8 7		4.8	9	ЧЧ
		$V_{l} = 15 V \text{ to } 30 V$	-55°C to 150°C		0.8				
	10 = 200 mA	$V_{\rm I} = 14.5 \text{ V to 30 V}$	0°C to 125°C					0.8	4
as current change			- 55°C to 150°C		0.5				¥ E
			0°C to 125°C					0.5	
hort-circuit utput current	VI = 35 V		25 °C	24(009 (240		ЧЧ
ask output current			25°C	0.5 0.	1.4		0.7	ſ	A

• Fouse resund recomplies are used to maintain the junction temperature as close to the antiperit temper, [‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Ų

TEXAS V INSTRUMENTS

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

uA78M12M, uA78M12C POSITIVE-VOLTAGE REGULATORS

uA78M15M, uA78M15C electrical characteristics at specified virtual junction temperature, VI = 23 V, IO = 350 mA (unless

		tonominanoo rorr		UA7	With	'n	V78M15	0	TIMIT.
PARAMETER		TEST CONDITIONS		NIW	AND ' I	NIN :	TYP	MAX	IND
			25°C	14.4	15	v 14.4	15	15.6	
Output voltage [‡]		$V_{\rm I} = 18.5 \text{ V to 30 V}$	-55°C to 150°C	14.25	15.7	2			>
	10 = 5 mA to 350 mA	$V_{\rm I} = 17.5 \text{ V to 30 V}$	0°C to 125°C			14.25		15.75	
		$V_{\rm I} = 17.5 \text{ V to 30 V}$	21.07		10 6	0	10	100	Nee
Input regulation	10 = 200 mA	$V_{\rm I} = 20 V to 30 V$	7,67		3 3	0	e	50	È
			-55°C to 150°C	54					
Ripple rejection	V C.85 OT V C.81 = IV	0 = 100 mA	0°C to 125°C			54			đВ
	1 = 120 Hz	IO = 300 mA	25°C	54	70	54	70		
	IO = 5 mA to 500 mA		0100		25 15	0	25	300	
Output regulation	IO = 5 mA to 200 mA		22,62		10 7	2	10	150	À.
			- 55 °C to 25 °C			9			
lemperature coetficient	lo = 5 mA		25°C to 150°C		-4.	2			D₀/∧ш
or output voltage			0°C to 125°C				7		
Output noise voltage	f = 10 Hz to 100 kHz		25°C		90 60	0	90		Nμ
Dropout voltage			25°C		2 2.	2	2		>
Bias current			25°C		4.8	7	4.8	9	ШA
		$V_{I} = 18.5 V \text{ to } 30 V$	-55°C to 150°C		0	8			
	10 = 200 mA	$V_{I} = 17.5 V \text{ to } 30 V$	0°C to 125°C					0.8	v [
bias current change			-55°C to 150°C		0	S			
			0°C to 125°C					0.5	
Short-circuit output current	VI = 35 V		25°C		240 60	0	240		ММ
Peak output current			25°C	0.5	0.7 1.	4	0.7		A

uA78M15M, uA78M15C POSITIVE-VOLTAGE REGULATORS

Data Sheets N

uA78M20C electrical characteristics at specified virtual junction temperature,	Vi =	29 V, IO	=	350 1	mA
(unless otherwise noted)					

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT
Outrast united a t			25 °C	19.2	20	20.8	
Output voltage +	IO = 5 mA to 350 mA	V ₁ = 23 V to 35 V	0°C to 125°C	19		21	l v
	1- 200 - 4	V ₁ = 23 V to 35 V	25.00		10	100	
input regulation	10 = 200 mA	$V_1 = 24 V \text{ to } 35 V$	25-0	1	5	50	mv
Disals asis stics	$V_{ } = 24 V \text{ to } 34 V,$	10 = 100 mA	0°C to 125°C	53			-10
Ripple rejection	f = 120 Hz	lo = mA	25 °C	53	70		08
0	IO = 5 mA to 500 mA		05.00		30	400	
Output regulation	IO = 5 mA to 200 mA	and the second second	25 %		10	200	7 ^{mv}
Temperature coefficient of output voltage	i ₀ = 5 mA		0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		110	·	μV
Dropout voltage			25 °C		2		v
Bias current			25 °C		4.9	6	mA
B:	lo = 200 mA,	VI = 23 V to 35 V	000 - 40500			0.8	
Bias current change	$I_0 = 5 \text{ mA to } 350 \text{ mA}$	and the second second second	0-0 10 125-0			0.5	mA
Short-circuit output current	V ₁ = 35 V		25°C		240		mA
Peak output current			25 °C		0.7		Α

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thernul effects must be taken into account separately.

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT	
Q. L. J. J. J.			25°C	23	24	25		
Output voltage*	Io = 5 mA to 350 mA	V ₁ = 27 V to 38 V	0°C to 125°C	22.8		25.2		
land and detter	1. 000 - 1	V ₁ = 27 V to 38 V	2510		10	100		
input regulation	10 = 200 mA	$V_{\rm I} = 28 \text{ V to } 38 \text{ V}$	25-0		5	50] ^m v	
	V. 20 V ++ 20 V	1. 100 - 1	-55°C to 150°C					
Ripple rejection	$V_{\rm I} = 28 V to 38 V,$	10 = 100 mA	0°C to 125°C	50			dB	
	t = 120 Hz	$I_0 = 300 \text{ mA}$	25 °C	50	70		1	
0	lo = 5 mA to nA		25.00		30	480		
Output regulation	$l_0 = 5 \text{ mA to}$. mA		25%		10	240] mv	
Temperature coefficient	lo = 5 m4		0°C to 125°C		-12		mV/ec	
of output voltage	10 = 3 IIIA		0 0 10 120 0		1.2		11111 0	
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		170		μV	
Dropout voltage			25 °C		2	1.1.1.1.1.1.1	V	
Bias current			25 °C		5	6	mA	
Bing dynamic change	$l_0 = 200 \text{ mA},$	$V_{\rm I} = 27 \text{ V} \text{ to } 38 \text{ V}$	0°C to 125°C			0.8		
bias current change	Io = 5 mA to 350 mA		0°C to 125°C			0.5		
Short-circuit	V 25 V		25.90		240		-	
output current			23 0		240			
Peak output current			25 °C		0.7	1	A	

uA78M24C electrical characteristics at specified virtual junction temperature, $V_I = 33 V$, $I_O = 350 mA$ (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

2

2 Data Sheets

۲

SERIES uA7900 NEGATIVE-VOLTAGE REGULATORS

D2215, JUNE 1976-REVISED AUGUST 1983

- 3-Terminal Regulators
- Output Current Up to 1.5 A
- No External Components
- Internal Thermal Overload Protection
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Essentially Equivalent to National LM320 Series

description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA7800 in a wide range of applications. These applications include oncard regulation for elimination of noise and distribution problems associated with singlepoint regulation. Each of these regulators can deliver up to 1.5 amperes of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

schematic

All component values are nominal.

Copyright © 1983, Texas Instruments Incorporated

SERIES uA7900 NEGATIVE-VOLTAGE REGULATORS

absolute maximum ratings over operating temperature range (unless otherwise noted)

		uA7905C THRU uA7924C	UNIT
1	uA7924C	-40	v
input voitage	All others	- 35	v
Continuous total dissipation at 25 °C free-air temperature (see Note 1)		2	w
Continuous total dissipation at (or below) 25 °C case temperature (see Note 1)		15	W
Operating free-air, case, or virtual junction temperature range		O to	°C
Storage temperature range		-65 to 100	°C
Lead temperature 3.2 mm (1/8 inch) from case for 10 seconds		260	°C

NOTE 1: For operation above 25 °C free-air or case temperature, refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	MAX	UNIT
	uA' · ·	-7	- 25	
	uA'	-7.2	- 25	
	uA' · ·	- 8	- 25	
Input voltage, V _I	uA7908C	- 10.5	- 25	N N
	uA79:.	- 14.5	- 30	v
	u^761.	- 17.5	- 30	10 m 1
	u	- 21	- 33	
	uA 1. 40	- 27	- 38	
Output current, IO			1.5	A
Operating virtual junction temperatur	е, Тј	0	125	°C

2

uA7905C, uA7952C NEGATIVE-VOLTAGE REGULATORS

PARAMETER	TEST CONDITIONS [†]			A7905	MA+	UNIT
		25 °C	÷.0	- 5		
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = -7 \text{ V to } -20 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	-4.75		-5.25	V
launa annidestan	$V_{\rm I} = -7 {\rm V} {\rm to} -25 {\rm V}$	05.00		12.5	50	
input regulation	$V_{ } = -8 V \text{ to } -12 V$	25-0		4	15	T mv
Ripple rejection	$V_{I} = -8 V \text{ to } -18 V, f = 120 \text{ Hz}$	0°C to 125°C	54	60		dB
Output acculation	IO = 5 mA to 1.5 A	25.00		15	100	
Output regulation	IO = 250 mA to 750 mA	20-0		5	50	mv
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C	1	-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C				μV
Dropout voltage	I ₀ = 1 A	25 °C		1.1		V
Bias current		25 °C		1.5	2	mA
Ding august shares	$V_{\rm I} = -7 V \text{ to } -25 V$	0.00 += 105.00		0.15	0.5	
bias current change	$I_0 = 5 \text{ mA to } 1 \text{ A}$			0.08	0.5	I I I A
Peak output current		25 °C		2.1		A

uA7905C electrical characteristics at specified virtual junction temperature, $V_1 = -10 V$, $I_0 = 500 mA$ (unless otherwise noted)

uA7952C electrical characteristics at specified virtual junction temperature, $V_I = -10 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TERT CONDITIONS			A7952	C	
PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UNIT
		25°C	- 5	- 5.2	-5.4	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = -7.2 \text{ V to } -20 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	-4.95		-5.45	v
In a state of a state of	$V_1 = -7.2 V \text{ to } -25 V$	05.00	1	12.5	100	
Input regulation	$V_{I} = -8.2 \text{ V to } -12 \text{ V}$	25°C		4	50	mv
Ripple rejection	$V_{f} = -8.2 V \text{ to } -18 V$, f = 120 Hz	0°C to 125°C	54	60		dB
	IO = 5 mA to 1.5 A	05.00		15	100	
Output regulation	IO = 250 mA to 750 mA	25%		5	50	1 mv
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		125	n	μV
Dropout voltage	$i_0 = 1 A$	25°C		1.1		V
Bias current		25 °C		1.5	2	mA
Dian anna abaa a	$V_{1} = -7.2 V \text{ to } -25 V$	000		0.15	1.3	
bias current change	$I_0 = 5 \text{ mA to 1 A}$	0 % 10 125 %	1.000		0.5	mA
Peak output current		25°C	-	z.1		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA7906C, uA7908C NEGATIVE-VOLTAGE REGULATORS

uA7906C electrical characteristics at specified virtual junction temperature, $V_I = -11 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS		L	A7906	С	
FANAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNIT
		25°C	-5.75	-6	-6.25	1
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = -8 \text{ V to } -21 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	- 5.7		-6.3	V
Input segulation	$V_{i} = -8 V \text{ to } -25 V$	05.00		12.5	120	
input regulation	$V_{I} = -9 V \text{ to } -13 V$	25°C		4	60	mv
Ripple rejection	$V_{I} = -9 V \text{ to } -19 V, f = 120 \text{ Hz}$	0°C to 125°C	54	60	1	dB
	IO = 5 mA to 1.5 A	25.90	1.00	15	120	
Output regulation	IO = 250 mA to 750 mA	7 25 %		5	60	mv
Temperature coefficient of output voltage	l ₀ = 5 mA	0°C to 125°C		-0.4		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		150		μV
Dropout voltage	$I_0 = 1 A$	25°C		1.1		V
Bias current		25°C		1.5	2	mA
Discourse above	$V_{\rm I} = -8 V \text{ to } -25 V$			0.15	1.3	
Dias current change	$I_0 = 5 \text{ mA to 1 A}$	- 0°C to 125°C	3000	0.08	0.5	mA
Peak output current		25 °C		2.1		A

uA7908C electrical characteristics at specified virtual junction temperature, $V_I = -14 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	1	U	A	c .	LINUT
FANAMETEN	TEST CONDITIONS.		Mr.	1.01	MAX	
		25 °C		-8	- 8.3	
Output voltage [‡]	$I_{O} = 5 \text{ mA to 1 A},$ $V_{I} = -10.5 \text{ V to } -23 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	-7.6		-8.4	v
Input regulation	$V_{l} = -10.5 V \text{ to } -25 V$	05.00		12.5	160	
input regulation	$V_{\rm I} = -11 {\rm V} {\rm to} -17 {\rm V}$	25 %	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4	80	mv
Ripple rejection	$V_{i} = -11.5 V \text{ to } -21.5 V, f = 120 \text{ Hz}$	0°C to 125°C	54	60		dB
Output regulation	$I_0 = 5 \text{ mA to } 1.5 \text{ A}$	25.00		15		
Output regulation	io = 250 mA to 750 mA	25-0		5		mv
Temperature coefficient of output voltage	i0 = 5 mA	0°C to 125°C	1	-0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		4		μV
Dropout voltage	$I_0 = 1 A$	25 °C				V
Bias current		25 °C		1.5	2	mA
Pice ourrent choses	$V_{\rm I} = -10.5 \text{ V to } -25 \text{ V}$	0.00 ++ 105.00		0.15	1	
Dias current change	$I_0 = 5 \text{ mA to 1 A}$	0°C to 125°C		0.08	0.5	1 mA
Peak output current		25°C		2.1		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

DADAMETED	TEST CONDITIONS			uA7912	2C	LINUT
FARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	UNIT
		25°C	- 11.5	- 12	-12.5	
Output voltage [‡]	$I_0 = 5 \text{ mA to 1 A}, V_1 = -14.5 \text{ V to } -27 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°	- 11.4		- 12.6	v
	$V_{I} = -14.5 V \text{ to } -30 V$	05.00		5	80	
input regulation	$V_{I} = -16 V \text{ to } -22 V$	25-0		3	30	mv
Ripple rejection	$V_{I} = -15 V$ to $-25 V$, f = 120 Hz	0°C to '.	54	60		dB
0	IO = 5 mA to 1.5 A	25.00	1	15	200	
Output regulation	IO = 250 mA to 750 mA	25 %		5	75	1 mv
Temperature coefficient of output voltage	l0 = 5 mA	0°C to 125°		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C	S	300		μV
Dropout voltage	I ₀ = 1 A	25 °C		1.1		V
Bias current		25°C	i la come	2	3	mA
Pige europt change	$V_{I} = -14.5 V \text{ to } -30 V$	000 - 1050		0.04	0.5	
bias current change	$I_0 = 5 \text{ mA to 1 A}$		-	0.06	0.5	T mA
Peak output current		25 °C		2.1		A

uA7912C electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 500 mA$ (unless otherwise noted)

2

uA7915C electrical characteristics at specified virtual junction temperature,	VI =	-23 V, IO	= 500 mA
(unless otherwise noted)			

DADAMETED	TEST CONDITIONS [†]		uA7915C			
PARAMETER			MIN	TYP	MAX	UNIT
Output voltage [‡]		25°C	-14.4	- 15	-15.6	v
	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = -17.5 \text{ V to } -30 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	- 14.25		- 15.75	
	$V_{\rm I} = -17.5 \text{ V to } -30 \text{ V}$	- 25°C		5	100	mV
input regulation	$V_{\rm I} = -20 {\rm V} {\rm to} -26 {\rm V}$			3	50	
Ripple rejection	$V_{I} = -18.5 V$ to $-28.5 V$, f = 120 Hz	0°C to 125°C	54	60	200	dB
Output regulation	IO = 5 mA to 1.5 A	- 25°C		15		
	Io = mA to 750 mA			5	10	- mv
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		- 1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25 °C		375		μV
Dropout voltage	I ₀ = 1 A	25 °C		1.1	S	V
Bias current		25°C	<u></u>	2	3	mA
Bias current change	$V_{\rm I} = -17.5 \text{ V to } -30 \text{ V}$	- 0°C to 125°C 0		0.04	0.5	
	$I_0 = 5 \text{ mA to } 1 \text{ A}$		0.06	0.5	mA	
Peak output current		25°C		2.1		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA7918C, uA7924C NEGATIVE-VOLTAGE REGULATORS

uA7918C electrical characteristics at specified virtual junction temperature, $V_I = -27 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS [†]		L			
ranamis i sn			MIN	TYP	MAX	UNIT
Output voltage [‡]		25°C	-17.3	- 18	- 18.7	v
	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = -21 \text{ V to } -33 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	- 17.1		- 18.9	
	$V_{I} = -21 V \text{ to } -33 V$	25°C		5	⊡ • `	1.000
input regulation	$V_{i} = -24 V \text{ to } -30 V$			3		mv
Ripple rejection	$V_{I} = -22 V \text{ to } -32 V$, f = 120 Hz	0°C to 125°C	54	60		dB
Output regulation	IO = 5 mA to 1.5 A	25°C	17	30	360	mV
	io = 250 mA to 750 mA			10	180	
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C	1	- 1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		450		μV
Dropout voltage	$I_0 = 1 A$	25°C		1.1		V
Bias current		25 °C		2	3	mA
Bias current change	$V_{I} = -21 V \text{ to } -33 V$	0°C to 125°C	-	0.04	1	mA
	IO = 5 mA to 1 A			0.06	0.5	
Peak output current		25°C	-	2.1	1.00	Α

uA7924C electrical characteristics at specified virtual junction temperature, $V_I = -33 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS [†]		11A /024C			11517	
FANAMETEN			- + · · ·	- ·	MAX	UNIT	
Output voltage‡		25 °C	-20	-24	- 25	v	
	$I_0 = 5 \text{ mA to 1 A}, V_1 = -27 \text{ V to } -38 \text{ V},$ P $\leq 15 \text{ W}$	0°C to 125°C	- 22.8		- 25.2		
Innut regulation	$V_{I} = -27 V \text{ to } -38 V$	25°C	1. See	5	480	- mV	
mput regulation	$V_{i} = -30 V to -36 V$			3	240		
Ripple rejection	$V_{I} = -28 V \text{ to } -38 V$, f = 120 Hz	0°C to 125°C	54	60	S. 124	dB	
Output regulation	IO = 5 mA to 1.5 A	25°C		85	4	mV	
	Io = 250 mA to 750 mA			25	4tv		
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C	
Output noise voltage	f = 10 Hz to (Hz	25 °C	· ·			μV	
Dropout voltage	I ₀ = 1 A	25°C	1		·	V	
Bias current		25°C		2	3	mA	
Bias current change	$V_{I} = -27 V \text{ to } -38 V$	0°C to 125°C	1.0	0.04	1		
	IO = 5 mA to 1 A			0.06	0.5	mA	
Peak output current		25 °C		2.1		A	

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

SERIES uA79M00 NEGATIVE-VOLTAGE REGULATORS

APRIL

6, . 1976-

- 3-Terminal Regulators
- Output Current Up to 500 mA
- No External Components
- High Power Dissipation Capability
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Direct Replacements for Fairchild µA79M00 Series

description

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement Series uA78M00 in a wide range of applications. These applications include oncard regulation for elimination of noise and distribution problems associated with singlepoint regulation. Each of these regulators can deliver up to 500 mA of output current. The internal current limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents and also as the power pass element in precision regulators.

NOMINAL OUTPUT VOLTAGE	- 55 °C TO 150 °C OPERATING TEMPERATURE RANGE	0°C TO 125°C OPERATING TEMPERATURE RANGE
-5 V	uA79M05M	uA79M05C
-6 V	uA79M06M	uA79M06C
-8 V	uA79M08M	uA79M08C
-12 V	uA79M12M	uA79M12C
-15 V	uA79M15M	uA79M15C
-20 V		uA79M20C
-24 V		uA79M24C
PACKAGE	JG	KC

schematic

Resistor values shown are nominal and in ohms.

uA79M_M. . . JG PACKAGE uA79M_C. ..KC PACKAGE (TOP VIEW) (TOP VIEW) OUTPUT COMMON 1 8 NC INPUT COMMON 7 NC NC 12 6 INPUT NC 3 THE INPUT TERMINAL IS IN OUTPUT 4 5 NC ELECTRICAL CONTACT WITH THE MOUNTING BASE TO-220AB NC-No internal connection

PKIIIIII:TIOK IIAIA documents contain information curre 1 -s of I-LAI- rition date. Products conform to spucifications put the terms of Texas Instruments stendard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1983, Texas Instruments Incorporated

SERIES uA79M00 NEGATIVE-VOLTAGE REGULATORS

absolute maximum ratings over operating temperature range (unless otherwise noted)

			uA79M05M THRU uA79M15M	uA79M05C THRU uA79M24C	UNIT	
Input valtage	uA79	M20, uA79M24		-40		
input voltage	All of	hers	- 35	- 35	٦°	
Continuous total dissipation (see Note 1)	1		See Dissipatio	n Rating Tables 1	and 2	
Operating free-air, case or virtual junction temperature	e range		- 55 to 150	0 to 150	°C	
Storage temperature range	1. T. P. L. T.	-65 to '	-65 to 150	°C		
Lead temperature 1,6 mm (1/16 inch) from case for 6	JG package	300		°C		
Lead temperature 1,6 mm (1/16 inch) from case for "	10 seconds	KC package		260	°C	

NOTE 1: To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

DISSIPATION RATING TABLE 1-FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C PO‰L ¹ : RATING
JG	1050 mW	8.4 mW/°C	• . mW
KC	2000 mW	16 mW/°C	1280 mW

DISSIPATION RATING TABLE 2-CASE TEMPERATURE

PACKAGE	T _C ≤ 50°C	DERATI	NG FACTOR	T _C = 125°C
	POWER RATING	ABOVE	TC = 50°C	POWER RATING
KC	20 W		mW/°C	5 W

recommended operating conditions

		MIN	MAX	UNIT
	uA: uA	-7	20	-
	uA. uA	- 8	- 25	
	uA uA	- 10.5	- 25	
put voltage, V _I	uA79M uA79M12C	- 14.5	30	v
	uA79M ** uA79M15C	-17.5	- 30	12.1
	uA79M20C	-23	- 35	
	uA7 .**. 'C	- 27	- 38	
Output current, IO			500	mA
	uA79M05M thru uA79M15M	- 55	150	00
Operating virtual junction temperature, 15	uA79M05C thru uA79M24C	0	125	-0

uA79M05M, uA79M05C NEGATIVE-VOLTAGE REGULATORS

				ul	79M05	M	U.	A: ••	С	UNIT
PARAMETER	TEST	CONDITIONS		MIN	TYP	MAX	MIN	1.1	MAY	UNIT
			25 °C	-4.8	- 5	- 5.2	-4.8	- 5		
Output voltage [‡]	IO = 5 mA to 350 mA,		- 55 °C, to 150 °C	-4.75		- 5.25				v
	$V_1 = -7 V \text{ to } -25 V$						-4.75		- 5.25	1
1	$V_{I} = -7 V \text{ to } -25 V$		0500		7	50	<u> </u>	7	50	
input regulation	VI = -8 V to -18 V		25 °C		3	30		3	30	mv
	N 0.11 40.1	100	-55°C to 150°C	50						
Ripple rejection	$V_{ } = -8 V to - 18 V$,	10 = 100 mA	0°C to '.				50			dB
	t = 120 Hz	$I_0 = 300 \text{ mA}$	25 °C	54	60		54	60		
<u></u>	lo = 5 mA to 500 mA		05.00		75	100		75	100	
Output regulation	lo = 5 mA to 350 mA		25 %	1	50			50		1 mv
Temperature coefficient			-55°C to 150°C			-1.5		1.000	100	
of output voltage	10 = 5 mA		0°C to 125°C					-0.4		1 mv/-c
Output noise voltage	f = 10 Hz to 100 kHz		25°C	1	125	400		125		μV
Dropout voltage			25 °C		1.1	2,3		1.1		v
Bias current			25 °C		1	2		1	2	mA
	N 0.14 05.14		- 55 °C to 150 °C			0.4				
D'	$v_{1} = -8 v to -25 v$		0°C to .						0.4	1
Blas current change			-55°C to 150°C			0.4				
	10 = 5 mA to 350 mA		0°C to 125°C						0.4	
Short-circuit output current	V ₁ = -30 V		25 °C			600		140		mA
Peak output current	· · · · · · · · · · · · · · · · · · ·		25°C	0.5	0.65	1.4		0.65		A

uA79M05M, uA79M05C electrical characteristics at specified virtual junction temperature, V_{I} = $-\,10$ V, I_{O} = 350 mA (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA79M06M, uA79M06C NEGATIVE-VOLTAGE REGULATORS

uA79M06M,	uA79M06C	electrical	characteristics	at	specified	virtual	junction	temperature,
$V_{I} = -11 V_{,}$	$I_0 = 350 \text{ m}$	A (unless	otherwise noted)				

DADAMETED	TEO			U.	A	M		A	c	
PARAMETER	ARAMETER TEST CONDITIONS			MIN	TIP	NA.	T v v T	1.1	MAT	UNIT
			25°C	-5.75	-6	- 0.40		-6	- 0.20	
Output voltage [‡]	Io = 5 mA to 350 mA,		- 55 °C, to 150 °C	- 5.7		-6.3			1	v
	$V_{I} = -8 V \text{ to } -25 V$		ō'.				-5.7		- 6.3	
In the second states	$V_{I} = -8 V \text{ to } -25 V$				7	60		7	60	
input regulation	$V_{ } = -9 V \text{ to } -19 V$		25%		3	40		3	40	mv
	V - 0.V - 10.V	100 - 4	- 55°C to 150°C	50						
Ripple rejection	$v_{1} = -9 v_{10} - 19 v_{1}$	10 = 100 mA	0°C to 125°C				50			dB
	T = 120 Hz	10 = 300 mA	25°C	54	60	- G	54	60		
Output somulation	IO = 5 mA to 500 mA		25.00		80	120		80	120	-14
Output regulation	IO = 5 mA to 350 mA		25%		55			55		mv
Temperature coefficient	1 E - A	-	- 55 °C to 150 °C			-1.5				
of output voltage	10 = 0 mA		0°C to 125°C				1.50.000	-0.4		mv/-c
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		150	480		150		μV
Dropout voltage			25 °C		1.1	2.3		1.1		v
Bias current			25 °C		1	2		1	2	mA
	V. 0.V.M. 25.V.		-55°C to 150°C			0.4				
Dies ausses about	$v_{\rm I} = -9 v to -25 v$		0°C to 125°C						0.4	-
Bias current change	La _ E = A ta 250 mA		- 55 °C to 150 °C			0.4				IIIA
	10 = 5 MA to 350 MA		0°C to 125°C						0.4	
Short-circuit output current	$V_{ } = -30 V$		25°C			600		140		mA
Peak output current			25°C	0.5	0.65	1.4		0.65		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Data Sheets

uA79M08M, uA79M08C NEGATIVE-VOLTAGE REGULATORS

DADAMETED				u	A79M08	M	"1	A: 1	С	1.00.0
PARAMETER	IES	ST CONDITIONS'		MIN	TYP	MAX		-	MAX	UNIT
			25°C	-7.7	-8	-8.3		-8	-8.3	
Output voltage [‡]	In = 5 mA to 350 mA	\ ,	- 55 °C to 150 °C	-7.6		-8.4				v
	VI = -10.5 V to -25	5 V	0°C to 125°C				-7.6		-8.4	
	$V_{I} = -10.5 V \text{ to } -25 V$				8	80		8	80	
Input regulation	$V_1 = -11 V \text{ to } -21 V$		[−] ^{25°C} −		4	50		4	50	mV
	$V_{I} = -11.5 V$		155 °C to 150 °C	50						
Ripple rejection	to -21.5 V,	V = 100 mA	0°C to 125°C				50			dB
	f = 120 Hz	$l_0 = 300 mA$	25°C	54	59		54	59		
	lo = 5 mA to 500 mA	1		-	90	160		90	160	
Output regulation	$I_0 = 5 \text{ mA to } 350 \text{ mA}$		25°C		60			60		mV
Temperature coefficient	0		-55 °C to 150 °C			-2.4				
of output voltage	10 = 5 mA	4	0°C tc .*			_		-0.6		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	2	25°C		200	640		200		μV
Dropout voltage			25°C		1.1	2.3		1.1		v
Bias current			25°C		1	2		1	2	mA
			-55 °C to 150 °C	-		0.4				
2.0.0.000000000000000000000000000000000	$V_{\rm I} = -10.5 \text{ V to } -25$	5 V	0°C to 125°C						0.4	
Bias current change			-55 °C to 150 °C			0.4				mA
	$I_0 = 5 \text{ mA to } 350 \text{ mA}$		0°C tc '. C		-				0.4	
Short-circuit	V 30 V		25.00			600		140		
output current	vi = -30 v		20-0		1.5	600		140		MA
Peak output current			25°C	0.5	0.65	1.4		0.65		A

uA79M08M, uA79M08C electrical characteristics at specified virtual junction temperature, V_I = - 19 V, I_O = 350 mA (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA79M12M, uA79M12C Negative-voltage regulators

uA79M12M,	uA79M12C	electrical	characteristics	at	specified	virtual	junction	temperature,
$V_{I} = -19 V_{,}$	$I_0 = 350 \text{ m}$	A (unless	otherwise noted)				

		CONDITIONAL		u.	A79M12	М	u	A79M12	C	
PARAMETER	TEST	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
			25°C	-11.5	-12	- 12.5	-11.5	-12	- 12.5	
Output voltage [‡]	$I_0 = 5 \text{ mA to } 350 \text{ mA},$		- 55 °C to 150 °C	-11.4		- 12.6				v
	$V_{\rm I} = -14.5 \text{ V to } -30$	v	0°C to 125°C				-11.4		- 12.6	
	$V_{\rm I} = -14.5 \text{ V to } -30$	V		-	9	80	and the second	9	80	
Input regulation	$V_{I} = -15 V \text{ to } -25 V$		25 °C		5	50	1	5	50	mV
		100000	-55°C to 150°C	50			1.0			1
Ripple rejection	$V_{\rm I} = -15 V$ to $-25 V$,	$I_0 = 100 \text{ mA}$	0°C to 125°C				50			dB
	f = 120 Hz	$l_{0} = 300 mA$	25°C	54	60		54	60		
	$I_0 = 5 \text{ mA to } 500 \text{ mA}$	l v			65	240		65	240	
Output regulation	$I_0 = 5 \text{ mA to } 350 \text{ mA}$		25°C		45			45		mV
Temperature coefficient			-55°C to 150°C	1		-3.6				
of output voltage	1 ₀ = 5 mA		0°C to 125°C	1			1.	-0.8		mv/°C
Output noise voltage	f = 10 Hz to 100 kHz	-	25°C		300	960		300		μV
Dropout voltage			25 °C		1.1	2.3		1.1		V
Bias current			25°C	·	1.5	3		1.5	3	mA
			-55°C to 150°C	11		0.4	1			
Superconden in	$V_{\rm i} = -14.5 \text{ V to } -30$	v	0°C to 125°C				1		0.4	
Bias current change			- 55°C to 150°C			0.4			A	1 mA
	10 = 5 mA to 350 mA		o'.						0.4	
Short-circuit output current	V ₁ = -30 V		25°C			600		140		mA
Peak output current			25°C	0.5	0.65	1.4		0.65		A

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

uA79M15M, uA79M15C NEGATIVE-VOLTAGE REGULATORS

DADAMETED	TEO			114	79M15M	٨	uA	7		
PANAMICIEN	125	CONDITIONS'		T	TYP	MAX	MIN	••	MAX	UNIT
		-	25°C	- 14.4	-15	- 15.6	-14.4	-15	-15.6	
Output voltage [‡]	Io = 5 mA to 350 mA,		-55°C, to 150°C	- 14.25		- 15.75				v
	$V_{I} = -17.5 V \text{ to } -30$	v	tc .				-14.25	te-st d	-15.75	
1	$V_{I} = -17.5 V \text{ to } -30$	V	05.00		9	80		9	80	
input regulation	$V_{I} = -18 V \text{ to } -28 V$		25 %		7	50	1	7	50	mv
	$V_{I} = -18.5 V$		-55°C to 150°C	50				- 23.3		1.00
Ripple rejection	to - 28.5 V,	10 = 100 mA	0°C to 125°C				50			dB
	f = 120 Hz	lo = 300 mA	25 °C	54	59		54	59		
0. 4	10 = 5 mA to 500 mA		0500	1	65	240		65	240	
Output regulation	$l_0 = 5 \text{ mAtc} \cdot \text{nA}$	2	25 %	-	45			45	-	mV
Temperature coefficient			-55°C to 150°C			-4.5				
of output voltage	10 = 5 mA		0°C to 125°C				-	-1	1000	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		375	1200		375		μV
Dropout voltage			25°C		1.1	2.3	10.00	1.1		٧
Bias current	Contraction of the second		25°C		1.5	3		1.5	3	mA
	V 17 5 V 4- 20		-55°C to C			0.4				
D'	$v_{\rm l} = -17.5 \ v_{\rm t0} - 30$	v	0°C to 125°C		- C				0.4	
Bias current change	s current change		- 55°C, to 150°C			0.4	1.2.			mA
	10 = 5 mA to 350 mA		to .						0.4	
Short-circuit output current	V _I = -30 V		25°C			600		140		mA
Peak output current			25°C	0.5	0.65			0.65		A

uA79M15M, uA79M15C electrical characteristics at specified virtual junction temperature, $V_I = -23 V$, $I_O = 350 mA$ (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Data Sheets N

uA79M20C NEGATIVE-VOLTAGE REGULATORS

DADAMETED	TEST CONDITIONS		uA	79M20	C	
PARAMETER	TEST CONDITIONS.		MIN	TYP	MAX	
o		25°C	- 19.2	- 20	-20.8	
Output voltage*	$I_0 = 5 \text{ mA to } 350 \text{ mA}, V_1 = -23 \text{ V to } -35 \text{ V}$	0 to 125 °C	-19		-21	v
1	$V_{1} = -23 V \text{ to } -35 V$	05.00		12	80	
Input regulation	$V_{ } = -24 V \text{ to } -34 V$	25°C		10	70	mv
D'automination	$V_{I} = -24 V \text{ to } -34 V$, $I_{O} = 100 \text{ mA}$	0°C to C	50			- D
Ripple rejection	f = 120 Hz IO = 300 mA	25 0	54	58		ab
0 · · · · · · ·	$I_0 = 5 \text{ mA to}$ mA	25.90		75	300	
Output regulation	IO = 5 mA to mA	25.0		50		mv
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		- 1		mV/°C
Output noise voltage	f = 10 Hz to <hz< td=""><td>25 °C</td><td></td><td></td><td></td><td>μV</td></hz<>	25 °C				μV
Dropout voltage		25 °C		1.1		V
Bias current		25 °C		1.5	3.5	mA
	$V_1 = -23 V \text{ to } -35 V$	000 - 10500			0.4	
Bias current change	I ₀ = 5 mA to 350 mA	0°C to 125°C			0.4	mA
Short-circuit output current	$V_{I} = -30 V$	25 °C		140		mA
Peak output current		25°C		0.65		Α

uA79M20C electrical characteristics at specified virtual junction temperature, VI = -29 V, IO = 350 mA (unless otherwise noted)

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

DADAMETED		TEAT CONDITIONAT		uA	79M24	с	
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Output voltage t	1 E m 4 to 250 m 4 1	1	25 °C	-23	- 24	- 25	
Output voltage.	10 = 9 mA to 350 mA, V	= -27 v to - 38 v	0 to 125°C	-22.8		-25.2	v
Innut annulation	$V_{I} = -27 V \text{ to } -38 V$		2590		12	80	
input regulation	$V_{I} = -28 V \text{ to } -38 V$		20-0		12	70	mv
Ripple rejection	$V_{\rm I} = -28 V$ to $-38 V$,	lo = 100 mA	0°C to 125°C	50			dD
hipple rejection	f = 120 Hz	lo = 300 mA	25 °C	54	58		aв
	IO = 5 mA to 500 mA		25.90		75	300	
output regulation	IO = 5 mA to 350 mA		25-0		50		mv
Temperature coefficient	1 E m 4		0.00 40 125.00				
of output voltage	10 = 5 mA		0-010125-0		- 1		mv/-C
Output noise voltage	f = 10 Hz to 100 kHz		25 °C		600		μV
Dropout voltage			25 °C		1.1		v
Bias current			25°C		1,5	3.5	mA
Rice summer abar as	$V_{i} = -27 V \text{ to } -38 V$		0.90 += 135.00			0.4	
bias current change	IO = 5 mA to 350 mA		0-0 10 125-0			0.4	mA
Short-circuit	V/ - 20 V/		25.90		140		
output current	v = -30 v		25°C		140		MA
Peak output current			25 °C		0.65	1.000	A

uA79M24C electrical characteristics at specified virtual junction temperature, $V_1 = -33 V$, $I_0 = 350 \text{ mA}$ (unless otherwise noted)

Data Sheets D

[†]Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

2 Data Sheets

UC1846, UC1847, UC2846 UC2847, UC3846, UC3847 CURRENT-MODE PWM CONTROLLERS D3045, APRIL 1988-REVISED OCTOBER 1988

- Automatic Feed-Forward Compensation
- Programmable Pulse-by-Pulse Current Limitina
- Automatic Symmetry Correction in Push-**Pull Configuration**
- Enhanced Load Response Characteristics
- Parallel Operation Capability for Modular Power Systems
- Differential Current-Sense Amplifier with Wide Common-Mode Range
- Double-Pulse Suppression
- 200-mA Totem-Pole Outputs
- ±1% Bandgap Reference
- Under-Voltage Lockout
- Soft-Start Capability
- Shutdown Terminal
- 500-kHz Operation

description

This family of control ICs provides all of the necessary features to implement fixed frequency. current-mode control schemes while maintaining a minimum external parts count. The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and a simpler, easierto-design control loop. Topological advantages include inherent pulse-by-pulse current-limiting capability, automatic symmetry correction for push-pull converters, and the ability to parallel "power modules" while maintaining equal current sharing.

Protection circuitry includes built-in under-voltage lockout and programmable current limiting in addition to soft-start capability. A shutdown function is also available that can initiate either a complete shutdown with automatic restart, or latch the supply off.

Other features include fully-latched operation, double-pulse suppression, deadtime adjustment capability, and a $\pm 1\%$ trimmed bandgap reference.

In the off state, the UC1846 outputs are low and the UC1847 outputs are high.

The UC1846 and UC1847 are characterized for operation over the full military temperature range of -55°C to 125°C, the UC2846 and UC2847 are characterized for operation from -25°C to 85°C, and the UC3846 and UC3847 are characterized for operation from 0°C to 70°C.

Data Sheets

NC-No internal connection

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FN	1400 mW	11.2 mW/°C	896 mW	728 mW	280 mW
J	1375 mW	11.0 mW/2C	880 mW	715 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW	

Data Sheets C

recommended operating conditions

		UC1846	, UC1847	UC2846	, UC2847	UC3846	UC3847	1.1.1.1
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
High-tevel input . je, VIH (or Section)	3.9		3.9		3.9		V
Low-level input	utor Section)		2.5	-	2.5		2.5	V
Supply voltage operating range, V	'IN	8	40	8	40	8	40	V
Operating free-air temperature, TA		-55	125	-25	85	0	70	°C

electrical characteristics over operating free-air temperature range, VIN = 15 V, RT = 10 k\Omega, CT = 4.7 nF (unless otherwise noted)

reference section

	PARAMETER	TEST CONDITIONS	UC1 UC2	846, UC 846, UC	1847 2847	UC3	846, UC	3847	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Vo	Output voltage	$I_O = 1 \text{ mA}, T_A = 25^{\circ}C$	5.05	5.1	5.1	5	5.1	5.2	V
	Line regulation	VIN(pin 15) = 8 V to 40 V		5	20		5	20	mV
	Load regulation	$I_{IL} = 1 \text{ mA to } 10 \text{ mA}$		3	15		3	15	mV
αVO	Temperature coefficient of output voltage			0.4			0.4		mV/⁰C
	··· vutput . In		5		5.2	4.95		5.25	V
	Output noise voltage	f = 1 kHz to 10 kHz, $T_A = 25^{\circ}C$			100			100	μV
	Output voltage long-term drift	t = 1000 hours, T _A = 25°C	1	5			5		mV
los	Short-circuit output current (REFOUT)	V _{REF} = 0	- 10	-45		-10	-45		mA

oscillator section

	PARAMETER TEST CONDITIONS		UC1846, UC1847 UC2846, UC2847			UC3846, UC3847			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
	Initial accuracy	$T_A = 25^{\circ}C$	39	43	47	39	43	47	kHz
	Frequency change with voltage	V _{IN} (pin 15) = 8 V to 40 V		-1%	±2%		-1%	±2%	
	Frequency change with temperature			-1%			-1%		
VT	Threshold voltage (SYNC)		2.5		3.9	2.5		3.9	V
Vон	High-level output voltage (SYNC)		3.9			3.9			v
VOL	Low-level output voltage (SYNC)				2.5			2.5	v
h	Input current (SYNC)	Sync voltage = 5.25 V, CT at 0 V		1.3	1.5		1.3	1.5	mA

electrical characteristics over operating free-air temperature range, $V_{IN} = 15 V$, $R_T = 10 k\Omega$, $C_T = 4.7 nF$ (unless otherwise noted) (continued)

error amplifier section

	PARAMETER	TEST CONDITIONS	UC1 UC2	846, UC 846, UC	1847 2847	UC3	UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage		1	0.5	5		0.5	5	mV
10	Input offset current			40			40	250	nA
IIB	Input bias current			-0.6	1		-0.6	-1	μA
VOH	High-level output voltage	$R_{L(COMP)} = 15 k\Omega$	4.3	4.6		4.3	4.6	-	V
юн	High-level output current	$V_{ID} = 15 \text{ mV to 5 V},$ COMP at 2.5 V	-0.4	-0.5		-0.4	-0.5		mA
VOL	Low-level output voltage	$R_{L(COMP)} = 15 k\Omega$		0.7	1		0.7	1	V
^I OL	Low-level output current	$V_{ID} = -15 \text{ mV to } -5 \text{ V},$ COMP at 1.2 V	2	6	27	2	6		mA
VICR	Common-mode input voltage range	$V_{IN} = 8 V \text{ to } 40 V$	0 to VIN-2			0 to VIN-2			v
AVD	Open-loop voltage amplification	$\Delta V_{O} = 1.2 V \text{ to } 3 V,$ V _{IC} = 2 V	80	105		80	105		dB
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 38 \text{ V},$ $V_{IN} = 40 \text{ V}$	75	100		75	100		dB
KSVR	Supply-voltage rejection ratio	V _{IN} = 8 V to 40 V	80	105		80	105		dB

current-sense amplifier section

	PARAMETER	TEST CONDITIONS	UC1 UC2	846, UC 846, UC	1847 2847	UC3	846, UC:	3847	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	CURR LIM ADJ/SOFT START		5	25		5	25	mV
10	Input offset current	at 0.5 V, COMP open, See		0.08	1		0.08	1	μA
IB	Input bias current	Note 3	1	-2.5	-10	1	-2.5	-10	μA
Av	Voltage amplification	CURRENT SENSE (-) at 0 V, CURR LIM ADJ/SOFT START open, See Notes 2 and 3	2.5	2.75	3	2.5	2.75	3	v
VICR	Common-mode input voltage range		0 to VIN-3			0 to VIN-3			v
	Maximum usable differential input signal	CURR LIM ADJ/SOFT START open, RL(COMP) = $15 \text{ k}\Omega$, See Note 2	1.1	1.3		1.1	1.2		v
CMRR	Common-mode rejection ratio	VIC = 1 V to 12 V	60	83	~	60	83		dB
KSVR	Supply-voltage rejection ratio	VIN = 8 V to 40 V	60	84		60	84		dB
td	Input-to-output delay time	T _A = 25°C		200	600		200	600	ns

NOTES: 2. This parameter is measured at the trip point of the latch with ERROR AMP (+) at VREF, ERROR AMP (-) at 0 V. 3. Amplifier gain is defined as:

$$AV = \frac{\Delta V_{PIN 7}}{\Delta V_{PIN 4}}$$

Where:

ΔVPIN 4 = 0 V to 1.0 V

Data Sheets N

electrical characteristics over operating free-air temperature range, VIN = 15 V, RT = 10 k Ω , CT = 4.7 nF (unless otherwise noted) (continued)

current limit adjustment section

PARAMETER		TEST CONDITIONS	UC1846, UC1847 UC2846, UC2847			UC3846, UC3847			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
Vio	Input offset voltage	CURRENT SENSE (-) at 0 V, CURRENT SENSE (+) at 0 V, COMP (See Note 3	0.45	0.5	0.55	0.45	0.5	0.55	v
hΒ	Input bias current	ERROR ···· (+) at V _{REF} , ERROR AMP (-) at 0 V		-10	-30		-10	-30	μA

shutdown terminal section

ji -	PARAMETER	TEST CONDITIONS	UC1846, UC1847 UC2846, UC2847			UC3846, UC3847			UNIT
			MIN TYP		MAX	MIN	TYP	MAX	
٧T	Differential-input threshold voltage		250	350	400	250	350	400	mV
			0			0			1000
V ₁	Input voltage range		to			to			v
			VIN			VIN		3	
7.1	Minimum latching current (CURR LIM ADJ/SOFT START)	See Note 4	0.8	1.5	3	0.8	1.5	3	mA
	Output delay	T _A = 25°C		300	600		300	600	ns

output section

	PARAMETER	TEST CONDITIONS	UC1 UC2	UC1846, UC1847 UC2846, UC2847			UC3846, UC3847		
				TYP	MAX	MIN	TYP	MAX	
V(BR)CE	Collector-emitter breakdown voltage		40	1.00		40			v
ICEX	Collector-emitter off-state current	VCE = 40 V, See Note 5			200			200	μA
	High-level output voltage	$I_{OH} = -20 \text{ mA}$	13	13.5		13	13.5		
чон	(AOUT and BOUT)	$I_{OH} = -100 \text{ mA}$	12	13.5		12	13.5		V
	Low-level output voltage	I _{OL} = 20 mA		0.1	0.4		0.1	0.4	v
VOL	(AOUT and BOUT)	I _{OL} = 100 mA		0.4	2.1		0.4	2.1	v
tr	Rise time (AOUT and BOUT)	0 1-E T 250		50	300		50	300	ns
tf	Fall time (AOUT and BOUT)	$-0L = 1 \text{ m}^2$, $1A = 25^{\circ}$		50	300		50	300	ns

under-voltage lockout section

PARAMETER	TEST CONDITIONS	UC1846, UC1847 UC2846, UC2847			UC3846, UC3847			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Startup threshold	12.3.5		7.7	8	1	7.7	8	V
Three			0.75	1		0.75		v

NOTES: 3. This parameter is measured at the trip point of the latch with ERROR AMP (+) at VREF and ERROR AMP (-) at 0 V.

4. This is the lowest current into Pin 1 that will latch the circuit in the shutdown state.

5. This applies for UC1846, UC2846, and UC3846 only (due to polarity of outputs).

electrical characteristics over operating free-air temperature range, V_{IN} = 15 V, R_T = 10 k Ω , C_T = 4.7 nF (unless otherwise noted) (continued)

total device

PARAMETER	TEST CONDITIONS	UC1846, UC1847 UC2846, UC2847			UC3846, UC3847			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	1
Supply current			17	21		17	21	mA

TYPICAL APPLICATION DATA

OSCILLATOR WAVEFORMS

NOTE: Oscillator frequency is approximated by the formula: f_T \approx $\frac{2}{R_TC_T}$

Output deadtime is determined by the size of the external capacitor, CT, according to the following formula:

$$= 145 \text{ CT}\left(\frac{12}{12 - \frac{3.6}{\text{RT}(\text{k}\Omega)}}\right)$$

tdead

For large values of RT, tdead ≈ 145 CT

FIGURE 3. OSCILLATOR CIRCUIT

TYPICAL APPLICATION DATA

NOTE. Error Amplifier can source up to 0 5 mA.

FIGURE 4. ERROR AMPLIFIER OUTPUT CONFIGURATION

NOTE: Slaving allows parallel operation of two or more units with equal current sharing.

FIGURE 7. PARALLEL OPERATION

