General Information

Data Sheets

Product Previews

- Advanced LinCMOS ${ }^{\text {™ }}$ Silicon-Gate Technology
- Easy Microprocessor Interface
- On-Chip Data Latches
- Digital Inputs are TTL-Compatible with 10.8-V to 15.75-V Power Supply
- Monotonic Over the Entire A/D Conversion Range
- Designed to be Interchangeable with Analog Devices AD7628
- Fast Control Signaling for Digital Signal Processor Applications Including Interface with TMS320

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 bits
Linearity Error	$1 / 2 \mathrm{LSB}$
Power Dissipation at $V_{D D}=15 \mathrm{~V}$	15 mW
Setting Time at $V_{D D}=5 \mathrm{~V}$	100 ns
Propagation Delay at $V_{D D}=5 \mathrm{~V}$	80 ns

description

The AD7628 is a dual 8 -bit digital-to-analog converter designed with separate on-chip data latches and featuring excellent DAC-to-DAC matching. Data is transferred to either of the two DAC data latches via a common 8 -bit input port. Control input DACA/DACB determines which DAC is loaded. The "load" cycle of the AD7628 is similar to the "write" cycle of a random-access memory, allowing easy interface to most popular microprocessor busses and output ports. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, where glitch impulse is typically the strongest.

The AD7628 operates from a $10.8-\mathrm{V}$ to $15.75-\mathrm{V}$ power supply and is TTL-compatible over this range. Power dissipation is less than 15 mW . Excellent 2- or 4-quadrant multiplying makes the AD7628 a sound choice for many microprocessor-controlled gain-setting and signal-control applications.

The AD7628B is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The AD 7628 K is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

SYMBOLIZATION		OPERATING
DEVICE	PACKAGE SUFFIX	TEMPERATURE RANGE
AD7628B	FN, N	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AD7628K	FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

functional block diagram

operating sequence

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{DD}		10.8		15.75	V
Reference voltage, $\mathrm{V}_{\text {ref }}$ or $\mathrm{V}_{\text {ref }} \mathrm{B}$			± 10		V
High-level input voltage, $\mathrm{V}_{1 H}$		2.4			V
Low-ievel input voltage, $\mathrm{V}_{\text {IL }}$				0.8	V
$\overline{\mathrm{CS}}$ setup time, t su(CS)		50			ns
$\overline{\text { CS }}$ hold time, th(CS)		0			ns
DAC select setup time, $\mathrm{t}_{\text {su }}(\mathrm{DAC})$		50			ns
DAC select hold time, th(DAC)		10			ns
Data bus input setup time $\mathrm{t}_{\text {su }}(\mathrm{D})$		25			ns
Data bus input, time th(D)		0			ns
Pulse duration, \therefore ow, $\mathrm{t}_{\text {w }}(W \mathrm{~W})$		50			ns
Operating free-air temperature, T_{A}	AD7628B	-25		85	${ }^{\circ} \mathrm{C}$
	AD7628K	0		70	

AD7628
Advanced LinCMOS ${ }^{\text {m }}$ DUAL B-BIT MULTIPLYING digital-to-analog converter
electrical characteristics over recommended ranges of operating free-air temperature and VDD. $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OA}}$ and V_{OB} at 0 V (unless otherwise noted)

operating characteristics over recommended ranges of operating free-air temperature and VDD. $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, V_{O A}$ and $V_{O B}$ at 0 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Min	TYP MAX	UNIT	
Linearity error					$\pm 1 / 2$	LSB	
Setting time (to $1 / 2 \mathrm{LSB}$)		See Note 1			100	ns	
Gain error		See Note 2	Full Range		± 3	LSB	
		$25^{\circ} \mathrm{C}$		± 2			
AC feedthrough	REFA to OUTA		See Note 3	Full Range		-65	A
	REFB to OUTB	$25^{\circ} \mathrm{C}$			-70		
Temperature coefficient of gain					0.0035	\% FSR $/{ }^{\circ} \mathrm{C}$	
Propagation delay (from digital input to 90% of final analog output current)		See Note 4			80	ns	
Channel-to-channel isolation	REFA to OUTB	See Note 5	$25^{\circ} \mathrm{C}$		80	dB	
	REFB to OUTA	See Note 6	$25^{\circ} \mathrm{C}$		80		
Digital-to-analog glitch impulse area		Measured for code transition from 00000000 to 11111111 ,$T_{A}=25^{\circ} \mathrm{C}$			440	nV.s	
Digital crosstalk glitch mpulse area		Measured for code transtion fiom 00000000 to 11111111 .$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60	$n \vee \cdot s$	
Harmonic distortion		$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-85	dB	

NOTES: 1. OUTA, OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at 0 V ; DBO-DB7 at 0 V to V_{DD} or $V_{D D}$ to 0 V .
2. Gain error is measured using an internal feedback resistor. Nominal Full Scale Range (FSR) $=V_{\text {ref }}-1$ LSB. Both DAC latches are loaded with 11111111.
3. $V_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, $10-\mathrm{kHz}$ sine wave.
4. $V_{\text {retA }}=V_{\text {refB }}=10 \mathrm{~V}$; OUTA/OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at $O \mathrm{~V} ; \mathrm{DBO}$-DB7 at $O \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V .
5. $V_{\text {refA }}=20 \mathrm{~V}$ peak-to-peak, $10-\mathrm{kHz}$ sine wave: $V_{\text {refB }}=0$.
6. $V_{\text {refB }}=20 \mathrm{~V}$ peak-to-peak, 10 kHz sine wave; $V_{\text {ref }}=0$.

principles of operation

The AD7628 contains two identical 8-bit multiplying D/A converters, DACA and DACB. Each DAC consists of an inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state. Most applications require only the addition of an external operational amplifier and voltage reference. A simplified D/A circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs share the analog ground pin 1 (AGND). With all digital inputs high, the entire reference current flows to OUTA. A small leakage current (1 lkg) flows across internal junctions, and as with most semiconductor devices, doubles every $10^{\circ} \mathrm{C} . \mathrm{C}_{\mathrm{O}}$ is due to the parallel combination of the NMOS switches and has a value that depends on the number of switches connected to the output. The range of C_{O} is 25 pF to 60 pF maximum. The equivalent output resistance r_{0} varies with the input code from 0.8 R to 3 R where R is the nominal value of the ladder resistor in the R-2R network.
Interfacing the AD7628 to a microprocessor is accomplished via the data bus, $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control signals. When $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are both low, the AD7628 analog output, specified by the $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control line, responds to the activity on the DBO-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{\mathrm{CS}}$ signal or $\overline{\mathrm{WR}}$ signal goes high, the data on the DBO-DB7 inputs is latched until the $\overline{C S}$ and $\overline{W R}$ signals go low again. When $\overline{C S}$ is high, the data inputs are disabled, regardless of the state of the $\overline{W R}$ signal.
The digital inputs of the AD7628 provide TTL compatibility when operated from a supply voltage of 10.8 V to 15.75 V . Power dissipation is a low 10 mW within this range.

FIGURE 1. SIMPLIFIED FUNCTIONAL CIRCUIT FOR DACA

FIGURE 2. AD7628 EQUIVALENT CIRCUIT, DACA LATCH LOADED WITH 11111111.

$\begin{aligned} & \overline{\mathrm{DACA}} \\ & \mathrm{DACB} \end{aligned}$	$\overline{\mathrm{CS}}$	$\overline{W R}$	DACA	DACR
1	L	L	WRITE	HOLD
H	L	L	HOLD	WRITE
x	14	x	HOLD	HOLD
\times	\times	H	HOLD	HOLD

[^0]
TYPICAL APPLICATION DATA

The AD7628 is capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2-quadrant and 4-quadrant multiplication are shown in Figures 3 and 4. Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.

NOTES: 1. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with digital input of 255 .
2. C 1 and C 2 phase compensation capacitors (10 pF to 15 pF) are required when using high-speed amplifiers to prevent ringing or oscillation.

FIGURE 3. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

TYPICAL APPLICATION DATA

NOTES: 1. R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for $V_{O A}=0 V$ with code 10000000 in DACA latch. Adjust $R 3$ for $V_{O B}=0 V$ with 10000000 in DACB latch.
2. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10.
3. C 1 and C 2 phase compensation capacitors (10 pF to 15 pF) may be required if A 1 and A 3 are high-speed amplifiers.

FIGURE 4. BIPOLAR OPERATION (4-QUADRANT OPERATION)

TABLE 1. UNIPOLAR BINARY CODE

DAC LATCH CONTENTS MSB LSB	ANALOG OUTPUT
$\mathbf{1 1 1 1 1 1 1 1}$	$-V_{i}(255 / 256)$
10000001	$-V_{i}(129 / 256)$
10000000	$-V_{i}(128 / 256)=-V_{i}(2$
01111111	$-V_{i}(127 / 256)$
00000001	$-V_{1}(1 / 256)$
00000000	$-V_{1}(0 / 256)=0$

$t 1 \mathrm{LSB}=(2-8) \mathrm{V} ;$

TABLE 2. BIPOLAR (OFFSET BINARY) CODE

DAC LATCH CONTENTS MSB LSB ${ }^{\text { }}$	ANALOG OUTPUT
11111111	$V_{i}(127 / 128)$
10000001	$V_{i}(1 / 128)$
10000000	0 V
01111111	- $\mathrm{V}_{1}(1 / 128)$
00000001	- $V_{1}(127 / 128)$
00000000	$-V_{i}(128 / 128)$

[^1]
TYPICAL APPLICATION DATA

microprocessor interface information

NOTE: $\quad A=$ decoded address for AD7628 DACA.
$A+1=$ decoded address for AD7628 DACB.
FIGURE 5. AD7628 - INTEL 8051 INTERFACE

NOTE: $\quad A=$ decoded address for AD7628 DACA.
$A+1=$ decoded address for AD7628 DACB.
FIGURE 6. AD7628 - 6800 INTERFACE

TYPICAL APPLICATION DATA

voltage-mode operation
The AD7628 current-multiplying D/A converter can be operated in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output pin. The analog output voltage is then available at the reference voltage pin. An example of a current-multiplying D/A converter operating in voltage mode is shown in Figure 7. The relationship between the fixed input voltage and the analog output voltage is given by the following equation:

$$
\text { Analog output voltage }=\text { fixed input voltage (D/256) }
$$

where $D=$ the digital input. In voltage-mode operation, the AD7628 meets the following specification:

LINEARITY ERROR	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog output voltage for REFA, B	$V_{D D}=12 \mathrm{~V}$, OUTA or OUTB $=5 \mathrm{~V}, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		1	LSB	

figure 7. Current-multiplying d/a converter operating in voltage mode

- 6-Bit Resolution
- 0.8% Linearity
- Maximum Conversion Rate . . 25 MHz Typ 20 MHz Min
- Analog Input Voltage Range

$$
V_{C C} \text { to } V_{C C}-2 V
$$

- Analog Input Dynamic Range . . 1 V
- TTL Digital I/O Level
- Low Power Consumption . . . 200 mW Typ
- 5-V Single-Supply Operation
- Interchangeable with Fujitsu MB40576

description

The TL5501 is a low-power ultra-high-speed video-band analog-to-digital converter that uses the Advanced Low-Power Schottky (ALS) process. It utilizes the full-parallel comparison (flash method) for high-speed conversion. It converts wide-band analog signals (such as a video signal) to a digital signal at a sampling rate of $d c$ to 25 MHz . Because of such high-speed capability, the TL5501 is suitable for digital video applications such as digital TV, video processing with a computer, or radar signal processing.
The TL5501 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

functional block diagram

TL5501
6-BIT ANALOG-TO-DIGITAL CONVERTER
equivalents of analog input circuit

NOTE A: $\mathrm{C}_{\mathbf{i}}$ - nonlinear emitter-follower junction capacitance
R_{i} - linear resistance model for input current transition caused by comparator switching. $V_{l}<V_{\text {refB }}$: Infinite; CLK high: Infinite.
$V_{\text {refB }}$ - voltage at REFB terminal
Ibias - constant input bias current
D - Base-collector junction diode of emitter-follower transistor
equivalent of digital input circuit

FUNCTION TABLE

STEP	ANALOG INPUT VOLTAGE ${ }^{\dagger}$	digital output CODE
0	3.992 V	L L L L L L
1	4008 V	L L L L H
1	1	1
31	4.488 V	L. H H H H H
32	4.508 V	H L L L L
33	$4.520 \mathrm{~V}$	H L L L L H
62	4.984 V	$\begin{array}{lllllll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{L}\end{array}$
63	5.000 V	H H H H H

These values are based on the assumption that
$V_{\text {refB }}$ and $V_{\text {refT }}$ have been adjusted so that the
voltage at the transition from digital 0 to $1\left(V_{Z T}\right)$
is $4000 \vee$ and the transition to full scale $\left(V_{F T}\right)$ is
$4992 \vee, L S B-16 \mathrm{mV}$
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, ANLG VCC	- ${ }^{\text {a }}$
Supply voltage range, DGTL VCC	- 0.1
Input voltage range at digital input, V	-0.5 V to 7 V
Input voltage range at analog input, V_{1}	-0.5 V to ANLG $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Analog reference voltage range, $V_{\text {ref }}$	-0.5 V to ANLG $V_{C C}+0.5 \mathrm{~V}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating free-air temperature range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch	$260^{\circ} \mathrm{C}$

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, ANLG VCC	4.75	5	5.25	V
Supply voltage, DGTL VCC	4.75	5	5.25	V
High-level input voltage, $\mathrm{V}_{1 H}$	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8	V
input voltage at analog input, V_{1} (see Note 1)	4		5	V
Analog reference voltage (top side), $\mathrm{V}_{\text {reft }}$ (see Note 1)	4	5	5.1	V
Analog reference voltage (bottom side), $V_{\text {refB }}$ (see Note 1)	3	4	4.1	V
High-level output current, OH			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4	mA
Clock pulse duration, high-level or low-level, $\mathrm{t}_{\text {w }}$	25			ns
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

NOTE 1: $V_{\text {refB }}<V_{i}<V_{\text {reft }}, V_{\text {refT }}-V_{\text {refB }}=1 V \pm 0.1 \mathrm{~V}$.
electrical characteristics over operating supply voltage range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
1	Analog input current	$\mathrm{V}_{1}=5 \mathrm{~V}$			75	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=4 \mathrm{~V}$			73	
${ }_{1 / \mathrm{H}}$	Digital high-level input current	$\mathrm{V}_{1}=2.7 \mathrm{~V}$		0	20	$\mu \mathrm{A}$
ILL.	Digital low-level input current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-40	-400	$\mu \mathrm{A}$
11	Digital input current	$V_{1}=7 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {refB }}$	Reference current	$\mathrm{V}_{\text {refB }}=4 \mathrm{~V}$		-4	-7.2	mA
${ }_{\text {reft }}$	Reference current	$\mathrm{V}_{\text {reft }}=5 \mathrm{~V}$		4	7.2	mA
V OH	High-level output voltage	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	2.7			V
V_{OL}	Low-level output voltage	$\mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	V
ri	Analog input resistance		100			k Ω
C_{i}	Analog input capacitance			35	65	pF
${ }^{\text {I CC }}$	Supply current			40	60	mA

operating characteristics over operating supply voltage range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYp ${ }^{\text {t }}$	MAX	UNIT
E_{L}	Linearity error				± 0.8	\%FSR
$\mathrm{f}_{\text {max }}$	Maximum conversion rate		20	25		MHz
t_{d}	Digital output delay time	See Figure 3		15	30	ns

timing diagram

TYPICAL CHARACTERISTICS

NOTE 2: This curve is based on the assumption that $V_{\text {refB }}$ and $V_{\text {refT }}$ have been adjusted so that the voltage at the transition from digital 0 to $1\left(V_{Z T}\right)$ is 4.000 V and the transition to full scale $\left(V_{F T}\right)$ is $4.992 \mathrm{~V} .1 \mathrm{LSB}=16 \mathrm{mV}$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. LOAD CIRCUIT

- 6-Bit Resolution
- $\pm 0.8 \%$ Linearity
- Maximum Conversion Rate . . . 30 MHz Typ 20 MHz Min
- Analog Output Voltage Range . . . VCC to VCC -1 V
- TTL Digital Input Voltage
- Low Power Consumption . . . 200 mW Typ
- 5-V Single-Supply Operation
- Interchangeable with Fujitsu MB40776

description

The TL5601 is a low-power ultra-high-speed video digital-to-analog converter that uses the Advanced LowPower Schottky (ALS) process. It converts digital signals to analog signals at a sampling rate of dc to 20 MHz . Because of such high-speed capability, the TL5601 is suitable for digital video applications such as digital television, video processing with a computer, and radar signal processing.
The TL5601C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

FUNCTION TABLE

STEP	DIGITAL INPUTS						OUTPUT
	D5	D4	D3	D2	D1	D0	VOLTAGE
O	L	L	L	L	L	L	3992 V
1	L	L	L	L	L	H	4.008 V
I							\vdots
31	L	H	H	H	H	H	4.488 V
32	H	L	L	L	L	L	4504 V
33	H	L	L	L	L	H	4.520 V
I							\vdots
62	H	H	H	H	H	L	4.984 V
63	H	H	H	H	H	H	5.000 V

[^2]schematics of equivalent input and output circuits

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, ANLG VCC, DGTL V C C	-0.5 V to 7 V
Digital input voltage range, V_{1}	-0.5 V to 7 V
Analog reference voltage range, $\mathrm{V}_{\text {ref }}$	3.8 V to VCC +0.5 V
Operating free-air temperature range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	$260^{\circ} \mathrm{C}$

recommended operating conditions

	MIN	NOM	MAX	UNIT
$V_{\text {CC }}$ Supply voltage	4.75	5	5.25	V
$V_{\text {ref }}$ Analog reference voltage (see Note 1)	3.8	4	4.2	V
$\mathrm{V}_{1 \mathrm{H}} \quad$ High-level input voltage	2			V
$\mathrm{V}_{\text {IL }}$ Low-level input voltage			0.8	V
t_{w}. . Pulse duration, CLK high or low	25			ns
$\mathrm{t}_{\text {SU }}$ Setup time, data before CLK 1	12.5			ns
$t_{\text {th }}$ Hold time, data after CLK \dagger	12.5			ns
$\mathrm{C}_{\text {comp }}$ Phase compensation capacitance (see Note 2)	1			${ }^{\mu} \mathrm{F}$
T_{A} Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 1. V ref must be within 1.2 V of V_{CC}.
2. This capacitor should be connected between comp and GND.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

operating characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	TEST CONDITIONS	MIN	TYp ${ }^{\dagger}$	MAX	UNIT
$\mathrm{E}_{\mathrm{L}} \quad$ Linearity error				± 0.8	\%FSR
$\mathrm{f}_{\text {max }}$ Maximum conversion rate		20	30		MHz

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS

FIGURE 2. IDEAL CONVERSION CHARACTERISTICS

FIGURE 3. END-POINT LINEARITY ERROR

- 8-Bit Resolution
- $\pm 0.2 \%$ Linearity
- Maximum Conversion Rate

30 MHz Typ
20 MHz Min

- Analog Output Voltage Range . . . VCC
to $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$
- TTL Digital Input Voltage
- 5-V Single-Supply Operation
- Low Power Consumption . . . 250 mW Typ
- Interchangeable with Fujitsu MB40778

N PACKAGE
(TOP VIEW)

description

The TL5602 is a low-power ultra-high-speed video digital-to-analog converter that uses the Advanced LowPower Schottky (ALS) process. It converts digital signals to analog signals at a sampling rate of dc to 20 MHz . Because of such high-speed capability, the TL5602 is suitable for digital video applications such as digital television, video processing with a computer, and radar signal processing.
The TL5602C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

FUNCTION TABLE

STEP	DIGITAL INPUTS								OUTPUT VOLtage ${ }^{\dagger}$
	D7	D6	D5	D4	D3	D2	D1	DO	
0	L	L	L	L.	L	L	L	L	3.980 V
1	L	L	L	L	L	L	L	L.	3984 V
1									i
127	1	H	H	H	H	H	H	H	4.488 V
128	H	L	L	L	L	L	L	L	4.492 V
129	H	L	L.	L	L	L	L.	H	4496 V
1									!
254	H	H	H	H	H	H	H	L	4.996 V
255	H	H	H	H	H	H	H	H	5.000 V

$$
{ }^{\dagger} \text { For } V_{C C}=5 \mathrm{~V}, V_{\mathrm{ref}}=3.976 \mathrm{~V}
$$

TL5602

8-BIT DIGITAL-TO-ANALOG CONVERTER

schematics of equivalent input and output circuits

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

$$
\begin{aligned}
& \text { Supply voltage range, ANLG VCC, DGTL VCC . - } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Analog reference voltage range, } V_{\text {ref }} \ldots . . . \text {. } 3.8 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\
& \text { Operating free-air temperature range . } 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\
& \text { Storage temperature range . }-55^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \text { Lead temperature } 1,6 \mathrm{~mm} \text { (1/16 inch) from case for } 10 \text { seconds } \\
& 260^{\circ} \mathrm{C}
\end{aligned}
$$

recommended operating conditions

	MIN	NOM	MAX	UNIT
VCC Supply voltage	4.75	5	5.25	\checkmark
$V_{\text {ref }}$ Analog reference voltage (see Note 1)	3.8	4	4.2	V
$\mathrm{V}_{1 H}$ High-level input voltage	2			V
$V_{\text {IL }}$ Low-level input voltege			0.8	V
${ }^{\text {t }}$ w . Pulse duration, CLK high or low	${ }^{25}$			ns
$\mathrm{t}_{\text {su }}$ Setup time, data before CLK \uparrow	; a. $^{\text {e }}$			ns
th Hold time, data after CLLK \uparrow	12.5			ns
Ccomp Phase compensation capacitance (see Note 2)	1			${ }_{\mu} \mathrm{F}$
$\mathrm{T}_{\text {A }}$ Operating free-air tempereture	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 1. $V_{C C}-V_{\text {ref }} \leq 1.2 \mathrm{~V}$
2. This capacitor should be connected between COMP and GND
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
If input current at maximum input voltage	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=7 \mathrm{~V}$		0	100	$\mu \mathrm{A}$
${ }_{1} \mathrm{H}$ High-level input current	$\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V} \mathrm{~V}_{1}=2.7 \mathrm{~V}$		0	20	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \mathrm{~V}_{1}=0.4 \mathrm{~V}$		-40	-400	$\mu \mathrm{A}$
$I_{\text {ref }}$ Input reference current	$V_{\text {ref }}=4 \mathrm{~V}$			10	$\mu \mathrm{A}$
$V_{\text {FS }}$ Full-scale analog output voltage	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=3.976 \mathrm{~V}$,	$V_{C C}-15$.	$\mathrm{V}_{\mathrm{CC}}+15$	mV
$\mathrm{V}_{\text {ZS }}$ Zero-scale analog output voltage	$10=0$ (no load)	3.919	3.Jou	4.042	V
$\mathrm{r}_{0} \quad$ Output resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	70	80	90	Ω
ICC Supply current	$\mathrm{V}_{\text {ref }}=4.05 \mathrm{~V}$		50	75	mA

${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, V_{\text {ref }}=4 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$
operating characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
E_{L}	Linearity error				± 0.2	\%FSR
$f_{\text {max }}$	Maximum conversion rate		20	30		MHz

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS

FIGURE 2. IDEAL CONVERSION CHARACTERISTICS

FIGURE 3. END-POINT LINEARITY ERROR

- LinCMOS ${ }^{\text {TM }}$ Technology
- 8-Bit Resolution A/D Converter
- Microprocessor Peripheral or Stand-Alone Operation
- On-Chip 12-Channel Analog Multiplexer
- Built-In Self-Test Mode
- Software-Controllable Sample and Hold
- Total Unadjusted Error . . . ± 0.5 LSB Max
- Direct Replacement for Motorola MC145041
- On-Board System Clock
- End-Of-Conversion (EOC) Output
- Pinout and Control Signals Compatible with TLC540 and TLC1540 Family of 10-Bit A/D Converters
TYPICAL PERFORMANCE

Channel Acquisition/Sample Time	$1.6 \mu \mathrm{~s}$
Conversion Time	$20 \mu \mathrm{~s}$
Samples per Second	25×10^{3}
Power Dissipation	10 mW

description

The TLC542 is a LinCMOS ${ }^{\text {tM }}$ A/D peripheral built around an 8-bit switched-capacitor successiveapproximation A / D converter. The device is designed for serial interface to a microprocessor or peripheral via a 3-state output with three inputs (including I/O Clock, Chip Select ($\overline{\mathrm{CS}}$), and Address Input). The TLC542 allows high-speed data transfers and sample rates of up to 40,000
samples per second. In addition to the high-speed converter and versatile control logic, an on-chip 12 -channel analog multiplexer can sample any one of 11 inputs or an internal "self-test" voltage, and the sample-and-hold is started under microprocessor control. At the end of conversion, the End-Of-Conversion (EOC) output pin goes high to indicate that conversion is complete. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

The converter incorporated in the TLC542 features differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and isolation of analog circuitry from logic and supply noises. A switchedcapacitor design allows low-error ($\pm 0.5 \mathrm{LSB}$) conversion in 20μ s over the full operating temperature range.
The TLC542 is available in both the N and FN plastic packages. The TLC542M is characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the TLC542l is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

LinCMOS is a trademark of Texas Instruments Incorporated.

functional block diagram

operating sequence

NOTES: 1 . The conversion cycle, which requires 36 internal system clock periods, is initiated on the 8 th falling edge of the l/O Clock after $\overline{\text { CS }}$ goes low for the channel whose address exists in memory at that time. If $\overline{\mathrm{CS}}$ is kept low during conversion, the l/O Clock must remain low for at least 36 system clock cycles to allow conversion to be completed.
2. To minimize errors caused by noise at the chip select input, the internal circuitry waits for two rising edges and one falling edge of the internal system clock after $\overline{C S} \downarrow$ before responding to control input signals. The $\overline{\mathrm{CS}}$ setup time is given by the $\mathrm{t}_{\text {Su }}(\mathrm{CS})$ specifications. Therefore, no attempt should be made to clock-in an address until the minimum chip select setup time has elapsed.

LinCMOS ${ }^{\text {™ }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS

WITH SERIAL CONTROL AND 11 INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 3)	6.5 V
Input voltage range (any input)	-0.3 V to VCC +0.3 V
Output voltage range	-0.3 V to VCC +0.3 V
Peak input current range (any input)	$\pm 20 \mathrm{~mA}$
Peak total input current (all inputs)	$\pm 30 \mathrm{~mA}$
Operating free-air temperature: TLC542M	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC542	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package	$260^{\circ} \mathrm{C}$

NOTE 3: All valtage values are with respect to digital ground with REF - and GND wired together (unless otherwise noted)
recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.5 V

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.5	V
Positive reference voltage, VREF+ (see Note 4)		2.5		$\mathrm{V}_{C C}+0.1$	V
Negative reference voltage, VREF- (see Note 4)		0.1	0	2.5	V
Differential reference voltage, $\mathrm{V}_{\text {REF }+}-\mathrm{V}_{\text {REF }}$ - (see Note 4)		1		Vcc +0.2	V
Analog input vattage (see Note 4)		0		VCc	V
High-level control input voltage, $\mathrm{V}_{1 \mathrm{H}}$		2			V
Low-level control input voltage, V_{IL}				0.8	V
Setup time, address bits at data input before $1 / 0$ CLK $\uparrow, \mathrm{t}_{\text {SL }}(\mathrm{A})$		400			ns
Hold time, address bits after 1/O CLK \uparrow, h ((A)		0			ns
Hold time, $\overline{C S}$ low after 8th 1/O CLK \downarrow, th(CS)		0			ns
Setup time, CS low before clocking in first address bit, tsu(CS) (see Note 2)		1.4			$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ high during conversion, $\mathrm{I}_{\text {wh(}}$ (CS)		17			$\mu \mathrm{s}$
Input/Output clock frequency, flCLK(/O)		0		1.1	MHz
Input/Output clock high, $\mathrm{t}_{\mathrm{wH}}(/ / \mathrm{O})$		404			ns
Input/Output clock low, twL(I/O)		404			ns
l/O Clock transition time (see Note 5)	$\begin{aligned} & \text { CLKKIO) }=525 \mathrm{kHz} \\ & \text { TCLK } 1, O)=525 \mathrm{kHz} \end{aligned}$			$\begin{array}{r} 100 \\ \hdashline \quad 40 \end{array}$	
Operating free-air temperature, T_{A}	TLC542M	-55		125	'C
	TLC542\|	-40		85	

NOTES: 2. To minimize errors caused by noise at the chip select input, the internal circuitry waits for two rising edges and one falling edge of the internal system clock after CS \downarrow before responding to control input signals. The CS setup time is given by the tsu(CS) specifications. Therefore, no attempt should be made to clock-in an address until the minimum chip select setup time has elapsed.
4. Analog input voltages greater than that applied to REF + convert as all ones (11111111), while input voltages less than that applred to REF - convert as all zeros (00000000). For proper operation, REF + must be at least 1 V higher than REF-. Aiso, the total unadjusted error may increase as this differential reference voltage falls below 475 V .
5. This is the time required for the ciock input signal to fall from $V_{I H}$ min to $V_{I L}$ max or to rise from $V_{I L}$ max to $V_{I H}$ min. In the vicinity of normal room temperature, the devices function with input clock transition time as slow as 2μ s for remote data acquisition applications where the sensor and the A/D converter are placed several feet away from the controlling microprocessor.
electrical characteristics over recommended operating temperature range,
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{f} C L K(\mathrm{I} / \mathrm{O})=1.1 \mathrm{MHz}$

PARAMETER			TEST CONDITIONS		MIN	TYPt	MAX	UNIT	
${ }^{\mathrm{V}} \mathrm{OH}$ High-level output voltage (pin 16)			$V_{C C}=475 \mathrm{~V}, \quad 1 \mathrm{OH}=-360 \mu \mathrm{~A}$		2.4			V	
VOL Low-level output voltage			$\mathrm{V}_{\mathrm{CC}}=475 \mathrm{~V}, 1 \mathrm{OL}=16 \mathrm{~mA}$				04	V	
loz	Off-state (high-impedance state) output current		$V_{O}=V_{C C}$ cs at $V_{C C}$				10	$\mu \mathrm{A}$	
			$V_{O}=0, \overline{C S}$ at $V_{C C}$				-10		
${ }^{1} \mathrm{H}$	High-level input current		$V_{1}=V_{C C}$			0.005	2	$\mu \mathrm{A}$	
ILL	Low-level input current		$V_{1}=0$			-0.005	-25	$\mu \mathrm{A}$	
ICC	Operating supply current		CS at 0 V			1.2	2	mA	
	Selected channel leakage current		Selected channel at VCC. Unselected channel at 0 V	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			1		
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			0.4			
			Selected channel at 0 V , Unselected channel at V_{CC}	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			-1	$\mu \mathrm{A}$	
			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-0.4			
IREF	Maximum:current inte			$V_{\text {REF }+}=V_{C C}, V_{\text {REF }-}=G N D$				10	$\mu \mathrm{A}$
C_{1} Input capacitance		Analog mputs				7	55	pF	
		Control inputs				5	15	pr	

\dagger All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
operating characteristics over recommended operating free-air temperature range, $V_{C C}=V_{R E F}+=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{fCLK}(\mathrm{I} / \mathrm{O})=1 \mathrm{MHz}$

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
	Linearity error (see Note 7)			± 0.5	LSB
	Zero error (see Note 8)	See Note 6		± 0.5	LSB
	Full-scale error (see Note 8)	See Note 6		± 0.5	LSB
	Total unadjusted error (see Note 9)			± 0.5	LSB
	Self-test output code	Input A11 address $=1011$, See Note 10	$\begin{gathered} 01111101 \\ (125) \end{gathered}$	$\begin{gathered} 10000011 \\ (131) \end{gathered}$	
$t_{\text {conv }}$	Conversion time	See operating sequence		20	$\mu \mathrm{s}$
${ }^{\text {taycle }}$	Total access and conversion cycle time	See operating sequence		40	$\mu \mathrm{s}$
tacg	Channel acquisition time (sample cycle)	See operating sequence		16	μs
${ }^{\text {t }}$ V	Time output data remains valid atter I/O CLK \downarrow	See Figure 5	10		ns
td(IO-DATA)	Delay time, I/O CLK \downarrow to data output valid	See Figure 5		400	ns
$\mathrm{I}_{\text {d }}(10-E O C)$	Delay time, 8 th $1 /$ O CLK \downarrow to EOC \downarrow	See Figure 6		500	ns
${ }^{\mathrm{t}} \mathrm{d}$ (EOC-DATA)	Delay time, EOC \uparrow to data out (MSB)	See Figure 7		400	ns
tPZH, tPZL	Delay time, $\overline{\mathrm{CS}} \downarrow$ to data out (MSB)	See Figure 2		34	$\mu \mathrm{s}$
tPHz, tPL	Delay time, $\overline{\mathrm{CS}} \uparrow$ to data out	See Figure 2		150	ns
$\mathrm{tr}_{\text {(EOC) }}$	Rise time	See Figure 7		100	ns
tf(EOC)	Fall time	See Figure 6		100	ns
tr (bus)	Data bus rise time	See Figure 5		300	ns
tfous)	Data bus fall time	See Figure 5		300	ns

NOTES: 6. Analog input voltages greater than that applied to REF + convert to all ones (11111111), white input voltages less than that applied to REF - convert to all zeros (00000000). For proper operation, REF + must be at least 1 V higher than REF - . Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 V .
7. Linearity error is the maximum deviaton from the best straight line through the A/D transfer characteristics.
8. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
9. Total unadjusted error is the sum of linearity, zero, and full-scale errors.
10. Both the input address and the output codes are expressed in positive logic. The A11 analog input signal is internally generated and is used for test purposes.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR
$\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{r}}$, AND t_{s}
(SEE NOTE A)

TEST POINT

> LOAD CIRCUIT FOR
> tPZH AND tPHZ

OUTPUT UNDER TEST
C_{L}
(SEE NOTE A

LOAD CIRCUIT FOR tpZL AND tpLz

NOTE A $C_{L}=50 \mathrm{pF}$
FIGURE 1. LOAD CIRCUITS

FIGURE 2

FIGURE 3

FIGURE 4

PARAMETER MEASUREMENT INFORMATION

FIGURE 5

FIGURE 6

FIGURE 7

principles of operation

The TLC542 is a complete data acquisition system on a single chip. The device includes such functions as analog multiplexer, sample-and-hold, 8 -bit A/D converter, data and control registers, and control logic. Three control inputs (//O clock, chip select ($\overline{\mathrm{CS}}$), and address) are included for flexibility and access speed. These control inputs and a TL-compatible 3 -state output are intended for serial communications with a microprocessor or microcomputer. With judicious interface timing, the TLC542 can complete a conversion in $20 \mu \mathrm{~s}$, while complete input-conversion-output cycles can be repeated every $40 \mu \mathrm{~s}$. Furthermore, this fast conversion can be executed on any of 11 inputs or its built-in "self-test" and in any order desired by the controlling processor.
When $\overline{\mathrm{CS}}$ is high, the Data Output pin is in a 3-state condition and the Address Input and I/O Clock pins are disabled. When additional TLC542 devices are used, this feature allows each of these pins, with the exception of the CS pin, to share a control logic point with their counterpart pins on additional A/D devices. Thus, this feature minimizes the control logic pins required when using multiple A / D devices.

The control sequence is designed to minimize the time and effort required to initiate conversion and to obtain the conversion result. A normal control sequence is as follows:

1. $\overline{\mathrm{CS}}$ is brought low. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and then a falling edge of the internal system clock before recognizing the low $\overline{\mathrm{CS}}$ transition. The MSB of the result of the previous conversion automatically appears on the Data Out pin.
2. On the first four rising edges of the I/O Clock, a new positive-logic multiplexer address is shitted in, with the MSB of this address shifted first. The negative edges of these four I/O clock pulses shift out the second, third, fourth, and fitth most significant bits of the result of the previous conversion. The onchip sample-and-hold begins sampling the newly addressed analog input after the fourth falling edge of the I/O Clock. The sampling operation basically involves charging the internal capacitors to the level of the analog input voltage.
3. Three clock cycles are applied to the I/O pin, and the sixth, seventh, and eighth conversion bits are shifted out on the negative edges of these clock cycles.
4. The final eighth clock cycle is applied to the $1 / O$ Clock pin. The falling edge of this clock cycle completes the analog sampling process and initiates the hold function. Conversion is then performed during the next $20 \mu \mathrm{~s}$. After this final I/O Clock cycle, $\overline{\mathrm{CS}}$ must go high or the I/O Clock must remain low for at least 20μ s to allow for the conversion function.
$\overline{\mathrm{CS}}$ can be kept low during periods of multiple conversion. If $\overline{\mathrm{CS}}$ is taken high, it must remain high until the end of the conversion. Otherwise, a valid falling edge of $\overline{\mathrm{CS}}$ causes a reset condition, which aborts the conversion process.
A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the $20-\mu \mathrm{s}$ conversion time has elapsed. Such action yields the conversion result of the previous conversion and not the ongoing conversion.
The End-Of-Conversion (EOC) output goes low on the negative edge of the eighth I/O Clock. The subsequent low-to-high transition of EOC indicates the A/D conversion is complete and the conversion result is ready for transfer.

- LinCMOS ${ }^{\text {™ }}$ Technology
- 8-Bit Resolution A/D Converter
- On-Chip 6-Channel Analog Multiplexer
- Built-In Self-Test Mode
- Software-Controllable Sample-and-Hold
- Total Unadjusted Error . . . ± 0.5 LSB Max
- End-of-Conversion Output
- Conversion Time . . . $17 \mu \mathrm{~s}$ Max
- Internal System Clock . . 4 MHz Typ
- Low Power Consumption . . . 6 mW Typ
- Minimum Sample Rates:

TL.C543 . . 45,500 c/s
TL.C544 . . 40,000 c/s

description

The TLC543 and TLC544 are LinCMOS ${ }^{\text {rw }}$ A/D peripherals built around an 8-bit switched-capacitor, successive-approximation A/D converter. They are designed for serial interface to a microprocessor or peripheral via a 3 -state output with up to four control lines including I/O Clock, Chip Select ($\overline{\mathrm{C}} \overline{\mathrm{S}}$), Address Input, and End-of-Conversion (EOC) output. A $4-\mathrm{MHz}$ on-chip system clock and simultaneous read/write operations permit high-speed data transfer and minimum sample rates of 45,500 cycles per second for the TLC543 and 40,00D cycles per second for the TLC544. In addition to the high-speed converter and versatile control logic, an on-chip 6-channel analog multiplexer can be used to sample any one of five inputs or an internal "self-test" voltage, and a sample-and-hold can operate automatically or under processor control.

The converters incorporated in the TLC543 and TLC544 feature differential high-impedance reference inputs that permit ratiometric conversion, scaling, and isolation of analog circuitry from logic and supply noise.
A totally switched-capacitor design allows low-error ($\pm 0.5 \mathrm{LSB}$) conversion in 17 microseconds maximum for the TLC543 and the TLC544 over the full operating temperature range. The TLC543M and TLC544M are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC5431 and TLC544I are characterized for operation from $-4 D^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
functional block diagram

operating sequence

NOTES: A. The conversion cycle, which requires 36 internal system clock periods, is initiated on the 8 th falling edge of the $/ / O$ Clock after $\overline{\mathrm{CS}}$ goes low for the channel whose address exists in memory at that time. If $\overline{\mathrm{CS}}$ is kept low during conversion, the $/ / O$ clock must remain low for at least 36 system clock cycles to allow conversion to complete.
B. The most significant bit (MSB) is automatically placed on the DATA OUT bus after $\overline{C S}$ is brought low. The remaining seven bits ($\mathrm{A} 6-\mathrm{AO}$) are clocked out on the first seven falling edges of the $1 / 0$ Clock.
C. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for three internal system clock cycles $(1.4 \mu \mathrm{~S}$ at 2 MHz) after a chip select transition before responding to control input signals. Therefore, no attempt should be made to clock-in address data until the minimum chip-select setup time has elapsed.

TLC543M, TLC543I, TLC544M, TLC544I 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 5 INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1) . 6.5 V
Input voltage range (any input) . -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage range -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Peak input current (any input) . $\pm 10 \mathrm{~mA}$
Peak total input current (all inputs) . $\pm 30 \mathrm{~mA}$
Operating free-air temperature range: TLC543M, TLC544M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC543I, TLC5441 . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds: D or N package $\ldots260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
NOTE 1: All voltages are with respect to ground (GND pin) with REF - and GND wired together (unless otherwise noted).
recommended operating conditions

NOTES: 2. Analog input voltages greater than that applied to REF + convert to all ones (11111111), and input voltages less than that applied to REF - convert to all zeros $(00000000$). For proper operation, REF + voltage must be at least 1 V higher than REF voltage. Aiso, adjusted errors may increase as this differential reference voltage falls below 4.75 V .
3. This is the time required for the clock input signal to fall from $V_{I H}$ min to $V_{I L}$ max or to rise from $V_{I L} \max$ to $V_{I H}$ min. In the vicinity of normal room temperature, the devices function with input clock transitions as slow as $2 \mu \mathrm{~s}$ for remote data acquisition applications in which the sensor and the A/D converter are placed several feet away from the controling microprocessor.
4. To minimize errors caused by noise at the Chip Select input, the internal circuitry waits for three system clock cycles ($1.4 \mu \mathrm{~s}$ at 2 MHz) after a chip select falling edge is detected before responding to control input signais. Therefore, no attempt should be made to clock-in address data until the minimum chip select setup time has elapsed.

TLC543M, TLC543I, TLC544M, TLC5441
8-BIT ANALOG-TO-DIGITAL PERIPHERALS
WITH SERIAL CONTROL AND 5 INPUTS
electrical characteristics over recommended operating temperature range,
$V_{C C}=V_{R E F}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{f}_{\mathrm{CLK}}(\mathrm{I} / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC543 or $\mathrm{f}_{\mathrm{CLK}}(\mathrm{I} / \mathrm{O})=1.1 \mathrm{MHz}$ for TLC544

PARAMETER				TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-level output voltage, Data out, EOC			$V_{C C}=4.75 \mathrm{~V}$,	${ }^{1} \mathrm{OH}=-360 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage		out	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$\mathrm{OL}=3.2 \mathrm{~mA}$			0.4	V
				$\mathrm{V}_{C C}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	
${ }^{\prime} \mathrm{OZ}$	Off-state (high-impedance state) output current			$V_{0}=V_{C C}$,	$\overline{\mathrm{CS}}$ at V_{CC}			10	$\mu \mathrm{A}$
				$v_{0}=0$,	$\overline{C S}$ at VCC			-10	
1 IH	High-level input current			$v_{1}=v_{C C}+\overline{0.3 V}$			0.005	2.5	${ }_{\mu} \mathrm{A}$
1 LL	Low-level input current			$V_{1}=0$			-0.005	-2.5	$\mu \mathrm{A}$
1 CC	Operating supply current			$\overline{\mathrm{CS}}$ at 0 V			1.2	2	mA
I/kg	Selected channel leakage current			Selected channel at V_{CC}. Unselected channel at 0 V	See Figure 1		0.4	1	$\mu \mathrm{A}$
				Selected channel at OV. Unselected channel at $V_{C C}$			-0.4	-1	
IREF	Reference current			$\mathrm{V}_{\mathrm{REF}+}+\mathrm{V}_{\text {CC }}$.	$\overline{\mathrm{CS}}$ at 0 V		0.1	1	mA
c_{i}	Input capacitance	Anal					7	55	pF
		Cont					5	15	

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. SELECTED CHANNEL LEAKAGE CURRENT
operating characteristics over recommended operating free-air temperature ${ }^{\text {ar }}$ ge, $\mathrm{VCC}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75$ to 5.5 V ,
$\mathrm{fCLK}(1 / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC543 or 1.1 MHz for TLC544

PARAMETER		TEST CONDITIONS	-L- ${ }^{-} 73$			TLC544			UNIT	
		MIN	- 2	MAX	MIN	TYP	MAX			
	Linearity error (see Note 5)					± 0.5			± 0.5	LSB
	Zero error (see Note 6)				± 0.5			± 0.5	LSB	
	Full-scale error (see Note 6)				± 0.5			± 0.5	LSB	
	Total unadjusted error (see Note 71				± 0.5			± 0.5	LSB	
	Self-test output code	Input A5 address $=10110$. See Note 8	$\begin{gathered} 01111101 \\ (125) \end{gathered}$		$\begin{gathered} 10000011 \\ (131) \end{gathered}$	$\begin{gathered} 01111101 \\ (125) \\ \hline \end{gathered}$		$\begin{gathered} 10000011 \\ (131) \\ \hline \end{gathered}$		
$\mathrm{t}_{\text {conv }}$	Conversion time	See Operating Sequence		3	17		12	17	$\mu \mathrm{S}$	
$\mathrm{t}_{\mathrm{a}}+\mathrm{c}$	Total access and conversion time	See Operating Sequence		2	22		19	25	$\mu \mathrm{S}$	
$\mathrm{t}_{\mathrm{acq}}$	Channel acquisition time (sample cycle)	See Operating Sequence			4			4	I/O clock cycies	
${ }^{\text {t }} \mathrm{V}$	Time output data remains valid after I/O clock \downarrow		10			10			ns	
t_{d}	Delay time, 1/O clock \downarrow to data output valid				300			400	ns	
$\mathrm{t}_{\text {en }}$	Output enable time	See Figure 2			1.4			1.4	ns	
$t_{\text {dis }}$	Output disable				150			150	ns	
$\mathrm{t}_{\mathrm{r} \text { (bus) }}$	Data bus anc rise time				300			300	ns	
$\mathrm{t}_{\mathrm{f} \text { (bus) }}$	Data bus anc fall time				300			300	ns	
TPHL(EOC)	Propagation delay, 8 th I/O clock \downarrow to EOC				400			400	ns	
${ }^{\text {t }}$ (EOC ${ }^{\text {(}}$	Delay time, EOC to DATA OUT (MSB) (see Note 9)		1			- 1			$\mu \mathrm{S}$	

[^3]
PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR t_{d}, t_{r}, and t_{f}

LOAD CIRCUIT FOR
tPZH AND TPHZ

(See Note B)

LOAD CIRCUIT FOR tPZL AND tpLZ

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

VOLTAGE WAVEFORMS FOR EOC TIMING

NOTES: $\mathrm{A} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ for TLC543 and 100 pF for TLC544
B. $t_{\text {en }}-\mathrm{t}_{\mathrm{p} Z \mathrm{H}}$ or $\mathrm{t}_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{d} \mathrm{s}}=\mathrm{t}_{\mathrm{pH}}$ or $\mathrm{t}_{\mathrm{pLZ}}$
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

FIGURE 2. OPERATING CHARACTERISTICS

PRINCIPLES OF OPERATION

introduction

TLC543 and TLC544 are each complete data acquisition systems on a single chip. They include the functions of analog multiplexer, sample-and-hold, 8-bit A/D converter, data and control registers, and control logic. Flexible serial communication is achieved with a microprocessor or microcomputer using a TTL-compatible 3-state Data Out and four control lines - Chip Select ($\overline{\mathrm{CS}}$), I/O Clock, Address Input, and End of Conversion (EOC) output.

To maximize access speed, the device simultaneously writes the previous conversion result, reads a new multiplexer address, and acquires the analog signal. This is followed by the A/D conversion, whose end is signalled by the EOC output going high. These total access and conversion cycles are completed in a minimum of 22μ s for the TLC543 and 25μ s for the TLC544. Conversion can take place, in any order, on the five analog inputs or the built-in self-test system.

The system clock, which drives the control logic and the switched-capacitor successive-approximation A / D converter, is internal to the device and typically runs at a frequency of 4 MHz . This internal system clock runs independently, and there are no required phase or frequency relationships with other signals.

digital interface

The I/O clock controls the acquisition of the analog signal as well as all serial deta communications between the TLC543 or TLC544 and the host processor. From the host, this I/O clock consists of a burst of eight pulses separated by the conversion time. Timing may be achieved by Chip Select ($\overline{\mathrm{CS}}$) synchronously gating a continuous I/O clock or directly from the host with $\overline{\mathrm{CS}}$ held low continuously.
With $\overline{\mathrm{CS}}$ high, Data Out is in a high-impedance condition with the Address Input and I/O Clock input disabled. This feature allows the interface pins, with the exception of $\overline{C S}$ and EOC, to share a common bus with additional TLC543 or TLC544 devices or other members of the TLC543/544 family of devices.

typical operating sequence

Consider an access and conversion sequence where $\overline{\mathrm{CS}}$ is being used: $\overline{\mathrm{CS}}$ is brought low and recognized after the time out of the noise-rejection circuitry. The MSB of the result of the previous conversion appears at Data Out, whose 3-state output is enabled. The MSB of the new multiplexer address should be present at the Address Input to conform with the setup time, $\mathrm{t}_{\text {Su }}(\mathrm{A})$, requirements before the first rising edge of the I/O clock. The multiplexer address is shifted in on the first three rising edges of the I/O clock.

The first seven falling edges of I/O CLOCK shift out the remaining seven bits of the previous conversion on DATA OUT. The eighth I/O clock failing edge returns the MSB to the Data Out. Optimum serial transfer takes place with the bit streams being read on the rising edges of the $1 / O$ clock for the respective devices and the Data Out and Address In lines.

At the fourth falling edge of the I/O clock, the on-chip sample-and-hold begins to acquire the newly addressed analog input and continues until the eighth (and final) falling edge. A hold function is initiated by the eighth I/O clock pulse falling edge. To start the conversion at a specific point in time (or lengthen the acquisition time), the host processor may leave the eighth I/O clock pulse in the high state until the moment at which the analog signal must be sampled. After bringing the eighth $1 / O$ pulse low, the A/D function is performed in the next 36 internal system clock cycles.
In applications where $\overline{\mathrm{CS}}$ is held low continuously, the bursts of eight I/O clock pulses should be timed to be at least $\mathrm{t}_{\text {conv }}$ apart.

POST OFFICE BOX 655012 - DALLAS, TEXAS 75265

CS input

To minimize bus contention caused by noise enabling the 3 -state Data Out, when the $\overline{\mathrm{CS}}$ input is brought low, the device waits for two rising edges and a falling edge of the internal system clock before recognizing the $\overline{\mathrm{CS}}$ transition. Hence, the setup time $\mathrm{t}_{\mathrm{s} u}(\mathrm{CS})$ should be observed when using the $\overline{\mathrm{CS}}$ input. This also applies to a $\overline{C S}$ high-to-low transition, except for disabling DATA OUT, which goes into a high-impedance state immediately within the $t_{d i s}$ specification (see Figure 3). If this interruption of $\overline{\mathrm{CS}}$ in the low state is less than 1.5 internal system clock cycles, and hence not recognized, DATA OUT will be immediately enabled with the return of $\overline{C S}$ to the low state. DATA OUT becomes enabled after a $\overline{C S}$ high-to-low transition in time $t_{e n}$ (equivalent to $t_{s u}(C S)$ for this device).
$\overline{\mathrm{CS}}$ can be brought high during a conversion without affecting the ongoing conversion but must remain high until the end of conversion. Otherwise, a $\overline{\mathrm{CS}}$ falling edge causes a reset condition that aborts the conversion in progress. When a new access cycle starts, the previous conversion result is output.
A new conversion may be restarted by toggling $\overline{\mathrm{CS}}$ high-to-low at least $\mathrm{t}_{\text {su }}(\mathrm{CS})$ before the eighth falling edge of the I/O clock. The ongoing access cycle is aborted. Again, when a new access cycle starts, the previous conversion result is output.

end of conversion output (EOC)

EOC goes low at propagation delay time, tPHL(EOC), after the 8 th falling edge of the $1 / O$ clock and goes high when conversion is complete. At this time, the MSB is available at Data Out; however, if $\overline{\mathrm{CS}}$ is high, it is necessary to bring $\overline{C S}$ low and wait for the $\overline{C S}$ recognition time before Data Out is available, since Data Out is in a high-impedance state when $\overline{C S}$ is high. Delay time, $\mathrm{t}_{\mathrm{d}}(E O C)$, of EOC to Data Out is a negative value of 4 internal system clock cycles less internal propagation delay because the EOC signal is output after 40 internal system clock cycles, whereas conversion is complete with data available after 36 cycles.

- Advanced LinCMOS ${ }^{\text {* }}$ Technology
- Self-Calibration Eliminates Expensive Trimming at Factory and Offset Adjustment in the Field
- 12-Bit Plus Sign Bipolar or 12-Bit Unipolar
- $\pm 1 / 2$ and ± 1 LSB Linearity Error in Unipolar Configuration
- $10 \mu \mathrm{~s}$ Conversion Time (clock $=2.6 \mathrm{MHz}$)
- Compatible with All Microprocessors
- True Differential Analog Voltage Inputs
- 0 to 5 V Analog Voltage Range with Single 5-V Supply (Unipolar Configuration)
- -5 V to 5 V Analog Voltage Range with $\pm 5-\mathrm{V}$ Supplies (Bipolar Configuration)
- Low Power . . . 25 mW Maximum

The TLC1225A and TLC1225B converters are manufactured with Texas instruments highly efficient Advanced LinCMOS ${ }^{\text {TM }}$ technology. Either of the TLC1225A or TLC1225B CMOS analog-to-digital converters can be operated as a unipolar or bipolar converter. A unipolar input(0 to 5 V) can be accommodated with a single $5-\mathrm{V}$ supply; a bipolar input (-5 V to 5 V) requires the addition of a $5-\mathrm{V}$ negative supply. Conversion is performed via the successive-approximation method. The TLC1225A and TLC1225B output the converted data in a parallel word and interfaces directly to a 16-bit data bus. Negative numbers are given in the two's complement data format. All digital signals are fully TTL and CMOS compatible.

These converters utilize a self-calibration technique by which seven of the internal capacitors in the capacitive ladder of the A/D conversion circuitry can be automatically calibrated. The internal capacitors are calibrated during a nonconversion, capacitor-calibrate cycle in which all seven of the internal capacitors are calibrated at the same time. A conversion requires only $10 \mu s(2.6 \mathrm{MHz}$ clock) after the nonconversion, capacitorcalibrating cycle has been completed. The calibration or conversion cycle may be initiated at any time by issuing the proper command word to the data bus. The self-calibrating technique eliminates the need for expensive trimming of thin-film resistors at the factory and provide excellent performance at low cost.
The TLC1225AM and TLC1225BM are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC1225AI and TLC1225BI are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

functional block diagram

operation description

calibration of comparator offset

The following actions are performed to calibrate the comparator offset:

1. The $\operatorname{IN}+$ and $\mathbb{I N}$ - inputs are internally shorted together in order that the comparator input is zero. A course comparator offset calibration is performed by storing the offset voltages of the interconnecting comparator stages on the coupling capacitors that connect these stages. Refer to Figure 1. The storage of offset voltages is accomplished by closing all switches and then opening switches A and A^{\prime}, then switches B and B^{\prime}, and then C and C^{\prime}. This process continues until all interconnecting stages of the comparator are calibrated. After this action, some of the comparator offset still remains uncalibrated.

FIGURE 1
2. An A/D conversion is done on the remaining offset with the 8 -bit calibration DACs and 8 -bit SAR and the result is stored in the RAM.

capacitor calibration of the ADC's capacitive ladder

The following actions are performed to calibrate capacitors in the 13 -bit DACs that comprise the ADC's capacitive ladder:

1. The $I N+$ and $I N$ - inputs are internally disconnected from the 13 -bit capacitive DACs.
2. The most significant bit (MSB) capacitor is tied to REF, while the rest of the ladder capacitors are tied to GND. The A/D conversion resuit for the remaining comparator offset, obtained in Step 2 above, is retrieved from the RAM and is input to the 8 -bit DACs.
3. Step 1 of the Calibration of Comparator Offset sequence is performed. The 8 -bit DAC input is returned to zero and the remaining comparator offset is then subtracted. Thus, the comparator offset is completely corrected.
4. Now the MSB capacitor is tied to GND, while the rest of the ladder capacitors, C_{X}, are tied to REF. An MSB capacitor voltage error (see Figure 2) on the comparator output will occur if the MSB capacitor does not equal the sum of the other capacitors in the capacitive ladder. This error voltage is converted to an 8 -bit word from which a capacitor error is computed and stored in the RAM.
5. The capacitor voltage error for the next most significant capacitor is calibrated by keeping the MSB capacitor grounded and then performing the above Steps $1-4$ while using the next most significant capacitor in lieu of the MSB capacitor. The seven most significant capacitors can be calibrated in this manner.

TLC1225A, TLC1225B
 SELF-CALIBRATING 12-BIT-PLUS-SIGN UNIPOLAR OR BIPOLAR ANALOG-TO-DIGITAL CONVERTERS

FIGURE 2

analog-to-digital conversion

The following steps are performed in the analog-to-digital conversion process:

1. Step 1 of the Calibration of Comparator Offset Sequence is performed. The A/D conversion result for the remaining comparator offset, which was obtained in Step 2 of the Calibration of Comparator Offset, is retrieved from the RAM and is input to the 8 -bit DACs. Thus the comparator offset is completely corrected.
2. IN+ and $I N-$ are sampled onto the 13-bit capacitive ladders.
3. The 13-bit analog-to-digital conversion is performed. As the successive-approximation conversion proceeds successively through the seven most significant capacitors, the error for each of these capacitors is recovered from the RAM and accumulated in a register. This register controls the 8-bit DACs so the total accumulated error for these capacitors. is subtracted out during the conversion process.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage (ANLG VCC+ and DGTL VCC) (see Note 1)
15 V
Supply voltage, ANLG VCC . 15 V
Control and Clock input voltage range . -0.3 V to +15 V
Analog input ($\mathrm{IN}+, \mathrm{N}-$) voltage range.

Pin 7 voltage range, VOS . -0.3 V to ANLG VCC + + 0.3 V
Output voltage range . -0.3 V to DGTL VCC +0.3 V
Input current (per pin) $\pm 5 \mathrm{~mA}$
Input current (per package)
$\pm 20 \mathrm{~mA}$
Operating free-air temperature range:
TLC1225AM, TL1225BM . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC1225AI, TLC1225BI . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from the case for 60 seconds: J package 300 ${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from the case for 10 seconds: N package $260^{\circ} \mathrm{C}$
NOTE 1: All analog voltages are referred to ANLG GND and all digital voitages are referred to DGTL GND.

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage	ANLG VCC+	4.5	6	V
	ANLG VCC-	-5.5	ANLG GND	
	DGTL V ${ }_{\text {CC }}$	4.5	6	
High-level input voltage, V_{IH}, all digital inputs except CLK IN $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V)		2		\checkmark
Low-level input voltage, $\mathrm{V}_{\text {IL }}$, all digital inputs except CLK \mathbb{N} $N_{C C}=4.75 \mathrm{~V}$ to 5.25 V)			0.8	V
Analog input voltage, $\mathrm{V}_{1+}, \mathrm{V}_{1-}$	Bipolar range	ANLG VCC-- -0.05	ANLG V ${ }_{\text {CC }}++0.05$	V
	Unipolar range	ANLG GND - 0.05	ANLG V $\mathrm{CCC}+^{+}+0.05$	
Pin 7 (TIE HIGH)		2		V
Clock input frequency, ficlock		0.3	2.6	MHz
Clock duty cycle		40\%	60\%	
Pulse duration, $\overline{\mathrm{CS}}$ and $\overline{\text { WR }}$ both low, t_{w} ($\overline{\mathrm{CS}} \cdot \mathrm{WR}$)		50		ns
Setup time before $\overline{W R} \uparrow$ or $\overline{\mathrm{CS}} \uparrow$, $\mathrm{t}_{\text {Su }}$			50	ns
Hold time after WR \uparrow or $\overline{\mathrm{CS}} \uparrow$, th			50	ns
Operating free-ar temperature, T_{A}	TLC1225AM, TLC1225BM	-55	125	c
	TLC1225Al, TLC1225B\|	-40	85	

electrical characteristics over recommended operating free-air temperature range, ANLG VCC $+=$ DGTL VCC $=V_{\text {ref }}=5 \mathrm{~V}$, ANLG VCC $-=-5 \mathrm{~V}$ (for bipolar input range), ANLG VCC - = ANLG GND (for unipolar input range) (unless otherwise noted) (see Note 2)

PARAMETER		TEST CONDITIONS		MIN MAX	UNIT
$\mathrm{VOH}^{\text {O }}$	High-level output voltage	DGTL $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$10=-1.8 \mathrm{~mA}$	2.4	\checkmark
			$10=-50 \mu \mathrm{~A}$	4.5	
VOL	Low-level output voltage	DGTL ${ }^{\text {CC }}$ = 4.75 V ,	$1 \mathrm{O}=8 \mathrm{~mA}$	0.4	V
V_{T+}	Clock positive-going threshold voltage			$2.7-3.5$	V
$\mathrm{V}_{\text {T- }}$	Clock negative-going threshold voltage			1.4	V
$\mathrm{V}_{\text {hys }}$.	Clock input hysteresis	$V_{T}+$ min $-V_{T-}-$ max		0.6	V
		V_{T+} max $-V_{T}$ - min		2.1	
Iref	Input resistance, REF terminal			10	M0
IH	High-level input current			1	$\mu \mathrm{A}$
IL	Low-level input current	$\mathrm{V}_{1}=0$		-1	μA
${ }^{\text {I OZ }}$	High-impedance-state output leakage current	$V_{0}=0$		-3	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=5 \mathrm{~V}$		3	
10	Output current	$V_{0}=0$		-6	mA
		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		8	
DGTL ICC	Supply current from DGTL $\mathrm{V}_{\text {CC }}$	${ }^{\mathrm{f}} \mathrm{Clk}=2.6 \mathrm{MHz}$,	CS high	3	mA
ANLG ICC +	Supply current from ANLG V CC $+^{+}$	${ }^{{ }^{\text {c }} \text { ck }}=2.6 \mathrm{MHz}$,	$\overline{\text { CS high }}$	3	mA
ANLG ICC-	Supply current from ANLG VCC-	$\mathrm{f}_{\mathrm{clk}}=26 \mathrm{MHz}$,	$\overline{\text { CS high }}$	-3	mA

NOTE 2. Bipolar input range is defined as: $V_{I+}=-5.05 \mathrm{~V}$ to $5.05 \mathrm{~V}_{1} \mathrm{~V}_{1--}=-5.05 \mathrm{~V}$ to 5.05 V , and $\left|\mathrm{V}_{1+}-\mathrm{V}_{1-}\right| \leq 505 \mathrm{~V}$ The unipolar input voltage range is defined as: $\mathrm{V}_{1+}=-0.05 \mathrm{~V}$ to $5.05 \mathrm{~V}, \mathrm{~V}_{1}-=-0.05 \mathrm{~V}$ to 5.05 V , and $\left|\mathrm{V}_{1+}-\mathrm{V}_{1-}\right| \leq 5.05 \mathrm{~V}$.
operating characteristics over recommended operating free-air temperature range, ANLG VCC $+=$ DGTL VCC $=V_{\text {ref }}=5 \mathrm{~V}$, ANLG $V_{C C}-=-5 \mathrm{~V}$ (for bipolar input range), ANLG VCC $-=$ ANLG GND (for unipolar input range), flock $=2.6 \mathrm{MHz}$ (unless otherwise noted) (see Note 2)

PARAMETER			TEST CONDITIONS		MIN MAX	UNIT	
E_{L}	Linearity error		Unipolar input range	TLC1225A	± 1	LSB	
			Unipolar input range	TLC1225B	± 0.5		
			Bipolar input range	TLC1225A	± 2		
			TLC1225B	± 1.5			
Zero error						± 0.5	LSB
Adjusted positive and negative full-scale error (see Note 3)			Unipolar input range		± 1	LSB	
Adjusted positive and negative full-scale error (see Note 4)			Bipolar input range		± 1	LSB	
Temperature coefficient of gain					15	ppm/ ${ }^{\circ} \mathrm{C}$	
Temperature coefficient of offset point			.		1.5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
kSVS	Supply voltage sensitivity	Zero error	$\left\{\begin{array}{l} \text { ANLG } V_{C C+}=5 V \pm 5 \%, \\ \text { ANLG } V_{C C}=-5 V \pm 5 \%, \\ \text { DGTL } V_{C C}=5 V \pm 5 \% \end{array}\right.$		± 0.75	LSB	
		Positive and negative full-scale error			± 0.75		
		Linearity error			± 0.25		
t_{C}	Conversion time ($1 / \mathrm{f}_{\mathrm{c} / \mathrm{k}}$)				27	clock cycles	
ta	Access time (delay from falling edge of $\overline{\mathrm{CS}} \cdot \overline{\mathrm{RD}}$ to data output)		$C_{L}=100 \mathrm{pF}$		110	"ns	
${ }^{\text {t dis }}$	Disable time, output (delay from rising edge of $\overline{\mathrm{FD}}$ to high-impedance state		$R_{L}=10 \times 1$.	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	60	ns	
			$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$,	$C_{L}=100 \mathrm{pF}$	60		
Id(READY)	$\overline{\mathrm{RD}}$ or WF to READY OUT delay				140	ns	
$t_{d}(\mathbb{N T})$	$\overline{\mathrm{RD}}$ or $\overline{W F}$ to reset of $\overline{\mathrm{NT}}$ delay				400	ns	

NOTES: 2. Bipolar input range is defined as: $V_{1+}=-5.05 \mathrm{~V}$ to $5.05 \mathrm{~V}, \mathrm{~V}_{1-}=-5.05 \mathrm{~V}$ to 5.05 V , and $\left|V_{1+}-V_{1-}\right| \leq 5.05 \mathrm{~V}$. The unipolar input voltage range is defined as: $V_{1+}=-0.05 \mathrm{~V}$ to $5.05 \mathrm{~V}, V_{1-}=-0.05 \mathrm{~V}$ to 5.05 V , and $\left|V_{1+}-V_{1-}\right| \leq 5.05 \mathrm{~V}$.
3. See the Positive and Negative Full-Scale Adjustment section, Unipolar Inputs.
4. See the Positive and Negative Full-Scale Adjustment secton, Bipolar Inputs

PARAMETER MEASUREMENT INFORMATION

FIGURE 4. LOAD CIRCUITS AND WAVEFORMS
power-up calibration sequence
Power-Up calibration is not automatic and calibration is initiated by writing control words to the six least significant bits of the data bus. If addressed or initiated, conversion can begin after the first clock cycle. However, full A/D conversion accuracy is not established until after internal capacitor calibration.

conversion start sequence

The writing of the conversion command word to the six least significant bits of the data bus, when either $\overline{\mathrm{CS}}$ or $\overline{W R}$ goes high, initiates the conversion sequence.
analog sampling sequence
Sampling of the input signal occurs during clock cycles 3 thru 10 of the conversion sequence.

completed A/D conversion

When INT goes low, conversion is complete and the A/D result can be read. A new conversion can begin immediately. The A/D conversion is complete at the end of clock cycle 27 of the conversion sequence.
aborting a conversion in process and beginning a new conversion
If a conversion is initiated while a conversion sequence is in process, the ongoing conversion will be aborted and a new conversion sequence will begin.

reading the conversion result

When both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ go low, all 13 bits of conversion data are output to the I/O bus. The format of the output is extended sign with 2's complement, right justified data. For both unipolar and bipolar cases, the sign bit D 12 is low if $\mathrm{V}_{1+}-\mathrm{V}_{1}$ - is positive and high if $\mathrm{V}_{1+}-\mathrm{V}_{1}$ - is negative.

TLC1225A, TLC1225B SELF-CALIBRATING 12-BIT-PLUS-SIGN UNIPOLAR OR BIPOLAR ANALOG-TO-DIGITAL CONVERTERS

general

reset INT

When reading the conversion data, the falling edge of the first low-going combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{AD}}$ will reset $\overline{\mathrm{INT}}$. The falling edge of the low-going combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ will also reset $\overline{\mathrm{N} T}$.
ready out
For high-speed microprocessors, READY OUT allows the TLC1225 to insert a wait state in the microprocessor's read or write cycle.
reference voltage ($\mathrm{V}_{\mathrm{ref}}$)
This voltage defines the range for $\left|V_{I+}-V_{I-}\right|$. When $\left|V_{I_{+}}-V_{I}\right|$ equals $V_{\text {ref, }}$ the highest conversion data value results. When $\left|V_{I_{+}}-V_{I_{-}}\right|$equals 0 , the conversion data value is zero. Thus, for a given input, the conversion data changes ratiometrically with changes in $\mathrm{V}_{\text {ref }}$.
TIE HIGH
This pin is a digital input and should be tied high.

calibration and conversion considerations

Calibration of the internal capacitor and A/D conversion are two separate actions. Each action is independently initiated. A calibration command that calibrates all seven internal capacitors is normally issued before conversion. A conversion command then initiates the A / D conversion. Subsequent conversions can be performed by issuing additional conversion commands. The calibration and conversion commands are totally independent from one another and can be initiated in any order. Calibration and conversion commands require 105 and 27 clock cycles, respectively.

The calibrate and conversion commands are initiated by writing control words on the six least significant bits of the data bus. These control words are written into the IC when either $\overline{C S}$ or $\overline{W R}$ goes high. The initiation of these commands is illustrated in the Timing Diagram. The bit patterns for the commands are shown in Table 1.

TABLE 1. CONVERSION COMMANDS

COMMAND	$\overline{C S}+\overline{W R}$	I/O BUS						REQUIRED NUMBER OF CLOCK CYCLES
		D15	D14	DI3	DI2	D14	D10	
Conversion	\uparrow	H	L	X	X	x	L	27
Calibrate ${ }^{+}$	\uparrow	L	X	L	L	L	L	105

tCalibration is lost when clock is stopped.

analog inputs

differential inputs provide common-mode rejection

The differential inputs reduce common-mode noise. Common-mode noise is noise common to both IN+ and IN - inputs, such as $60-\mathrm{Hz}$ noise. There is no time interval between the sampling of the $\mathrm{IN}+$ and $\operatorname{IN}-$ so these inputs are truly differential. Thus, no conversion errors result from a time interval between the sampling of the $\mathrm{IN}+$ and IN - inputs.
input bypass capacitors
input bypass capacitors may be used for noise illtering. However, the charge on these bypass capacitors will be depleted during the input sampling sequence when the internal sampling capacitors are charged. Note that the charging of the bypass capacitors through the differential source resistances must keep pace with the charge depletion of the bypass capacitors during the input sampling sequence. Higher source resistances reduce the amount of charging current for the bypass capacitors. Also, note that fast, successive conversion
will have the greatest charge depletion effect on the bypass capacitors. Therefore, the above phenomenon becomes more significant as source resistances and the converssion rate (i.e., higher clock frequency and conversion initiation rate) increase.
In addition, if the above phenomenon prevents the bypass capacitors from fully charging between conversions, voltage drops across the source resistances will result due to the ongoing bypass capacitor charging currents. The voltage drops will cause a conversion error. Also, the voltage drops increase with higher $\left|\mathrm{V}_{1+}-\mathrm{V}_{\mathrm{I}}-\right|$ values, higher source resistances, and lower charge on the bypass capacitors (i.e., faster conversion rate).
For low-source-resistance applications ($\mathrm{R}_{\text {source }}<100 \Omega$), a $0.001-\mu \mathrm{F}$ bypass capacitor at the inputs will prevent pickup due to the series lead inductance of a long wire. A $100-\Omega$ resistor can be placed between the capacitor and the output of an operational amplifier to isolate the capacitor from the operational amplifier.

input leads

The input leads should be kept as short as possible, since the coupling of noise and digital clock signals to the inputs can cause errors.

power supply considerations

Noise spikes on the $V_{C C}$ lines can cause conversion error. Low-inductance tantalum capacitors ($>1 \mu \mathrm{~F}$) with short leads should be used to bypass ANLG VCC and DGTL VCC. A separate regulator for the TLC1225A or TLC1225B and other analog circuitry will greatly reduce digital noise on the supply line.
positive and negative full-scale adjustment
unipolar inputs
Apply a differential input voltage that is 0.5 LSB below the desired analog full-scale voltage (VFS) and adjust the magnitude of the REF input so that the output code is just changing from 0111111111110 to 0111111111111 . If this transition is desired for a different input voltage, the reference voltage can be adjusted accordingly.

bipolar inputs

First, follow the procedure for the unipolar case.
Second, apply a differential input voltage so that the digital output code is just changing from 1000000000001 to 1000000000000 . Call this actual differential voltage V_{X}. The ideal differential voltage for this transition is:

$$
\begin{equation*}
-V_{F S}+\frac{V_{F S}}{8192} \tag{1}
\end{equation*}
$$

The difference between the actual and ideal differential voltages is:

$$
\text { Delta }=V_{X}-\left(\begin{array}{cc}
-V_{F S}+ & V_{F S} \tag{2}\\
&
\end{array}\right)
$$

Then apply a differential input voltage of:

$$
\begin{equation*}
v_{x}-\frac{\text { Delta }}{2} \tag{3}
\end{equation*}
$$

and adjust $V_{\text {ref }}$ so the digital output code is just changing from 1000000000001 to 1000000000000 . This procedure produces positive and negative full-scale transitions with symmetrical minimum error.

TYPICAL APPLICATIONS

FIGURE 5. TRANSFER CHARACTERISTIC

NOTES: A The analog input must have some current return path to ANALOG GND.
B. Bypass capacitor leads must be as short as possible.

FIGURE 6. ANALOG CONSIDERATIONS

TYPICAL APPLICATIONS (Continued)

FIGURE 7. INPUT PROTECTION

NOTES: A. $V_{1-}=0.15 \times$ ANLG $V_{C C}+$
B. 15% of $A N A L O G V_{C C} \leq V_{X O R} \leq 85 \%$ of $A N A L O G V_{C C}$

FIGURE 8. OPERATING WITH RATIOMETRIC TRANSDUCERS

- 8-Bit Resolution
- 0.2\% Linearity
- Maximum Conversion Rate . . . 25 MHz Typ 20 MHz Min
- Analog Input Voltage Range . . . $V_{C C}$ to $V_{C C}-2 V$
- Analog Input Dynamic Range . . . 2 V to 5 V
- TTL Digital I/O Level
- Low Power Consumption . . . 200 mW Typ
- 5-V Single-Supply Operation
- Interchangeable with Fujitsu MB40578

N PACKAGE
(TOP VIEW)

description

The TLC5502 is a low-power ultra-high-speed video-band analog-to-digital converter that uses the LinEPIC ${ }^{\text {TN }} 1-\mu \mathrm{m}$ CMOS process. It utilizes the full-parallel comparison (flash method) for high-speed conversion. It converts wide-band analog signals (such as a video signal) to a digital signal at a sampling rate of dc to 30 MHz . Because of such high-speed capability, the TL5502 is suitable for digital video applications such as digital TV, video processing with a computer, or radar signal processing.
The TL5502 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

LinEPIC is a trademark of Texas Instruments Incorporated.

8-BIT ANALOG-TO-DIGITAL CONVERTER

equivalents of analog input circuit

equivalent of digital input circuit

STEP	ANALOG INPUT VOLTAGE ${ }^{\dagger}$	DIGITAL OUTPUT CODE
0	2.960 V	L L L L L L L L
1	2.968 V	L L L L L L L H
1	1	1
127	3976 V	L HHHHHHH
128	3984 V	
129	3.992 V	H L L L L L L H
254	4.992 V	H HHHHHHL
255	5.000 V	H H H H H H H

\dagger These values are based on the assumption that $V_{r e f B}$ and $V_{\text {reft }}$ have been adjusted so that the voltage at the transition from digital 0 to $1\left(\mathrm{~V}_{\mathrm{ZT}}\right)$ is 2.964 V and the transition to full scale (V_{FT}) is $4996 \mathrm{~V} .1 \mathrm{LSB}=8 \mathrm{mV}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	-0.5 V to 7 V
Supply voltage range, DGTL VDD	7 V
Input voltage range at digital input, V_{1}	-0.5 V to 7 V
Input voltage range at analog input, V_{1}	-0.5 V to ANLG $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Analog reference voltage range, $\mathrm{V}_{\text {ref }}$	0.5 V to ANLG VDD +0.5 V
Operating free-air temperature range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$	$260^{\circ} \mathrm{C}$

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, ANLG $V_{\text {DD }}$	4.75	5	5.25	V
Supply voltage, DGTL V ${ }_{\text {DD }}$	4.75	5	5.25	V
High-level input voltage. $\mathrm{V}_{\text {IH }}$	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8	V
Input voltage at analog input, V_{1}	0		5	V
Analog reference voltage (top side), $\mathrm{V}_{\text {ref }}$ T	3		ANLG GND	V
Analog reference voltage (bottom side), $\mathrm{V}_{\text {refB }}$	ANLG GND		3	V
Differential reference voltage, $\mathrm{V}_{\text {reft }}$ - $\mathrm{V}_{\text {ref }}$	2		5	V
High-level output current, IOH			-400	$\mu \mathrm{A}$
Low-level output current, IOL			4	mA
Clock pulse duration, high-level or low-level, t_{w}	25			ns
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over operating supply voltage range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.4	V
1	Analog input current	$V_{1}=4 \mathrm{~V}$			15	$\mu \mathrm{A}$
${ }_{\text {IIH }}$	Digital high-level input current	$\mathrm{V}_{1}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
1 IL	Digital low-level input current	$V_{1}=0$			-1	$\mu \mathrm{A}$
1	Digital input current	$V_{1}=7 \mathrm{~V}$			100	$\mu \mathrm{A}$
IrefB	Reference current	$\mathrm{V}_{\text {refB }}=3 \mathrm{~V}$		-10		mA
$\mathrm{I}_{\text {reft }}$	Reference current	$\mathrm{V}_{\text {reft }}=5 \mathrm{~V}$		-10		mA
I_{i}	Analog input resistance		1			M Ω
C_{i}	Analog input capacitance			50	75	pF
ICC	Supply current			40	60	mA

operating characteristics over operating supply voltage range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$
E_{L} Linearity error		MAX	UNIT	
$f_{\text {max }}$	Maximum conversion rate		± 0.2	$\% F S R$
t_{d}	Digital output delay time	See Figure 3	20	30

timing diagram

TYPICAL CHARACTERISTICS

IDEAL CONVERSION CHARACTERISTICS

FIGURE 1

FIGURE 2
NOTE 2: This curve is based on the assumption that $V_{r e f B}$ and $V_{\text {reft }}$ have been adjusted so that the voltage at the transition from digital 0 to $1\left(\mathrm{~V}_{\mathrm{ZT}}\right)$ is 4.000 V and the transition to full scale $\left(\mathrm{V}_{\mathrm{FT}}\right)$ is $4.992 \mathrm{~V}, 1 \mathrm{LSB}=16 \mathrm{mV}$.

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. LOAD CIRCUIT

- 8-Bit Resolution
- $\pm 0.2 \%$ Linearity
- Maximum Conversion Rate . . .

$$
30 \mathrm{MHz} \text { Typ }
$$

20 MHz Min

- Analog Output Voltage Range of $V_{C C}$ to $V_{C C}-1 \mathrm{~V}$
- TTL Digital Input Voltage
- 5-V Single Power Supply Operation
- Low Power Consumption . . . 80 mW Typical
- Interchangeable with Fujitsu MB40778

description

The TLC5602 is a low-power ultra-high speed video digital-to-analog converter that uses the LinEPIC ${ }^{m} 1-\mu \mathrm{m}$ CMOS process. The TL5602 converts digital signals to analog signals at a sampling rate of dc to 20 MHz . Because of highspeed operation, the TLC5602 is suitable for digital video applications such as digital television, video processing with a computer, and radar-signal processing.

The TLC5602 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

N
DUAL-IN-LINE PACKAGE
(TOP VIEW)

FUNCTION TABLE

STEP	DIGITAL INPUTS								OUTPUT VOLTAGE
	D7	D6	D5	D4	D3	D2	D1	DO	
0	L	L	L	L	L	L	L	L	3.980 V
1	L	L	L	L	L	L	L	H	3.984 V
1				I					1
127	L	H	H	H	H	H	H	H	4.488 V
128	H	L	L	L	L	L	L	L	4492 V
129	H	L	L	L	L	L	L	H	4.496 V
!				'					'
254	H	H	H	H	H	H	H	L	4.996 V
255	H	H	H	H	H	H	H	H	5.000 V

$t_{\text {For }} V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=3.976 \mathrm{~V}$.
functional block diagram

[^4]
schematic of digital input and analog output

EQUIVALENT OF EACH DIGITAL INPUT
${ }^{\dagger}$ ANLG GND and DGTL GND are not connected internally and should be tied together as close to the device as possible.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Digital input voltage range, V_{I}. -0.5 V to 7 V

Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds . $260^{\circ} \mathrm{C}$
recommended operating conditions

	MIN	Wי'1	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {OD }}$	4.75	\checkmark	5.25	V
Analog reference voltage, $\mathrm{V}_{\text {ref }}$ (see Note 1)	3.8	4	4.2	V
High-level input voltage, V_{IH}	2			V
Low-level input voltage, $V_{\text {IL }}$			0.8	V
Pulse duration, CLK high or low, ${ }_{w}$	25			ns
Setup time, data high before CLK¢, $\mathrm{t}_{\text {Su }}$	12.5			ns
Hold time, data high after CLK \uparrow, th	12.5			ns
Phase compensation capacitance, $\mathrm{C}_{\text {comp }}$ (see Note 2)	1			${ }^{\mu} \mathrm{F}$
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 1. $V_{\text {ref }}$ should be greater than or equal to $V_{D D}-1.2 \mathrm{~V}$.
2. The phase compensation capacitor should be connected between COMP and ANLG GND.
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$ MAX	UNIT
IIH High-level input current	$\mathrm{V}_{\text {DD }}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.7 \mathrm{~V}$		1	$\mu \mathrm{A}$
IIL Low-level input current	$\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$		-1	$\mu \mathrm{A}$
Iref Input reference current	$\mathrm{V}_{\text {ref }}=4 \mathrm{~V}$		1	$\mu \mathrm{A}$
$V_{\text {FS }}$ Fuill-scale analog output voltage	$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4 \mathrm{~V}$	$V_{D D}-15$	$V_{D D} V_{D D}+15$	mV
$\mathrm{V}_{\mathrm{ZS}} \quad$ Zero-scale anaiog output voltage		3.919	3.98 4042	V
$\mathrm{r}_{0} \quad$ Output resistance	$\mathrm{T}^{\mathrm{A}}=25^{\circ} \mathrm{C}$	60	100	Ω
C_{i} Input capacitance	$\mathrm{I}_{\text {clock }}=1 \mathrm{MHz}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	15		pF
IDD Supply current	$\mathrm{V}_{\text {ref }}=4.05 \mathrm{~V}$		16	mA

operating characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
E_{L}	Linearity error, best-straight-line				$\pm 0.2 \%$	
E_{D}	rity error, differential				$\pm 0.1 \%$	
$\mathrm{G}_{\text {diff }}$	ential gain	NTSC 40 IRE modulated ramp.	,		2\%	
$\Phi_{\text {diff }}$	Differential phase	$\mathrm{f}_{\text {clock }}=14.3 \mathrm{MHz}$			2°	
${ }^{\text {p }}$ pd	Propagation delay. CLK to analog output	$C_{L}=10 \mathrm{pF}$		25		1 '
t_{s}	Settling time to within $1 / 2$ LSB	$C_{L}=10 \mathrm{pF}$		30		${ }^{\prime}$

${ }^{t}$ All typical values are at $V_{D D}=5 \mathrm{~V}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION

figure 1. voltage waveforms

TYPICAL CHARACTERISTICS
IDEAL CONVERSION CHARACTERISTICS

FIGURE 2

FIGURE 3

- Advanced LinCMOS ${ }^{n}$ Silicon-Gate Technology
- Monotonic Over the Entire A/D Conversion Range
- Fast Settling Time
- CMOS/TTL Compatible
- Four-Quadrant Multiplication
- Designed to be Interchangeable with Analog Devices AD7533, AD7520, and PMI PM-7533

KEY PERFORMANCE SPECIFICATIONS	
Resolution	10 Bits
Linearity Error	1/2 LSB
Power Dissipation	30 mW
- , it':n Tin\%	1 r

description

The TLC7533 and AD7533 are Advanced LinCMOS ${ }^{\text {m }} 10$-bit digital-to-analog converters featuring two- and four-quadrant multiplication.

The TLC7533 and AD7533 are functionally equivalent to the AD7520 and have the same pinout. Texas Instruments advanced thin-film-on-monolithic-CMOS fabrication process provides 10 -bit linearity without laser trimming.

The TLC7533 and AD7533 feature TTL or CMOS compatibility with low input leakage currents from $5-\mathrm{V}$ to $15-\mathrm{V}$ power supplies. Output scaling is provided by an internal feedback resistor and an external operational amplifier. Either positive or negative reference voltages can be used.

The TLC7533C and AD75331 are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC7533L and AD7533C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TLC7533 . . . D OR N PACKAGE
AD7533 . . N PACKAGE
(TOP VIEW)

FN CHIP CARRIER PACKAGE (TOP VIEW)

NC - No internal connections

AVAILABLE OPTIONS

SYMBOLIZATION ${ }^{\dagger}$		OPERATING DEMPERATURE REVICE
PACKAGE SUFFIX	RANGE	
TLC7533C	D, FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TLC75331	D, FN, N	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AD7533C	FN, N	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AD7533L	FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

\dagger In many instances, these ICs may have both TLC7533 and AD7533 labeling on the package.

NOTE 1: All voltage values are with respect to the network ground terminal.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VDD		5		16.5	V
Reference voltage, $V_{\text {ref }}$			± 10		V
High-level input voltage, V_{IH}		2.4			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$				0.8	V
Operating free-air temperature, T_{A}	TLC75331, AD7533C	-25		85	${ }^{\circ} \mathrm{C}$
	TLC7533C, AD7533L	0		70	

electrical characteristics over recommended operating temperature range, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, $\mathrm{V}_{\text {ref }}= \pm 10 \mathrm{~V}$. OUT1 and OUT2 at 0 V (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	MAX	UNIT	
IIlkg	Input leakage current		$\mathrm{V}_{1}=0$ or V_{DD}			± 1	$\mu \mathrm{A}$	
	Input resistance, REF (see Note 2)				5	20	k!	
loikg	Output leakage current	OUT1	Digital inputs at V_{IL}	Full range		± 200		
				$25^{\circ} \mathrm{C}$				
		OUT2	Digital inputs at $\mathrm{V}_{1 \mathrm{H}}$	Full range		1.	nA	
				$25^{\circ} \mathrm{C}$.		
$k_{\text {svs }}$ Supply voltage sensitivity $\Delta A V / \Delta V_{D D}$ (see Note 3)			$V_{D D}=14 \mathrm{~V}$ to 17 V , Digital inputs at V_{IH} or V_{IL}	Full range		0		
			$25^{\circ} \mathrm{C}$		0.005	\%/\%		
IDD	Supply current						2	mA
C_{i}	Input capacitance		$V_{1}=0$ or $V_{D D}$			5	pF	
C_{0}	Output capacitance	OUT1	Digital inputs at $\mathrm{V}_{1 \mathrm{H}}$			100	pF	
		OUT2				35		
		OUT1	Digital inputs at $\mathrm{V}_{\text {IL }}$			25		
		OUT2						

NOTES; 2. Temperature coefficient is approximately $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
3. AV is the ratio of the D/A external operational amplifier output voltage to the REF input voltage when using the internal feedback resistor.
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, $V_{\text {ref }}=10 \mathrm{~V}$, OUT1 and OUT2 at 0 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Relative accuracy	See Note 4	± 0.05	\%FSR
Gain error	Digital inputs $=V_{1 H}$, See Notes 4 and $5 \quad\left[\begin{array}{l}\text { Fill range } \\ \hline\end{array}\right.$	± 1.5 ± 1.4	\%FS
Output current settling time	$\text { To } \pm 0.05 \% \text { FSR, } R_{L}=100 \Omega$ Digital inputs changing from $V_{I H}$ to $V_{I L}$, or $V_{I L}$ to $V_{I H}$	150	ns
Feedthrough error	Digital inputs at $V_{\text {IL }}$. $V_{\text {ref }}= \pm 10 \mathrm{~V}$ sine wave at 100 kHz	± 01	\%FSR

NOTES 4. Practical Full Scale Range $(F S R)=V_{\text {ref }}-1$ LSB.
5. Gain error is measured using an internal feedback resistor, Full Scale (FS) $=V_{r e f}(1023 / 1024)$. Maximum gain change from $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to minimum or maximum temperature is $\pm 0.1 \% \mathrm{FSR}$.

PRINCIPLES OF OPERATION

The TLC7533 and AD7533 are 10-bit multiplying D/A converters consisting of an inverted R-2R ladder and analog switches. Binary-weighted currents are switched between the OUT1 and OUT2 bus lines by NMOS current switches. The on-state resistances of these switches are binarily scaled so that the voltage drop across every switch is the same. The OUT1 and OUT2 bus lines should be maintained at the same potential so that the current in each ladder leg remains constant and is independent of the switch state. Most applications require only the addition of an external operational amplifier and a voltage reference.

The equivalent circuit for all digital inputs low is shown in Figure 1. With all of the digital inputs low, the entire reference current, Iref, is switched to OUT2 as shown in Figure 2. The current source $I_{\text {ref }} / 1024$ represents the constant current flowing through the termination resistor of the R-2R ladder; while the current source l_{kg} represents leakage currents to the substrate. The output capacitances, $\mathrm{C}_{0}(1)$ and $\mathrm{C}_{0}(2)$, are due to the capacitance of the NMOS current switches and vary with the switch state. With all digital inputs low, all of the current switches and the entire resistor ladder are switched to the OUT2 bus line. The capacitance appearing at OUT2 is a maximum of 100 pF ; at OUT1 there is a maximum of 35 pF . With all digital inputs high, all of the current switches are switched to OUT1, and 100 pF maximum appears at OUT1. A maximum of 35 pF appears at OUT2 as shown in Figure 3.

FIGURE 1. SIMPLIFIED D/A CIRCUIT - ALL DIGITAL INPUTS LOW

FIGURE 2. D/A EQUIVALENT CIRCUIT ALL DIGITAL INPUTS LOW

FIGURE 3. D/A EQUIVALENT CIRCUIT ALL DIGITAL INPUTS HIGH

TYPICAL APPLICATION DATA

The TLC7533 and AD7533 are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2 -quadrant or 4-quadrant multiplication are shown in Figures 4 and 5. Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.

FIGURE 4. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

FIGURE 5. BIPOLAR OPERATION (4-QUADRANT OPERATION)
NOTES: 6. R_{A} and R_{B} are used only if gain adjustment is required.
7. $\mathrm{C}_{1}(10-33 \mathrm{pF})$ may be required for phase compensation when using high-speed op-amps

TABLE 1. UNIPOLAR BINARY CODE

DAC DIGITAL INPUT MSB LSB	
1111111111	ANALOG OUTPUT
1000000001	$V_{I}(1023.1024)$
1000000000	$V_{1}(513 / 1024)$
0111111111	$-V_{1}(512 / 1024)$
0000000001	$-V_{1}(51111024)$
0000000000	$-V_{\text {ref }^{\prime}}(1 / 1024)$

TABLE 2. BIPOLAR (OFFSET BINARY) CODE

DAC DIGITAL INPUT MSB LSB ‡	ANALOG OUTPUT
1111111111	$+V_{1}(511 / 512)$
1000000001	$+V_{1}(1 / 512)$
1000000000	0
0111111111	$-V_{1}(1 / 512)$
0000000001	$-V_{1}(511 / 512)$
0000000000	$-V_{1}(512 / 512)=-V_{1}$

[^5]
TYPICAL APPLICATION DATA

The TLC7533 and AD7533 may be used in voltage output operation as shown in Figure 6. In this configuration, the input voltage is applied to the OUT1 terminal and the output voltage is taken from the REF terminal. The output voltage varies with the digital input code according to the equation shown. The output should be buffered to prevent loading errors due to the high output resistance of this circuit (typically $10 \mathrm{k} \Omega$). The input voltage should not exceed 1.5 V to ensure nonlinearity errors less than 1 LSB .

FIGURE 6. VOLTAGE OUTPUT OPERATION
By connecting the DAC in the feedback of an op-amp as shown in Figure 7, the circuit behaves as a programmable gain amplifier with the transfer function:

$$
v_{0}=-v_{1}\left(\frac{1024}{D}\right)
$$

where $D=$ Digital Input Code (expressed as a decimal number)

GAIN TABLE	
D	$\mathrm{V}_{\mathrm{O}} / V_{\mathrm{I}}$
1023	-1.00097
512	2
256	-4
128	-8
2	-512
1	-1024
0	open loop

FIGURE 7. PROGRAMMABLE GAIN AMPLIFIER

TYPICAL APPLICATION DATA

The programmable function generator shown in Figure 8 produces both square and triangular wave output at a frequency determined by the digital input code. The digital input of the digitally programmable limıt detector shown in Figure 9 determines the trip point of the PASS/FAIL output. For a digital input of 0000000000 , the threshold is 0 V , for 1111111111 , the threshold is $-V_{\text {ref. }}$.

FIGURE 8. PROGRAMMABLE FUNCTION GENERATOR

FIGURE 9. PROGRAMMABLE LIMIT DETECTOR

TYPICAL APPLICATION DATA

FIGURE 10. MODIFIED SCALE-FACTOR AND OFFSET

FIGURE 11. 10-BIT AND SIGN MULTIPLYING D/A

[^0]: L lowlever highlevel x fon'tiare

[^1]: $\ddagger 1 \mathrm{LSS}-12-7 \mathrm{~V}$

[^2]: ${ }^{\dagger}$ For $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=3.976 \mathrm{~V}$

[^3]: NOTES: 5. Linearity error is the maximum deviation from the best straight line through the A/D trant: haracteristics. scale input voltage.

 Total unadjusted error comprises linearity, zero, and full-scale errors
 8. Both the input address and the output codes are expressed in positive iogic. The A5 analoc - t signal is internally generated and is used for test purposes.
 is a negative value equal to four internal system clock cycles less internal propagation deie.

[^4]: LinEPIC is a trademark of Texas Instruments Incorporated.

[^5]: $\left.{ }^{\dagger} 1 \mathrm{LSB} \quad \mathrm{I}^{2} \quad 10\right)_{\mathrm{I}} \mathrm{V}_{1}$

