General Information

Product Previews
 3

Mechanical Data

Contents

A/D and D/A Converters Switched-Capacitor Filters DSP Analog Interface Circuits Analog Switches and Multiplexers

- Advanced LinCMOS" Silicon-Gate Technology
- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonicity Over Entire A/D Conversion Range
- Segmented High-Order Bits Ensure LowGlitch Output
- Designed to be Interchangeable with Analog Devices AD7524, PMI PM-7524, and Micro Power Systems MP7524
- Fast Control Signaling for Digital Signal Processor Applications Including Interface with TMS320

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 Bits
Linearity error	$1 / 2 \mathrm{LSB}$ Max
Power dissipation	5 mW Max
at VDD $=5 \mathrm{~V}$	100 ns Max
Settling time	80 ns Max

description

N PACKAGE
(TOP VIEW)

AD7524J. . FN PACKAGE (TOP VIEW)

NC No internal connection

The AD7524 is an Advanced LinCMOS** 8 -bit digital-to-analog converter (DAC) designed for easy interface to most popular microprocessors.
The AD7524 is an 8-bit multiplying DAC with input latches and with a load cycle similar to the "write" cycle of a random access memory. Segmenting the high-order bits minimizes glitches during changes in the most-significant bits, which produce the highest glitch impulse. The AD7524 provides accuracy to $1 / 2$ LSB without the need for thin-film resistors or laser trimming, while dissipating less than 5 mW typically.
Featuring operation from a $5-V$ to $15-V$ single supply, the AD7524 interfaces easily to most microprocessor buses or output ports. Excellent multiplying (2 or 4 quadrant) makes the AD7524 an ideal choice for many microprocessor-controlled gain-setting and signal-control applications.
The AD7524A is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the AD7524 J is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

SYMBOLIZATION		OPERATING
DEVICE	PACKAGE	TEMPERATURE
	SUFFIXES	RANGE
AD7524A	N	$25^{\circ} \mathrm{C} 1085^{\circ} \mathrm{C}$
AD7524J	N, FN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
functional block diagram

operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V_{DD} -0.3 V to 17 V
Voltage between RFB and GND $\pm 25 \mathrm{~V}$
Digital input voltage, V_{I} $-0.3 \vee$ to $V_{D D}+0.3 \vee$
Reference voltage, $V_{\text {ref }}$ $\pm 25 \mathrm{~V}$
Peak digital input current, I $10 \mu \mathrm{~A}$
Operating free-air temperature range: AD7524A $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$AD7524J$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$
recommended operating conditions

		$V_{D O D}=5 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$			
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VDD		4.75	5	5.25	14.5	15	15.5	V
Reference voltage, $V_{\text {ref }}$			± 10			± 10		V
High-level input voltage, $\mathrm{V}_{\text {IH }}$		2.4			13.5			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$				0.8			1.5	V
$\overline{\mathrm{CS}}$ setup time, $\mathrm{t}_{\text {Sul }}(\mathrm{CS}$)		40			40			ns
$\overline{C S}$ hold time, th (CS)		0			0			ns
Data bus input setup time, ${ }^{\text {s sul }}$ (D)		25			25			ns
Data bus inpul ${ }^{\text {a }}$ (ime, th(D)		10			10			ns
Pulse duration : ow, tw(WR)		40			40			ns
Operating free-air temperature, T_{A}	AD7524A	-25		85	-25		85	${ }^{\circ} \mathrm{C}$
	AD7524J	0		70	0		70	

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\text {ref }}=10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

Advanced LinCMOS ${ }^{\text {TM }}$ 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\text {ref }}=10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\frac{=5 V}{\operatorname{MAX}}$	$\frac{V_{\mathrm{DD}}}{\operatorname{MIN}}=15 \mathrm{~V}$	UNIT
Linearity error			± 0.2	± 0.2	\%FSR
Gain error	See Note 1	Full range	± 1.4	± 0.6	\%FSR
		$25^{\circ} \mathrm{C}$	± 1	± 0.5	
Settling time (to 1/2 LSB)	See Note 2		100	100	ns
Propagation delay from digital input to 90% of final analog output current	See Note 2		80	80	ns
	$\begin{aligned} & V_{\text {ref }}=10 \vee 1100 \mathrm{kHz} \\ & \text { sinewavel. } \overline{\mathrm{WR}} \text { and } \overline{\mathrm{CS}} \text { at } 0 \text {, } \\ & \text { DB0-DB7 at } 0 \end{aligned}$	Full range	0.5	0.5	\%FSR
Feedthrough at OUT1 or OUT2		$25^{\circ} \mathrm{C}$	0.25	0.25	
Temperature coefficient of gain	$T_{A}=25^{\circ} \mathrm{C}$ to $1_{\text {min }}$ or $t_{\text {max }}$		± 0004	± 0.001	$\% \mathrm{FSR} /{ }^{\circ} \mathrm{C}$

NOTES: 1. Gain error is measured using the internal feedback resistor. Nominal Full Scale Range $(F S R)=V_{\text {ref }}-1$ LSB.
2. OUT1 load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF}$. $\overline{\mathrm{WR}}$ at $0 \mathrm{~V}, \overline{\mathrm{CS}}$ at $O \mathrm{~V}, \mathrm{DBO} \mathrm{DB} 7$ at 0 V to VDD or VDD to OV .

PRINCIPLES OF OPERATION

The AD7524 is an 8-bit multiplying D/A converter consisting of an inverted R-2R ladder, analog switches, and data input latches. Binary weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state. The high-order bits are decoded and these decoded bits, through a modification in the R-2R ladder, control three equally weighted current sources. Most applications only require the addition of an external operational amplifier and a voltage reference.

The equivalent circuit for all digital inputs low is seen in Figure 1. With all digital inputs low, the entire reference current, Iref, is switched to OUT2. The current source $1 / 256$ represents the constant current flowing through the termination resistor of the R-2R ladder, while the current source $/ / \mathrm{kg}$ represents leakage currents to the substrate. The capacitances appearing at OUT1 and OUT2 are dependent upon the digital input code. With all digital inputs high, the off-state switch capacitance (30 pF maximum) appears at OUT2 and the on-state switch capacitance (120 pF maximum) appears at OUT1. With all digital inputs low, the situation is reversed as shown in Figure 1. Analysis of the circuit for all digital inputs high is similar to Figure 1; however, in this case, $I_{\text {ref }}$ would be switched to OUT1.
Inte $\quad 19$ the AD7524D/A converter to a microprocessor is accomplished via the data bus and the $\overline{C S}$ anc \therefore sontrol signals. When $\overline{C S}$ and $\overline{W R}$ are both low, the AD7524 analog output responds to the data activity on the DBO-DB7 data bus inputs. In this mode, the input es are transparent and input data directly affects the analog output. When either the $\overline{C S}$ signal or \therefore signal goes high, the data on the DBO-DB7 inputs are latched until the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardiess of the state of the $\overline{W R}$ signal.

The AD7524 is capable of performing 2 -quadrant or full 4 -quadrant multiplication. Circuit configurations for 2 -quadrant or 4 -quadrant multiplication are shown in Figures 2 and 3. Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.

PRINCIPLES OF OPERATION

FIGURE 1. AD7524 EQUIVALENT CIRCUIT WITH ALL DIGITAL INPUTS LOW

FIGURE 2. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

FIGURE 3. BIPOLAR OPERATION (4-QUADRANT OPERATION)
NOTES $3 R_{A}$ and R_{B} used only if gam adjustment is required.
4 C phase compensation (10-15 pF) is required when using high-speed amplifiers to prevent ringing or oscillation.

Advanced LinCMOS ${ }^{\text {TM }}$ 8-BIT MULTIPLYING

DIGITAL-TO-ANALOG CONVERTER

PRINCIPLES OF OPERATION

Table 1. Unipolar Binary Code

DIGITAL INPUT ISEE NOTE 5)	ANALOG OUTPUT
MSB LSB	
1111111	$-V_{\text {ref }}(255 / 256)$
10000001	$-V_{\text {ref }}(129 / 256)$
10000000	$-V_{\text {ref }}(128 / 256)=-V_{\text {ref }} / 2$
0111111	$-V_{\text {ref }}(127 / 256)$
00000001	$-V_{\text {ref }}(1 / 256)$
00000000	0

Table 2. Bipolar (Offset Binary) Code

DIGITAL INPUT (SEE NOTE 6)	ANALOG OUTPUT
MSB LSB	
11111111	$V_{\text {ref }}(127 / 128)$
10000001	$V_{\text {ref }}(1 / 128)$
10000000	0
01111111	$-V_{\text {ref }}(1 / 128)$
00000001	$-V_{\text {ref }}(127 / 128)$
00000000	$-V_{\text {ref }}$

NOTES: $5 . \operatorname{LSB}=1 / 256\left(V_{\text {ref }}\right)$.
6. $L S B=1 / 128\left(V_{\text {ref }}\right)$.
microprocessor interfaces

FIGURE 4. AD7524-Z-80A INTERFACE

FIGURE 5. AD7524-6800 INTERFACE
microprocessor interfaces (continued)

FIGURE 6. AD7524-8051 INTERFACE

- Advanced LinCMOS ${ }^{1 *}$ Silicon-Gate Technology
- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonic Over the Entire A/D Conversion Range
- Designed to be Interchangeable with Analog Devices AD7528 and PMI PM-7528
- Fast Control Signaling for Digital Signal Processor Applications Including Interface with TMS320

KEY PERFORMANGE SPECIFICATIONS	
Resolution	8 bits
Linearity Error	$1 / 2 \mathrm{LSB}$
Power DIssipation at $V_{D D}-5 \mathrm{~V}$	5 mW
Setting Time at $V_{D D}-5 \mathrm{~V}$	100 ns
Propagation Delay at $V_{D D} .5 \mathrm{~V}$	80 ns

description

The AD7528 is a dual 8 -bit digital-to-analog converter designed with separate on-chip data latches and featuring excellent DAC-to-DAC matching. Data is transferred to either of the two DAC data latches via a common 8 -bit input port. Control input $\overline{\mathrm{DACA}} / D A C B$ determines which DAC is to be loaded. The "load" cycle of the AD7528 is similar to the "write" cycle of a random-access memory, allowing easy interface to most popular microprocessor busses and output ports. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, where glitch impulse is typically the strongest.
The AD7528 operates from a 5-V to $15-\mathrm{V}$ power supply and dissipates less than 15 mW (typical). Excellent 2- or 4-quadrant multiplying makes the AD7528 a sound choice for many microprocessor-controlled gainsetting and signal-control applications.

The AD7528B is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The $A D 7528 \mathrm{~K}$ is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

SYMBOLIZATION		OPERATING
DEVICE	PACKAGE SUFFIX	
AD7528B	FN, N	$25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AD7528K	FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

[^0]
Advanced LinCMOS ${ }^{\text {w" }}$ DUAL 8-BIT MULTIPLYING

 DIGITAL-TO-ANALOG CONVERTERfunctional block diagram

operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VDD (to AGND or DGND)	. 3 V to 17 V
Voltage between AGND and DGND	$\pm V_{D D}$
Input voltage, V_{1} (to DGND)	$-0.3 V$ to $V_{D D}+0.3 V$
Reference voltage, $V_{\text {ref }}$ a or $V_{\text {refB }}$ (to AGND)	$\pm 25 \mathrm{~V}$
Feedback voltage, VRFBA or VRFBB (to AGND)	$\pm 25 \mathrm{~V}$
Output voltage, VOA or VOB (to AGND)	$\pm 25 \mathrm{~V}$
Peak input current	$10 \mu \mathrm{~A}$
Operating free-air temperature range: AD7528B	$25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
AD7528K	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to ${ }^{\prime \prime}$
Case temperature for 10 seconds: FN package	¿uv
Lead temperature 1.6 mm (1/16 inch) from case	$260^{\circ} \mathrm{C}$

recommended operating conditions

AD7528
Advanced LinCMOS ${ }^{\text {TM }}$ DUAL 8 -BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
electrical characteristics over recommended operating temperature range, $\mathrm{V}_{\text {ref }}=\mathrm{V}_{\text {ref }}=10 \mathrm{~V}$, $V_{O A}$ and $V_{O B}$ at 0 V (unless otherwise noted)

operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\text {refA }}=\mathrm{V}_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OA}}$ and V_{OB} at 0 V (uniess otherwise noted)

PARAMETER		TEST CONDITIONS		$V_{D D}=5 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$					
		MIN	TYP	MAX	MIN	TYP	MAX					
Linearity erfor								$\pm 1 / 2$			$\pm 1 / 2$	LSB
Setting time (to $1 / 2$	LSB	See Note 1				100			100	ns		
Gann errar		See Notr?	Full Range			± 4			± 3	LSB		
		$25^{\circ} \mathrm{C}$			± 2			± 2				
AC feedthrough	REFA to OUTA		See Note 3	Full Range			-65			-65	dB	
	REFB to OUTB	$25^{\circ} \mathrm{C}$				-70			-70			
Temperature coeffic	ient of gain					0.007			. 00 :			
Propagation delay ifrom digital input to 90% of final analog it current)		See Note 4				80			80	ns		
Channel-to-channe	, to OUTB	See Note 5	$25^{\circ} \mathrm{C}$		77			77		dB		
isolation	REFB to OUTA	See Note 6	$25^{\circ} \mathrm{C}$		77			77				
Digital-to-analog glitch impulse area		Measured for code transition from 00000000 to 11111111 ,$T_{A}=25^{\circ} \mathrm{C}$			160			440		nV		
Digital crosstalk glitch impulse area		Measured 00000000 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	nsition from 11. \qquad		30			60		nV s		
Harmonic distortio		$\mathrm{V}_{\mathrm{i}}=6 \mathrm{~V}, \mathrm{f}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-85			-85		dB		

NOTES: 1. OUTA, OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{C S}$ at 0 V : $\mathrm{DBO}-\mathrm{DB7}$ at 0 V to V_{DD} or V_{DD} to 0 V .
2. Gain error is measured using an internal feedback resistor. Nominal Full Scale Range (FSR) $=\mathrm{V}_{\text {ref }}-1$ LSB.
3. $V_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, $100-\mathrm{kHz}$ sine wave; DAC data latches loaded with 0000000 .
4. $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}$; OUTA/OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at $O \mathrm{~V}$; DBO-DB7 at $O \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V
5. Both DAC latches loaded with 11111111; $V_{\text {refA }}=20 \mathrm{~V}$ peak-to-peak, $100-\mathrm{kHz}$ sine wave; $V_{\text {refB }}=0$.
6. Both DAC latches loaded with $11111111 ; \mathrm{V}_{\text {refB }}=20 \mathrm{~V}$ peak-to-peak, $100-\mathrm{kHz}$ sine wave; $\mathrm{V}_{\text {refA }}=0$.

principles of operation

The AD7528 contains two identical 8-bit multiplying D/A converters, DACA and DACB. Each DAC consists. of an inverted $R-2 R$ ladder, analog switches, and input data latches. Binary-weighted currents are switched between DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state. Most applications require only the addition of an external operational amplifier and voltage reference. A simplified D/A circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs share the analog ground pin 1 (AGND). With all digital inputs high, the entire reference current flows to OUTA. A small leakage current (I_{ikg}) flows across internal junctions, and as with most semiconductor devices, doubles every $10^{\circ} \mathrm{C} . \mathrm{C}_{0}$ is due to the parallel combination of the NMOS switches and has a value that depends on the number of switches connected to the output. The range of C_{0} is 50 pF to 120 pF maximum. The equivalent output resistance ro varies with the input code from $0.8 R$ to $3 R$ where R is the nominal value of the ladder resistor in the R-2R network.
Interfacing the AD7528 to a microprocessor is accomplished via the data bus, $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control signals. When $\overline{C S}$ and \bar{W} are both low, the AD7528 analog output, specified by the $\overline{D A C A} / D A C B$ control line, responds to the activity on the DBO-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When e goes high, the data on the DBO-DB7 inputs is latched until the $\overline{C S}$ and .. signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardless of the state of the $\overline{W R}$ signal.
The digital inputs of the AD7528 provide TTL compatibility when operated from a supply voltage of 5 V . The AD7528 may be operated with any supply voltage in the range from 5 V to 15 V , however, input logic levels are not TTL compatible above 5 V .

Advanced LinCMOS ${ }^{\text {Tw }}$ DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

FIGURE 1. SIMPLIFIED FUNCTIONAL CIRCUIT FOR DACA

FIGURE 2. AD7528 EQUIVALENT CIRCUIT, DACA LATCH LOADED WITH 11111111.
mode selection table

$\overline{\text { DACA }} /$ DACB	$\overline{\text { CS }}$	WR	DACA	DACB
L	L	L	WRITE	HOLD
H	L	L	HOLD	WRITE
X	H	X	HOLD	HOLD
X	X	H	HOLD	HOLD

L - low level H - high devel $X=$ don't care

TYPICAL APPLICATION DATA

The AD7528 is capable of performing 2 -quadrant or full 4 -quadrant multiplication. Circuit configurations for 2 -quadrant and 4-quadrant multiplication are shown in Figures 3 and 4 . Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.

NOTES: 1. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with digital input of 255 .
2. C 1 and C 2 phase compensation capacitors (10 pF to 15 pF) are required when using high-speed amplifiers to prevent ringing or oscillation.

FIGURE 3. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

Advanced LinCMOS ${ }^{\text {Tm }}$ DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

TYPICAL APPLICATION DATA

NOTES: 1. R1, R2, R3, and R4 are used only if gain adjustment is required. See table in Figure 3 for recommended values. Adjust R1 for $V_{\mathrm{OA}}=0 \mathrm{~V}$ with code 10000000 in DACA latch. Adjust $R 3$ for $V_{\mathrm{OB}}=0 \mathrm{~V}$ with 10000000 in DACB latch.
2. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10
3. C 1 and $C 2$ phase compensation capacitors (10 pF to 15 pF) may be required if A 1 and A 3 are high-speed amplifiers.

FIGURE 4. BIPOLAR OPERATION (4-QUADRANT OPERATION)

TABLE 1. UNIPOLAR BINARY CODE

DAC LATCH CONTENTS	ANALOG OUTPUT
MSB LSB	

[^1]TABLE 2. BIPOLAR (OFFSET BINARY) CODE

DAC LATCH CONTENTS	
MSB LSB ‡	ANALOG OUTPUT
11111111	$V_{1}(1271281$
10000001	$V_{1}(1.128)$
10000000	0 V
01111111	$V_{1} 111281$
00000001	$V_{1}(1271281$
00000000	$-V_{i}(128 / 128)$

[^2]
TYPICAL APPLICATION DATA

microprocessor interface information

NOTE: $\quad A=$ decoded address for AD7528 DACA
A 1 decoded address for AD7528 DACB
FIGURE 5. AD7528 - INTEL 8051 INTERFACE

NOTE $\quad A=$ decoded address for AD7528 DACA.
$A+1=$ decoded address for AD7528 DACB.
FIGURE 6. AD7528 - 6800 INTERFACE

TYPICAL APPLICATION DATA

NOTE. A - decoded addess for AD7528 UACA.
$A+1=$ decoded address for AD7528 DACB.
FIGURE 7. AD7528 TO Z-80A INTERFACE
programmable window detector
The programmable window comparator shown in Figure 8 will determine if voltage applied to the DAC feedback resistors are within the lirnits programmed into the AD7528 data latches. Input signal range depends on the reference and polarity, that is, the test input range is 0 to $-V_{\text {ref }}$. The DACA and DACB data latches are programmed with the upper and lower test limits. A signal within the programmed limits will drive the output high.

FIGURE 8. DIGITALLY PROGRAMMABLE WINDOW COMPARATOR (UPPER-AND LOWER-LIMIT TESTER)

TYPICAL APPLICATION DATA

digitally controlled signal attenuator
Figure 9 shows the AD7528 configured as a two-channel programmable attenuator. Applications include stereo audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0 to 15.5 dB range.

FIGURE 9. DIGITALLY CONTROLLED DUAL TELEPHONE ATTENUATOR
table 3. Attenuation vs DACA, DACB CODE

ATTN(dB)	DAC INPUT CODE	CODE IN DECIMAL	ATTN(dB)	DAC INPUT CODE	CODE IN DECIMAL
0	11111111	255	8.0	01100110	102
0.5	11110010	242	8.5	01100000	96
1.0	11100100	-	9.0	01011011	91
1.5	11010111		9.5	01010110	86
2.0	11001011		10.0	01010001	81
25	11000000	192	105	01001100	76
30	10110101	181	110	01001000	72
3.5	10101011	171	11.5	01000100	68
4.0	101nnnin	152	12.0	01000000	64
4.5			12.5	00111101	61
5.0		, 7	13.0	00111001	57
5.5		136	13.5	00110110	54
6.0	10000000	128	14.0	00110011	51
6.5	$011^{1 \mathrm{nn}^{1}}$	121	14.5	00110000	48
7.0	$011{ }^{\text {01 }}$	114	15.0	00101110	46
7.5	01101100	108	15.5	00101011	43

TYPICAL APPLICATION DATA

programmable state-variable filter

This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass outputs, and is suitable for applications in which microprocessor control of filter parameters is required.

As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the cutoff-frequency equation to be true. With the AD7528, this is easily achieved.

The programmable range for the cutoff or center frequency is 0 to 15 kHz with a Q ranging from 0.3 to 4.5. This defines the limits of the component values.

B C3 compensates for the op-amp gain-bandwidth limitations.
C. DAC equivalent resistance equals $\frac{256 \times \text { (DAC ladder resistance) }}{\text { DAC digital code }}$

FIGURE 10. DIGITALLY CONTROLLED STATE-VARIABLE FILTER

- 8-Bit Resolution
- Ratiometric Conversion
- 100- $\mu \mathrm{s}$ Conversion Time
- 135-ns Access Time
- Guaranteed Monotonicity
- High Reference Ladder Impedance . . $8 \mathrm{k} \Omega$ Typical
- No Zero Adjust Requirement
- On-Chip Clock Generator
- Single 5-V Power Supply
- Operates with Microprocessor or as Stand-Alone
- Designed to be Interchangeable with National Semiconductor and Signetics ADC0803 and ADC0805

description

The ADC0803 and ADC0805 are CMOS 8-bit, successive-approximation, analog-to-digital converters that use a modified potentiometric (256R) ladder. These devices are designed to operate from common microprocessor control buses with the three-state output latches driving the data bus. The devices can be made to appear to the microprocessor as a memory location or an $1 / 0$ port. Detailed information on interfacing to most popular microprocessors is readily available from the factory.
A differential analog voltage input allows increased common-mode rejection and offset of the zero-input analog voltage value. Although a reference input (REF/2) is available to allow 8 -bit conversion over smaller analog voltage spans or to make use of an external reference, ratiometric conversion is possible with the REF/2 input open. Without an external reference, the conversion takes place over a span from $V_{C C}$ to analog ground (ANLG GND). The devices can operate with an external clock signal or, with an additional resistor and capacitor, using an on-chip clock generator.
The $\mathrm{ADC08031}$ and $\mathrm{ADC08051}$ are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The $\mathrm{ADC0803C}$ and $A D C 0805 \mathrm{C}$ are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

ADC0803, ADC0805

8-BIT ANALOG-TO-DIGITAL CONVERTERS
WITH DIFFERENTIAL INPUTS
functional block diagram (positive logic)

9
0
0
0
0
0
\square
0
0
0
0

ADC0803, ADC0805 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: All voltage values are with respect to digital ground (DGTL GND) with DGTL GND and ANLG GND connected together unless otherwise noted.
recommended operating conditions

NOTES: 2. When the differential input voltage $\left(V_{1+}-V_{1-}\right)$ is less than or equal to 0 V , the output code is 00000000 .
3. The internal reference voltage is equal to the voltage applied to REF/2 or approximately equal to one-half of the $V_{C C}$ when REF/2 is left open. The voltage at REF/2 should be one-half the full-scale differential input voltage between the analog inputs. Thus, the differential input voltage range when REF/2 is open and $V_{C C}=5 \mathrm{~V}$ is 0 V to 5 V . $\mathrm{V}_{\text {REF/2 }}$ for an input voltage range from 0.5 V to 3.5 V (full-scale differential voltage of 3 V) is 1.5 V .
4. These values are with respect to DGTL GND.
5. Total unadjusted error is specified only at an $f_{\text {clock }}$ of 640 kHz with a duty cycle of 40% to 60% (pulse duration 625 ns to 937 ns$)$. For frequencies above this limit or pulse duration below 625 ns , error may increase. The duty cycle limits should be observed for an flock greater than 640 kHz . Below 640 kHz , this duty cycle limit can be exceeded provided $\mathrm{t}_{\text {w }}$ (CLK) remains within limits

ADC0803, ADC0805

8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{f}_{\text {clock }}=640 \mathrm{kHz}, \mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP ${ }^{1}$	MAX	UNIT
$\mathrm{VOH}_{\mathrm{OH}}$	High level	All outputs	$\mathrm{V}_{\mathrm{CC}} 475 \mathrm{~V}$.	${ }^{1} \mathrm{OH} \quad 360 \mathrm{~mA}$	24			V
	output voltage	DB and INTP	$V_{C C} 475 \mathrm{~V}$.	$\mathrm{OH} \quad 10 \mu \mathrm{~A}$	4.5			
V_{OL}	Low-level	Data outputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	$\mathrm{OL}=1.6 \mathrm{~mA}$			0.4	V
	output	$\overline{\mathrm{INTR}}$ output	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	$1 \mathrm{OL}=1 \mathrm{~mA}$			0.4	
	voltage	CLK OUT	$V_{C C}=4.75 \mathrm{~V}$,	$\mathrm{OLL}=360 \mu \mathrm{~A}$			0.4	
V_{T+}	Clock positive-going threshold voltage				2.7	3.1	3.5	V
V_{T} -	Clock negative going threshold voltage				1.5	1.8	2.1	V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Clock input hysteresis				0.6	1.3	2	V
$\mathrm{I}^{\mathrm{I} \mathrm{H}}$.	High-level input current					0.005	1	$\mu \mathrm{A}$
1 IL	Low-level input current					-0.005	-1	$\mu \mathrm{A}$
IOZ	Off-state output current		$\mathrm{V}_{\mathrm{O}}=0$.				-3	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=5 \mathrm{~V}$				3	
${ }^{\text {I OHS }}$	Short-current output current	Output high	$V_{0}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-4.5	-6		mA
'OLS	Short-circuit output current	Output low	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$.	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9	16		mA
Icc	Supply current plus reference current		$\begin{aligned} & V_{\text {REF } / 2}=\text { open, } \\ & \overline{C S}=5 \mathrm{~V} \end{aligned}$	$\bar{T}_{A}=25^{\circ} \mathrm{C},$		1.1	1.8	mA
RREF/2	Input resistance to reference ladder		See Note 6		2.5	8		k?
C_{1}	Input capacitance (control)					5	7.5	pF
C_{0}	Output capacitance (DB)					5	7.5	pF

NOTE 6: Resistance is calculated from the current drawn from a $5-\mathrm{V}$ supply applied to pins 8 and 9 .
operating characteristics over recommended operating free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Supply-voltage-vamation error			VCC $4.5 \times 105.5 \mathrm{~V}$.	Suc Nute 7		± 1.16	$\pm 1 / 8$	LSE	
Total adjusted error		ADC0803	With full-scale adjust. See Notes 7 and 8				$\pm 1 / 4$	ISB	
						$\pm 1 / 2$	LSB		
	Total unadjusted error		ADC0805	$V_{\text {REF/2 }}=2.5 \mathrm{~V}$.	See Notes 7 and 8			$\pm 1 / 2$	LSB
		$V_{\text {REF/2 }}$ open,		See Notes 7 and 8			± 1		
	$\overline{\text { DC common-mode error }}$		See Notes 7 and 8			$\pm 1 / 16$	$\pm 1 / 8$	LSB	
$t_{\text {en }}$	Output enable time		$T_{A}=25^{\circ} \mathrm{C}$,	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns	
$t^{\text {dis }}$	Output disable time		$T_{A}=25^{\circ} \mathrm{C}, C_{L}=10 \mathrm{p}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		125	200	กs	
$\mathrm{t}_{\mathrm{d}(1 \mathrm{NTR})}$	Delay time to reset INTR		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			300	450	ns	
$\mathrm{t}_{\text {conv }}$	Conversion cycle time		$\begin{aligned} & \mathrm{f}_{\text {clock }}=100 \mathrm{kHz} \text { to } 1.4 \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} . \end{aligned}$	$\overline{\mathrm{VHz}} \text {, }$ See Note 9	66		73	clock cycles	
CR	Free-running conversion rate		$\overline{\overline{N T R}}$ connected to $\overline{W R}$.	$\overline{\mathrm{CS}}$ at O V			8770	conv/s	

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 7. These parameters are specified over the recommended analog input voltage range.
8. All errors are measured with reference to an ideal straight line through the end-points of the analog-to-digital transfer characteristic.
9. Although internal conversion is completed in 64 clock periods, a $\overline{C S}$ or $\bar{W} \bar{A}$ low-to-high transition is followed by 1 to 8 chock periods before conversion starts. After conversion is complete, part of another clock period is required before a high-to-low transition of INTR completes the cycle.

PARAMETER MEASUREMENT INFORMATION

PRINCIPLES OF OPERATION

The ADC0803 and ADC0805 each contain a circuit equivalent to a 256 -resistor network. Analog switches are sequenced by successive-approximation logic to match an analog differential input voltage ($\mathrm{V}_{\text {in }}+-\mathrm{V}_{\text {in }}$) to a corresponding tap on the 256R network. The most significant bit (MSB) is tested first. After eight comparisons (64 clock periods), an eight-bit binary code (1111 $1111=$ full scale) is transferred to an output latch and the interrupt (INTR) output goes low. The device can be operated in a free-running mode by connecting the $\overline{\mathrm{INTR}}$ output to the write ($\overline{\mathrm{WR}}$) input and holding the conversion start ($\overline{\mathrm{CS}}$) input at a low level. To re start-up under all conditions, a low-level $\overline{W R}$ input is required during the power-up cycle. Taking low any time after that will interrupt a conversion in process.
When the \bar{W} input goes low, the internal successive approximation register (SAR) and 8-bit shift register are reset. As long as both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ remain low, the analog-to-digital converter remains in a reset state. One to eight clock periods after $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ makes a low-to-high transition, conversion starts.
When the $\overline{\mathrm{CS}}$ and $\overline{W R}$ inputs are low, the start flip-flop is set and the interrupt flip-flop and 8-bit register are reset. The next clock pulse transfers a logic high to the output of the start flip-flop. The logic high is ANDed with the next clock pulse, placing a logic high on the reset input of the start flip-flop. If either $\overline{\mathrm{CS}}$ or $\overline{W R}$ have gone high, the set signal to the start flip-flop is removed, causing it to be reset. A logic high is placed on the D input of the eight-bit shift register and the conversion process is started. If the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs are still low, the start flip-flop, the 8 -bit shift register, and the SAR remain reset, This action allows for wide $\overline{C S}$ and $\overline{W R}$ inputs, with conversion starting from one to eight clock periods after one of the inputs goes high.

When the logic high input has been clocked through the 8 -bit shift register, which completes the SAR search, it is applied to an AND gate controlling the output latches and to the D input of a flip-flop. On the next clock pulse, the digital word is transferred to the 3 -state output latches and the interrupt flip-flop is set. The output of the interrupt flip-flop is inverted to provide an INTR output that is high during conversion and low when the conversion is complete.

When a low is at both the $\overline{C S}$ and $\overline{R D}$ inputs, an output is applied to the DBO through DB7 outputs and the interrupt flip-flop is reset. When either the $\overline{C S}$ or $\overline{R D}$ inputs return to a high state, the DBO through DB7 outputs are disabled (returned to the high-impedance state). The interrupt flip-flop remains reset.

- 8-Bit Resolution
- Ratiometric Conversion
- 100- μ s Conversion Time
- 135-ns Access Time
- No Zero Adjust Requirement
- On-Chip Clock Generator
- Single 5-V Power Supply
- Operates with Microprocessor or as Stand-Alone
- Designed to be Interchangeable with National Semiconductor and Signetics ADC0804

description

n DUAL-IN-LINE PACKAGE
(TOP VIEW)

The ADCO804 is a CMOS 8 -bit successive-approximation analog-to-digital converter that uses a modified potentiometric (256R) ladder. The ADC0804 is designed to operate from common microprocessor control buses, with the three-state output latches driving the data bus. The ADC0804 can be made to appear to the microprocessor as a memory location or an I/O port. Detailed information on interfacing to most popular microprocessors is readily available from the factory.
A differential analog voltage input allows increased common-mode rejection and offset of the zero-input analog voltage value. Although a reference input (REF/2) is available to allow 8 -bit conversion over smalier analog voltage spans or to make use of an external reference, ratiometric conversion is possible with the REF/2 input open. Without an external reference, the conversion takes place over a span from VCC to analog ground (ANLG GND). The ADCO804 can operate with an external clock signal or, with an additional resistor and capacitor, can operate using an on-chip clock generator.
The ADC08041 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The ADC0804C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

ADC08041, ADC0804C
8-BIT ANALOG-TO-DIGITAL CONVERTER WITH DIFFERENTIAL INPUTS
functional block diagram (positive logic)

ADC0804I, ADC0804C 8-BIT ANALOG-TO-DIGITAL CONVERTER WITH DIFFERENTIAL INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: All voltage values are with respect to digital ground (DGTL GND) with DGTL GND and ANLG GND connected together (unless otherwise noted).

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.5	5	6.3	V
Voitage at REF/2, $\mathrm{V}_{\text {REF/2 }}$ (see Note 2)		0.25	2.5		V
High-level input voltage at $\overline{C S}, \overline{\overline{R D}, \text { or }} \therefore \quad \therefore \quad \overline{V_{1 H}}$		2		15	V
Low-level input voltage at $\overline{C S}, \overline{\mathrm{RD}}$, or $\sim \cdot \overline{\mathrm{V}_{\text {IL }}}$				0.8	V
Analog ground voltage (see Note 3)		-0.05	0	1	V
Analog input voltage (see Note 4)		-0.05		$\mathrm{V}_{\mathrm{Cc}}+0$	V
Clock input frequency, flock (see Note 5)		100	640	1460	kHz
Duty cycle for $\mathrm{f}_{\text {clock }} \geq 640 \mathrm{kHz}$ (see Note 5)		40		60	\%
Pulse duration clock input (high or low) for felock $<640 \mathrm{kHz}, \mathrm{t}_{\text {w }}$ (CLK) (see Note 5)		275	781		ns
Pulse duration, $\overline{W R}$ input low (start conversion), $\mathrm{t}_{\mathrm{w}}(\mathrm{WR})$		100			ns
Operating free-air temperature, T_{A}	ADC0804\|	-40		85	${ }^{\circ} \mathrm{C}$
	ADC0804C	0		70	

NOTES: 2. The internal reference voltage is equal to the voltage applied to REF/2, or approximately equal to one-half of the $V_{C C}$ when REF/2 is left open. The voltage at REF/2 should be one-half the full-scale differential input voltage between the analog inputs. Thus, the differential input voltage when REF/2 is open and $V_{C C}=5 \mathrm{~V}$ is 0 to 5 V . VREF/2 for an input voltage range from 0.5 V to 3.5 V (full-scale differential voltage of 3 V) is 1.5 V .
3. These values are with respect to DGTL GND.
4. When the differential input voltage ($\mathrm{V}_{\mathrm{IN}}+-\mathrm{V}_{\mathrm{In}-}$) is less than or equal to 0 V , the output code is 00000000 .
5. Total unadjusted error is specified only at an $f_{\text {clock }}$ of 640 kHz with a duty cycle of 40% to 60% (pulse duration 625 ns to 937 ns). For frequencies above this limit or pulse duration below 625 ns , error may increase. The duty cycle limits should be observed for an flock greater than 640 kHz Below 640 kHz , this duty cycle limit can be exceeded provided $\mathrm{t}_{\text {w }}(\mathrm{CLK}$) remains within limits.

ADC0804I, ADC0804C
 8-BIT ANALOG-TO-DIGITAL CONVERTER
 WITH DIFFERENTIAL INPUTS

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. $f_{\text {clock }}=640 \mathrm{kHz}, \mathrm{REF} / 2=2.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOH	High-level output voitage	All outputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, 1 \mathrm{OH}=-360 \mu \mathrm{~A}$	2.4			
		DB and INTR	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	4.5			V
VOL	Low-level output voltage	Data outputs	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
		INTA output	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}^{\text {OL }}=1 \mathrm{~mA}$			0.4	
		CLK OUT	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}^{\mathrm{OL}}=360 \mu \mathrm{~A}$			0.4	
$\mathrm{V}_{\mathrm{T}-\mathrm{r}}$	Clock positive-going threshold voltage			27	3.1	3.5	V
V_{T} -	Clock negative-going threshold voltage			1.5	1.8	2.1	V
$V_{T+}-V_{T}$ - Clock input hysteresis				0.6	1.3	2	V
1 H	High-level input current				0.005	1	$\mu \mathrm{A}$
112	Low-level input current				-0.005	-1	$\mu \mathrm{A}$
loz	Off-state output current		$\mathrm{V}_{\mathrm{O}}=0$			-3	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=5 \mathrm{~V}$			3	
IOHS	Short-circuit output current	Output high	$V_{0}=0, \quad T_{A}=25^{\circ} \mathrm{C}$	-4.5	-6		mA
IOLS	Short-circuit output current	Output low	$V_{O}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	9	16		mA
ICC	Supply current plus reference current		$\begin{aligned} & \text { REF/2 open, } \overline{C S} \text { at } 5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1.9	2.5	mA
$\mathrm{R}_{\text {REF/2 }}$	Input resistance to reference ladder		See Note 6	1	1.3		k Ω
C_{i}	Input capacitance (5	7.5	pF
C_{0}	Output capacitance				5	7.5	pF

operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{REF} / 2}=2.5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPt	MAX	UNIT
	Supply-voltage-variation error (See Notes 2 and 7)	$V_{C C}=4.5 \mathrm{~V}$ to 5.5 V		$\pm 1 / 16$	$\pm 1 / 8$	LSB
	Total unadjusted error (See Notes 7 and 8)	$\mathrm{V}_{\text {REF/2 }}=2.5 \mathrm{~V}$			± 1	LSB
	DC common-mode error (See Note 8)			$\pm 1 / 16$	$\pm 1 / 8$	LSB
$\mathrm{t}_{\text {en }}$	Output enable time	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
$\mathrm{t}_{\text {dis }}$	Output disable time	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		125	200	ns
$t_{\text {d (INTA) }}$	Delay time to reset *.			300	450	ns
${ }^{\text {t conv }}$	Conversion cycle time (See Note 9)	$\mathrm{f}_{\text {clock }}=100 \mathrm{kHz}$ to 1.46 MHz	$65^{1 / 2}$		$721 / 2$	clock cycles
	Conversion time		103		114	$\mu \mathrm{S}$
CR	Free-running conversion rate	INTR connected to $\overline{W R}$. $\overline{C S}$ at 0 V			8827	convis

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 2. The internal reference voltage is equal to the voltage applied to REF/2, or approximately equal to one-half of the $V_{C C}$ when REF/2 is left open. The voltage at REF/2 should be one-half the fulf-scale differential input voltage between the analog inputs. Thus, the differential input voltage when REF/2 is open and $V_{C C}=5 \mathrm{~V}$ is 0 to $5 \mathrm{~V} . V_{R E F / 2}$ for an input voltage range from 0.5 V to 3.5 V (full-scale differential voltage of 3 V) is 1.5 V .
6. The resistance is calculated from the current drawn from a $5-\mathrm{V}$ supply applied to pins 8 and 9 .
7. These parameters are specified for the recommended analog input voltage range.
8. All errors are measured with reference to an ideal straight line through the end-points of the analog-to-digital transfer characteristic.
9. Although internal conversion is completed in 64 clock periods, a $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ low-to-high transition is followed by 1 to 8 clock periods before conversion starts. After conversion is completed, part of another clock period is required before a high-to-low transition of $\overline{\mathrm{NTR}}$ completes the cycle.

ADC0804I, ADC0804C 8-BIT ANALOG-TO-DIGITAL CONVERTER WITH DIFFERENTIAL INPUTS

timing diagrams

READ OPERATION TIMING DIAGRAM

WRITE OPERATION TIMING DIAGRAM

PRINCIPLES OF OPERATION

The ADC0804 contains a circuit equivalent to a 256 -resistor network. Analog switches are sequenced by successive approximation logic to match an analog differential input voltage $\left(V_{\text {in }}+V_{\text {in }}\right)$ to a corresponding tap on the 256 -resistor network. The most-significant bit (MSB) is tested first. After eight comparisons (64 clock periods), an 8-bit binary code (1111 1111 = fuil scale) is transferred to an output latch and the interrupt (INTR) output goes low. The device can be operated in a free-running mode
 low level. To ensure start-up under all conditions, a low-level $\overline{\mathrm{WR}}$ input is required during the power-up cycle. Taking $\overline{\mathrm{CS}}$ low anytime after that will interrupt a conversion in process.
When the $\overline{W R}$ input goes low, the ADCO8O4 successive approximation register (SAR) and 8-bit shift register are reset. As long as both $\overline{\mathrm{CS}}$ and $\overline{W R}$ remain low, the $A D C 0804$ remains in a reset state. One to eight clock periods after $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ makes a low-to-high transition, conversion starts.
When the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs are low, the start flip-flop is set and the interrupt flip-flop and 8 -bit register are reset. The next clock pulse transfers a logic high to the output of the start flip-flop. The logic high is ANDed with the next clock pulse, placing a logic high on the reset input of the start flip-flop. If either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WR}}$ have gone high, the set signal to the start flip-flop is removed, causing it to be reset. A logic high is placed on the D input of the 8 -bit shift register and the conversion process is started. If the $\overline{C S}$ and $\overline{W R}$ inputs are still low, the $\cdot .$. flip-flop, the 8 -bit shift register, and the SAR remain reset. This action allows for wide $\overline{C S}$ and \therefore - inputs with conversion starting from one to eight clock periods after one of the inputs goes high.
When the logic high input has been clocked through the 8 -bit shift register, completing the SAR search, it is applied to an AND gate controlling the output latches and to the D input of a flip-flop. On the next clock pulse, the digital word is transferred to the three-state output latches and the interrupt flip-flop is set. The output of the interrupt flip-flop is inverted to provide an INTR output that is high during conversion and low when the conversion is completed.
When a low is at both the $\overline{C S}$ and $\overline{\mathrm{RD}}$ inputs, an output is applied to the DBO through DB7 outputs and the interrupt flip-flop is reset. When either the $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ inputs return to a high state, the DBO through DB7 outputs are disabled (returned to the high-impedance state). The interrupt flip-flop remains reset.

- Total Unadjusted Error . . . ± 0.75 LSB Max for ADC0808 and ± 1.25 LSB Max for ADC0809
- Resolution of 8 Bits
- $100 \mu \mathrm{~s}$ Conversion Time
- Ratiometric Conversion
- Monotonicity Over the Entire A/D Conversion Range
- No Missing Codes
- Easy Interface with Microprocessors
- Latched 3-State Outputs
- Latched Address Inputs
- Single 5-V Supply
- Low Power Consumption
- Designed to be Interchangeable with National Semiconductor ADC0808, ADC0809

description

The ADC0808 and ADC0809 are monolithic CMOS devices with an 8-channel multiplexer, an 8 -bit analog-to-digital (A/D) converter, and microprocessor-compatible control logic. The 8 -channel multiplexer can be controlled by a microprocessor through a 3-bit address decoder with address load to select any one of eight single-ended analog switches connected directly to the comparator. The 8-bit A/D converter uses the successive-approximation conversion technique featuring a high-impedance threshold detector, a switched-capacitor array, a sample-and-hold, and a successive-approximation register (SAR). Detailed information on interfacing to most popular microprocessors is readily available from the factory.
The comparison and converting methods used eliminate the possibility of missing codes, nonmonotonicity, and the need for zero or fuil-scale adjustment. Also featured are latched 3 -state outputs from the SAR and latched inputs to the multiplexer address decoder. The single $5-\mathrm{V}$ supply and low power requirements make the ADC0808 and ADC0809 especially useful for a wide variety of applications. Ratiometric conversion is made possible by access to the reference voltage input terminals.

The ADC0808 and ADC0809 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
functional block diagram (positive logic)

MULTIPLEXER FUNCTION TABLE

INPUTS				SELECTED ANALOG CHANNEL
ADDRESS			ADDRESS	
C	B	A	STROBE	
L	L	1.	\dagger	0
L	L	H	-	1
L	H	1.	$!$	2
L	H	H	-	3
H	L	L	\dagger	4
H	L	H	+	\square
H	H	L	1	6
H	H	H	\dagger	7

H bugh invel, L low lowel
low to muth transation
operating sequence

ADC0808, ADC0809
 CMOS ANALOG-TO-DIGITAL CONVERTERS WITH 8.CHANNEL MULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Note 1)
Input voltage range: control inputs -0.3 to 15 V
all other inputs
-0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Operating free-air temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: N package $260^{\circ} \mathrm{C}$
NOTE 1: All voltage values are with respect to network ground terminal.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	6	V
Positive reference voltage, $\mathrm{V}_{\text {ref }}+($ see Note 2)		VCC	$\mathrm{V}_{\text {CC }}+0.1$	V
Negative reference voltage, $\mathrm{V}_{\text {ref }}$ -		0	-0.1	V
Differential reference voltage, $\mathrm{V}_{\text {ref }+}-\mathrm{V}_{\text {ref }}-$		5		V
High-level input voltage, V_{IH}	$\mathrm{V}_{\text {CC }}{ }^{-1.5}$			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			1.5	V
Operating free-air temperature, T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 2: Care must be taken that this rating is observed even during power-up.
electrical characteristics over recommended operating free-air temperature range. VCC $=4.75 \mathrm{~V}$ to 5.25 V (unless otherwise noted)
total device

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	$\frac{\text { UNIT }}{V}$
V OH	High-level output voltage		$10=-360 \mu \mathrm{~A}$	$V_{\text {CC }-0.4}$			
VOL	Low-level output voltage	Data outputs	$\mathrm{I}_{0}=1.6 \mathrm{~mA}$			0.45	V
		End of conversion	$\mathrm{l}_{0}=1.2 \mathrm{~mA}$			0.45	
Ioz	Off-state (high-impedance-state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$			3	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=0$			-3	
1	Control input current at maximum input voltage		$\mathrm{V}_{1}=15 \mathrm{~V}$			1	$\mu \mathrm{A}$
IIL	Low-level control input current		$V_{1}=0$			-1	$\mu \mathrm{A}$
${ }^{\text {ICC }}$	Supply current		$\mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$		0.3	3	mA
C_{i}	Input capacitance, control inputs		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	15	pF
C_{0}	Output capacitance, data outputs		$\mathrm{T}^{\prime} \mathrm{A}=25^{\circ} \mathrm{C}$		10	15	pF
	Resistance from pin 12 to pin 16						k Ω

analog multiplexer

${ }^{\dagger} T_{\text {ypical }}$ values are at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 3: Channel on-state current is primarly due to the bias current into or out of the threshold detector, and it varies directly with clock frequency.
timing requirements, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{ref}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}-=0 \mathrm{~V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {clock }}$	Clock frequency		10	640	1280	kHz
${ }_{\text {t }}^{\text {conv }}$	Conversion time	See Note 4	90	100	116	$\mu \mathrm{S}$
t_{w} (s)	Pulse duration, START		200			ns
t_{w} (ALE)	Pulse duration, ALE		200			ns
$\mathrm{t}_{\text {Su }}$	Setup time, ADDRESS		50			ns
$t_{\text {h }}$	Hold time, ADDRESS		50			ns
t_{d}	Delay time, EOC	See Notes 4 and 5	0		14.5	${ }_{\mu} \mathrm{S}$

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}-=0 \mathrm{~V}, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	ADC0808		ADC0809		UNIT	
		MIN	TYP ${ }^{\dagger}$ MAX	MIN	TYP ${ }^{\dagger}$ MAX			
kSVS	Supply voltage sensitivity		$\begin{aligned} & V_{\mathrm{CC}}=V_{\text {ref }}+=4.75 \mathrm{~V} \text { to } 525 \mathrm{~V} . \\ & T_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}, \text { See Note } 6 \end{aligned}$	± 0.05		± 0.05		\%/V
	Linearity error (see Note 7)		± 0.25		± 0.5		LSB	
	Zero error (see Note 8)		± 0.25			± 0.25	LSB	
	Total unadjusted error (See Note 9)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\pm 0.25 \pm 0.5$		± 0.5	LSB	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	± 0.75		± 1.25			
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			± 1			
ten	Output enable time	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$80 \quad 250$			$80 \quad 250$	ns	
${ }^{\text {t dis }}$	Output disable time	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$105 \quad 250$			105250	ns	

${ }^{\dagger}$ Typical values for all except supply voltage sensitivity are at $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}$, and all are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 4. Refer to the operating sequence diagram.
5. For clock frequencies other than $640 \mathrm{kHz}, \mathrm{t}_{\mathrm{d}}(E O \mathrm{C})$ maximum is 8 clock periods plus $2 \mu \mathrm{~s}$.
6. Supply voltage sensitivity relates to the ability of an analog-to-digital converter to maintain accuracy as the supply voltage varies. The supply and $V_{\text {ref }}+$ are varied together and the change in accuracy is measured with respect to full-scale.
7. Linearity error is the maximum deviation from a straight line through the end points of the A/D transfer characteristic.

8 Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
9. Total unadjusted error is the maximum sum of linearity error, zero error, and full-scale error

PRINCIPLES OF OPERATION

The ADC0808 and ADC0809 each consists of an analog signal multiplexer, an 8 -bit successiveapproximation converter, and related control and output circuitry.

multiplexer

The analog multiplexer selects 1 of 8 single-ended input channels as determined by the address decoder. Address load control loads the address code into the decoder on a low-to-high transition. The output latch is reset by the positive-going edge of the start pulse. Sampling also starts with the positive-going edge of the start pulse and lasts for 32 clock periods. The conversion process may be interrupted by a new start pulse before the end of 64 clock periods. The previous data will be lost if a new start of conversion occurs before the 64th clock pulse. Continuous conversion may be accomplished by connecting the End-of-Conversion output to the start input. If used in this mode an external pulse should be applied after power up to assure start up.

converter

The CMOS threshold detector in the successive-approximation conversion system determines each bit by examining the charge on a series of binary-weighted capacitors (Figure 1). In the first phase of the conversion process, the analog input is sampled by closing switch S_{C} and all S_{T} switches, and by simultaneously charging all the capacitors to the input voltage.

In the next phase of the conversion process, all S_{T} and S_{C} switches are opened and the threshold detector begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference voltage. In the switching sequence, all eight capacitors are examined separately until all 8 bits are identified, and then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector looks at the first capacitor (weight $=128$). Node 128 of this capacitor is switched to the reference voltage, and the equivalent nodes of all the other capacitors on the ladder are switched to REF - . If the voltage at the summing node is greater than the trip-point of the threshold detector lapproximately onehalf the $V_{C C}$ voltage), a bit is placed in the output register, and the 128 -weight capacitor is switched to REF - . If the voltage at the summing node is less than the trip point of the threshold detector, this 128 -weight capacitor remains connected to REF + through the remainder of the capacitor-sampling lbitcounting) process. The process is repeated for the 64 -weight capacitor, the 32 -weight capacitor, and so forth down the line, until all bits are counted.

With each step of the capacitor-sampling process, the initial charge is redistributed among the capacitors. The conversion process is successive approximation, but relies on charge redistribution rather than a successive-approximation register (and reference DAC) to count and weigh the bits from MSB to LSB.

FIGURE 1. SIMPLIFIED MODEL OF THE SUCCESSIVE-APPROXIMATION SYSTEM

- Total Unadjusted Error . . . ± 0.75 LSB Max
- Resolution of 8 Bits
- $100 \mu \mathrm{~s}$ Conversion Time
- Ratiometric Conversion
- Monotonous Over the Entire A/D Conversion Range
- No Missing Codes
- Easy Interface with Microprocessors
- Latched 3-State Outputs
- Latched Address Inputs
- Single 5-Volt Supply
- Low Power Consumption
- Designed to be Interchangeable with National Semiconductor ADC0808CJ

description

The ADC0808M is a monolithic CMOS device with an 8-channel multiplexer, an 8-bit analog-to-digital (A/D) converter, and microprocessorcompatible control logic. The 8 -channel multiplexer can be controlled by a microprocessor through a 3-bit address decoder with address load to select any one of eight singleended analog switches connected directly to the comparator. The 8-bit A/D converter uses the successive-approximation conversion technique featuring a high-impedance threshold detector, a switched capacitor array, a sample-and-hold, and a successive-approximation register (SAR). Detailed information on interfacing to most popular microprocessors is readily available from the factory.
The comparison and converting methods used eliminate the possibility of missing codes, nonmonotonicity, and the need for zero or full-scale adjustment. Also featured are latched 3-state outputs from the SAR and latched inputs to the multiplexer address decoder. The single 5 -volt supply and low power requirements make the ADCO808M especially useful for a wide variety of applications. Ratiometric conversion is made possible by access to the reference voltage input terminals.
The ADC0808M is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

ADC0808M
 CMOS ANALOG-TO-DIGITAL CONVERTER WITH 8-CHANNEL MULTIPLEXER

functional block diagram (positive logic)

MULTIPLEXER FUNCTION TABLE

INPUTS				SELECTED ANALOG CHANNEL
ADDRESS			ADDRESS	
C	B	A	STROBE	
L	L	L		0
L	L	11	-	1
L	H	1	*	2
L	H	H	-	3
H	L	L	-	4
H	L	H	1	5
H	H	L	,	0
H	H	11	;	7

$H=$ high level, $L=$ low level
Io \because to huy tratisution
operating sequence

ADC0808M
 CMOS ANALOG-TO-DIGITAL CONVERTER
 WITH 8.CHANNEL MULTIPLEXER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $\mathrm{VCC}_{\mathrm{CC}}$ (see Note 1) . 6.5 V
Input voltage range: control inputs . -0.3 to 15 V
all other inputs . -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating free-air temperature range . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package . $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
NOTE 1: All voltage values are with respect to network ground terminal.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}	4.5	5	6	V
Positive reference voltage, $\mathrm{V}_{\text {ref }}+$ (see Note 21		V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Negative reference voltage, $V_{\text {ref }}$ -		0	-0.1	V
Differential reference voltage, $V_{\text {ref }+}-V_{\text {ref }}$		5		V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}-1.5$			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			1.5	V
Start pulse duration, ${ }_{\text {w }}$ (S)	-			ns
Address load control pulse duration, $\mathrm{t}_{\text {w }}(\mathrm{ALC})$				ns
Address setup time, $\mathrm{t}_{\text {su }}$	50			ns
Address hold time, th	50			ns
Clock frequency, flock	10	640	1280	kHz
Operating free-air temperature, T_{A}	-55		125	${ }^{\circ} \mathrm{C}$

NOTE 2: Care must be taken that this rating is observed even during power-up
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$ to 5.5 V (unless otherwise noted)
total device

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\text {+ }}$	MAX	UNIT
V_{OH}	High-level output voltage		$\mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.4$			V
V_{OL}	Low-level output voltage	Data outputs	$\mathrm{I}_{0}=1.6 \mathrm{~mA}$			0.45	V
		End of conversion	$\mathrm{l}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	
102	Off-state (high-impedance-state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$			3	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=0$			-3	
1	Control input current at maximum input voltage		$\mathrm{V}_{1}=15 \mathrm{~V}$			1	$\mu \mathrm{A}$
IIL	Low-level control input current		$\mathrm{V}_{1}=0$			-1	$\mu \mathrm{A}$
ICC	Supply current		$\mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$		0.3	3	mA
C_{i}	Input capacitance, control inputs		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		pF
C_{0}	Output capacitance, data outputs		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		pF
	Resistance from pin 12 to pin 16						k Ω

analog multiplexer

PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
Channel on-state current (see Note 3)	$V_{1}=V_{\text {CC }}$.	${ }^{\text {f clock }}$ = 640 kHz			2	$\mu \mathrm{A}$
	$\mathrm{V}_{1}=0$,	${ }^{\text {c }}$ clock $=640 \mathrm{kHz}$			-2	
Channel off-state current	$V_{C C}=5 V_{\text {, }}$	$\mathrm{V}_{1}=5 \mathrm{~V}$		10	200	nA
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{1}=0$		-10	-200	
	$V_{C C}=5 \mathrm{~V}$	$\mathrm{V}_{1}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=0$			-1	

${ }^{\dagger}$ Typical values are at $V_{C C}-5 \mathrm{~V}$ and $T_{A}-25^{\circ} \mathrm{C}$
NOTE 3: Channel on-state current is primarily due to the bias current into or out of the inreshold detector, and it varies directly with clock frequency.
timing characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{ref}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}-=0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	116	UNIT
$\mathrm{f}_{\text {clock }}$	Clock frequency		10	640		kHz
${ }^{\text {t conv }}$	Conversion time	See Notes 4 and 5 and Figure 1	90	100		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{en}} \mathrm{H}$	Enable time, high	See Figure 1		150		ns
$\mathrm{t}_{\mathrm{enL}}$	Enable time, low	See Figure 1		90		ns
$t_{\text {dis }}$	Output disable time	See Figure 1		200	405	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{s})}$	Pulse duration, START		200			ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{ALE})$	Pulse duration, ALE		200			ns
$\mathrm{t}_{\text {Su }}$	Setup time,		50			ns
th	Hold time, A		50			ns
$t_{\text {d (EOC) }}$	Delay time, EOC	See Notes 4 and 6 and Figure 1	\bigcirc		14.5	$\mu \mathrm{s}$

NOTES. 4. Refer to the operating sequence diagram.
5. For clock frequencies other than $640 \mathrm{kHz}, \mathrm{t}_{\text {conv }}$ is 57 clock cycles minimum and 74 clock cycles maximum.
6. For clock frequencies other than $640 \mathrm{kHz}, \mathrm{t}_{\mathrm{d}(E O C)}$ maximum is 8 clock cycles plus $2 \mu \mathrm{~s}$.

ADC0808M
 CMOS ANALOG-TO-DIGITAL CONVERTER
 WITH 8-CHANNEL MULTIPLEXER

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}+=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\dagger}$	MAX	UNIT
kSVS	Supply voltage sensitivity	$\begin{aligned} & V_{C C}=V_{\text {ref }}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}, \quad \text { See Note } 7 \end{aligned}$	± 0.05		\%/V
	Linearity error (see Note 8)		± 0.25		LSB
	Zero error (see Note 9)		± 0.25		LSB
Total unadjusted error (see Note 10)		$T_{A}=25^{\circ} \mathrm{C}$	± 0.25	± 0.5	LSB
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		± 0.75	

${ }^{\dagger}$ Typical values for all except supply voltage sensitivity are at $V_{C C}=5 \mathrm{~V}$, and all are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 7. Supply voltage sensitivity relates to the ability of an analog-to-digital converter to mantain accuracy as the supply voltage varies. The supply and $V_{\text {ref }}+$ are varied together and the change in accuracy is measured with respect to full-scale.
8. Linearity error is the maximum deviation from a straight line through the end points of the A / D transfer characteristic.
9. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
10. Total unadjusted error is the maximum sum of linearity error, zero error, and full-scale error.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TEST CIRCUIT

PRINCIPLES OF OPERATION

The ADC0808M consists of an analog signal multiplexer, an 8 -bit successive-approximation converter, and related control and output circuitry.

multiplexer

The analog multiplexer selects 1 of 8 single-ended input channels as determined by the address decoder, Address load control loads the address code into the decoder on a low-to-high transition. The output latch is reset by the positive-going edge of the start pulse. Sampling also starts with the positive-going edge of the start pulse and lasts for 32 clock periods. The conversion process may be interrupted by a new start pulse before the end of 64 clock periods. The previous data will be lost if a new start of conversion occurs before the 64th clock pulse. Continuous conversion may be accomplished by connecting the End-of-Conversion output to the start input. If used in this mode an external pulse should be applied after power up to assure start up.

converter

The CMOS threshold detector in the successive-approximation conversion system determines each bit by examining the charge on a series of binary-weighted capacitors (Figure 2). In the first phase of the conversion process, the analog input is sampled by closing switch S_{C} and all S_{T} switches, and by simultaneously charging all the capacitors to the input voltage.

In the next phase of the conversion process, all S_{T} and S_{C} switches are opened and the threshold detector begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference voltage. In the switching sequence, all eight capacitors are examined separately until all 8 bits are identified, and then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector looks at the first capacitor (weight $=128$). Node 128 of this capacitor is switched to the reference voltage, and the equivalent nodes of all the other capacitors on the ladder are switched to REF - . If the voltage at the summing node is greater than the trip-point of the threshold detector (approximately onehalf the VCC voltagel, a bit is placed in the output register, and the 128 -weight capacitor is switched to REF - . If the voltage at the summing node is less than the trip point of the threshold detector, this 128-weight capacitor remains connected to REF + through the remainder of the capacitor-sampling (bitcounting) process. The process is repeated for the 64 -weight capacitor, the 32 -weight capacitor, and so forth down the line, until all bits are counted.

With each step of the capacitor-sampling process, the initial charge is redistributed among the capacitors. The conversion process is successive approximation, but relies on charge redistribution rather than a successive-approximation register (and reference DAC) to count and weigh the bits from MSB to LSB.

FIGURE 2. SIMPLIFIED MODEL OF THE SUCCESSIVE-APPROXIMATION SYSTEM
stazus ereg N

D2795. AUGUST 1985-REVISED JUNE 1986

- 8-Bit Resolution
- Easy Microprocessor Interface or StandAlone Operation
- Operates Ratiometrically or with 5-V Reference
- Single Channel or Multiplexed Twin Channels with Single-Ended or Differential Input Options
- Input Range 0 to 5 V with Single 5-V Supply
- Inputs and Outputs are Compatible with TTL and MOS
- Conversion Time of $32 \mu \mathrm{~s}$ at CLK $=250 \mathrm{kHz}$
- Designed to be Interchangeable with National Semiconductor ADC0831 and ADC0832

ADC0831 ... P DUAL-IN-LINE PACKAGE
(TOP VIEW)

ADC0832 . . P DUAL-IN-LINE PACKAGE (TOP VIEW)

description
These devices are 8 -bit successive-approximation analog-to-digital converters. The ADC0831A and ADC0831B have single input channels; the ADC0832A and ADC0832B have multiplexed twin input channels. The serial output is configured to interface with standard shift registers or microprocessors. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

The ADCO832 multiplexer is software configured for single-ended or differential inputs. The differential analog voltage input allows for common-mode rejection or offset of the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

The operation of the ADC0831 and ADC0832 devices is very similar to the more complex ADC0834 and ADC0838 devices. Ratiometric conversion can be attained by setting the REF input equal to the maximum analog input signal value, which gives the highest possible conversion resolution. Typically, REF is set equal to $V_{C C}$ (done internally on the ADCO832). For more detail on the operation of the ADC0831 and ADC0832 devices, refer to the ADC0834/ADC0838 data sheet.
 to $85^{\circ} \mathrm{C}$. The $\mathrm{ADCO831AC}, \mathrm{ADC0831BC}, ~ A D C 0832 \mathrm{AC}$, and ADC0832BC are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

functional block diagram

sequence of operation

ADC0832 MUX ADDRESS CONTROL LOGIC TABLE

MUX ADDRESS		CHANNEL. NUMBER	
SGL/DIF	ODD/EVEN	0	1
L	L	+	-
L	H	-	+
H	L		+
H	H		+

$H=$ high level, $L=$ low level, - or $+=$ polarity of selected input pin

ADC0831A, ADC0832A, ADC0831B, ADC0832B

A/D PERIPHERALS WITH SERIAL CONTROL
absolute maximum ratings over recommended operating free-air temperature range (unless otherwise noted)

$$
\text { Supply voltage, VCC (see Note 1) . } 6.5 \text { V }
$$

Input voltage range: Logic ... -0.3 V to 15 V
Analog . $-0.3 \vee$ to $\mathrm{VCC}+0.3 \mathrm{~V}$
Input current
$\pm 5 \mathrm{~mA}$
Total input current for package . $\pm 20 \mathrm{~mA}$
Operating free-air temperature range: I-suffix . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
C-suffix . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds
$260^{\circ} \mathrm{C}$
NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.
recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	6.3	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
$\mathrm{f}_{\text {clock }}$	Clock frequency		10		400	kHz
	Clock duty cycle (see Note 2)		40		60	\%
$t_{\text {whics }}$	Pulse duration, $\overline{\mathrm{CS}}$ high					ns
$t_{\text {su }}$	Setup time, ट्र low or ADC0832 data valid before clock \uparrow					ns
th	Hold time, ADC0832 data valid after clock \dagger		90			ns
${ }^{\text {T }}$ A	Operating free-air temperature	1-suffix	-40		85	${ }^{\circ} \mathrm{C}$
		C-suffix	0		70	

NOTE 2: The clock duty cycle range ensures proper operation at all clock frequencies. If a clock frequency is used outside the recommended duty cycle range, the minimum pulse duration (high or low) is $1 \mu \mathrm{~s}$.
electrical characteristics over recommended range of operating free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,
$\mathrm{f}_{\text {clock }}=250 \mathrm{kHz}$ (unless otherwise noted)

digital section

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$		1 SUFFIX			C SUFFIX			UNIT		
		MIN	TYP ${ }^{\ddagger}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX					
VOH	High-level output voltage			$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$	$1 \mathrm{OH}=-360 \mu \mathrm{~A}$	2.4			2.8			V
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$	$1 \mathrm{OH}=-10 \mu \mathrm{~A}$	4.5			4.6					
VOL	Low-level output voltage	$V_{C C}=4.75 \mathrm{~V}$	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	0.4			0.34			V		
${ }_{4}$	High-level input current	$\mathrm{V}_{1 H}=5 \mathrm{~V}$			0.005	1	0.005		1	$\mu \mathrm{A}$		
IIL	Low-level input current	$V_{\text {IL }}=0$		-0.005		- 1	-0.005		-1	$\mu \mathrm{A}$		
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output (source) current	$V_{O H}=V_{\text {O }}$.	$T_{A}=25^{\circ} \mathrm{C}$	-6.5	-14		-6.5	-14		mA		
${ }^{1} \mathrm{OL}$	Low-level output (sink) current	$\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\text {CC }}$.	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	16		8	16		mA		
Ioz	High-impedancestate output current (DO)	$\mathrm{v}_{0}=5 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.01	3		0.01	3	$\mu \mathrm{A}$		
		$\mathrm{v}_{\mathrm{O}}=0$,	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-0.01	-3		-0.01	-3			
C_{i}	Input capacitance			5			5			pF		
C_{0}	Output capacitance			5			5			pF		

[^3]electrical characteristics over recommended range of operating free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. $f_{\text {clock }}=250 \mathrm{kHz}$ (unless otherwise noted)
analog and converter section

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP ${ }^{\ddagger}$	Max	UNIT
VICR	Common-mode input voltage range		See Note 3	$\begin{gathered} -005 \\ \text { to } \\ v_{\mathrm{CC}}+0.05 \end{gathered}$			V
II(stdby)	Standby input current (see Note 4)	On-channel	$\mathrm{V}_{1}=5 \mathrm{~V}$ at on-channel,			1	$\mu \mathrm{A}$
		Off-channel	$\mathrm{V}_{1}=0$ at off-channel			-1	
		On-channel	$\mathrm{V}_{1}=0$ at on-channel,			-1	
		Off-channel	$\mathrm{V}_{1}=5 \mathrm{~V}$ at off-channel			1	
fi(REF)	Input resistance to reference ladder			1.3	2.4	5.9	k Ω

total device

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
ICC		ADC0831			1	2.5	mA
	Supply current	ADC0832			3	5.2	

${ }^{\dagger}$ All parameters are measured under open-loop conditions with zero common-mode input voltage.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 3. If channel IN - is more positive than channel $\operatorname{IN}+$, the digital output code will be 00000000 . Connected to each analog input are two on-chip diodes that will conduct forward current for analog input voltages one diode drop above $V_{C C}$. Care must be taken during testing at low $V_{C C}$ levels $(4.5 \mathrm{~V}$) because high-level analog input voltage (5 V) can, especially at high temperatures, cause this input diode to conduct and cause errors for analog inputs that are near full-scale. As long as the analog voltage does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range requires a minimum V_{CC} of 4.95 V for all variations of temperature and load.
4. Standby input currents are currents going into or out of the on or off channels when the A / D converter is not performing conversion and the clock is in a high or low steady-state condition.
operating characteristics $V_{C C}=R E F=5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=250 \mathrm{kHz}, \mathrm{tr}_{\mathrm{r}}=\mathrm{tf}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\text {\$ }}$	BI, BC SUFFIX			AI. AC SUFFIX			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
Supply-voltage variation error				$V_{C C}=475 \mathrm{~V}$ to 5.25 V		± 1116	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	L\$B
Total unadjusted error (see Note 5)			$\begin{aligned} & V_{\text {ref }}=5 \mathrm{~V} \\ & T_{\text {A }}=\text { MIN to MAX } \end{aligned}$			$\pm 1 / 2$			± 1	LSB	
Common-mode error			Differential mode		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB	
Propagation delay time, tpd output data after CLK! (see Note 6)		MSB-first data	$C_{L}=100 \mathrm{pF}$		650	1500		650	1500	ns	
		LSB-first data			250	600		250	600		
Output disable time. idns DO after $\overrightarrow{C S}$.			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k!}! \end{aligned}$		125	250		125	250	ns	
			$\begin{array}{\|ll} \hline \mathrm{C}_{\mathrm{L}} & 100 \mathrm{~m} \\ \mathrm{R}_{\mathrm{L}} & 210 \\ \hline \end{array}$			500			500		
Conversion time imultiplexer ${ }^{\mathrm{t}}$ conv addressing time not included)						8			8	clock periods	

[^4]

FIGURE 2. DATA OUTPUT TIMING

FIGURE 1. ADC0832 DATA INPUT TIMING

LOAD CIRCUIT

NOTE $A: C_{L}$ includes probe and jig capacitance.

FIGURE 3. OUTPUT DISABLE TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

FIGURE 10

- 8-Bit Resolution
- Easy Microprocessor Interface or StandAlone Operation
- Operates Ratiometrically or with 5-V Reference
- 4- or 8-Channel Multiplexer Options with Address Logic
- Shunt Regulator Allows Operation with High-Voltage Supplies
- Input Range 0 to 5 V with Single 5-V Supply
- Remote Operation with Serial Data Link
- Inputs and Outputs are Compatible with TTL and MOS
- Conversion Time of $32 \mu \mathrm{~s}$ at $\mathrm{f}_{\text {clock }}=250 \mathrm{kHz}$
- Designed to be Interchangeable with National Semiconductor ADC0834 and ADC0838

DEVICE	TOTAL $\quad \therefore$) JUSTFD LFM, i!	
	A SU1:	B \because : $\boldsymbol{\square}$
ADC0834	± 1 LSB	$\pm \ldots$. ,
ADC0838	± 1 LSB	$\pm 1 / 2 \mathrm{LSB}$

description

These devices are 8 -bit successiveapproximation analog-to-digital converters, each with an input-configurable multichannel multiplexer and serial input/output. The serial input/output is configured to interface with standard shift registers or microprocessors. Detailed information on interfacing with most popular microprocessors is readily available from the factory.

The ADC0834 (4-channel) and ADC0838 (8-channel) multiplexer is software configured for single-ended or differential inputs as well as pseudo-differential input assignments. The differential analog voltage input allows for common-mode rejection or offset of the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

ADC0838 . . . N PACKAGE (TOP VIEW)

ADCOB38 . . . FN PACKAGE (TOP VIEW)

The ADC0834AI, ADC0834BI, ADC0838AI, and ADC0838BI are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The ADC0834AC, ADC0834BC, ADC0838AC, and ADC0838BC are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

[^5]

NOTE A: For the ADCO834, DI is input directly to the D input of SELECT 1; SELECT 0 is forced to a high.

functional description

The ADC0834 and ADC0838 use a sample data comparator structure that converts differential analog inputs by a successive-approximation routine. Operation of both devices is similar with the exception of a select enable ($\overline{\mathrm{SE}}$) input, an analog common input, and multiplexer addressing. The input voltage to be converted is applied to a channel terminal and is compared to ground (single-ended), to an adjacent input (differential), or to a common terminal (pseudo-differential) that can be an arbitrary voltage. The input terminals are assigned a positive (+) or negative (-) polarity. If the signal input applied to the assigned positive terminal is less than the signal on the negative terminal, the converter output is all zeros.

Channel selection and input configuration are under software control using a serial data link from the controlling processor. A serial communication format allows more functions to be included in a converter package with no increase in size. In addition, it eliminates the transmission of low-level analog signals by locating the converter at the analog sensor and communicating serially with the controlling processor. This process returns noise-free digital data to the processor.
A particular input configuration is assigned during the multiplexer addressing sequence. The multiplexer address is shifted into the converter through the data input (DI) line. The multiplexer address selects the analog inputs to be enabled and determines whether the input is single-ended or differential. When the input is differential, the polarity of the channel input is assigned. Differential inputs are assigned to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a differential pair. These channels cannot act differentially with any other channel. In addition to selecting the differential mode, the polarity may also be selected. Either channel of the channel pair may be designated as the negative or positive input.

The common input on the ADC0838 can be used for a pseudo-differential input. In this mode, the voltage on the common input is considered to be the negative differential input for all channel inputs. This voltage can be any reference potential common to all channel inputs. Each channel input can then be selected as the positive differential input. This feature is useful when all analog circuits are biased to a potential other than ground.
A conversion is initiated by setting the chip select ($\overline{\mathrm{CS}}$) input low, which enables all logic circuits. The $\overline{\mathrm{CS}}$ input must be held low for the complete conversion process. A clock input is then received from the processor. On each low-to-high transition of the clock input, the data on the DI input is clocked into the multiplexer address shift register. The first logic high on the input is the start bit. A 3-to 4 -bit assignment word follows the start bit. On each successive low-to-high transition of the clock input, the start bit and assignment word are shifted through the shift register. When the start bit is shifted into the start location of the multiplexer register, the input channel is selected and conversion starts. The SAR Status output (SARS) goes high to indicate that a conversion is in progress, and the DI input to the multiplexer shift register is disabled the duration of the conversion.

An interval of one clock period is automatically inserted to allow the selected multiplexed channel to settle. The data output DO comes out of the high-impedance state and provides a leading low for this one clock period of multiplexer settling time. The SAR comparator compares successive outputs from the resistive ladder with the incoming analog signal. The comparator output indicates whether the analog input is greater than or less than the resistive ladder output. As the conversion proceeds, conversion data is simultaneously output from the DO output pin, with the most significant bit (MSB) first.
After eight clock periods the conversion is complete and the SAR Status (SARS) output goes low.
The ADC0834 outputs the least-significant-bit-first data after the MSB-first data stream. If the shift enable $(\overline{\mathrm{SE}})$ line is held high on the ADCO838, the value of the least significant bit (LSB) will remain on the data line. When $\overline{\mathrm{SE}}$ is forced low, the data is then clocked out as LSB-first data. (To output LSB first, the $\overline{\mathrm{SE}}$ control input must first go low, then the data stored in the 9-bit shift register outputs LSB first.) When $\overline{\mathrm{CS}}$ goes high, all internal registers are cleared. At this time the output circuits go to the high-impedance state. If another conversion is desired, the $\overline{\mathrm{CS}}$ line must make a high-to-low transition followed by address information.

functional description (continued)

The DI and DO pins can be tied together and controlled by a bidirectional processor I/O bit received on a single wire. This is possible because the D input is only examined during the multiplexer addressing interval and the DO output is still in a high-impedance state.
Detailed information on interfacing to most popular microprocessors is readily available from the factory.
sequence of operation

ADC0834 mUX ADDRESS CONTROL LOGIC TABLE

MUX Ar: 11.						
SGL/DIF	ODE	SELECT BIT 1	\checkmark	i	2	s
L	L	L	$+$	-		
L	L	H			+	-
L.	H	L.	-	+		
L	H	H			-	$+$
H	L	L	+			
H	L	H			+	
H	H	L		$+$		
H	H	H				$+$

$H=$ high level, $L=$ low level, - or $+=$ polarity of selected input pin

sequence of operation

ADC0838 MUX ADDRESS CONTROL LOGIC TABLE

MUX ADDRESS				SELECTED CHANNEL NUMBER								COM
SGLIFIF	ODD/EVEN	SELECT		0		1		2		3		
SGL/DF		1	0	0	1	2	3	4	5	6	7	
L	L	L	L	+	-							
L	L	L	H				-					
L	L	H	L					t				
L	L	H	H							$+$	-	
L	H	L	L		$!$							
L	H	L	H				,					
1	H	H	L					i				
L	H	H	H							-	;	
H	L	L	L	+								-
H	L		H			'						-
H	L	H	L					-				-
H	L	H	H							$+$		-
H	H	L	L		$+$							-
H	H	L	H				-					
H	H	H	L						\#			-
H	H	H	H								+	-

$H=$ high level, $L=$ low level, - or $+=$ polarity of selected input

absolute maximum ratings over recommended operating free-air temperature range (unless otherwise noted)

> Supply voltage, $V_{C C}$ (see Notes 1 and 2) . 6.5 V
> Input voltage range: Logic . - 0.3 V to 15 V
> Analog . -0.3 V to VCC +0.3 V
> Input current: $V+$ input . 15 mA
> Any other input . $\pm 5 \mathrm{~mA}$
> Total input current for package . $\pm 20 \mathrm{~mA}$
> Operating free-air temperature range: Al and Bl suffixes $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
> AC and $B C$ suffixes . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> Case temperature for 10 seconds: FN package . $260^{\circ} \mathrm{C}$
> Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.
2. Internal zener diodes are connected from the $V_{C C}$ input to ground and from the $V+$ input to ground. The breakdown voltage of each zener diode is approximately 7 V . One zener diode can be used as a shunt regulator and connects to $\mathrm{V}_{\mathrm{C}} \mathrm{C}$ through a regular diode. When the voltage regulator powers the converter, this zener and regular diode combination ensures that the $V_{C C}$ input $(6.4 \mathrm{~V})$ is less than the zener breakdown voltage. A series resistor is recommended to limit current into the $V+$ input.
recommended operating conditions

			MIN	NOM	MAX	UNIT
$V_{C C}$	Supply voltage		4.5	5	6.3	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			V
$V_{\text {IL }}$	Low-level input voltage				0.8	V
${ }^{\text {f clock }}$	Clock frequency		10		400	kHz
	Clock duty cycle (see Note 3)		40		60	\%
${ }_{\text {w }}$ (HICS)	Pulse duration, $\overline{\mathrm{CS}}$ high		220			ns
${ }_{\text {t }}^{\text {Su }}$	Setup time, $\overline{\mathrm{CS}}$ low. $\overline{\mathrm{SE}}$ low, or data valid before clock \uparrow		350			ns
th	Hold time, data valid after clock \uparrow		90			ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	Al and BI suffixes	-40		85	${ }^{\circ} \mathrm{C}$
		$A C$ and $B C$ suffixes	0		70	${ }^{\circ}$

NOTE 3: The clock duty cycle range ensures proper operation at all clock frequencies if a clock frequency is used outside the recommended duty cycle range, the minimum pulse duration (high or low) is $1 \mu \mathrm{~s}$.
electrical characteristics over recommended range of operating free-air temperature, $V_{C C}=V_{+}=5 \mathrm{~V}, f_{\text {clock }}=250 \mathrm{kHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	AI, BI SUFFIX		AC, BC SUFFIX		UNIT	
		MIN TYP ${ }^{\ddagger}$	MAX	MIN TYPF	MAX			
VOH	High-level output voltage		$V_{C C}=4.75 \mathrm{~V}_{1} \quad \mathrm{I}_{\mathrm{OH}}=-360 \mu \mathrm{~A}$	2.4		28		V
		$V_{C C}=4.75 \mathrm{~V}, \quad 1 \mathrm{OH}=-10 \mu \mathrm{~A}$	4.5		4.6			
V_{OL}	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{l}^{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.4		0.34	V	
${ }_{1}$	High-level input current	$\mathrm{V}_{\mathrm{JH}}=5 \mathrm{~V}$	0.005	1	0.005	1	$\mu \mathrm{A}$	
$I_{\text {IL }}$	Low-level input current	$\mathrm{V}_{\mathrm{IL}}=0$	-0.005	-1	-0.005	-1	$\mu \mathrm{A}$	
${ }^{1} \mathrm{OH}$	High-level output (source) current	$V_{O H}=0, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-6.5-14		$-6.5-14$		mA	
${ }^{1} \mathrm{OL}$	Low-level output (sink) current	$V_{O L}=V_{C C} . \quad T_{A}=25^{\circ} \mathrm{C}$	$8 \quad 16$		$8 \quad 16$		mA	
107	High-impedance-state output	$V_{O}=5 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$	0.01	3	0.01	3	4	
${ }^{\circ} \mathrm{OZ}$	current (DO or SARS)	$V_{O}=0, \quad T_{A}=25^{\circ} \mathrm{C}$	-0.01	-3	-0.01	-3		
C_{i}	input capacitance		5		5		pF	
C_{0}	Output capacitance		5		5		pF	

\dagger All parameters are measured under open-loop conditions with zero common-mode input voltage (unless otherwise specified.
*All typleal values are at VCC V. $5 \mathrm{~V} . T_{A} 25^{\circ} \mathrm{C}$
electrical characteristics over recommended range of operating free-air temperature, $\mathrm{VCC}_{\mathrm{C}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=250 \mathrm{kHz}$ (unless otherwise noted)
analog and converter section

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	MiN	TYP ${ }^{\ddagger}$	MAX	UNIT
VICR Common-mode input voltage range			See Note 4	$\begin{gathered} -0.05 \\ \text { to } \end{gathered}$			V
'Ilstdby)	Standby input current (see Note 5)	On-channel	$\begin{aligned} & V_{1}=5 V \text { at on-channel, } \\ & V_{1}=0 \text { at off-channel } \end{aligned}$	$1 \quad 1$			A
		Off-channel					
		On-channel	$V_{1}=0$ at on-channel, $V_{1}=5 \mathrm{~V}$ at off-channel			-1	
		Off-channel				1	
$r_{\text {i }}$ (ref)	Input resistance to reterence ladder			1.3	2.4	5.9	k Ω

total device

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	MIN	TYP ${ }^{\ddagger}$ MAX	UNIT
V_{Z}	Internal zener diode breakdown voltage	$1 /=15 \mathrm{~mA}$ at $\mathrm{V}+$ pin, See Note 2	6.3	7
I_{CC}	Supply current		8.5	V

${ }^{\dagger}$ All parameters are measured under open-loop conditions with zero common-mode input voltage.
\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. Internal zener diodes are connected from the V_{CC} input to ground and from the $\mathrm{V}+\mathrm{input}$ to ground. The breakdown voltage of each zener diode is approximately 7 V . One zener diode can be used as a shunt regulator and connects to V_{CC} through a regular diode. When the voltage regulator powers the converter, this zener and regular diode combination ensures that the $V_{C C}$ input (6.4 V) is less than the zener breakdown voltage. A series resistor is recommended to limit current into the $\mathrm{V}+$ input.
4. If channel IN - is more positive than channel $\operatorname{IN}+$, the digital output code will be 00000000 . Connected to each analog input are two on-chip diodes that conduct forward current for analog input voltages one diode drop above VCC. Care must be taken during testing at low V_{CC} levels (4.5 V) because high-level analog input voltage (5 V) can, especially at high temperatures, cause this input diode to conduct and cause errors for analog inputs that are near full-scale. As long as the analog voltage does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 \checkmark input voltage range requires a minimum $V_{C C}$ of 4.950 V for all variations of temperature and load.
5. Standby input currents are currents going into or out of the on or off channels when the A / D converter is not performing conversion and the clock is in a high or low steady-state condition.
operating characteristics $V+=V_{C C}=5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=250 \mathrm{kHz}, \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS ${ }^{\dagger}$	BI, BC SUFFIX			AI. AC SUFFIX			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX			
Supply-voltage variation error				$\mathrm{V}_{C C}=4.75 \mathrm{~V}$ to 5.25 V		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB
Total unadjusted error (see Note 6)			$\begin{aligned} & V_{\text {ref }}=5 \mathrm{~V} \\ & T_{A}=\mathrm{MIN} \text { to MAX } \end{aligned}$			$\pm 1 / 2$			± 1	LSB	
Common-mode error			Differential mode		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB	
Change in zero-error from $V_{C C}=5 \mathrm{~V}$ to internal zener diode operation (see Note 2)			$I_{I}=15 \mathrm{~mA}$ at $V+$ pin, $V_{\text {ref }}=5 \mathrm{~V}, V_{\text {CC }}$ open			1			1	LSE	
$t_{\text {pd }}$	Propagation delay time,	MSB-first data	$C_{L}=100 \mathrm{pF}$		650	1500		650	1500		
	(see Note 7)	LSB-first data			250	600		250	600		
${ }^{1}$ dis	Output disable time, DO or SARS after CS \uparrow		$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		125	250		125	250	ns	
			$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$			500			500		
$\mathrm{t}_{\text {conv }}$	Conversion time (multipl addressing time not incl	exer uded)				8			8	clock periods	

${ }^{\dagger}$ All parameters are measured under open-loop conditions with zero common-mode input voltage. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
NOTES: 2. Internal zener diodes are connected from the $V_{C C}$ input to ground and from the $V+$ input to ground. The breakdown voltage of each zener diode is approximately 7 V . One zener diode can be used as a shunt regulator and connects to $V_{C C}$ through a regular diode. When the voltage regulator powers the converter, this zener and regular diode combination ensures that the $V_{C C}$ input $(6.4 V)$ is less than the zener breakdown voltage. A series resistor is recommended to limit current into the $V+$ input.
6. Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
7. The most significant bit (MSB) data is output directly from the comparator and therefore requires additional delay to allow for comparator response time.

FIGURE 1. DATA INPUT TIMING

FIGURE 2. DATA OUTPUT TIMING

NOTE A. C_{L} inciudes prove and ng capactance
FIGURE 3. OUTPUT DISABLE TIME TEST CIRCUIT AND VOLTAGE WAVEFORMS

TYPICAL CHARACTERISTICS

FIGURE 4

LINEARITYERROR
VS
FREE-AIR TEMPERATURE

FIGURE 6

LINEARITY ERROR
VS
REFERENCE VOLTAGE

FIGURE 5

LINEARITYERROR
vs
CLOCK FREQUENCY

FIGURE 7

TYPICAL CHARACTERISTICS

SUPPLY CURRENT
vS
FREE-AIR TEMPERATURE

2
0
0
0
0
0
0
0
0
0

FIGURE 8

SUPPLY CURRENT
VS
CLOCK FREOUENCY

FIGURE 9

OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE

FIGURE 10

- Advanced LinCMOS ${ }^{\text {™ }}$ Technology

- Zero Reading for O-V Input
- Precision Null Detection with True Polarity at Zero
- 1-pA Typical Input Current
- True Differential Input
- Multiplexed Binary-Coded-Decimal Output
- Low Rollover Error: ± 1 Count Maximum
- Control Signais Allow Interfacing with UARTs or Microprocessors
- Autoranging Capability with Over- and Under-Range Signals
- TTL-Compatible Outputs
- Direct Replacement for Teledyne TSC7135, Intersil ICL7135, Maxim ICL7135, and Siliconix Si7135

description

The ICL7135C and TLC7135C converters are manufactured with Texas Instruments highly efficient Advanced LinCMOS ${ }^{\text {™ }}$ technology. This $41 / 2$-digit dual-slope-integrating analog-todigital converter is designed to provide interfaces to both a microprocessor and a visual display. The digit-drive outputs D1 through D4 and multiplexed binary-coded-decimal outputs, B1 through B4, provide an interface for LED or LCD decoder/drivers as well as microprocessors.

The ICL7135C and TLC7135C offer 50-ppm (one part in 20,000) resolution with a maximum linearity error of one count. The zero error is less than $10 \mu \mathrm{~V}$ and zero drift is less than $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Source-impedance errors are minimized by low input current (less than 10 pA). Rollover error is limited to ± 1 count.

The BUSY, $\overline{\text { STROBE, RUN/HOLD, OVER-RANGE, }}$ and UNDER-RANGE control signals support microprocessor-based measurement systems.

N PACKAGE
(TOP VIEW)

fN PACKAGE
(TOP VIEW)

AVAILABLE OPTIONS ${ }^{\dagger}$

SYMBOLIZATION		OPERATING TEMPERATURE RANGE
DEVICE	PACKAGE SUFFIX	
ICL7135C	FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TLC7135C	FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

$\dagger_{\text {in many }}$ instances, these iCs may have ICL7135C and TLC7135C symbolization on the package.

The control signals also can support remote data acquisition systems with data transfer via universal asynchronous receiver transmitters (UARTs).
The ICL7135C and TLC7135C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Caution. This device has limited built-in gate protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage.

Advanced LinCMOS ${ }^{\text {T }}$ is a trademark of Texas Instruments Incorporated.
functional block diagram

ANALOG SECTION

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage ($V_{C C}+$ with respect to $V_{C C}-$)
Analog input voltage (pin 9 or pin 10) VCC - to VCC +
Reference voltage range VCC - to VCC +
Clock input voltage range 0 V to $\mathrm{V}_{\mathrm{CC}}+$
Operating free-air temperature range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC +	4	5	6	V
Supply voltage, VCC-	-3	-5	-8	V
Reference voltage, $\mathrm{V}_{\text {ref }}$		1		V
High-level input voltage, CLK, RUN/ $/$ HOLD,$V_{\text {IH }}$	2.8			V
: level input voltage, CLK, RUN/HOLD, $\mathrm{V}_{\text {IL }}$			0.8	V
rential input voltage, VID	$\mathrm{V}_{\text {CC }-}+1$		$\mathrm{V}_{\mathrm{CC}}+-0.5$	V
Maximum operating frequency, fclock [see Note II	1.2	2		MHz
Operating free-air temperature range, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

NOTE 1. Clock frequency range extends down to 0 Hz
electrical characteristics, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1 \mathrm{~V}, \mathrm{f}_{\text {clock }}=120 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
VOH	High-level output voltage	D1-D5, B1, B2, B4, B8	$\mathrm{I}_{0}=-1 \mathrm{~mA}$		2.4		5	V	
		Other outputs	$10=-10 \mu \mathrm{~A}$		4.9		5		
V_{OL}	Low-level output voltage		$10=1.6 \mathrm{~mA}$				0.4	V	
	Peak-to-peak output noise voltage (see Note 2)		$V_{l D}=0$,	Full Scale $=2 \mathrm{~V}$		15		$\mu \mathrm{V}$	
$\alpha \vee 0$	Zero-reading temperature coefficient of output voltage		$V_{\text {ID }}=0$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
1 IH	High-level input current		$V_{1}=5 V_{1}$	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$		0.1	10	$\mu \mathrm{A}$	
ILL	Low-level input current		$\mathrm{V}_{1}=0 \mathrm{~V}$,	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$		-0.02	-0.1	mA	
I	Input leakage current, pins 9 and 10		$V_{I D}=0$	$T_{A}=25^{\circ} \mathrm{C}$		1	10	p	
			$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$			250	p		
${ }^{1} \mathrm{CC}+$	Positive supply current			${ }^{\text {c }}$ clock $=0$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2	mA
			$0^{\circ} \mathrm{C} \leq T_{\mathbf{A}} \leq 70^{\circ} \mathrm{C}$				3	,	
ICC -	Negative supply current		$\mathrm{f}_{\text {clock }}=0$	$T_{A}=25^{\circ} \mathrm{C}$		-0.8	-2	mA	
			$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			-3	mA		
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance			See Note 3			40		pF

NOTES: 2. This is the peak-to-peak value that is not exceeded 95% of the time.
3. Factor relating clock-frequency to increase in supply current. At $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$
$I_{C C+}=I C C+($ fclock $=0)+C_{p d} \times 5 \mathrm{~V} \times$ flock
operating characteristics, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1 \mathrm{~V}, \mathrm{f}_{\text {clock }}=120 \mathrm{kHz}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$\alpha_{\text {FS }}$	Full-scale temperature coefficient (see Note 4)	$V_{\text {ID }}=2 \mathrm{~V}, \quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		5	ppm $/{ }^{\circ} \mathrm{C}$
	Linearity error	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {ID }} \leq 2 \mathrm{~V}$	0.5		count
	Differential linearity error (see Note 5)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {ID }} \leq 2 \mathrm{~V}$			LSB
	\pm Full-scale symmetry error (see Note 6) (rollover error)	$V_{\text {ID }}= \pm 2 \mathrm{~V}$	0.5	1	count
Display reading with $\mathrm{O}-\mathrm{V}$ input		$V_{1 D}=0 . \quad 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$	$-00000 \pm 0.0000+0.0000$		Digital Reading
Display reading in ratiometric operation		$V_{\text {ID }}=V_{\text {ref. }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	+C +	+1	Digital
		$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$	$+6 \quad+6$	+1	Reading

NOTES: 4. This parameter is measured with an external reference having a temperature coeffictent of less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
5. The magnitude of the difference between the worst case step of adjacent counts and the ideal step.
6. Rollover error is the difference between the absolute values of the conversion for 2 V and -2 V .
timing diagrams

${ }^{\dagger}$ Delay between BUSY going low and the first $\overline{\text { STROBE }}$ pulse is dependent upon the analog input.
FIGURE 1

FIGURE 2
timing diagrams (continued)

FIGURE 3
strobe T1T1

${ }^{\dagger}$ First D5 of AUTO ZERO and DE-INTEGRATE is one count longer
Figure 4

ICL7135C, TLC7135C Advanced LinCMOS ${ }^{\text {TM }} 4$ 1/2-DIGIT PRECISION ANALOG-TO-DIGITAL CONVERTERS

PRINCIPLES OF OPERATION

A measurement cycle for the ICL7135C and TLC7135C consists of the following four phases.

1. Auto-Zero Phase. The internal $I N+$ and $I N$ - inputs are disconnected from the pins and internally connected to ANLG COMMON. The reference capacitor is charged to the reference voltage. The system is configured in a closed loop and the auto-zero capacitor is charged to compensate for offset voltages in the buffer amplifier, integrator, and comparator. The auto-zero accuracy is limited only by the system noise, and the overall offset, as referred to the input, is less than $10 \mu \mathrm{~V}$.
2. Signal Integrate Phase. The auto-zero loop is opened and the internal $\mathbb{I N}+$ and \mathbb{N} - inputs are connected to the external pins. The differential voltage between these inputs is integrated for a fixed period of time. If the input signal has no return with respect to the converter power supply, $\mathbb{I N}$ can be tied to ANLG COMMON to establish the correct common-mode voltage. Upon completion of this phase, the polarity of the input signal is recorded.
3. De-integrate Phase. The reference is used to perform the de-integrate task. The internal IN - is internally connected to ANLG COMMON and IN + is connected across the previously charged reference capacitor. The recorded polarity of the input signal is used to ensure that the capacitor will be connected with the correct polarity so that the integrator output polarity will return to zero. The time, which is required for the output to return to zero, is proportional to the amplitude of the input signal. The return time is displayed as a digital reading and is determined by the equation $10,000 \times\left(\mathrm{V}_{1 \mathrm{D}} / \mathrm{V}_{\mathrm{ref}}\right)$. The maximum or full-scale conversion occurs when $V_{I D}$ is two times $V_{\text {ref }}$.
4. Zero Integrator Phase. The internal IN - is connected to ANLG COMMON. The system is configured in a closed loop to cause the integrator output to return to zero. Typically this phase requires 100 to 200 clock pulses. However, after an over-range conversion, 6200 pulses are required.

description of analog circuits

input signal range

The common mode range of the input amplifier extends from 1 V above the negative supply to 1 V below the positive supply. Within this range, the common mode rejection ratio (CMRR) is typically 86 dB . Both differential and common mode voltages cause the integrator output to swing. Therefore, care must be exercised to assure the integrator output does not saturate.
analog common
Analog common (ANLG COMMON) is connected to the internal IN - during the auto-zero, de-integrate, and zero integrator phases. If IN - is connected to a voltage which is different than analog common during the signal integrate phase, the resulting common mode voltage will be rejected by the amplifier. However, in most applications, iN LO will be set at a known fixed voltage (power supply common for instance). In this application, analog common should be tied to the same point, thus removing the common mode voltage from the converter. Removing the common mode voltage in this manner will slightly increase conversion accuracy.
reference
The reference voltage is positive with respect to analog common. The accuracy of the conversion result is dependent upon the quality of the reference. Therefore, to obtain a high accuracy conversion, a high quality reference should be used.

description of digital circuits

RUN/ $\overline{\text { HOLD }}$ input

When the RUN/HOLD input is high or open, the device will continuously perform measurement cycles every 40,002 clock pulses. If this input is taken low, the IC will continue to perform the ongoing measurement cycle and then hold the conversion reading for as long as the pin is held low. If the pin is held low after completion of a measurement cycle, a short positive pulse (greater than 300 ns) will initiate a new measurement cycle. If this positive pulse occurs before the completion of a measurement cycle, it will not be recognized. The first STROBE pulse, which occurs 101 counts after the end of a measurement cycle, is an indication of the completion of a measurement cycle. Thus, the positive pulse could be used to trigger the start of a new measurment after the first STROBE pulse.

$\overline{\text { STROBE }}$ input

Negative going pulses from this input are used to transfer the BCD conversion data to external latches, UARTS, or microprocesors. At the end of the measurement cycle, the digit-drive (D5) input goes high and remains high for 201 counts. The most significant digit (MSD) BCD bits are placed on the BCD pins. After the first 101 counts, halfway through the duration of output D1-D5 going high, the $\overline{\text { STROBE }}$ pin goes low for $1 / 2$ clock pulse width. The placement of the STROBE pulse at the midpoint of the D5 high pulse allows the information to be latched into an external device on either a low-level or an edge. Such placement of the STROBE pulse also ensures that the BCD bits for the second MSD will not yet be competing for the $B C D$ lines and latching of the correct bits is assured. The above process is repeated for the second MSD and the D4 output. Similarly, the process is repeated through the least significant digit (LSD). - quently, inputs D5 through D1 and the BCD lines will continue scanning without the inclusion of

- $\overline{B E}$ pulses. This subsequent continuous scanning causes the conversion results to be continuously displayed. Such subsequent scanning does not occur when an over-range condition occurs.

BUSY output
The BUSY output goes high at the beginning of the signal integrate phase and remains high until the first clock pulse after zero-crossing or at the end of the measurement cycle if an over-range condition occurs. It is possible to use the BUSY pin to serially transmit the conversion result. Serial transmission can be accomplished by ANDing the BUSY and CLOCK signals and transmitting the ANDed output. The transmitted output consists of 10,001 clock pulses, which occur during the signal integrate phase, and the number of clock pulses, which occur during the de-integrate phase. The conversion result can be obtained by subtracting 10,001 from the total number of clock pulses.

OVER-RANGE output

When an over-range condition occurs, this pin goes high after the BUSY signal goes low at the end of the measurement cycle. As previously noted, the BUSY signal remains high until the end of the measurement cycle when an over-range condition occurs. The OVER-RANGE output goes high at end of BUSY and goes low at the beginning of the de-integrate phase in the next measurement cycle.

UNDER-RANGE output

At the end of the BUSY signal, this pin goes high if the conversion result is less than or equal to 9% (count of 1800) of the full-scale range. The UNDER-RANGE output is brought low at the beginning of the signal integrate phase of the next measurement cycle.

PRINCIPLES OF OPERATION

POLARITY output

The POLARITY output is high for a positive input signal and is updated at the beginning of each de-integrate phase. The polarity output is valid for all inputs including ± 0 and over-range signals.

digit-drive (D5, D4, D2 and D1) outputs

Each digit-drive output (D1 through D5) sequentially goes high for 200 clock pulses. This sequential process is continuous unless an over-range occurs. When an over-range occurs, all of the digit drive outputs are blanked from the end of the strobe sequence until the beginning of the de-integrate phase (when the sequential digit drive activation begins again). The blanking activity, during an over-range condition, may be used to cause the display to flash and indicate the over-range condition.

BCD outputs

The $B C D$ bits ($B 8, B 4, B 2$ and $B 1$) for a given digit are sequentially activated on these outputs. Simultaneously, the appropriate Digit-drive line for the given digit is activated.

system aspects

integrating resistor

The value of the integrating resistor ($\mathrm{R}_{(\mathrm{NT}}$) is determined by the full scale input voltage and the output current of the integrating amplifier. The integrating amplifier can supply $20 \mu \mathrm{~A}$ of current with negligible non-linearity. The equation for determining the value of this resistor is as follows:

$$
\text { RINT }=\frac{\text { FULL-SCALE VOLTAGE }}{\text { IINT }}
$$

Integrating amplifier current, IINT, from 5 to $40 \mu \mathrm{~A}$ will yield good results. However, the nominal and recommended current is $20 \mu \mathrm{~A}$.

integrating capacitor

The product of the integrating resistor and capacitor should be selected to give the maximum voltage swing without causing the integrating amplifier output to saturate and get too close to the power supply voltages. If the amplifier output is within 0.3 V of either supply, saturation will occur. With $\pm 5-\mathrm{V}$ supplies and ANLG COMMON connected to ground, the designer should design for a $\pm 3.5-\mathrm{V}$ to $\pm 4-\mathrm{V}$ integrating amplifier swing. A nominal capacitor value is $0.47 \mu \mathrm{~F}$. The equation for determining the value of the integrating capacitor ($\mathrm{C}_{\text {INT }}$) is as follows:

$$
\mathrm{C}_{\mathrm{INT}}=\frac{10,000 \times \text { CLOCK PERIOD } \times \text { IINT }}{\text { INTEGRATOR OUTPUT VOLTAGE SWING }}
$$

where: IINT is nominally $20 \mu \mathrm{~A}$.
Capacitors with large tolerances and high dielectric absorption can induce conversion inaccuracies. A capacitor, which is too small could cause the integrating amplifier to saturate. High dielectric absorption causes the effective capacitor value to be different during the signal integrate and de-integrate phases. Polypropylene capacitors have very low dielectric absorption. Polystyrene and Polycarbonate capacitors have higher dielectric absorption, but also work well.

PRINCIPLES OF OPERATION

auto-zero and reference capacitor

Large capacitors will tend to reduce noise in the system. Dielectric absorption is unimportant except during power-up or overload recovery. Typical values are $1 \mu \mathrm{~F}$.
reference voltage
For high-accuracy absolute measurements, a high quality reference should be used.

rollover resistor and diode

The ICL7135C and TLC7135C have a small rollover error, however it can be corrected. The correction is to connect the cathode of any silicon diode to the INT OUT pin and the anode to a resistor. The other end of the resistor is connected to ANLG COMMON or ground. For the recommended operating conditions the resistor value is $100 \mathrm{k} \Omega$. This value may be changed to correct any rollover error which has not been corrected. In many non-critical applications, the resistor and diode are not needed.

maximum clock frequency

For most dual-slope A/D converters, the maximum conversion rate is limited by the frequency response of the comparator. In this circuit, the comparator follows the integrator ramp with a $3 \mu \mathrm{~s}$ delay. Therefore, with a $160-\mathrm{kHz}$ clock frequency ($6 \mu \mathrm{~s}$ period), half of the first reference integrate clock period is lost in delay. Hence, the meter reading will change from 0 to 1 with a $50-\mu \mathrm{V}$ input, 1 to 2 with a $150-\mu \mathrm{V}$ input, 2 to 3 with a $250-\mu \mathrm{V}$ input, etc. This transition at midpoint is desirable; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted. The above transition points assume a $2-V$ input range is equivalent to 20,000 clock cycles.

If the input signal is always of one polarity, comparator delay need not be a limitation. Clock rates of 1 MHz are possible since non-linearity and noise do not increase substantially with frequency. For a fixed clock frequency, the extra count or counts caused by comparator delay will be a constant and can be subtracted out digitally.
For signals with both polarities, the clock frequency can be extended above 160 kHz without error by using a low value resistor in series with the integrating capacitor. This resistor causes the integrator to jump slightly towards the zero-crossing level at the beginning of the de-integrate phase and thus, compensates for the comparator delay. This series resistor should be 10Ω to 50Ω. This approach allows clock frequencies up to 480 kHz .
minimum clock frequency
The minimum clock frequency limitations result from capacitor leakage from the auto-zero and reference capacitors. Measurement cycles as high as 10 s are not influenced by leakage error.

rejection of 50 Hz or 60 Hz pickup

To maximize the rejection of 50 Hz or 60 Hz pickup, the clock frequency should be chosen so that an integral multiple of 50 Hz or 60 Hz periods occur during the signal integrate phase. To achieve rejection of these signals, some clock frequencies which could be used are as follows:
$50 \mathrm{~Hz}: 250,166.66,125,100 \mathrm{kHz}$, etc.
$60 \mathrm{~Hz}: 300,200,150,120,100,40,33.33 \mathrm{kHz}$, etc.

PRINCIPLES OF OPERATION

zero-crossing flip-flop

This flip-flop interrogates the comparator's zero-crossing status. The interrogation is performed after the previous clock cycle and the positive half of the ongoing clock cycle have occurred so that any comparator transients which result from the clock pulses do not affect the detection of a zero-crossing. This procedure delays the zero-crossing detection by one clock cycle. To eliminate the inaccuracy, which is caused by this delay, the counter is disabled for one clock cycle at the beginning of the de-integrate phase. Therefore, when the zero-crossing is detected one clock cycle later than the zero-crossing actually occurs, the correct number of counts is displayed.
noise
The peak-to-peak noise around zero is approximately $15 \mu \mathrm{~V}$ (peak-to-peak value not exceeded 95% of the time). Near full scale, this value increases to approximately $30 \mu \mathrm{~V}$. Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.
analog and digital grounds
For high-accuracy applications, ground loops must be avoided. Return currents from digital circuits must not be sent to the analog ground line.

power supplies

The ICL7135C and TLC7135C are designed to work with $\pm 5 \mathrm{~V}$ power supplies. However, $5-\mathrm{V}$ operation is possible if the input signal does not vary more than $\pm 1.5 \mathrm{~V}$ from mid-supply.

- Total Unadjusted Error . . . ± 0.75 LSB Max for TL0808 and ± 1.25 LSB Max for TL0809 Over Temperature Range
- Ideal for Battery Operated, Portable Instrumentation Applications
- Resolution of 8 Bits
- $100 \mu \mathrm{~s}$ Conversion Time
- Ratiometric Conversion
- Monotonic Over the Entire A/D Conversion Range
- No Missing Codes
- Easy Interface with Microprocessors
- Latched 3-State Outputs
- Latched Address Inputs
- Single $2.75-\mathrm{V}$ to $5.5-\mathrm{V}$ Supply
- Extremely Low Power Consumption . . 0.3 mW Typ
- Improved Direct Replacements for ADC0808, ADC0809

description

The TL0808 and TL0809 are monolithic CMOS devices with an 8 -channel multiplexer, an 8 -bit analog-to-digital (A/D) converter, and microprocessor-compatible control logic. The 8 -channel multiplexer can be controlled by a microprocessor through a 3-bit address decoder with address load to select any one of eight single-ended analog switches connected directly to the comparator. The 8-bit A/D converter uses the successive-approximation conversion technique featuring a high-impedance threshold detector, a switched-capacitor array, a sample-and-hold, and a successive-approximation register (SAR). Detailed information on interfacing to most popular microprocessors is readily available from the factory. These devices are designed to operate from common microprocessor control buses, with three-state output latches driving the data bus. The devices can be made to appear to the microprocessor as a memory location or an I/O port.
The comparison and converting methods used eliminate the possibility of missing codes, nonmonotonicity, and the need for zero or full-scale adjustment. Also featured are latched 3-state outputs from the SAR and latched inputs to the multiplexer address decoder. The single $2.75-\mathrm{V}$ to $5.5-\mathrm{V}$ supply and extremely low power requirements make the TL0808 and TL0809 especially useful for a wide variety of applications including portable battery and LCD applications. Ratiometric conversion is made possible by access to the reference voltage input terminals.
The TL0808 and TL0809 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

LOW.POWER CMOS ANALOG-TO-DIGITAL CONVERTERS
WITH 8.CHANNEL MULTIPLEXERS

functional block diagram (positive logic)

MULTIPLEXER FUNCTION TABLE

INPUTS				SELECTED ANALOG CHANNEL
ADDRESS			ADDRESS	
C	B	A	StROBE	
1	L	1	\dagger	0
L	1	1	-	1
L	11	1	'	2
L	$1{ }^{1}$	${ }^{1}$	-	3
i	$!$	1	-	4
H	1	11	1	5
H	11	1	-	¢
14	1	11	.	7

[^6]operating sequence

TLOB08, TL0809

LOW-POWER CMOS ANALOG-TO-DIGITAL CONVERTERS WITH 8-CHANNEL MULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: All voltage values are with respect to network ground terminal.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	2.75		5.5	V
Positive reference voltage, $\mathrm{V}_{\text {ref }}+($ see Notes 2, 3, and 4)	2.75	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
\because, tive reference voltage, $\mathrm{V}_{\text {ref - }}$ ((see Notes 2, 3, and 4)	-0.1	0		V
ential reference voltage, $\mathrm{V}_{\text {ref }}+-\mathrm{V}_{\text {ref }}$ - (see Note 4)		3		V
High-level input voltage, control inputs, $\mathrm{V}_{\text {IH }}$	$0.7 \mathrm{~V}_{\mathrm{CC}}$			V
Low-level input voltage, control inputs, $\mathrm{V}_{\text {IL }}$			0.3 VCC	V
Operating free-air temperature, $\mathrm{T}_{\text {A }}$ (see Note 4)	-40		85	${ }^{\circ} \mathrm{C}$

NOTES: 2. The accuracy of the conversion will depend on the stability of the reference voitages applied.
3. Analog voltages greater than or equal to $V_{\text {ref }}+$ convert to all highs, and all voltages less than $V_{\text {ref }}$ - convert to all lows.
4. For proper operation of the TL0808 and TL0809 at free-air temperatures below $0^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ and $\left(\mathrm{V}_{\text {ref }}+-V_{\text {ref }-}\right)$ should not be less than 3 V .
electrical characteristics over recommended operating free-air temperature range, $\mathrm{VCC}=3 \mathrm{~V}$ to 5.25 V (unless otherwise noted)
total device

PARAMETER			TEST CONDITIONS	MIN TYP ${ }^{\text {T}}$	MAX	UNIT
V_{OH} High-level output voltage			$\mathrm{I}_{0}=-360 \mu \mathrm{~A}$	$\mathrm{V}_{\text {CC }}-0.6$		V
VOL Low-level output voltage		Data outputs	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$		0.45	V
		End of conversion	$\mathrm{I}_{0}=1.2 \mathrm{~mA}$		0.45	
${ }^{1} \mathrm{OZ}$	Off-state (high-impedance-state) output current		$V_{0}=V_{C C}$		1	$\mu \mathrm{A}$
			$V_{0}=0$		-1	
$1 /$	Control input current at maximum input voltage		$V_{1}=15 \mathrm{~V}$		1	$\mu \mathrm{A}$
IIL	Low-level control input current		$V_{1}=0$		-1	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Supply current		$\mathrm{V}_{\text {CC }}=3 \mathrm{~V},{ }_{\text {clock }}=640 \mathrm{kHz}$	100	500	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$	0.3	3	mA
C_{i}	Input capacitance, control inputs		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	10	15	pF
C_{0}	Output capacitance, data outputs		$\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$	10	15	pF
	Resistance from pin 12 to pin 16			11000		$\mathrm{k} \Omega$

[^7]analog multiplexer

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$ MAX	UNIT
Ion	Channel on-state current (see Note 5)	$\mathrm{V}_{1}=3 \mathrm{~V}$,	$\mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$		2	$\mu \mathrm{A}$
		$V_{1}=0$,	$\mathrm{f}_{\text {clack }}=640 \mathrm{kHz}$		-2	
loff	Channel off-state current	$V_{C C}=3 \mathrm{~V}$,	$\mathrm{V}_{1}=3 \mathrm{~V}$		$10 \quad 200$	nA
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$V_{1}=0$		-10-200	
		$V_{C C}=3 \mathrm{~V}$	$V_{1}=3 \mathrm{~V}$		1	$\mu \mathrm{A}$
			$V_{1}=0$		-1	

\dagger^{\dagger} ypical values are at $V_{C C}=3 V$ and $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 5: Channel on-state current is primarily due to the bias current into or out of the threshold detector, and it varies directly with clock frequency
timing requirements, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}+=3 \mathrm{~V}, \mathrm{~V}_{\text {ref }}-=0$ (unless otherwise noted)

			MIN	P! ${ }^{\text {c*: }}$	MAX	UNIT
$\mathrm{t}_{\text {conv }}$	Conversion time (see Note 6)		90		116	$\mu \mathrm{s}$
${ }^{\text {f }}$ clock	Clock frequency	$\mathrm{V}_{C C}=2.75 \mathrm{~V}$ to 4 V	10		640	kHz
		$V_{C C}=4 \mathrm{~V}$ to 5.5 V	10		1280	
$t_{w}(s)$	Start pulse duration		200			ns
$\mathrm{t}_{\mathrm{W}}(\mathrm{ALC})$	Address load control pulse duration		200			ns
${ }_{t}{ }_{\text {SU }}$	Address setup time		50			ns
th	Address hold time		50			ns
$\mathrm{t}_{\text {dEOCl }}$	Delay time, end of conversion output (see Notes 6 and 7)		0		14.5	$\mu \mathrm{S}$

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ref }}-=0, \mathrm{f}_{\text {clock }}=640 \mathrm{kHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TL0808			TL0809			UNIT		
		MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX					
kSVS	Supply voltage sensitivity			$\begin{aligned} & V_{C C}=V_{\text {ref }}=3 \mathrm{~V} \text { to } 5.25 \mathrm{~V}, \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \text {, See Note } 8 \end{aligned}$		± 0.05			± 0.05			\%/V
	Linearity error (see Note 9)			± 0.5.			± 1			LSB		
	Zero error (see Note 10)			± 0.5			± 0.5			LSB		
	Total unadjusted	flock 125 kHz 12 $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			± 0.25	± 0.5		± 0.5	± 7	LSB		
	error (See Note 11)					± 0.75			± 1.25			
ten	Output enable time	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			80	250		80	250	ns		
$\mathrm{t}_{\text {dis }}$	Output disable time	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			105	300		105	300	ns		

${ }^{\dagger}$ Typical values for all except supply voltage sensitivity are at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$.
NOTES: 6. Refer to the operating sequence diagram.
7. For clock frequencies other than $640 \mathrm{kHz}, \mathrm{t}(\mathrm{EOC})$ maximum is 8 clock periods plus $2 \mu \mathrm{~s}$.
8. Supply voltage sensitivity relates to the ability of an analog-to-digital converter to maintain accuracy as the supply voltage varies. The supply and $V_{r e f}+$ are varied together and the change in accuracy is measured with respect to full-scale.
9 Linearity error is the maximum deviation from a straight line through the end points of the A/D transfer characteristic.
10. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
11. Total unadjusted error is the maximum sum of linearity error, zero error, and full-scale error.

PRINCIPLES OF OPERATION

The TL0808 and TL0809 each consists of an analog signal multiplexer, an 8-bit successive-approximation converter, and related control and output circuitry.

multiplexer

The analog multiplexer selects 1 of 8 single-ended input channels as determined by the address decoder. Address load control loads the address code into the decoder on a low-to-high transition. The output latch is reset by the positive-going edge of the start pulse. Sampling also starts with the positive-going edge of the start pulse and lasts for 32 clock periods. The conversion process may be interrupted by a new start pulse before the end of 64 clock periods. The previous data will be lost if a new start of conversion occurs before the 64th clock pulse. Continuous conversion may be accomplished by connecting the End-of-Conversion output to the start input. If used in this mode an external pulse should be applied after power up to assure start up.

converter

The CMOS threshold detector in the successive-approximation conversion system determines each bit by examining the charge on a series of binary-weighted capacitors (Figure 1). In the first phase of the conversion process, the analog input is sampled by closing switch S_{C} and all S_{T} switches, and by simultaneously charging all the capacitors to the input voltage.

In the next phase of the conversion process, all ST and SC switches are opened and the threshold detector begins identifying bits by identifying the charge (voltage) on each capacitor relative to the reference voltage. In the switching sequence, all eight capacitors are examined separately until all 8 bits are identified, and then the charge-convert sequence is repeated. In the first step of the conversion phase, the threshold detector looks at the first capacitor (weight $=128$). Node 128 of this capacitor is switched to the reference voltage, and the equivalent nodes of all the other capacitors on the ladder are switched to REF - If the voltage at the summing node is greater than the trip-point of the threshold detector (approximately onehalf the VCC voltage), a bit is placed in the output register, and the 128 -weight capacitor is switched to REF - . If the voltage at the summing node is less than the trip point of the threshold detector, this 128-weight capacitor remains connected to REF + through the remainder of the capacitor-sampling (bitcounting) process. The process is repeated for the 64 -weight capacitor, the 32 -weight capacitor, and so forth down the line, until all bits are counted.
With each step of the capacitor-sampling process, the initial charge is redistributed among the capacitors. The conversion process is successive approximation, but relies on charge redistribution rather than a successive-approximation register (and reference DAC) to count and weigh the bits from MSB to LSB.

FIGURE 1. SIMPLIFIED MODEL OF THE SUCCESSIVE-APPROXIMATION SYSTEM

- Functionally Interchangeable with Siliconix DG182, DG185, DG188, DG191 with Same Terminal Assignments
- Monolithic Construction
- Adjustable Reference Voltage
- JFET Inputs

description

The TL182, TL185, TL188, and TL191 are monolithic high-speed analog switches using BIMOS technology. They comprise JFET-input buffers, level translators, and output JFET switches. The TL182 switches are SPST; the TL185 switches are SPDT. The TL188 is a pair of complementary SPST switches as is each half of the TL191.

A high level at a control input of the TL. 182 turns the associated switch off A high level at a control input of the TL185 turns the associated switch on. For the TL188, a high level at the control input turns the associated switches S1 on and S2 off.

The threshold of the input buffer is determined by the voltage applied to the reference input ($V_{\text {ref }}$). The input threshold is related to the reference input by the equation $V_{\text {th }}=V_{\text {ref }}+1.4 \mathrm{~V}$. Thus, for TTL compatibility, the $V_{\text {ref }}$ input is connected to ground. The JFET input makes the device compatible with bipolar, MOD, and CMOS logic families. Threshold compatibility may, again, be determined by $V_{\text {th }}=V_{\text {ref }}+1.4 \mathrm{~V}$.

The output switches are junction field-effect transistors featuring low on-state resistance and high off-state resistance. The monolithic structure ensures uniform matching.

BI-MOS technology is a major breakthrough in linear integrated circuit processing. BI-MOS can have ion-implanted JFETs, p-channel MOS-FETs, plus the usual bipolar components all on the same chip. BI-MOS provides for monolithic circuit designs that previously have been available only as expensive hybrids.

M-suffix devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. I-suffix devices are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and C -suffix devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

- Uniform On-State Resistance for Minimum Signal Distortion
- $\pm 10-\mathrm{V}$ Analog Voltage Range
- TTL, MOS, and CMOS Logic Control Compatibility

TL182
N PACKAGE
(TOP VIEW)

TL185
N PACKAGE
(TOP VIEW)

TL188
N PACKAGE
(TOP VIEW)

TL191
N PACKAGE
(TOP VIEW)

NC - No internal connection

TL182 TWIN SPST SWITCH
schematic (each channel)

2 słәәчS ełeg
symbol

FUNCTION TABLE (EACH HALF)

INPUT	SWITCH
A	S
L.	ON (CLOSED)
H	OFF (OPEN)

TL185 TWIN DPST SWITCH

schematic (each channel)

symbol

function table (EACH HALF)

INPUT A	SWITCHES
SW1 AND SW2	
L	OFF (OPEN)
H	ON (CLOSED)

TL188 DUAL COMPLEMENTARY SPST SWITCH

schematic
symbol

TL191 TWIN DUAL COMPLEMENTARY SPST SWITCH

schematic (each channel)

functional block diagram

See the preceding two pages for operation of the switches.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Positive supply to negative supply voltage, $V_{C C}-V_{E E}$
36 V

Positive supply voltage to either drain, VCC - VD 33 V

Logic supply to negative supply voltage, VLL - VEE . 36 V

Logic supply to reference voltage, $V_{L L}-V_{\text {ref }}$. 33 V

Reference to negative supply voltage, $V_{\text {ref }}$ - VEE . 27 V

Current (any terminal) . 30 mA
Operating free-air temperature range: TL.182M, TL185M, TL188M, TL191M ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ TL1821, TL185I, TL188I, TL1911 $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ TL182C, TL185C, TL188C, TL191C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
electrical characteristics, $V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=0 \mathrm{~V}$

Parameter	test conditions			TL1 - M	TL1_1	TL1_C	UNIT	
				MIN MAX	MIN MAX	MIN MAX		
$V_{I H} \quad$High-level control input voltage			$T_{A}=$ MIN TO MAX	$\mathrm{V}_{\mathrm{ref}}+2$	$V_{\text {ref }}+2$	$\mathrm{V}_{\text {ref }}+2$	v	
$\mathrm{V}_{\mathrm{IL}} \quad$Low-level control input voltage			$T_{A}=M 1 N$ to MAX	$\mathrm{v}_{\text {ref }}+0.8$	$\mathrm{V}_{\text {ref }}+0.8$	$\mathrm{V}_{\text {ref }}+0.8$	v	
High-level control	$\mathrm{v}_{1}=5 \mathrm{~V}$		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	10	10	20	$\mu \mathrm{A}$	
IH. input current			$\mathrm{T}_{\mathbf{A}}=\mathrm{MAX}$	20	20	20		
IIL \quadLow-level control input current	$v_{1}=0$		$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to MAX	-250	-250	-250	$\mu \mathrm{A}$	
Off-state drain current	$\begin{array}{ll} \mathrm{v}_{\mathrm{D}}=10 \mathrm{~V} . & \mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V} . \\ \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} . & \mathrm{V}_{\mathrm{IL}}=08 \mathrm{~V} \end{array}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	5	nA	
			$\mathrm{T}_{\mathbf{A}}=\mathrm{MAX}$	100	100	100		
Off-state source curtent	$\begin{array}{ll} V_{D}=-10 \mathrm{~V} . & V_{S}=10 \mathrm{~V}, \\ V_{I H}=2 \mathrm{~V} . & V_{I L}=0.8 \mathrm{~V} \end{array}$		$T_{A}=25^{\circ} \mathrm{C}$		5	5	nA	
			$T_{A}=$ MAX	100	100	100		
	$\begin{array}{ll} \mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, & \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} . & \mathrm{V}_{\mathrm{iL}}=0.8 \mathrm{~V} \end{array}$		$T_{A}=25^{\circ} \mathrm{C}$		-10	-10	nA	
			$T_{A}=$ MAX	-200	-200	-200		
Drain-to-source on-state resistance	$\begin{array}{ll} v_{D}=-10 \mathrm{~V}, & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, & v_{\mathrm{IL}}=0.8 \mathrm{~V} \end{array}$	TL182,	$T_{A}=$ Min to $25^{\circ} \mathrm{C}$	75	100	100	Ω	
		TL188	$T_{A}=$ MAX	100	150	150		
		TL185,	$\mathrm{T}_{A}=\mathrm{MIN}$ to $25^{\circ} \mathrm{C}$	125	150	150		
		TL191	$\mathrm{T}_{\text {A }}=$ MAX	250	300	300		
ICC Supply current from $\mathrm{V}_{\text {CC }}$	Both control inputs at 0 V		$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	1.5	1.5	1.5	mA	
$\mathrm{I}_{\mathrm{EE}} \quad$ Supply current from $\mathrm{V}_{\text {EE }}$			-5	-5	-5			
ILL \quad Supply current from V_{LL}			4.5	4.5	4.5			
$\mathrm{I}_{\text {ref }} \quad$ Reference current			-2	-2	-2			
${ }^{\text {CCC }}$ S Supply current from $V_{\text {CC }}$	Both control inputs at 5 V			$T_{A}=25^{\circ} \mathrm{C}$	1.5	1.5	1.5	mA
$\mathrm{I}_{\mathrm{EE}} \quad$ Supply current from $\mathrm{V}_{\text {EE }}$			-5		-5	-5		
LL Supply current from V_{LL}			4.5		4.5	4.5		
Iref Reference cursent			-2		-2	-2		

\footnotetext{
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		TL1_M	TL1_I	TL1_C	UNIT		
		TYP	TYP	TYP					
ton	Turn-on time			$R_{L}=300 \Omega, \quad C_{L}=30 \mathrm{pF}, \quad$ Figure 1		175	175	175	ns
$t_{\text {off }}$	Turn-off time	350	350			350			

PARAMETER MEASUREMENT INFORMATION

C_{L} includes probe and jig capacitance
$V_{S}=3 V$ for $t_{\text {on }}$ and $-3 V$ for $t_{\text {off }}$
$V_{O}=V_{S} \frac{R_{L}}{R_{L}+r_{D S(\text { an })}}$

TEST CIRCUIT

NOTE: A. The solid waveform applies for TL185 and SW1 of TL185 and TL191; the dashed waveform applies for TL182 and SW2 of TL185 and TL191.
B. V_{O} is the steady-state output with the switch on. Feed through via the gate capacitance may result in spikes (not shown) at the leading and trailing edges of the output waveform.

FIGURE 1. VOLTAGE WAVEFORMS

TL5001, TL500C, TL501I, TL501C ANALOG PROCESSORS
- True Differential Inputs
- Automatic Zero
- Automatic Polarity
- High Input Impedance . . . $10^{9} 0 \mathrm{hms}$ Typically

TL500I, TL500C CAPABILITIES

- Resolution . . . 14 Bits (with TL502C)
- Linearity Error . . . 0.001\%
- 4 1/2-Digit Readout Accuracy with External Precision Reference

TL502C/TL503C
 DIGITAL PROCESSORS

- Fast Display Scan Rates
- Internal Oscillator May Be Driven or Free-Running
- Interdigit Blanking
- Over-Range Blanking
- 4 1/2-Digit Display Circuitry

TL5011, TL501C CAPABILITIES

- Resolution . . 10-13 Bits (with TL.502C)
- Linearity Error . . . 0.01\%
- 3 1/2-Digit Readout Accuracy

TL502C CAPABILITIES

- Compatible with Popular Seven-Segment Common-Anode Displays
- High-Sink-Current Segment Driver for Large Displays

TL503C CAPABILITIES

- Multiplexed BCD Outputs
- High-Sink-Current BCD Outputs
- High-Sink-Current Digit Driver for Large Displays

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates

description

The TL500I, TL500C, TL501I, and TL501C analog processors and TL502C and TL503C digital processors provide the basic functions for a dual-slope-integrating analog-to-digital converter.

The TL500 and TL501 contain the necessary analog switches and decoding circuits, reference voltage generator, buffer, integrator, and comparator. These devices may be controlled by the TL502C, TL503C, by discrete logic, or by a software routine in a microprocessor.

The TL502C and TL503C each includes oscillator, counter, control logic, and digit enable circuits. The TL502C provides multiplexed outputs for seven-segment displays, while the TL503C has multiplexed BCD outputs.

When used in complementary fashion, these devices form a system that features automatic zero-offset compensation, true differential inputs, high input impedance, and capability for $41 / 2$-digit accuracy. Applications include the conversion of analog data from high-impedance sensors of pressure, temperature, light, moisture, and position. Analog-to-digital-logic conversion provides display and control signals for weight scales, industrial controllers, thermometers, light-level indicators, and many other applications.

TL500I, TL500C, TL501I, TL501C, TL502C, TL503C
 ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCKS

principles of operation

The basic principle of dual-slope-integrating converters is relatively simple. A capacitor, CX , is charged through the integrator from $V_{C T}$ for a fixed period of time at a rate determined by the value of the unknown voltage input. Then the capacitor is discharged at a fixed rate (determined by the reference voltage) back to VCT where the discharge time is measured precisely. The relationship of the charge and discharge values are shown below (see Figure 1).

$$
\begin{array}{ll}
V_{C X}=V_{C T}-\frac{V_{I t} 1}{R_{X} C_{X}} & \text { Charge } \\
V_{C T}=V_{C X}-\frac{V_{\text {ref }} t_{2}}{R_{X} C_{X}} & \text { Discharge } \tag{2}
\end{array}
$$

Combining equatıons 1 and 2 results in:

$$
\begin{equation*}
\frac{V_{1}}{V_{\text {ref }}}=-\frac{t_{2}}{t_{1}} \tag{3}
\end{equation*}
$$

where:
$V_{C T}=$ Comparator (offset) threshold voltage
$V_{C X}=$ Voltage change across C_{X} during t_{1} and during t_{2} (equal in magnitude)
$V_{1}=$ Average value of input voltage during t_{1}
$\mathrm{t}_{1}=$ Time period over which unknown voltage is integrated
$\mathrm{t}_{2}=$ Unknown time period over which a known reference voltage is integrated.

Equation (3) illustrates the major advantages of a dual-slope converter:
a. Accuracy is not dependent on absolute values of t_{1} and t_{2}, but is dependent on their ratios. Longterm clock frequency variations will not affect the accuracy.
b. Offset values, $V_{C T}$, are not important.

The BCD counter in the digital processor (see Figure 2) and the control logic divide each measurement cycle into three phases. The BCD counter changes at a rate equal to one-half the oscillator frequency.

auto-zero phase

The cycle begins at the end of the integrate-reference phase when the digital processor applies low levels to inputs A and B of the analog processor. If the trigger input is at a high level, a free-running condition exists and continuous conversions are made. However, if the trigger input is low, the digital processor stops the counter at 20,000, entering a hold mode. In this mode, the processor samples the trigger input every 4000 oscillator pulses until a high level is detected. When this occurs, the counter is started again and is carried to completion at 30,000 . The reference voltage is stored on reference capacitor $\mathrm{C}_{\text {ref }}$, comparator offset voltage is stored on integration capacitor C_{χ}, and the sum of the buffer and integrator offset voltages is stored on zero capacitor C_{z}. During the auto-zero phase, the comparator output is characterized by an oscillation (limit cycle) of indeterminate waveform and frequency that is filtered and d-c shifted by the level shifter.

integrate-input phase

The auto-zero phase is completed at a BCD count of 30,000 , and high levels are applied to both control inputs to initiate the integrate-input phase. The integrator charges $C \times$ for a fixed time of 10,000 BCD counts at a rate determined by the input voltage. Note that during this phase, the analog inputs see only the high impedance of the noninverting operational amplifier input. Therefore, the integrator responds only to the difference between the analog input terminals, thus providing true differential inputs.

TL500I, TL500C, TL501I, TL501C, TL502C, TL503C ANALOG-TO-DIGITAL-CONVERTER BUILDING BLOCK

integrate-reference phase

At a $B C D$ count of $39,999+1=40,000$ or 0 , the integrate-input phase is terminated and the integratereference phase is begun by sampling the comparator output. If the comparator output is low corresponding to a negative average analog input voltage, the digital processor applies a low and a high to inputs A and B, respectively, to apply the reference voltage stored on $C_{r e f}$ to the buffer. If the comparator output is high corresponding to a positive input, inputs A and B are made high and low, respectively, and the negative of the stored reference voltage is applied to the buffer. In either case, the processor automatically selects the proper logic state to cause the integrator to ramp back toward zero at a rate proportional to the reference voltage. The time required to return to zero is measured by the counter in the digital processor. The phase is terminated when the integrator output crosses zero and the counter contents are transferred to the register, or when the BCD counter reaches 20,000 and the over-range indication is activated. When activated, the over-range indication blanks all but the most significant digit and sign.
Seventeen parallel bits ($4-1 / 2$ digits) of information are strobed into the buffer register at the end of the integration phase. Information for each digit is multiplexed out to the BCD outputs (TL503C) or the sevensegment drivers (TL502C) at a rate equal to the oscillator frequency divided by 200.

[^8]FIGURE 1. VOLTAGE WAVEFORMS AND TIMING DIAGRAM

to contmue or resume normaf operation.

* This is the state of the comparator output as determined by the polarity of the analog input during the integrate input phase.
stazчs eiea N

description of analog processors

The TL500 and TL501 analog processors are designed to automatically compensate for internal zero offsets, integrate a differential voltage at the analog inputs, integrate a voltage at the reference input in the opposite direction, and provide an indication of zero-voltage crossing. The external control mechanism may be a microcomputer and software routing, discrete logic, or a TL502C or TL503C controller. The TL500 and TL501 are designed primarily for simple, cost-effective, dual-slope analog-todigital converters. Both devices feature true differential analog inputs, high input impedance, and an internal reference-voltage source. The TL500 provides 4-1/2-digit readout accuracy when used with a precision external reference voltage. The TL501 provides 100-ppm linearity error and 3-1/2-digit accuracy capability. These devices are manufactured using TI^{\prime} s advanced technology to produce JFET, MOSFET, and bipolar devices on the same chip. The TL500C and TL501C are characterized for operation over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TL5001 and TL5011 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

J PACKAGE
(TOP VIEW)

DW PACKAGE
(TOP VIEW)

ANALOG INPUT $1 \square 1$	$\mathrm{U}_{20} \mathrm{C}_{Z}$
ANALOG INPUT $2 \square_{2}$	$19 . \mathrm{C}_{2}$
REF OUTPUT ${ }^{3}$	${ }^{18} \mathrm{~V}_{\text {CC }}+$
REF INPUT 4	17 BUFFER OUTPUT
ANALOG GND \square^{5}	16 INTEGRATOR INPUT
$\mathrm{c}_{\text {ref }}+\square^{6}$	15 Integrator output
$\mathrm{c}_{\text {ref }}-\square^{\text {7 }}$	${ }^{14}$ V CCC_{-}
NC-8	13 NC
CONTROL B INPUT ${ }^{9}$	12 DIGITAL COMMON
CONTROL A INPUT 10	11. COMPARATOR OUTPUT

NC - No internal connection

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	LINEARITY ERROR	PACKAGE	
		CERAMIC DIP (J)	$\begin{gathered} \text { WIDE-BODY SO } \\ \text { (DW) } \end{gathered}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	C .. FS	TL500CJ	T \quad - ${ }^{\text {DW }}$
	$v \cdot \mathrm{FS}$	TL501CJ	TLSu: ${ }_{\text {NW }}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	0.005\% FS	TL5001J	TL50 $11 \sim$
	0.05\% FS	TL5011J	TL50: ${ }^{\prime}$

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Positive supply voltage, $\mathrm{V}_{\mathrm{CC}}+$ (see Note 1). +18 V
Negative supply voltage, VCC-...... - 18 V
Input voltage, V_{1}. $\pm V_{C C}$
Comparator output voltage range (see Note 2) o V to $\mathrm{V}_{\mathrm{CC}}+$
Comparator output sink current (see Note 2) 20 mA
Buffer, reference, or integrator output source current (see Note 2) 10 mA
Total dissipation . See Dissipation Rating Table
Operating free-air temperature range: TL500I, TL5011 . 40 to $85^{\circ} \mathrm{C}$ TL500C, TL501C . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
NOTES. 1. Voltage values, except differential voltages, are with respect to the analog ground common pin tied together.
2. Buffer, integrator, and comparator outputs are not short-circuit protected.
dISSIPATION RATING TABLE

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING
	1125 mW	$9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	720 mW	585 mW
J	1025 mW	$8.2 \mathrm{mWV} /{ }^{\circ} \mathrm{C}$	656 mW	533 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Positive supply voltage, $\mathrm{V}_{\mathrm{CC}}+$		7	12	15	V
Negative supply voltage, V_{CC} -		-9	-12	-15	V
Reference input voitage, $V_{\text {ref (l) }}$		0.1		5	V
Analog input voltage, V_{1}				± 5	V
Differential analog input voltage. VID				10	V
High-level input voltage, V_{IH}	Control inputs	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	Control inputs			0.8	V
Peak positive integrator output voltage, $\mathrm{V}_{O M}+$		+9			v
Peak negative integrator output voltage, VOM -		-5			V
Full scale input voltage				$2 V_{\text {ref }}$	
Autozero and reference capacitors, C_{Z} and $\mathrm{C}_{\text {ref }}$		0.2			$\mu \mathrm{F}$
Integrator capacitor, C_{X}		0.2			${ }_{\mu} \mathrm{F}$
Integrator resistor, RX_{X}		15		100	k?
Integrator time constant, $\mathrm{R}_{\mathrm{X}} \mathrm{C}_{\mathrm{X}}$		See			
Free-air operating temperature, $\mathrm{T}_{\mathbf{A}}$	TL5001, TL5011	-40		85	${ }^{\circ} \mathrm{C}$
	TL500C, TL501C	0		70	
Maximum conversion rate with TL502C or TL503C			3	12.5	conv/sec

system electrical characteristics at $\mathrm{VCC}_{\mathrm{C}} \pm= \pm 12 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1.000 \pm 0.03 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted) (see Figure 3)

PARAMETER	TEST CONDITIONS	TL501			TL500			UNIT
		MIN	TYP	MAX	M ${ }^{\text {N }}$	TYP	MAX	
Zero error			50	300		10	30	$\mu \mathrm{V}$
Linearity error relative to full scale	$\mathrm{V}_{1}=2 \mathrm{~V}$ to 2 V		0.005	0.05		0.001	0.005	\%FS
Full scale temperature coefficient	$\mathrm{T}_{\mathrm{A}}=$ full range	6			6			ppm $/{ }^{\circ} \mathrm{C}$
Temperature coefficient of zero error		Λ			1			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Rollover error ${ }^{\dagger}$				500		30	100	$\mu \mathrm{V}$
Equivalent peak-to-peak input noise voltage		4				20		$\mu \mathrm{V}$
Analog input resistance	Pin 1 or 2	10^{9}				10^{9}		8
Common-mode rejection ratio	$V_{\text {IC }}=-1 \mathrm{~V}$ to +1 V	86				90		dB
Current into analog input	$V_{1}= \pm 5 \mathrm{~V}$	50				50		pA
Supply voltage rejection ratio		90				90		dB

${ }^{\dagger}$ Rollover error is the voltage difference between the conversion results of the full-scale positive 2 V and the full-scale negative 2 V . NOTE 3. The minimum integrator time constant may be found by use of the following formula:

$$
\text { Minmum } R_{X} C_{X}=\frac{V_{I D}\left\{f \text { ull scale } t_{1}\right.}{\left.V_{O M--} \cdot V_{1\{p i n} 2\right\}}
$$

where
$V_{1 D}=$ voltage at pin with respect to pin 2
$V_{1}(\operatorname{pin} 2)=$ voltage at pın 2 with respect to analog ground
$\mathrm{t}_{1}=$ input integration time seconds

TL5001, TL500C, TL501I, TL501C

ANALOG PROCESSORS

electrical characteristics at $\mathrm{V}_{\mathrm{CC}} \pm= \pm 12 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Figure 3)
integrator and buffer operational amplifiers

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{10}	Input offset voltage			15		mV
${ }_{1 /}{ }^{18}$	Input bias current			50		pA
$\mathrm{V}_{\mathrm{OM}+}$	Positive output voltage swing		9	11		V
VOM -	Negative output voltage swing		-5	-7		V
Avo	Voltage amplification			110		dB
B_{1}	Unity-gain bandwidth			3		MHz
CMRR	Common mode rejection	$\mathrm{V}_{\mathrm{IC}}=-1 \mathrm{~V}$ to +1 V		100		dB
SR	Output slew rate			5		$\mathrm{V} / \mu \mathrm{s}$

comparator

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{10}	Input offset voitage			15		mV
${ }_{1 B}$	Input bias current			50		pA
AVD	Voltage amplification			100		dB
V_{OL}	Low-level output voltage	$\mathrm{IOL}=1.6 \mathrm{~mA}$		200	400	mV
${ }^{1}$	High-level output current	$\mathrm{VOH}=3 \mathrm{~V}$		5	20	nA

voltage reference output

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {ref }}(0)$	Reference voltage		1.12	1.22	1.32	V
$\alpha V_{\text {ref }}$	Reference-voltage temperature coefficient	$\mathrm{T}_{\mathrm{A}}=$ full range		80		ppm $/{ }^{\circ} \mathrm{C}$
r_{0}	Reference output resistance			3		Ω

logic control section

	PARAMETER	TEST CONDITIONS	MIN	TYP
$I_{I H}$	High-level input current	$V_{I H}=2 \mathrm{~V}$	1	10
I_{IL}	Low-level input current	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-40	-300

total device

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$I_{\text {CC }+}$	Positive supply current		15	20	mA
$\mathrm{I}_{\mathrm{CC}-}$	Negative supply current			12	18

PARAMETER MEASUREMENT INFORMATION

NOTES: C. Tests are started approximately 5 seconds after power-on.

- Capacitors used are TRW's $\times 363$ UW polypropylene or equivalent for $C_{X}, C_{r e f}$, and C_{Z}; however for $C_{\text {ref }}$ and C_{Z} film-dielectric capactors may be substituted

FIGURE 3. TEST CIRCUIT CONFIGURATION

external-component selection guide

The autozero capacitor C_{2} and reference capacitor $\mathrm{C}_{\text {ref }}$ should be within the recommended range of operating conditions and should have low-leakage characteristics. Most film-dielectric capacitors and some tantalum capacitors provide acceptable results. Ceramic and aluminum capacitors are not recommended because of their relatively high-leakage characteristics.

The integrator capacitor C_{X} should also be within the recommended range and must have good voltage linearity and low dielectric absorption. A polypropylene-dielectric capacitor similar to TRW's X363UW is recommended for 4-1/2-digit accuracy. For 3-1/2-digit applications, polyester, polycarbonate, and other film dielectrics are usually suitable. Ceramic and electrolytic capacitors are not recommended.
Stray coupling from the comparator output to any analog pin (in order of importance 17, 18, 14, 7, 6, $13,1,2,15$) must be minimized to avoid oscillations. In addition, all power supply pins should be bypassed at the package, for example, by a $0.01-\mu \mathrm{F}$ ceramic capacitor.

Analog and digital common are internally isolated and may be at different potentials. Digital common can be within 4 V of positive or negative supply with the logic decode still functioning properly.
The time constant $R \times C \times$ should be kept as near the minimum value as possible and is given by the formula:

$$
\text { Minimum } R X C X=\frac{V_{I D}(f u l l \text { scale }) t_{1}}{V_{O M}--V_{1}(\text { pin2 })}
$$

where:

$$
\begin{aligned}
V_{I D}(\text { full scale }) & =\text { Voltage on pin } 1 \text { with respect to pin } 2 \\
t_{1} & =\text { Input integration time in seconds } \\
V_{l(p i n 2)} & =\text { Voltage on pin } 2 \text { with respect to analog ground. }
\end{aligned}
$$

description of digital processors

The TL502C and TL503C are control logic devices designed to complement the TL500 and TL501 analog processors. They feature interdigit blanking, over-range blanking, an internal oscillator, and a fast display scan rate. The internal-oscillator input is a Schmitt trigger circuit that can be driven by an external clock pulse or provide its own time base with the addition of a capacitor. The typical oscillator frequency is 120 kHz with a $470-\mathrm{pF}$ capacitor connected between the oscillator input and ground.
The TL502C provides seven-segment-display output drivers capable of sinking 100 mA and compatible with popular common-anode displays. The TL503C has four BCD output drivers capable of $100-\mathrm{mA}$ sink currents. The code (see next page and Figure 4) for each digit is multiplexed to the output drivers in phase with a pulse on the appropriate digit-enable line at a digit rate equal to fosc, divided by 200. Each digit-enable output is capable of sinking $20-\mathrm{mA}$.
The comparator input of each device, in addition to monitoring the output of the zero-crossing detector in the analog processor, may be used in the display test mode to check for wiring and display faults. A high logic level (2 to 6.5 V) at the trigger input with the comparator input at or below 6.5 V starts the integrate-input phase. Voltage levels equal to or greater than 7.9 V on both the trigger and comparator inputs clear the system and set the BCD counter to 20,000. When normal operation resumes, the conversion cycle is restarted at the auto zero phase.

These devices are manufactured using $I^{2} \mathrm{~L}$ and bipolar techniques. The TL502C and TL503C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

table of special functions
$V_{C C}=5 \mathrm{~V} \pm 10 \%$

TRIGGER INPUT	COMPARATOR INPUT	FUNCTION
$\mathrm{V}_{1} \leq 0.8 \mathrm{~V}$	$\mathrm{~V}_{1} \leq 6.5 \mathrm{~V}$	Hold at auto-zero cycle after completion of conversion
$2 \mathrm{~V} \leq \mathrm{V}_{1} \leq 6.5 \mathrm{~V}$	$\mathrm{~V}_{1} \leq 6.5 \mathrm{~V}$	Normal operation (continuous conversion)
$\mathrm{V}_{1} \leq 6.5 \mathrm{~V}$	$\mathrm{~V}_{1} \geq 7.9 \mathrm{~V}$	Display Test: All BCD outputs high
$\mathrm{V}_{1} \geq 7.9 \mathrm{~V}$	$\mathrm{~V}_{1} \leq 6.5 \mathrm{~V}$	Internal Test
Both inputs to go simultaneously	Systern clear: Sets BCD counter to 20.000. sin$\geq 7.9 \mathrm{~V}$	When normal operation is resumed, cycle begins with Auto Zero.

digit 5 (MOST SIGNIFICANT DIGIT) CHARACTER CODES

CHARACTER	TL502C SEVEN-SEGMENT LINES							TLI503C BCD OUTPUT LINES			
	A	B	C	D	E	F	G	03	02	01	00
								8	4	2	1
-	H	H	H	H	L	L	L	H	L	H	L
+ 1	H	L	L	H	L	L.	L	H	H	H	L.
-	L	H	H	L	H	H	L	H	L	H	H
-1	L	L	L	L	H	H	L	H	H	H	H

DIGITS 1 THRU 4 NUMERIC CODE (See Figure 4)

NUMBER	TLS502C SEVEN-SEGMENT LINES							TL503C BCD OUTPUT LINES			
	A	B	C	D	E	F	G	$\begin{array}{r} 03 \\ 8 \end{array}$	$\begin{array}{r} \mathrm{O} 2 \\ 4 \end{array}$	$\begin{array}{r} 01 \\ 2 \end{array}$	001
0	L	L	L	L	L	L	H	L	L	L	L
1	H	L	1	H	H	H	H	L	L	L	H
2	L	L	H	L	L	H	L	L	L	H	L
3	L	L	1	L	H	H	1	L	1	H	H
4	H	L	L	H	H	L	L	L	H	L	L
5	L	H	L	L	H	L	L	L	H	L	H
6	L	H	L	L	L	L	L	L	H	H	L
7	L	L	L	H	H	H	H	L	H	H	H
8	L	L	L	L	L	L	L	H	L	L	L
9	L	L	L	L	H	L	L	H	L	L	H

$H=$ high level, $L=$ low level
schematics of inputs and outputs

COMPARATOR AND TRIGGER INPUT	SEGMENT DRIVERS-TLSO2C BCD DRIVERS-TL503G
CONTROL A AND B OUTPUTS	DIGIT-ENABLE OUTPUTS

TL502C, TL503C
DIGITAL PROCESSORS
absolute maximum ratings

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 4)		7	V
Input voltage, $\mathrm{V}_{\mathbf{I}}$	Oscillator	5.5	V
	Comparator or Trigger	. 9	
Output current	BCD or Segment drivers	120	mA
	Digit-enable - jts	40	
	Pin 18 (TLE . only)	20	
Total power dissipation at (or below) $30^{\circ} \mathrm{C}$ free-air temperature (see Note 5)		1100	mW
Operating free-air temperature range		0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150	${ }^{\circ}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds		260	${ }^{\circ} \mathrm{C}$

NOTES: 4. Voltage values are with respect to the network ground terminal.
5. For operation above $30^{\circ} \mathrm{C}$ free-air temperature, derate linearly to 736 mW at $70^{\circ} \mathrm{C}$ at the rate of $9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

recommended operating conditions

	MIN	NOM	MAX
UNIT			
Supply voltage, $V_{C C}$	4.5	5	5.5
High-level input voltage, $V_{I H}$	2		V
Low-level input voltage, $V_{I L}$	Comparator and trigger inputs		0.8
Operating free-air temperature	Comparator and trigger inputs	0	70

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TERMINAL	TEST CONDITIONS		TL502C			TL503C			UNIT
					Min	TYp	MAX	MiN	TYP	MAX	
$V_{\text {IK }}$	Input clamp voltage	All inputs	$\mathrm{VCC}=4.5 \mathrm{~V}$,	$1_{1}=-12 \mathrm{~mA}$		- 0.8	-1.5		-0.8	-1.5	V
V_{T} -	Positive-going mput threshold voltage	Oscillator	$\mathrm{v}_{C C}=5 \mathrm{~V}$		1.5			15			V
V_{T} -	Negative-going input threshold voltage	Oscillator	$V_{C C}=5 \mathrm{~V}$		0.9			0.9			V
V_{T} - $-V_{T}$..	Hysteresis	Oscillator	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		0.4	0.6	0.8	0.4	05	0.8	
${ }^{1}$ -	Input current at positive-going input threshold voltage	Oscillator	$\mathrm{VCC}=5 \mathrm{~V}$		-40	-94	- 170	-40	-94	-170	$\mu \mathrm{A}$
'T -	Input current at negative-going input threshold voltage	Oscillator	$V_{C C}=5 v$		40	117	170	40	117	170	$\mu \mathrm{A}$
VOH	High-level output voltage	Digit enable	$V_{C C}=45 \mathrm{~V}$.	${ }^{1} \mathrm{OH}=\mathrm{O}$	4.15	4.4		4.15	44		V
		Pin 18 (TL502C only)			4.25	44					
		Control A and B			4.25	4.4		4.25	4.4		
VOL	Low-level output voltage	Digit enable	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=20 \mathrm{~mA}$					02	0.5	V
		Pin 18 (TL502C oniy)		$\mathrm{I}^{\mathrm{OL}}=10 \mathrm{~mA}$		0.15	0.4				
		Control A and B		$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}$		0088	0.4		0.088	0.4	
		Segment drivers		$\mathrm{IOL}^{\text {OL }}=100 \mathrm{~mA}$		0.17	0.3				
		$B C D$ drivers		$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$					017	0.3	
1	Input current	Comparator, Trigger	$\mathrm{V}_{\mathrm{CC}}=55 \mathrm{~V}, \quad \mathrm{~V}_{1}=5.5 \mathrm{~V}$			65	100		65	100	$\mu \mathrm{A}$
		Oscillator					1			1	mA
IHH	High-level input current	Comparator, Trigger	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$V_{1}=2.4 \mathrm{~V}$. 06	-1		-0.6	-1	mA
		Oscillator					0.5			0.5	
${ }_{\text {IL }}$	Low-level input voltage	Oscillator	$\mathrm{V}_{\mathrm{CC}}=55 \mathrm{~V}$.	$\mathrm{V}_{1}=0.4 \mathrm{~V}$		-0.1	-0.17		-0.1	-0.17	mA
		Comparator, Trigger				-1	-1.6		-1	-1.6	
lOH	High-level output current (Output transistor off)	Digit enable	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{0}=0.5 \mathrm{~V}$,	-2.5	-4		-2.5	-4		mA
		Pin 18 (TL502C onty)		$\mathrm{V}_{0}=0.5 \mathrm{~V}$	-0.5	-09					
		Control A and B		$\mathrm{V}_{0}=0.5 \mathrm{~V}$	-0.25	-04		-0.25	-0.4		
		Segment drivers		$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	025			0.25			
		BCD drivers		$V_{0}=5.5 \mathrm{~V}$							
${ }^{\text {O OL }}$	Low-level output current (Output transistor on)	Digit enable	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=3.55 \mathrm{~V}$	18	23					mA
${ }^{\text {I CC }}$	Supply current	$\mathrm{v}_{\text {CC }}$	$\mathrm{V}_{\mathrm{CC}}=55 \mathrm{~V}$			73	110		73	110	mA

TL502C, TL503C

DIGITAL PROCESSORS

$$
\text { special functions }{ }^{\dagger} \text { operating characteristics at } 25^{\circ} \mathrm{C} \text { free-air temperature }
$$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX
Input current into comparator or trigger inputs	$V_{C C}=5.5 \mathrm{~V} . \mathrm{V}_{1}=8.55 \mathrm{~V}$	1.2	1.8	mA
	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=6.25 \mathrm{~V}$	mA		

${ }^{\dagger}$ The comparator and trigger inputs may be used in the normal mode or to perform special functions. See the Table of Special Functions.

TYPICAL APPLICATION DATA
2
0
0
0
0
0
\vdots
0
0
0
ω

NOTE E: The BCD or seven-segment driver outputs are present for a partıcular digit slightly before the falling edge of that digit enable.
FIGURE 4. TL502C. TL503C DIGIT TIMING WITH $120-\mathrm{kHz}$ CLOCK SIGNAL AT OSCILLATOR INPUT

- 3-Digit Accuracy (0.1\%)
- 10-Bit Resolution
- Automatic Zero
- Internal Reference Voltage
- Single-Supply Operation
- High-Impedance MOS Input
- Designed for Use with TMS 1000 Type Microprocessors for Cost-Effective High-Volume Applications
- BI-MOS Technology
- Only 40 mW Typical Power Consumption

Caution. This device has limited built-in gate protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

description

The TL505C is an analog-to-digital converter building block designed for use with TMS1000 type microprocessors. It contains the analog elements loperational amplifier, comparator, voltage reference, analog switches, and switch drivers) necessary for a unipolar automatic-zeroing dual-slope converter. The logic for the dual-slope conversion can be performed by the associated MPU as a software routine or can be implemented with other components, such as the TL502 logic-control device.

The high-impedance MOS inputs permit the use of less expensive, lower value capacitors for the integration and offset capacitors and permit conversion speeds from 20 per second to 0.05 per second.
The TL505C is a product of TI's BI-MOS process, which incorporates bipolar and MOSFET transistors on the same monolithic circuit. The TL505C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TL505C

ANALOG-TO-DIGITAL CONVERTER

functional block diagram

NOTE: Analog and digital GND are internally connected together.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

> Supply voltage, VCC (see Note 1)
> Input voltage, pins 2, 4, 6, and 7
> Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 2) 1150 mW
> Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
> Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
> Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds . $260^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to the two ground terminals connected together.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to 736 mW at $70^{\circ} \mathrm{C}$ at the rate of $9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	7	9	15	V
Analog input voltage, V_{1}	0		4	\checkmark
Reference input voltage, $\mathrm{V}_{\text {reffl! }}$	0.5		3	V
High-level input voltage at A or $\mathrm{B}, \mathrm{V}_{1 \mathrm{H}}$	3.6		$\mathrm{V}_{\mathrm{CC}}+1$	\checkmark
Low-level input voltage at A or $\mathrm{B}, \mathrm{V}_{\text {IL }}$	0.2		1.8	V
Integrator capacitor, C_{X}	See "component selection"			
Integrator resistor, $\mathrm{RXX}^{\text {a }}$	0.5		2	M 1
Integration time, t_{1}	16.6		500	ms
Operating free-air temperature, $T_{\text {A }}$	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{V}_{\mathrm{C}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}(\mathrm{I})=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, connected as shown in Figure 1 (unless otherwise noted)

		\because TYP	P. $\%$,	. $\mathrm{r}_{\text {, }}$ ']
V_{OH} High-lever vurpur voltage at pin 8	${ }^{1} \mathrm{OH}=v$..U 8.5		v
I OH High-level output current at pin 8	$\mathrm{V}_{\mathrm{OH}}=7.5 \mathrm{~V}$	-100		$\mu \mathrm{A}$
VOL Low-level output voltage at pin 8	$\mathrm{I}^{\mathrm{OL}}=1.6 \mathrm{~mA}$	200	400	mV
VOM. Maximum peak output voltage	$\mathrm{R}_{\mathrm{X}} \geq 500 \mathrm{k} \Omega$	$V_{C C}-2 V_{C C}-1$		V
$V_{\text {refiol }}$ Reference output voltage	$\mathrm{I}_{\text {ref }}=-100 \mu \mathrm{~A}$	$1.15-1.22$	1.35	V
α Vref \quadTemperature coefficient of reference output voltage	$T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	± 100		ppm/ ${ }^{\circ} \mathrm{C}$
IIH High-level input current into A or B	$V_{1}=9 \mathrm{~V}$	1.	10	$\mu \mathrm{A}$
IIL Low-level input current into A or B	$V_{1}=1 \mathrm{~V}$	10	200	$\mu \mathrm{A}$
I \quad Current into analog input	$\mathrm{V}_{1}=0$ to $4 \mathrm{~V}, \quad \mathrm{~A}$ input at 0 V	± 10	± 200	pA
IIB Total integrator input bias current		± 10		pA
ICC Supply current	No load	4.5	8	mA

system electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{ref}}(\mathrm{I})=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, connected as shown in Figure 1 (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Zero error	$V_{1}=0$		0.1	0.4	mV
Linearity error	$V_{1}=0$ to 4 V		0.02	0.1	\% FS
Ratiometric reading	$V_{1}=V_{\text {ref }}(i)=1 \mathrm{~V}$	0.998	1.000	1.002	
Temperature coefficient of ratiometric reading	$V_{\text {ref(l) }}$ constant and $\approx 1 \mathrm{~V}$. $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}$		± 10		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

DEFINITION OF TERMS

Zero Error

The intercept (b) of the anolog-to-digital converter system transfer function $y=m x+b$, where y is the digital output, x is the analog input, and m is the slope of the transfer function, which is approximated by the ratometric reading.

Linearity Error

The maximum magnitude of the deviation from a straight line between the end points of the transfer function.

Ratiometric Reading

The ratio of negative integration time (t_{2}) to positive time (t) .

TL505C
analog-todigital converter

PRINCIPLES OF OPERATION

A block diagram of an MPU system using the TL505C is shown in Figure 1. The TL505C operates in a modified positive-integration, three-step, dual-slope conversion mode. The A/D converter waveforms during the conversion process are illustrated in Figure 2.

FIGURE 1. FUNCTIONAL BLOCK DIAGRAM OF TL505C INTERFACE WITH A MICROPROCESSOR SYSTEM

FIGURE 2. CONVERSION PROCESS TIMING DIAGRAMS

PRINCIPLES OF OPERATION (Continued)

The first step of the conversion process is the auto-zero period to. By the end of this period, the integrator offset is stored in the autozero capacitor, and the offset of the comparator is stored in the integrator capacitor. To achieve this end, the MPU takes the A and B inputs low, which closes S1 and S2. The output of the comparator is connected to the input of the integrator through the low-pass filter consisting of R_{Z} and C_{Z}. The closed loop of A1 and A2 seeks a null condition in which the offsets of the integrator and comparator are stored in C_{Z} and C_{X}, respectively. This null condition is characterized by a high-frequency oscillation at the output of the comparator. The purpose of $S 2 B$ is to shorten the amount of time required to reach the null condition.
At the conclusion of to, the MPU takes the A and B inputs both high, which closes S3 and opens all other switches. The input signal V_{1} is applied to the noninverting input of $A 1$ through $C_{Z} . V_{I}$ is then positively integrated by $A 1$. Since the offset of $A 1$ is stored in C_{Z}, the change in voltage across C_{X} is due to only the input voltage. Since the input is integrated in a positive integration during t_{1}, the output of A1 will be the sum of the input voltage, the integral of the input voltage, and the comparator offset, as shown in Figure 2. The change in voltage across capacitor $C_{X}\left(V_{C X}\right)$ during t_{1} is given by

$$
\begin{equation*}
\Delta V_{C X}(1)=\frac{V_{1} t 1}{R_{1} C X} \tag{1}
\end{equation*}
$$

where $R_{1}=R_{X}+R_{S 3 B}$ and $R_{S 3 B}$ is the resistance of switch S3B.
At the end of $t 1$, the MPU takes the A input low and the B input high, which closes S1 and S4 and opens all other switches. In this state, the reference is integrated by A1 in a negative sense until the integrator output reaches the comparator threshold. At this point, the comparator output goes high. This change in state is sensed by the MPU, which terminates $t 2$ by again taking the A and B inputs both low. During t_{2}, the change in voltage across C_{X} is given by

$$
\begin{equation*}
\Delta V_{C X}(2)=\frac{V_{\text {reft }}}{R_{2} C X} \tag{2}
\end{equation*}
$$

where $R_{2}=R_{X}+R_{S 4}+R_{\text {ref }}$ and $R_{r e f}$ is the equivalent resistance of the reference divider.
Since $\Delta V_{C \times 1}=-\Delta V_{C \times 2}$, equations (1) and (2) can be combined to give

$$
\begin{equation*}
V_{1}=V_{\text {ref }} \frac{R_{1} \cdot t_{2}}{R_{2} \cdot t_{1}} \tag{3}
\end{equation*}
$$

This equation is a variation on the ideal dual-slope equation, which is

$$
\begin{equation*}
V_{1}=V_{\text {ref }} \frac{t_{2}}{t_{1}} \tag{4}
\end{equation*}
$$

Ideally then, the ratio of R_{1} / R_{2} would be exactly equal to one. In a typical TL505C system where $R_{X}=1 \mathrm{M} \Omega$, the scaling error introduced by the difference in R_{1} and R_{2} is so small that it can be neglected, and equation (3) reduces to (4).

PRINCIPLES OF OPERATION (Continued)

component selection

The autozero capacitor C_{2} should be within the recommended range of operating conditions and should have low leakage characteristics. Most film-dielectric capacitors and some tantalum capacitors provide acceptable results. Ceramic and aluminum capacitors are not recommended because of their relatively high leakage characteristics.

The integrator capacitor $C \times$ should also be within the recommended range and must have good voltage linearity and low dielectric absorption. For 10-bit applications, polyster, polycarbonate, and other film dielectrics are usually suitable. If greater precision or stability is required, a polypropylene-dielectric capacitor similar to TRW's X363UW might be appropriate.
Stray coupling from the comparator output to any analog pin (in order of importance, 13, 11, 10, 2, 4) must be minimized to avoid oscillations. In addition, all power supply pins should be bypassed at the package, for example, by a $0.01-\mu \mathrm{F}$ ceramic capacitor
The time constant $R \times C \times$ should be kept as near the minimum value as possible and is given by the formula:

$$
\text { Minimum } \mathrm{R}_{X} \mathrm{C}_{X}=\frac{V_{(\mid \max)} t_{1}}{\left(V_{C C}-2 V-V_{1(\max)}\right)}
$$

where:
$\mathrm{t}_{1}=$ Input integration time in seconds,
$V_{I(\max)}=$ the maximum value of the analog input voltage,
$V_{C C}-2 V=$ the maximum voltage swing of the integrator input.

TYPICAL APPLICATION DATA

FIGURE 3. TL505C IN CONJUNCTION WITH A TMS 1000 SERIES MICROPROCESSOR FOR A 3-DIGITAL PANEL METER APPLICATION

FIGURE 4. AUDIO PEAK POWER METER

2

- Low Cost
- 7-Bit Resolution
- Monotonicity Over Entire A/D Conversion Range
- Ratiometric Conversion
- Conversion Speed . . . Approximately 1 ms
- Single-Supply Operation . . . Either Unregulated $8-\mathrm{V}$ to $18-\mathrm{V}$ (VCC2 Input), or Regulated $3.5-\mathrm{V}$ to $6-\mathrm{V}$ (VCC1 Input)

- $\mathbf{1 2}^{2}$ Technology

- Power Consumption at 5 V . . 25 mW Typ
- Regulated 5.5 V Output ($\leq 1 \mathrm{~mA}$)

description

The TL507 is a low-cost single-slope analog-todigital converter designed to convert analog input voltages between $0.25 \mathrm{~V}_{\mathrm{CC}} 1$ and 0.75 VCC1 into a pulse-width-modulated output code. The device contains a 7-bit synchronous counter, a binary weighted resistor ladder network, an operational amplifier, two comparators, a buffer amplifier, an internal regulator, and necessary logic circuitry. Integrated-injection logic ($\left.1^{2} \mathrm{~L}\right)$ technology makes it possible to offer this complex circuit at low cost in a small dual-in-line 8 -pin package.
In continuous operation, conversion speeds of up to 1000 conversions per second are possible. The TL507 requires external signals for cłock, reset, and enable. Versatility and simplicity of operation, coupled with low cost, makes this converter especially useful for a wide variety of applications.

The TL507l is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TL507C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC1 (see Note 1) . 6.5 V
Supply voltage, VCC2 . 20 V
Input voltage at analog input . 6.5 V
Input voltage at enable, clock, and reset inputs . $\pm 20 \mathrm{~V}$
On-state output voltage 6 V
Off-state output voltage . 20 V
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 2)....... 1000 mW
Operating free-air temperature range: TL 5071 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TL507C 0 to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds . $260^{\circ} \mathrm{C}$
NOTES: 1, Voltage values are with respect to network ground terminal unless otherwise noted.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to 520 mW at $85^{\circ} \mathrm{C}$ at the rate of $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TL5071，TL507C analog－todigital converter

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage， V_{CC}		3.5	5	6	V
Supply voltage， $\mathrm{V}_{\mathrm{CC} 2}$		8	15	18	V
Input voltage at analog input		0		5.5	V
Input voltage at chip enable，clock，and reset inputs				± 18	V
High－level input voltage， $\mathrm{V}_{1 \mathrm{H}}$ ，reset and enable		2			V
Low－level input voltage， $\mathrm{V}_{\text {IL }}$ ，reset and enable				0.8	V
On－state output voltage				5.5	V
Off－state output voltage				18	V
Clock frequency，fclock		0	125	150	kHz

electrical characteristics over recommended operating free－air temperature range，
$\mathrm{VCC1}^{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$（unless otherwise noted）
regulator section

PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
$\mathrm{V}_{\text {CCI }}$ Supply voltage（output）	$\mathrm{VCC2}=10$ to 18 V ．	$\mathrm{ICC1}^{\text {a }}$－ 0 to -1 mA	5	5.5	6	V
${ }^{\text {I CC1 }}$ Supply current	$\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}$ ．	$V_{C C 2}$ open		5	8	mA
ICC2 Supply current	$\mathrm{VCC2}=15 \mathrm{~V}$ ．	$\mathrm{V}_{\mathrm{CC} 1}$ open		7	10	mA

inputs

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{T+} Positive－going threshold voltage ${ }^{\ddagger}$	Clock Input				4.5	V
V_{T-} Negative－going threshoid voltage ${ }^{\ddagger}$			0.4			V
$\mathrm{V}_{\text {hys }}$ Hysteresis $\mathrm{V}_{\mathrm{T}+}+-\mathrm{V}_{T-1}$ ）			2	2.6	4	V
High－level input current	Reset，Enable，and Clock	$\mathrm{V}_{1}=2.4 \mathrm{~V}$		17	35	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=18 \mathrm{~V}$	130	220	320	
ILL Low－level input current		$V_{1}=0$			± 10	$\mu \mathrm{A}$
II Analog input current		$\mathrm{V}_{1}=4 \mathrm{~V}$		10	300	nA

output section

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\boldsymbol{t}}$ MAX	UNIT	
I_{OH}	High－level output current	$\mathrm{V}_{\mathrm{OH}}=18 \mathrm{~V}$	0.1	100
I_{OL}	Low－level output current	$\mathrm{V}_{\mathrm{OL}}=5.5 \mathrm{~V}$	5 A	
$\mathrm{~V}_{\mathrm{OL}}$	Low－level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	10	15

operating characteristics over recommended operating free－air temperature range，
$\mathrm{VCC}_{\mathrm{C}}=\mathrm{VCC}_{\mathrm{C}}=5.12 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
Overall error				± 80	mV
Differential nonlinearity	See Figure 1			± 20	mV
Zero error ${ }^{\ddagger}$	Binary count $=0$			± 80	mV
Scale error	Binary count $=127$			± 80	mV
Full scale input voltage ${ }^{\ddagger}$	Binary count $=127$	3.74	3.82	3.9	V
Propagation delay time from reset or enable			2		$\mu \mathrm{S}$

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ ．
\ddagger These parameters are linear functions of $V_{C C} 1$ ．

definitions

zero error
The absolute value of the difference between the actual analog voltage at the 01 H -to-00H transition and the ideal analog voltage at that transition.
overall error
The magnitude of the deviation from a straight line between the endpoints of the transfer function. differential nonlinearity

The maximum deviation of an analog-value change associated with a 1 -bit code change (1 clock pulse) from its theoretical value of 1 LSB.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. MONOTONICITY AND NONLINEARITY TEST CIRCUIT

TL5071, TL507C ANALOG-TO-DIGITAL CONVERTER

PRINCIPLES OF OPERATION

The TL507 is a single-slope analog-to-digital converter. All single-slope converters are basically voltage-to-time or current-to-time converters. A study of the functional block diagram shows the versatility of the TL507.

An external clock signal is applied through a buffer to a negative-edge-triggered synchronous counter. Binaryweighted resistors from the counter are connected to an operational amplifier used as an adder. The operational amplifier generates a signal that ramps from $0.75 \cdot V_{C C} 1$ down to $0.25 \cdot V_{C C}$. Comparator 1 compares the ramp signal to the analog input signal. Comparator 2 functions as a fault defector. With the analog input voltage in the range $0.25 \cdot V_{C C 1}$ to $0.75 \cdot V_{C C 1}$, the duty cycle of the output signal is determined by the unknown analog input, as shown in Figure 2 and the Function Table.

For illustration, assume $\mathrm{V}_{\mathrm{CC}} 1=5.12 \mathrm{~V}$,

$$
\begin{aligned}
0.25 \cdot V_{C C 1} & =1.28 \mathrm{~V} \\
1 \text { binary count } & =\frac{(0.75-0.25) V_{C C 1}}{128}=20 \mathrm{mV} \\
0.75 \cdot V_{\mathrm{CC} 1}-1 \text { count } & =3.82 \mathrm{~V}
\end{aligned}
$$

The output is an open-collector $n-p-n$ transistor capable of withstanding up to 18 V in the off state. The output is current limited to the 8 - to $12-\mathrm{mA}$ range; however, care must be taken to ensure that the output does not exceed 5.5 V in the on state.

The voltage regulator section allows operation from either an unregulated 8 - to $18-\mathrm{V}$ VCC2 source or a regulated 3.5- to 6-V $V_{C C 1}$ source. Regardless of which external power source is used, the internal circuitry operates at $V_{C C 1}$. When operating from a $V_{C C 1}$ source, $V_{C C 2}$ may be connected to $V_{C C 1}$ or left open. When operating from a $V_{C C}$ source, $V_{C C} 1$ can be used as a reference voltage output.

OUTPUTFOR

 INPUT LEVEL 1

OUTPUT FOR INPUT LEVEL 2

FIGURE 2

2

- Switch $\pm 10-\mathrm{V}$ Analog Signals
- TTL Logic Capability
- 5- to 30-V Supply Ranges
- Low (100 Ω) On-State Resistance
- High (1011 Ω) Off-State Resistance
- 8-Pin Functions

description

The TL601, TL604, TL607, and TL610 are a family of monolithic P-MOS analog switches that provide fast switching speeds with high $r_{\text {off }} / r_{\text {on }}$ ratio and no offset voltage. The p-channel enhancement-type MOS switches accept analog signals up to $\pm 10 \mathrm{~V}$ and are controlled by TTLcompatible logic inputs. The monolithic structure is made possible by BI-MOS technology, which combines p-channel MOS with standard bipolar transistors.

These switches are particularly useful in military, industrial, and commercial applications such as data acquisition, multiplexers, A / D and D / A converters, MODEMS, sample-and-hold systems, signal multiplexing, integrators, programmable operational amplifiers, programmable voltage regulators, crosspoint switching networks, logic interface, and many other analog systems.

The TL601 is an SPDT switch with two logic control inputs. The TL604 is a dual complementary SPST switch with a single control input. The TL607 is an SPDT switch with one logic control input and one enable input. The TL610 is an SPST switch with three logic control inputs. The TL610 features a higher $r_{\text {off }} / r_{\text {on }}$ ratio than the other members of the family.

The TL601M, TL604M, TL607M, and TL610M are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, the TL6011, TL6041, TL6071, and TL6101 are characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TL601C, TL604C, TL607C, and TL610C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

JG OR P PACKAGE

(TOP VIEW)
TL601

TL604

TL607

TL610

TYPICAL OF all inputs

TYPICAL OF ALL SWITCHES

TL601, TL604, TL607, TL610
 P-MOS ANALOG SWITCHES

logic symbols ${ }^{\dagger}$ and switch diagrams

FUNGTION TABLE

INPUTS		ANALOG SWITCH	
A ENABLE	S1		
X	L	OFF (OPEN)	OFF (OPEN)
L	H	OFF (OPEN)	ON (CLOSED)
H	H	ON (CLOSED)	OFF (OPEN)

INPUTS		ANALOG SWITCH	
A	B	C	S
L	X	X	OFF (OPEN)
X	L	X	OFF (OPEN)
X	X	L	OFF (OPEN)
H	H	H	ON (CLOSED)

†These symbols are in accordance with ANS|/IEEE Std 91-1984.
TL607 logic diagram (positive logic)

TL601, TL604, TL607, TL610 P.MOS ANALOG SWITCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC + (see Note 1) 30 V	
Supply voltage, VCC -	3 V
$V_{C C}+$ to $V_{C C}$ - supply voltage diff	tial . 35 V
Control input voltage	VCC +
Switch off-state voltage	30 V
Switch on-state current	10 mA
Operating free-air temperature range:	TL601M, TL604M, TL607M, TL610M . . . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	TL6011, TL604I, TL6071, TL6101 $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	TL601C, TL604C, TL607C, TL610C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature ($1,6 \mathrm{~mm}$) 1/16 inch	from case for 60 seconds: JG package $300^{\circ} \mathrm{C}$
Lead temperature ($1,6 \mathrm{~mm}$) $1 / 16$ inch	from case for 10 seconds: P package $260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to network ground terminal.
recommended operating conditions

	TL601M, TL604M Tiאn7M TIG1OM : \because ". : : $\because:-$	TL6011, TL604I $\because:$ NOM $: 3:$	TL601C. TL604C TL607r TIf: MIN :. : \because :	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}}+$ (see Figure 1)	\checkmark iv <u	10	5 , 4	V
Supply voltage, V_{CC} - (see Figure 1)	-5 -20 -25	$\begin{array}{lll}-5 & -20 & -25\end{array}$	$\begin{array}{lll}-5 & -20 & -25\end{array}$	\checkmark
$\mathrm{V}_{C C}+$ to V_{CC} - . supply voltage differential (see Figure 1)	$15-30$	15 30	$15 \quad 30$	V
High-level control input voltage, $\mathrm{V}_{1 \mathrm{H}}$	$2-5.5$	$2-5.5$	$2-5.5$	V
Low-level control input voltage, $\mathrm{V}_{1 \mathrm{~L}}$ _ All inputs	0.8	0.8	0.8	
Voltage at any analog switch (S) terminal	$\mathrm{VCC}_{-+8} \quad \mathrm{~V}_{\text {CC }+}$	$\mathrm{V}_{\mathrm{CC}-+8} \quad \mathrm{~V}_{\mathrm{CC}}+$	$\mathrm{V}_{\mathrm{CC}-+8} \quad \mathrm{~V}_{\mathrm{CC}}+$	V
Switch on-state current	10	10	10	mA
Operating free-air temperature, $\mathrm{T}_{\text {A }}$	-55 125	-25 -85	$0 \quad 70$	${ }^{\circ} \mathrm{C}$

TL601, TL604, TL607, TL610 P-MOS ANALOG SWITCHES

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=10 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-20 \mathrm{~V}$, analog switch test current $=1 \mathrm{~mA}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$			$\begin{gathered} \mathrm{TL6} __{\ldots} \mathrm{M} \\ \mathrm{TL6}{ }_{2} \mathrm{I} \end{gathered}$		TL6 _ C			UNIT
					MIN	TYP ${ }^{\ddagger}$ MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
	$I_{1 / H}$ High-level input current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				0.510		0.5	10	$\mu \mathrm{A}$
	ILL Low-level input current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$				$-50-250$		-50	-250	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {off }}$ Switch off-state current	$V_{l(s w)}=-10 \mathrm{~V},$ See Note 2		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-400		-500		PA
				$\mathrm{T}_{\mathrm{A}}=\mathrm{MAX}{ }^{\text { }}$		-50-100		-10	-20	HA
2	ron Switch on-state resistance	$V_{\text {lisw }} 10 \mathrm{~V}$. lolsw) 1 mA		$\begin{aligned} & \hline \text { TL601 } \\ & \text { TL604 } \\ & \text { TL607 } \\ & \hline \end{aligned}$		55100		75	200	Ω
				TL610		$40 \quad 80$		40	100	
$\begin{aligned} & \mathbf{O} \\ & \mathbf{0} \\ & \boldsymbol{0} \end{aligned}$		$\begin{aligned} & V_{\mid(s w)}=10 \mathrm{~V} \\ & I_{0(s w)}=-1 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \hline \text { TL601 } \\ & \text { TL604 } \\ & \text { TL607 } \\ & \hline \end{aligned}$		220400		220	600	
$\begin{aligned} & \boldsymbol{\omega} \\ & \underset{\sim}{0} \\ & \underset{\sim}{\infty} \\ & \stackrel{+}{2} \end{aligned}$				TL610		$120 \quad 300$		120	400	
	$\mathrm{r}_{\text {off }}$ Switch off-state resistance					25		20		$\mathrm{G} \Omega$
	$\mathrm{C}_{\text {on }}$ Switch on-state input capacitance	$\mathrm{V}_{\text {(lsw) }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$				16		16		pF
	$\mathrm{C}_{\text {off }}$ Switch off-state input capacitance	$\mathrm{V}_{(\mathrm{lsw}}=0 \mathrm{~V}_{1} \mathrm{f}=1 \mathrm{MHz}$				8		8		pF
	ICC + Supply current from VCC +			$\begin{array}{\|l\|} \hline \text { TL601 } \\ \text { TL60.4 } \end{array}$		$5 \quad 10$		5	10	mA
			Enable input high	TL607		510		5	10	
			Enable input low			35		3	5	
				TL610		$5 \quad 10$		5	10	
	ICC - Supply current from $\mathrm{V}_{\text {CC }}$ -	Logic imputis) at 5.5 V , All switch terminals npen		$\begin{array}{\|l\|} \hline \text { TL601 } \\ \text { TL.604 } \end{array}$		1225		12	-25	mA
			Enable input high	TL607		$-2.5-5$		-2.5	-5	
			Enable input low		-0.05-0.5			-0.05	-0.5	
				TL610		$12 \cdot 25$		1.2	25	

${ }^{\dagger}$ MAX is $125^{\circ} \mathrm{C}$ for M-suffix types, $85^{\circ} \mathrm{C}$ for 1 -suffix types, and $70^{\circ} \mathrm{C}$ for C -suffix types.
${ }^{\ddagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ except for $l_{\text {off }}$ at $T_{A}=\mathrm{MAX}$.
NOTE 2: The other terminal of the switch under test is at $\mathrm{V}_{\mathrm{CC}}^{+}+=10 \mathrm{~V}$.
switching characteristics, $V_{C C+}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 1 shows power supply boundary conditions for proper operation of the TL601 Series. The range of operation for supply $V_{C C}+$ from $+5 V$ to +25 V is shown on the vertical axis. The range of $V_{C C}-$ from -5 V to -25 V is shown on the horizontal axis. A recommended $30-\mathrm{V}$ maximum voltage differential from $V_{C C}+$ to $V_{C C}-$ governs the maximum $V_{C C}+$ for a chosen $V_{C C}-$ (or vice versa). A minimum recommended difference of 15 V from $V_{C C}+$ to $V_{C C}$ - and the boundaries shown in Figure 1 allow the designer to select the proper combinations of the two supplies.

The designer-selected $V_{C C}+$ supply value for a chosen $V_{C C}$ - supply value limits the maximum input voltage that can be applied to either switch terminal; that is, the input voltage should be between VCC +8 V and $\mathrm{V}_{\mathrm{CC}}+$ to keep the on-state resistance within specified limits.

RECOMMENDED COMBINATIONS
OF SUPP LY VOLTAGES

FIGURE 1

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
NOTES: A. The pulse generator has the following characteristics:
$Z_{\text {out }}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$.
B. C_{L} includes probe and $\mu \mathrm{g}$ capacitance.

$v_{\mathrm{O}}=(10 \mathrm{~V}) \frac{1 \mathrm{ks}}{1 \mathrm{k} \Omega+r_{\mathrm{On}}}$
VOLTAGE WAVEFORMS

FIGURE 2

TYPICAL CHARACTERISTICS

M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
SWITCH ANALOG VOLTAGE
M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
SWITCH ANALOG VOLTAGE
M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
1000 SWITCH ANALOG VOLTAGE
M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
SWITCH ANALOG VOLTAGE
M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
SWITCH ANALOG VOLTAGE

FIGURE 3

M-SUFFIX DEVICES
I-SUFFIX DEVICES
SWITCH ON-STATE RESISTANCE
vs
FREE-AIR TEMPERATURE

FIGURE 4

- Low Clock-to-Cutoff-Frequency Ratio Error

$$
\text { TLC04/MF4A-50 . . } \pm 0.8 \%
$$

$$
\text { TLC14/MF4A-100 . . } \pm 1 \%
$$

- Filter Cutoff Frequency Dependent Only on External-Clock Frequency Stability
- Minimum Filter Response Deviation Due to External Component Variations Over Time and Temperature
- Cutoff Frequency Range from 0.1 Hz to $30 \mathrm{kHz}, \mathrm{V}_{\mathrm{CC}} \pm= \pm 2.5 \mathrm{~V}$
- 5-V to 12-V Operation
- Self Clacking or TTL-Compatible and CMOSCompatible Clock Inputs
- Low Supply Voltage Sensitivity
- Designed to be Interchangeable with National MF4-50 and MF4-100

description

The TLC04/MF4A-50 and TLC14/MF4A-100 are monolithic Butterworth low-pass switched-capacitor filters. Each is designed as a low-cost, easy-to-use device providing accurate fourth-order low-pass filter functions in circuit design configurations.

Each filter features cutoff frequency stability that is dependent only on the external-clock frequency stability. The cutoff frequency is clock tunable and has a clock-to-cutoff frequency ratio of $50: 1$ with less than $\pm 0.8 \%$ error for the TLCO4/MF4A-50 and a clock-to-cutoff frequency ratio of 100:1 with less than $\pm 1 \%$ error for the TLC14/MF4A-100. The input clock features self-clocking or TTL- or CMOS-compatible options in conjunction with the level shift (LS) pin.
The TLC04M/MF4A-50M and TLC14M/MF4A-100M are characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLCO4I/MF4A-50I and TLC14I/MF4A-100I are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC04C/MF4A-50C and TLC 14C/MF4A-100C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

AVAILABLE OPTIONS

$\mathrm{T}_{\mathbf{A}}$	CLOCK-TO-CUTOFF FREQUENCY RATIO	PACKAGE	
		SMALL OUTLINE (D)	PLASTIC DIP (P)
$\begin{gathered} 0^{\circ} \mathrm{C} \\ \text { to } \\ 70^{\circ} \mathrm{C} \end{gathered}$	$50: 1$ $100 \cdot 1$	TLCO4CD/MF4A-50CD TLC14CDMF4A.100CD	TLCO4CP/MF4A-50CP TLC 14CP/MF4A-100CP
$\begin{gathered} -40^{\circ} \mathrm{C} \\ \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 50: 1 \\ & 100: 1 \end{aligned}$	TLC04ID/MF4A-50ID TLC14ID/MF4A-100ID	TLC04IP/MF4A-50IP TLC14IP/MF4A-100IP
$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{array}{r} 50: 1 \\ 100: 1 \end{array}$		TLC04MP/MF4A-50MP TLC14MP/MF4A-100MP

The D package is available taped and reeled. Add the suffix R to the device type le.g., TLCO4CDR/MF4A-50CDR).
pin description

PIN NAME	NO.	1/0	DESCRIPTION
AGND	6	1	Analog Ground - The noninverting input to the operational amplifiers of the Butterworth fourth-order lowpass filter.
CLKIN	1	I	Clock \ln - The clock input terminal for CMOS-compatible clock or self-clocking options. For either option, the Level Shift (LS) terminal is at VCC _ . For self-clocking, a resistor is connected between the CLKIN and CLKR terminal pins and a capacitor is connected from the CLKIN terminal pin to ground.
CLKR	2	1	Clock R - The clock input for a TTL-compatible clock. For a TTL clock, the level shift pin is connected to mid-supply and the CLKIN pin may be left open, but it is recommended that it be connected to either $V_{C C}+$ or $V_{C C}$-.
FII TER IN	8	1	Filter Input
1 R OUT	5	0	Burterworth fourth-arder low-pass Filter Output
LS	3	1	Level Shift - This terminal accommodates the various input clocking options. For CMOS-compatible clocks or self-clocking, the level-shift terminal is at V_{CC} - and for TTL-compatible clocks, the level-shift terminal is at mid-supply.
VCC +	7	1	Positive supply voltage terminal
VCC -	4	1	Negative supply voltage terminal

TLC04/MF4A-50, TLC14/MF4A-100 BUTTERWORTH FOURTH-ORDER LOW.PASS SWITCHED-CAPACITOR FILTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $\mathrm{VCC}_{\mathrm{C}}$ (see Note 1).
$\pm 7 \mathrm{~V}$
Operating free-air temperature range: TLC04M/MF4A-50M, TLC14M/MF4A-100M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ TLC04I/MF4A-50I, TLC14I/MF4A-1001 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ TLC04C/MF4A-50C, TLC14C/MF4A-100C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds . $260^{\circ} \mathrm{C}$
NOTE 1: All voltage values are with respect to the AGND terminal.
recommended operating conditions

			TLC04/MF4A-50		TIC14/MF4A-100		UNIT
			MiN	MAX	":lis,	MAX	
$\mathrm{V}_{\mathrm{CC}+}$	Positive supply voltage		2.25	6	4. 20	6	V
$V_{\text {cc }}$ -	Negative supply voltage		-2.25	-6	-2.25	-6	\checkmark
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$V_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
${ }^{\text {f clock }}$	Clock frequency (see Note 2)	$V_{C C \pm}= \pm 2.5 \mathrm{~V}$	5	1.5×10^{6}	5	1.5×10^{6}	Hz
		$\mathrm{VCC}_{ \pm}= \pm 5 \mathrm{~V}$	5	2×10^{6}	5	2×10^{6}	
f_{co}	Cutoff frequency (see Note 3)		0.1	40×10^{3}	0.05	20×10^{3}	Hz
${ }^{T} A$	Operating free-air temperature	TLC04M/MF4A-50M, TLC $14 \mathrm{M} / \mathrm{MF} 4 \mathrm{~A}-100 \mathrm{M}$	-55	125	-55	125	${ }^{\circ} \mathrm{C}$
		TLC04I/MF4A-501, TLC141/MF4A-1001	-40	85	-40	85	
		TLC04C/MF4A-50C, TLC14C/MF4A-100C	0	70	0	70	

NOTES: 2. Above 250 kHz , the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.
3. The cutoff frequency is defined as the frequency where the response is 3.01 dB less than the de gain of the filter.

TLCO4/MF4A-50, TLC14/MF4A-100

BUTTERWORTH FOURTH-ORDER LOW-PASS
SWITCHED-CAPACITOR FILTERS
electrical characteristics over recommended operating free-air temperature range, $\mathrm{VCC}+=2.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-2.5 \mathrm{~V}, \mathrm{f}_{\text {clock }} \leq 250 \mathrm{kHz}$ (unless otherwise noted)
filter section

PARAMETER			TEST CONDITIONS	TI C04/MF4A-50			TLC14/MF4A-100			UNIT	
			A.:	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
Voo	Output voltage offset				25				50		mV
VOM Peak output voltages		$\mathrm{VOM}+$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	1.8	2		1.8	2		V	
		VOM -		-1.25	-1.7		-1.25	-1.7			
Ios	Short-circuit output current	Source	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,		-0.5			-0.5		mA	
		Sink	See Note 4		4			4			
lcc	Supply current		$\mathrm{f}_{\text {clock }}=250 \mathrm{kHz}$		1.2	2.25		1.2	2.25	mA	

NOTE 4: IOS (source current) is measured by forcing the output to its maximum positive voltage and then shorting the output to the negative supply (V_{CC} -) terminal. IOS (sink current) is measured by forcing the output to its maximum negative voltage and then shorting the output to the positive supply (VCC_{+}) terminal.
operating characteristics over recommended operating free-air temperature range, $\mathrm{VCC}+=2.5 \mathrm{~V}$,
VCC $-=-2.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TLC04/MF4A-50			TLC14/MF4A-100			UNIT
			MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX	
Maxımum clock frequency, $f_{\text {max }}$	See Note 2		1.5	3		1.5	3		MHz
Clock-to-cutoff-frequency ratio (f ${ }_{\text {clock }} / f_{\text {co }}$)	${ }^{\text {f Clock }}$ $\leq 250 \mathrm{kHz}, \quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		49.27	50.07	50.87	99	100	101	
Temperature coefficient of clock-to-cutoff frequency ratio	$\mathbf{f}_{\text {clock }} \leq 250 \mathrm{kHz}$		± 25			± 25			ppm/ $/{ }^{\circ} \mathrm{C}$
Frequency response above and below cutoff frequency (see Note 5)	$\begin{aligned} & \mathrm{f}_{\mathrm{CO}}=5 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{Clk}}-250 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$f=6 \mathrm{kHz}$	-7	757	-7.1				dB
		$t=4.5 \mathrm{kHz}$	- 1.7	-1.46	-1.3				
	$\begin{aligned} & \mathrm{f}_{\mathrm{CO}}=2.5 \mathrm{kHz}, \\ & \mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$f=3 \mathrm{kHz}$				-7.9	-7.42	-7.1	dB
		$f=2.25 \mathrm{kHz}$				- 1.7	-1.51	-1.3	
Dynamic range (see Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			78			dB
Stop-band frequency attentuation at $2 f_{c o}$	$\mathrm{f}_{\text {clock }} \leq 250 \mathrm{kHz}$		24	25		24	25		dB
DC voltage amplification	$\mathrm{f}_{\text {clock }} \leq 250 \mathrm{kHz}, \quad \mathrm{RS} \leq 2 \mathrm{k} \Omega$		-0.15	0	0.15	-0.15	0	0.15	dB
Peak-to-peak clock feedthrough voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5			5			mV

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 2. Above 250 kHz , the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.
5. The frequency responses at f are referenced to a dc gain of 0 dB .
6. The dynamic range is referenced to $1.06 \mathrm{~V} \mathrm{rms}(1.5 \mathrm{~V}$ peak) where the wideband noise over a $30-\mathrm{kHz}$ bandwidth is typically $106 \mu \mathrm{~V}$ rms for the TLCO4/MF4A-50 and $135 \mu \mathrm{~V}$ rms for the TLC14/MF4A-100.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{f}_{\text {clock }} \leq 250 \mathrm{kHz}$, (unless otherwise noted)
filter section

PARAMETER		TEST CONDITIONS	TLC04/MF4A-50			TLC 14/MF4A-100			UNIT	
		MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
$\mathrm{V}_{\text {OO }}$ Output voltage offset					150			200		mV
$V_{\text {OM }}$ Peak output voltages	$\mathrm{V}_{\text {OM }}+$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.75	4.3		3.75	4.5		V	
	$\mathrm{V}_{\mathrm{OM} \text { - }}$		-3.75	-4.1		-3.75	-4.1			
Ios Short-circuit output current	Soutce	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ See Note 4		-2			-2		mA	
	Sink			5			5			
${ }^{\text {l CC }}$ Supply current		$\mathrm{f}_{\text {clock }}=250 \mathrm{kHz}$		1.8	3		1.8	3	mA	
$\mathrm{k}_{\text {sus }}$ Supply voitage sensitivity (see Figures 1 and 2)				-30			-30		dB	

NOTE 4: IOS (source current) is measured by forcing the output to its maximum positive voltage and then shorting the output to the negative supply ($V_{C C}-1$ terminal. IOS (sink current) is measured by forcing the output to its maximum negative voltage and then shorting the output to the positive supply ($V_{C C}+$) terminal.
clocking section

PARAMETER		TEST CONDITIONS ${ }^{\ddagger}$	MIN	TYP ${ }^{\text {¢ }}$	MAX	UNIT
$V_{\boldsymbol{T}+}+$ Positive-going input threshold voltage	CLKIN	$\mathrm{V}_{\mathrm{CC}+}=10 \mathrm{~V}, \mathrm{~V}_{\text {CC- }}=0$	6.1	7	8.9	
		$\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC}-}=0$	3.1	3.5	4.4	V
V_{T} - Negative-going input threshold voltage		$V_{C C}+=10 \mathrm{~V}, V_{C C-}=0$	1.3	3	3.8	V
		$\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}_{1} \quad \mathrm{~V}_{\mathrm{CC}-}=0$	0.6	1.5	1.9	
$V_{\text {hys }}$ Hysteresis $\left(V_{T+}-V_{T-}\right)$		$V_{C C+}=10 \mathrm{~V}, \quad V_{C C-}=0$	2.3	4	7.6	V
		$\mathrm{V}_{\mathrm{CC}+}=5 \mathrm{~V}_{1} \quad \mathrm{~V}_{\mathrm{CC}}-=0$	1.2	2	3.8	
V_{OH} High-level output voltage	CLKR	$-10=-10 \mu \mathrm{~A}$	9			V
			4.5			
VOL Low level output voltage.		$V_{C C C}-\left.10 V_{10}\right\|_{0}$			1	V
		VCC - 5 V V ${ }^{\circ}$			0.5	
Input leakage current		$V_{C C}=10 \mathrm{~V}$ Level Shift pin at mid-supply.			2	$\mu \mathrm{A}$
		$V_{C C}=5 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$			2	
Output current		$V_{C C}=10 \mathrm{~V}$ CLKR and CLKIN	-3	-7		mA
		$V_{C C}=5 \mathrm{~V}$ shorted to $\mathrm{V}_{C C}$ -	-0.75	-2		
Output current		$V_{\text {CC }}=10 \mathrm{~V}$ CLKR and CLKIN	3	7		mA
		$\mathrm{V}_{C C}-5 \mathrm{~V}$ shorted to V_{CC} -	075	2		

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
${ }^{\ddagger} V_{C C}=V_{C C},-V_{C C}-\cdot$
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{VCC}_{-}=-5 \mathrm{~V}$ (unless otherwise noted)

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 2. Above 250 kHz , the input clock duty cycle should be 50% to allow the operational amplifiers the maximum time to settle while processing analog samples.
5. The frequency responses at f are referenced to a dc gain of 0 dB .
7. The dynamic range is referenced to 2.82 V rms (4 V peak) where the wideband noise over a $30-\mathrm{kHz}$ bandwidth is typically $142 \mu \mathrm{Vrms}$ for the TLCO4/MF4A-50 and $178 \mu \mathrm{~V}$ rms for the TLC14/MF4A-100.

TYPICAL CHARACTERISTICS

FILTER OUTPUT
vs

filter output
vs
SUPPLY VOLTAGE VCC - RIPPLE FREQUENCY

FIGURE 2

TYPICAL APPLICATION DATA

FIGURE 3. CMOS-CLOCK-DRIVEN, DUAL-SUPPLY OPERATION

FIGURE 4. TTL-CLOCK-DRIVEN, DUAL-SUPPLY OPERATION

TYPICAL APPLICATION DATA

$$
\begin{aligned}
& \mathrm{f}_{\text {clock }}=\overline{\mathrm{RC} \times \ln } \\
& \text { For } \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \\
& \mathrm{f}_{\text {clock }}=\frac{1}{169 \mathrm{RC}}
\end{aligned}
$$

FIGURE 5. SELF-CLOCKING THROUGH SCHMITT-TRIGGER OSCILLATOR, DUAL-SUPPLY OPERATION

NOTES: A. The external clock used must be of CMOS level because the clock is input to a CMOS Schmitt trigger.
B. The Filter input signal should be dc-biased to mid-supply or ac-coupled to the terminal

C The: AGND termmal must be based to mud supply
FIGURE 6. EXTERNAL-CLOCK-DRIVEN SINGLE-SUPPLY OPERATION

TYPICAL APPLICATION DATA

NOTE A: The AGND terminal must be based to mid-supply.
FIGURE 7. SELF-CLOCKING THROUGH SCHMITT-TRIGGER OSCILLATOR, SINGLE-SUPPLY OPERATION

TYPICAL APPLICATION DATA

FIGURE 8. DC OFFSET ADJUSTMENT

- Maximum Clock to Center-Frequency Ratio Error

$$
\begin{aligned}
& \text { TLC10 } . . . \pm 0.6 \% \\
& \text { TLC20 } . . \pm 1.5 \%
\end{aligned}
$$

- Filter Cutoff Frequency Stability Dependent Only on External-Clock Frequency Stability
- Minimum Filter Response Deviation Due to External Component Variations over Time and Temperature
- Critical-Frequency Times Q Factor Range Up to 200 kHz
- Critical-Frequency Operation Up to 30 kHz
- Designed to be Interchangeable with:

National MF10
Maxim MF10
Linear Technology LTC1060

description

The TLC10/MF10A and TLC20/MF10C are monolithic general-purpose switched-capacitor CMOS filters each containing two independent active-filter sections. Each device facilitates configuration of Butterworth, Bessel, Cauer, or Chebyshev filter design.
Filter features include cutoff frequency stability that is dependent only on the external clock frequency stability and minimal response deviation over time and temperature. Features also include a critical-frequency times filter quality (Q) factor range of up to 200 kHz .

With external clock and resistors, each filter section can be used independently to produce various second-order functions or both sections can be cascaded to produce fourth-order functions. For functions greater than fourthorder, ICs can be cascaded.

The TLC10/MF10A and TLC20/MF10C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FN CHIP CARRIER PACKAGE (TOP VIEW)

AVAILABLE OPTIONS

T_{A}	MAX $f_{\text {clock }} /$ fc ERROR	PACKAGE	
		CHIP CARRIER (FN)	PLASTIC DIP (N)
	$\pm 0.6 \%$	TLC1OCFN or MF10ACFN	TLC10CN or MF10ACN
$70^{\circ} \mathrm{C}$	$\pm 1.5 \%$	$\begin{aligned} & \text { TLC2OCFN } \\ & \text { or } \\ & \text { MF10CCFN } \end{aligned}$	$\begin{aligned} & \text { TLC20CN } \\ & \text { or } \\ & \text { MF10CCN } \end{aligned}$

PIN		1/0	DESCRIPTION
NAME	NO.		
AGND	15	1	Analog Ground - The noninverting inputs to the input operational amplifiers of both filter sections. This terminal should be at ground for dual supplies or at mid-supply level for single-supply operation.
1 APIN 2APIN	$\begin{array}{r} 5 \\ 16 \end{array}$	I	All-Pass Inputs - The all-pass input to the summing amplifier of each respective filter section used for all-pass filter applications in configuration modes 1a, 4, 5, and 6. This terminal should be driven from a source having an impedance of less than $1 \mathrm{k} \Omega$. In all other modes, this terminal is grounded. See Typical Application Data.
$\begin{aligned} & 1 \mathrm{BP} \\ & 2 \mathrm{BP} \end{aligned}$	$\begin{array}{r} 2 \\ 19 \end{array}$	0	Band-Pass Outputs - The band-pass output of each respective filter section provides the second-order bandpass filter functions.
CF/CL	12	1	Center Frequency/Current Limit - This input terminal provides the option to select the input-clock-ta-centerfrequency ratio of $50: 1$ or $100: 1$ or to limit the current of the 1 C . For a $50: 1$ ratio, the $\mathrm{CF} / \mathrm{CL}$ terminal is set to $V_{\text {DD }}+$. For a 100:1 ratio, the CF/CL terminal is set to ground for dual supplies or to mid-supply level for single-supply operation. For current limiting, the CF/CL terminal is set to VDD - . This aborts filtering and limits the IC current to 0.5 milliamperes.
$\begin{aligned} & 1 \text { CLK } \\ & 2 \text { CLK } \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	1	Clock Inputs - The clock input to the two-phase nonoverlapping generator of each respective filter section is used to generate the center frequency of the complex pole pair second-order function. Both clocks should be of the same level (TTL or CMOS) and have duty cycles close to 50%, especially when clock frequencies (f.clock) greater than 200 kHz are used. At this duty cycle, the operational amplifiers have the maximum time to settle while processing analog samples.
$\begin{aligned} & 11 \mathrm{~N}- \\ & 21 \mathrm{~N}- \end{aligned}$	$\begin{array}{r} 4 \\ 17 \end{array}$	1	Inverting Inputs - The inverting input side of the input operational amplifier whose output drives the summing amplifier of each respective filter section.
$\begin{aligned} & \text { 1LP } \\ & \text { 2LP } \end{aligned}$	$\begin{array}{r} 1 \\ 20 \end{array}$	0	Low-Pass Outputs - The low-pass outputs of the second-order filters.
LS	9	1	Level Shift - This terminal'accommodates various input clock levels of bipolar (CMOS) or unipolar (TTL or other clocks) to function with single or dual supplies. For CMOS (± 5-volt) clocks, $V_{D D}$ - or ground is applied to the LS terminal. For TTL and other clocks, ground is applied to the LS terminal.
1NAH 2NAH	$\begin{array}{r} 3 \\ 18 \end{array}$	0	Notch, All-Pass, or High-Pass Outputs - The output of each respective filter section can be used to provide either a second-order notch, all-pass, or high-pass output filter function, depending on circuit sration.
SW	6	1	Switch Input - This input terminal is used to control internal switches to connect either the f. nput or the LP output to one of the inputs of the summing amplifier. The terminal controls both independent filter sections and places them in the same configuration simultaneously. If $\mathrm{V}_{\mathrm{C}} \mathrm{C}$ - is applied to the SW terminal, the AGND input terminal will be connected to one of the inputs of each summing amplifier. If $\mathrm{VCC}+$ is applied to the SW terminal, the LP output will be connected to one of the inputs of the summing amplifier.
$\mathrm{V}_{\mathrm{CC}+}$	7		Analog positive supply voltage terminal
$V_{\text {CC }}$ -	14		Analog negative supply voltage terminal
VDD +	8		Digital positive supply voltage terminal
$V_{D D}-$	13		Digital negative supply voltage terminal

functional block diagram

TLC10/MF10A, TLC20/MF10C
 UNIVERSAL DUAL SWITCHED-CAPACITOR FILTER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Analog supply voltage, $V_{C C} \pm$ (see Note 1) . ± 7 V
Digital supply voltage, VDD \pm. ± 7 V
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: FN or N package $260^{\circ} \mathrm{C}$
NOTE 1: All voltage values are with respect to the AGND terminal.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Analog supply voltage, $\mathrm{V}_{\mathrm{CC}}{ }_{ \pm}$, (see Note 2)	± 4	± 5	± 6	V
Digital supply voltage, $\mathrm{V}_{\mathrm{DD} \pm}$, (see Note 2)	± 4	± 5	± 6	V
Clock frequency, fclock, (see Note 3)	0.008		1.0	MHz
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$	0		70	${ }^{\circ} \mathrm{C}$

NOTES: 2. A common supply voltage source should be used for the analog and digital supply voltages. Although each has separate terminals, they are connected together internally at the substrate. $V_{C C}+$ and $V_{D D}+c a n$ be connected together at the device terminals or at the supply voltage source. The same is true for $V_{C C}$ - and $V_{D D}$ - .
3. Both input clocks should be of the same level type (TTL or CMOS), and their duty cycles should be at $50 \% \mathrm{above} 200 \mathrm{kHz}$ to aliow the operational amplifiers the maximum time to settle while processing analog samples.
electrical characteristics at $\mathrm{V}_{\mathrm{CC} \pm}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} \pm}+= \pm 5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	TLC10/MF10A			TLC20/MF10C			UNIT	
			MIN	TYP	$\because \because$	MIN	TYP	MAX			
VOPP	Maximum peak-to-peak output voltage swing			$\mathrm{R}_{\mathrm{L}}=3.5 \mathrm{k} \Omega$ at all outputs	± 4	± 4.1		± 3.8	± 3.9		V
Ios	Short-circuit output current, Pins 3 and 18	Source	See Note 4		2			2		mA	
		Sink			50			50			
ICC	Supply current				8	10		8	10	mA	

NOTE 4: The short-crrcuit output current for pins $1,2,19$, and 20 will be typically the same as pins 3 and 18.
operating characteristics at $\mathrm{V}_{\mathrm{CC}} \pm= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \pm= \pm 5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TLC10/MF10A			TLC20/MF10C			UNIT
		MIN	TYP	MAX	MIN	TYP	MAX	
Critical-frequency range	$\mathrm{f}_{0} \times \mathrm{Q} \leq 200 \mathrm{kHz}$	20	30		20	30		kHz
Maxımum clock frequency, ${ }^{\text {f }}$ clock	See Note 3	1	1.5		1	1.5		MHz
Clock to center-frequency ratio	$\mathrm{f}_{0} \leq 5 \mathrm{kHz}$, $\mathrm{R} 3 / \mathrm{R} 2=10$, Pin 12 at 5 V Mode 1. See Figure 1 Pin 12 at 0 V	49.64	49.94	50.24	49.24	4994	50.64	
		9875	99.35	99.95	97.86	9935	100.84	
Temperature coefficient of center frequency	$\mathrm{f}_{\mathrm{O}} \leq 5 \mathrm{kHz}$, $\mathrm{R} 3 / \mathrm{R} 2=20$, $\operatorname{Pin} 12$ at 5 V Mode 1. Iigure 1 Pin 12 at 0 V	± 10			$+1 n$			ppm/ $/{ }^{\circ} \mathrm{C}$
		± 100			\pm			
Filter O (quality factor)	$\mathrm{f}_{0} \leq 5 \mathrm{kHz}, \quad 2=20 . \operatorname{Pin} 12$ at 5 V		$\pm 2 \%$	$\pm 4 \%$		240	$\pm 6 \%$	
deviation from 20	Mode 1, See Figure 1 Pin 12 at 0 V		$\pm 2 \%$	$\pm 3 \%$		$\pm 2 \%$	$\pm 6 \%$	
Temperature coefficient of measured filter Q	$f_{0} \leq 5 \mathrm{kHz}, \quad \text { R3/R2 }=20,$ Mode 1	± 500			± 500			ppm/ $/{ }^{\circ} \mathrm{C}$
Low-pass output deviation from unty gan	$\begin{aligned} & R 1=R 2=10 \mathrm{k} \Omega \\ & \text { Mocs }=\text { Sne } \quad \text { Sum } \end{aligned}$	$\frac{60}{}$			- 20			
Crosstalk attemuatun						60		dB
Clock feedthrough voltage			10			10		mV
Operational amplifier gain-bandwidth product		2.5			2.5			MHz
Operational amplifier slew rate			7			7		V / ms

TLC10/MF10A, TLC20/MF10C UNIVERSAL DUAL SWITCHED-CAPACITOR FILTER

TYPICAL APPLICATION DATA

modes of operation

The TLC10/MF10A and TLC20/MF10C are switched-capacitor (sampled-data) filters that closely approximate continuous filters. Each filter section is designed to approximate the response of a secondorder variable filter. When the sampling frequency is much larger than the frequency band of interest, the sampled-data filter is a good approximation to its continuous time equivalent. In the case of the TLC10/MF10A and TLC20/MF10C, the ratio is about 50:1 or 100:1. To fully describe their transfer function, a time domain approach would be appropriate. Since this may appear cumbersome, the following application examples are based on the well known frequency domain. It should be noted that in order to obtain the actual filter response, the filter's response must be examined in the z-domain.

$\mathrm{f}_{\mathrm{o}} \quad \mathrm{f}_{\text {clock }} 100$ or $\mathrm{i}_{\text {clock }} 50$
fotch \mathfrak{f}_{0}
HOLP R2R1 (an : O)
HOBP -R3R1 l.t f f_{0} '
HON - notch gan $\left\{\begin{array}{l}\text { as } f \text { approaches } 0 \\ \text { as } f \text { approaches } 0.5 \text { fock }\end{array}\right.$
$\mathrm{Q}=\mathrm{f}_{\mathrm{o}} / \mathrm{BW}=\mathrm{R} 3 / \mathrm{R} 2$
Circuit dynamics:
The following expressions determine the swing at each output as a function of the desired Q of the second-order function
$H_{\text {OLP }}=\mathrm{H}_{\text {OBP }} / \mathrm{Q}$ or HOLP $\times \mathrm{Q}=\mathrm{H}_{\text {ON }} \times \mathrm{Q}$
$H_{O L P}($ peak $)=\mathrm{Q} \times$ HOLP $^{\text {(for high }} \mathrm{Qs}$)
FIGURE 1. MODE 1 FOR NOTCH, BAND-PASS, AND LOW-PASS OUTPUTS: $\mathrm{f}_{\text {notch }}=\mathrm{f}_{\mathrm{o}}$

TYPICAL APPLICATION DATA

FIGURE 2. MODE 1a FOR NONINVERTING BAND-PASS AND LOW-PASS OUTPUTS

TYPICAL APPLICATION DATA

$f_{0} f_{\text {roth }} \times \sqrt{\text { R2 R4 • }}$
$f_{\text {noten }}=$ f clock $/ 100$ or $t_{\text {clock }} / 50$
$\mathrm{Q}=\frac{\sqrt{R 2 \text { R } 4+7}}{R 2 R 3}$
$H_{O L P}\left(\right.$ as \uparrow approaches 0) $=\frac{-R 2 / R 1}{R 2 / R 4+1}$
Hobp \{at f - $\left.f_{0}\right\}$ - -R3R1
HON1 (as f approaches 0) $=\frac{-\mathrm{R} 2 \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}$
HON2 (as f approaches $0.5 f_{\text {clock }}=-R 2 / R 1$
Circuit dynamics:
$\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{OLP}} \times \mathrm{H}_{\mathrm{ON} 2}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{ON} 1} \times \mathrm{H}_{\mathrm{ON} 2}}$
FIGURE 3. MODE 2 FOR NOTCH 2, BAND-PASS, AND LOW-PASS OUTPUTS: $f_{\text {notch }}$ < f_{o}

TYPICAL APPLICATION DATA

O $\sqrt{R 2 R 4} \cdot R 3 R 2$
$H_{\text {OHP }}$ (as f approaches 0.5 fclock $=-R^{\prime}, R_{1}$
HOLP (as \mathfrak{f} approaches 0) $=-$ R4/R1
Hopp tat 1 fol RisR1
Circuit dynamics
R2/R4 $=H_{O H P} / H_{O L P}: H_{O B P}=\sqrt{H_{O H P}} \times H_{O L P} \times 0$
$H_{\text {OLP }}$ (peak) $=\mathbf{O} \times$ HOLP $^{(f o r ~ h i g h ~ Q s) ~}$
$\mathrm{H}_{\mathrm{OHP}}$ (peak) $=\mathrm{Q} \times \mathrm{H}_{\mathrm{OHP}}$ (for high Qs!
\dagger In this mode, the feedback loop is closed around the input summing amplifier; the finite GBW product of this operational amplifier will cause a slight Q enhancement. If this is a problem, connect a low-value capacitor (10 pF to 100 pF) across R4 to provide some phase lead.

FIGURE 4. MODE 3 FOR HIGH-PASS, BAND-PASS, AND LOW-PASS OUTPUTS

TYPICAL APPLICATION DATA

$f_{0}=\left(f_{\text {clock }} / 100\right.$ or $\left.f_{\text {clock }} / 50\right) \sqrt{\text { R2/R4 }}$
Q $\sqrt{R 2 R^{2}} \times R 3$ R2
$\mathrm{HOHP}_{\mathrm{O}}$ R2R1
HOBP R3R1
HOLP RAR1
$f_{\text {notch }}=\left(f_{\text {clock }} / 100\right.$ or $\mathrm{f}_{\text {clock }}(50) \sqrt{\text { Rh/Ri }}$
$H_{\mathrm{ON}}\left\{\right.$ at $\left.\mathrm{f}=\mathrm{f}_{\mathrm{O}}\right\}=\mathrm{Q}\left(\mathrm{Rg} / \mathrm{Ri} \times \mathrm{H}_{\mathrm{OLP}}-\mathrm{Rg} / \mathrm{Rh} \times \mathrm{HOHP}\right)$ |

HON2 (as f approaches $0.5 \mathrm{f}_{\text {clock }}$) $=-\mathrm{Rg} / \mathrm{Rh} \times \mathrm{HOHP}$
FIGURE 5. MODE 3a FOR HIGH-PASS, BAND-PASS, LOW-PASS, AND NOTCH OUTPUTS WITH EXTERNAL OPERATIONAL AMPLIFIER

TLCIO/MF10A, TLC20/MF10C UNIVERSAL DUAL SWITCHED.CAPACITOR FILTER

TYPICAL APPLICATION DATA


```
fo folock 100 of i clock 50
\(\mathrm{f}_{\mathrm{Z}} \quad \mathrm{f}_{\mathrm{O}}{ }^{\dagger}\)
( \(f_{0} B W=R 3{ }^{R} 2\)
\(\mathrm{Q}_{\mathrm{z}}-\mathrm{R} 3 / \mathrm{R} 1\)
\(H_{\text {OAP }}\) (at \(0 \leq f \leq 0.5\) f \(_{\text {clock }}\) ) \(=-R 2 / R 1=-1\)
    (for AP output \(\mathrm{R} 1=\mathrm{R} 2)\)
\(H_{O L P}(\) as \(f\) approaches 0\()=-(R 2 / R 1+1)=-2\)
\(H_{\text {OBP }}\left(\right.\) at \(\left.f=f_{0}\right)=-R 3 / R 2(R 2 / R 1+1\}=-2(R 3 / R 2)\)
Circuit dynames
```

```
HOBP HOLP > O (HOAP 1)O
```

```
HOBP HOLP > O (HOAP 1)O
```

${ }^{\dagger}$ Due to the sampled-data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a $0.4-\mathrm{dB}$ peaking around f_{0} of the all-pass filter amplitude response (which theoretically should be a straight line) If this is unacceptable. Mode 5 is recommended.

FIGURE 6. MODE 4 FOR ALL-PASS, BAND-PASS, AND LOW-PASS OUTPUTS

TYPICAL APPLICATION DATA

$f_{0}=\sqrt{\text { R2/R4 }+1} \times\left(f_{\text {clock }} / 100\right.$ or $\left.f_{\text {clock }} / 50\right)$
o. $\sqrt{\text { R2R4 }} 1 \times \mathrm{R} 3 \mathrm{R} 2$
$\mathrm{O}_{\mathrm{z}}=\sqrt{1-\mathrm{R} 1 / \mathrm{R4}} \times \mathrm{R} 3 / \mathrm{R} 1$
$\mathrm{H}_{\mathrm{OZ} 1}$ (as f approaches 0$)=\mathrm{R} 2(\mathrm{R} 4-\mathrm{R} 1) / \mathrm{R} 1(\mathrm{R} 2+\mathrm{R} 4)$
$\mathrm{H}_{\mathrm{OZ2}}$ (as f approaches $0.5 \mathrm{f}_{\text {clock }}$) $=$ R2/R1
$H_{O 8 P}=(R 2 / R 1+1) \times R 3 / R 2$
$H_{O L P}=(R 2+R 1) /(R 2+R 4) \times R 4 / R 1$
FIGURE 7. MODE 5 FOR NUMERATOR COMPLEX ZEROS, BAND-PASS, AND LOW-PASS OUTPUTS

TYPICAL APPLICATION DATA

$\mathrm{f}_{\mathrm{C}}=\mathrm{R} 2 / \mathrm{R} 3$ ($\mathrm{f}_{\text {clock }} / 100$ or $\mathrm{f}_{\text {clock }} / 50$)
$\mathrm{H}_{\text {OLP }} \quad$ R3'RI
$\mathrm{HOHP}_{\mathrm{OH}}$ R2 R1
FIGURE 8. MODE 6 FOR SINGLE-POLE HIGH-PASS AND LOW-PASS OUTPUT

TYPICAL APPLICATION DATA

TYPICAL APPLICATION DATA

FIGURE 10. FOURTH-ORDER $2-\mathrm{kHz}$ LOW-PASS BUTTERWORTH FILTER

filter terminology

$\mathrm{f}_{\mathrm{C}} \quad$ The cutoff frequency of the low-pass or high-pass filter output
flock
The input clock frequency to the device
fnotch
The notch frequency of the notch output
f_{0}
The center frequency of the complex pole pair second-order function
$f_{Z} \quad$ The center frequency of the complex zero pair
HOBP The band-pass output voltage gain (V/V) at the band-pass center frequency
HOHP The high-pass output voltage gain (V/V) as the frequency approaches 0.5 fock
HOLP The low-pass output voltage gain (V/V) as the frequency approaches 0
HON The notch output voltage gain (V / V) at the notch frequency
HON1 The low-side notch output voltage gain as the frequency approaches 0
HON2 The high-side notch output voltage gain as the frequency approaches $0.5 f_{c l o c k}$
HOZ1 Gain at complex zero output (as $f \rightarrow 0 \mathrm{~Hz}$)
HOZ2 Gain at complex zero output (as f approaches $0.5 f_{\text {clock }}$
$0 \quad$ The quality factor of the complex pole pair second-order function. Q is the ratio of f_{0} to the $3-\mathrm{dB}$ bandwidth of the band-pass output. The value of Q also affects the possible peaking of the low-pass and high-pass outputs.
$\mathrm{O}_{z} \quad$ The quality factor of the complex zero pair, if such a complex pair exists. This parameter is used when an all-pass filter output is desired.

$$
0=\frac{f_{0}}{f_{H}-f_{L}} ; f_{0}=\sqrt{f_{L} f_{H}}
$$

$$
i_{L} \quad f_{0}\left(\frac{1}{20} \cdot \sqrt{\left.\left(\frac{1}{20}\right)^{2} \cdot 1\right)}\right.
$$

$$
f_{H}=f_{0}\left(\frac{1}{20}+\sqrt{\left(\frac{1}{20}\right)^{2}+1}\right)
$$

FIGURE 11. BAND-PASS OUTPUT

$$
\begin{aligned}
& i_{C}=i_{0} \times \sqrt{\left(1-\frac{1}{20^{2}}\right) \cdot \sqrt{\left(1-\frac{1}{20^{2}}\right)^{2}-1}} \\
& i_{\mathrm{D}} \quad i_{O} \cdot 1 \frac{1}{\frac{10^{2}}{}} \\
& H_{O P}-11 O L P=\frac{1}{\frac{1}{O} \sqrt{1-\frac{1}{40^{2}}}}
\end{aligned}
$$

FIGURE 12. LOW-PASS OUTPUT

FIGURE 13. HIGH-PASS OUTPUT

- LinCMOS ${ }^{\text {Tw }}$ Technology
- 8-Bit Resolution
- Total Unadjusted Error . . . ± 0.5 LSB Max
- Ratiometric Conversion
- Access Plus Conversion Time:

TLC532A . . . $15 \mu \mathrm{~s}$ Max
TLC533A . . . $30 \mu \mathrm{~s}$ Max

- 3-State, Bidirectional I/O Data Bus
- 5 Analog and 6 Dual-Purpose Inputs
- On-Chip 12-Channel Analog Multiplexer
- Three On-Chip 16-Bit Data Registers
- Software Compatible with Larger TL530 and TL531 (21-Input Versions)
- On-Chip Sample-and-Hold Circuit
- Single 5-V Supply Operation
- Low Power Consumption . . . 6.5 mW Typ
- Improved Direct Replacements for Texas Instruments TL532 and TL533, National Semiconductor ADC0829, and Motorola MC14442

description

The TLC532A and TLC533A are monolithic LinCMOS ${ }^{\text {™ }}$ peripheral integrated circuits each designed to interface a microprocessor for analog data acquisition. These devices are complete peripheral data acquisition systems on a single chip and can convert analog signals to digital data from up to 11 external analog terminals. Each device operates from a single $5-V$ supply and contains a 12 -channel analog multiplexer, an 8 -bit ratiometric analog-to-digital (A/O) converter, a sample-and-hold, three 16 -bit registers, and microprocessorcompatible control circuitry. Additional features include a built-in self-test, six multipurpose (analog or digital) inputs, five external analog inputs, and an 8-pin input/output (I/O) data port. The three on-chip data registers store the control data, the conversion results, and the input digital data that can be accesssed via the microprocessor data bus in two 8-bit bytes (most-significant byte first). In this manner, a microprocessor can access up to 11 external analog inputs or 6 digital signals and the positive reference voltage that may be used for self-test.

N PACKAGE
(TOP VIEW)

FINCTION TABLE

					DESCRIPTION
x	X	X	L^{\dagger}		Reset
L	H	L	H	\downarrow	Write bus data to control register
H	L	L	H	\dagger	Read data from analog conversion register
H	H	L	H	\uparrow	Read data from ditigal data register
X	X	H	H	X	No response

$H=$ High-tevel, $L=$ Low-level, $X=$ Itrelevant
$\downarrow=$ Hıgh-to-low transitıon, $t=$ Low-to-hıgh transıtion
${ }^{\dagger}$ For proper operation, Reset must be low for at least three clock cycles

description (continued)

The A/D conversion uses the successive-approximation technique and switched-capacitor circuitry. This method eliminates the possibility of missing codes, nonmonotonicity, and a need for zero or full-scale adjustment. Any one of 11 analog inputs (or self-test) can be converted to an 8-bit digital word and stored within $10 \mu \mathrm{~s}$ (TLC532A) or $20 \mu \mathrm{~s}$ (TLC533A) after instructions from the microprocessor are recognized. The on-chip sample-and-hold automatically minimizes errors due to noise on the analog inputs. Furthermore, differential high-impedance reference inputs are available to help isolate the analog circuitry from the logic and supply noises while easing ratiometric conversion and scaling.

The TLC532AM and TLC533AM are available in both the N and FN plastic packages and are characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC532AI and TLC533AI are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

functional description

The TLC532A and TLC533A provide direct interface to a microprocessor-based system. Control of the TLC532A and TLC533A is handled via the 8-line TTL-compatible 3-state data bus, the three control inputs (Read/Write, Register Select, and Chip Select), and the Clock input. Each device contains three 16-bit internal registers - the control register, the analog conversion data register, and the digital data register.

A high level at the Read/Write input and a low level at the Chip Select input set the device to output data on the 8 -line data bus for the processor to read. A low level at the Read/Write input and a low level at the Chip Select input set the device to receive instructions into the internal control register on the 8 -line data bus from the processor. When the device is in the read mode and the Register Select input is low, the processor reads the data contained in the analog conversion data register. However, when the Register Select input is high, the processor reads the data contained in the digital data register.

The control register is a write-only register into which the microprocessor writes command instructions for the device to start A/D conversion and to select the analog channel to be converted. The analog conversion data register is a read-only register that contains the current converter status and most recent conversion results. The digital data register is also a read-only register that holds the digital input logic levels from the six dual-purpose inputs.

Internally each device contains a byte pointer that selects the appropriate byte during two cycles of the Clock input in a normal 16 -bit microprocessor instruction. The internal pointer automatically points to the most significant (MS) byte after the first complete clock cycle any time that the Chip Select is at the high level for at least one clock cycle. The device treats the next signal on the 8 -line data bus as the MS byte. A low level at the Chip Select input activates the inputs and outputs and an internal function decoder. However, no data is transferred until the Clock goes high. The internal byte pointer first points to the MS byte of the selected register during the first clock cycle. After the first clock cycle in which the MS byte is accessed, the internal pointer switches to the LS byte and remains there for as long as Chip Select is low. The MS byte of any register may be accessed by either an 8-bit or a 16-bit microprocessor instruction; however, the LS byte may only be accessed by a 16 -bit microprocessor instruction.

Normally, a 2-byte word is written or read from the controlling processor, but a single byte can be read by the processor by manipulating the Chip Select input. This can be used to read conversion status from the analog conversion data register or the digital multipurpose input levels from the digital data register. The format and content of each 2-byte word is shown in Figures 1 through 3.
functional description (continued)
A conversion cycle starts after a 2 -byte instruction is written to the control register and the start conversion (SC) bit is a logic high. This 2 -byte instruction also selects the input analog channel to be converted. The status (EOC) bit in the analog conversion data register is reset, and it remains reset until the conversion is complete, at which time the status bit is set again. After conversion, the results are loaded into the analog conversion data register. These results remain in the analog conversion data register until the next conversion cycle is complete. If a new conversion command is entered into the control register while the conversion cycle is in progress, the on-going conversion is aborted and a new channel acquisition cycle begins immediately.

The Reset input allows the device to be externally forced to a known state. When a low level is applied to the Reset input for a minimum of three clock periods, the start conversion bit is cleared. The A/D converter is then idled and all the outputs are placed in the high-impedance off-state. However, the content of the analog conversion data register is not affected by the Reset input going to a low level.
Detailed information on interfacing to most popular microprocessors is readily available from the factory.

typical operating sequence

read or write cycle time sequence

NOTES: A. The reset pulse ($\overline{\mathrm{R}}$ low) is required only during power-up.
B. The most significant byte output of Data Out occurs when CLK is high. When CLK is low, Data Out is in the high-impedance (off) state. When CLK goes high again, the least significant byte is placed on the data bus. At this point, the least significant byte remains on the bus for as long as CLK is kept high.

TLC532AM, TLC532AI, TLC533AM, TLC533AI LinCMDS ${ }^{\text {Tw }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH 5 ANALDG AND 6 DUAL-PURPOSE INPUTS

DATA BUS

Unused Bits (X) - The MS byte bits 2-1 through 2-7 and LS byte bits 2^{-1} through 2-4 of the control register are not used internally. Start Conversion (SC) - When the SC bit in the MS byte is set to a logical 1, and analog-to-digital conversion on the specified analog channel begins immediately after the completion of the control register write
Analog Multiplex Address (AO-A3) - These four address bits are decoded by the analog multiplexer and used to select the appropriate analog channel as shown below:

Hexadecimal Address (A3 - MSB)
Channel Select
0
AO
$R E F+|A 1|$

$$
2-5
$$

$$
\mathrm{A} 2 \cdot \mathrm{~A} 5
$$

69 (not used)
A.F

A 10 A 15
FIGURE 1. WORD FORMAT AND CONTENT FOR CONTROL REGISTER 2-BYTE WRITE

DATA BUS

LINES	21	22	23	24	25	26	2	28	21	22	23	24	25	26	2	28
	$\begin{aligned} & \text { EOC } \\ & (M S B) \end{aligned}$	0	0	0	0	0	0	$\begin{gathered} 0 \\ (L S B) \end{gathered}$	- R7 (MSB)	R6	R5	R4	R3	R2	RI	$\begin{aligned} & \text { RO } \\ & \text { LLSB: } \end{aligned}$

A/D Status (EOC) - The A/D status end-of-conversion (EOC) bit is set whenever an analog-to-digital conversion is successfully completed by the A/D converter. The status bit is cleared by a 16 -bit write from the microprocessor to the control register. The remainder of the bits in the MS byte of the analog conversion data register are always reset to logical 0 to simplify microprocessor interrogation of the A/D converter status.
A/D Result (RO-R7) - The LS byte of the analog conversion data regıster contains the result of the analog-to-digital conversion. Result bit R7 is the MSB and the converter follows the standard convention of assigning a code of all ones (11111111) to a full-scale analog voltage. There are no special overflow or underflow indications.

FIGURE 2. WORD FORMAT AND CONTENT FOR ANALOG CONVERSION DATA REGISTER 1-BYTE AND 2-BYTE READ

DATA BUS

Shared Digital Port (A10/D1-A15/D6) - The voltage present on these pins is interpreted as a digital signal, and the corresponding states are read from these bits. A digital value is given for each pin even if some or all of these pins are being used as analog inputs.
Analog Multiplexer Address (AO-A3) - The address of the selected analog channel presently addressed is given by these bits.
Unused Bits (X) - LS byte bits 2^{-3} through 2^{-8} of the digital data register are not used.
FIGURE 3. WORD FORMAT AND CONTENT FOR DIGITAL DATA REGISTER 1-BYTE AND 2-BYTE READ
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1 All voltage values are with respect to network ground terminal.
recommended operating conditions

NOTE 2: Analog input voltages greater than or equal to that applied to the REF + terminal convert to all ones $\mathbf{1 1 1 1 1 1 1 1 1 1 \text { , while input } , ~ (1)}$ voltages equal to or less than that applied to the REF - terminal convert to all zeros (00000000). For proper operation, the positive reference voltage, $V_{R E F}+$, must be at least 1 V greater than the negative reference voltage, $V_{R E F}$. . In addition, unadjusted errors may increase as the differential reference voltage, $V_{R E F}+V_{R E F} \ldots$, falls below 4.75 V .

TLC532AM, TLC532AI
 LinCMOS ${ }^{\text {TM }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS
 WITH 5 ANALOG AND 6 DUAL-PURPOSE INPUTS

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{REF}}+=\mathrm{V}_{\mathrm{C}}$. $V_{\text {REF }}$ - at ground, $\mathrm{f} C \mathrm{LK}=2 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-ievel output voltage		$1 \mathrm{OH}=-1.6 \mathrm{~mA}$	2.4			V
V_{OL}	Low-level output voltage		$1 \mathrm{OL}=1.6 \mathrm{~mA}$			0.4	V
${ }^{1 / \mathrm{H}}$	High-level input current	Any digital or Clock input	$\mathrm{V}_{1 H}=5.5 \mathrm{~V}$			10	
		Any control input				1	$\mu \mathrm{A}$
I/L	Low-leve! input current	Any digital or Clock input	$V_{\text {IL }}=0$			-10	A
		Any control input				-1	$\mu \mathrm{A}$
loz	Off-state (high-impedance state) output current		$\mathrm{V}_{0}=\mathrm{V}_{\text {cc }}$			10	${ }^{\text {A }}$
			$V_{0}=0$			-10	$\mu \mathrm{A}$
11	Analog input current (see Note 3)		$V_{1}=0$ to $V_{C C}$			± 500	nA
	Leakage current between selected channel and all other analog channels		$\mathrm{V}_{1}=0$ to V_{CC}, Clock input at 0 V			± 400	nA
C_{i}	Input capacitance	Digital pins 3 thru 10			4	30	
		Any other input pin			2	15	F
${ }^{\text {I C C }}+{ }_{\text {IREF }}+$	Supply current plus reference current		$V_{C C}=V_{R E F}+=5.5 V$ Outputs open		1.5	3	mA
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1.4	2	mA

NOTE 3: Analog input current is an average of the current flowing into a selected analog channel input during one full conversion cycle.
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{REF}}+=\mathrm{VCC}$. VREF - at ground, fCLK $=2 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{+}$	MAX	UNIT
Linearity error (see Note 4)						± 0.5	LSB
Zero error isee Note 5)						± 0.5	LSB
Full-scale error (see Note 5)						± 0.5	LSB
Total unadjusted error (see Note 6)						± 0.5	LSB
Absolute accuracy error (see Note 7)						± 1	LSB
$t_{\text {teonv }}$	Conversion time (including channel acquisition time)			30			Clock Cycles
$\mathrm{taca}^{\text {a }}$	Channel acquisition time prior to starting conversion				10		Clock Cycles
ten	Data output enable time (see Note 8)		$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$.			250	ns
$t_{\text {dis }}$	Data output disable time		$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$	10			ns
tribus)	Data bus output rise time	High impedance to high level Low-to-high level	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k}$ 2				ns
${ }^{\text {tffus }}$)	Data bus output fall time	High impedance to low level	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$				
		High-to-low level				300	ns

${ }^{1}$ Typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 4. Linearity error is the deviation from the best straight line through the A/D transfer characteristics.
5. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
6. Total unadjusted error is the sum of linearity, zero, and full-scale errors.
7. Absolute accuracy error is the maximum difference between an analog value and the nominal midstep value within any step. This includes all errors including inherent quantization error, which is the ± 0.5 LSB uncertainty caused by the A/D converters' finite resolution.
8. If chip-select setup time, $\tau_{\text {sul }}$ (CS), is less than $0.14 \mu \mathrm{~s}$, the effective data output enable time, ten, may extend such that ${ }^{t_{s u}}(\mathrm{CS})+\mathrm{t}_{\mathrm{en}}$ is equal to a maximum of $0.475 \mu \mathrm{~s}$.
electrical characteristics over recommended ranges $V_{C C}, V_{R E F}+$, and operating free-air temperature, $\mathrm{V}_{\text {REF }}$ - at ground, f CLK $=1.048 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	max	UNIT
V_{OH}	High-level output voltage		$\mathrm{IOH}^{\prime}=-1.6 \mathrm{~mA}$	2.4			V
V_{OL}	Low-level output voltage		$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
${ }^{1} \mathrm{IH}$	High-level input current	Any digital or Clock input	$\mathrm{V}_{1 \mathrm{H}}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
		Any control input				1	
IIL	Low level input current	Any digital or Clock input	$\mathrm{V}_{\mathrm{IL}}=0$			-10	${ }^{\mu} \mathrm{A}$
		Any control input				-1	
IOZ	Off-state (high-impedance state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{C C}$			10	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0$			-10	
$1 /$	Analog input current (see Note 3)		$V_{1}=0$ to $V_{C C}$			± 500	nA
	Leakage current between selected channel and all other analog channels		$\begin{aligned} & \mathrm{V}_{1}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \text { Clock input at } \mathrm{OV} \end{aligned}$			± 400	nA
C_{1}	input capacitance	Digital pins 3 thru 10			4	30	pF
		Any other input pin			2	15	
${ }^{\text {i CC }}+$ IREF $^{+}$	Supply current plus reference current		$V_{C C}=V_{R E F}+=5.5 \mathrm{~V},$ Outputs open		1.3	3	mA
ICC	Supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1.2	2	mA

NOTE 3: Analog input current is an average of the current flowing into a selected analog channel input during one full conversion cycle.
operating characteristics over recommended ranges $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {REF }}$, and operating free-air temperature, $V_{\text {REF }}$ - at ground, f clock $=1.048 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\text {t }}$ MAX	UNIT
Linearity error (see Note 4)				± 0.5	LSB
Zero error (see Note 5)				± 0.5	LSB
Full-scale error (see Note 5)				± 0.5	LSB
Total unadjusted error (see Note 6)				± 0.5	LSB
Absolute accuracy error (see Note 7)				± 1	LSB
$\mathrm{t}_{\text {conv }}$ Conversion time (including channel acquisition time)				30	Clock Cycles
Channel acquisition time prior to starting conversion				10	Clock Cycles
Data output enable time (see Note 8)		$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$,		335	ns
Data output disable time		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$	10		ns
Data bus output rise time	High impedance to high level	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$		150	ns
	Low-to-high level			300	
Data bus output fall time	High impedance to low level	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$		150	ns
	High-to-low level			300	

${ }^{\dagger}$ Typical values are at $V_{C C}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}$.
NOTES: 4. Linearitv error is the deviation from the best straight line through the A/D transfer characteristics.
5. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
6. Total unadjusted error is the sum of linearity, zero, and full-scale errors.
7. Absolute accuracy error is the maximum difference between an analog value and the nominal midstep value within any step. This includes all errors including inherent quantization error, which is the ± 0.5 LSB uncertainty caused by the A/D converters finite resolution.
8. If chip-select setup time, $\mathrm{t}_{\text {suil }}$ (), is less than $0.14 \mu \mathrm{~s}$, the effective data output enable time, ten, may extend such that $\mathrm{t}_{\text {su }}(\mathrm{CS})+\mathrm{t}_{\mathrm{en}}$ is equal to a maximum of $0.475 \mu \mathrm{~s}$.

TLC540M, TLC540I, TLC541M, TLC541I LinCMOS ${ }^{\text {Tw }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS

- LinCMOS ${ }^{\text {™ }}$ Technology
- 8-Bit Resolution A/D Converter
- Microprocessor Peripheral or Stand-Alone Operation
- On-Chip 12-Channel Analog Multiplexer
- Built-In Self-Test Mode
- Software-Controllable Sample and Hold
- Total Unadjusted Error . . . ± 0.5 LSB Max
- TLC541 is Direct Replacement for Motorola MC145040 and National Semiconductor ADC0811. TLC540 is Capable of Higher Speed
- Pinout and Control Signals Compatible with TLC1540 Family of 10 -Bit A/D Converters

TYPICAL PERFORMANCE	TLC540	TLC541
Channel Acquisition Sample Time	$2 \mu \mathrm{~S}$	$3.6 \mu \mathrm{~s}$
Conversion Time	$9 \mu \mathrm{~s}$	$17 \mu \mathrm{~s}$
Samples per Second	75×10^{3}	40×10^{3}
Power Dissipation	6 mW	6 mW

description
The TLC540 and TLC541 are LinCMOS ${ }^{\text {im }}$ A/D peripherals built around an 8 -bit switchedcapacitor successive-approximation A/D converter. They are designed for serial interface to a microprocessor or peripheral via a threestate output with up to four control inputs [including independent System Clock, I/O Clock, Chip Select ($\overline{\mathrm{CS}}$), and Address input]. A $4-\mathrm{MHz}$ system clock for the TLC540 and a $2.1-\mathrm{MHz}$ system clock for the TLC541 with a design that includes simultaneous read/write operation allow high-speed data transfers and sample rates of up to 75,180 samples per second for the TLC540 and 40,000 samples per second for the TLC541. In addition to the high-speed converter and versatile control logic, there is an onchip 12 -channel analog multiplexer that can be used to sample any one of 11 inputs or an internal "selftest" voltage, and a sample-and-hold that can operate automatically or under microprocessor control. Detailed information on interfacing to most popular microprocessors is readily available from the factory.
The converters incorporated in the TLC540 and TLC541 feature differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and analog circuitry isolation from logic and supply noises. A switched-capacitor design allows low-error (± 0.5 LSB) conversion in 9μ s for the TLC540 and 17μ s for the TLC541 over the full operating temperature range.

The M-suffix versions are characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The 1 -suffix versions are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

LinCMOS is a trademark of Texas Instruments Incorporated

TLC540M, TLC540I, TLC541M, TLC541I
LinCMOS ${ }^{\text {TM }} 8$-BIT ANALOG-TO-DIGITAL PERIPHERALS
WITH SERIAL CONTROL AND 11 INPUTS
functional block diagram

operating sequence

NOTES A The conversmon cycle, which requirts 36 System Clock pertuds, is mbitited on the bith falling edge of the l/O Clock atter CS goes low for the channel whose address exists in memory at that time. If $\overline{\mathrm{CS}}$ is kept low during conversion, the I/O Clock must remain low for at least 36 System Clock cycles to allow conversion to be completed.
B. The most significant bit (MSB) will automatically be placed on the DATA OUT bus after $\overline{\mathrm{CS}}$ is brought low. The remaining seven bits (A6-A0) will be clocked out on the first seven I/O Clock falling edges.
C. To minimize errors caused by nosse at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for three System Clock cycles (or less) after a chip select falling edge is detected before responding to control input signals. Therefore, no attempt should be made to clock-in address data until the minumum chip-select setup time has elapsed.

TLC540M, TLC540I, TLC541M, TLC541I LinCMOS ${ }^{\text {T }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1) . 6.5 .5 V	
Input voltage range (any input)	-0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Output voltage range . -0.3 V to VCC + 0.3 V	
Peak input current range (any input) . $\pm 10 \mathrm{~mA}$	
Peak total input current (all inputs) . $\pm 30 \mathrm{~mA}$	
Operating free-air temperature range: TLC540I, TLC5411.................. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	
TLC540M, TLC541M	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	
Case temperature for 10 seconds: FN package	$260^{\circ} \mathrm{C}$

NOTE 1. All voltage values are with respect to digital ground with REF - and GND wired together (unless otherwise noted).
recommended operating conditions

			TLC540			TLC541			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Supply voitage, V_{CC}			475	5	5.5	475	5	5.5	V
Positive reference voltage, $\mathrm{V}_{\text {REF }}+$ Isee Note 2)			2.5	V_{CC}	$V_{C C}+0.1$	2.5	VCC	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Negatue reference voltage, $\mathrm{V}_{\text {REF }}$ - (see Note 2)			-01	0	2.5	0.1	0	25	V
Differential reference voltage. $V_{\text {REF }}$; $-V_{\text {REF }}$ - (see Note 2)			1	$V_{C C}$	$\mathrm{V}_{\mathrm{CC}}+0.2$	1	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.2$	v
Analog input voltage (see Note 21			0		VCC	0		V_{CC}	\checkmark
High-level control input voltage, V_{IH}			2			2			V
Low-level conttol input voltage, $\mathrm{V}_{\text {IL }}$					08			0.8	\checkmark
Setup time, address bits at data input before $1 / O$ CLKi, $t_{\text {sul }}(\mathrm{A})$			200			400			ns
Hold time, address bits after l/O CLK ${ }^{\text {, }}$ th(A)			0			0			ns
Setup time, $\overline{\mathrm{CS}}$ low before clocking in first address bit, ${ }^{\text {ssu(CS) }}$ (see Note 3)			3			3			System clock cycles
CS nigh during conversion, ${ }_{\text {wHICS }}$)			36			36			System clock cycies
Input/Output clock frequency, ${ }^{\text {' }} \mathrm{CLK}(1 / \mathrm{O})$			0		2.048	0		11	MHz
System clock frequency, flCLKISYS			${ }^{\text {f CLKII }}$		4	${ }^{\text {f CLK! }}$ (IO)		2.1	MHz
System clock high, ${ }^{\text {wHISYS }}$			110			210			ns
System clock low, twLISYS)			100			190			ns
Input/Output clock high, $\mathrm{t}_{\text {wH(I/O) }}$			200			404			ns
Input/Output clock low, twL(I/O)			200			404			ns
Clock transition time (see Note 4)	System	${ }^{\text {' CLKISYS }}$) $\leq 1048 \mathrm{kHz}$			30			30	ns
		${ }^{{ }^{\text {C CLK }} \text { (SYS }}$) $>1048 \mathrm{kHz}$			20			20	
	1/0	${ }^{\text {f }}$ CLK(IIO) $\leq 525 \mathrm{kHz}$			100			100	ns
		${ }^{\text {f }}$ CLK(1/O) $>525 \mathrm{kHz}$			40			40	
Operating free-a: temperature, T_{A}		TLC540M, TLC541M	-55		125	-55		125	${ }^{\circ} \mathrm{C}$
		TLC5401, TLC5411	-40		85	-40		85	

NOTES: 2. Analog input voltages greater than that appled to FEF + convert as all " 1 " s (111111111), while input voltages less than that applied to REF - convert as all " 0 's 100000000 . For proper operation. REF + voltage must be at least 1 V higher than REF voltage. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 V .
3. To minimize errors caused by noise at the chip select input, the internal circuitry waits for three System Clock cycles (or less) after a chip select falling edge is detected before responding to control input signals. Therefore, no attempt should be made to clock-in an address until the minımum chip select setup time has elapsed.
4. This is the time required for the clock input signal to fall from $V_{I H}$ min to $V_{I L}$ max or to rise from $V_{I L}$ max to $V_{I H}$ min. In the vicinity of normal room temperature, the devices function with input clock transition time as slow as 2μ s for remote data acquisition applications where the sensor and the A.D converter are placed several feet away from the controlling microprocessor
electrical characteristics over recommended operating temperature range.
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{fCLK}(1 / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC540 or $\operatorname{fCLK}(1 / 0)=1.1 \mathrm{MHz}$ for TLC541

PARAMETER			TEST CONDITIONS		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
V_{OH}	High-level output voltage (pin 16)		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	$1 \mathrm{OH}=360 \mu \mathrm{~A}$	2.4			V
VOL	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
loz	Off-state (high-impedance state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$,	$\overline{C S}$ at VCC			10	$\mu \mathrm{A}$
			$V_{O}=0$.	$\stackrel{\text { CS }}{ }$ at VCC			-10	
${ }^{1} \mathrm{IH}$	High-level input current		$V_{1}=V_{C C}$			0.005	2.5	$\mu \mathrm{A}$
11.	Low-level input current		$V_{1}=0$			-0.005	-2.5	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Operating supply current		$\overline{\text { CS at } 0 \mathrm{~V}}$			1.2	2.5	mA
	Selected channel leakage current		Selected channel at VCC. Unselected channel at 0 V			0.4	1	$\mu \mathrm{A}$
			Selected channel at 0 V , Unselected channel at V_{CC}			-0.4	- 1	
${ }^{1} \mathrm{CC}+\mathrm{I}_{\text {REF }}$ Supply and reference current			$V_{\text {REF }+}=V_{\text {CC }}$	$\overline{\mathrm{CS}}$ at 0 V		1.3	3	mA
C_{i}	Input capacitance	Analog inputs				7	55	pF
		Control inputs				5	15	

[^9]
TLC540M, TLC540I, TLC541M, TLC541I
 LinCMOS ${ }^{\text {Tw }} 8$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS

operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}+}=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{fCLK}(\mathrm{I} / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC540 or 1.1 MHz for TLC541, $\mathrm{f}_{\mathrm{CLK}}(\mathrm{SYS})=4 \mathrm{MHz}$ for TLC540 or 2.1 MHz for TLC541.

PARAMETER	TEST CONDITIONS	TLC540		TLC541		UNIT
		MIN	TYP MAX	MIN	TYP MAX	
Linearity error	See Note 5		± 0.5		± 0.5	LSB
Zero error	See Notes 2 and 6		± 0.5		± 0.5	LSB
Full-scale error	See Notes 2 and 6		± 0.5		± 0.5	LSB
Total unadjusted error	See Note 7		± 0.5		± 0.5	LSB
Self-test output code	Input A11 address = 1011 (See Note 8)	$\begin{gathered} 01111101 \\ (125) \end{gathered}$	10000011 (131)	$\begin{aligned} & \hline 01111101 \\ & (125) \\ & \hline \end{aligned}$	$\begin{gathered} 10000011 \\ (131) \end{gathered}$	
$\mathrm{t}_{\text {conv }}$ Conversion time	See Operating Sequence		9		17	$\mu \mathrm{S}$
Total access and conversion time	See Operating Sequence		13.3		25	$\mu \mathrm{S}$
Channel acquisition time $t_{\text {acq }}$ (sample cycle)	See Operating Sequence		4	-	4	I/O clock cycles
Time output data $t_{V} \quad$ remaıns valid after I/O clock \downarrow		10		10		ns
$\mathrm{t}_{\mathrm{d}} \quad$Delay time, $1 / \mathrm{O}$ clock \downarrow to data output valid	See Parameter Measurement Information		300		400	ns
ten Output enable time			150		150	ns
$\mathrm{t}_{\text {dis }}$ Output disable time			150			ns
tribus) Data bus rise time			300		-	ns
$\mathrm{t}_{\mathrm{f} \text { (bus) }}$ Data bus fall time			300		300	ns

NOTES: 2. Analog input voltages greater than that applied to REF + convert to all " 1 "'s (111111111), while input voltages less than that applied to REF - convert to all " 0 's (00000000). For proper operation, REF + voltage must be at least 1 V higher than REF voltage. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 V .
5. Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics
6. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
7. Total unadjusted error is the sum of linearity, zero, and full-scale errors.
8. Both the input address and the output codes are expressed in positive logic.

TLC540M, TLC540I, TLC541M, TLC541I

LinCMOS ${ }^{\text {Tm }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS
WITH SERIAL CONTROL AND 11 INPUTS

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR
 ${ }^{t_{f}} \mathrm{f}_{\mathrm{r}} \mathrm{r}_{\mathrm{r}}$. AND t_{f}

(SEE NOTE B)

LOAD CIRCUIT FOR
LOAD CIRCUIT FOR
$\mathrm{t}_{\mathrm{P}} \mathrm{ZH}$ AND ${ }^{\text {tph }} \mathrm{HZ}$
tPZL AND TPLZ

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

principles of operation

The TLC540 and TLC541 are each complete data acquisition systems on a single chip. They include such functions as analog multiplexer, sample-and-hold, 8 -bit A/D converter, data and control registers, and control logic. For flexibility and access speed, there are four control inputs (two clocks, chip select ($\overline{\mathrm{CS}}$), and addressl. These control inputs and a TTL-compatible 3 -state output are intended for serial communications with a microprocessor or microcomputer. With judicious interface timing, with TLC540 a conversion can be completed in $9 \mu \mathrm{~s}$, while complete input-conversion-output cycles can be repeated every $13 \mu \mathrm{~s}$. With TLC541 a conversion can be completed in $17 \mu \mathrm{~s}$, while complete input-conversion-output cycles are repeated every $25 \mu \mathrm{~s}$. Furthermore, this fast conversion can be executed on any of 11 inputs or its built-in "selftest," and in any order desired by the controlling processor.
The System and I/O Clocks are normally used independently and do not require any special speed or phase relationships between them. This independence simplifies the hardware and software control tasks for the device. Once a clock signal within the specification range is applied to the System Clock input, the control hardware and software need only be concerned with addressing the desired analog channel, reading the previous conversion result, and starting the conversion by using the I/O Clock. The System Clock will drive the "conversion crunching" circuitry so that the control hardware and software need not be concerned with this task.

When $\overline{C S}$ is high, the Data Output pin is in a three-state condition and the Address Input and I/O Clock pins are disabled. This feature allows each of these pins, with the exception of the $\overline{\mathrm{CS}}$ pin, to share a control logic point with their counterpart pins on additional A/D devices when additional TLC540/541 devices are used. In this way, the above feature serves to minimize the required control logic pins when using multiple A/D devices.
The control sequence has been designed to minimize the time and effort required to initiate conversion and obtain the conversion result. A normal control sequence is:

1. $\overline{\mathrm{CS}}$ is brought low. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and then a falling edge of the System Clock after a low $\overline{\mathrm{CS}}$ transition, before the low transition is recognized. This technique is used to protect the device against noise when the device is used in a noisy environment. The MSB of the previous conversion result will automatically appear on the Data Out pin.
2. A new positive-logic multiplexer address is shifted in on the first four rising edges of the l/O Clock. The MSB of the address is shifted in first. The negative edges of these four $1 / O$ clock pulses shift out the second, third, fourth, and fifth most significant bits of the previous conversion result. The on-chip sample-and-hold begins sampling the newly addressed analog input after the fourth falling edge. The sampling operation basically involves the charging of internal capacitors to the level of the analog input voltage.
3. Three clock cycles are then applied to the I / O pin and the sixth, seventh, and eighth conversion bits are shifted out on the negative edges of these clock cycles.
4. The final eighth clock cycle is applied to the l/O Clock pin. The falling edge of this clock cycle completes the analog sampling process and initiates the hold function. Conversion is then performed during the next 36 System Clock cycles. After this final I/O Clock cycle, $\overline{\mathrm{CS}}$ must go high or the I/O Clock must remain low for at least 36 System Clock cycles to allow for the conversion function.
$\overline{\mathrm{CS}}$ can be kept low during periods of multiple conversion. When keeping $\overline{\mathrm{CS}}$ low during periods of multiple conversion, special care must be exercised to prevent noise glitches on the I/O Clock line. If glitches occur on the I/O Clock line, the I/O sequence between the microprocessor/controller and the device will lose synchronization. Also, if $\overline{\mathrm{CS}}$ is taken high, it must remain high until the end of the conversion. Otherwise, a valid falling edge of $\overline{C S}$ will cause a reset condition, which will abort the conversion in progress.
A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the 36 System Clock cycles occur. Such action will yield the conversion result of the previous conversion and not the ongoing conversion.

TLC540M, TLC5401, TLC541M, TLC541I
 LinCMOS ${ }^{\text {ITw }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS
 WITH SERIAL CONTROL AND 11 INPUTS

principles of operation (continued)
It is possible to connect the System and I/O Clock pins together in special situations in which controlling circuitry points must be minimized. In this case, the following special points must be considered in addition to the requirements of the normal control sequence previously described.

1. When $\overline{\mathrm{CS}}$ is recognized by the device to be at a low level, the common clock signal is used as an I/O Clock. When $\overline{\mathrm{CS}}$ is recognized by the device to be at a high level, the common clock signal is used to drive the "conversion crunching" circuitry.
2. The device will recognize a $\overline{\mathrm{CS}}$ low transition only when the $\overline{\mathrm{CS}}$ input changes and subsequently the $\leq \quad m$ Clock pin receives two positive edges and then a negative edge. For this reason, after a legative edge, the first two clock cycles will not shift in the address because a low $\overline{\mathrm{CS}}$ must be recognized before the I/O Clock can shift in an analog channel address. Also, upon shifting in the address, $\overline{C S}$ must be raised after the sixth $1 / O$ Clock pulse that has been recognized by the device, so that a $\overline{\mathrm{CS}}$ low level will be recognized upon the lowering of the eighth I/O Clock signal that is recognized by the device. Otherwise, additional common clock cycles will be recognized as $1 / O$ Clock pulses and will shift in an erroneous address.

For certain applications, such as strobing applications, it is necessary to start conversion at a specific point in time. This device will accommodate these applications. Although the on-chip sample-and-hold begins sampling upon the negative edge of the fourth $/ / O$ Clock cycle, the hold function is not initiated until the negative edge of the eighth 1/O Clock cycle. Thus, the control circuitry can leave the I/O Clock signal in its high state during the eighth I/O Clock cycle until the moment at which the analog signal must be converted. The TLC540/TLC541 will continue sampling the analog input until the eighth falling edge of the I/O Clock. The control circuitry or software will then immediately lower the I/O Clock signal and hold the analog signal at the desired point in time and start conversion.

Detailed information on interfacing to most popular microprocessors is readily available from the factory.

- LinCMOS ${ }^{101}$ Technology
- 8-Bit Resolution A/D Converter
- Microprocessor Peripheral or Stand-Alone Operation
- On-Chip 20-Channel Analog Multiplexer
- Built-In Self-Test Mode
- Software-Controllable Sample and Hold
- Total Unadjusted Error . . . ± 0.5 LSB Max
- Timing and Control Signals Compatible with 8-Bit TLC540 and 10-Bit TLC1540 A/D Converter Families

TYPICAL PERFORMANCE	TL545	TL546
Channel Acquisition Time	$15 \mu \mathrm{~s}$	$27 \mu \mathrm{~s}$
Conversion Time	$9 \mu \mathrm{~s}$	$17 \mu \mathrm{~s}$
Sampling Rate	76×10^{3}	40×10^{3}
Power Dissipation	6 mW	6 mW

description

The TLC545 and TLC546 are LinCMOS ${ }^{\text {w }}$ A/D peripherals built around an 8 -bit switchedcapacitor successive-approximation A/D converter. They are designed for serial interface to a microprocessor or peripheral via a 3-state output with up to four control inputs lincluding independent System Clock, I/O Clock, Chip Select $(\overline{\mathrm{CS}})$, and Address input]. A $4-\mathrm{MHz}$ system clock for the TLC545 and a $2.1-\mathrm{MHz}$ system clock for the TLC546 with a design that includes simultaneous read/write operation allowing high-speed data transfers and sample rates of up to 76,923 samples per second for the TLC545, and 40,000 samples per second for the TLC546. In addition to the high-speed converter and versatile control logic, there is an on-chip 20-channel analog multiplexer that can be used to sample any one of 19 inputs or an internal "self-test" voltage, and a sample-and-hold that can operate automatically or under microprocessor control.

The converters incorporated in the TLC545 and TLC546 feature differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and analog circuitry isolation from logic and supply noises. A totally switchedcapacitor design allows low-error (± 0.5 LSB)

N DUAL IN-LINE PACKAGE
(TOP VIEW)

LinCMOS is a trademark of Texas Instruments Incorporated
conversion in $9 \mu \mathrm{~s}$ for the TLC545, and $17 \mu \mathrm{~s}$ for the TLC546, over the full operating temperature range. Detailed information on interfacing to most popular microprocessors is readily available from the factory.
The TLC545M and the TLC546M are characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC545I and the TLC546I are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC545C and the TLC546C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

operating sequence

NOTES: A. The conversion cycle, which requires 36 system clock periods, is initiated with the 8 th l/O clock I after CSI for the channel whose address exists in memory at that time.
B. The most significant bit (MSB) will automatically be placed on the DATA OUT bus after $\overline{\mathrm{CS}}$ is brought low. The remaining seven bits (A6-AO) will be clocked out on the first seven 1/O clock falling edges.
C. To minmize errors caused by noise at the $\overline{\mathrm{C}} \overline{\mathrm{S}}$ input, the internal circuitry waits for three system clock cycles lor less) aftir: a chip select transition before responding to control input signals. Therefore, no attempt should be made to clock-in address data until the minimum chip-select setup time has elapsed.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	 6.5 V
Input voltage range (any input)		-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage range		-0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
Peak input current range (any input)		$\pm 10 \mathrm{~mA}$
Peak total input current (all inputs)		$\pm 30 \mathrm{~mA}$
Operating free-air temperature range:	TLC545M, TLC546M	$5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
	TLC545I, TLC5461	$40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	TLC545C, TLC546C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN	N package	$260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch)) from case for 10 sec	$260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to network ground terminal.

TLC545M, TLC545I, TLC545C, TLC546M, TLC546I, TLC546C LinCMOS ${ }^{\text {TM }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 19 INPUTS
recommended operating conditions

NOTES: 2. Analog input voltages greater than that applied to REF + convert as all " 1 "s 111111111), while input voltages less than that applied to REF - convert as all " 0 's $\{00000000$). As the differential reference voltage decreases below 4.75 V , the total unadjusted error tends to increase.
3. To minimize errors caused by noise at the Chip Select input, the internal circuitry waits for three system clock cycles (or less) after a chip select falling edge or rising edge is detected before responding to control input signais. Therefore, no attempt should be made to clock-in address data until the minimum chip select setup time has elapsed.
4. This is the time required for the clock input signal to fall from $V_{I H}$ min to $V_{I L} \max$ or to rise from $V_{I L}$ max to $V_{\text {IH }}$ min. In the vicinity of normal room temperature, the devices function with input clock transition time as slow as $2 \mu s$ for remote data acquisition applications where the sensor and the A / D converter are placed several feet away from the controlling microprocessor.
electrical characteristics over recommended operating temperature range,
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{fCLK}(\mathrm{I} / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC545 or $\operatorname{fCLK}(1 / 0)=1.1 \mathrm{MHz}$ for TLC546

PARAMETER			TEST CONDITIONS		MIN TYP ${ }^{\text {t }}$	Max	UNIT
V_{OH}	High-level output voltage (pin 24)		$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$,	$1 \mathrm{OH}=-360 \mu \mathrm{~A}$	2.4		V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	$1 \mathrm{OL}=3.2 \mathrm{~mA}$		0.4	V
IOZ	Off-state (high-impedance state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$.	$\overline{\mathrm{CS}}$ at V_{CC}		10	$\mu \mathrm{A}$
			$\mathrm{v}_{\mathrm{O}}=0$.	$\overline{C S}$ at $V_{C C}$		-10	
${ }_{1 / H}$	High-level input current		$V_{1}=V_{C C}$		0	2.5	$\mu \mathrm{A}$
If	Low-level input current		$V_{1}=0$		-0	-2.5	$\mu \mathrm{A}$
ICC	Operating supply current		$\overline{\mathrm{CS}}$ at OV		1.2	2.5	mA
	Selected channel leakage current		Selected channel at V_{CC}. Unselected channel at 0 V		0.4	1	$\mu \mathrm{A}$
			Selected channel at OV, Unselected channel at $V_{C C}$		-0.4	-1	
$1 \mathrm{CC}+\mathrm{I}_{\text {ref }}$	Supply and reference current		$\mathrm{V}_{\text {ref }+}=\mathrm{V}_{\text {CC }}$.	$\overline{\mathrm{CS}}$ at OV	1.3	3	mA
C_{1}	Input capacitance	Analog inputs			7	55	pF
		Control inputs			5	15	

${ }^{\dagger}$ Aff typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
operating characteristics over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {ref }}=4.75 \mathrm{~V}$ to 5.5 V , $\mathrm{fCLK}(1 / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC545 or 1.1 MHz for TLC546, f CLK(SYS) $=4 \mathrm{MHz}$ for TLC545 or 2.1 MHz for TLC546

PARAMETER	TEST CONDITIONS	TLC545		TLC546		UNIT
		MIN	TYP MAX	MIN	TVP MAX	
Linearity error	See Note 5		± 0.5		± 0.5	LSB
Zero error	See Note 6		± 0.5		± 0.5	LSB
Full-scale orror	See Note 6		± 0.5		± 0.5	LSB
Total unadjusted error	See Note 7		1		± 0.5	LSB
Self-test output code	Input A19 address $=10011$ (See Note 8!	$\begin{gathered} \hline 01111101 \\ (125) \\ \hline \end{gathered}$	$1001131)^{1}$	$\begin{gathered} 01111101 \\ \quad 1125) \\ \hline \end{gathered}$	$\begin{gathered} 10000011 \\ (131) \\ \hline \end{gathered}$	
$\mathrm{t}_{\text {conv }}$ Conversion time	See Operating Sequence		9		17	$\mu \mathrm{S}$
Total acrums ard (onvaremen time	Sut Oper thag Suqumer		13		25	\#S
$\begin{array}{ll} \text { tacq } & \text { Channel acquisition } \\ \text { time (sample cycle) } \end{array}$	See Operating Sequence		3		3	1/0 clock cycles
Time output data rettanss villed after 1,0 clock.		10		10		ns
$\mathrm{t}_{\mathrm{d}} \quad$Delay tıme, I/O clock \downarrow to data output vatid	See Parameter Measurement Information		300		400	ns
ten Output enable time			150		150	ns
$\mathrm{t}_{\text {dis }}$ Output disable time			150		150	ns
tribus) Data bus rise time			300		300	ns
$\mathrm{t}_{\mathrm{f} \text { (bus) }}$ Data bus fall time			300		300	ns

NOTES: 5 Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.
6. Zero Error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
7. Total unadjusted error is the sum of linearity, zero, and full-scale errors.
8. Both the input address and the output codes are expressed in positive logic. The A19 analog input signal is internally generated and is used for test purposes

TLC545M, TLC545I, TLC545C, TLC546M, TLC546I, TLC546C
LinCMOS ${ }^{\text {Tn }}$ 8-BIT ANALOG-TO-DIGITAL PERIPHERALS
WITH SERIAL CONTROL AND 19 INPUTS

PARAMETER MEASUREMENT INFORMATION

(SEE NOTEB)

LOAD CIRCUIT FOR tPZH AND tPHZ

LOAD CIRCUIT FOR $t^{t} Z \mathrm{LL}$ AND tpLZ

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

NOTES: A. $C_{L}=50 \mathrm{pF}$ for TLC545 and 100 pF for TLC546
B. $t_{\text {en }}=t_{P Z H}$ or $t_{P Z L}, t_{\text {dis }}=t_{P H Z}$ or $t_{p L Z}$
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

TLC545M, TLC545I, TLC545C, TLC546M, TLC546I, TLC546C LinCMOS ${ }^{\text {n }}$ 8.BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 19 INPUTS

principles of operation

The TLC545 and TLC546 are both complete data acquisition systems on single chips. Each includes such functions as system clock, sample-and-hold, 8-bit A/D converter, data and control registers, and control logic. For flexibility and access speed, there are four control inputs; Chip Select ($\overline{\mathrm{CS}}$), Address Input, 1/O clock, and System clock. These control inputs and a TTL-compatible 3 -state output facilitate serial communications with a microprocessor or microcomputer. The TLC545 and TLC546 can complete conversions in a maximum of 9 and 17μ s respectively, while complete input-conversion-output cycles can be repeated at a maximum of 13 and $25 \mu \mathrm{~s}$, respectively.

The System and I/O clocks are normally used independently and do not require any special speed or phase relationships between them. This independence simplifies the hardware and software control tasks for the device. Once a clock signal within the specification range is applied to the System clock input, the control hardware and software need only be concerned with addressing the desired analog channel, reading the previous conversion result, and starting the conversion by using the $1 / O$ clock. The System clock will drive the "conversion crunching" circuitry so that the control hardware and software need not be concerned with this task.

When $\overline{\mathrm{CS}}$ is high, the Data Output pin is in a high-impedance condition, and the Address Input and I/O Clock pins are disabled. This feature allows each of these pins, with the exception of the $\overline{\mathrm{CS}}$, to share a control logic point with their counterpart pins on additional A/D devices when additional TLC545/TLC546 devices are used. Thus, the above feature serves to minimize the required control logic pins when using multiple A/D devices.

The control sequence has been designed to minimize the time and effort required to initiate conversion and obtain the conversion result. A normal control sequence is:

1. $\overline{\mathrm{CS}}$ is brought low. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and then a falling edge of the System clock after a $\overline{\mathrm{CS}}$ transition before the transition is recognized. The MSB of the previous conversion result will automatically appear on the Data Out pin.
2. A new positive-logic multiplexer address is shifted in on the first five rising edges of the I/O clock. The MSB of the address is shifted in first. The negative edges of these five I/O clocks shift out the 2 nd, 3 rd, 4 th, 5 th, and 6 th most significant bits of the previous conversion result. The onchip sample-and hold begins sampling the newly addressed analog input after the 5 th falling edge. The sampling operation basically involves the charging of internal capacitors to the level of the analog input voltage.
3. Two clock cycles are then applied to the $1 / O$ pin and the 7 th and 8 th conversion bits are shifted out on the negative edges of these clock cycles.
4. The final 8 th clock cycle is applied to the $1 / O$ clock pin. The falling edge of this clock cycle completes the analog sampling process and initiates the hold function. Conversion is then performed during the next 36 system clock cycles. After this final I/O clock cycle, $\overline{\mathrm{CS}}$ must go high or the I/O clock must remain low for at least 36 system clock cycles to allow for the conversion function.
$\overline{\mathrm{CS}}$ can be kept low during periods of multiple conversion. When keeping $\overline{\mathrm{CS}}$ low during periods of multiple conversion, special care must be exercised to prevent noise glitches on the I/O Clock line. If glitches occur on the I/O Clock line, the I/O sequence between the microprocessor/controller and the device will lose synchronization. Also, if $\overline{\mathrm{CS}}$ is taken high, it must remain high until the end of conversion. Otherwise, a valid falling edge of $\overline{C S}$ will cause a reset condition, which will abort the conversion in progress.

A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the 36 system clack cycles occur. Such action will yield the conversion result of the previous conversion and not the ongoing conversion.

principles of operation (continued)

It is possible to connect the system and I/O clocks together in special situations in which controlling circuitry points must be minimized. In this case, the following special points must be considered in addition to the requirements of the normal control sequence previously described.

1. When $\overline{\mathrm{CS}}$ is recognized by the device to be at a low level, the common clock signal is used as an I/O clock. When the $\overline{\mathrm{CS}}$ is recognized by the device to be at a high level, the common clock signal is used to drive the "conversion crunching" circuitry.
2. The device will recognize a $\overline{\mathrm{CS}}$ transition only when the $\overline{\mathrm{CS}}$ input changes and subsequently the system clock pin receives two positive edges and then a negative edge. For this reason, after a $\overline{\mathrm{CS}}$ negative edge, the first two clock cycles will not shift in the address because a low $\overline{\mathrm{CS}}$ must be recognized before the $1 / O$ clock can shift in an analog channel address. Also, upon shifting in the address, $\overline{C S}$ must be raised after the 6 th $1 / O$ clock, which has been recognized by the device, so that a $\overline{C S}$ low level will be recognized upon the lowering of the 8 th $1 / O$ clock signal recognized by the device. Otherwise, additional common clock cycles will be recognized as $1 / O$ clocks and will shift in an erroneous address.

For certain applications, such as strobing applications, it is necessary to start conversion at a specific point in time. This device will accommodate these applications. Although the on-chip sample-and-hold begins sampling upon the negative edge of the 5 th $1 / O$ clock cycle, the hold function is not initiated until the negative edge of the 8 th $1 / O$ clock cycle. Thus, the control circuitry can leave the $1 / O$ clock signal in its high state during the 8 th $1 / O$ clock cycle, until the moment at which the analog signal must be converted. The TLC545/546 will continue sampling the analog input until the 8 th falling edge of the $1 / 0$ clock. The control circuitry or software must then immediately lower the I/O clock signal to initiate the hold function at the desired point in time and to start conversion.

Detailed information on interfacing to most popular microprocesors is readily available from the factory.

- LinCMOS* Technology
- Microprocessor Peripheral or Stand-Alone Operation
- 8-Bit Resolution A/D Converter
- Differential Reference Input Voltages
- Conversion Time . . $17 \mu \mathrm{~s}$ Max
- Total Access and Conversion Cycles Per Second TLC548 . . . up to 45,500 TLC549 . . . up to 40,000
- On-Chip Software-Controllable Sample-and-Hold
- Total Unadjusted Error . . . ± 0.5 LSB Max
- 4-MHz Typical Internal System Clock
- Wide Supply Range . . . 3 V to 6 V
- Low Power Consumption . . . 6 mW Typ
- Ideal for Cost-Effective, High-Performance Applications Including Battery-Operated Portable Instrumentation
- Pinout and Control Signals Compatible with the TLC540 and TLC545 8-Bit A/D Converters and with the TLC1540 10-Bit A/D Converter

description

The TLC548 and TLC549 are LinCMOS ${ }^{\text {m }}$ A/D peripheral integrated circuits built around an 8 -bit switchedcapacitor successive-approximation ADC. They are designed for serial interface with a microprocessor or peripheral through a 3-state data output and an analog input. The TLC548 and TLC549 use only the Input/Output Clock ($1 / \mathrm{O}$ Clock) input along with the Chip Select ($\overline{\mathrm{CS}}$) input for data control. The maximum I/O clock input frequency of the TLC548 is guaranteed up to 2.048 MHz , and the I/O clock input frequency of the TLC549 is guaranteed to 1.1 MHz . Detailed information on interfacing to most popular microprocessors is readily available from the factory.
Operation of the TLC548 and the TLC549 is very similar to that of the more complex TLC540 and TLC541 devices; however, the TLC548 and TLC549 provide an on-chip system clock that operates typically at 4 MHz and requires no external components. The on-chip system clock allows internal device operation to proceed independently of serial input/output data timing and permits manipulation of the TLC548 and TLC549 as desired for a wide range of software and hardware requirements. The I/O Clock together with the internal system clock allow high-speed data transfer and conversion rates of 45,500 conversions per second for the TLC548, and 40,000 conversions per second for the TLC549.
Additional TLC548 and TLC549 features include versatile control logic, an on-chip sample-and-hold circuit that can operate automatically or under microprocessor control, and a high-speed converter with differential high-impedance reference voltage inputs that ease ratiometric conversion, scaling, and circuit isolation from logic and supply noises. Design of the totally switched-capacitor successive-approximation converter circuit allows conversion with a maximum total error of ± 0.5 least significant bit (LSB) in less than $17 \mu \mathrm{~s}$.

The TLC548M and TLC549M are characterized for operation over the temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC5481 and TLC5491 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC548C and TLC549C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

LinCMOS is a trademark of Texas instruments incorporated.

functional block diagram

operating sequence

NOTES. A. The conversion cycle, which requires 36 internat system clock periods $(17 \mu \mathrm{~s}$ maximum), is initiated with the 8 th t / O clock pulse trailing edge after $\overline{\mathrm{CS}}$ goes low for the channel whose address exists in memory at the time.
B. The most significant bit (A7) will automatically be placed on the DATA OUT bus after $\overline{C S}$ is brought low. The remaıning seven bits (A6-AO) will be clocked out on the first seven I/O clock falling edges. B7-BO will follow in the same manner.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTES: 1 All voltage values are with respect to the network ground terminal with the REF - and GND terminal pins connected together, unless otherwise noted.
2. The D package is not recommended below $-40^{\circ} \mathrm{C}$.
recommended operating conditions

		TLC548			TLC549			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V ${ }_{\text {CC }}$		3	5	6	3	5	6	V
Positive reference voltage, $\mathrm{V}_{\text {REF }+}$	Note 3)	2.5	V_{CC}	C +0.1	2.5	V_{CC}	C +0.1	V
Negative reference voltage, $V_{\text {REF - }}$	e Note 3)	-0.1	0	2.5	-0.1	0	2.5	V
Differential reference voltage, $\mathrm{V}_{\text {RE }}$	$V_{\text {REF - }}$ (see Note 3)	1		C+0.2	1	VCC	+0.2	V
Analog input voltage (see Note 3)		0		VCC	0		VCC	\checkmark
High-level control input voltage, $\mathrm{V}_{\text {II }}$	or $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.5 V$)$	2			2			\checkmark
Low-level control imput voltage, $\mathrm{V}_{\text {IL }}$	\% $\mathrm{V}_{\mathrm{CC}}=475 \mathrm{~V}$ to 5.5 V I			0.8			0.8	\checkmark
Input/output clock frequency, ${ }^{\mathrm{f}} \mathrm{CLK}$ (for $V_{C C}=4.75 \mathrm{~V}$ to 5.5 V)		0		2.048	0		1.1	MHz
Input/output clock high, $\mathrm{t}_{\text {w }}$ Hiwnt	$V_{C C}=4.75 \mathrm{~V}$ to 5.5 V$)$	200			404			ns
Input/output clock low, twl for	$\mathrm{CC}=4.75 \mathrm{~V}$ to 5.5 V)	200			404			ns
Input/output clock transitio.,し, $\left(\text { for } V_{C C}=4.75 \vee \text { to } 5.5 \mathrm{~V}\right. \text {) }$	(see Note 4)			100			100	ns
Duration of $\overline{C S}$ input high state dur (for $\mathrm{V}_{\mathrm{CC}}=475 \mathrm{~V}$ to 5.5 V)	conversion, twHiCS)	17			17			$\mu \mathrm{s}$
Setup time, $\overline{\mathrm{CS}}$ low before first $1 / 0$ (for $V_{C C}=4.75 \mathrm{~V}$ to 5.5 V) (see	$\mathrm{t}_{\text {su }}(\mathrm{CS})$ 5)	1.4			1.4			$\mu \mathrm{S}$
	TLC548M, TLC549M	-55		125	-55		125	
Operating free-arr temperature, TA	TLC5481, TLC5491	-40		85	-40		85	${ }^{\circ} \mathrm{C}$
	TLC548C, TLC549C	0		70	0		70	

NOTES 3. Analog input voltages greater than that applied to REF + convert to all ones 111111111), while input voltages less than that applied to REF - convert to all zeros (00000000). For proper operation, the positive reference voltage $V_{\text {REF }}$, must be at least $1 \vee$ greater than the negative reference voltage $\vee_{\text {REF }} \ldots$. In addition, unadjusted errors may increase as the differential reference voltage $V_{R E F}+-V_{\text {REF }}$ falls below 4.75 V .
4 This is the time required for the input/output clack input signal to fall from $V_{I H}$ min to $V_{\text {IL }}$ max or to rise from $V_{\text {IL }}$ max to $\mathrm{V}_{1 \mathrm{H}}$ min. In the vicinity of normal room temperature, the devices function with input clock transition tume as slow as $2 \mu \mathrm{~s}$ for remote data acquisition applications in which the sensor and the ADC are placed several feet away from the controlling microprocessor.
5. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and one falling edge of internal system clock after $\overline{\mathrm{CS}} \downarrow$ before responding to control input signals. This $\overline{\mathrm{CS}}$ set-up time is given by the ten and $\mathrm{t}_{\text {sul }}$ (CS) specifications.

TLC548, TLC549

LinCMOS ${ }^{\text {TM }}$. 8 -BIT ANALOG-TO-DIGITAL PERIPHERAL WITH SERIAL CONTROL

electrical characteristics over recommended operating free-air temperature range,
$V_{C C}=V_{\text {REF }}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{fCLK}^{(1 / O)}=2.048 \mathrm{MHz}$ for TLC548 or 1.1 MHz for TLC549

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$\overline{\mathrm{VOH}}$	High-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{1} \quad 1_{\mathrm{OH}}=-360 \mu \mathrm{~A}$	2.4			V
VOL	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{OL}=3.2 \mathrm{~mA}$			0.4	V
loz	Off-state (high-impedance state) output current		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} . \quad \overline{\mathrm{CS}}$ at V_{CC}			10	v
			$V_{O}=0, \quad \overline{C S}$ at $V_{C C}$			-10	
IIH	High-level input current, control inputs		$v_{1}=v_{C C}$		0.005	2.5	$\mu \mathrm{A}$
IIL	Low-level input current, control inputs		$\mathrm{V}_{1}=0$		-0.005	-2.5	$\mu \mathrm{A}$
M $10 n$)	Analog channel on-state input current, during sample cycle		Analog input at V_{CC}		0.4	1	$\mu \mathrm{A}$
			Analog input at 0 V		-0.4	-1	
${ }^{\text {I CC }}$	Operating supply current		$\overline{C S}$ at O V		1.8	2.5	mA
$I_{\text {CC }}+I_{\text {REF }}$	Supply and reference current		$\mathrm{V}_{\text {REF }+}=\mathrm{V}_{\mathrm{CC}}$		1.9	3	mA
c_{i}	Input capacitance	Analog inputs			7	55	pF
		Control inputs			5	15	

operating characteristics over recommended operating free-air temperature range,
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75 \mathrm{~V}$ to 5.5 V (uniess otherwise noted), $\mathrm{fCLK}(1 / \mathrm{O})=2.048 \mathrm{MHz}$ for TLC548 or 1.1 MHz for TLC549

${ }^{\dagger}$ All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 6. Linearity error is the deviation from the best straight line through the A/D transfer characteristics.
7. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
8. Total unadjusted error is the sum of linearity, zero, and full-scale errors.

PARAMETER MEASUREMENT INFORMATION

(SEE NOTE B)

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

NOTES: $A . C_{L}=50 \mathrm{pF}$ for TLC548 and 100 pF for TLC549; C_{L} includes jig capacitance.
B. $t_{\text {en }}=t_{P Z H}$ or tPZL, $t_{\text {dis }}=t_{\text {PHZ }}$ or $t_{\text {PLZ }}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control Waveform 2 is for an output with internal conditions such that the output is high except when disabied by the output control.

PRINCIPLES OF OPERATION

The TLC548 and TLC549 are each complete data acquisition systems on a single chip. Each contains an internal system clock, sample-and-hold, 8-bit A/D converter, data register, and control logic circuitry. For flexibility and access speed, there are two control inputs: I/O Clock and Chip Select ($\overline{\mathrm{CS}}$). These control inputs and a TTLcompatible three-state output facilitate serial communications with a microprocessor or minicomputer. A conversion can be completed in 17μ s or less, while complete input-conversion-output cycles can be repeated in $22 \mu \mathrm{~s}$ for the TLC548 and in $25 \mu \mathrm{~s}$ for the TLC549.

The internal system clock and I/O clock are used independently and do not require any special speed or phase relationships between them. This independence simplifies the hardware and software control tasks for the device. Due to this independence and the internal generation of the system clock, the control hardware and software need only be concerned with reading the previous conversion result and starting the conversion by using the 1/O clock. In this manner, the internal system clock drives the "conversion crunching" circuitry so that the control hardware and software need not be concerned with this task.
When $\overline{\mathrm{CS}}$ is high, the data output pin is in a high-impedance condition and the I/O clock pin is disabled. This $\overline{\mathrm{CS}}$ control function allows the I/O Clock pin to share the same control logic point with its counterpart pin when additional TLC548 and TLC549 devices are used. This also serves to minimize the required control logic pins when using multiple TLC548 and TLC549 devices.
The control sequence has been designed to minimize the time and effort required to initiate conversion and obtain the conversion result. A normal control sequence is:

1. $\overline{\mathrm{CS}}$ is brought low. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and then a falling edge of the internal system clock after a $\overline{\mathrm{CS}} \downarrow$ before the transition is recognized. However, upon a $\overline{\mathrm{CS}}$ rising edge, DATA OUT will go to a high-impedance state within the $t_{d i s}$ specification even though the rest of the IC's circuitry will not recognize the transition until the $t_{s u}(C S)$ specification has elapsed. This technique is used to protect the device against noise when used in a noisy environment. The most significant bit (MSB) of the previous conversion result will initially appear on the DATA OUT pin when $\overline{\mathrm{CS}}$ goes low.
2. The falling edges of the first four $1 / 0$ clock cycles shift out the 2 nd, 3 rd, 4 th, and 5 th most significant bits of the previous conversion result. The on-chip sample-and-hold begins sampling the analog input after the 4 th high-to-low transition of the I/O Clock. The sampling operation basically involves the charging of internal capacitors to the level of the analog input voltage.
3. Three more $/ / O$ clock cycles are then applied to the $1 / O$ pin and the 6 th, 7 th, and 8 th conversion bits are shifted out on the falling edges of these clock cycles.
4. The final, (the 8 th), clock cycle is applied to the $/ / 0$ clock pin. The on-chip sample-and-hold begins the hold function upon the high-to-low transition of this clock cycle. The hold function will continue for the next four internal system clock cycles, after which the holding function terminates and the conversion is performed during the next 32 system clock cycles, giving a total of 36 cycles. After the 8 th 1/O clock cycle, $\overline{\mathrm{CS}}$ must go high or the I/O clock must remain low for at least 36 internal system clock cycles to allow for the completion of the hold and conversion functions. $\overline{\mathrm{CS}}$ can be kept low during periods of multiple conversion. When keeping $\overline{\mathrm{CS}}$ low during periods of multiple conversion, special care must be exercised to prevent noise glitches on the I/O Clock line. If glitches occur on the I/O Clock line, the I/O sequence between the microprocessor/controller and the device will lose synchronization. If $\overline{\mathrm{CS}}$ is taken high, it must remain high until the end of conversion. Otherwise, a valid high-to-low transition of $\overline{\mathrm{CS}}$ will cause a reset condition, which will abort the conversion in progress.

A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the 36 internal system clock cycles occur. Such action will yield the conversion result of the previous conversion and not the ongoing conversion.

PRINCIPLES OF OPERATION

For certain applications, such as strobing applications, it is necessary to start conversion at a specific point in time. This device will accommodate these applications. Although the on-chip sample-and-hold begins sampling upon the high-to-low transition of the 4 th $/ / \mathrm{O}$ clock cycle, the hold function does not begin until the high-to-low transition of the 8 th I/O clock cycle, which should occur at the moment when the analog signal must be converted. The TLC548 and TLC549 will continue sampling the analog input until the high-to-low transition of the 8th I/O clock pulse. The control circuitry or software will then immediately lower the l/O clock signal and start the holding function to hold the analog signal at the desired point in time and start conversion.

Detailed information on interfacing to the most popular microprocessor is readily available from Texas Instruments.

- Advanced LinCMOS ${ }^{\text {™ }}$ Silicon-Gate Technology
- 8-Bit Resolution
- Differential Reference Inputs
- Paraliel Microprocessor Interface
- Conversion and Access Time Over Temperature Range Write-Read Mode . . . $1.18 \mu \mathrm{~s}$ and $1.92 \mu \mathrm{~s}$ Read Mode . . . $2.5 \mu \mathrm{~s}$ Max
- No External Clock or Oscillator Components Required
- On-Chip Track-and-Hold
- Low Power Consumption . . . 50 mW Typ
- Single 5-V Supply
- TLC0820B is Direct Replacement for National Semiconductor ADC0820B/BC and Analog Devices AD7820L/C/U; TLC0820A is Direct Replacement for National Semiconductor ADC0820C/CC and Analog Devices AD7820K/B/T

description

The TLC0820A, TLC0820B, ADC0820B, and ADC0820C are Advanced LinCMOS' 8 -bit analog-to-digital converters each consisting of two 4-bit "flash" converters, a 4-bit digital-toanalog converter, a summing (error) amplifier, control logic, and a result latch circuit. The modified "flash" technique allows low-power integrated circuitry to complete an 8 -bit conversion in $1.18 \mu \mathrm{~s}$ over temperature. The onchip track-and-hold circuit has a 100 ns sample window and allows these devices to convert continuous analog signals having slew rates of up to $100 \mathrm{mV} / \mu \mathrm{s}$ without external sampling components. TTL-compatible three-state output drivers and two modes of operation allow interfacing to a variety of microprocessors. Detailed information on interfacing to most popular microprocessors is readily available from the factory.

ALL TYPES . DW OR N PACKAGE
TLC0820__M . . . J PACKAGE
(TOP VIEW)

TLCO820_M . . FK PACKAGE
TLC0820_I, TLCO820_C . . . FN PACKAGE ADC0820__CI, ADCO820__C . . . FN PACKAGE (TOP VIEW)

NC - No internal connection

The M-suffix devices are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The I-suffix devices are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The C -suffix devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. See Available Options.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TLCOB20A, TLCO820B, ADCO820B, ADCOB20C
Advanced LinCMOS ${ }^{\text {TM }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL
CONVERTERS USING MODIFIED "FLASH" TECHNIQUES

AVAILABLE OPTIONS

SYMBOLIZATION ${ }^{\text {¢ }}$		OPERATING temperature RANGE	TOTAL UNADJUSTED ERROR
DEVICE	PACKAGE SUFFIX		
TLC0820AC	DW, FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	± 1 LSB
TLC0820AI	DW. FN, N	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	± 1 LSB
TLC0820AM	DW, FK, J. N	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	± 1 LSB
TLC0820BC	DW. FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$\pm 05 \mathrm{LSB}$
TLC0820BI	DW, FN, N	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$\pm 0.5 \mathrm{LSB}$
TLC0820BM	DW, FK, J, N	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\pm 0.5 \mathrm{LSB}$
ADC0820BC	DW, FN, N	$0^{\circ} \mathrm{C}$ 10 $70^{\circ} \mathrm{C}$	$\pm 05 \mathrm{LSB}$
ADCO820BCI	DW, FN, N	$40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	± 05 LSB
ADC0820CC	DW, FN, N	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	± 1 LSB
ADC0820CCI	DW, FN, N	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	± 1 LSB

\dagger In many instances, these ICs may have both TLCO820 and ADCO820 labeling on the package
functional block diagram

TLC0820A, TLC0820B, ADCOB20B, ADC0820C Advanced LinCMOS ${ }^{\text {M }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED "FLASH" TECHNIQUES

PIN		DESCRIPTION
NAME	NUMBER	
ANLG IN	1	Analog input
$\overline{\text { CS }}$	13	This input must be low in order for $\overline{\mathrm{RD}}$ or $\bar{W} \overline{\mathrm{~F}}$ to be recognized by the ADC.
DO	2	Three-state data output, bit 1 (LSB)
D1	3	Three-state data output, bit 2
D2	4	Three-state data output, bit 3
D3	5	Three-state data output, bit 4
D4	14	Three-state data output, bit 5
D5	15	Three-state data output, bit 6
D6	16	Three-state data output, bit 7
D7	17	Three-state data output, bit 8 (MSB)
GND	10	Ground
INT	9	In the WRITE-READ mode, the interrupt output, INT, going low indicates that the internal count-down delay time, $t_{d(i n t)}$, is complete and the data result is in the output latch. $t_{d / i n t)}$ is typically 800 ns starting after the rising edge of the $\overline{W R}$ input (see operating characteristics and Figure 3). If $\overline{R D}$ goes low prior to the end of t_{d} (int), $\overline{\mathrm{INT}}$ goes low at the end of $\mathrm{t}_{\mathrm{dRIL}}$ and the conversion results are avalable sooner (see Figure 2). $\overline{\mathrm{NT}}$ is reset by the rising edge of either $\overline{R D}$ or $\overline{\mathrm{CS}}$.
MODE	7	Mode-selection input it is internally tied to GND through a $50-\mu \mathrm{A}$ current source, which acts like a pull-down resistor. READ mode: Occurs when this input is low. WRITE-READ mode: Occurs when this input is high.
NC	19	No internal connection
$\overline{\text { OFLW }}$	18	Normally the $\overline{O F L W}$ output is a logical high. However, if the analog input is higher than the $V_{\text {REF }}+\overline{O F L W}$ will be low at the end of conversion. It can be used to cascade 2 or more devices to improve resolution (9 or 10-bits).
$\overline{\mathrm{RD}}$	8	In the WRITE-READ mode with $\overline{C S}$ low, the 3-state data outputs $D 0$ through $D 7$ are activated when $\overline{\mathrm{RD}}$ goes low. $\overline{\mathrm{AD}}$ can also be used to increase the conversion speed by reading data prior to the end of the internal count-down delay time. As a result, the data transferred to the output latch is latched after the falling edge of $\overline{\mathrm{RD}}$. In the READ mode with $\overline{\mathrm{CS}}$ low, the conversion starts with $\overline{\mathrm{RD}}$ going low $\overline{\mathrm{RD}}$ also enables the three-state data outputs upon completion of the conversion The RDY output going into the high-impedance state and $\overline{\text { INT }}$ going low indicates completion of the conversion.
REF -	11	This input voitage is placed on the bottom of the resistor ladder.
REF +	12	This input voltage is placed on the top of the resistor ladder.
V_{CC}	20	Power supply voltage
$\overline{\text { WR/RDY }}$	6	In the WRITE-READ mode with $\overline{C S}$ low, the conversion is started on the falling edge of the $\overline{W R}$ input signal The result of the conversion is strobed into the output latch after the internal count-down delay time, $\mathrm{t}_{\mathrm{d}}(\mathrm{int})$. provided that the $\overline{R D}$ input does not go low prior to this time. $\mathrm{t}_{\mathrm{d}(\mathrm{Int})}$ is approximately 800 ns . In the READ mode, RDY (an open-dran output) will go low after the falling edge of $\overline{\mathrm{CS}}$, and will go into the figh-impedance state when the conversion is strobed into the output latch. It is used to simplify the interface to a microprocessor system.

TLC0820A, TLC0820B, ADC0820B, ADC0820C
 Advanced LinCMOS ${ }^{\text {Tw }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL
 converters using modified "Flash" techniaues

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TLC0820_M	$\begin{aligned} & \text { TLCO820_1 } \\ & \text { ADC0820_CI } \end{aligned}$	$\begin{aligned} & \text { TLCO820_C } \\ & \text { ADC0820_C } \end{aligned}$	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	10	10	10	V
Input voltage range, all inputs (see Note 1)	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	V
Output voltage range, all outputs (see Note 1)	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	$\begin{gathered} -0.2 \text { to } \\ v_{C C}+0.2 \end{gathered}$	V
Operating free-air temperature range	-55 to 125	-40 to 85	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package	260			${ }^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package		260	260	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 60 seconds: J package	300			${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW or N package	260	260	260	${ }^{\circ} \mathrm{C}$

NOTE 1: All voltages are with respect to network ground terminal, pin 10.
recommended operating conditions

TLC0820A, TLC0820B, ADC0820B, ADC0820C Advanced LinCMOS ${ }^{m}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MODIFIED "FLASH" TECHNIQUES
electrical characteristics at specified operating free-air temperature, $\mathrm{VCC}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER			TEST CONDITONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT	
V_{OH}	High-level output voltage	Any D, $\overline{\text { INT, }}$, or $\overline{\text { OFLW }}$	$\begin{aligned} & \mathrm{VCC}=4.75 \mathrm{~V} \\ & \mathrm{IOH}_{\mathrm{OH}}=-360 \mu \mathrm{~A} \end{aligned}$	Full range	2.4			v	
			$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$.	Full range	4.5				
			$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	$25^{\circ} \mathrm{C}$	4.6				
V_{OL}	Low-level output valtage	Any D, $\overline{\text { OFLW }}, \overline{\mathrm{NT}}$, or WR/RDY	$\begin{aligned} & \mathrm{V}_{C C}=5.25 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$	Fult range			0.4	v	
				$25^{\circ} \mathrm{C}$			0.34		
	High-level input current	$\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$	$\mathrm{V}_{1 \mathrm{H}}=5 \mathrm{~V}$	Full range		0.005	1	$\mu \mathrm{A}$	
		$\overline{\text { WR}} /$ RDY		Full range			3		
				$25^{\circ} \mathrm{C}$		0.1	0.3		
		MODE		Full range			200		
				$25^{\circ} \mathrm{C}$		50	170		
IL	Low-level input current	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}, \overline{\mathrm{AD}}$, or MODE	$V_{\text {IL }}=0$	Full range		-0.005	-1	$\mu \mathrm{A}$	
${ }^{\prime} 02$	Off-state (high-impedance state) output current	Any D or $\overline{W R} /$ RDY	$\mathrm{V}_{0}=5 \mathrm{~V}$	Full range			3	$\mu \mathrm{A}$	
				$25^{\circ} \mathrm{C}$		0.1	0.3		
			$v_{0}=0$	Full range			-3		
				$25^{\circ} \mathrm{C}$		-0.1	-0.3		
1	Analog input current		$\begin{aligned} & \overline{\overline{C S}} \text { at } 5 \mathrm{~V}, \\ & \mathrm{~V}_{1}=5 \mathrm{~V} \\ & \overline{\mathrm{CS}} \text { at } 5 \mathrm{~V} . \\ & \mathrm{V}_{1}=0 \end{aligned}$	Full range			3	${ }^{1} \times$	
			$25^{\circ} \mathrm{C}$			0.3			
			Full range			-3			
			$25^{\circ} \mathrm{C}$			-0.3			
Ios	Short-circuit output current	Any D, $\overline{\mathrm{OFLW}}, \overline{\mathrm{NT}}$, or $\overline{W R} / R D Y$		$\mathrm{V}_{0}=5 \mathrm{~V}$	Full range	7			mA
					$25^{\circ} \mathrm{C}$	8.4	14		
		Any D or OFLW		$v_{0}=0$	Full range	-6			
			$25^{\circ} \mathrm{C}$		-7.2	-12			
		INT	Full range		-4.5				
			$25^{\circ} \mathrm{C}$		-5.3	-9			
$\mathrm{R}_{\text {ref }}$	Reference resistance			Full range	1.25		6	k Ω	
				$25^{\circ} \mathrm{C}$	14	23	5.3		
ICC	Supply current		$\overline{\mathrm{CS}}, \overline{\mathrm{WR}} / \mathrm{RDY}$, and $\overline{R D}$ at 0 V	Full range			15	mA	
			$25^{\circ} \mathrm{C}$		7.5	13			
C_{i}	Input capacitance	Any digital		Full range		5		pF	
		ANLG IN				45			
C_{0}	Output capactance	Any digital			Full range			5	pF

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

TLCO820A, TLCOB20B, ADC0820B, ADC0820C
Advanced LinCMOS ${ }^{\text {TM }}$ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL CONVERTERS USING MDDIFIED "FLASH" TECHNIQUES
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}-=0, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		TLC0820BADC0820B			TLC0820A ADCO820C			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
kSVS	Supply voltage sensitivity	$\mathrm{V}_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=$ MIN to MAX			$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	LSB
	Total unadjusted error ${ }^{\dagger}$	MODE pin at $0 \mathrm{~V}, \mathrm{~T}_{A}=$ MIN to MAX				1/2			1	LSB
${ }^{\text {t }}$ convR	Read mode conversion time	MODE pin at 0 V , See Figure 1			1.6	2.5		1.6	2.5	$\mu \mathrm{s}$
[dint	Internal count down delay tume	MODE pin at 5 V . Sce Figures 3 and	$C_{L} \cdot 50 \mathrm{pF} .$		800	1300		800	1300	ns.
$\mathrm{taR}^{\text {R }}$	Access time from $\overline{\mathrm{RD}} \downarrow$	MODE pin at 0 V , See Figure 1			$\begin{aligned} & 1_{\text {convi }} \\ & +20 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { tconvR } \\ & +50 \\ & \hline \end{aligned}$		$\begin{aligned} & t_{\text {conve }} \\ & +20 \\ & \hline \end{aligned}$	$\begin{aligned} & t_{\text {conve }} \\ & +50 \\ & \hline \end{aligned}$	ns
taR^{1}	Access time from $\overline{\mathrm{RD}}$!	$\begin{aligned} & \hline \text { MODE pin at } 5 \mathrm{~V} \text {. } \\ & \mathrm{t}_{\mathrm{dWR}}<\mathrm{t}_{\mathrm{d}(\mathrm{int})} . \\ & \text { See Figure } 2 \\ & \hline \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		190	280		190	280	ns
			$C_{L}=100 \mathrm{pF}$		210	320		210	320	
${ }^{\text {taR2 }}$	Access time from $\overline{\mathrm{RD}}$!	MODE pin at 5 V . $\mathrm{t}_{\mathrm{d} W}>\mathrm{t}_{\mathrm{d} \text { (ant) }}$ See Figure 3	$C_{L}=15 \mathrm{pF}$		70	120		70	120	ns
			$C_{L}=100 \mathrm{pF}$		90	150		90	150	
talnt	Access time from $\mathbb{N T}!$	MODE pin at 5 V , See Figure 4			20	50		20	50	ns
$\mathrm{t}_{\text {dis }}$	Disable time from $\overline{\mathrm{RD}} \uparrow$	$R_{L}=1 \mathrm{k} \Omega . \quad C_{L}=10 \mathrm{pF}$ See Figures 1, 2, 3, and 5			70	95		70	95	ns
${ }^{\text {t }} \mathrm{dRDY}$	Delay time from $\overline{C S} \downarrow$ to RDY \downarrow	MODE pin at $0 \mathrm{~V}, \quad \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, See Figure 1			50	100		50	100	ns
$\mathrm{t}_{\mathrm{d} \mathrm{RINH}}$	Delay time from $\overline{\mathrm{RD}} \mathrm{t}$ to $\overline{\mathrm{NTT}} \dagger$	$\mathrm{C}_{\mathrm{L}}-50 \mathrm{pF}$. See Figures 1, 2, and 3			125	225		125	225	ins
${ }^{\text {t }}$ dRIL	Delay time from $\overline{\mathrm{RD}}$ t to $\overline{\mathrm{NT}}$!	MODE pin at $5 \mathrm{~V}, \quad t_{d W R}<t_{d}(\mathrm{int})$. تigure 2			200	290		200	290	ns
$\mathrm{t}_{\mathrm{d} W}$ IH	Delay time from $\overline{\mathrm{WR}} \uparrow$ to $\overline{\mathbb{N} \uparrow \uparrow} \uparrow$	$\begin{aligned} & \because \quad E \text { pin at } 5 \mathrm{~V}, \quad C_{L}=50 \mathrm{pF}, \\ & \text { See Figure } 4 \end{aligned}$			175	270		175	270	ns
	Slew rate tracking			0.1			0.1			$\mathrm{V} / \mu \mathrm{s}$

[^10]
PARAMETER MEASUREMENT INFORMATION

FIGURE 1. READ MODE WAVEFORMS (MODE PIN LOW)

FIGURE 2. WRITE-READ MODE WAVEFORMS [MODE PIN HIGH AND t_{d} WR $<\mathrm{t}_{\mathrm{d}(\mathrm{int})}$]

FIGURE 3. WRITE-READ WAVEFORMS [MODE PIN HIGH AND $t_{d W R}>t_{d}($ int $)$]

FIGURE 4. WRITE-READ MODE WAVEFORMS (STAND-ALONE OPERATION, MODE PIN HIGH, AND RD LOW)

PARAMETER MEASUREMENT INFORMATION

FIGURE 5. TEST CIRCUIT AND VOLTAGE WAVEFORMS

PRINCIPLES OF OPERATION

The TLC0820A, TLC0820B, ADC0820B and ADC0820C each employ a combination of "sampled-data" comparator techniques and "flash" techniques common to many high-speed converters. Two 4-bit "flash" analog-to-digital conversions are used to give a full 8-bit output.
The recommended analog input voltage range for conversion is -0.1 V to $\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}$. Analog input signals that are less than $V_{\text {REF }}+1 / 2$ LSB or greater than $V_{R E F}+-1 / 2$ LSB convert to 00000000 or 11111111 respectively. The reference inputs are fully differential with common-mode limits defined by the supply rails. The reference input values define the full-scale range of the analog input. This allows the gain of the ADC to be varied for ratiometric conversion by changing the $V_{R E F}+$ and $V_{R E F}$ - voltages.
The device operates in two modes, read (only) and write-read, which are selected by the MODE pin (pin 7). The converter is set to the read (only) mode when pin 7 is low. In the read mode, the $\overline{W R} / R D Y$ pin is used as an output and is referred to as the "ready" pin. In this mode, a low on the "ready" pin while $\overline{\mathrm{CS}}$ is low indicates that the device is busy. Conversion starts on the falling edge of $\overline{\mathrm{RD}}$ and is completed no more than $2.5 \mu \mathrm{~s}$ later when $\overline{\mathrm{NT}}$ falls and the "ready" pin returns to a high-impedance state. Data outputs also change from high-impedance to active states at this time. After the data is read, $\overline{\mathrm{RD}}$ is taken high, $\overline{\mathrm{NN}}$ returns high, and the data outputs return to their high-impedance states.
The converter is set to the write-read mode when pin 7 is high and $\overline{W R} / R D Y$ is referred to as the "write" pin. Taking $\overline{\mathrm{CS}}$ and the "write" pin low selects the converter and initiates measurement of the input signal. Approximately 600 ns after the "write" pin returns high, the conversion is completed. Conversion starts on the rising edge of $\overline{W R} / R D Y$ in the write-read mode.

The high-order 4-bit "flash" ADC measures the input by means of 16 comparators operating simultaneously. A high precision 4-bit DAC then generates a discrete analog voltage from the result of that conversion. After a time delay, a second bank of comparators does a low-order conversion on the analog difference between the input level and the high-order DAC output. The results from each of these conversions enter an 8-bit latch and are output to the three-state buffers on the falling edge of $\overline{\mathrm{RD}}$.

FIGURE 6. CONFIGURATION FOR 9-BIT RESOLUTION

TLC1540M, TLC1540I, TLC1541M, TLC1541I
 LinCMOS ${ }^{\text {TM }}$ 10-BIT ANALOG-TO-DIGITAL PERIPHERALS
 WITH SERIAL CONTROL AND 11 INPUTS
 D2859. DECEMBER 1985 REVISED JANUARY 1988

- LinCMOS* Technology

10-Bit Resolution A/D Converter

- Microprocessor Peripheral or Stand-Alone Operation
- On-Chip 12-Channel Analog Multiplexer
- Built-In Self-Test Mode
- Software-Controllable Sample and Hold
- Total Unadjusted Error . . .

TLC1540: ± 0.5 LSB Max
TLC1541: ± 1.0 LSB Max

- Pinout and Control Signals Compatible with TLC540 and TLC549 Families of 8-Bit A/D Converters

TYPICAL PERFORMANCE	
Channel Acquisition Sample Time	$5.5 \mu \mathrm{~S}$
Conversion Timt,	21 h
Samples per Second	$32 \wedge 10^{3}$
Power Dissipation	6 mW

description

The TLC1540 and TLC1541 are LinCMOS** A/D peripherals built around a 10 -bit, switchedcapacitor, successive-approximation, A / D converter. They are designed for serial interface to a microprocessor or peripheral via a threestate output with up to four control inputs [including independent System Clock, I/O Clock, Chip Select ($\overline{\mathrm{CS}}$), and Address Inputl. A 2.1-megahertz system clock for the TLC1540 and TLC1541, with a design that includes simultaneous read/write operation, allows highspeed data transfers and sample rates of up to 32,258 samples per second. In addition to the high-speed converter and versatile control logic, there is an on-chip 12 -channel analog multiplexer that can be used to sample any one of 11 inputs or an internal "self-test" voltage, and a sample-and-hold that can operate automaticaliy or under microprocessor control. Detailed information on interfacing to most popular microprocessors is readily available from the factory.
The converters incorporated in the TLC1540 and TLC1541 feature differential high-impedance reference inputs that facilitate ratiometric conversion, scaling, and analog circuitry isolation from logic and supply noises. A totally switched-capacitor design allows guaranteed low-error conversion $(\pm 0.5$ LSB for the TLC1540, ± 1 LSB for the TLC1541) in 21 microseconds over the full operating temperature range.

The TLC1540 and the TLC1541 are available in FK, FN, J, and N packages. The M-suffix versions are characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The l -suffix versions are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

LinCMOS is a trademark of Texas Instruments Incorporated
functional block diagram

operating sequence

NOTES: A. The conversion cycle, which requires 44 System Clock periods, is intiated on the 10 th falling edge of the $1 / 0$ Clock \downarrow after $\mathrm{C} I$ goes low for the channel whose address exists in memory at that time. If $\overline{\mathrm{CS}}$ is kept low during conversion, the I/O Clock must remain low for at least 44 System Clock cycles to allow conversion to be completed.
B. The most significant bit (MSB) will automatucally be placed on the DATA OUT bus after $\overline{\mathrm{CS}}$ is brought low. The remaining nine bits (A8-A0) will be clocked out on the first nine l/O Clock falling edges.
C To minimize errors caused by noıse at the CS input, the internal circuitry wats for three System Clack cycles (or less) after a chip-select falling edge is detected before responding to control input signals. Therefore, no attempt should be made to clock-in address data until the minmum chip-select setup time has elapsed.

TLC1540M, TLC1540I, TLC1541M, TLC1541I LinCMOS ${ }^{\text {TM }}$ 10-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

```
Supply voltage, VCC (see Note 1)
6.5 V
```

Input voitage range (any input) . -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Output voltage range . - -0.3 V to VCC +0.3 V
Peak input current range (any input) . $\pm 10 \mathrm{~mA}$
Peak total input current (all inputs) . $\pm 30 \mathrm{~mA}$
Operating free-air temperature range: TLC1540I, TLC15411................. . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC1540M, TLC1541M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package.. $260^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from the case for 60 seconds: J package $300^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from the case for 10 seconds: N package $260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to digital ground with REF - and GND wired together (unless otherwise noted).

TLC1540M, TLC1540I, TLC1541M, TLC1541I

 LinCMOS ${ }^{\text {T }}$ 10-BIT ANALOG-TO-DIGITAL PERIPHERALSWITH SERIAL CONTROL AND 11 INPUTS
recommended operating conditions

			TLC1540. TLC154 ${ }^{1}$			UNIT
			MIN	NOM	MAX	
Supply voltage, V_{CC}			4.75	5	5.5	\checkmark
Positive reference volt	ge, $V_{\text {REF }}$	see Note 2)	2.5	$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}+0.1$	V
Negative reference vol	gie, $\mathrm{V}_{\text {RE }}$	(see Note 2)	-0.1	0	2.5	V
Differential reference	Itage, V	+ - VREF - (see Note 2)	1	V CC	$\mathrm{VCC}+0.2$	V
Analog input voltage (ee Note		0		V_{Cc}	V
High-level control inpu	voltage,		2			V
Low-level control input	voltage,				0.8	V
Setup time, address b	5 before	CLKi, $\mathrm{t}_{\text {sul }}(\mathrm{A})$	400			ns
Hold time, address bit	after I/O	+ ${ }_{\text {th}}$ (A)	0			ns
Setup time, $\overline{C S}$ low be	ore clock	in first address bir, tsulCS	3			$\begin{gathered} \text { System } \\ \text { clock } \\ \text { cycles } \end{gathered}$
$\overline{\mathrm{CS}}$ high during conver	ion, twh		44			System clock cycles
Input/Output clock fre	uency, f	(1/0)	0		1.1	MHz
System clock frequenc	frikis		${ }^{\text {F CLELKI/O) }}$		2.1	MHz
System clock high, t_{w}			210			ns
System clock low, ${ }_{\text {w }}$			190			ns
Input/Output clock hig	, vvailo		404			ns
Input/Output clock low, $\mathrm{t}_{\text {wL }}(1 / \mathrm{O})$			404			ns
Clock transition time (see Note 4)	System	${ }^{\text {f CLK }}$ (SYS) $\leq 1048 \mathrm{kHz}$			30	ns
		${ }^{\text {f }}$ CLK(SYS) $>1048 \mathrm{kHz}$			20	
	1/0	$\mathrm{I}^{\text {C CLK }}$ (IV) $5 \leq 525 \mathrm{kHz}$			100	ns
		${ }^{\text {f }}$ CLK(1/O) $>525 \mathrm{kHz}$			40	
Operating free-air temperature, T_{A}		TLC1540M, TLC1541M	-55		125	${ }^{\circ} \mathrm{C}$
		TLC1540I, TLC15411	-40		85	

NOTES: 2. Analog input voltages greater than that applied to REF + convert as all " 1 "s (11111111), while input voltages less than that applied to REF - convert as all "O"s (00000000). For proper operation, REF + voltage must be at least 1 volt higher than REF - voltage. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 volts.
3. To minimize errors caused by noise at the chip select input, the internal circuitry waits for three System Clock cycles lor less) after a chip select falling edge is detected before responding to control input signals. Therefore, no attempt should be made to clock-in an address until the mınımum chip select setup tıme has elapsed.
4. This is the time required for the clock input signal to fall from $V_{I H}$ min to $V_{I L}$ max or to rise from $V_{I L}$ max to $V_{I H}$ min. In the vicinity of normal room temperature, the devices function with input clock transition time as slow as 2 microseconds for remote data acquisition applications where the sensor and the A/D converter are placed several feet away from the controling microprocessor.

TLC1540M, TLC1540I, TLC1541M, TLC1541I LinCMOS ${ }^{\text {Im }}$ 10-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS
electrical characteristics over recommended operating temperature range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75 \mathrm{~V}$ to 5.5 V (unless otherwise noted), $\mathrm{f} C L K(I / O)=1.1 \mathrm{MHz}, \mathrm{fCLK}(\mathrm{SYS})=2.1 \mathrm{MHz}$

PARAMETER			TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
V_{OH}	High-level output voltage (pin 16)		$\mathrm{V}_{C C}=4.75 \mathrm{~V}$,	${ }^{\mathrm{O}} \mathrm{H}=360 \mu \mathrm{~A}$	2.4			V
VOL^{2}	Low-level output voltage		$V_{C C}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$			0.4	V
102	Off-state (high-impedance state) output current		$V_{O}=V_{C C}$	$\overline{\mathrm{CS}}$ at V_{CC}			10	$\mu \mathrm{A}$
			$\mathrm{V}_{0}=0$,	$\overline{\mathrm{CS}}$ at $V_{\text {CC }}$			-10	
${ }^{\text {IIH }}$	High-level input current		$V_{1}=V_{C C}$			0.005	2.5	$\mu \mathrm{A}$
IIL	Low-leve! imput current		$v_{1}=0$			-0.005	-2.5	${ }^{1} \mathrm{~A}$
${ }^{1} \mathrm{CC}$	Operating supply current		$\overline{\mathrm{CS}}$ at O V			1.2	2.5	mA
	Selected channel leakage current		Selected channel at $V_{C C}$. Unselected channel at 0 V			0.4	1	μA
			Selected channel at 0 V , Unselected channel at V_{CC}			-0.4	-1	
${ }^{\prime} \mathrm{CC}+\mathrm{I}_{\text {REF }}$	Supply and reference current		$\mathrm{V}_{\mathrm{REF}}+=\mathrm{V}_{\text {CC }}$.	$\stackrel{\rightharpoonup}{\mathrm{CS}}$ at OV		1.3	3	mA
	Input capacitance	Analog inputs				7	55	pF
		Control inputs				5	15	

${ }^{\dagger}$ All typical values are at $V_{C C}=.5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}+=4.75 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}(\mathrm{I} / \mathrm{O})=1.1 \mathrm{MHz}, \mathrm{fCLK}(\mathrm{SYS})=2.1 \mathrm{MHz}$

PARAMETER			TEST CONDITIONS	MIN	MAX	UNIT
Linearity error		TLC1540	See Note 5		± 0.5	LSB
		TLC1541			± 1	
Zero error		TLC1540	See Notes 2 and 6		± 0.5	LSB
		TLC1541			± 1	
Full-scale error		TLC1540	See Notes 2 and 6		± 0.5	LSB
		TLC1541			± 1	
Total unadjusted error		TLC1540	See Note 7		± 0.5	LSB
		TLC1541			± 1	
Self-test output code			Input A11 address $=1011$ (See Note 8)	$\begin{aligned} & 0111110100 \\ & (500) \end{aligned}$	$\begin{gathered} 1000001100 \\ (524) \end{gathered}$	
$\mathrm{t}_{\text {conv }}$	Conversion time		See Operating Sequence		21	$\mu \mathrm{S}$
	Total access and conv	time	See Operating Sequence		31	$\mu \mathrm{S}$
$\mathrm{tacq}_{\text {ack }}$	Channel acquisition time (sample cycle)				6	I/O clock cycles
t_{v}	Time output data remains valid after I/O clock 1			10		ns
${ }^{\mathrm{t}}$ d	Delay time, I'O clock. to data output valid		See Parameter Measurement Information		400	ns
ten	Output enable time				150	ns
$t_{\text {dis }}$	Output disable time				150	ns
tr (bus)	Data bus rise time				300	ns
tfous)	Data bus fall time				300	ns

NOTES: 2. Analog input voltages greater than that applied to REF + convert to all " q '"s 111111111), while input voitages less than that applied to REF - convert to all " 0 "'s (00000000). For proper operation, REF + voltage must be at least 1 volt higher than REF - voltage. Also, the total unadjusted error may increase as this differential reference voltage falls below 4.75 volts.
5. Linearity error is the maximum deviation from the best straight line through the A / D transfer characteristics.
6. Zero error is the difference between 00000000 and the converted output for zero input voltage; full-scale error is the difference between 11111111 and the converted output for full-scale input voltage.
7. Total unadjusted error comprises linearity, zero, and full-scale errors.
8. Both the input address and the output codes are expressed in positive logic. The A11 analog input signal is internatly generated and is used for test purposes.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR t_{d}, t_{r} AND t_{f}

(SEE NOTE B)

(SEE NOTE B)

> LOAD CIRCUIT FOR
${ }^{t} P Z L$ AND ${ }^{\text {PLLZ }}$

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

B. $t_{e n}=t_{P Z H}$ or $t_{P Z L}, t_{d i s}=t_{P H Z}$ or $t_{P L Z}$.
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control

principles of operation

The TLC 1540 and TLC1541 are complete data acquisition systems on single chips. Each includes such functions as sample-and-hold, 10 -bit A/D converter, data and control registers, and control logic. For flexibility and access speed, there are four control inputs; Chip Select ($\overline{C S}$), Address Input, I/O Clock, and System Clock. These control inputs and a TTL-compatible three-state output are intended for serial communications with a microprocessor or microcomputer. The TLC1540 and TLC1541 can complete conversions in a maximum of 21 microseconds, while complete input-conversion-output cycles can be repeated at a maximum of 31 microseconds.

The System and I/O Clocks are normally used independently and do not require any special speed or phase relationships between them. This independence simplifies the hardware and software control tasks for the device. Once a clock signal within the specification range is applied to the System Clock input, the control hardware and software need only be concerned with addressing the desired analog channel, reading the previous conversion result, and starting the conversion by using the $1 / 0$ Clock. The System Clock will drive the "conversion crunching" circuitry so that the control hardware and software need not be concerned with this task.

When $\overline{\mathrm{CS}}$ is high, the Data Output pin is in a three-state condition and the Address Input and I/O Clock pins are disabled. This feature allows each of these pins, with the exception of the $\overline{C S}$ pin, to share a control logic point with their counterpart pins on additional A/D devices when additional TLC1540/1541 devices are used. In this way, the above feature serves to minimize the required control logic pins when using multiple A/D devices.

The control sequence has been designed to minimize the time and effort required to initiate conversion and obtain the conversion result. A normal control sequence is:

1. $\overline{\mathrm{CS}}$ is brought low. To minimize errors caused by noise at the $\overline{\mathrm{CS}}$ input, the internal circuitry waits for two rising edges and then a falling edge of the System Clock after a low $\overline{\mathrm{CS}}$ transition, before the low transition is recognized. This technique is used to protect the device against noise when the device is used in a noisy environment. The MSB of the previous conversion result will automatically appear on the Data Out pin.
2. A new positive-logic multiplexer address is shifted in on the first four rising edges of the $1 / O$ Clock. The MSB of the address is shifted in first. The negative edges of these four I/O Clock pulses shift out the second, third, fourth, and fifth most significant bits of the previous conversion result. The on-chip sample-and-hold begins sampling the newly addressed analog input after the fourth falling edge. The sampling operation basically involves the charging of internal capacitors to the level of the analog input voltage.
3. Five clock cycles are then applied to the I / O pin and the sixth, seventh, eighth, ninth, and tenth conversion bits are shifted out on the negative edges of these clock cycles.
4. The final tenth clock cycle is applied to the $1 / O$ Clock pin. The falling edge of this clock cycle completes the analog sampling process and initiates the hold function. Conversion is then performed during the next 44 System Clock cycles. After this final I/O Clock cycle, $\overline{\mathrm{CS}}$ must go high or the I/O Clock must remain low for at least 44 System Clock cycles to allow for the conversion function.
$\overline{\mathrm{CS}}$ can be kept low during periods of multiple conversion. When keeping $\overline{\mathrm{CS}}$ low during periods of multiple conversion, special care must be exercised to prevent noise glitches on the I/O Clock line. If glitches occur on the $1 / O$ Clock line, the $1 / O$ sequence between the microprocessor/controller and the device will lose synchronization. Also, if $\overline{\mathrm{CS}}$ is taken high, it must remain high until the end of the conversion. Otherwise, a valid falling edge of $\overline{\mathrm{CS}}$ will cause a reset condition, which will abort the conversion in progress.

A new conversion may be started and the ongoing conversion simultaneously aborted by performing steps 1 through 4 before the 44 System Clock cycles occur. Such action will yield the conversion result of the previous conversion and not the ongoing conversion.

TLC1540M, TLC1540I, TLC1541M, TLC15411 LinCMOS ${ }^{\text {Tw }}$ 10-BIT ANALOG-TO-DIGITAL PERIPHERALS WITH SERIAL CONTROL AND 11 INPUTS

principles of operation (continued)
It is possible to connect the System and I/O Clock pins together in special situations in which controlling circuitry points must be minimized. In this case, the following special points must be considered in addition to the requirements of the normal control sequence previously described.

1. When $\overline{\mathrm{CS}}$ is recognized by the device to be at a low level, the common clock signal is used as an I/O Clock. When $\overline{\mathrm{CS}}$ is recognized by the device to be at a high level, the common clock signal is used to drive the "conversion crunching" circuitry.
2. The device will recognize a $\overline{C S}$ low transition only when the $\overline{C S}$ input changes and subsequently the System Clock pin receives two positive edges and then a negative edge. For this reason, after a $\overline{\mathrm{CS}}$ negative edge, the first two clock cycles will not shift in the address because a low $\overline{\mathrm{CS}}$ must be recognized before the V/O Clock can shift in an analog channel address. Also, upon shifting in the address, $\overline{\mathrm{CS}}$ must be raised after the eighth I/O Clock that has been recognized by the device, so that a $\overline{\mathrm{CS}}$ low level will be recognized upon the lowering of the tenth I/O Clock signal that is recognized by the device. Otherwise, additional common clock cycles will be recognized as I/O Clock pulses and will shift in an erroneous address.

For certain applications, such as strobing applications, it is necessary to start conversion at a specific point in time. This device will accommodate these applications. Although the on-chip sample-and-hold begins sampling upon the negative edge of the fourth I/O Clock cycle, the hold function is not initiated until the negative edge of the tenth I/O Clock cycle. Thus, the control circuitry can leave the I/O Clock signal in its high state during the tenth I/O Clock cycle until the moment at which the analog signal must be converted. The TLC1540/TLC1541 will continue sampling the analog input until the tenth falling edge of the I/O Clock. The control circuitry or software will then immediately lower the l/O Clock signal and hold the analog signal at the desired point in time and start conversion.

Detailed information on interfacing to most popular microprocessors is readily available from the factory.

TLC4016M, TLC4016I SILICON-GATE CMOS QUADRUPLE BILATERAL ANALOG SWITCH

D2922, JANUARY 1986-REVISED OCTOBER 1988

- High Degree of Linearity
- High On-Off Output Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State Impedance . . . 50Ω Typ at $V_{C C}=9 \mathrm{~V}$
- Individual Switch Controls
- Extremely Low Input Current

description

The TLC4016 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes up to 12 V peak to be transmitted in either direction.

Each switch section has its own enable input control. A high-level voltage applied to this control terminal turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-toanalog conversion systems.

The TLC 4016 M is characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, and the TLC40161 is characterized from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
TLC4016M . . . J OR N PACKAGE
TLC40161 . . D OR N PACKAGE (TOP VIEW)

1 A	$1 \bigcup_{14}$	$\square \vee^{\text {CC }}$
$1 \mathrm{~B} \square^{2}$	213	1的
2 B []	$3 \quad 12$	- 4 C
$2 \mathrm{~A} \square$	411	$\square 4 \mathrm{~A}$
$2 \mathrm{C} \square 5$	510	- 4 B
$3 \mathrm{C} \square$	$6 \quad 9$	-] 3 B
GND	78	$\square 3 \mathrm{~A}$

logic symbolt

${ }^{1}$ This symbol is in accordance with ANSI/IEEE Std $91-1984$ and IEC Publication 617-12.
logic diagram (positive logic)

TLC4016M, TLC4016I

SILICON-GATE CMOS QUADRUPLE BILATERAL ANALOG SWITCH
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range (see Note 1) . -0.5 V to 15 V
Control-input diode current $\left(V_{1}<0\right.$ or $\left.V_{1}>V_{C C}\right)$. $\pm 20 \mathrm{~mA}$
$1 / O$ port diode current $\left(V_{1}<0\right.$ or $\left.V_{1 / O}>V_{C C}\right)$. $\pm 20 \mathrm{~mA}$
On-state switch current $\mathrm{V}_{1 / O}=0$ to V_{CC}) . $\pm 25 \mathrm{~mA}$
Continuous current through VCC or GND pins . $\pm 50 \mathrm{~mA}$
Continuous total dissipation . see Dissipation Rating Table
Operating free-air temperature range: TLC4016M $55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC40161 . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: D or N package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
NOTE 1: All voltages are with respect to ground unless otherwise specified.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $-25^{\circ} \mathrm{C}$	$\begin{gathered} T_{A}=70^{\circ} \mathrm{C} \\ \text { POO: } \because \text { PATING } \end{gathered}$	$T_{A}=85^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=125^{\circ} \mathrm{C}$ POWER RATING
D	950 mW	$76 \mathrm{~mW}{ }^{\circ} \mathrm{C}$	nW	494 mW	N:A
J	1315 miw	110 ritu	8150 mivo	715 mw	275 inW
N	1150 mw	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW	598 mW	230 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, $V_{C C}$		2^{1}	5	12	V
I/O port voltage. $\mathrm{V}_{1 / 0}$		0		v_{CC}	v
High-level input voltage, $\mathrm{V}_{\mathbf{1 H}}$	$V_{C C}=2 \mathrm{~V}$	1.5		$\mathrm{V}_{\text {CC }}$	v
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15		V_{CC}	
	$V_{C C}=9 \mathrm{~V}$	6.3		$V_{\text {CC }}$	
	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$	8.4		$\mathrm{V}_{\text {CC }}$	
Low-level input voltage, V_{IL}	$V_{\text {CC }}=2 \mathrm{~V}$	0		0.3	V
	$\mathrm{VCC}=4.5 \mathrm{~V}$	0		0.9	
	$\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$	0		1.8	
	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$	0		2.4	
Input rise time, t_{r}	$V_{C C}=2 \mathrm{~V}$			1000	ns
	$V_{C C}=4.5 \mathrm{~V}$			50%	
	$V_{C C}=9 \mathrm{~V}$			*	
input fall time, $\mathrm{tf}_{\text {f }}$	$\mathrm{V}_{\text {CC }}=2 \mathrm{~V}$			1	ns
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500	
	$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}$			400	
Operating free-air temperature, T_{A}	TLC4016M	-55		125	${ }^{\circ} \mathrm{C}$
	TLC4016I	-40		B5	

[^11]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER			TEST CONDITIONS	V_{CC}	TLC4	-	TLC40161		UNIT	
			MIN TYF.		iviAX	MIN	TYP' MAX			
rSon	On-state switch resistance			$\begin{aligned} & I_{S}=1 \mathrm{~mA}, \\ & V_{A}=0 \text { to } V_{C C} . \end{aligned}$ See Figure 1	4.5 V				100 3nn	Ω
			9 V		uv	$1 \leq 0$		50 נט		
			12 V		30	100		$30 \quad 85$		
			$\begin{aligned} & I_{S}=1 \mathrm{~mA} \\ & V_{A}=0 \text { or } V_{C C} . \end{aligned}$ See Figure 1	2 V	120	240		$120 \quad 215$		
			4.5 V	50	120		50100			
			9 V	35	80		$35 \quad 75$			
			12 V	20	70		2060			
On-state switch resistance matching				$V_{A}=0 \text { to } V_{C C}$ See Figure 1	4.5 V	10	20		$10 \quad 20$	Ω
			9 V		5	15		$5 \quad 15$		
			12 V		5	15		$5 \quad 15$		
1	Control input current			$V_{1}=0$ or $V_{C C}$	$\begin{aligned} & 2 \mathrm{~V} \\ & \text { to } \\ & 6 \mathrm{~V} \end{aligned}$		± 1		± 1	$\mu \mathrm{A}$
			$\begin{aligned} & V_{I}=0 \text { or } V_{C C} . \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			± 0.1		± 0.1		
ISoff	Off-state switch leakage current			$V_{\mathrm{S}}= \pm \mathrm{V}_{\mathrm{CC}}$ See Figure 2	5.5 V	± 10	± 600		$\pm 10 \pm 600$	$n \mathrm{~A}$
			9 V		± 15	± 800		$\pm 15 \pm 800$		
			12 V		$\pm 20 \pm$	1000		$\pm 20 \pm 1000$		
${ }^{\text {I Son }}$	On-state switch leakage current		$V_{A}=0 \text { or } V_{C C} \text {, }$ See Figure 3	5.5 V	± 10	± 150		$\pm 10 \pm 150$	nA	
			9 V	± 15	± 200		$\pm 15 \pm 200$			
			12 V	± 20	± 300		$\pm 20 \pm 300$			
${ }^{1} \mathrm{CC}$	Supply current			$\begin{aligned} & V_{1}=0 \text { or } V_{C C} . \\ & I_{0}=0 \end{aligned}$	5.5 V	2	40		$2 \quad 20$	$\mu \mathrm{A}$
					9 V	8	160		$8 \quad 80$	
			12 V		16	320		16160		
C_{i}	Input capacitance	A or B		$\begin{gathered} 2 \mathrm{~V} \text { to } \\ 12 \mathrm{~V} \end{gathered}$	15		15		pF	
		C			5	10		510		
C_{f}	Feedthrough capacitance	A to B	$\mathrm{V}_{1}=0$	$\begin{gathered} 2 \mathrm{~V} 0 \\ 12 \mathrm{~V} \end{gathered}$	5			5	pF	

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V_{Cc}	TLC4016M			TLC40161			UNIT	
		MIN		TYP ${ }^{\dagger}$	MAX	MiN	TYP ${ }^{\dagger}$	MAX			
${ }^{1} \mathrm{pd}$	Propagation delay time, A to B or B to A		See Figure 4	2 V		25	75		25	62	ns
		4.5 V			5	15		5	13		
		9 V			4	14		4	12		
		12 V			3	13		3	11		
${ }^{\text {ton }}$	Switch turn-on tıme	$R_{L}=1 \mathrm{k} \Omega .$ See Figures 5 and 6	2 V		32	150		32	125	ns	
			4.5 V		8	30		8	25		
			9 V		6	18		6	15		
			12 V		5	15		5	13		
$t_{\text {off }}$	Switch turn-off time	$R_{L}=1 \mathrm{k!} \text {, }$ See Figures 5 and 6	2 V		45	252		45	210	ns	
			4.5 V		15	54		15.	45		
			9 V		10	48		10	40		
			12 V		8	45		8	38		
f_{CO}	Switch cutoff frequency (channel loss $=3 \mathrm{~dB}$)		4.5 V		100			100		MH,	
			9 V		120			120			
VOCF (PP)	Control feedthrough voltage to any switch, peak to peak	See Figure 7	45 V			350			350	mV	
	Frequency at which crosstalk attenuation between any two switches equals 50 dB	See Figure 8	45 V		1			1		MHz	

${ }^{\dagger}$ All typical values aro at $T_{A}=25^{\circ} \mathrm{C}$.
PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TEST CIRCUIT FOR ON-STATE RESISTANCE

FIGURE 2. TEST CIRCUIT FOR OFF-STATE SWITCH LEAKAGE CURRENT

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. TEST CIRCUIT FOR ON-STATE SWITCH LEAKAGE CURRENT

FIGURE 4. PROPAGATION DELAY TIME, SIGNAL INPUT TO SIGNAL OUTPUT

PARAMETER MEASUREMENT INFORMATION

FIGURE 5. SWITCHING TIME (tpzL, tplz), CONTROL TO SIGNAL OUTPUT

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 6. SWITCHING TIME (tPZH, tphz), CONTROL TO SIGNAL OUTPUT

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

FIGURE 7. CONTROL FEEDTHROUGH VOLTAGE

NOTE. ADJUST f for ax $=\frac{V_{O 2}}{V_{O 1}}=50 \mathrm{~dB}$
FIGURE 8. CROSSTALK BETWEEN ANY TWO SWITCHES, TEST CIRCUIT

TLC4066M, TLC4066I SILICON-GATE CMOS QUADRUPLE BILATERAL ANALOG SWITCH

D2922. JANUARY 1986 - REVISED OCTOBER 1988

- High Degree of Linearity
- High On-Off Output Voltage Ratio
- Low Crosstalk Between Switches
- Low On-State impedance . . . 30Ω Typ at $V_{C C}=12 \mathrm{~V}$
- Individual Switch Controls
- Extremely Low Input Current
- Functionally Interchangeable with National Semiconductor MM54/74HC4066, Motorola MC54/74HC4066, and RCA CD4066A

description

The TLC4066 is a silicon-gate CMOS quadruple analog switch designed to handle both analog and digital signals. Each switch permits signals with amplitudes up to 12 V peak to be transmitted in either direction.

Each switch section has its own enable input control. A high-level voltage applied to this control terminal turns on the associated switch section.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-toanalog conversion systems.

The TLC4066M is characterized for operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC4066I is characterized from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

TLC4066M . . . J OR N PACKAGE
TLC4066I . . . D OR N PACKAGE
(TOP VIEW)
$1 \mathrm{~A} \square 1$
$1 \mathrm{~B} \square 2$
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSIIEEE Std $91-1984$ and IEC Publication 617-12.
logic diagram (positive logic)

TLC4066M, TLC4066I

SILICON-GATE CMOS QUADRUPLE BILATERAL ANALOG SWITCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range (see Note 1) .. -0.5 V to 15 V
Control-input diode current ($\mathrm{V}_{1}<0$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}$) . $\pm 20 \mathrm{~mA}$
I/O port diode current $\mathrm{V}_{\mathrm{I}}<0$ or $\mathrm{V}_{\mathrm{I} / \mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$. $\pm 20 \mathrm{~mA}$

Continuous current through VCC or GND pins . $\pm 50 \mathrm{~mA}$
Continuous total dissipation see Dissipation Rating Table
Operating free-air temperature: $\operatorname{TLC4066M}$. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC40661 . $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: D or N package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 60 seconds: J package $300^{\circ} \mathrm{C}$
NOTE 1: All voltages are with respect to ground unless otherwise specified.
dissipation rating table

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathbf{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathbf{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	608 mW	494 mW	$\mathrm{~N} / \mathrm{A}$
J	1375 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	880 mW	715 mW	275 mW
N	1150 mW	$9.2 \mathrm{~mW}:{ }^{\circ} \mathrm{C}$	736 mW	598 mW	230 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		2^{\dagger}	5	12	V
I/O port voltage, $\mathrm{V}_{1 / \mathrm{O}}$		0		$\mathrm{V}_{\text {CC }}$	V
High-level input voltage, V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		$V_{\text {CC }}$	V
	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	3.15		$\mathrm{V}_{\text {CC }}$	
	$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}$	6.3		$V_{C C}$	
	$V_{C C}=12 \mathrm{~V}$	8.4		$\mathrm{V}_{\text {CC }}$	
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {CC }}=2 \mathrm{~V}$	0		0.3	V
	$V_{C C}=4.5 \mathrm{~V}$	0		0.9	
	$V_{C C}=9 \mathrm{~V}$	0		1.8	
	$V_{C C}=12 \mathrm{~V}$	0		2.4	
Input rise time, $\mathrm{t}_{\mathbf{r}}$	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			$1{ }^{10 n}$	ns
	$V_{C C}=4.5 \mathrm{~V}$				
	$V_{C C}=9 \mathrm{~V}$				
Input fall time, $\mathrm{t}_{\boldsymbol{f}}$	$\mathrm{V}_{\text {CC }}=2 \mathrm{~V}$			1 non	ns
	$V_{C C}=4.5 \mathrm{~V}$				
	$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}$				
Operating free-air temperature, T_{A}	TLC4066M	-55		125	${ }^{\circ} \mathrm{C}$
	TLC4066I	-40		85	

[^12]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	$V_{C C}$	TLC41 ${ }^{1}$			TLC40661			UNIT	
		MIN		TYF.	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
${ }^{1} \mathrm{pd}$	Propagation delay time, A to B or B to A		See Figure 4	2 V		25	75		15	30	ns
		4.5 V			5	15		5	13		
		9 V			4	12		4	10		
		12 V			3	13		3	11		
${ }^{t} 0$	Switch turn-on time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ See Figures 5 and 6	2 V		32	150		32	125	ns	
			4.5 V		8	30		8	25		
			9 V		6	18		6	15		
			12 V		5	15		5	13		
toff	Switch turn-off time	$R_{L}=1 \mathrm{k} \Omega$ See Figures 5 and 6	2 V		45	252		45	210	ns	
			45 V		15	54		15	45		
			9 V		10	48		10	40		
			12 V		8	45		8	38		
f_{CO}	Switch cutoff frequency (channel loss $=3 \mathrm{~dB}$)		4.5 V		100		$1 \angle 4$			MHz	
			9 V	120							
$V_{\text {OCF }}(\mathrm{PP})$	Control feedthrough voltage to any switch, peak to peak	See Figure 7	4.5 V			350			350	mV	
	Frequency at which crosstalk attenuation between any two switches equals 50 dB	See Figure 8	4.5 V		1			1		MHz	

[^13]PARAMETER MEASUREMENT INFORMATION

figure 1. TEST CIRCUIT FOR ON-STATE RESISTANCE

FIGURE 2. TEST CIRCUIT FOR OFF-STATE SWITCH LEAKAGE CURRENT

PARAMETER MEASUREMENT INFORMATION

FIGURE 3. TEST CIRCUIT FOR ON-STATE SWITCH LEAKAGE CURRENT

FIGURE 4. PROPAGATION DELAY TIME, SIGNAL INPUT TO SIGNAL DUTPUT

PARAMETER MEASUREMENT INFORMATION

test circuit

FIGURE 5. SWITCHING TIME (tPZL, tPLZ), CONTROL TO SIGNAL OUTPUT

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 6. SWITCHING TIME (tPZH, tPhZ), CONTROL TO SIGNAL OUTPUT

SILICON-GATE CMOS QUADRUPLE BILATERAL ANALOG SWITCH

PARAAMETER MEASUREMENT INFORMATION

test circuit

FIGURE 7. CONTROL FEEDTHROUGH VOLTAGE

NOTE: ADJUST ffor $\mathrm{a}_{\mathrm{X}}=\frac{\mathrm{V}_{\mathrm{O} 2}}{\mathrm{~V}_{\mathrm{O} 1}}=50 \mathrm{~dB}$.
figure 8. CROSStalk between any two switches, test circuit

- Advanced LinCMOS ${ }^{\text {TN }}$ Silicon-Gate Technology
- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonic over the Entire A/D Conversion Range
- Segmented High-Order Bits Ensure LowGlitch Output
- Designed to be Interchangeable with Analog Devices AD7524, PMI PM-7524, and Micro Power Systems MP7524
- Fast Control Signaling for Digital Signal Processor Applications Including Interface with TMS320

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 Bits
Linearity error	$1 / 2$ LSB Max
Power dissipation	5 mW Max
at VDD $=5 \mathrm{~V}$	
Settling time	100 ns Max
Propagation delay	80 ns Max

D OR N PACKAGE
(TOP VIEW)

FN PACKAGE
(TOP VIEW)

NC - No internal connection

description

The TLC7524 is an Advanced LinCMOS ${ }^{\text {m }} 8$-bit digital-to-analog converter (DAC) designed for easy interface to most popular microprocessors.
The TLC7524 is an 8-bit multiplying DAC with input latches and with a load cycle similar to the "write" cycle of a random access memory. Segmenting the high-order bits minimizes glitches during changes in the most-significant bits, which produce the highest glitch impuise. The TLC7524 provides accuracy to $1 / 2$ LSB without the need for thin-film resistors or laser trimming, while dissipating less than 5 milliwatts typically.

Featuring operation from a $5-\mathrm{V}$ to $15-\mathrm{V}$ single supply, the TLC7524 interfaces easily to most microprocessor buses or output ports. Excellent multiplying (2 or 4 quadrant) makes the TLC7524 an ideal choice for many microprocessor-controlled gain-setting and signal-control applications.
The TLC75241 is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TLC7524C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Advanced LinCMOS is a trademark of Texas Instruments Incorporated.

TLC7524
Advanced LinCMOS ${ }^{\text {TM }}$ 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
functional block diagram

operating sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD
-0.3 V to 16.5 V

Reference voltage, $V_{\text {ref . } \pm 25 \text { V } 2 .}$
Peak digital input current, II . $10 \mu \mathrm{~A}$
Operating free-air temperature range: TLC75241 . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC7524C . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . - $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds: D or N package $\ldots260^{\circ} \mathrm{C}$
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{ref}}= \pm 10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

PARAMETER			TEST CONDITIONS		$D=5 \mathrm{~V}$		D $=15$		UNIT	
			MIN	TYP MAX	MIN	TYP	MAX			
IIH	High-level input current			$V_{1}=V_{D D}$		10			10	$\mu \mathrm{A}$
ILL	Low-level input current		$V_{1}=0$		-10			-10	$\mu \mathrm{A}$	
IIkg	Output leakage current	OUT1	DBO-DB7 at $0 \mathrm{~V}, \overline{\mathrm{WR}}, \overline{\mathrm{CS}}$ at 0 V , $V_{\text {ref }}= \pm 10 \mathrm{~V}$		± 400			± 200	nA	
		OUT2	DBO-DB7 at $V_{D D}, \overline{W R}, \overline{C S}$ at 0 V , $. .= \pm 10 \mathrm{~V}$		± 400			± 200		
100	Supply current	Quiescent	JB7 at $\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max		1			2	mA	
		Standby	DB0-DB7 at 0 V or V_{DD}		500			500	$\mu \mathrm{A}$	
kSVS	Supply voltage sensitivity, Δ gain $/ \Delta V_{D D}$		$\Delta V_{D D}= \pm 10 \%$		0.01016		0.005	004	\%FSR/\%	
C_{i}	Input capacitance. DBO-DB7, $\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$		$V_{1}=0$		5			5	pF	
C_{0}	Output capacitance	- 1	DB0-DB7 at 0 V ,		30			30	pF	
		- 2	WR and CS at 0 V		120			120		
C_{0}	Output capacitan	OUT1	DB0-DB7 at VDD.		120			120	pF	
		OUT2	$\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at O V		30			30		
	Reference input impedance (Pin 15 to GND)			5	20	5		20	k 8	

operating characteristics over recommended operating free-air temperature range, $V_{\text {ref }}= \pm 10 \mathrm{~V}$, OUT1 and OUT2 at GND (unless otherwise noted)

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$V_{D D}=15 \mathrm{~V}$			UNIT
		MIN	TYP	MAX	MIN	TYP ${ }^{\dagger}$	MAX	
Linearity error				± 0.5			± 0.5	
Gain error	See Note 9			± 2.5			: .	
Settling time (to $1 / 2$ LSB)	See Note 2			100				ns
Propagation delay from digital mput to 90% of final analog output current	See Note 2			80			80	ns
Feedthrough at OUT1 or OUT2	$V_{\text {ref }}= \pm 10 \mathrm{~V}(100-\mathrm{kHz}$ sinewave $)$ $\overline{W R}$ and $\overline{\mathrm{CS}}$ at $0 \mathrm{~V}, \mathrm{DBO}-\mathrm{DB} 7$ at 0 V			0.5			0.5	\%FSR
Temperature coefficient of gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to MAX	± 0.004			± 0.001			\%FSR $/{ }^{\circ} \mathrm{C}$

NOTES: 1. Gain error is measured using the internal feedback resistor. Nominal Full Scale Range (FSR) $=V_{\text {ref }}-1$ LSB.
2. OUT1 load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF}, \overline{\mathrm{WF}}$ at $0 \mathrm{~V}, \overline{\mathrm{CS}}$ at 0 V , DBO-DB7 at 0 V to V_{DD} or V_{DD} to 0 V .

principles of operation

The TLC7524 is an 8-bit multiplying D/A converter consisting of an inverted R-2R ladder, analog switches, and data input latches. Binary weighted currents are switched between the OUT 1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state. The high-order bits are decoded and these decoded bits, through a modification in the R-2R ladder, control three equally weighted current sources. Most applications only require the addition of an external operational amplifier and a voltage reference.

The equivalent circuit for all digital inputs low is seen in Figure 1. With all digital inputs low, the entire reference current, I Iref, is switched to OUT2. The current source $1 / 256$ represents the constant current flowing through the termination resistor of the R-2R ladder, while the current source l_{kg} represents leakage currents to the substrate. The capacitances appearing at OUT1 and OUT2 are dependent upon the digital input code. With all digital inputs high, the off-state switch capacitance (30 pF maximum) appears at OUT2 and the on-state switch capacitance (120 pF maximum) appears at OUT1. With all digital inputs low, the situation is reversed as shown in Figure \uparrow. Analysis of the circuit for all digital inputs high is similar to Figure 1; however, in this case, Iref would be switched to OUT1.

Interfacing the TLC7524 D/A converter to a microprocessor is accomplished via the data bus and the $\overline{\mathrm{CS}}$ and \bar{W} control signals. When $\overline{C S}$ and $\overline{W R}$ are both low, the TLC7524 analog output responds to the data activity on the DBO-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{C S}$ signal or $\overline{W R}$ signal goes high, the data on the DBO-DB7 inputs are latched until the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardless of the state of the $\overline{W R}$ signal.

The TLC7524 is capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2 -quadrant or 4 -quadrant multiplication are shown in Figures 2 and 3. Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.
principles of operation (continued)

FIGURE 1. TLC7524 EQUIVALENT CIRCUIT WITH ALL DIGITAL INPUTS LOW

FIGURE 2. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

FIGURE 3. BIPOLAR OPERATION (4-QUADRANT OPERATION)
NOTES: 3. R_{A} and R_{B} used only if gain adjustment is required.
4. C phase compensation $(10-15 \mathrm{pF})$ is required when using high-speed amplifiers to prevent ringing or oscillation.

TLC7524
Advanced LinCMOS ${ }^{\text {m }}$ 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
principles of operation (continued)

TABLE 1. UNIPOLAR BINARY CODE

DIGITAL INPUT (SEE NOTE 5)	ANALOG OUTPUT
MSB LSB	
11111111	- $\mathrm{V}_{\text {ref }}(255 / 256)$
10000001	- $V_{\text {ref }}(129 / 2561$
10000000	- $V_{\text {ref }} 1128256$ - $V_{\text {ref }}$?
01111111	- $V_{\text {ef }}(127256)$
00000001	- $\mathrm{V}_{\text {tef }}(11256)$
00000000	0

TABLE 2. BIPOLAR (OFFSET BINARY) CODE

DIGITAL INPUT ISEE NOTE 6)	ANALOG OUTPUT
MSB LSB	
11111111	$V_{\text {ref }}(127 / 128)$
10000001	$V_{\text {ref }}(1 / 128)$
10000000	0
01111111	$V_{\text {ref }}(1128)$
00000001	$-V_{\text {ref }}(127.128)$
00000000	$-V_{\text {ref }}$

NOTES 5 LSE $1: 256 \mathrm{~V}_{\mathrm{ref}}$
6 LSB $1128 \mathrm{NFOf}^{\prime}$
microprocessor interfaces

FIGURE 4. TLC7524-Z-80A INTERFACE

FIGURE 5. TLC7524-6800 INTERFACE
microprocessor interfaces (continued)

FIGURE 6. TLC7524-8051 INTERFACE

TYPICAL APPLICATION DATA

voltage-mode operation

It is possible to operate the TLC7524 current multiplying D/A converter in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output pin. The analog output voltage is then available at the reference voltage pin. Figure 7 is an example of a current multiplying D / A, which is operated in voltage mode.

REF (ANALOG OUTPUT VOLTAGE)

FIGURE 7. VOLTAGE MODE OPERATION
The relationship between the fixed input voltage and the analog output voltage is given by the following equation:

$$
V_{O}=V_{1}(D / 256)
$$

where
$V_{O}=$ analog output voltage
$V_{1}=$ fixed input voltage
$\mathrm{D}=$ digital input code converted to decimal
In voltage-mode operation, the TLC7524 will meet the following specification:

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Linearity error at REF	$V_{D D}=5 \mathrm{~V}$, OUT1 $=2.5 \mathrm{~V}$, OUT2 at $\mathrm{GND}, \mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	1	LSB

- Advanced LinCMOS ${ }^{m}$ Silicon-Gate Technology
- Easily Interfaced to Microprocessors
- On-Chip Data Latches
- Monotonic Over the Entire A/D Conversion Range
- Designed to be Interchangeable with Analog Devices AD7528 and PMI PM-7528
- Fast Control Signaling for Digital Signal Processor Applications Including Interface with TMS320
- Voltage-Mode Operation

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 bits
Linearity Error	$1 / 2 \mathrm{LSB}$
Power Dissipation at $V_{D D}=5 \mathrm{~V}$	5 mW
Settling Time at $V_{D D}=5 \mathrm{~V}$	100 ns
Propagation Delay at $V_{D D}=5 \mathrm{~V}$	80 ns

description

The TLC7528 is a dual 8-bit digital-to-analog converter designed with separate on-chip data latches and featuring excellent DAC-to-DAC matching. Data is transferred to either of the two DAC data latches via a common 8-bit input port. Control input DACA/DACB determines which DAC is to be loaded. The "load" cycle of the TLC7528 is similar to the "write" cycle of a random-access memory, allowing easy interface to most popular microprocessor busses and output ports. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, where glitch impulse is typicaily the strongest.
The TLC7528 operates from a $5-\vee$ to $15-V$ power supply and dissipates less than 15 mW (typical). Excellent 2- or 4-quadrant multiplying makes the TLC7528 a sound choice for many microprocessor-controlled gainsetting and signal-control applications. It can be operated in voltage mode, which produces a voltage output rather than a current output. Refer to the typical application data in this data sheet.

The TLC7528I is characterized for operation from -25 to $85^{\circ} \mathrm{C}$. The TLC7528C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TLC7528
Advanced LinCMOS ${ }^{\text {Tw }}$ DUAL 8 -BIT MULTIPLYING digital-to-analog converter
functional block diagram

operating sequence

TLC7528

Advanced LinCMOS ${ }^{\text {tw }}$ DUAL 8-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V_{DD} (to AGND or DGND) . 0.3 V to 16.5 V
Voltage between AGND and DGND. $\pm V_{D D}$
Input voltage, V_{I} (to DGND) . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3$
Reference voltage, $V_{\text {refA }}$ or $V_{\text {refB }}$ (to AGND) $\pm 25 \mathrm{~V}$
Feedback voltage $V_{\text {RFBA }}$ or $V_{\text {RFBB }}$ (to AGND) . $\pm 25 \mathrm{~V}$
Output voltage, V_{OA} or V_{OB} (to AGND) . $\pm 25 \mathrm{~V}$
Peak input current . $10 \mu \mathrm{~A}$
Operating free-air temperature range: TLC75281 $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC7528C
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package . $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW or N package $\ldots . .260^{\circ} \mathrm{C}$
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range,
$V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, V_{O A}$ and $V_{O B}$ at $0 V$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS	$V_{\text {DD }}=5 \mathrm{~V}$			$V_{\text {DD }}=15 \mathrm{~V}$			UNIT	
			MIN	TYP ${ }^{\dagger}$	MAX	MIN	TYP ${ }^{\dagger}$	MAX			
IIH	High-level input current			$V_{1}=V_{D D}$			10			10	$\mu \mathrm{A}$
IIL	Low-level input current		$\mathrm{V}_{1}=0 \mathrm{~V}$			-10			-10	$\mu \mathrm{A}$	
	Reference input impedance (Pin 15 to GND)			5	12	20	5	12	20	k Ω	
1 kgg	Output leakage current	OUTA	DACA data latch loaded with 00000000 . $V_{\text {reft }}= \pm 10 \mathrm{~V}$			± 400			± 200	nA	
		OUTB	DACB data latch loaded with 00000000, $\mathrm{V}_{\text {IEfB }} \leq 10 \mathrm{~V}$			± 400			± 200		
	Input resistance match (REFA to REFB)					$\pm 1 \%$			$\pm 1 \%$		
	DC supply sensitivity. Δ gain/ Δ VDD		$\Delta V_{D D}= \pm 10 \%$			0.04			0.02	\%/\%	
IDD	Supply current (quiescent)		DBO-DB7 at $V_{1 H}$ min or $V_{\text {IL }}$ max			1			1	mA	
${ }^{\prime}$ DD	Supply current (standby)		DB0-DB7 at 0 V or V_{DD}			0.5			0.5	mA	
c_{1}	Input capacitance	D80-DB7				10			10	pF	
		$\overline{W R}, \overline{\mathrm{CS}}$ $\overline{\mathrm{DACA}} \mathrm{DACB}$				15			15		
C_{0}	Output capacitance, (OUTA, OUTB)		DAC data latches loaded with 00000000			50			50	pF	
			DAC data latches loaded with 11111111			120			120		

${ }^{\dagger}$ All typical values are at ${ }^{\top} \mathrm{A} \quad 25^{\circ} \mathrm{C}$
operating characteristics over recommended operating free-air temperature range,
$\mathrm{V}_{\text {refA }}=\mathrm{V}_{\mathrm{refB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OA}}$ and V_{OB} at 0 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS.		$=5$			$=1$		UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Linearity error						$\pm 1 / 2$			$\pm 1 / 2$	LSB
Settling time (to 1/2 LSB)		See Note 1			100			100	ns	
Gain error		See Note 2			2.5			2.5	LSB	
AC feedthrough	REFA to OUTA	See Note 3			-65			-65	dB	
	REFB to OUTB				-65			-65		
Temperature coefficuent of gain		See Note 4			0.007			. 0035	\%FSR $/{ }^{\circ} \mathrm{C}$	
Propagation delay (from digital input to 90% of final analog output current		See Note 5			80			80	ns	
Channel-tochannel isolation	REFA to OUTB	See Note 6	77			77			dB	
	REFB to OUTA	See Note 7	77			77				
Digital-to-analog g	tch impulse area	Measured for code transition from 00000000 to 11111111 , $T_{A}=25^{\circ} \mathrm{C}$	160			440			nVs	
Digital crosstalk glitch impulse area		Measured for code transition from 00000000 to 11111111 , $T_{A}=25^{\circ} \mathrm{C}$	30			60			nVs	
Harmonic distortion		$\begin{aligned} & V_{1}=6 \mathrm{~V} \text { rms }, f=1 \mathrm{kHz} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-85			-85		dB	

NOTES: 1. OUTA, OUTB load $=100 \Omega, C_{e x t}=13 \mathrm{pF} ; \overline{W R}$ and $\overline{C S}$ at 0 V ; DBO-DB7 at $O V$ to $V_{D D}$ or $V_{D D}$ to $O \mathrm{~V}$.
2. Gain error is measured using an internal feedback resistor Nominal Full Scale Range (FSR) $=V_{\text {ref }}-1$ LSB.
3. $V_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, $100-\mathrm{kHz}$ sine wave; DAC data latches loaded with 00000000 .
4. Temperature coefficient of gain measured from $0^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ or from $25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
5. $V_{\text {ref } A}=V_{\text {refB }}=10 \mathrm{~V} ;$ OUTA/OUTB load $=100 \Omega, C_{\text {ext }}=13 \mathrm{pF} ; \overline{W R}$ and $\overline{C S}$ at $0 \mathrm{~V} ;$ DBO-DB7 at $O V$ to $V_{D D}$ or $V_{D D}$ to $O V$.
6. Both DAC latches loaded with $11111111 ; V_{\text {refA }}=20 \mathrm{~V}$ peak-to-peak, $100 \cdot \mathrm{kHz}$ sine wave; $V_{\text {refB }}=0 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
7. Both DAC latches loaded with $11111111 ; V_{\text {refB }}=20 \mathrm{~V}$ peak-to-peak, $100-\mathrm{kHz}$ sine wave; $V_{\text {refA }}=0 ; T_{A}=25^{\circ} \mathrm{C}$.
principles of operation
The TLC7528 contains two identical 8-bit multiplying D/A converters, DACA and DACB. Each DAC consists of an inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state. Most applications require only the addition of an external operational amplifier and voltage reference. A simplified D/A circuit for DACA with all digital inputs low is shown in Figure 1.
Figure 2 shows the DACA equivalent circuit. A similar equivalent circuit can be drawn for DACB. Both DACs share the analog ground pin 1 (AGND). With all digital inputs high, the entire reference current flows to OUTA. A small leakage current (likg) flows across internal junctions, and as with most semiconductor devices, doubles every $10^{\circ} \mathrm{C}, \mathrm{C}_{0}$ is due to the parallel combination of the NMOS switches and has a value that depends on the number of switches connected to the output. The range of C_{0} is 50 pF to 120 pF maximum. The equivalent output resistance r_{0} varies with the input code from $0.8 R$ to $3 R$ where R is the nominal value of the ladder resistor in the R-2R network.
Interfacing the TLC7528 to a microprocessor is accomplished via the data bus, $\overline{C S}, \overline{W R}$, and $\overline{\operatorname{DACA}} / \mathrm{DACB}$ control signals. When $\overline{\mathrm{CS}}$ and $\overline{W R}$ are both low, the TLC7528 analog output, specified by the $\overline{D A C A} / D A C B$ control line, responds to the activity on the DBO-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{C S}$ signal or $\overline{W R}$ signal goes high, the data on the DBO-DB7 inputs is latched until the $\overline{C S}$ and $\overline{W R}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled regardless of the state of the $\overline{W R}$ signal.
The digital inputs of the TLC7528 provide TTL compatibility when operated from a supply voltage of 5 V . The TLC7528 may be operated with any supply voltage in the range from 5 V to 15 V , however, input logic levels are not TTL compatible above 5 V .

FIGURE 1. SIMPLIFIED FUNCTIONAL CIRCUIT FOR DACA

FIGURE 2. TLC7528 EQUIVALENT CIRCUIT, DACA LATCH LOADED WITH 11111111.
mode selection table

$\overline{D A C A} /$ DACB	$\overline{C S}$	$\overline{W R}$	DACA	DACB
L	L	L	WRITE	HOLD
H	L	L	HOLD	WRITE
X	H	X	HOLD	HOLD
X	X	H	HOLD	HOLD

L lowlevel, he lightevel, X don't calle

TYPICAL APPLICATION DATA

The TLC7528 is capable of performing 2-quadrant or fuil 4-quadrant multiplication. Circuit configurations for 2 -quadrant and 4-quadrant multiplication are shown in Figures 3 and 4. Input coding for unipolar and bipolar operation are summarized in Tables 1 and 2, respectively.

1. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with digital input of 255 .
2. C 1 and C 2 phase compensation capacitors (10 pF to 15 pF) are requred when using high-speed amplifiers to prevent ringing or oscillation.

FIGURE 3. UNIPOLAR OPERATION (2-QUADRANT MULTIPLICATION)

Advanced LinCMOS ${ }^{\text {TM }}$ DUAL 8.BIT MULTIPLYING

TYPICAL APPLICATION DATA

NOTES: 1. R1, R2, R3, and R4 are used only if gain adjustment is required See table in Figure 3 for recommended values. Adjust R1 for $V_{O A}=0 \mathrm{~V}$ with code 10000000 in DACA latch. Adjust R3 for $V_{O B}=0 \mathrm{~V}$ with 10000000 in DACB latch.
2. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10.
3. C1 and C2 phase compensation capacitors (10 pF to 15 pF) may be required if A1 and A3 are high-speed amplifiers

FIGURE 4. BIPOLAR OPERATION (4-QUADRANT OPERATION)

TABLE 1. UNIPOLAR BINARY CODE

DAC LATCH CONTENTS MSB LSB $^{\dagger}{ }^{\dagger}$	ANALOG OUTPUT
11111111	- $V_{1}(255256)$
10000001	- $V_{i}(129 / 256)$
10000000	$-V_{i}(128 / 256)=-V_{i} / 2$
01111111	- $V_{1}(127.2561$
00000001	- $\mathrm{V}_{\mathrm{i}}(1 / 256)$
00000000	$-V_{i}(0 / 256)=0$

$\mathrm{t}^{\mathrm{q}} \mathrm{LSB}=(2-8) \mathrm{V}_{\mathrm{i}}$

TABLE 2. BIPOLAR (OFFSET BINARY) CODE

DAC LATCH CONTENTS	ANALOG OUTPUT
MSB LSB	
11111111	$V_{i}(127128)$
10000001	$V_{i}(1 / 128)$
10000000	0 V
01111111	$-V_{1}(1128)$
00000001	$-V_{i}(127 / 128)$
00000000	$-V_{i}(128 / 128)$

$\ddagger 1 L S B=\left(2^{-7}\right) V_{i}$

TYPICAL APPLICATION DATA
microprocessor interface information

NOTE: $\quad A=$ decoded address for TLC7528 DACA.
$A-1=$ decoded address for TLC7528 DACB
FIGURE 5. TLC7528 - INTEL 8051 INTERFACE

NOTE: $\quad A=$ decoded address for TLC7528 DACA.
$A-1=$ decoded address for TLC7528 DACB.
FIGURE 6. TLC7528-6800 INTERFACE

TYPICAL APPLICATION DATA

NOTE: $\quad A=$ decoded address for TLC7528 DACA.
$A+1=$ decoded address for TLC7528 DACB.
FIGURE 7. TLC7528 TO Z80-A INTERFACE
programmable window detector
The programmable window comparator shown in Figure 8 will determine if voltage applied to the DAC feedback resistors are within the limits programmed into the TLC7528 data latches. Input signal range depends on the reference and polarity, that is, the test input range is 0 to $-V_{\text {ref. }}$. The DACA and DACB data latches are programmed with the upper and lower test limits. A signal within the programmed limits will drive the output high.

FIGURE 8. DIGITALLY PROGRAMMABLE WINDOW COMPARATOR (UPPER- AND LOWER-LIMIT TESTER)

TYPICAL APPLICATION DATA

digitally controlled signal attenuator
Figure 9 shows the TLC7528 configured as a two-channel programmable attenuator. Applications include stereo audio and telephone signal level control. Table 3 shows input codes vs attenuation for a 0 to 15.5 dB range.

FIGURE 9. DIGITALLY CONTROLLED DUAL TELEPHONE ATTENUATOR
TABLE 3. ATTENUATION vs DACA, DACB CODE

ATTN(dB)	DAC INPUT CODE	CODE IN DECIMAL	ATTN(dB)	DAC INPUT CODE	CODE IN DECIMAL
0	11111111	255	8.0	01100110	102
0.5	11110010	242	8.5	01100000	96
1.0	11100100	228	9.0	01011011	91
1.5	11010111	215	9.5	01010110	86
2.0	11001011	203	10.0	01010001	81
2.5	11000000	192	10.5	01001100	76
3.0	10110101	181	11.0	01001000	72
3.5	10101011	171	11.5	01000100	68
4.0	10100010	162	12.0	01000000	64
4.5	10011000	152	12.5	00111101	61
5.0	10010000	144	13.0	00111001	57
5.5	10001000	136	13.5	00110110	54
6.0	10001	128	14.0	00110011	51
6.5	0111	121	14.5	00110000	48
7.0	01110010	114	15.0	00101110	46
7.5	01101100	108	15.5	00101011	43

TYPICAL APPLICATION DATA

programmable state-variable filter

This programmable state-variable or universal filter configuration provides low-pass, high-pass, and bandpass outputs, and is suitable for applications in which microprocessor control of filter parameters is required.

As shown in Figure 10, DACA1 and DACB1 control the gain and Q of the filter while DACA2 and DACB2 control the cutoff frequency. Both halves of the DACA2 and DACB2 must track accurately in order for the cutoff-frequency equation to be true. With the TLC7528, this is easily achieved.

$$
f_{c}=\frac{1}{2 \pi R 1 C 1}
$$

The programmable range for the cutoff or center frequency is 0 to 15 kHz with a Q ranging from 0.3 to 4.5 . This defines the limits of the component values.

NOTES: A. Op-amps A1, A2, A3, and A4 are TL287.
$C_{1}=C_{2}, R_{1}=R_{2}, R_{4}=R_{5}$
$0=\frac{R_{3}}{R_{4}} \cdot \frac{R_{F}}{R_{f b(D A C B 1)}}$
$A_{0}=-\frac{R_{F}}{R_{S}}$
B. C3 compensates for the op-amp gain-bandwidth limitations.
C. DAC equivalent resistance equals $\frac{256 \times \text { (DAC ladder resistance) }}{\text { DAC digital code }}$

FIGURE 10. DIGITALLY CONTROLLED STATE-VARIABLE FILTER

TYPICAL APPLICATION DATA

voltage-mode operation

It is possible to operate the TLC7528 current multiplying D/A converter in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output pin. The analog output voltage is then available at the reference voltage pin. Figure 11 is an example of a current multiplying D / A, which is operated in voltage mode.

FIGURE 11. VOLTAGE-MODE OPERATION

The relationship between the fixed input voltage and the analog output voltage is given by the following equation:

$$
\begin{aligned}
& V_{O}=V_{1}(D / 256) \\
& \text { where } \\
& V_{O}=\text { analog output voltage } \\
& V_{1}=\text { fixed input voltage } \\
& D=\text { digital input code converted to decimal }
\end{aligned}
$$

In voltage-mode operation, the TLC7528 will meet the following specification:

PARAR:TFI:	TEST CONDITIONS	MIN	MAX
Linearity error a1	UNIT		

2
0
0
0
$\frac{0}{7}$
$\frac{0}{9}$
$\frac{10}{6}$

- Advanced LinCMOS ${ }^{\text {™ }}$ Silicon-Gate Process Technology
- 14-Bit Dynamic Range ADC and DAC
- Variable ADC and DAC Sampling Rate Up to 19,200 Samples per Second
- Switched-Capacitor Antialiasing Input Filter and Output-Reconstruction Filter
- Serial Port for Direct Interface to TMS32011, TMS320C17, TMS32020, and TMS320C25 Digital Processors
- Synchronous or Asynchronous ADC and DAC Conversion Rates with Programmable Incremental ADC and DAC Conversion Timing Adjustments
- Serial Port Interface to SN74299 Serial-toParallel Shift Register for Parallel Interface to TMS32010, TMS320C15, or Other Digital Processors

PART NUMBER	DESCRIPTION
TLC32040	Analog Interface Circuit with internal reference Also a plun-in replacement for TLC 32041
TLC32041	Analog interface Circuit without internal reference. Identical to TLC32040, but has a Slightly wider bandpass fitter bandwidth

description

The TLC32040, TLC32041, and TLC32042 are complete analog-to-digital and digital-to-analog input/output systems, each on a single monolithic CMOS chip. This device integrates a bandpass switched-capacitor antialiasing input filter, a 14-bit-resolution A/D converter, four microprocessor-compatible serial port modes, a 14-bit-resolution D/A converter, and a low-pass switched-capacitor output-reconstruction filter. The device offers numerous combinations of Master Clock input frequencies and conversion/sampling rates, which can be changed via digital processor control.

Typical applications for this IC include modems (7.2-, 8-, 9.6-, 14.4-, and 19.2-kHz sampling rate), analog interface for digital signal processors (DSPs), speech recognition/storage systems, industrial process control, biomedical instrumentation, acoustical signal processing, spectral analysis, data acquisition, and instrumentation recorders. Four serial modes, which allow direct interface to the TMS32011, TMS320C17, TMS32020, and TMS320C25 digital signal processors, are provided. Also, when the transmit and receive sections of the Analog Interface Circuit (AIC) are operating synchronously, it will interface to two SN74299

Advanced LinCMOS ${ }^{\prime \prime}$ is a trademark of Texas Instruments Incorporated

description (continued)

serial-to-parallel shift registers. These serial-to-paraliel shift registers can then interface in parallel to the TMS32010, TMS320C15, other digital signal processors, or external FIFO circuitry. Output data pulses are emitted to inform the processor that data transmission is complete or to allow the DSP to differentiate between two transmitted bytes. A flexible control scheme is provided so that the functions of the IC can be selected and adjusted coincidentally with signal processing via software control.

The antialiasing input filter comprises seventh-order and fourth-order CC-type (Chebyshev/elliptic transitional) low-pass and high-pass filters, respectively, and a fourth-order equalizer. The input filter is implemented in switched-capacitor technology and is preceded by a continuous time filter to eliminate any possibility of aliasing caused by sampled data filtering. When no filtering is desired, the entire composite filter can be switched out of the signal path. A selectable, auxiliary, differential analog input is provided for applications where more than one analog input is required.

The A / D and D / A converters each have 14 bits of resolution. The A / D and D / A architectures ensure no missing codes and monotonic operation. An internal voltage reference is provided on the TLC32040 and TLC32042 to ease the design task and to provide complete control over the performance of the IC. The internal voltage reference is brought out to a pin and is available to the designer. Separate analog and digital voltage supplies and grounds are provided to minimize noise and ensure a wide dynamic range. Also, the analog circuit path contains only differential circuitry to keep noise to an absolute minimum. The only exception is the DAC sample-and-hold, which utilizes pseudo-differential circuitry.

The output-reconstruction filter is a seventh-order CC-type (Chebyshev/elliptic transitional low-pass filter with a fourth-order equalizer) and is implemented in switched-capacitor technology. This filter is followed by a continuous-time filter to eliminate images of the digitally encoded signal.
The TLC320401, TLC320411, and TLC320421 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TLC32040C, TLC32041C, and TLC32042C are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

functional block diagram

PRINCIPLES OF OPERATION

analog input

Two sets of analog inputs are provided. Normally, the $\mathbb{I N}+$ and \mathbb{N} - input set is used; however, the auxiliary input set, $A \cup X \mathbb{N}+$ and $A \cup X \mathbb{N}-$, can be used if a second input is required. Each input set can be operated in either differential or single-ended modes, since sufficient common-mode range and rejection are provided. The gain for the $\mathbb{N}+, \mathbb{N}-, A \cup X I N+$, and $A \cup X I N$ - inputs can be programmed to be either 1,2 , or 4 (see Table 2). Either input circuit can be selected via software control. It is important to note that a wide dynamic range is assured by the differential internal analog architecture and by the separate analog and digital voltage supplies and grounds.

A/D bandpass filter, A / D bandpass filter clocking, and A / D conversion timing

The A/D bandpass filter can be selected or bypassed via software control. The frequency response of this filter is presented in the following pages. This response results when the switched-capacitor filter clock frequency is 288 kHz . Several possible options can be used to attain a $288-\mathrm{kHz}$ switched-capacitor filter clock. When the filter clock frequency is not 288 kHz , the filter transfer function is frequency-scaled by the ratio of the actual clock frequency to 288 kHz . The low-frequency roll-off of the high-pass section is 300 Hz . However, the high-pass section low-frequency roll-off is less steep for the TLC32042 than for the TLC32040 and TLC32041.

The Internal Timing Configuration and AIC DX Data Word Format sections of this data sheet indicate the many options for attaining a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock. These sections indicate that the RX Counter A can be programmed to give a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock for several Master Clock input frequencies.

The A / D conversion rate is then attained by frequency-dividing the $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock with the RX Counter B. Thus, unwanted aliasing is prevented because the A / D conversion rate is an integral submultiple of the bandpass switched-capacitor filter sampling rate, and the two rates are synchronously locked.

A/D converter performance specifications

Fundamental performance specifications for the A/D converter circuitry are presented in the A/D converter operating characteristics section of this data sheet. The realization of the A / D converter circuitry with switched-capacitor techniques provides an inherent sample-and-hold.

analog output

The analog output circuitry is an analog output power amplifier. Both noninverting and inverting amplifier outputs are brought out of the IC. This amplifier can drive transformer hybrids or low-impedance loads directly in either a differential or single-ended configuration.

D/A low-pass filter, D/A low-pass filter clocking, and D/A conversion timing
The frequency response of this filter is presented in the following pages. This response results when the low-pass switched-capacitor filter clock frequency is 288 kHz . Like the A / D filter, the transfer function of this filter is frequency-scaled when the clock frequency is not 288 kHz . A continuous-time filter is provided on the output of the D/A low-pass filter to greatly attenuate any switched-capacitor clock feedthrough.

The D/A conversion rate is then attained by frequency-dividing the $288-\mathrm{kHz}$ switched-capacitor filter clock with TX Counter B. Thus, unwanted aliasing is prevented because the D/A conversion rate is an integral submultiple of the switched-capacitor low-pass filter sampling rate, and the two rates are synchronously locked.

PRINCIPLES OF OPERATION (continued)

asynchronous versus synchronous operation

If the transmit section of the AIC (low-pass filter and DAC) and receive section (bandpass filter and ADC) are operated asynchronously, the low-pass and band-pass filter clocks are independently generated from the Master Clock signal. Also, the D/A and A/D conversion rates are independently determined. If the transmit and receive sections are operated synchronously, the low-pass filter clock drives both low-pass and bandpass filters. in synchronous operation, the A/D conversion timing is derived from, and is equal to, the D/A conversion timing. (See description of the WORD/信TE pin in the Pin Functional Description Section. 1

D/A converter performance specifications

Fundamental performance specifications for the D/A converter circuitry are presented in the D/A converter operating characteristics section of the data sheet. The D/A converter has a sample-and-hold that is realized with a switched-capacitor ladder.

system frequency response correction

$\operatorname{Sin} \mathrm{x} / \mathrm{x}$ correction circuitry is performed in digital signal processor software. The system frequency response can be corrected via DSP software to $\pm 0.1 \mathrm{~dB}$ accuracy to a band-edge of 3000 Hz for all sampling rates. This correction is accomplished with a first-order digital correction filter, which requires only seven TMS320 instruction cycles. With a $200-\mathrm{ns}$ instruction cycle, seven instructions represent an overhead factor of only 1.1% and 1.3% for sampling rates of 8 and 9.6 kHz , respectively (see the $\sin \mathrm{x} / \mathrm{x}$ Correction Section for more details).

serial port

The serial port has four possible modes that are described in detail in the Functional Pin Description Section. These modes are briefly described below and in the Functional Description for Pin 13, WORD/BYTE.

1. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS32011 and TMS320C17.
2. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS32020 and the TMS320C25.
3. The transmit and receive sections are operated synchronously, and the serial port interfaces directly with the TMS32011 and TMS320C17.
4. The transmit and receive sections are operated synchronously, and the serial port interfaces directly with the TMS32020, TMS320C25, or two SN74299 serial-to-parallel shift registers, which can then interface in parallel to the TMS32010, TMS320C15, to any other digital signal processor, or to external FIFO circuitry.
testing
An addendum accompanying this data sheet fully describes the test capabilities of the IC, provided by the design.

operation of TLC32040 or TLC32042 with internal voltage reference

The internal reference of the TLC32040 and TLC32042 eliminates the need for an external voltage reference and provides overall circuit cost reduction. Thus, the internal reference eases the design task and provides complete control over the performance of the IC. The internal reference is brought out to a pin and is available to the designer. To keep the emount of noise on the reference signal to a minimum, an external capacitor may be connected between REF and ANLG GND.

PRINCIPLES OF OPERATION (continued)

operation of TLC32040, TLC32041, or TLC32042 with external voltage reference

The REF pin may be driven from an external reference circuit if so desired. This external circuit must be capable of supplying $250 \mu \mathrm{~A}$ and must be adequately protected from noise such as crosstalk from the analog input.

reset

A reset function is provided to initiate serial communications between the AIC and DSP and to allow fast, cost-effective testing during manufacturing. The reset fun . . will initialize all AIC registers, including the control register. After a negative-going pulse on the $:-. \cdot \bar{T}$ pin, the AIC will be initialized. This initialization allows normal serial port communications activity to occur between AIC and DSP (see AIC DX Data Word Format section).

loopback

This feature allows the user to test the circuit remotely. In loopback, the OUT + and OUT - pins are internally connected to the $I N+$ and $I N$ - pins. Thus, the DAC bits (d 15 to d 2), which are transmitted to the DX pin, can be compared with the ADC bits (d15 to d2), which are received from the DR pin. An ideal comparison would be that the bits on the DR pin equal the bits on the DX pin. However, in practice there will be some difference in these bits due to the ADC and DAC output offsets.
In loopback, if the $\mathbb{N}+$ and \mathbb{N} - pins are enabled, the external signals on the $\mathbb{N}+$ and $\mathbb{N}-$ pins are ignored. If the AUXIN + and AUXIN - pins are enabled, the external signals on these pins are added to the OUT + and OUT - signals in loopback operation.
The loopback feature is implemented with digital signal processor control by transmitting the appropriate serial port bit to the control register (see AIC Data Word Format section).

NAME	NO.	1/0	DESCRIPTION
ANLG GND	17.18		Analog ground return for all internal analog circuits. Not internally connected to DGTL GND.
AUX IN +	24	1	Noninverting auxiliary analog input stage. This input can be switched into the bandpass filter and A/D converter path via software control. If the appropriate bit in the Control register is a 1 , the auxiliary inputs will replace the $\mathbb{I N}+$ and \mathbb{N} - inputs, If the bit is a 0 , the $\mathbb{I N}+$ and \mathbb{N} - inputs will be used (see the AIC DX Data Word Format section).
AUX IN-	23	1	Inverting auxiliary analog input (see the above AUX IN + pin description).
DGTL GND	9		Digital ground for all internal logic circuits. Not internally connected to ANLG GND.
DR	5	0	This pin is used to transmit the ADC output bits from the AIC to the TMS320 serial port. This transmission of bits from the AIC to the TMS320 serial port is synchronized with the SHIFT CLK signal.
DX	12	1	This pin is used to receive the DAC input bits and timing and control information from the TMS320. This serial transmission from the TMS320 serial port to the AIC is synchronized with the SHIFT CLK signal.
$\overline{\text { EODR }}$	3	0	(See the WORD/BYTE pin description and the Serial Port Timıng Diagram.) During the word-mode timing, this signal is a low-going pulse that occurs immediately after the 16 bits of A / D information have been transmitted from the AIC to the TMS320 serial port. This signal can be used to interrupt a microprocessor upon completion of serial communications. Also, this signal can be used to strobe and enable external serial-to-parallel shift registers, latches, or external FiFO RAM, and to facilitate parallel data bus communications between the AIC and the serial-to-parallel shift registers. During the byte-mode timing, this signal goes low after the first byte has been transmitted from the AIC to the TMS320 serial port and is kept low until the second byte has been transmitted. The TMS32011 or TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which is second.

$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	No.	\%	DESCRIPTION
	11	0	(See the WORD/ $\overline{\text { BYTE }}$ pin description and the Serial Port Timing Diagram.) During the word-mode timing, this signal is a low-going pulse that occurs immediately after the 16 bits of D / A converter and control or register information have been transmitted from the TMS320 serial port to the AIC. This signal can be used to interrupt a microprocessor upon the completion of serial communications. Also, this signal can be used to strobe and enable external serial-to-parallel shift registers, latches, or an external FIFO RAM, and to facilitate parallel data-bus communications between the AIC and the serial-to-parallel shift registers. During the bytemode timing, this signal goes low after the first byte has been transmitted from the TMS320 serial port to the AIC and is kept low until the second byte has been transmitted. The TMS32011 or TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which ie conond.
$\overline{\mathrm{FSR}}$	4	0	In the serial transmission modes, which are described in the WORD/BYTE pIn description, the in is held low during bit transmission. When the $\overline{F S R}$ pin goes low, the TMS320 serial port will begin receiving bits from the AIC via the DR pin of the AIC. The most significant DR bit will be present on the DR pin before FSR goes low. (See Serial Port Timing and Internal Timing Configuration Diagrams.)
$\overline{\text { FSX }}$	14	-	When this pin goes low, the TMS320 serial port will begin transmitting bits to the AIC via the DX pin of the AIC. In all serial transmission modes, which are described in the WORD/BYTE pin description, the $\overline{\text { FSX }}$ pin is held low during bit transmission (see Serial Port Timing and Internal Timing Configuration Diagrams).
IN+	26	1	Noninverting input to analog input amplifier stage
IN-	25	1	Inverting input to analog input amplifier stage
MSTR CLIK	6	1	The Master Clock signal is used to derive all the key logic signals of the AIC, such as the Shift Clock, the switched-capacitor filter clocks, and the A / D and D / A timing signals. The Internal Timing Configuration diagram shows how these key signals are derived. The frequencies of these key signals are synchronous submultiples of the Master Clock frequency to eliminate unwanted aliasing when the sampled analog signals are transferred between the switched-capacitor filters and the A / D and D / A converters (see the Internal Timing Configuration).
OUT +	22	0	Noninverting output of analog output power amplifier. Can drive transformer hybrids or high-impedance loads directly in either a differential or a single-ended configuration.
OUT -	21	0	Inverting output of analog output power amplifier. Functionally identical with and complementary to OUT + .
REF	8	1/0	For the TLC32040 and TLC32042, the internal voltage reference is brought out on this pin. For the TLC32040, TLC32041, and TLC32042, an external voltage reference can be applied to this pin.
	2	1	A reset function is provided to initialize the TA, TA; TB, RA, RA', RB, and control registers. This reset function initiates serial communications between the AIC and DSP. The reset function will initialize all AIC registers including the control register. After a negative-going pulse on the $\overline{\text { RESET }}$ pin, the AIC registers will be initialized to provide an $8-\mathrm{kHz}$ data conversion rate for a $5.184-\mathrm{MHz}$ master clock input signal. The conversion rate adjust registers, TA' and RA', will be reset to 1 . The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section). $d 7=1, d 6=1, d 5=1, d 4=0, d 3=0, d 2=1$ This initialization allows normal serial-port communication to occur between AIC and DSP.
SHIFT CLK	10	0	The Shift Clock signal is obtained by dividing the Master Clock signal frequency by four. This signal is used to clock the serial data transfers of the AIC, described in the WORD/ $\overline{\mathrm{BYTE}}$ pin description below (see the Serial Port Timing and Internal Timing Configuration diagram).
$\mathrm{V}_{\text {DD }}$	7		Digital supply voltage, $5 \vee \pm 5 \%$
${ }^{\text {CC }}+$	20		Positive analog supply voltage, $5 \mathrm{~V} \pm 5 \%$
$\mathrm{V}_{\text {cc- }}$	19		Negative analog supply voltage - $5 \mathrm{~V} \pm 5 \%$

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
 TLC32042I, TLC32042C
 ANALOG INTERFACE CIRCUITS

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
TLC32042I, TLC32042C
ANALOG INTERFACE CIRCUITS

INTERNAL TIMING CONFIGURATION

NOTE: Frequency $1,20.736 \mathrm{MHz}$, is used to show how 153.6 kHz (for a commercially available modem split-band filter clock), popular speech and modem sampling signal frequencies, and an internal $288-\mathrm{kHz}$ switched-capacitor filter ciock can be derived synchronousiy and as submultiples of the crystal oscillator frequency. Since these derived frequencies are synchronous submultiples of the crystal frequency, aliasing does not occur as the sampled analog signal passes between the analog converter and switched-capacitor filter stages. Frequency $2,41.472 \mathrm{MHz}$, is used to show that the $A I C$ can work with high-frequency signals, which are used by highspeed digital signal processors.
${ }^{\dagger}$ Split-band filtering can alternatively be performed after the analog input function via software in the TMS320.
${ }^{\ddagger}$ These control bits are described in the AIC DX Data Word Format section.

explanation of internal timing configuration

All of the internal timing of the AIC is derived from the high-frequency clock signal that drives the Master Clock input pin. The Shift Clock signal, which strobes the serial port data between the AIC and DSP, is derived by dividing the Master Clock input signal frequency by four.

$$
\begin{aligned}
& \text { SCF Clock Frequency }=\frac{\text { Master Clock Frequency }}{2 \times \text { Contents of Counter A }} \\
& \text { Conversion Frequency }=\frac{\text { SCF Clock Frequency }}{\text { Contents of Counter B }} \\
& \text { Shift Clock Frequency }=\frac{\text { Master Clock Frequency }}{4}
\end{aligned}
$$

TX Counter A and TX Counter B, which are driven by the Master Clock signal, determine the D/A conversion timing. Similarly, RX Counter A and $R X$ Counter B determine the A / D conversion timing. In order for the switched-capacitor low-pass and bandpass filters to meet their transfer function specifications, the frequency of the clock inputs of the switched-capacitor filters must be 288 kHz . If the frequencies of the clock inputs are not 288 kHz , the filter transfer function frequencies are scaled by the ratios of the clock frequencies to 288 kHz . Thus, to obtain the specified filter responses, the combination of Master Clock frequency and $T X$ Counter A and $R X$ Counter A values must yield $288-\mathrm{kHz}$ switched-capacitor clock signals. These $288-\mathrm{kHz}$ clock signals can then be divided by the TX Counter B and RX Counter B to establish the D/A and A/D conversion timings.

TX Counter A and TX Counter B are reloaded every D/A conversion period, while RX Counter A and RX Counter B are reloaded every A / D conversion period. The $T X$ Counter B and $R X$ Counter B are loaded with the values in the TB and RB Registers, respectively. Via software control, the TX Counter A can be loaded with either the TA Register, the TA Register less the TA' Register, or the TA Register plus the TA' Register. By selecting the TA Register less the TA'Register option, the upcoming conversion timing will occur earlier by an amount of time that equals TA' times the signal period of the Master Clock. By selecting the TA Register plus the TA' Register option, the upcoming conversion timing will occur later by an amount of time that equals TA' times the signal period of the Master Clock. Thus, the D/A conversion timing can be advanced or retarded. An identical ability to alter the A/D conversion timing is provided. In this case, however, the RX Counter A can be programmed via software control with the RA Register, the RA Register less the RA' Register, or the RA Register plus the RA' Register.
The ability to advance or retard conversion timing is particularly useful for modem applications. This feature allows controlled changes in the A / D and D / A conversion timing. This feature can be used to enhance signal-to-noise performance, to perform frequency-tracking functions, and to generate nonstandard modem frequencies.
If the transmit and receive sections are configured to be synchronous (see WORD/ $\overline{B Y T E}$ pin description), then both the low-pass and bandpass switched-capacitor filter clocks are derived from TX Counter A. Also, both the D / A and A / D conversion timing are derived from the TX Counter A and TX Counter B. When the transmit and receive sections are configured to be synchronous, the RX Counter $A, R X$ Counter $B, R A$ Register, RA' Register, and RB Registers are not used,

AIC DR or DX word bit pattern

A/D or D/A MSB,

AIC DX data word format section

d15	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4	d2	d1		d0	COMMENTS
primary DX serial communication protocol																
\leftarrow d15 (MSB) through d2 go to the D/A converter register														0		The TX and RXC Counter A's are loaded with the TA and RA register values. The TX and RX Counter B's are loaded with TB and RB register values.
$\leftarrow d 15$ (MSB) through d2 go to the D/A converter register																The TX and RX Counter A's are loaded with the TA + TA' and $R A+R A$ ' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE: $d 1=0, d 0=1$ will cause the next D / A and A / D conversion periods to be changed by the addition of TA' and RA' Master Clock cycles, in which TA' and RA can be positive or negative or zero. Please refer to Table 1. AIC Responses to Improper Conditions.
$\leftarrow d 15$ (MSB) through d2 go to the D/A converter register														1		The TX and RX Counter A's are loaded with the TA - TA' and RA - RA' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE; $d 1=1, d 0=0$ will cause the next D / A and A / D conversion periods to be changed by the subtraction of TA' and RA' Master Clock cycles, in which TA' and RA' can be positive or negative or zero. Please refer to Table 1. AIC Responses to Improper Conditions.
$\leftarrow d 15$ (MSB) through d2 go to the D/A converter register														1	1	The TX and RX Counter A's are loaded with the TA and RA register values. The TX and RX Counter B's are loaded with the TB and RB register values. After a delay of four Shift Clock cycles, a secondary transmission will immediately follow to program the AIC to operate in the desired configuration.

NOTE: Setting the two least significant bits to 1 in the normal transmission of DAC information (Prmary Communications) to the AIC will initiate Secondary Communications upon completion of the Primary Communications.
Upon completion of the Primary Communication, $\overline{\text { FSX }}$ will remain high for four SHIFT CLOCK cycles and will then go low and initiate the Secondary Communication. The timing specificatons for the Primary and Secondary Communications are identical. In this manner, the Secondary Communication, if Initiated, is interleaved between successive Primary Communications. This interleaving prevents the Secondary Communication from interfering with the Psimary Communications and DAC timing, thus preventing the AIC from skipping a DAC output. It is important to note that in the synchronuus mode, $\overline{\mathrm{FSF}}$ will not be asserted during Secondary Communicathons
secondary DX serial communication protocol

reset function

A reset function is provided to initiate serial communications between the AIC and DSP. The reset function will initialize all AIC registers, .ing the control register. After power has been applied to the AIC, a negative-going pulse on the .. . " pin will initialize the AIC registers to provide an $8-\mathrm{kHz} A / D$ and D / A conversion rate for a 5.184 MHz master clock input signal. The AIC, excepting the CONTROL register, will be initialized as follows (see AIC DX Data Word Format section):

REGISTER	VALUE (HEX)
TA	9
TA	1
TB	24
RA	9
RA	1
RB	24

The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section):

$$
d 7=1, d 6=1, d 5=1, d 4=0, d 3=0, d 2=1
$$

This initialization allows normal serial port communications to occur between AIC and DSP. If the transmit and receive sections are configured to operate synchronously and the user wishes to program different conversion rates, only the TA, TA', and TB register need to be programmed, since both transmit and receive timing are synchronously derived from these registers (see the Pin Descriptions and AIC DX Word Format sectionsl.

The circuit shown below will provide a reset on power-up when power is applied in the sequence given under Power-Up Sequence. The circuit depends on the power supplies' reaching their recommended values a minimum of 800 ns before the capacitor charges to 0.8 V above DGTL GND.

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
 TLC32042I, TLC32042C
 ANALOG INTERFACE CIRCUITS

power-up sequence

To ensure proper operation of the AIC, and as a safeguard against latch-up, it is recommmended that a Schottky diode with a forward voltage less than or equal to 0.4 V be connected from V_{CC} - to ANLG GND (see Figure 17). In the absence of such a diode, power should be applied in the following sequence: ANLG GND and DGTL GND, $V_{C C}-$, then $V_{C C}+$ and $V_{D D}$. Also, no input signal should be applied until after power-up.

AIC responses to improper conditions

The AIC has provisions for responding to improper conditions. These improper conditions and the response of the AIC to these conditions are presented in Table 1 below.

AIC register constraints

The following constraints are placed on the contents of the AIC registers:

1. TA register must be $>\uparrow$.
2. TA' register can be either positive, negative, or zero.
3. RA register must be >1.
4. RA' register can be either positive, negative, or zero.
5. (TA register \pm TA' register) must be >1.
6. (RA register \pm RA' register) must be >1.
7. TB register must be >1.

TABLE 1. AIC RESPONSES TO IMPROPER CONDITIONS

IMPROPER CONDITION	AIC RESPONSE
$\begin{aligned} & \mathrm{TA} \text { register }+\mathrm{TA} \text { ' register }=0 \text { or } 1 \\ & \text { TA register }-\mathrm{TA} \text { register }=0 \text { or } 1 \end{aligned}$	Reprogram TX Counter A with TA register value
TA register + TA' register <0	MODULO 64 arithmetic is used to ensure that a positive value is loaded into the TX Counter A. i.e., TA register + TA' register +40 HEX is loaded into TX Counter A
$\begin{aligned} & \text { RA register }+ \text { RA' register }=0 \text { or } 1 \\ & \text { RA register }- \text { RA' }^{\prime} \text { register }=0 \text { or } 1 \end{aligned}$	Reprogram RX Counter A with RA register value
RA register + RA' register $=0$ or 1	MODULO 64 arithmetic is used to ensure that a positive value is loaded into $R \times$ Counter A 1.e., RA register + RA' register +40 HEX is loaded into RX Counter A
$\begin{aligned} & \text { TA register }=0 \text { or } 1 \\ & \text { RA register }=0 \text { or } 1 \end{aligned}$	AIC is shut down
TB register $=0$ or 1	Reprogram TB register with 24 HEX
RB register $=0$ or 1	Reprogram RB register with 24 HEX
AIC and DSP cannot communicate	Hold last DAC output

improper operation due to conversion times being too close together

If the difference between two successive D/A conversion frame syncs is less that $1 / 19.2 \mathrm{kHz}$, the AIC operates improperly. In this situation, the second D/A conversion frame sync occurs too quickly and there is not enough time for the ongoing conversion to be completed. This situation can occur if the A and B registers are improperly programmed or if the $A+A^{\prime}$ register or $A-A^{\prime}$ register result is too small. When incrementally adjusting the conversion period via the $A+A^{\prime}$ register options, the designer should be very careful not to violate this requirement (see diagram below).

asynchronous operation - more than one receive frame sync occurring between two transmit frame syncs

When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. The command to use the incremental conversion period adjust option is sent to the AIC during a $\overline{F S X}$ frame sync. The ongoing conversion period is then adjusted. However, either Receive Conversion Period A or B may be adjusted. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. Therefore, if there is sufficient time between $t 1$ and $t 2$, the receive conversion period adjustment will be performed during Receive Conversion Period A . Otherwise, the adjustment will be performed during Receive Conversion Period B . The adjustment command only adjusts one transmit conversion period and one receive conversion period. To adjust another pair of transmit and receive conversion periods, another command must be issued during a subsequent $\overline{\mathrm{FSX}}$ frame (see figure below).

asynchronous operation - more than one transmit frame sync occurring between two receive frame syncs

When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. The command to use the incremental conversion period adjust options is sent to the AIC during a $\overline{\mathrm{FSX}}$ frame sync. The ongoing transmit conversion period is then adjusted. However, three possibilities exist for the receive conversion period adjustment in the diagram as shown in the figure below. If the adjustment command is issued during Transmit Conversion Period A, Receive Conversion Period A will be adjusted if there is sufficient time between t1 and $t 2$. Or, if there is not sufficient time between $t 1$ and $t 2$, Receive Conversion Period B will be adjusted. Or, the receive portion of an adjustment command may be ignored if the adjustment command is sent during a receive conversion period, which is already being or will be adjusted due to a prior adjustment command. For example, if adjustment commands are issued during Transmit Conversion Periods A, B, and C, the first two commands may cause Receive Conversion Periods A and B to be adjusted, while the third receive adjustment command is ignored. The third adjustment command is ignored since it was issued during Receive Conversion Period B, which already will be adjusted via the Transmit Conversion Period B adjustment command.

TLC32040I, TLC32040C, TLC32041I, TLC32041C, TLC32042I, TLC32042C ANALOG INTERFACE CIRCUITS

Abstract

asynchronous operation - more than one set of primary and secondary DX serial communication occurring between two receive frame sync (see AIC DX Data Word Format section)

The TA, TA', TB, and control register information that is transmitted in the secondary communications is always accepted and is applied during the ongoing transmit conversion period. If there is sufficient time between $t 1$ and t2, the TA, RA', and RB register information, which is sent during Transmit Conversion Period A, will be applied to Receive Conversion Period A. Otherwise, this information will be applied during Receive Conversion Period B. If RA, RA', and RB register information has already been received and is being applied during an ongoing conversion period, any subsequent RA, RA', or RB information that is received during this receive conversion period will be disregarded (see diagram below).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, $V_{C C}+($ see Note 1) 0.3 V to 15 V
Supply voltage, VDD . -0.3 V to 15 V
Output voltage, VO . - 0.3 V to 15 V
Input voltage, VI . 0.3 V to 15 V
Digital ground voltage . - 0.3 V to 15 V
Operating free-air temperature range: TLC32040I, TLC320411, TLC320421 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC32040C, TLC32041C, TLC32042C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$
NOTE 1: Voltage values for maximum ratings are with respect to VCC - .
recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}}+$ (see Note 2)		4.75	5	5.25	V
Supply voltage, V_{CC} - (see Note 2)		-4.75	-5	-5.25	V
Digital supply voltage, V_{DD} (see Note 2)		4.75	5	5.25	V
Digital ground voltage with respect to ANLG GND, DGTL GND			0		V
Reference input voltage, $\mathrm{V}_{\text {reffext }}$ (see Note 2)		2		4	V
High-level input voltage, V_{IH}		2		$\mathrm{VDD}^{+0.3}$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 3)		-0.3		0.8	V
Load resistance at OUT + and/or OUT - , R_{L}		300			0
Load capacitance at OUT + and/or OUT - , C_{L}				100	${ }^{\prime \prime}$
MSTR CLK frequency (see Note 4)		0.075	5	10.368	11
Analog input amplifier common mode input voltage (see Note 5)				± 1.5	V
A/D or D/A conversion rate				19.2	kHz
Conversion rate		1		20	kHz
Operating free-alr temperature. ${ }^{\text {T }}$ A	TLC320401, TLC320411, TLC320421	-40		85	${ }^{\circ} \mathrm{C}$
	TLC32040C, TLC32041C. TLC32042C	0		70	

NOTES: 2. Voltages at analog inputs and outputs, REF, $V_{C C+}$, and $V_{C C-}$, are with respect to the ANLG GND terminal. Voltages at digital inputs and outputs and $V_{D D}$ are with respect to the DGTL GND terminal.
3. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels and temperature only.
4. The bandpass and low-pass switched-capacitor filter response specifications apply only when the switched-capacitor clock frequency is 288 kHz . For switched-capacitor filter clocks at frequencies other than 288 kHz , the filter response is shifted by the ratio of switched-capacitor filter clock frequency to 288 kHz .
5. This range applies when $(\mathbb{N}+-\mathbb{I N}-)$ or $\{A \cup X I N+-A \cup X I N-\}$ equals $\pm 6 \mathrm{~V}$.

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)
total device, MSTR CLK frequency $=5.184 \mathrm{MHz}$, outputs not loaded

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOH	High-level output voltage		$V_{D D}=4.75 \mathrm{~V},{ }^{\text {OH }}=-300 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output valtage		$\mathrm{V}_{\mathrm{DO}}=4.75 \mathrm{~V}, \mathrm{l}^{\text {OL }}=2 \mathrm{~mA}$			0.4	V
ICC + Supply current from V $\mathrm{CC}+$		T \cdot - C				35	mA
		T $\cdot:-1$				40	
ICC-	Supply current from $\mathrm{V}_{\text {CC }}$ -	TLC3204-C				-35	mA
		TLC3204-1				-40	
IDD	Supply current from V ${ }_{\text {DD }}$		${ }^{\text {f MSTR }}$ CLK $=5.184 \mathrm{MHz}$			7	mA
$V_{\text {ref }}$	Internal reference output voltage			3		3.3	V
${ }^{\alpha}{ }^{\text {Vref }}$	Temperature coefficient of internal reference voltage				100		ppm/ $/{ }^{\circ} \mathrm{C}$
ro	Output resistance at REF				100		k Ω

receive amplifier input

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {P }}$	MAX	UNIT
A/D converter offset error (filters bypassed)		25	65	mV
A/D converter offset error (filters in)		25	65	mV
CMRR Common-mode rejection ratio at $\mathrm{IN}+, \overline{\mathrm{IN}}-$, or AUX $\mathbb{I N}+, A \cup X \mathbb{I N}$ -	See Note 6	55		dB
input resistance at $\mathrm{IN}+, \mathrm{IN}-$ or $A \cup X I N+, A \cup X I N-, R E F$		100		$\mathrm{k} \Omega$

transmit filter output

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{O O} \quad \begin{aligned} & \text { Output offset voltage at OUT + or OUT - } \\ & \text { (single-ended relative to ANLG GND) }\end{aligned}$			15	75	mV
$V_{O M}$ Maximurn peak output voltage swing across R_{L} at OUT + or OUT (single-ended)	$\begin{array}{cc} \hline \mathrm{R}_{\mathrm{L}}: 300!!, \\ \text { Offet voltage } & 0 \end{array}$	$=3$			V
Maximum peak output voltage swing between VOM OUT + and OUT - (differential output)	$\mathrm{R}_{\mathrm{L}} \geq 600 \Omega$	± 6			V

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 6: The test condition is a $0-\mathrm{dBm} .1-\mathrm{kHz}$ input signal with an $8-\mathrm{kHz}$ conversion rate.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted) system distortion specifications, SCF clock frequency $=\mathbf{2 8 8} \mathbf{k H z}$

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
Attenuation of second harmonic of A/D input signal	single-ended	$V_{\text {in }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $\mathrm{V}_{\text {ref }}$. See Note 7	70			
	differential		62	70		
Attenuation of third and higher	single-ended	$V_{\text {in }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$, See Note 7	65			dB
harmonics of A / D input signai	differential		57	65		
Attenuation of second harmonic of	single-ended	$V_{\text {in }}=-0 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7		70		dB
D/A input signal	differential		62	70		
Attenuation of third and higher single-ended harmonics of D/A input signal differential		$V_{\text {in }}=-0 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7		65		dB
		57	65			

A/D channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (sae Note 7)	$A_{v}=1^{\ddagger}$		$A_{V}=2^{\ddagger}$		$A_{v}=4^{\ddagger}$		UNIT
		MIN	MAX	MIN	MAX	Min	MAX	
A/D channel signal-to-distortion ratio	$V_{\text {in }}=-6 \mathrm{~dB}$ to -0.1 dB	58		$>58{ }^{5}$		$>58^{5}$		dB
	$V_{\text {in }}=-12 \mathrm{~dB}$ to -6 dB	58		58		$>58^{\text {b }}$		
	$V_{\text {in }}=-18 \mathrm{~dB}$ to -12 dB	56		58		58		
	$V_{\text {In }}=-24 \mathrm{~dB}$ to -18 dB	50		56		58		
	$V_{\text {In }}=-30 \mathrm{~dB}$ to -24 dB	44		50		56		
	$\mathrm{V}_{1 \mathrm{n}}=-36 \mathrm{~dB}$ to -30 dB	38		44		50		
	$\mathrm{V}_{1 \mathrm{I}}=-42 \mathrm{~dB}$ to -36 dB	32		38		44		
	$V_{\text {in }}=-48 \mathrm{~dB}$ to -42 dB	26		32		38		
	$\mathrm{V}_{\text {In }}=-54 \mathrm{~dB}$ to -48 dB	20		26		32		

D/A channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (see Note 7)	MIN	MAX	UNIT
D/A channel signal-to-distortion ratio	$V_{\text {in }}=-6 \mathrm{~dB}$ to -0.1 dB	58		dB
	$V_{\text {in }}=-12 \mathrm{~dB}$ to -6 dB	58		
	$V_{\text {in }}=-18 \mathrm{~dB}$ to -12 dB	56		
	$\mathrm{V}_{\text {in }}=-24 \mathrm{~dB}$ to -18 dB	50		
	$V_{\text {in }}=-30 \mathrm{~dB}$ to -24 dB	44		
	$V_{\text {in }}=-36 \mathrm{~dB}$ to -30 dB	38		
	$\mathrm{V}_{\mathrm{in}}=-42 \mathrm{~dB}$ to -36 dB	32		
	$V_{\text {in }}=-48 \mathrm{~dB}$ to -42 dB	26		
	$\mathrm{V}_{\mathrm{tn}}=-54 \mathrm{~dB}$ to -48 dB	20		

gain and dynamic range

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$ MAX	UNIT
Absolute transmit gain tracking error while transmitting into 600Ω	-48 UB to 0 dB signai tange. See Note 8		$\pm 0.05 \pm 0.15$	dB
Absolute recelve gan tracking error	-48 dB to 0 dB signal range. See Note 8		$\pm 0.05 \pm 0.15$	dB

[^14]
TLC32040I, TLC32040C, TLC32041I, TLC32041C, TLC32042I, TLC32042C ANALOG INTERFACE CIRCUITS

power supply rejection and crosstalk attenuation

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$V_{C C}+$ or $V_{C C}$ - supply voltage rejection ratio, receive channel	$f=0$ to 30 kHz	Idle channel, supply signal at $200 \mathrm{mV} \mathrm{p}-\mathrm{p}$ measured at DR (ADC output)		30		dB
	$f=30 \mathrm{kHz}$ to 50 kHz			45		
$V_{C C}+$ or $V_{C C}$ - supply voltage rejection ratio, transmit channel (single-ended)	$f=0$ to 30 kHz	Idle channel, supply signal at 200 mV p-p measured at OUT +		30		dB
	$f=30 \mathrm{kHz}$ to 50 kHz			45		
Crosstalk attenuation, transmit-to-receive (single-ended)				80		dB

delay distortion, SCF clock frequency $=288 \mathrm{kHz} \pm 2 \%$, input (IN $+-\operatorname{IN}-$) is $\pm 3-\mathrm{V}$ sinewave
Please refer to filter response graphs for delay distortion specifications.
TLC32040 and TLC32041 bandpass filter transfer function (see curves), SCF clock frequency $=288 \mathrm{kHz} \pm 2 \%$, input (IN $+-\operatorname{IN}-$) is a $\pm 3-\mathrm{V}$ sinewave (see Note 9)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
Filter Gain (see Note 10)	Ingut signal reference is 0 dB	$f=100 \mathrm{~Hz}$		-42	dB
		$\mathrm{t}=170 \mathrm{~Hz}$		-25	
		$300 \mathrm{~Hz} \leq \mathrm{f} \leq 3.4 \mathrm{kHz}$	-0.5	0.5	
		$f=4 \mathrm{kHz}$		-16	
		$\mathrm{f} \geq 4.6 \mathrm{kHz}$		-58	

TLC32042 bandpass filter transfer function (see curves), SCF clock frequency $=\mathbf{2 8 8} \mathbf{k H z} \pm \mathbf{2 \%}$, input (IN + - IN -) is a $\pm 3-\mathrm{V}$ sinewave (see Note 9)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
Filter Gain (see Note 10)	Input signal reference is 0 dB	$\mathrm{f}=100 \mathrm{~Hz}$		-27	dB
		$f=170 \mathrm{~Hz}$		-2	
		$300 \mathrm{~Hz} \leq \mathrm{f} \leq 3.4 \mathrm{kHz}$	-0.5	0.5	
		$f=4 \mathrm{kHz}$		-16	
		$\mathrm{f} \geq 4.6 \mathrm{kHz}$		-58	

low-pass filter transfer function, SCF clock frequency $=288 \mathrm{kHz} \pm \mathbf{2 \%}$ (see Note 9)

PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
Filter Gain (see Note 10)	Output signal reference is 0 dB	$\mathrm{f} \leq 3.4 \mathrm{kHz}$	-0.5	0.5	dB
		$\mathrm{f}=3.6 \mathrm{kHz}$		-4	
		$f=4 \mathrm{kHz}$		-30	
		$f \geq 4.4 \mathrm{kHz}$		-58	

serial port

	PARAMETER	TEST COR.: II \cdot INS	MIN	TYP ${ }^{+}$	MAX	UNIT
VOH	High-level output voltage	$\mathrm{IOH}=-\quad, ~$ A	2.4			V
$\mathrm{VOL}_{\text {L }}$	Low-level output voltage	$\mathrm{IOL}^{2}=2 \mathrm{~mA}$			0.4	V
11	Input current				± 10	$\mu \mathrm{A}$
C_{1}	Input capacitance			15		pF
CO_{0}	Output capacitance			15		pF

${ }^{1}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 9. The above filter specifications are for a switched-capacitor filter clock range of $288 \mathrm{kHz} \pm 2 \%$. For switched-capacitor filter clocks at frequencies other than $288 \mathrm{kHz} \pm 2 \%$, the filter response is shifted by the ratio of switched-capacitor filter clock frequency to 288 kHz .
10. The filter gain outside of the passband is measured with respect to the gain at 1 kHz . The filter gatn within the passband is measured with respect to the average gain within the passband. The passbands are 300 to 3400 Hz and 0 to 3400 Hz for the bandpass and lowpass filters respectively.
operating characteristics over recommended operating free-air temperature range, $\mathrm{VCC}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
noise (measurement includes low-pass and bandpass switched-capacitor filters)

PARAMETER		TEST CONDITIONS	TYP ${ }^{\text {t }}$	MAX	UNIT
Transmit noise	single-ended	DX input $=00000000000000$, constant input code	200		$\mu \vee \mathrm{rms}$
	differential		300	500	$\mu \vee \mathrm{rms}$
			20		dBrnc0
Receive noise (see Note 11)		Inputs grounded, gain $=1$	300	475	$\mu \mathrm{V}$ rms
		20		dBrnco	

timing requirements

serial port recommended input signals

PARAMETER		MIN	MAX	UNIT
$\mathrm{t}_{\mathrm{c} \text { (MCLK) }}$	Master clock cycle time	95		ns
$\mathrm{t}_{\text {(}}$ MCLK ${ }^{\text {m }}$	Master clock rise time		10	ns
${ }_{\text {f }}$ (MCLK)	Master clock fall time		10	ns
	Master clock duty cycle	42\%	58\%	
	RESET pulse duration Note 12)	800		ns
$t_{\text {su }}(\mathrm{DX})$	DX setup time before $\because \downarrow$	20		ns
$t_{\text {h }}(\mathrm{DX})$	DX hold time after SCLK!	$\mathrm{t}_{\mathrm{c} \text { (SCLK)/4 }}$		ns

[^15]
TLC32040I, TLC32040C, TLC32041I, TLC32041C,
 TLC32042I, TLC32042C
 ANALOG INTERFACE CIRCUITS

correction results
Table 4 below shows the opumum p values and the corresponding correction results for $8000-\mathrm{Hz}$ and $9600-\mathrm{Hz}$ sampling rates.

TABLE 4

f (Hz)	ERROR (dB) $\begin{aligned} & f_{s}=8000 \mathrm{~Hz} \\ & p 1=-0.14813 \\ & p 2=0.9888 \end{aligned}$	ERROR (dB) $\begin{aligned} & t_{\mathrm{S}}=9600 \mathrm{~Hz} \\ & \mathrm{p} 1=-0.1307 \\ & \mathrm{p} 2=0.9951 \end{aligned}$
300	0099	0043
600	0089	0043
900	0054	0
1200	0002	0
1500	0041	0
1300	0079	0043
2100	0100	0043
2400	0091	0043
2700	0043	\bigcirc
3000	-0.102	-0.043

TMS320 software requirements

The digital correction filter equation can be witten in state variable form as follows:

$$
Y=k 1 Y+k 2 U
$$

where $k 1$ equals $p 1$ (from the preceding page), $k 2$ equals ($1-\mathrm{p} 1$) p2 (from the preceding page), Y is the filter state, and U is the next $/ / O$ sample. The coefficients $k 1$ and $k 2$ must be represented as 16 -bit integers. The SACH instruction (with the proper shift) will yield the correct result. With the assumption that the TMS320 processor page pointer and memory configuration are properly initialized, the equation can be executed in seven instructions or seven cycles with the following program:

```
ZAC
LT K2
MPY U
LTA K1
MPY Y
APAC
SACH (dma), (shift)
```


TLC32040I, TLC32040C, TLC32041I, TLC32041C, TLC32042I, TLC32042C ANALOG INTERFACE CIRCUITS

$\sin x / x$ correction section

The AIC does not have $\sin x / x$ correction circuitry after the digital-to-analog converter. Sin x / x correction can be accomplished easily and efficiently in digital signal processor (DSP) software. Excellent correction accuracy can be achieved to a band edge of 3000 Hz by using a first-order digital correction filter. The results, which are shown below, are typical of the numerical correction accuracy that can be achieved for sample rates of interest. The filter requires only seven instruction cycles per sample on the TMS320 DSPs. With a 200-ns instruction cycle, nine instructions per sample represents an overhead factor of 1.4% and 1.7% for sampling rates of 8000 Hz and 9600 Hz , respectively. This correction will add a slight amount of group delay at the upper edge of the $300-3000-\mathrm{Hz}$ band.

$\sin x / x$ roll-off for a zero-order hold function

The $\sin x / x$ roll-off for the AIC DAC zero-order hold function at a band-edge frequency of 3000 Hz for the various sampling rates is shown in the table below.

TABLE 3. $\sin x / x$ ROLL-OFF

$\mathbf{f}_{\mathbf{S}}(\mathbf{H z})$	$20 \log \frac{\sin \pi \mathbf{f} / \mathbf{f}_{\mathbf{S}}}{\pi \mathbf{f} / \mathbf{f}_{\mathbf{S}}}$ $(\mathbf{f}=3000 \mathrm{~Hz})$ (dB)
7200	264
8000	-211
9600	144
14400	-063
19200	035

Note that the actual AIC $\sin x / x$ roll-off will be slightly less than the above figures, because the AIC has less than a 100% duty cycle hold interval.

correction filter

To compensate for the $\sin x / x$ roll-off of the AIC, a first-order correction filter shown below, is recommended.

The difference equation for this correction filter is:
$V i+1=p 2(1-p 1)\left(u_{i}+1\right)+p 1 y_{i}$
where the constant p1 determines the pole locations.
The resulting squared magnitude transfer function is:

$$
|H(f)|^{2}=\frac{p 2^{2}(1-p 1)^{2}}{1-2 p 1 \cos \left(2 \pi f / f_{S}\right)+p 1^{2}}
$$

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
 TLC32042I, TLC32042C
 andalog interface circuits

operating characteristics over recommended operating free-air temperature range, $\mathrm{VCC}_{+}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (continued)
serial port - AIC output signals

PARAMETER		$\mathrm{f}_{\mathbf{4}} \mathrm{fi}$	MAX	UNIT
$\mathrm{t}_{\mathrm{C} \text { (SCLK }}$	Shift clock (SCLK) cycle time			ns
$\mathrm{t}_{\mathrm{f} \text { (SCLK) }}$	Shift clock (SCLK) fall time		50	ns
tr(SCLK)	Shift clock (SCLK) rise time		50	ns
	Shift clock (SCLK) duty cycle	45	55	\%
${ }^{1}$ d(CH-FL)	Delay from SCLKt to $\overline{\text { FSR/FSX }}$.		90	ns
${ }_{t}$ d(CH.FH)	Delay from SCLK \dagger to $\overline{\text { FSR/FSX }}$;		90	ns
${ }_{\text {d }}(\mathrm{CH}-\mathrm{DR})$	DR valıd after SCLK 1		90	ns
$t_{\text {dw }}(\mathrm{CH}-\mathrm{EL})$	Delay from SCLK \dagger to $\overline{\text { EODX }}$ EODR 1 in word mode		90	ns
${ }^{\text {t }}$ dw(CH-EH)	Delay from SCLK 1 to E/EXX/EODR \dagger in word mode		90	ns
t(EODX)	$\overline{\text { EODX }}$ fall time		15	ns
tf(EODR)	EODR fall time		15	ns
$\mathrm{t}_{\mathrm{db}}(\mathrm{CH}-\mathrm{EL})$	Delay from SCLK \dagger to $\overline{E O D X} / \overline{E O D R} 1$ in byte mode		100	ns
$\mathrm{t}_{\mathrm{db}}(\mathrm{CH}-\mathrm{EH})$	Delay from SCLKi to $\overline{\text { EODX }} / \overline{\mathrm{EODR}}$ ¢ in byte mode		100	ns

TABLE 2. GAIN CONTROL TABLE
(ANALOG INPUT SIGNAL REQUIRED FOR FULL-SCALE A/D CONVERSION)

INPUT CONFIGURATIONS	CONTROL REGISTER BITS		ANALOG INPUT ${ }^{\dagger}$	A/D CONVERSION RESULT
	d6	d7		
Differential configuration Analog input $=\mathbb{N}+-\mathbb{N}-$ - AUXIN + AUXIN	1	1	$\pm 6 \mathrm{~V}$	full-scale
	0	0		
	1	0	$\pm 3 \mathrm{~V}$	full-scale
	0	1	$\pm 15 \mathrm{~V}$	full-scale
Single-ended configuration$\begin{aligned} \text { Analog input } & =\mathbb{I N +}-\text { ANLG GND } \\ & =\text { AUX } \mathbb{N}+- \text { ANLG GND } \end{aligned}$	1	1	$\pm 3 \mathrm{~V}$	half-scale
	0	0		
	1	0	$\pm 3 \mathrm{~V}$	full-scale
	0	1	$\pm 1.5 \mathrm{~V}$	full-scale

t In this example, $V_{r e f}$ is assumed to be 3 V . In order to minımize distortion, it is recommended that the analog input not exceed 0.1 dB below full scate

$R_{f b}=R$ for $d 6=1 . d 7=1$ $d 6=0, d 7=0$
$R_{f b}=2 R$ for $d 6=1, d 7=0$
$R_{f b}=4 R$ for $d 6=0 . d 7=1$
FIGURE 1. IN + AND IN - GAIN CONTROL CIRCUITRY

FIGURE 2. AUX IN + AND AUX INGAIN CONTROL CIRCUITRY

TLC32040I, TLC32040C, TLC32041I, TLC32041C, TLC32042I, TLC32042C ANALOG INTERFACE CIRCUITS

byte-mode timing

word-mode timing

FIGURE 3. SERIAL PORT TIMING

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
TLC32042I, TLC32042C
ANALOG INTERFACE CIRCUITS

FIGURE 4. TMS32010-TLC32040/TLC32041/TLC32042 INTERFACE CIRCUIT
in instruction timing

out instruction timing

FIGURE 5. TMS32010-TLC32040/TLC32041/TLC32042 INTERFACE TIMING

TYPICAL CHARACTERISTICS

NOTES: A. Maximum relative delay $(0 \mathrm{~Hz}$ to 600 Hz$)=125 \mu \mathrm{~s}$.
B. Maximum relative delay $(600 \mathrm{~Hz}$ to 3000 Hz$)= \pm 50 \mu \mathrm{~s}$.
C. Absolute delay $(600 \mathrm{~Hz}$ to 3000 Hz$)=700 \mu \mathrm{~s}$.
D. Test conditions are $V_{C C}+V_{C C}-$, and $V_{D D}$ within recommended operating conditions, SCF clock $f=288 \mathrm{kHz} \pm 2 \%$, input $= \pm 3-V$ sinewave, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

FIGURE 6

TYPICAL CHARACTERISTICS

TLC32040 and TLC32041
RECEIVE CHANNEL FILTER

NOTES A Maximum relative delay 1200 Hz to $600 \mathrm{~Hz} \quad 3350$ us
B. Maximum relative delay $\{600 \mathrm{~Hz}$ to 3000 Hz$)=-50 \mu \mathrm{~s}$.
C. Absolute delay $(600 \mathrm{~Hz}$ to 3000 Hz$)=1230 \mu \mathrm{~s}$
D. Test conditions are $V_{C C}+V_{C C-}$, and $V_{D D}$ within recommended operating conditions, SCF clock $f=288 \mathrm{kHz} \pm 2 \%$, input $= \pm 3-V$ sinewave, and $T_{A}=25^{\circ} \mathrm{C}$.

FIGURE 7

TYPICAL CHARACTERISTICS

> TLC32042

RECEIVE CHANNEL FILTER

NOTES: A. Maxımum relative deldy 1200 Hz to 600 Hz$)-3350 \mu 5$
B. Maximum relative delay $(600 \mathrm{~Hz}$ to 3000 Hz$)= \pm 50 \mu \mathrm{~s}$.
C. Absolute delay $(600 \mathrm{~Hz}$ to 3000 Hz$)=1080 \mu \mathrm{~s}$.
D. Test conditions are $V_{C C}+, V_{C C-, ~ a n d ~} V_{D D}$ withın recommended operatıng conditions, SCF clock $f=288 \mathrm{kHz} \pm 2 \%$. input $- \pm 3 \mathrm{~V}$ sinewave and $T_{A}-25^{\circ} \mathrm{C}$

FIGURE 8

TYPICAI CHARACTERISTICS

A/D SIGNAL-TO.DISTORTION RATIO
 vs
 INPUT SIGNAL

słəzчs eiea N

Input Signal Relative to $V_{\text {ref }}-\mathrm{dB}$
FIGURE 9

D/A CONVERTER SIGNAL-TO-DISTORTION RATIO vS
INPUT SIGNAL

FIGURE 11

A/D GAIN TRACKING (GAIN RELATIVE TO GAIN AT O dB INPUT SIGNAL)

FIGURE 10

D/A GAIN TRACKING
vs
IGAIN RELATIVE TO GAIN
AT 0 dB INPUT SIGNALI

FIGURE 12

NOTE: iest conditions are $V_{C C}+, V_{C C}-$, and $V_{D D}$ within recommended operating conditions set clock $f=288 \mathrm{kHz} \pm 2 \%$, and $T A=25{ }^{\circ} \mathrm{C}$.

TLC32040I, TLC32040C, TLC32041I, TLC32041C,
 TLC320421, TLC32042C ANALOG INTERFACE CIRCUITS

TYPICAL CHARACTERISTICS

FIGURE 13

ATTENUATION OF SECOND HARMONIC OF D/A INPUT INPUT SIGNAL

FIGURE 15

ATTENUATION OF THIRD HARMONIC OF A/D INPUT vs
INPUT SIGNAL

FIGURE 14

ATTENUATION OF THIRD HARMONIC OF D/A INPUT INPUT SIGNAL

FIGURE 16

NOTE: Test conditions are $V_{C C}+, V_{C C}-$, and $V_{D D}$ withn recommended operatung conditions set clock $f=288 \mathrm{kHz} \pm 2 \%$, and ${ }^{\circ} \mathrm{A}=25^{\circ} \mathrm{C}$.

TYPICAL APPLICATION INFORMATION

FIGURE 17. AIC INTERFACE TO THE TMS32020/C25 SHOWING DECOUPLING CAPACITORS AND SCHOTTKY DIODE ${ }^{\dagger}$

FOR. $\quad V_{C C}=12 \mathrm{~V} . \mathrm{R}=7200!$
$V_{C C}=10 \mathrm{~V} \cdot \mathrm{R}=5600!$
$V_{C C}=5 \mathrm{~V} \cdot \mathrm{R}=1600!$?
FIGURE 18. EXTERNAL REFERENCE CIRCUIT FOR TLC32041

[^16]
TLC32044I, TLC32044C VOICE-BAND ANALOG INTERFACE CIRCUITS

- Advanced LinCMOS ${ }^{\text {T }}$ Silicon-Gate Process Technology
- 14-Bit Dynamic Range ADC and DAC
- 16-Bit Dynamic Range Input with Programmable Gain
- Variable ADC and DAC Sampling Rate Up to 19.200 Samples per Second
- Switched-Capacitor Antialiasing Input Filter and Output-Reconstruction Filter
- Serial Port for Direct Interface to TMS320C17, TMS32020, TMS320C25, and TMS320C30 Digital Processors
- Synchronous or Asynchronous ADC and DAC Conversion Rates with Programmable Incremental ADC and DAC Conversion Timing Adjustments
- Serial Port Interface to SN74299 Serial-toParallel Shift Register for Parallel Interface to TMS32010، TMS320C15, or Other Digital Processors
- Internal Reference for Normal Operation and External Purposes, or Can Be Overridden by Exterial Refútenco
descriptiun
The TLC32044 is a complete analog-to-digital and digital-to-analog input/output system on a single monolithic CMOS chip. This device integrates a bandpass switched-capacitor antialiasing input filter, a 14-bit-resolution A/D converter, four microprocessor-compatible serial port modes, a 14-bit-resolution D/A converter, and a low-pass switched-capacitor outputreconstruction filter. The device offers numerous combinations of Master Clock input frequencies and conversion/sampling rates, which can be changed via digital processor control.

N PACKAGE
(TOP VIEW)

NU - Nonusable; no external connection should be made to these pins. See Table 2.

Typical applications for this IC include speech encryption for digital transmıssion, speech recognition/storage systems, speech synthesis, modems $17.2-8-, 9.6-14.4-$, and 19.2 kHz sampling rate), analog interface for digital signal processors (DSPs), industrial process control, biomedical instrumentation, acoustical signal processing, spectral analysis, data acquisition, and instrumentation recorders. Four serial modes, which allow direct interface to the TMS320C17, TMS32020, TMS320C25, and TMS320C30 digital signal

[^17]
description (continued)

processors, are provided. Also, when the transmit and receive sections of the Analog Interface Circuit (AIC) are operating synchronously, it will interface to two SN74299 serial-to-parallel shift registers. These serial-to-parallel shift registers can then interface in parallel to the TMS32010, TMS320C15, other digital signal processors, or external FIFO circuitry. Output data pulses are emitted to inform the processor that data transmission is complete or to allow the DSP to differentiate between two transmitted bytes. A flexible control scheme is provided so that the functions of the IC can be selected and adjusted coincidentally with signal processing via software control.

The antialiasing input filter comprises eighth-order and fourth-order C.C-type (Chebyshev/elliptic transitional) low-pass and high-pass filters, respectively. The input filter is implemented in switched-capacitor technology and is preceded by a continuous time filter to eliminate any possibility of aliasing caused by sampled data filtering. When only low-pass filtering is desired, the high-pass filter can be switched out of the signal path. A selectable, auxiliary, differential analog input is provided for applications where more than one analog input is required.
The A / D and D / A architectures ensure no missing codes and monotonic operation. An internal voltage reference is provided to ease the design task and to provide complete control over the performance of the IC. The internal voltage reference is brought out to a pin and is available to the designer. Separate analog and digital voltage supplies and grounds are provided to minimize noise and ensure a wide dynamic range. Also, the analog circuit path contains only differential circuitry to keep noise to an absolute minimum. The only exception is the DAC sample-and-hold, which utilizes pseudo-differential circuitry.

The output-reconstruction filter is an eighth-order CC-type (Chebyshev/elliptic transitional low-pass filter) followed by a second-order $(\sin x) / x$ correction filter) and is implemented in switched-capacitor technology. This filter is followed by a continuous-time filter to eliminate images of the digitally encoded signal. The on-board $(\sin x) / x$ correction filter can be switched out of the signal path using digital signal processor control, if desired.

The TLC320441 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TLC32044C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

PRINCIPLES OF OPERATION

analog input
Two sets of analog inputs are provided. Normaily, the IN + and IN - input set is used; however, the auxiliary input set, $A \cup X I N+$ and $A \cup X I N-$, can be used if a second input is required. Each input set can be operated in either differential or single-ended modes, since sufficient common-mode range and rejection a:e provided. The gain for the $\mathbb{I N}+, \mathbb{I N}-, A \cup X \mathbb{N}+$, and $A U X \mathbb{N}$-- inputs can be programmed to be either 1, 2, or 4 (see Table 2). Either input circuit can be selected via software control. It is important to note that a wide dynamic range is assured by the differential internal analog architecture and by the separate analog and digital voltage supplies and grounds.

A/D bandpass filter, A/D bandpass filter clocking, and A/D conversion timing

The A/D high-pass filter can be selected or bypassed via software control. The frequency response of this fiiter is presented in the following pages. This response results when the switched-capacitor filter clock frequency is 288 kHz and the A / D sample rate is 8 kHz . Several possible options can be used to attain a $288-\mathrm{kHz}$ switched-capacitor filter clock. When the filter clock frequency is not 288 kHz , the low-pass filter transfer function is frequency-scaled by the ratio of the actual clock frequency to 288 kHz . The ripple bandwidth and 3-dB low-frequency roll-off points of the high-pass section are 150 and 100 Hz , respectively. However, the high-pass section low-frequency roll-off is frequency-scaled by the ratio of the A/D sample rate to 8 kHz .

The Internal Timing Configuration and AIC DX Data Word Format sections of this data sheet indicate the many options for attaining a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock. These sections indicate that the RX Counter A can be programmed to give a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock for several Master Clock input frequencies.

PRINCIPLES OF OPERATION (continued)

The A/D conversion rate is then attained by frequency-dividing the $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock with the RX Counter B. Thus, unwanted aliasing is prevented because the A/D conversion rate is an integral submultiple of the bandpass switched-capacitor filter sampling rate, and the two rates are synchronously locked.

A/D converter performance specifications

Fundamental performance specifications for the A/D converter circuitry are presented in the A/D converter operating characteristics section of this data sheet. The realization of the A/D converter circuitry with switched-capacitor techniques provides an inherent sample-and-hold.
analog output
The analog output circuitry is an analog output power amplifier. Both noninverting and inverting amplifier outputs are brought out of the IC. This amplifier can drive transformer hybrids or low-impedance loads directly in either a differential or single-ended configuration.

D/A low-pass filter, D/A low-pass filter clocking, and D/A conversion timing
The frequency response of this filter is presented in the following pages. This response results when the low-pass switched-capacitor filter clock frequency is 288 kHz . Like the A/D filter, the transfer function of this filter is frequency-scaled when the clock frequency is not 288 kHz . A continuous-time filter is provided on the output of the $(\sin x) / x$ filter to eliminate the periodic sample data signal information, which occurs at multiples of the $288-\mathrm{kHz}$ switched-capacitor filter clock. The continuous time filter also greatly attenuates any switched-capacitor clock feedthrough.

The D/A conversion rate is attained by frequency-dividing the $288-\mathrm{kHz}$ switched-capacitor filter clock with TX Counter B. Thus, unwanted aliasing is prevented because the D/A conversion rate is an integral submultiple of the switched-capacitor low-pass filter sampling rate, and the two rates are synchronously locked.

asynchronous versus synchronous operation

If the transmit section of the AIC (low-pass filter and DAC) and receive section (bandpass filter and ADC) are operated asynchronously, the low-pass and bandpass filter clocks are independently generated from the Master Clock signal. Also, the D/A and A/D conversion rates are independently determined. If the transmit and receive sections are operated synchronously, the low-pass filter clock drives both low-pass and bandpass filters. In synchronous operation, the A/D conve timing is derived from, and is equal to, the D/A conversion timing. (See description of the WORD/B. • , Jin in the Pin Functional Description Section.)

D/A converter performance specifications

Fundamental performance specifications for the D/A converter circuitry are presented in the D/A converter operating characteristics section of the data sheet. The D/A converter has a sample-and-hold that is realized with a switched-capacitor ladder.

system frequency response correction

($\operatorname{Sin} x$)/x correction for the D/A converter's zero-order sample-and-hold output can be provided by an onboard second-order $(\sin x) / x$ correction filter. This $(\sin x) / \times \operatorname{correction}$ filter can be inserted into or deleted from the signal path by digital signal processor control. When inserted, the $(\sin x) / x$ correction filter follows the switched-capacitor low-pass filter. When the TB register (see Internal Timing Configuration section) equals 36 , the correction results of Figures 11 and 12 will be obtained.

PRINCIPLES OF OPERATION (continued)

(Sin x)/x correction can also be accomplished by deleting the on-board second-order correction filter and performing the $(\sin x) / \times$ correction in digital signal processor software. The system frequency response can be corrected via DSP software to $\pm 0.1 \mathrm{~dB}$ accuracy to a band-edge of 3000 Hz for all sampling rates. This correction is accomplished with a first-order digital correction filter, which requires only seven TMS320 instruction cycles. With a 200-ns instruction cycle, seven instructions represent an overhead factor of only 1.1% and 1.3% for sampling rates of 8 and 9.6 kHz , respectively (see the $(\sin x) / x$ Correction Section for more details).

serial port

The serial port has four possible modes that are described in detail in the Functional Pin Description Section. These modes are briefly described below and in the Functional Description for Pin 13, WORD/BYTE.

1. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS320C17.
2. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS32020, TMS320C25, and the TMS320C30.
3. The transmit and receive sections are operated synchronously, and the serial port interfaces directly with the TMS320C17.
4. The transmit and receive sections are operated synchronousty, and the serial port interfaces directly with the TMS32020, TMS320C25, TMS320C30, or two SN74299 serial-to-parallel shift registers, which can then interface in parallel to the TMS32010, TMS320C15, to any other digital signal processor, or to external FIFO circuitry.

operation of TLC32044 with internal voltage reference

The internal reference of the TLC32044 eliminates the need for an external voltage reference and provides overall circuit cost reduction. Thus, the internal reference eases the design task and provides complete control over the performance of the IC. The internal reference is brought out to a pin and is available to the designer. To keep the amount of noise on the reference signal to a minimum, an external capacitor may be connected between REF and ANLG GND.

operation of TLC32044 with external voltage reference

The REF pin may be driven from an external reference circuit if so desired. This external circuit must be capable of supplying $250 \mu \mathrm{~A}$ and must be adequately protected from noise such as crosstalk from the analog input.

reset

A reset function is provided to initiate serial communications between the AIC and DSP and to allow fast, cost-effective testing during manufacturing. The reset fun - will initialize all AIC registers, including the controt register. After a negative-going pulse on the $\overline{\equiv T}$ pin, the AIC will be initialized. This initialization allows normal serial port communications activity to occur between AIC and DSP (see AIC DX Data Word Format sectionl.

PRINCIPLES OF OPERATION (continued)

loopback

This feature allows the user to test the circuit remotely. In loopback, the OUT + and OUT - pins are internally connected to the IN + and IN - pins. Thus, the DAC bits (d15 to d2), which are transmitted to the DX pin, can be compared with the ADC bits (d 15 to d 2), which are received from the DR pin. An ideal comparison would be that the bits on the DR pin equal the bits on the DX pin. However, in practice there will be some difference in these bits due to the ADC and DAC output offsets.
The loopback feature is implemented with digital signal processor control by transmitting the appropriate serial port bit to the control register (see AIC Data Word Format section).

PIN NAME	NO.	1/0	DESCRIPTION
ANLG GND	17.18		Analog ground return for all internal analog circuits. Not internally connected to DGTL GND.
AUX IN +	24	1	Nonınverting auxiliary analog input stage. This input can be switched into the bandpass filter and A/D converter path via software control If the appropriate bit in the Control register is a 1 , the auxiliary inputs will replace the $I N+$ and $I N$ - inputs. If the bit is a 0 , the $I N+$ and $I N$ - inputs will be used (see the AIC DX Data Word Format section).
AUX IN -	23	1	Inverting auxiliary analog input (see the above $A \cup X$ IN + pin description).
DGTL GND	9		Digital ground for all internal logic circuits. Not internally connected to ANLG GND.
DR	5	0	This pin is used to transmit the ADC output bits from the AIC to the TMS320 serial port. This transmission of bits from the AIC to the TMS320 serial port is synchronized with the SHIFT CLK signal.
DX	12	1	This pin is used to receive the DAC input bits and timing and control information from the TMS320. This serial transmission from the TMS320 serial port to the AIC is synchronized with the SHIFT CLK signal.
$\overline{\text { EODR }}$	3	0	(See the WORD/ $\overline{\text { BYTE }}$ pin description and the Serıal Port Timing Diagram.) During the word-mode timing, this signal is a low going pulse that occurs immediately after the 16 bits of A / D information have been transmitted from the AIC to the TMS320 serial port. This signal can be used to interrupt a microprocessor upon completion of serial communications Also, this signal can be used to strobe and enabie external serial-to-parallel shift registers, latches, or external FIFO RAM, and to facilitate parallel data bus communications between the AIC and the serial-to-parallel shift registers. During the byte-mode timing, this signal goes low after the first byte has been transmitted from the AIC to the TMS320 serial port and is kept low until the second byte has been transmitted. The TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which is second.

PIN NAME	NO.	$1 / 0$	DESCRIPTION
$\overline{\text { EODX }}$	11	0	(See the WORD/信TE pin description and the Serial Port Timing Diagram.) During the word-mode timing, this signal is a low-going pulse that occurs immediately after the 16 bits of D/A converter and control or register information have been transmitted from the TMS320 serial port to the AlC. This signal can be used to interrupt a microprocessor upon the completron of serial communications. Also, this signal can be used to strobe and enable external serial-to-parallel shift registers, latches, or an external FIFO RAM, and to facilitate parallel data-bus communications between the AIC and the serial-to-parallel shift registers. During the bytemode timing, this signal goes low after the first byte has been transmitted from the TMS320 serial port to the AIC and is kept low untul the second byte has been transmitted. The TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which is second.
$\overline{\text { FSR }}$	4	0	In the serial transmission modes. which are described in the WORD/ $\overline{\operatorname{BY} T E}$ pin description, the $\overline{F S R}$ pin is held low during bit transmission. When the $\overline{\text { FSR }}$ pin goes low, the TMS320 serial port will begin receiving bits from the AIC via the DR pin of the AIC. The most significant DR bit will be present on the DR pin before FSR gaes low. (See Serial Port Timing and internal Timing Configuratıon Diagrams.)
$\overline{\text { FSX }}$	14	0	When this pin goes low, the TMS320 serial port will begin transmitting bits to the AIC via the DX pin of the AIC. In all serial transmission modes, which are described in the WORD/EYTE pIn description, the $\overline{\mathrm{FSX}}$ pin is held low during bit transmission isee Serial Port Timing and Internal Timing Configuration Diagrams).
IN +	26	1	Noninverting input to analog input amplifier stage
IN -	25	1	Inverting input to analog input amplifier stage
MSTR CLK	6	1	The Master Clock signal is used to derive all the key logic signals of the AIC, such as the Shift Clock, the switched-capacitor filter clocks, and the A/D and D/A timing signals. The Internal Timing Configuratıon diagram shows how these key signals are derived. The frequencies of these key signals are synchronous submultiples of the Master Clock frequency to eliminate unwanted aliasing when the sampled analog signals are transferred betveen the switched-capacitor filters and the A/D and D/A converters (see the Internal Timing Configuration)
OUT +	22	0	Noninverting output of analog output power amplifier. Can drive transformer hybrids or high-impedance loads directly in either a differential or a single ended configuration.
OUT -	21	0	Inverting output of analog output power amplifier. Functionally identical with and complementary to OUT +.
REF	8	$1 / 0$	The internal voltage reference is brought out on this pin. An external voltage reference can also be applied to this pin.
RESET	2	1	A reset function is provided to intialize the TA, TA', TB, RA, RA', RB, and control registers. This reset function initiates serial communications between the AIC and DSP. The reset function will initialize all AIC registers including the control register. After a negative-going pulse on the $\overline{\text { RESET }}$ pin, the AIC registers will be initialized to provide an $8-\mathrm{kHz}$ data conversion rate for a $5.184-\mathrm{MHz}$ master clock input signal. The conversion rate adjust registers. TA' and RA', will be reset to 1 . The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section). d9 1. 17 1. 06 1. 05 1. $\mathrm{d} 4=0, \mathrm{~d} 3$ 0. d2 1 This initialization allows normal serial-port communication to occur between AIC and DSP.
SHIFT CLK	10	0	The Shift Clock signal is obtained by dividing the Master Clock signal frequency by four. This signal is used to clock the serial data transfers of the AIC, described in the WORD/ $\overline{\operatorname{BYTE}}$ pin description below (see the Serial Port Timing and Internal Timing Configuration diagram).
VDD	7		Digital supply voltage, $5 \mathrm{~V} \pm 5 \%$
VCC +	20		Positive analog supply voltage, $5 \mathrm{~V} \pm 5 \%$
VCC-	19		Negative analog supply voltage -5 V $\pm 5 \%$

$\begin{aligned} & \quad \text { PIN } \\ & \text { NAME } \\ & \hline \end{aligned}$	NO.	1/0	DESCRIPTION
WORD/ $\overline{\text { BYTE }}$	13	1	This pin, in conjunction with a bit in the CONTROL register, is used to establish one of four serial modes These four serial modes are described below. AIC transmit and receive sections are operated asynchronously The following description apples when the AIC is configured to have asynchronous transmit and receive sections. If the approprate data bit in the Control register is a 0 (see the AIC DX Data Word Format), the transmit and receive sections will be asynchronous. L Serial port directly interfaces with the serial port of the TMS320C17 and communicates in two 8 -bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams). 1. The $\overline{F S X}$ or $\overline{F S R}$ pin is brought low. 2. One 8 -bit byte is transmitted or one 8 -bit byte is received. 3. The $\overline{E O D X}$ or $\overline{E O D R}$ pin is brought low. 4. The $\overline{\mathrm{FSX}}$ or $\overline{\mathrm{FSR}}$ pin emits a positive frame-sync pulse that is four Shift Clock cycles wide. 5 One 8-bit byte is transmitted or one 8 -bit byte is received. 6 The $\overline{E O D X}$ or $\overline{E O D R}$ pin is brought high. 7. The $\overline{F S X}$ or $\overline{\text { FSX }}$ pin is brought high H Serial port directly interfaces with the serial ports of the TMS32020, TMS320C25, and TMS320C30, and communicates in one 16 -bit word. The operation sequence is as follows isee Serial Port Timing [factation 1 Whe $\overrightarrow{F S} \bar{X}$ or $\overrightarrow{F S R}$ pan is brought fow 2 One 16-bit word is transmitted or one 16 -bit word is received 3. The $\overline{F S X}$ or $\overline{F S R}$ pin is brought high 4. The $\overline{E O D X}$ or $\overline{E O D R}$ pin emits a low-going pulse. AIC transmit and recelve sections are operated synchronous/y. If the appropnate data bit in the Control register is a 1 , the transmit and receive sections will be configured to be synchronous. In this case, the bandpass switched-capacitor filter and the A/D conversion timing will be derived from the TX Counter A, TX Counter B, and TA, TA', and TB registers, rather than the RX Counter A, RX Counter B, and RA, RA' , and RB registers. In this case, the AIC $\overline{F S X}$ and $\overline{F S R}$ timing will be identical during primary data communication; however, $\overline{\mathrm{FSR}}$ will not be asserted during secondary data communication since there is no new A/D conversion result. The synchronous operation sequences are as follows isee Serial Port Timing diagrams).

L Serial port directly interfaces with the serial port of the TMS320C17 and communicates in two 8 -bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams):

1. The $\overline{F S X}$ and $\overline{F S R}$ pins are brought low.
2. One 8-bit byte is transmitted and one 8 -bit byte is received.

3 The $\overline{E O D X}$ and $\overline{E O D R}$ pins are brought low.
4 The $\overline{F S X}$ and $\overline{F S R}$ pins emit positive frame sync pulses that are four Shift Clock cycles wide.
5. One 8 -bit byte is transmitted and one 8 -bit byte is received.
6. The $\overline{E O D X}$ and $\overline{E O D R}$ pins are brought high.
7. The $\overline{F S X}$ and $\overline{F S E}$ pins are brought high

H Serial port directly interfaces with the serial ports of the TMS32020. TMS320C25, and TMS320C30, and communicates in one 16-bit word. The operation sequence is as follows (see Serial Port Timing diagrams)

1 The $\overline{F S X}$ and $\overline{F S A}$ pins are brought low
2. One 16 -bit word is transmitted and one 16 -bit word is received.

3 The $\overline{F S X}$ and $\overline{F S R}$ pins are brought high.
4. The $\overline{E O D X}$ or $\overline{E O D R}$ pins emit low-going pulses.

Since the transmit and recelve sections of the AIC are now synchronous, the AIC serial port, with additional NOR and AND gates, will interface to two SN74299 sertal-to-parallel shift registers. Interfacing the AIC to the SN74299 shift register allows the AIC to interface to an external FIFO RAM and faciltates parallel. data bus communications between the AIC and the digital signal processor. The operation sequence is the same as the above sequence (see Serial Port Timing diagrams).

INTERNAL TIMING CONFIGURATION

NOTE: Frequency $1,20.736 \mathrm{MHz}$, is used to show how 153.6 kHz (for a commercially available modem split-band filter clock), popular speech and modem sampling signal frequencies, and an internal $288-\mathrm{kHz}$ switched-capacitor filter clock can be derived synchronously and as submultiples of the crystal oscillator frequency. Since these derived frequencies are synchronous submultiples of the crystal frequency, aliasing does not occur as the sampled analog signal passes between the analog converter and switched-capacitor filter stages. Frequency $2,41.472 \mathrm{MHz}$, is used to show that the AIC can work with high-frequency signals, which are used by highspeed digital signal processors.
${ }^{\dagger}$ Split-band filtering can alternatively be performed after the analog input function via software in the TMS 320.
${ }^{\ddagger}$ These control bits are described in the AIC DX Data Word Format section.

explanation of internal timing configuration

All of the internal timing of the AIC is derived from the high-frequency clock signal that drives the Master Clock input pin. The Shift Clock signal, which strobes the serial port data between the AIC and DSP, is derived by dividing the Master Clock input signal frequency by four.
Low-pass:

SCF Clock Frequency = (D/A or A/D Path)

Conversion Frequency $=$

Master Clock Frequency
$\overline{2 \times \text { Contents of Counter } A}$
$\frac{\text { SCF Clock Frequency (D/A or } A / D \text { Path) }}{\text { Contents of Counter } B}$

High-pass:
SCF Clock Frequency (A/D Path)

A/D Conversion Frequency
$\frac{\text { Master Clock Frequency }}{4}$

TX Counter A and TX Counter B, which are driven by the Master Clock signal, determıne the D/A conversion timing. Similarly, RX Counter A and $R X$ Counter B determine the A / D conversion timing. In order for the low-pass switched-capacitor filter in the D/A path to meet its transfer function specifications, the frequency of its clock input must be 288 kHz . If the clock frequency is not 288 kHz , the filter transfer function frequencies are frequency-scaled by the ratios of the clock frequency to 288 kHz . Thus, to obtain the specified filter response, the combination of Master Clock frequency and TX Counter A and RX Counter A values must yield a $288-\mathrm{kHz}$ switched-capacitor clock signal. This $288-\mathrm{kHz}$ clock signal can then be divided by the TX Counter B to establish the D/A conversion timing.
The transfer function of the bandpass switched-capacitor filter in the A/D path is a composite of its highpass and low-pass section transfer functions. The high-frequency roll-off of the low-pass section will meet the bandpass filter transfer function specification when the low-pass section SCF is 288 kHz . Otherwise, the high-frequency roll-off will be frequency-scaled by the ratio of the high-pass section's SCF clock to 288 kHz . The low-frequency roll-off of the high-pass section will meet the bandpass filter transfer function specification when the A/D conversion rate is 8 kHz . Otherwise, the low-frequency roll-off of the highpass section will be frequency-scaled by the ratio of the A / D conversion rate to 8 kHz .
TX Counter A and TX Counter B are reloaded every D/A conversion period, while RX Counter A and RX Counter B are reloaded every A/D conversion period. The TX Counter-B and RX Counter B are loaded with the values in the TB and RB Registers, respectively. Via software control, the TX Counter A can be loaded with either the TA Register, the TA Register less the TA'Register, or the TA Register plus the TA'Register. By selecting the TA Register less the TA' Register option, the upcoming conversion timing will occur earlier by an amount of time that equals TA' times the signal period of the Master Clock. By selecting the TA Register plus the TA' Register option, the upcoming conversion timing will occur later by an amount of time that equals TA' times the signal period of the Master Clock. Thus, the D/A conversion timing can be advanced or retarded. An identical ability to alter the A / D conversion timing is provided. In this case, however, the RX Counter A can be programmed via software control with the RA Register, the RA Register less the RA' Register, or the RA Register plus the RA' Register.

The ability to advance or retard conversion timing is particularly useful for modem applications. This feature allows controlled changes in the A / D and D / A conversion timing. This feature can be used to enhance signal-to-noise performance, to perform frequency-tracking functions, and to generate nonstandard modem frequencies.

TLC32044I, TLC32044C VOICE-BAND ANALOG INTERFACE CIRCUITS

If the transmit and receive sections are configured to be synchronous (see WORD/ $\overline{B Y T E}$ pin description), then both the low-pass and bandpass switched-capacitor filter clocks are derived from TX Counter A. Also, both the D / A and A / D conversion timing are derived from the TX Counter A and TX Counter B. When the transmit and receive sections are configured to be synchronous, the RX Counter $A, R X$ Counter $B, R A$ Register, RA' Register, and RB Registers are not used.

AIC DR or DX word bit pattern

A/D or D/A MSB,

AIC DX data word format section

d1	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4	d3	d2	d1		d0	COMMENTS
primary DX serial communication protocol																	
\leftarrow d15 (MSB) through d2 go to the D/A converter register														0		0	The TX and RX Counter A's are loaded with the TA and RA register values. The TX and RX Counter B's are loaded with TB and $R B$ register values.
\leftarrow d15 (MSB) through d2 go to the D/A converter register													\rightarrow	0			The TX and RX Counter A's are loaded with the TA +TA' and $R A+R A$ ' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE: $d 1=0, d 0=1$ will cause the next D / A and A / D conversion periods to be changed by the addition of TA' and RA' Master Clock cycles, in which TA' and RA' can be positive or negative or zero. Please refer to Table 1 AIC Responses to Improper Conditions.
\leftarrow d15 (MSB) through d2 go to the D/A converter register													\rightarrow	1		0	The TX and RX Counter A's are loaded with the TA - TA' and RA - RA' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE: $d 1=1, d 0=0$ will cause the next D/A and A/D conversion periods to be changed by the subtraction of TA' and RA' Master Clock cycles, in which TA' and RA' can be positive or negative or zero. Please refer to Table 1. AIC Responses to Improper Conditions.
\leftarrow d15 (MSB) through d2 go to the D/A converter register													\rightarrow				The TX and RX Counter A's are laaded with the TA and RA register converter register values. The TX and RX Counter B's are loaded with the TB and RB register values. After a delay of four Shift Clock cycles, a secondary transmission will immediately follow to program the AIC to operate in the desired configuration.

NOTE: Setting the two least significant bits to 1 in the normal transmission of DAC information (Primary Communications) to the AIC will inıtate Secondary Communications upon completion of the Primary Communications

Upon completion of the Primary Communication, $\overline{F S X}$ will remain high for four SHIFT CLOCK cycles and will then go low and initiate the Secondary Communication. The timing specifications for the Primary and Secondary Communications are identical. In this manner, the Secondary Communication, if initlated, is interleaved between successive Primary Communications. This interleaving prevents the Secondary Communication from interfering with the Pfımary Communications and DAC timing, thus preventing the AIC from skipping a DAC output. It is important to note that in the synchronous mode, $\overline{\mathrm{FSR}}$ will not be asserted during Secondary Communications.

secondary DX serial communication protocol

reset function

A reset function is provided to initiate serial communications between the AIC and DSP. The reset function will initialize all AIC registers, including the control register. After power has been applied to the AIC, a negative-going pulse on the $\overline{\text { PESET }}$ pin will initialize the AIC registers to provide an $8-\mathrm{kHz} \mathrm{A} / \mathrm{D}$ and D / A conversion rate for a 5.184 MHz master clock input signal. The AIC, excepting the CONTROL register, will be initialized as follows (see AIC DX Data Word Format section):

REGISTER	INITIALIZED REGISTER VALUE (HEX)
TA	9
TA	1
TB	24
RA	9
RA	1
RB	24

The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section):

$$
d 9=1, d 7=1, d 6=1, d 5=1, d 4=0, d 3=0, d 2=1
$$

This initialization allows normal serial port communications to occur between AIC and DSP. If the transmit and receive sections are configured to operate synchronously and the user wishes to program different conversion rates, only the TA, TA', and TB register need to be programmed, since both transmit and receive timing are synchronously derived from these registers isee the Pin Descriptions and AIC DX Word Format sections).

The circuit shown below will provide a reset on power-up when power is applied in the sequence given under Power-Up Sequence. The circuit depends on the power supplies' reaching their recommended values a minimum of 800 ns before the capacitor charges to 0.8 V above DGTL GND.

To ensure proper operation of the AIC, and as a safeguard against latch-up, it is recommmended that Schottky diodes with forward voltages less than or equal to 0.4 V be connected from $V_{C C}$ - to ANLG GND and from VCC - to DGTL GND (see Figure 21). In the absence of such diodes, power should be applied in the following sequence: ANLG GND and DGTL GND, VCC - , then $V_{C C}+$ and $V_{D D}$. Also, no input signal should be applied until after power-up.

AIC responses to improper conditions

The AIC has provisions for responding to improper conditions. These improper conditions and the response of the AIC to these conditions are presented in Table 1 below.

AIC register constraints

The following constraints are placed on the contents of the AIC registers:

1. TA register must be >1.
2. TA' register can be either positive, negative, or zero.
3. RA register must be >1.
4. RA' regıster can be either positive, negative, or zero.

5 (TA register \pm TA' register) must be >1.
6. (RA register $\pm R A^{\prime}$ register) must be >1.
7. TB register must be >1.

TABLE 1. AIC RESPONSES TO IMPROPER CONDITIONS

IMPROPER CONDITION	AIC RESPONSE
$\begin{aligned} & \text { TA register }+ \text { TA' register }=0 \text { or } 1 \\ & \text { TA register }- \text { TA' register }=0 \text { or } 1 \end{aligned}$	Reprogram TX Counter A with TA register value
TA register + TA' register <0	MODULO 64 arithmetic is used to ensure that a positive value is loaded into the TX Counter A i.e., TA register + TA' register + 40 HEX is loaded into TX Counter A
$\begin{aligned} & \text { RA register }+ \text { RA' }^{\prime} \text { register }=0 \text { or } 1 \\ & \text { RA register }- \text { RA' register }^{\prime}=0 \text { or } 1 \end{aligned}$	Reprogram RX Counter A with RA register value
RA register + RA' register $=0$ or 1	MODULO 64 arithmetic is used to ensure that a positive value is loaded into RX Counter A i.e., RA register + RA' register +40 HEX is loaded into RX Counter A
$\begin{aligned} & \text { TA register }-0 \text { or } 1 \\ & \text { RA register }=0 \text { or } 1 \end{aligned}$	AIC is shut down
TB register $=0$ or 1	Reprogram TB register with 24 HEX
RB register $=0$ or 1	Reprogram RB register with 24 HEX
AIC and DSP cannot communicate	Hold last DAC output

improper operation due to conversion times being too close together
If the difference between two successive D/A conversion frame syncs is less that $1 / 19.2 \mathrm{kHz}$, the AIC operates improperly. In this situation, the second D/A conversion frame sync occurs too quickly and there is not enough time for the ongoing conversion to be completed. This situation can occur if the A and B registers are improperly programmed or if the $A+A^{\prime}$ register or $A-A^{\prime}$ register result is too small. When incrementally adjusting the conversion period via the $A+A^{\prime}$ register options, the designer should be very careful not to violate this requirement (see diagram below).

asynchronous operation - more than one receive frame sync occurring between two transmit frame syncs

When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. The command to use the incremental conversion period adjust option is sent to the AIC during a $\overline{F S X}$ frame sync. The ongoing conversion period is then adjusted. However, either Receive Conversion Period A or B may be adjusted. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. Therefore, if there is sufficient time between t 1 and t 2 , the receive conversion period adjustment will be performed during Receive Conversion Period A. Otherwise, the adjustment will be performed during Receive Conversion Period B. The adjustment command only adjusts one transmit conversion period and one receive conversion period.
To adjust another pair of transmit and receive conversion periods, another command must be issued during a subsequent $\overline{\mathrm{FSX}}$ frame (see figure below).

asynchronous operation - more than one transmit frame sync occurring between two receive frame
syncs
When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. The command to use the incremental conversion period adjust options is sent to the AIC during a $\overline{\mathrm{FSX}}$ frame sync. The ongoing transmit conversion period is then adjusted. However, three possibilities exist for the receive conversion period adjustment in the diagram as shown in the figure below. If the adjustment command is issued during Transmit Conversion Period A, Receive Conversion Period A will be adjusted if there is sufficient time between $t 1$ and t 2 . Or, if there is not sufficient time between t 1 and t 2 , Receive Conversion Period B will be adjusted. Or, the receive portion of an adjustment command may be ignored if the adjustment command is sent during a receive conversion period, which is already being or will be adjusted due to a prior adjustment command. For example, if adjustment commands are issued during Transmit Conversion Periods A, B, and C , the first two commands may cause Receive Conversion Periods A and B to be adjusted, while the third receive adjustment command is ignored. The third adjustment command is ignored since it was issued during Receive Conversion Period B, which already will be adjusted via the Transmit Conversıon Period B adjustment command.

asynchronous operation - more than one set of primary and secondary DX serial communication occurring between two receive frame sync (see AIC DX Data Word Format section)

The TA, TA', TB, and control register information that is transmitted in the secondary communications is always accepted and is applied during the ongoing transmit conversion period. If there is sufficient time between $t 1$ and $\mathbf{t} 2$, the TA, RA', and RB register information, which is sent during Transmit Conversion Period A, will be applied to Receive Conversion Period A. Otherwise, this information will be applied during Receive Conversion Period B. If RA, RA', and RB register information has already been received and is being applied during an ongoing conversion period, any subsequent RA, RA', or RB information that is received during this receive conversion period will be disregarded (see diagram below).

test modes ${ }^{\dagger}$

The following paragraph provides information that allows the TLC32044 to be operated in special test modes. These test modes are used by Texas Instruments to facilitate testing of the device during manufacturing. They are not intended to be used in real applications, however, they allow the filters in the A / D and D / A paths to be used without using the A / D and D / A converters.
In normal operation, the nonusable (NU) pins are left unconnected. These NU pins are used by the factory to speed up testing of the TLC32044 Analog Interface Circuit (AIC). When the device is used in normal (non-test-mode) operation, the NU pin (pin 1) has an internal pull-down to -5 V . Externally connecting 0 V or 5 V to pin 1 puts the device in test-mode operation. Selecting one of the possible test modes is accomplished by placing a particular voltage on certain pins. A description of these modes is provided in Table 2 and Figures 1 and 2.

TABLE 2. LIST OF TEST MODES

TEST PINS	D/A PATH TEST (PIN 1 to 5 V)	A/D PATH TEST (PIN 1 to 0)
	TEST FUNCTION	TEST FUNCTION
5	The low-pass switched-capacitor filter clock is brought out to pin 5 . This clock signal is normally internal.	The bandpass switched-capacitor filter clock is brought out to pin 5 . This clock signal is normally internal.
11	No change from normal operation. The $\overline{E O D X}$ signal is brought out to pin 11.	The pulse that initiates the A/D conversion is brought out here. This signal is normally internal.
3	The pulse that initiates the D/A conversion is brought out here.	No change from normal operation. The EODR signal is brought out.
27 and 28	There are no test output signals provided on these pins.	The outputs of the A/D path low-pass or bandpass filter (depending upon control bit d2 - see AIC DX Data Word Format section) are brought out to these pins. If the high-pass section is inserted, the output will have a $(\sin x) / x$ droop. The slope of the droop will be determined by the $A D C$ sampling frequency, which is the high-pass section clock frequency (see diagram of bandpass or low pass filter test for receive section). These outputs will drive small $\{30-\mathrm{pF}$) loads.
15 and 16	D/A PATH LOW-PASS FILTER TEST; PIN 13 (WORD/ $\overline{B Y T E}$) to -5 V	
	TEST FUNCTION	
	The inputs of the D/A path low-pass filter are brought out to pins 15 and 16 . The D/A input to this filter is removed. If the $(\sin x) / \times$ correction filter is inserted, the OUT + and OUT - signals will have a flat response (see figure 2). The common-mode range of these inputs must not exceed $\pm 0.5 \mathrm{~V}$	

t In the test mode, the AIC responds to the setting of Pin 13 to -5 V , as if Pin 13 were set to 0 V . Thus, the byte mode is selected for communicating between DSP and AIC. Either of the path tests (D/A or A/D) can be performed simultaneously with the D/A low-pass filter test. In this situation, Pin 13 must be connected to -5 V , which initiates byte mode communications.

FIGURE 1. BANDPASS OR LOW-PASS FILTER TEST FOR RECEIVER SECTION

FIGURE 2. LOW-PASS FILTER TEST FOR TRANSMIT SECTION

[^18]
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC $+\{$ see Note 1$\}$.
-0.3 V to 15 V
Supply voltage, $V_{D D}$. 3 V to 15 V
Output voltage, Vo 0.3 V to 15 V

Digital ground voltage . -0.3 V to 15 V

TLC32044C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Case temperature for 10 seconds: FN package. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds: N package $260^{\circ} \mathrm{C}$

NOTE 1: Voltage values for maximum ratings are with respect to VCC - .
recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}}+$ (see Note 2)		4.75	5	5.25	V
Supply vohtage, V_{CC} - 1 see Note 21		-4.75	-5	-5.25	V
Digital supply voltage, VDD (see Note 2)		4.75	5	5.25	V
Digital ground voltage with respect to ANLG GND, DGTL GND			0		V
Reference input voltage, $V_{\text {reffext) }}$ (see Note 2)		2		4	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$		2		$V_{D D}+0.3$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 3)		-0.3		0.8	V
Load resistance at OUT + and/or OUT - , R $\mathrm{L}_{\text {L }}$		300			Ω
Load capacitance at OUT + andor OUT - , C $\mathrm{C}_{\text {L }}$				100	pF
MSTR CLK frequency (see Note 4)		0.075	5	10.368	MH ?
Analog input amplifier common mode input voltage (see Note 5)				± 1.5	V
A/D or D/A conversion rate				19.2	kH/
Conversion rate				20	kHz_{2}
Operating free-air temperature, $T_{\text {A }}$	TLC320441	-40		85	${ }^{\circ} \mathrm{C}$
	TLC32044C	0		70	${ }^{\circ}$

NOTES: 2. Voltages at analog inputs and outputs, REF, $V_{C C+}$, and $V_{C C-}$, are with respect to the ANLG GND terminal Voltages at digital inputs and outputs and $V_{D D}$ are with respect to the DGTL GND terminal.
3. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels and temperature only.
4. The bandpass switched-capacitor filter (SCF) specifications apply only when the low-pass section SCF clock is 288 kHz and the high-pass section SCF clock is 8 kHz . If the low-pass SCF clock is shifted from 288 kHz , the low-pass roli-off frequency will shift by the ratio of the low-pass SCF clock to 288 kHz . If the high-pass SCF clock is shifted from 8 kHz , the high-pass roll-off frequency will shift by the ratio of the high-pass $S C F$ clock to 8 kHz . Similarly, the low-pass switched-capacitor filter (SCF) specifications apply only when the SCF clock is 288 kHz . If the SCF clock is shifted from 288 kHz , the low-pass roll-off frequency will shift by the ratio of the SCF clock to 288 kHz
5. This range applies when $(\mathbb{N}+-\mathbb{N}-)$ or $(A \cup X I N+-A \cup X \mathbb{N}-)$ equals $\pm 6 \mathrm{~V}$.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{VCC}+=5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)
total device, MSTR CLK frequency $=5.184 \mathrm{MHz}$, outputs not loaded

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOH	High-level output voltage		$\mathrm{V}_{\mathrm{DO}}-4.75 \mathrm{~V}, 1 \mathrm{OH}-300 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{IOL}=2 \mathrm{~mA}$			0.4	V
ICC + Supply current from V C C +		TLC320441				40	mA
		TLC32044C				35	
'CC - Supply current from V CC -		TI $: 41$				-40	mA
		T1 $\cdot: 4 \mathrm{C}$				-35	
DD Supply current from V_{DD} $\mathrm{V}_{\text {ref }}$ Internal reference output voltage			${ }_{\text {f }} \mathrm{MSTR}$ CLK $=5.184 \mathrm{MHz}$			7	mA
				3		3.3	V
α Vref	Temperature coefficient of internal reference vc				250		ppm/"\%
ro	Output resistance a1 .				100		k!

receive amplifier input

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
	A / D converter offset error (filters in)			10	70	mV
CMRR	Common-mode rejection ratio at $\mathrm{IN}+, \mathrm{IN}-$, or AUX $\mathbb{N}+$, AUX IN -	See Note 6		55		dB
「	input resistance at IN : IN o: $A U X I N-, A I X I N$, REF			100		k!

transmit filter output

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\dagger}$ MAX	UNIT
VOO $\begin{aligned} & \text { Output offset voltage at OUT + or OUT - } \\ & \text { (single-ended relative to ANLG GND) }\end{aligned}$		15 80	inY
$v_{\text {OM }}$ Maximum peak output voltage swing across R_{L} at OUT + or OUT - (single-ended)	$\begin{gathered} \mathrm{R}_{\mathrm{L}} \geq 300 \Omega, \\ \text { Offset voltage }=0 \end{gathered}$	± 3	V
$\begin{array}{ll}\text { VOM } & \begin{array}{l}\text { Maximum peak output voltage swing between } \\ \text { OUT + and OUT - (differential output) }\end{array}\end{array}$	$R_{L} \geq 600 \Omega$	± 6	\checkmark

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
NOTE 6: The test condition is a $0-\mathrm{dBm} .1-\mathrm{kHz}$ input signal with an $8-\mathrm{kHz}$ conversion rate.

TLC32044I, TLC32044C

VOICE-BAND ANALOG INTERFACE CIRCUITS

electrical characteristics over recommended operating free-air temperature range. $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)
system distortion specifications, SCF clock frequency $=\mathbf{2 8 8} \mathbf{~ k H z}$

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNITdB
Attenuation of second harmonic of A/D input signal	single-ended	$V_{\text {in }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$, See Note 7	70			
	differential		62	70		
Attenuation of third and higher harmonics of A / D input signal	single-ended	$V_{\text {In }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7		65		dB
	differential		57	65		
Attenuation of second harmonic of D/A input signal	single-ended	$V_{\text {In }}=-0 d B$ to $-24 d B$ referred to $V_{\text {ref. }}$ See Note 7		70		dB
	differential		62	70		
Attenuation of third and higher harmonics of D/A input signal	single-ended	$V_{\text {In }}=-0 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref. }}$. See Note 7		65		B
	differential		57	65		

A/D channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (see Note 7)	$A_{V}=1^{\ddagger}$		$A_{V}=2^{\ddagger}$		$A_{V}=4^{\ddagger}$		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
A/D channel signal-to-distortion ratio	$V_{\text {in }}=-6 \mathrm{~dB}$ to -0.1 dB	58		$>58^{5}$		$>58{ }^{\text {¢ }}$		dB
	$V_{\text {in }}=-12 \mathrm{~dB}$ to -6 dB	58		58		$>58{ }^{\text {§ }}$		
	$V_{\text {in }}=-18 \mathrm{~dB}$ to -12 dB	56		58		58		
	$V_{\text {in }}=-24 \mathrm{~dB}$ to -18 dB	50		56		58		
	$V_{\text {in }}=-30 \mathrm{~dB}$ to -24 dB	44		50		56		
	$V_{\text {in }}=-36 \mathrm{~dB}$ to -30 dB	38		44		50		
	$V_{\text {in }}=-42 \mathrm{~dB}$ to -36 dB	32		38		44		
	$V_{\text {In }}=.48 \mathrm{~dB}$ to 42 dB	26		32		38		
	$V_{\text {in }}=-54 \mathrm{~dB}$ to -48 dB	20		26		32		

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
$\ddagger A_{V}$ is the programmable gain of the input amplifier.
${ }^{\S}$ A value >60 is over range and signal clipping occurs.

D/A channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (see Note 7)			MIN	MAX	UNIT
D/A channel signal-to distortion ratio	$V_{\text {in }}$	6 dB to	0.1 dB	58		dB
	$V_{\text {in }}$	12 dB to	-6 dB	58		
	$V_{\text {in }}$	18 dB to	$-12 \mathrm{~dB}$	56		
	$V_{\text {in }}$	24 dB to	$-18 \mathrm{d8}$	50		
	$V_{\text {In }}$	30 dB to	-24 dB	44		
	$V_{\text {In }}$	36 dB to	30 dB	38		
	$V_{\text {in }}$	42 dB to	36 dB	32		
	$V_{\text {m }}$	18 dB to	42 dB	26		
	$V_{\text {In }}$	54 dB	8 dB	20		

NOTE 7: The test condition is a $1 \cdot \mathrm{kHz}$ input signal with an $8 \cdot \mathrm{kHz}$ conversion rate 10 dB relative to $\mathrm{V}_{\text {ref }}$). The load impedance for the DAC is 600 !
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, VCC - $=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted) (Continued)
gain and dynamic range

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$ MAX	UNIT
Absolute transmit gain tracking error while transmitting into 600Ω	-48 dB to 0 dB signal range, See Note 8		$\pm 0.05 \pm 0.15$	dB
Absolute receive gain tracking error	-48 dB to 0 dB signal range, See Note 8		$\pm 0.05 \pm 0.15$	dB

power supply rejection and crosstalk attenuation

PARAMETER		TEST CONDITIONS	MIN TVP ${ }^{\text {t }}$	MAX	UNIT
$\mathrm{V}_{\mathrm{CC}}+$ or V_{CC} - supply voltage rejection ratio, receive channel	$\mathrm{f}=0$ to 30 kHz	Idle channel, supply signal at 200 mV p-p measured at DR (ADC output)	30		dB
	$\mathbf{f}=30 \mathrm{kHz}$ to 50 kHz		45		
$\mathrm{V}_{\mathrm{CC}}+$ or V_{CC} - supply voltage rejection ratio, transmit channel (single-ended)	$f=0$ to 30 kHz	Idie channel, supply signal at 200 mV p-p measured at OUT +	30		dB
	$f=30 \mathrm{kHz}$ to 50 kHz		45		
Crosstalk attenuation, transmit-to-receive (single-ended)			80		dB

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 8: Gain tracking is relative to the absolute gain at 1 kHz and $0 \mathrm{~dB}\left(0 \mathrm{~dB}\right.$ relative to $\left.\mathrm{V}_{\text {ref }}\right)$.

delay distortion

bandpass filter transfer function, SCF $f_{\text {clock }}=288 \mathrm{kHz}$, input ($\mathrm{IN}+-\mathrm{IN}-$) is a $\pm 3-\mathrm{V}$ sinewave ${ }^{\dagger}$ (see Note 9)

PARAMETER	TEST CONDITION	FREQUENCY RANGE	ADJUSTMENT ADDEND ${ }^{\ddagger}$	MIN	TYP§	MAX	UNIT
Filter gain	Input signal reference is 0 dB	$\mathrm{f} \leq 50 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{d8}$	-33	-29	-25	dB
		$\mathrm{f}=100 \mathrm{~Hz}$	$k 1 \times 026 \mathrm{~dB}$	-4	-2	-1	
		$f=150 \mathrm{~Hz}$ to 3100 Hz	$\mathrm{k} 1 \times 0 \mathrm{~dB}$	-025	0	0.25	
		$\mathrm{f}=3100 \mathrm{~Hz}$ to 3300 Hz	$\mathrm{K1} \times 0 \mathrm{~dB}$	-0.3	0	0.3	
		$f=3300 \mathrm{~Hz}$ to 3650 Hz	$\mathrm{K} 1 \times 0 \mathrm{d8}$	-0.5	0	0.5	
		$f=3800 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.3 \mathrm{~dB}$	-5	-3	-1	
		f-4000 Hz	$\mathrm{K1} \times 2.7 \mathrm{UB}$	-20	-17	-16	
		$\mathrm{f} \geq 4400 \mathrm{~Hz}$	$\mathrm{K1} \times 3.2 \mathrm{~dB}$			-40	
		$\mathrm{f} \geq 5000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$			-65	

low-pass filter transfer function, SCF f clock $=288 \mathbf{k H z}$ (see Note 9)

PARAMETER	TEST CONDITION	frequency RANGE	ADJUSTMENT ADDEND ${ }^{\ddagger}$	MIN	TYP ${ }^{5}$	MAX	UNIT
Filter gain	Input signal reference is 0 dB	$f=0 \mathrm{~Hz}$ to 3100 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-	0	0.25	dB
		$f=3100 \mathrm{~Hz}$ to 3300 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-v.0	0	0.3	
		$\mathrm{f}=3300 \mathrm{~Hz}$ to 3650 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.5	0	0.5	
		$\mathrm{f}=3800 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.3 \mathrm{~dB}$	-5	-3	-1	
		$f=4000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.7 \mathrm{~dB}$	-20	-17	-16	
		$\mathrm{f} \geq 4400 \mathrm{~Hz}$	K1 $\times 3.2 \mathrm{~dB}$			-40	
		$f \geq 5000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$			-65	

serial port

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\text {® }}$	MAX	UNIT
VOH	High-level output voltage	$1 \mathrm{OH} \quad 300 \mu \mathrm{~A}$	24			V
V_{OL}	Low-level output voltage	$\mathrm{IOL}=2 \mathrm{~mA}$			0.4	V
1	Input current				± 10	$\mu \mathrm{A}$
C_{i}	Input capacitance			15		pF
C_{0}	Output capacitance			15		pF

\dagger See filter curves in typical characteristics.
\ddagger The MIN, TYP, and MAX specifications are given for a $288 \cdot \mathrm{kHz}$ SCF clock frequency. A slight error in the $288-\mathrm{kHz}$ SCF may result from inaccuracies in the MSTR CLK frequency, resulting from crystal frequency tolerances. If this frequency error is less than 0.25%, the ADJUSTMENT ADDEND should be added to the MIN, TYP, and MAX specifications, where K1 $=100$. (/SCF frequency $-288 \mathrm{kHz} / /$
288 kHz . For errors greater than 0.25%, see Note 10 .
\S All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 9. The filter gain outside of the passband is measured with respect to the gain at 1 kHz . The filter gain within the passband is measured with respect to the average gain within the passband The passbands are 150 to 3600 Hz and 0 to 3600 Hz for the bandpass and low-pass filters respectively.
10. For switched-capacitor filter clocks at frequencies other than 288 kHz , the filter response is shifted by the ratio of switchedcapacitor filter clock frequency to 288 kHz .
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
noise (measurement includes low-pass and bandpass switched-capacitor filters)

PARAMETER		TEST CONDITIONS	TYP ${ }^{\dagger}$	MAX	UNIT
Transmıt noise	with $(\sin x) / \mathrm{x}$	$\mathrm{D} \times$ input $=00000000000000$, constant input code		550	$\mu \vee \mathrm{mms}$
	without $(\sin x) / \mathrm{x}$		325	425	$\mu \mathrm{V}$ rms
			18		dBrnco
Receive noise (see Note 11)		Inputs grounded, gain $=1$	300	500	$\mu \mathrm{V}$ rms
		18		dBraco	

timing requirements
serial port recommended input signals

PARAMETER		MIN	MAX	UNIT
${ }^{\text {t }}$ (MCLK)	Master clock cycle tume	95		ns
tr(MCLK)	Master clock rise time		10	ns
t f (MCLK)	Master clock fall time		10	ns
	Master clock duty cycle	25\%	75\%	
	$\overline{\text { RESET }}$ pulse duration (see Note 12)	800		ns
${ }^{\text {sug }}$ (DX$)$	DX setup time befnra sc, LK \downarrow	20		ns
$\underline{t}(D X)$	DX hold time after $\quad \downarrow$	${ }^{\text {c }}$ (SCLK)/4		ns

${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTES: 11. The noise is computed by statistically evaluating the digital output of the A / D converter.
12. $\bar{R} E S E T$ pulse duration is the amount of time that the reset pin is held below 0.8 V after the power supplies have reached their recommended values.

TLC32044I, TLC32044C

VOICE-BAND ANALOG INTERFACE CIRCUITS
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (continued)
serial port - AIC output signals

	PARAMETER	: 11	MAX	UNIT
${ }_{\text {c }}$ (SCLK)	Shift clock (SCLK) cycle time			ns
$\mathrm{I}_{\text {f(SCLK }}$)	Shift clock (SCLK) fall time		50	ns
$\mathrm{t}_{\text {r (SCLK) }}$	Shift clock (SCLK) rise time		50	ns
	Shift clock (SCLK) dutv rurlo	45	55	\%
$\mathrm{t}_{\mathrm{d}}(\mathrm{CH}-\mathrm{FL})$	Delay from SCLK ${ }^{\text {to }}$ -		90	ns
${ }_{\text {d }}(\mathrm{CH}-\mathrm{FH})$	Delay from SCLK \dagger to FSR/FSXi		90	ns
${ }^{\text {d }}$ (CH.DR)	DR valid after SCLK \dagger		90	ns
$\mathrm{t}_{\mathrm{dw}}(\mathrm{CH}-\mathrm{EL})$	Delay from SCLK \uparrow to \widetilde{E}. $\overline{\mathrm{R}!\text { in word mode }}$		90	ns
${ }^{\text {d }} \mathrm{dw}(\mathrm{CH}-\mathrm{EH})$	from SCLK \uparrow to EUUXItUUF\uparrow in word mode		90	ns
$t_{\text {f(EODX }}$	- fall time		15	ns
$\mathrm{tf}_{\text {(EODR }}$	$\bar{E}_{1} \quad$ all time		15	ns
${ }^{\mathrm{t}} \mathrm{db}(\mathrm{CH}-\mathrm{EL})$	Delay irom SCLK to $\overline{\mathrm{EO}}$. in byte mode		100	ns
${ }^{\mathrm{t}} \mathrm{db}(\mathrm{CH}-\mathrm{EH})$	Delay from SCLKt to $\overline{\mathrm{EO}}$. in byte mode		100	ns

TABLE 2. GAIN CONTROL TABLE
(ANALOG INPUT SIGNAL REQUIRED FOR FULL-SCALE A/D CONVERSION)

INPUT CONFIGURATIONS	CONTROL REGISTER BITS		ANALOG INPUT ${ }^{\dagger}$	A/D CONVERSION RESULT
	d6	d7		
$\begin{aligned} & \text { Differential configuration } \\ & \begin{aligned} \text { Analog input } & =\mathbb{N}+-\mathbb{N}- \\ & =A U X \mathbb{N}+-A \cup X \mathbb{N} \end{aligned} \end{aligned}$	1	1	$\pm 6 \mathrm{~V}$	full-scale
	0	0		
	1	0	$\pm 3 \mathrm{~V}$	futl-scale
	0	1	$\pm 1.5 \mathrm{~V}$	full-scale
Single-ended configuration$\text { Analog input }=\mathbb{I}+- \text { ANLG GND }$$A \cup X \mathbb{N}, \quad A N L G G N D$	1	1	$\pm 3 \mathrm{~V}$	half-scale
	0	0		
	1)	$\pm 3 \mathrm{~V}$	fuil scale
	0	1	15 V	full-scale

t In this example, $\forall_{\text {ref }}$ is assumed to be 3 V in order to minimize distortion, it is recommended that the analog input not exceod 01 dB below full scale

FIGURE 3. IN + AND IN - GAIN
CONTROL CIRCUITRY

FIGURE 4. AUX IN + AND AUX IN GAIN CONTROL CIRCUITRY

$(\sin \mathbf{x}) / \mathrm{x}$ correction section

If the designer does not wish to use the on-board second-order $(\sin x) / x$ correction filter, correction can be accomplished in digital signal processor (DSP) software. (Sin x)/x correction can be accomplished easily and efficiently in digital signal processor (DSP) software. Excellent correction accuracy can be achieved to a band edge of 3000 Hz by using a first-order digital correction filter. The results, which are shown below, are typical of the numerical correction accuracy that can be achieved for sample rates of interest. The filter requires only seven instruction cycles per sample on the TMS320 DSPs. With a 200 -ns instruction cycle, nine instructions per sample represents an overhead factor of 1.4% and 1.7% for sampling rates of 8000 Hz and 9600 Hz , respectively. This correction will add a slight amount of group delay at the upper edge of the $300-3000-\mathrm{Hz}$ band.

$(\sin x) / x$ roll-off for a zero-order hold function

The $(\sin x) / x$ roll-off for the AIC DAC zero-order hold function at a band-edge frequency of 3000 Hz for the various sampling rates is shown in the table below.

TABLE 3. $(\sin x) / x$ ROLL-OFF

$\mathrm{f}_{\mathrm{S}}(\mathrm{Hz})$	$\begin{aligned} & 20 \log \frac{\sin \pi f / f_{\mathrm{S}}}{\bar{\pi} / / \mathrm{f}_{\mathrm{s}}} \\ & \mathbf{I f =} \begin{array}{l} \mathbf{3 0 0 0} \mathrm{Hz} \mid \\ (\mathrm{dB} \mid \end{array} \end{aligned}$
7200	264
8000	211
9600	14.4
1.4400	063
19200	-0.35

Note that the actual AIC $(\sin x) / x$ roll-off will be slightly less than the above figures, because the AIC has less than a 100% duty cycle hold interval.

correction filter

To compensate for the $(\sin x) / \mathrm{x}$ roll-off of the AIC, a first-order correction filter shown below, is recommended.

The difference equation for this correction filter is:
$y_{1}+1=p 2(1-p 1)\left(u_{i}+1\right)+p 1 y_{1}$
where the constant p1 determines the pole locations.
The resulting squared magnitude transfer function is:

$$
|H(f)|^{2}=\frac{p 2^{2}(1 p 1)^{2}}{1-2 p 1 \cos \left(2 \pi f / f_{s}\right)+p 1^{2}}
$$

correction results

Table 4 below shows the optimum p values and the corresponding correction results for $8000-\mathrm{Hz}$ and $9600-\mathrm{Hz}$ sampling rates.

TABLE 4

$f(\mathrm{~Hz})$	ERROR (dB) $\begin{aligned} & f_{s}=8000 \mathrm{~Hz} \\ & \mathrm{p}^{2}=-0.14813 \\ & \mathrm{p} 2=09888 \end{aligned}$	ERROR (dB) $\begin{aligned} & \mathbf{f}_{\mathbf{s}}=\mathbf{9 6 0 0} \mathrm{Hz} \\ & \mathrm{p} 1=-0.1307 \\ & \mathrm{p} 2=0.9951 \end{aligned}$
300	0099	0043
600	0089	0043
900	0054	0
1200	0002	0
1500	0041	0
1800	0079	0043
2100	() 100	0043
2.400	0091	0043
2700	0043	0
3000	0102	0043

TMS320 software requirements
The digital correction filter equation can be written in state variable form as follows:

$$
Y-k 1 Y-k 2 U
$$

where $k 1$ equals $p 1$ (from the preceding page), $k 2$ equals ($1-p 1$) p2 (from the preceding page), Y is the filter state, and U is the next I/O sample. The coefficients $k 1$ and $k 2$ must be represented as 16 -bit integers. The SACH instruction (with the proper shift) will yield the correct result. With the assumption that the TMS320 processor page pointer and memory configuration are properly initialized, the equation can be executed in seven instructions or seven cycles with the following program:

```
ZAC
LT K2
MPY U
LTA K1
MPY Y
APAC
SACH (dma), (shift)
```


FIGURE 5. SERIAL PORT TIMING

TLC32044I, TLC32044C

VOICE-BAND ANALOG INTERFACE CIRCUITS

FIGURE 6. TMS32010/TMS320C15-TLC32044 INTERFACE CIRCUIT
in instruction timing

out instruction timing

FIGURE 7. TMS32010/TMS320C15-TLC32044 INTERFACE TIMING

TYPICAL CHARACTERISTICS

AIC TRANSMIT AND RECEIVE LOW-PASS FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$
FIGURE 8

AIC RECEIVE-CHANNEL BANDPASS FILTER

FIGURE 10

AIC TRANSMIT AND RECEIVE LOW-PASS FILTER

FIGURE 9
AIC RECEIVE-CHANNEL HIGH-PASS FILTER
 Normalized Frequency $-\mathrm{kHz} \times \frac{\mathrm{A} / \mathrm{D} \text { Conversion Rate }}{8 \mathrm{k} \text { samples } / \mathrm{s}}$

FIGURE 11
Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$

TYPICAL CHARACTERISTICS

FIGURE 12
(SIN X) X CORREC TION FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequenc: }}{288 \mathrm{kHz}}$
FIGURE 14

AIC (SIN X)/X CORRECTION FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$
FIGURE 13
A. D SIGNAL TO-GISTORTION RATIO

INPUT SIGNAL

Figure 15

TYPICAL CHARACTERISTICS

A/D GAIN TRACKING
(GAIN RELATIVE TO GAIN AT O dB INPUT SIGNAL)

FIGURE 16

D/A CONVERTER SIGNAL-TO-DISTORTION RATIO
vs
INPUT SIGNAL LEVEL

FIGURE 17

TYPICAL CHARACTERISTICS

D/A GAIN TRACKING
IGAIN RELATIVE TO GAIN
AT O dB INPUT SIGNAI. L.EVEL!

2

słəәบS ełeg

FIGURE 18

AID SECOND HARMONIC DISTORTION
vs
INPUT SIGNAL

FIGUfe 19

D/A SECOND HARMONIC DISTORTION Vs
INHU: SIGNAL

figufie 20

TYPICAL CHARACTERISTICS
A/D THIRD HARMONIC DISTORTION
vs
INPUT SIGNAL

FIGURE 21
D. A THIRD HARMONIC DISTORTION
vs
INPUT SIGNAL

FIGURE 22

TYPICAL APPLICATION INFORMATION

$\mathrm{C}=02 \mu \mathrm{~F}$, CERAMIC
FIGURE 23. AIC INTERFACE TO THE TMS32020/C25 SHOWING DECOUPLING CAPACITORS AND SCHOTTKY DIODE ${ }^{\dagger}$

FIGURE 24. EXTERNAL REFERENCE CIRCUIT FOR TLC32044
t Thamson Semiconductors

- Advanced LinCMOS ${ }^{\text {M }}$ Silicon-Gate Process Technology
- 14-Bit Dynamic Range ADC and DAC
- 16-Bit Dynamic Range Input with Programmable Gain
- Variable ADC and DAC Sampling Rate Up to 19,200 Samples per Second
- Switched-Capacitor Antialiasing Input Filter and Output-Reconstruction Filter
- Serial Port for Direct Interface to TMS320C17, TMS32020, TMS320C25, and TMS320C30 Digital Processors
- Synchronous or Asynchronous ADC and DAC Conversion Rates with Programmable Incremental ADC and DAC Conversion Timing Adjustments
- Serial Port Interface to SN74299 Serial-toParallel Shift Register for Parallel Interface to TMS32010, TMS320C15, or Other Digital Processors
- Internal Reference for Normal Operation and External Purposes, or Can Be Overridden by External Reference

description

The TLC32045 is a complete analog-to-digital and digital-to-analog input/output system on a single monolithic CMOS chip. This device integrates a bandpass switched-capacitor antialiasing input filter, a 14-bit-resolution A/D converter, four microprocessor-compatible serial port modes, a 14 -bit-resolution D/A converter, and a low-pass switched-capacitor outputreconstruction filter. The device offers numerous combinations of Master Clock input frequencies and conversion/sampling rates, which can be changed via digital processor control.

NU - Nonusable; no external connection should be made to these pins. See Table 2.

Typical applications for this IC include speech encryption for digital transmission, speech recognition/storage systems, speech synthesis, modems (7.2-, $8-, 9.6-14.4-$, and $19.2-\mathrm{kHz}$ sampling rate), analog interface for digital signal processors (DSPs), industrial process control, biomedical instrumentation, acoustical signal processing, spectral analysis, data acquisition, and instrumentation recorders. Four serial modes, which allow direct interface to the TMS320C17, TMS32020, TMS320C25, and TMS320C30 digital signal

description (continued)

processors, are provided. Also, when the transmit and receive sections of the Analog Interface Circuit (AIC) are operating synchronously, it will interface to two SN74299 serial-to-parallel shift registers. These serial-to-parallel shift registers can then interface in parallel to the TMS32010, TMS320C15, other digital signal processors, or external FIFO circuitry. Output data pulses are emitted to inform the processor that data transmission is complete or to allow the DSP to differentiate between two transmitted bytes. A flexible control scheme is provided so that the functions of the IC can be selected and adjusted coincidentally with signal processing via software control.

The antialiasing input filter comprises eighth-order and fourth-order CC-type (Chebyshev/elliptic transitional) low-pass and high-pass filters, respectively. The input filter is implemented in switched-capacitor technology and is preceded by a continuous time filter to eliminate any possibility of aliasing caused by sampled data filtering. When only low-pass filtering is desired, the high-pass filter can be switched out of the signal path. A selectable, auxiliary, differential analog input is provided for applications where more than one analog input is required.

The A / D and D / A converters each have 14 bits of resolution with 9 bits of integral linearity specified over any 9 -bit range. The A / D and D / A architectures ensure no missing codes and monotonic operation. An internal voltage reference is provided to ease the design task and to provide complete control over the performance of the IC. The internal voltage reference is brought out to a pin and is available to the designer. Separate analog and digital voltage supplies and grounds are provided to minimize noise and ensure a wide dynamic range. Also, the analog circuit path contains only differential circuitry to keep noise to an absolute minimum. The only exception is the DAC sample-and-hold, which utilizes pseudo-differential circuitry.

The output-reconstruction filter is an eighth-order CC-type (Chebyshev/elliptic transitional low-pass filter) followed by a second-order $(\sin x) / x$ correction filter) and is implemented in switched-capacitor technology. This filter is followed by a continuous-time filter to eliminate images of the digitally encoded signal. The on-board $(\sin x) / x$ correction filter can be switched out of the signal path using digital signal processor control, if desired.

The TLC32045I is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and the TLC32045C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
functional block diagram

PRINCIPLES OF OPERATION

analog input

Two sets of analog inputs are provided. Normally, the $\operatorname{IN}+$ and $\mathbb{I N}$ - input set is used; however, the auxiliary input set, $A U X I N+$ and $A \cup X I N-$, can be used if a second input is required. Each input set can be operated in either differential or single-ended modes, since sufficient common-mode range and rejection are provided. The gain for the $I N+, I N-, A U X I N+$, and $A U X I N-i n p u t s$ can be programmed to be either 1, 2, or 4 (see Table 2). Either input circuit can be selected via software control. It is important to note that a wide dynamic range is assured by the differential internal analog architecture and by the separate analog and digital voltage supplies and grounds.

A/D bandpass filter, A/D bandpass filter clocking, and A/D conversion timing

The A/D high-pass filter can be selected or bypassed via software control. The frequency response of this filter is presented in the following pages. This response results when the switched-capacitor filter clock frequency is 288 kHz and the A/D sample rate is 8 kHz . Several possible options can be used to attain a $288-\mathrm{kHz}$ switched-capacitor filter clock. When the fitter clock frequency is not 288 kHz , the low-pass filter transfer function is frequency-scaled by the ratio of the actual clock frequency to 288 kHz . The ripple bandwidth and 3 -dB low-frequency roll-off points of the high-pass section are 150 and 100 Hz , respectively. However, the high-pass section low-frequency roll-off is frequency-scaled by the ratio of the A/D sample rate to 8 kHz .
The Internal Timing Configuration and AIC DX Data Word Format sections of this data sheet indicate the many options for attaining a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock. These sections indicate that the RX Counter A can be programmed to give a $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock for several Master Clock input frequencies.

PRINCIPLES OF OPERATION (continued)

The A/D conversion rate is then attained by frequency-dividing the $288-\mathrm{kHz}$ bandpass switched-capacitor filter clock with the RX Counter B. Thus, unwanted aliasing is prevented because the A/D conversion rate is an integral submultiple of the bandpass switched-capacitor filter sampling rate, and the two rates are synchronously locked.

A/D converter performance specifications

Fundamental performance specifications for the A/D converter circuitry are presented in the A/D converter operating characteristics section of this data sheet. The realization of the A/D converter circuitry with switched-capacitor techniques provides an inherent sample-and-hold.
analog output
The analog output circuitry is an analog output power amplifier. Both noninverting and inverting amplifier outputs are brought out of the IC. This amplifier can drive transformer hybrids or low-impedance loads directly in either a differential or single-ended configuration.

D/A low-pass filter, D/A low-pass filter clocking, and D/A conversion timing

The frequency response of this filter is presented in the following pages. This response results when the low-pass switched-capacitor filter clock frequency is 288 kHz . Like the A/D filter, the transfer function of this filter is frequency-scaled when the clock frequency is not 288 kHz . A continuous-time filter is provided on the output of the $(\sin x) / x$ filter to eliminate the periodic sample data signal information, which occurs at multiples of the $288-\mathrm{kHz}$ switched-capacitor filter clock. The continuous time filter also greatly attenuates any switched-capacitor clock feedthrough.

The D/A conversion rate is attained by frequency-dividing the $288-\mathrm{kHz}$ switched-capacitor filter clock with TX Counter B. Thus, unwanted aliasing is prevented because the D/A conversion rate is an integral submultiple of the switched-capacitor low-pass filter sampling rate, and the two rates are synchronously locked.

asynchronous versus synchronous operation

If the transmit section of the AIC (low-pass filter and DAC) and receive section (bandpass filter and ADC) are operated asynchronously, the low-pass and bandpass filter clocks are independently generated from the Master Clock signal. Also, the D/A and A/D conversion rates are independently determined. If the transmit and receive sections are operated synchronously, the low-pass filter clock drives both low-pass and bandpass filters. In synchronous operation, the A/D conversion timing is derived from, and is equal to, the D/A conversion timing. (See description of the WORD/磪TE pin in the Pin Functional Description Section.)

D/A converter performance specifications

Fundamental performance specifications for the D/A converter circuitry are presented in the D/A converter operating characteristics section of the data sheet. The D/A converter has a sample-and-hold that is realized with a switched-capacitor ladder.

system frequency response correction

($\operatorname{Sin} x$)/x correction for the D/A converter's zero-order sample-and-hold output can be provided by an onboard second-order $\langle\sin x\rangle / \times$ correction filter. This $(\sin x) / \times$ correction filter can be inserted into or deleted from the signal path by digital signal processor control. When inserted, the $(\sin x) / x$ correction filter follows the switched-capacitor low-pass filter. When the TB register (see Internal Timing Configuration section) equals 36 , the correction results of Figures 11 and 12 will be obtained.

PRINCIPLES OF OPERATION (continued)

($\operatorname{Sin} x$)/ x correction can also be accomplished by deleting the on-board second-order correction filter and performing the $(\sin x) / x$ correction in digital signal processor software. The system frequency response can be corrected via DSP software to $\pm 0.1 \mathrm{~dB}$ accuracy to a band-edge of 3000 Hz for all sampling rates. This correction is accomplished with a first-order digital correction filter, which requires only seven TMS320 instruction cycles. With a 200 -ns instruction cycle, seven instructions represent an overhead factor of only 1.1% and 1.3% for sampling rates of 8 and 9.6 kHz , respectively (see the ($\sin x$) $/ x$ Correction Section for more details).

serial port

The serial port has four possible modes that are described in detail in the Functional Pin Description Section. These modes are briefly described below and in the Functional Description for Pin 13, WORD/BYTE.

1. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS320C17.
2. The transmit and receive sections are operated asynchronously, and the serial port interfaces directly with the TMS32020, TMS320C25, and the TMS320C30.
3. The transmit and receive sections are operated synchronously, and the serial port interfaces directly with the TMS320C17.
4. The transmit and receive sections are operated synchronously, and the serial port interfaces directly with the TMS32020, TMS320C25, TMS320C30, or two SN74299 serial-to-paraliel shift registers, which can then interface in parallel to the TMS32010, TMS320C15, to any other digital signal processor, or to external FIFO circuitry.

operation of TLC32045 with internal voltage reference

The internal reference of the TLC32045 eliminates the need for an external voltage reference and provides overall circuit cost reduction. Thus, the internal reference eases the design task and provides complete control over the performance of the IC. The internal reference is brought out to a pin and is available to the designer. To keep the amount of noise on the reference signal to a minimum, an external capacitor may be connected between REF and ANLG GND.

operation of TLC32045 with external voltage reference

The REF pin may be driven from an external reference circuit if so desired. This external circuit must be capable of supplying $250 \mu \mathrm{~A}$ and must be adequately protected from noise such as crosstalk from the analog input
reset
A reset function is provided to initiate serial communications between the AIC and DSP and to allow fast, cost-effective testing during manufacturing. The reset fun - will initialize all AIC registers, including the control register. After a negative-going pulse on the $\quad \overline{\mathrm{T}}$ pin, the AIC will be initialized. This initialization allows normal serial port communications activity to occur between AIC and DSP (see AIC DX Data Word Format section).

PRINCIPLES OF OPERATION (Continued)

loopback

This feature allows the user to test the circuit remotely. In loopback, the OUT + and OUT - pins are internally connected to the $\mathbb{I N}+$ and $I N$ - pins. Thus, the DAC bits ($d 15$ to $\mathbf{d} 2$), which are transmitted to the DX pin, can be compared with the ADC bits ($d 15$ to $d 2$), which are received from the DR pin. An ideal comparison would be that the bits on the DR pin equal the bits on the DX pin. However, in practice there will be some difference in these bits due to the ADC and DAC output offsets.

The loopback feature is implemented with digital signal processor control by transmitting the appropriate serial port bit to the control register (see AIC Data Word Format section).

NAME	NO.	1/0	DESCRIPTION
ANLG GND	17,18		Analog ground return for all internal analog circuits. Not internally connected to DGTL GND.
AUX IN +	24	1	Noninverting auxiliary analog input stage. This input can be switched into the bandpass filter and A/D converter path via software control. If the appropriate bit in the Control register is a 1, the auxiliary inputs will replace the $\mathbb{N}+$ and \mathbb{N} - imputs. If the bit is a 0 , the $\mathbb{I N}+$ and \mathbb{N} - inputs will be used (see the AIC DX Data Word Format section).
AUX IN -	23	1	Inverting auxiliary analog input (see the above AUX IN + pin description).
DGTL GND	9		Digital ground for all internal logic circuits. Not internally connected to '. . GND.
DR	5	0	This pin is used to transmit the ADC output bits from the AIC to the TM . serial port. This transmission of bits from the AIC to the TMS320 serial port is synchronized with the SHIFT CLK s.
DX	12	1	This pin is used to receive the DAC input bits and timing and control information from the $\quad \because \quad 20$. This serial transmission from the TMS320 serial port to the AIC is synchronized with the SHIFT CLK signal.
$\overline{\text { EODR }}$	3	0	(See the WORL pin description and the Serial Port Timing Diagram.) During the word-mode tıming, this signal is a low-going pulse that occurs immediately after the 16 bits of A / D information have been transmitted from the AIC to the TMS320 serial port. This signal can be used to interrupt a microprocessor upon completion of serial communications. Also, this signal can be used to strobe and enable external serial-to-parallel shift registers, latches, or external FIFO RAM, and to facilitate parallel data bus communications between the AIC and the serial-to-parallel shift registers. During the byte-mode timing, this signal goes low after the first byte has been transmitted from the AIC to the TMS320 serial port and is kept low until the second byte has been transmitted. The TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which is second.

$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	No.	110	dESCRIPTION
EODX	11	0	(See the WORD/BYTE pin description and the Serial Port Timing Diagram.) During the word-mode timing, this signal is a low-going pulse that occurs immediately after the 16 bits of D/A converter and control or register information have been transmitted from the TMS320 serial port to the AIC. This signal can be used to interrupt a microprocessor upon the completion of serial communications. Also, this signal can be used to strobe and enable external serial-to-parallel shift registers, latches, or an external FIFO RAM, and to facilitate paraliel data-bus communications between the AIC and the serial-to-parallel shift registers. During the bytemode timing, this signal goes low after the first byte has been transmitted from the TMS320 serial port to the AIC and is kept low untll the second byte has been transmitted. The TMS320C17 can use this low-going signal to differentiate between the two bytes as to which is first and which is second.
$\overline{\text { FSF }}$	4	0	In the serial transmission modes, which are described in the WORD/ $\overline{\text { BYTE }}$ pin description, the $\overline{\text { FSR }}$ pin is held low during bit transmission. When the $\overline{\mathrm{FSR}}$ pin goes low, the TMS320 serial port will begin receiving bits from the AIC via the DR pin of the AIC. The most significant DR bit will be present on the DR pin before $\overline{\text { FSR }}$ goes low. (See Serial Port Timing and Internal Timing Configuration Diagrams.)
$\overline{\text { FSX }}$	14	0	When this pin goes low, the TMS320 serial port will begin transmitting bits to the AIC via the DX pin of the AIC. In all serial transmission modes, which are described in the WORD/BYTE pin description, the $\overline{\text { SXX }}$ pin is held low during bit transmission isee Serial Port Timing and Internal Timing Configuration Diagrams).
IN+	26	1	Noninverting input to aralog input amplifier stage
IN-	25	1	inverting input to analog input amplifier stage
MSTR CLK	6		The Master Clock signal is used to derive all the key logic signals of the AIC. such as the Shift Clock, the switched-capacitor filter clocks, and the A / D and D / A timing signals. The Internal Timing Configuration diagram shows how these key signals are derived. The frequencies of these key signals are synchronous submultiples of the Master Clock frequency to eliminate unwanted aliasing when the sampled analog signais are transferred between the switched-capacitor filters and the A/D and D/A converters (see the Internal Timing Configuration).
OUT +	22	0	Noninverting output of analog output power amplifier. Can drive transformer hybrids or high-impedance loads directly in either a differential or a single-ended configuration.
OUT-	21	0	Inverting output of analog output power amplifier. Functionally identical with and complementary to OUT + .
REF	8	1/0	The internal voltage reference is brought out on this pin. An external voltage reference can also be applied to this pin.
$\overline{\text { RESET }}$	2	1	A reset function is provided to initialize the TA, TA': TB, RA, RA'. RB, and control registers. This reset function inntiates serial communications between the AIC and DSP. The reset function will initialize all AIC registers including the control register. After a negative-going pulse on the $\overline{R E S E T}$ pin, the AIC registers will be initialized to provide an $8-\mathrm{kHz}$ data conversion rate for a $5.184-\mathrm{MHz}$ master clock input signal. The conversion rate adjust registers, TA' and RA', will be reset to 1 . The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section). $d 9=1, d 7=1, d 6=1, d 5=1, d 4=0, d 3=0, d 2=1$ This initialization allows normal serial-port communication to occur between AIC and DSP.
SHIFT CLK	10	0	The Shift Clock signal is obtained by dividing the Master Clack signal frequency by four. This signal is used to clock the serial data transters of the AIC, described in the WORD/BYTE pin description below (see the Serial Port Timing and Internal Timing Configuration diagram).
VOD.	7		Digital supply voltage, $5 \mathrm{~V} \pm 5 \%$
$\mathrm{V}_{\mathrm{CC}+}$	20		Positive analog supply voltage, $5 \mathrm{~V} \pm 5 \%$
V_{CC} -	19		Negative analog supply voltage - $5 \mathrm{~V} \pm 5 \%$

L Serial port directly interfaces with the serial port of the TMS320C17 and communicates in two 8-bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams).

1. The $\overline{F S X}$ or $\overline{F S R}$ pin is brought low.
2. One 8-bit byte is transmitted or one 8-bit byte is received.
3. The $\overline{E D D X}$ or $\overline{E D D R}$ pin is brought low.
4. The $\overline{\mathrm{FSX}}$ or $\overline{\mathrm{FS}}$ pin emits a positive frame-sync pulse that is
four Shift Clock cycles wide.
5. One 8 -bit byte is transmitted or one 8 -bit byte is received.
6. The EODX or $\overline{E O D R}$ pin is brought high.
7. The $\overline{\mathrm{FSX}}$ or $\overline{\mathrm{FS}} \overline{\mathrm{A}}$ pin is brought high.

H Serial port directly interfaces with the serial ports of the TMS32020, TMS320C25, and TMS320C30, and communicates in one 16 -bit word. The operation sequence is as follows (see Serial Port Timing diagrams):

1. The $\overline{\mathrm{FSX}}$ or $\overline{\mathrm{FSR}}$ pin is brought low.
2. One 16-bit word is transmitted or one 16 -bit word is received.
3. The $\overline{\mathrm{FSX}}$ or $\overline{\mathrm{FSR}}$ pin is brought high.
4. The $\overline{E \overline{O D X}}$ or $\overline{\mathrm{EODR}}$ pin emits a low-going pulse.

A/C transmit and receive sections are operated synchronously.
If the appropriate data bit in the Control register is a 1 , the transmit and receive sections will be configuted to be synchronous. In this case, the bandpass switched-capacitor filter and the A/D conversion timing will be derived from the TX Counter A. TX Counter B, and TA, TA', and TB registers, rather than the RX Counter $A, R X$ Counter B, and RA, RA', and RB registers. In this case, the AIC $\overline{F S} \bar{X}$ and $\overline{F S R}$ timing will be identical during primary data communication; however, $\overline{F S R}$ will not be asserted during secondary data communication since there is no new A/D conversion result. The synchronous operation sequences are as follows (see Serial Port Timing diagrams).

L Serial port directly interfaces with the serial port of the TMS320C17 and communicates in two 8 -bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams):

1. The $\overline{F S X}$ and $\overline{F \overline{S R}}$ pins are brought low.
2. One 8 -bit byte is transmitted and one 8 -bit byte is received.
3. The $\overline{E O D X}$ and $\overline{E O D R}$ pins are brought low.
4. The $\overline{F S X}$ and $\overline{F S R}$ pins emit positive frame-sync pulses that are four Shift Clock cycles wide.
5. One 8-bit byte is transmitted and one 8-bit byte is received.
6. The EODX and $\overline{\text { EODR }}$ pins are brought high.
7. The $\overline{F S X}$ and $\overline{F S R}$ pins are brought high.

H Serial port directly interfaces with the serial ports of the TMS32020, TMS320C25, and TMS320C30, and communicates in one 16 -bit word. The operation sequence is as follows (see Serial Port Timing diagrams):

1. The $\overline{F S X}$ and $\overline{F S A}$ pins ere brought low.
2. One 16 -bit word is transmitted and one 16 -bit word is received.
3. The $\overline{F S X}$ and $\overline{F S R}$ pins are brought high.
4. The $\overline{E O D X}$ or $\overline{E O D D}$ pins emit low-going pulses.

Since the transmit and receive sections of the AIC are now synchronous, the AlC serial port, with additional NOR and AND gates, will interface to two SN74299 serial-to-parallel shift registers. Interfacing the AlC to the SN74299 shift register allows the AIC to interface to an external FIFO RAM and facilitates parallel, data bus communications between the AIC and the digital signal processor. The operation sequence is the same as the above sequence (see Serial Port Timing diagrems).

INTERNAL TIMING CONFIGURATION

NOTE: Frequency $1,20.736 \mathrm{MHz}$, is used to show how 153.6 kHz (for a commercially available modem split-band filter clock), popular speech and modem sampling signal frequencies, and an internal $288-\mathrm{kHz}$ switched-capacitor filter clock can be derived synchronously and as submultuples of the crystal oscillator frequency. Since these derived frequencies are synchronous submultiples of the crystal frequency, aliasing does not occur as the sampled analog signal passes between the analog converter and switched-capacitor filter stages. Frequency $2,41.472 \mathrm{MHz}$, is used to show that the AIC can work with high-frequency signals, which are used by highspeed digital signal processors.
${ }^{\dagger}$ Split-band filtering can alternatively be performed after the analog input function via software in the TMS320.
\ddagger These control bits are described in the AIC DX Data Word Format section.

explanation of internal timing configuration

All of the internal timing of the AIC is derived from the high-frequency clock signal that drives the Master Clock input pin. The Shift Clock signal, which strobes the serial port data between the AIC and DSP, is derived by dividing the Master Clock input signal frequency by four.
Low-pass:
SCF Clock Frequency (D/A or A/D Path)

Master Clock Frequency
$2 \times$ Contents of Counter A
SCF Clock Frequency (D/A or A/D Path) Contents of Counter B

High-pass:
SCF Clock Frequency (A/D Path)

A/D Conversion Frequency

$\frac{\text { Master Clock Frequency }}{4}$

TX Counter A and TX Counter B, which are driven by the Master Clock signal, determine the D/A conversion timing. Similarly, RX Counter A and RX Counter B determine the A/D conversion timing. In order for the low-pass switched-capacitor filter in the D/A path to meet its transfer function specifications, the frequency of its clock input must be 288 kHz . If the clock frequency is not 288 kHz , the filter transfer function frequencies are frequency-scaled by the ratios of the clock frequency to 288 kHz . Thus, to obtain the specified filter response, the combination of Master Clock frequency and TX Counter A and RX Counter A values must yield a $288-\mathrm{kHz}$ switched-capacitor clock signal. This $288-\mathrm{kHz}$ clock signal can then be divided by the TX Counter B to establish the D/A conversion timing.

The transfer function of the bandpass switched-capacitor filter in the A/D path is a composite of its highpass and low-pass section transfer functions. The high-frequency roll-off of the low-pass section will meet the bandpass filter transfer function specification when the low-pass section SCF is 288 kHz . Otherwise, the high-frequency roll-off will be frequency-scaled by the ratio of the high-pass section's SCF clock to 288 kHz . The low-frequency roll-off of the high-pass section will meet the bandpass filter transfer function specification when the A/D conversion rate is 8 kHz . Otherwise, the low-frequency roll-off of the highpass section will be frequency-scaled by the ratio of the A / D conversion rate to 8 kHz .
TX Counter A and TX Counter B are reloaded every D/A conversion period, while RX Counter A and $R X$ Counter B are reloaded every A/D conversion period. The TX Counter B and RX Counter B are loaded with the values in the TB and RB Registers, respectively. Via software control, the TX Counter A can be loaded with either the TA Register, the TA Register less the TA' Register, or the TA Register plus the TA'Register. By selecting the TA Register less the TA' Register option, the upcoming conversion timing will occur earlier by an amount of time that equals TA' times the signal period of the Master Clock. By selecting the TA Register plus the TA' Register option, the upcoming conversion timing will occur later by an amount of time that equals TA' times the signal period of the Master Clock. Thus, the D/A conversion timing can be advanced or retarded. An identical ability to alter the A / D conversion timing is provided. In this case, however, the RX Counter A can be programmed via software control with the RA Register, the RA Register less the RA' Register, or the RA Register plus the RA' Register.

The ability to advance or retard conversion timing is particularly useful for modem applications. This feature allows controlled changes in the A / D and D/A conversion timing. This feature can be used to enhance signal-to-noise performance, to perform frequency-tracking functions, and to generate nonstandard modem frequencies.

If the transmit and receive sections are configured to be synchronous (see WORD/ $\overline{\mathrm{BYTE}}$ pin descriptionl, then both the low-pass and bandpass switched-capacitor filter clocks are derived from TX Counter A. Also, both the D / A and A / D conversion timing are derived from the TX Counter A and TX Counter B. When the transmit and receive sections are configured to be synchronous, the RX Counter $A, R X$ Counter $B, R A$ Register, RA' Register, and RB Registers are not used.

AIC DR or DX word bit pattern

AID or D/A MSB,
1st bit sent

| D15 | D14 | D13 | Dit sent of 2 nd byte | A/D or D/A LSB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

AIC DX data word format section

d1	d14	d13	d12	d11	d10	d9	d8	d7	d6	d5	d4	d3	d2	d1	do	COMMENTS
primary DX serial communication protocol																
$\leftarrow d 15$ (MSB) through d2 go to the D/A converter register													\rightarrow	0		The TX and RX Counter A's are loaded with the TA and RA register values. The TX and $R X$ Counter B 's are loaded with $T B$ and RB register values.
\leftarrow d15 (MSB) through d2 go to the D/A converter register													\rightarrow	0		The TX and $R \times$ Counter A^{\prime} s are loaded with the TA $+T A^{\prime}$ and RA + RA' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE: $d 1=0, d 0=1$ will cause the next D / A and A / D conversion periods to be changed by the addition of TA' and RA' Master Clock cycles, in which TA' and RA' can be positive or negative or zero. Please refer to Table 1. AIC Responses to Improper Conditions.
\leftarrow d15 (MSB) through d2 go to the D/A converter register														1		The TX and RX Counter A's are loaded with the TA - TA' and RA - RA' register values. The TX and RX Counter B's are loaded with the TB and RB register values. NOTE: $d 1=1, d 0=0$ will cause the next D / A and A / D conversion periods to be changed by the subtraction of TA' and RA' Master Clock cycles, in which TA' and RA' can be positive or negative or zero Please refer to Table 1. AIC Responses to Improper Conditions.
\leftarrow d15 (MSB) through d2 go to the D/A converter register														1		The TX and RX Counter A's are loaded with the TA and RA register converter register values. The TX and RX Counter B's are loaded with the TB and RB register values. After a delay of four Shift Clock cycles, a secondary transmission will immediately follow to program the AIC to operate in the desired configuration.

NOTE: Setting the two least significant bits to 1 in the normal transmission of DAC information (Primary Communications) to the AlC will initiate Secondary Communıcations upon completion of the Primary Communications.
Upon completion of the Primary Communication, $\overline{\mathrm{FSX}}$ will remain high for four SHIFT CLOCK cycles and will then go low and initiate the Secondary Communicatıon. The timing specifications for the Prımary and Secondary Communications are rdentical. In this manner, the Secondary Communication, if initiated, is interleaved between successive Primary Communicatıons. This interleaving prevents the Secondary Communication from interfering with the Primary Communications and DAC timing, thus preventing the AIC from skipping a DAC output, It is important to note that in the synchronous mode, $\overline{\mathrm{FSR}}$ will not be asserted during Secondary Communications

secondary DX serial communication protocol

reset function

A reset function is provided to initiate serial communications between the AIC and DSP. The reset function will initialize all AIC registers, ding the control register. After power has been applied to the AIC, a negative-going pulse on the $\overline{\mathrm{F}}$; , "pin will initialize the AlC registers to provide an $8 \cdot \mathrm{kHz} \mathrm{A} / \mathrm{D}$ and D / A conversion rate for a 5.184 MHz master clock input signal. The AIC, excepting the CONTROL register, will be initialized as follows (see AIC DX Data Word Format section):

REGISTER	INITIALIZED REGISTER VALUE (HEX)
	$\frac{9}{\text { TA }}$
TA	1
TB	24
RA	9
RA	1
RB	24

The CONTROL register bits will be reset as follows (see AIC DX Data Word Format section):

$$
d 9=1, d 7=1, d 6=1, d 5=1, d 4=0, d 3=0, d 2=1
$$

This initialization allows normal serial port communications to occur between AIC and DSP. If the transmit and receive sections are configured to operate synchronously and the user wishes to program different conversion rates, only the TA, TA', and TB register need to be programmed, since both transmit and receive timing are synchronously derived from these registers (see the Pin Descriptions and AIC DX Word Format sections).

The circuit shown below will provide a reset on power-up when power is applied in the sequence given under Power-Up Sequence. The circuit depends on the power supplies' reaching their recommended values a minimum of 800 ns before the capacitor charges to 0.8 V above DGTL GND.

power-up sequence
To ensure proper operation of the AIC, and as a safeguard against latch-up, it is recommmended that Schottky diodes with forward voltages less than or equal to 0.4 V be connected from $V_{C C}$ - to ANLG GND and from $V_{C C}$ - to DGTL GND (see Figure 21). In the absence of such diodes, power should be applied in the following sequence: ANLG GND and DGTL GND, $V_{C C}-$, then $V_{C C}+$ and $V_{D D}$. Also, no input signal should be applied until after power-up.

AIC responses to improper conditions

The AIC has provisions for responding to improper conditions. These improper conditions and the response of the AIC to these conditions are presented in Table 1 below.

AIC register constraints

The following constraints are placed on the contents of the AIC registers:

1. TA register must be >1.
2. TA' register can be either positive, negative, or zero.
3. RA register must be >1.
4. RA' register can be either positive, negative, or zero.
5. (TA register \pm TA' register) must be >1.
6. (RA register \pm RA' register) must be >1.
7. TB register must be >1.

TABLE 1. AIC RESPONSES TO IMPROPER CONDITIONS

IMPROPER CONDITION	AIC RESPONSE
$\begin{aligned} & \text { TA register }+\mathrm{TA}^{\prime} \text { register }=0 \text { or } 1 \\ & \text { TA register }-\mathrm{TA}^{\prime} \text { register }=0 \text { or } 1 \end{aligned}$	Reprogram TX Counter A with TA register value
TA register + TA' register <0	MODULO 64 arithmetic is used to ensure that a positive value is loaded into the TX Counter A, i.e., TA register + TA' register +40 HEX is loaded into TX Counter A
$\begin{aligned} & \text { RA register }+ \text { RA' register }=0 \text { or } 1 \\ & \text { RA register }- \text { RA' }^{\prime} \text { register }=0 \text { or } 1 \end{aligned}$	Reprogram RX Counter A with RA register value
RA register + RA' register $=0$ or 1	MODULO 64 arithmetic is used to ensure that a positive value is loaded into RX Counter A, I.e. RA register + RA' register +40 HEX is loaded into RX Counter A
$\begin{aligned} & \text { TA register }=0 \text { or } 1 \\ & \text { RA register }=0 \text { or } 1 \end{aligned}$	$\mathrm{A} \mid \mathrm{C}$ is shut down
TB register $=0$ or 1	Reprogram TB register with 24 HEX
RB register $=0$ or 1	Reprogram RB register with 24 HEX
AIC and DSP cannot communicate	Hold last DAC output

improper operation due to conversion times being too close together

If the difference between two successive D/A conversion frame syncs is less that $1 / 19.2 \mathrm{kHz}$, the AIC operates improperly. In this situation, the second D/A conversion frame sync occurs too quickly and there is not enough time for the ongoing conversion to be completed. This situation can occur if the \mathbf{A} and \mathbf{B} registers are improperly programmed or if the $A+A^{\prime}$ register or $A-A^{\prime}$ register result is too small. When incrementally adjusting the conversion period via the $A+A^{\prime}$ register options, the designer should be very careful not to violate this requirement (see diagram below).

asynchronous operation - more than one receive frame sync occurring between two transmit frame syncs

When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. The command to use the incremental conversion period adjust option is sent to the AIC during a $\overline{F S X}$ frame sync. The ongoing conversion period is then adjusted. However, either Receive Conversion Period A or B may be adjusted. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. Therefore, if there is sufficient time between t 1 and t 2 , the receive conversion period adjustment will be performed during Receive Conversion Period A. Otherwise, the adjustment will be performed during Receive Conversion Period B. The adjustment command only adjusts one transmit conversion period and one receive conversion period. To adjust another pair of transmit and receive conversion periods, another command must be issued during a subsequent $\overline{F S X}$ frame (see figure below).

asynchronous operation - more than one transmit frame sync occurring between two receive frame syncs

When incrementally adjusting the conversion period via the $A+A^{\prime}$ or $A-A^{\prime}$ register options, a specific protocol is followed. For both transmit and receive conversion periods, the incremental conversion period adjustment is performed near the end of the conversion period. The command to use the incremental conversion period adjust options is sent to the AIC during a $\overline{\mathrm{FSX}}$ frame sync. The ongoing transmit conversion period is then adjusted. However, three possibilities exist for the receive conversion period adjustment in the diagram as shown in the figure below. If the adjustment command is issued during Transmit Conversion Period A, Receive Conversion Period A will be adjusted if there is sufficient time between t1 and t 2 . Or, if there is not sufficient time between t 1 and t 2 , Receive Conversion Period B will be adjusted. Or, the receive portion of an adjustment command may be ignored if the adjustment command is sent during a receive conversion period, which is already being or will be adjusted due to a prior adjustment command. For example, if adjustment commands are issued during Transmit Conversion Periods A, B, and C , the first two commands may cause Receive Conversion Periods A and B to be adjusted, while the third receive adjustment command is ignored. The third adjustment command is ignored since it was issued during Receive Conversion Period B, which already will be adjusted via the Transmit Conversion Period B adjustment command.

asynchronous operation - more than one set of primary and secondary DX serial communication occurring between two receive frame sync (see AIC DX Data Word Format section)

The TA, TA', TB, and control register information that is transmitted in the secondary communications is always accepted and is applied during the ongoing transmit conversion period. If there is sufficient time between t 1 and t 2 , the TA, RA', and RB register information, which is sent during Transmit Conversion Period A, will be applied to Receive Conversion Period A. Otherwise, this information will be applied during Receive Conversion Period B. If RA, RA', and RB register information has already been received and is being applied during an ongoing conversion period, any subsequent RA, RA', or RB information that is received during this receive conversion period will be disregarded (see diagram below).

TLC32045I, TLC32045C

VOICE-BAND ANALOG INTERFACE CIRCUITS

test modes ${ }^{\dagger}$

The following paragraph provides information that allows the TLC32045 to be operated in special test modes. These test modes are used by Texas Instruments to facilitate testing of the device during manufacturing. They are not intended to be used in real applications, however, they allow the filters in the A / D and D / A paths to be used without using the A / D and D / A converters.

In normal operation, the nonusable (NU) pins are left unconnected. These NU pins are used by the factory to speed up testing of the TLC32045 Analog Interface Circuit (AIC). When the device is used in normal (non-test mode) operation, the $N U$ pin (pin 1) has an internal pull-down to -5 V . Externally connecting 0 V or 5 V to pin 1 puts the device in test-mode operation. Selecting one of the possible test or NU modes is accomplished by placing a particular voltage on certain pins. A description of these modes is provided in Table 2 and Figures 1 and 2.

TABLE 2. LIST OF TEST MODES

TEST PINS	D/A PATH TEST (PIN $1+05 \mathrm{~V}$)	A/D Palli TFST 'PIN 1 to 01
		1. . 4 " " IION
5	The low-pass switcheu-wapacitu , me clock is brought out to pin 5. This clock signal is normally internal.	The bandpass switched-capowiou filter clock is brought out to pin 5. This clock signal is normally internal.
11	No change from normal operation. The $\overline{\mathrm{EOOX}}$ signal is brought out to pin 11.	The pulse that initiates the A/D conversion is brought out here. This signal is normatly internal.
3	The pulse that initiates the D / A conversion is brought out here.	No change from normal operation. The EODR signal is brought out.
27 and 28	There are no test output signals provided on these pins.	The outputs of the A/D path low-pass or bandpass filter (depending upon control bit d2 -- see AIC DX Data Word Format section) are brought out to these pins. If the high-pass section is inserted, the output will have a ($\sin x$)/x droop. The slope of the droop will be determined by the $A D C$ sampling frequency, which is the high-pass section clock frequency (see diagram of bandpass or low-pass filter test for receive section). These outputs will drive small ($30-\mathrm{pF}$) loads.
15 and 16	D/A PATH LOW-PASS FILTER TEST; PIN 13 (WORD/BYTE) to -5 V	
	TEST FUNCTION	
	The inputs of the D / A path low-pass filter are brought out to pins 15 and 16 . The D/A input to this filter is removed. If the $(\sin x) / x$ correction filter is inserted, the OUT + and OUT - signals will have a flat response isee Figure 27 . The common-mode range of these inputs must not exceed $\pm 0.5 \mathrm{~V}$.	

\dagger In the test mode, the $A \mid C$ responds to the setting of Pin 13 to - 5 V , as if Pin 13 were set to 0 V . Thus, the byte mode is selected for communicating between DSP and AIC. Either of the path tests (D/A or A/D) can be performed simultaneously with the D/A low-pass filter test. In this situation, Pin 13 must be connected to -5 V , which initiates byte-mode communications.

FIGURE 1. BANDPASS OR LOW-PASS FILTER TEST FOR RECEIVER SECTION

FIGURE 2. LOW-PASS FILTER TEST FOR TRANSMIT SECTION
${ }^{\dagger}$ All analog signal paths have differential architecture and hence have positive and negative components.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values for maximum ratings are with respect to VCC - .

recommended operating conditions

PARAMETER		MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC}+}($ see Note 2)		4.75	5	5.25	V
Supply voitage, $\mathrm{V}_{\text {CC }}$ - (see Note 2)		-4.75	-5	-5.25	V
Digital supply voltage, VDD (see Note 2)		4.75	5	5.25	V
Digital ground voltage with respect to ANLG GND, DGTL GND			0		V
Reference input valtage, $\mathrm{V}_{\text {reffext }}$ (see Note 2)		2		4	V
High-level input voltage, V_{IH}		2		$\mathrm{V}_{\mathrm{DO}}+0.3$	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$ (see Note 3)		-0.3		0.8	V
Load resistance at OUT + and/or OUT - , R R_{L}		300			Ω
Load capacitance at OUT + and/or OUT -, C C_{L}				100	pF
MSTR CLK frequency (see Note 4)		0.075	5	10.368	MH2
Analog input amplifier common mode input voltage (see Note 5)				± 1.5	V
A/D or D/A conversion rate				19.2	kHz
Conversion rate		1		20	kHz
Operating free-air temperature, T_{A}	TLC \cdot : 51	-40		85	${ }^{\circ} \mathrm{C}$
	TLC 5 5	0		70	

[^19]electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $V_{C C}-=-5 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$ (unless otherwise noted)
total device, MSTR CLK frequency $=5.184 \mathrm{MHz}$, outputs not loaded

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$\mathrm{V}_{\text {OH }}$ High-level output voltage	High-level output voltage		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{IOH}=-300 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage		$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, 1 \mathrm{OL}=2 \mathrm{~mA}$			0.4	V
${ }^{1} \mathrm{CC}+$ Supply current from $\mathrm{V}_{\mathrm{CC}}+$		TI $\cdot 51$				45	mA
		TI $\cdot 5.5$				40	
ICC - Supply current from VCC -		TLC320451				-45	mA
		TLC32045C				-40	
IDD Supply current from $V_{\text {DD }}$	Supply current from VDD		${ }^{\text {f }}$ MSTR CLK $=5.184 \mathrm{MHz}$			7	mA
$V_{\text {ref }}$	Internal reference output voltage			2.9		3.4	\checkmark
α Vref	Temperature coefficient of internal reference voltage				250		ppm $/{ }^{\circ} \mathrm{C}$
ro	Output resistance at REF				100		$\mathrm{k} \Omega$

receive amplifier input

	PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
	A/D converter offset error (filters in)			10	75	mV
CMRR	Common-mode rejection ratio at $\operatorname{IN}+, \operatorname{IN}-$ or $\mathrm{AUX} \operatorname{IN}+$, $\mathrm{AUX} \operatorname{IN}-$	See Note 6		55		dB
r	Input resistance at $\mathbb{N}+$, IN or $A \cup X I N+, A \cup X I N-$, REF			100		k Ω

transmit filter output

PARAMETER	TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOO $\begin{aligned} & \text { Output offset voltage at OUT + or OUT - } \\ & \text { (single-ended relative to ANLG GND) }\end{aligned}$			15	80	mV
Maximum peak output voltage swing across VOM g_{1} at OUT + or OUT - (single-ended) $R_{\text {L }}$ at OUT + or OUT - (single-ended)	$\begin{gathered} R_{L} \geq 300 \Omega, \\ \text { Offset voltage }=0 \end{gathered}$	± 3			V
Maximum peak output voltage swing between VOM OUT + and OUT - (differential output)	$R_{L} \geq 600 \Omega$	± 6			V

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE 6: The test condition is a $0-\mathrm{dBm}, 1-\mathrm{kHz}$ input signal with an $8-\mathrm{kHz}$ conversion rate.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+5=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)
system distortion specifications, SCF clock frequency $=288 \mathrm{kHz}$

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{+}$	MAX	UNIT
Attenuation of second harmonic of A/D input signal	single-ended	$V_{\text {in }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7	70			dB
	differential		55	70		
Attenuation of third and higher harmonics of A / D input signal	single-ended	$V_{\text {in }}=-0.1 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7		65		dB
	differential		55	65		
Attenuation of second harmonic of D/A input signal	single-ended	$V_{\text {In }}=-0 d B$ to $-24 d B$ referred to $V_{\text {ref. }}$. See Note 7		70		$d B$
	differential		55	70		
Attenuation of third and higher harmonics of D/A input signal	single-ended	$V_{\text {in }}=-0 \mathrm{~dB}$ to -24 dB referred to $V_{\text {ref }}$. See Note 7		65		d8
	differential		55	65		

A/D channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (see Note 7)	$A_{V}=1^{\ddagger}$		$A_{V}=2^{\ddagger}$		$A_{V}=4^{\ddagger}$		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
A/D channel signal-to-distortion ratio	$V_{\text {in }}=-6 \mathrm{~dB}$ to -0.1 dB	55		>55 \%		>55		dB
	$V_{\text {in }}=-12 \mathrm{~dB}$ to -6 dB	55		55		$>55^{5}$		
	$V_{\text {in }}=-18 \mathrm{~dB}$ to -12 dB	53		55		55		
	$V_{\text {in }}=-24 \mathrm{~dB}$ to -18 dB	47		53		55		
	$V_{\text {in }}=-30 \mathrm{~dB}$ to -24 dB	41		47		53		
	$V_{\text {in }}=-36 \mathrm{~dB}$ to -30 dB	35		41		47		
	$V_{\text {in }}=-42 \mathrm{~dB}$ to -36 dB	29		35		41		
	$V_{\text {in }}=-48 \mathrm{~dB}$ to -42 dB	23		29		35		
	$V_{\text {in }}=-54 \mathrm{~dB}$ to -48 dB	17		23		29		

D/A channel signal-to-distortion ratio

PARAMETER	TEST CONDITIONS (see Note 7)	MIN	UNIT
D/A channel signal-to-distortion ratio	$V_{\text {In }}=-6 \mathrm{~dB}$ to -0.1 dB	55	dB
	$V_{\text {In }}=-12 \mathrm{~dB}$ to -6 dB	55	
	$V_{\text {in }}=-18 \mathrm{~dB}$ to -12 dB	53	
	$V_{\text {In }}=-24 \mathrm{~dB}$ to -18 dB	47	
	$V_{\text {in }}=-30 \mathrm{~dB}$ to -24 dB	41	
	$V_{\text {in }}=-36 \mathrm{~dB}$ to -30 dB	35	
	$V_{\text {in }}=-42 \mathrm{~dB}$ to -36 dB	29	
	$V_{\text {in }}=-48 \mathrm{~dB}$ to -42 dB	23	
	$V_{i n}=-54 \mathrm{~dB}$ to -48 dB	17	

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
$\ddagger A_{V}$ is the programmable gain of the input amplifier
\S A value >55 is over range and signal clipping occurs
NOTE 7: The test condition is a $1 \cdot \mathrm{kHz}$ input signal with an $8 \cdot \mathrm{kHz}$ conversion rate 10 dB relative to $\mathrm{V}_{\text {r }}$ ef). The load impedance for the DAC is 600Ω.
electrical characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)
gain and dynamic range

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text {d }}$ MAX	UNIT
Absolute transmit gain tracking error while transmitting into 600Ω	-42 dB to 0 dB signal range, See Note 8	$\pm 0.05 \pm 0.15$	dB
Absolute receive gain tracking error	-42 dB to 0 dB signal range. See Note 8	$\pm 0.05 \pm 0.15$	dB

power supply rejection and crosstalk attenuation

PARAMETER		TEST CONDITIONS	MIN TYP ${ }^{\text { }}$	MAX	UNIT
$V_{C C}+$ or $V_{C C}$ - supply voltage rejection ratio, receive channel	$f=0$ to 30 kHz	Idle channel, supply signal at 200 mV p-p measured at DR (ADC output)	30		dB
	$f=30 \mathrm{kHz}$ to 50 kHz		45		
$V_{C C}+$ or $V_{C C}$ - supply voltage rejection ratio, transmit channel (single-ended)	$f=0$ to 30 kHz	Idle channel, supply signal at 200 mV p-p measured at OUT +	30		dB
	$f=30 \mathrm{kHz}$ to 50 kHz		45		
Crosstalk attenuation, transmit-to-receive (single-ended)			75		dB

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTE: 8. Gain tracking is relative to the absolute gain at 1 kHz and 0 dB (0 dB relative to $V_{\text {ref }}$).
delay distortion
bandpass filter transfer function, SCF fclock $=288 \mathrm{kHz} \operatorname{IN}+-\mathrm{IN}-$ is a $\pm 3 \mathrm{~V}$ sinewave ${ }^{\dagger}$
(see Note 9)

PARAMETER	TEST CONDITION	FREQUENCY RANGE	ADJUSTMENT ADDEND ${ }^{\ddagger}$	MIN	TYP§	MAX	UNIT
Gain relative to gain at 1 kHz (except passband ripple specification)	Input signal reference is 0 dB (see Note 9)	$\mathrm{f} \leq 50 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-33	-29	-25	dB
		$\mathbf{f}=100 \mathrm{~Hz}$	K1 $\times-0.26 d B$	-4	-2	-1	
		$\mathrm{f}=150 \mathrm{~Hz}$ to 3100 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.25	0	0.25	
		$\mathbf{f}=3100 \mathrm{~Hz}$ to 3300 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.3	0	0.3	
		$f=3300 \mathrm{~Hz}$ to 3650 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.5	0	0.5	
		$t=3800 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.3 \mathrm{~dB}$	-5	-3	-1	
		$f=4000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.7 \mathrm{~dB}$	-20	-17	-16	
		$\mathrm{f} \geq 4400 \mathrm{~Hz}$	$\mathrm{K} 1 \times 3.2 \mathrm{~dB}$			-40	
		$\mathrm{f} \geq 5000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$			-65	

low-pass filter transfer function (see curves), SCF fclock $=\mathbf{2 8 8} \mathbf{~ k H z}$ (see Note 9)

PARAMETER	TEST CONDITION	FREQUENCY RANGE	ADJUSTMENT ADDEND ${ }^{\ddagger}$	MIN	TYP§	MAX	UNIT
Gain relative to gain at 1 kHz (except passband ripple specification)	input signal reference is 0 dB (see Note 9)	$\mathrm{f}=0 \mathrm{~Hz}$ to 3100 Hz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.25	0	0.25	dB
		$f=: \quad t z$ to $\cdots \quad \underline{d z}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.3	0	0.3	
		$f=: \cdot$ fz to \cdot dz	$\mathrm{K} 1 \times 0 \mathrm{~dB}$	-0.5	0	0.5	
		$f=3800 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.3 \mathrm{~dB}$	-5	-3	-1	
		$f=4000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 2.7 \mathrm{~dB}$	-20	-17	-16	
		$\mathrm{f} \geq 4400 \mathrm{~Hz}$	$\mathrm{K} 1 \times 3.2 \mathrm{~dB}$			-40	
		$f \geq 5000 \mathrm{~Hz}$	$\mathrm{K} 1 \times 0 \mathrm{~dB}$			-65	

serial port

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{\text {¢ }}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{l}_{\mathrm{OH}}=-300 \mu \mathrm{~A}$	2.4			V
V_{OL}	Low-level output voltage	$\mathrm{IOL}=2 \mathrm{~mA}$			0.4	V
1	Input current				± 10	$\mu \mathrm{A}$
C_{i}	Input capacitance			15		pF
C_{0}	Output capacitance			15		pF

${ }^{\dagger}$ See filter curves in typical characteristics.
\ddagger The MIN, TYP, and MAX specifications are given for a $288-\mathrm{kHz}$ SCF clock frequency. A slight error in the $288-\mathrm{kHz}$ SCF may result from inaccuracies in the MSTR CLK frequency, resulting from crystal frequency tolerances. If this frequency error is less than 0.25%, the ADJUSTMENT ADDEND should be added to the MIN, TYP, and MAX specifications, where K1 $=100$. $\|$ (SCF frequency $-288 \mathrm{kHz} \mid /$ 288 kHz]. For errors greater than 0.25%, see Note 10.
§All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 9. The filter gain outside of the passband is measured with respect to the gain at 1 kHz . The filter gain within the passband is measured with respect to the average gain within the passband. The passbands are 150 to 3600 Hz and 0 to 3600 Hz for the bandpass and low pass filters respectively.
10. For switched-capacitor filter clocks at frequencies other than 288 kHz , the filter response is shifted by the ratio of switchedcapacitor filter clock frequency to 288 kHz .
operating characteristics over recommended operating free-air temperature range, $\mathrm{VCC}_{+}=5 \mathrm{~V}$, $V_{C C-}=-5 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$
noise (measurement includes low-pass and bandpass switched-capacitor filters)

PARAMETER		TEST CONDITIONS	TYP ${ }^{\dagger}$ MAX	UNIT
Transmut noise	with $[\sin \times 1 / x$ correction	DX input $=00000000000000$, constant input code	600	$\mu \mathrm{V}$ rms
			450	$\mu \mathrm{V}$ rms
	without ($\sin x$)/x correction		24	dBraco
Recerve noise (see Note 11)		Inputs grounded, gain $=1$	530	$\mu \mathrm{V} \mathrm{rms}$
		24	dBrac0	

timing requirements

serial port recommended input signals

PARAMETER		MIN	MAX	UNIT
t_{C} (MCLK)	Master clock cycle time	95		ns
$t_{\text {r }}$ (MCLK)	Master clock rise time		10	ns
$\mathrm{t}_{\text {f }}$ MCLK)	Master clock fall time		10	ns
	Master clock duty cycle	25\%	75\%	
	RESET pulse duration (see Note 12)	800		ns
$\mathrm{i}_{\text {su }}(\mathrm{DX})$	DX setup time before SCLK \downarrow	20		ns
$t_{h}(D X)$	DX hold time after SCLK।	$\mathrm{t}_{\mathrm{C}}($ SCLK $) / 4$		ns

${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
NOTES: 11. The noise is computed by statistically evaluating the digital ourput of the A/D converter.
12. $\overline{\operatorname{RESET}}$ pulse duration is the amount of time that the reset pin is held below 0.8 V after the power supplies have reached their recommended values.
operating characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}+=5 \mathrm{~V}$. $\mathrm{V}_{\mathrm{CC}}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (continued)
serial port - AIC output signals

PARAMETER		*ill:	MAX	UNIT
t_{c} (SCLK)	Shift clock (SCLK) cycle time	.		ns
$t_{\text {f(SCLK) }}$	Shift clock ${ }^{15}{ }^{--}$- fall time		50	ns
$\mathrm{tr}_{\text {r }}$ (SCLK)	Shift clock - ise time		50	ns
	Shift clock ${ }^{\text {人) duty cycle }}$	45	55	\%
$\mathrm{t}_{\mathrm{d}}(\mathrm{CH}-\mathrm{FL})$	Delay from SCLK \uparrow to $\overline{\text { FSR/FSX }}$ +		90	ns
${ }^{t_{d}(C H-F H)}$	Delay from SCLK \uparrow to $\overline{\text { FSR/FSX }} \dagger$		90	ns
${ }^{\text {d }}$ ($(\mathrm{CH}-\mathrm{DR})$	DR valid after SCLK \dagger		90	ns
$\mathrm{t}_{\mathrm{dw}}(\mathrm{CH}-\mathrm{EL}$)	Delay from SCLK \uparrow to $\overline{\text { EODX }} / \overline{\text { EODR }} \downarrow$ in word mode		90	ns
$t_{\text {dw }}(\mathrm{CH}-\mathrm{EH})$	Delay from SCLK \dagger to $\overline{\text { EODX }} / \overline{\text { EODR } \uparrow}$ in word mode		90	ns
$t_{f(E O D X)}$	$\overline{\text { EODX }}$ fall time		15	ns
$t_{f(E O D R)}$	$\overline{\text { EODR }}$ fall time		15	ns
$\mathrm{t}_{\mathrm{db}}(\mathrm{CH}-\mathrm{EL})$	Delay from SCLK \dagger to $\overline{\text { EODX }} / \overline{\text { EODR }}+$ in byte mode		100	ns
${ }^{\text {d }} \mathrm{db}(\mathrm{CH}-\mathrm{EH})$	Delay from SCLK \dagger to $\overline{\mathrm{EODX}} / \overline{\mathrm{EODR}} \dagger$ in byte mode		100	ns

TABLE 2. GAIN CONTROL TABLE
(ANALOG INPUT SIGNAL REQUIRED FOR FULL-SCALE A/D CONVERSION)

INPUT CONFIGURATIONS	CONTROL REGISTER BITS		ANALOG INPUT ${ }^{\dagger}$	A/D CONVERSION RESULT
	d6	d7		
$\begin{aligned} & \text { Differential configuration } \\ & \begin{aligned} \text { Analog input } & =\mathbb{N}+-\mathbb{N}- \\ & =A U X \mathbb{N}+-A U X \mathbb{N}- \end{aligned} \end{aligned}$	1	1	$\pm 6 \mathrm{~V}$	full-scale
	0	0		
	1	0	$\pm 3 \mathrm{~V}$	full-scale
	0	1	$\pm 1.5 \mathrm{~V}$	full-scale
$\begin{aligned} & \text { Single-ended configuration } \\ & \begin{aligned} \text { Analog input } & =I N+- \text { ANLG GND } \\ & =A U X I N+- \text { ANLG GND } \end{aligned} \end{aligned}$	1	1	$\pm 3 \mathrm{~V}$	half-scale
	0	0		
	1	0	$\pm 3 \mathrm{~V}$	full-scale
	0	1	$\pm 1.5 \mathrm{~V}$	full-scale

t In this example, $V_{\text {ref }}$ is assumed to be 3 V . In order to minimize distortion, it is recommended that the analog input not exceed 01 dB below full scale

$R_{f b}=R$ for $d 6=1, d 7=1$
$d 6=0, d 7=0$
$R_{f b}=2 R$ for $d 6=1, d 7=0$
$R_{f b}-4 R$ for $d 6=0 \quad d 7=1$
FIGURE 3. IN + AND IN - GAIN
CONTROL CIRCUITRY

FIGURE 4. AUX IN + AND AUX INGAIN CONTROL CIRCUITRY
$(\sin x) / x$ correction section
If the designer does not wish to use the on-board second-order $(\sin x) / x$ correction filter, correction can be accomplished in digital signal processor (DSP) software. (Sin x)/x correction can be accomplished easily and efficiently in digital signal processor (DSP) software. Excellent correction accuracy can be achieved to a band edge of 3000 Hz by using a first-order digital correction filter. The results, which are shown below, are typical of the numerical correction accuracy that can be achieved for sample rates of interest. The filter requires only seven instruction cycles per sample on the TMS320 DSPs. With a 200-ns instruction cycle, nine instructions per sample represents an overhead factor of 1.4% and 1.7% for sampling rates of 8000 Hz and 9600 Hz , respectively. This correction will add a slight amount of group delay at the upper edge of the $300-3000 \cdot \mathrm{~Hz}$ band.

$(\sin \mathbf{x}) / \mathbf{x}$ roll-off for a zero-order hold function

The $(\sin x) / x$ roll-off for the AIC DAC zero-order hold function at a band-edge frequency of 3000 Hz for the various sampling rates is shown in the table below.

TABLE 3. $(\sin x) / x$ ROLL-OFF

$f_{s}(\mathrm{~Hz})$	$20 \log \frac{\sin \pi f / \mathbf{t}_{\mathrm{S}}}{\pi f / f_{S}}$ $(f=3000 \mathrm{~Hz})$ (dB)
7200	-264
8000	-2.11
9600	-144
14400	063
19200	035

Note that the actual $\operatorname{AIC}(\sin x) / x$ roll-off will be slightly less than the above figures, because the AIC has less than a 100% duty cycle hold interval.

correction filter

To compensate for the $(\sin x) / x$ roll-off of the AIC, a first-order correction filter shown below, is recommended.

The difference equation for this correction filter is:
$y i+1=p 2(1-p 1)\left(u_{i}+1\right)+p 1 y_{i}$
where the constant p1 determines the pole locations.
The resulting squared magnitude transfer function is:

$$
|H(f)|^{2}=\frac{p 2^{2}(1-p 1)^{2}}{1-2 p 1 \cos \left(2 \pi f / f_{s}\right)+p 1^{2}}
$$

correction results

Table 4 below shows the optimum p values and the corresponding correction results for $8000-\mathrm{Hz}$ and $9600-\mathrm{Hz}$ sampling rates.

TABLE 4

$f(\mathrm{~Hz})$	$\begin{aligned} & \text { ERROR }(\mathrm{dB}) \\ & \mathrm{f}_{\mathrm{S}}=8000 \mathrm{~Hz} \\ & \mathrm{p} 1=-0.14813 \\ & \mathrm{p} 2=09888 \end{aligned}$	ERROR (dB) $\begin{aligned} & f_{s}=9600 \mathrm{~Hz} \\ & \mathrm{p} 1=-0.1307 \\ & \mathrm{p} 2=0.9951 \end{aligned}$
300	- 0099	0043
600	-0089	-0043
900	0.054	0
1200	- 0002	0
1500	0041	0
1800	0079	0043
2100	0100	0.043
2400	0091	0043
2700	0043	0
3000	-0 102	- 0043

TMS320 software requirements
The digital correction filter equation can be written in state variable form as follows:

$$
Y=k 1 Y+k 2 U
$$

where $k 1$ equals $p 1$ (from the preceding page), $k 2$ equals ($1-\mathrm{p} 1$) p2 (from the preceding page), Y is the filter state, and U is the next I / O sample. The coefficients $k 1$ and $k 2$ must be represented as 16 -bit integers. The SACH instruction (with the proper shift) will yield the correct result. With the assumption that the TMS320 processor page pointer and memory configuration are properly initialized, the equation can be executed in seven instructions or seven cycles with the following program:

ZAC
LT K2
MPY U
LTA K1
MPY Y
APAC
SACH (dma), (shift)
byte-mode timing

word-mode timing

FIGURE 5. SERIAL PORT TIMING

FIGURE 6. TMS32010/TMS320C15-TLC32045 INTERFACE CIRCUIT
in instruction timing

out instruction timing

FIGURE 7. TMS32010/TMS320C15-TLC32045 INTERFACE TIMING

TYPICAL CHARACTERISTICS

AIC TRANSMIT AND RECEIVE LOW-PASS FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$
FIGURE 8

FIGURE 10

AIC TRANSMIT AND RECEIVE LOW-PASS FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$
FIGURE 9

AIC RECEIVE CHANNEL HIGH-PASS FILTER

FIGURE 11

TYPICAL CHARACTERISTICS

FIGURE 12
(SIN X)/X CORRECTION FILTER

FIGURE 14

AIC (SIN X)/X CORRECTION FILTER

Normalized Frequency $-\mathrm{kHz} \times \frac{\text { SCF Clock Frequency }}{288 \mathrm{kHz}}$
FIGURE 13

A/D SIGNAL-TO-DISTORTION RATIO vs
INPUT SIGNAL

FIGURE 15

TYPICAL CHARACTERISTICS

FIGURE 16

D/A CONVERTER SIGNAL-TO-DISTORTION RATIO
vs
INPUT SIGNAL LEVEL

FIGURE 17

TYPICAL CHARACTERISTICS

FIGURE 20

TYPICAL CHARACTERISTICS

A/D THIRD HARMONIC DISTORTION
INPUT SIGNAL

FIGURE 21

D A THIRD HARMONIC DIGTORTION
vs
IINPUT SIGNAL

FIGURE 22

TYPICAL APPLICATION INFORMATION

FIGURE 23. AIC INTERFACE TO THE TMS32020/C25 SHOWING DECOUPLING CAPACITORS AND SCHOTTKY DIODE \dagger

FIGURE 24. EXTERNAL REFERENCE CIRCUIT FOR TLC32045

[^20]
[^0]: Advanced LinCMOS is a trademark of Texas Instruments incorporated.

[^1]: $+{ }^{+}$LSB $-\left(2^{-8}\right) V_{1}$

[^2]: * 1 LSB 12 7iv,

[^3]: ${ }^{\dagger}$ All parameters are measured under open-loop conditions with zero common-mode input voltage.
 \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^4]: ${ }^{\S}$ All parameters are measured under open-loop conditions with zero common-mode input voltage. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions
 NOTES: 5. Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
 6. The most significant-bit-first data is output directly from the comparator and therefore requires additional delay to allow for comparator response time. Least-significant-bit-first data applies only to ADC0B32.

[^5]: PRODUCTION : : = locuments contain information gurrant as 0^{4} Ition date. Products conform * . ." itil... , he terms of Texas Instruments $\mathbf{s}^{\mathbf{\prime \prime}}$. . . Itil... narranty. Production processing does not : 'y include testing of all paramaters.

[^6]: $H=$ high level. $L=$ low level

 - - tocritn hirth transition

[^7]: ${ }^{\dagger}$ Typical values are at $V_{C C}=3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^8]: - This step is the voltage at pin 2 with respect to analog ground

[^9]: ${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^10]: \dagger Total unadjusted error includes offset, full-scale, and linearity errors.

[^11]: TWith supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

[^12]: ${ }^{\dagger}$ With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.

[^13]: ${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

[^14]: ${ }^{\dagger}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 ${ }^{\ddagger} A_{V}$ is the programmable gain of the input amplifier.
 ${ }^{5}$ A value >58 is overrange and signal clipping occurs.
 NOTES: 7. The test condition is a $1-\mathrm{kHz}$ input signal with an $8 \cdot \mathrm{kHz}$ conversion rate $\left(0 \mathrm{~dB}\right.$ relative to $\mathrm{V}_{\text {ref }}$). The load impedance for the DAC is 600Ω.
 8 Gain tracking is relative to the absolute gain at 1 kHz and $0 \mathrm{~dB}\left(0 \mathrm{db}\right.$ relative to $\left.V_{\text {ref }}\right)$.

[^15]: ${ }^{\dagger}$ All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.
 NOTES: 11. This noise is referred to the input with a buffer gain of one. If the buffer gain is two or four, the noise figure will be correspondingly reduced. The noise is computed by statistically evaluating the digital output of the A/D converter.
 $12 \overline{R E S E T}$ pulse duration is the amount of time that the reset pin is held below 0.8 V after the power supplies have reached their recommended values

[^16]: ${ }^{\dagger}$ Thomson Semiconductors

[^17]: Advanced LinCMOS* is a trademark of Texas Instruments Incorporated.

[^18]: ${ }^{\dagger}$ All analog signal paths have differential architecture and hence have positive and negative components

[^19]: NOTES:
 2. Voltages at analog inputs and outputs, REF, $V_{C C}+$, and $V_{C C}$, are with respect to the ANLG GND terminal. Voltages at digital inputs and outputs and $V_{D D}$ are with respect to the DGTL GND terminal.
 3. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels and temperature only.
 4. The bandpass switched-capacitor filter (SCF) specifications apply only when the low-pass section SCF clock is 288 kHz and the high-pass section SCF clock is 8 kHz . If the low-pass SCF clock is shifted from 288 kHz , the low-pass roll-off frequency will shift by the ratio of the low-pass SCF clock to 288 kHz . If the high-pass SCF clock is shifted from 8 kHz , the high-pass roll-off frequency will shift by the ratio of the high-pass SCF clock to 8 kHz . Similarly, the low-pass switched-capacitor filter (SCF) specifications apply only when the SCF clock is 288 kHz . If the SCF clock is shifted from 288 kHz , the low-pass roll-off frequency will shift by the ratio of the SCF clock to 288 kHz .
 5. This range applies when $(\mathbb{N}+-\mathbb{N}-)$ or $(A \cup X X I N+-A U X I N-)$ equals $\pm 6 \mathrm{~V}$.

[^20]: \dagger Thomson Semiconductors

