General Information

Data Transmission and Control Circuits 2

Display Drivers 3

Peripheral Drivers/Power Actuators

4

1

Mechanical Data 5

Explanation of Logic Symbols

6

DS3680I QUAD TELEPHONE RELAY DRIVER

D2758, MARCH 1986-REVISED MARCH 1990

- Designed for 52-V Battery Operation
- 50-mA Output Current Capability
- Input Compatible with TTL and CMOS
- High Common-Mode Input Voltage Range
- Very Low Input Current
- Fail-Safe Disconnect Feature
- Built-In Output Clamp Diode
- Direct Replacement for National DS3680 and Fairchild µA3680

description

The DS3680I telephone relay driver is a monolithic integrated circuit designed to interface -48-V relay systems to TTL or other systems in telephone applications. It is capable of sourcing up to 50 mA from standard -52-V battery power. To reduce the effects of noise and IR drop between logic ground and battery ground, these drivers are designed to operate with a common-mode input range of ± 20 V referenced to battery ground. The common-mode input voltages for the four drivers can be different, so a wide range of input elements can be accommodated. The high-impedance inputs are compatible with positive TTL and CMOS levels or negative logic levels. A clamp network is included in the driver outputs to limit high-voltage transients generated by the relay coil during switching. The complementary inputs ensure that the driver output will be "off" as a fail-safe condition when either output is open.

The DS3680I is characterized for operation from -40°C to 85°C.

symbol (each driver)

schematic diagram (each driver)

All resistor values shown are nominal.

DS36801 QUAD TELEPHONE RELAY DRIVER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range at BAT NEG, VB_ (see Note 1)
Input voltage range with respect to BAT NEG
Differential input voltage, V _{ID} (see Note 2) ± 20 V
Output current: resistive load
inductive load
Inductive output load
Continuous total power dissipation
Operating free-air temperature range, TA40 °C to 85 °C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltages are with respect to the BAT GND terminal unless otherwise specified.

2. Differential input voltages are at the noninverting input terminal IN + with respect to the inverting input terminal IN -.

PACKAGE	$T_A \le 25 ^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70 °C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW

DISSIPATION RATING TABLE

recommended operating conditions

	MiN	MAX	UNIT
Supply voltage, V _B _	- 10	- 60	V
Input voltage, either input	-20†	20	V
High-level differential input voltage, VIDH	2	20	V
Low-level differential input voltage, VIDL	- 20†	0.8	V
Operating free-air temperature, TA	-40	85	°C

[†]The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for input voltage levels.

electrical characteristics over recommended operating free-air temperature range, $V_{B-} = -52 V$ (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP [‡]	MAX	UNIT
tu.	High-level input current (into IN +)	$V_{ID} = 2 V$			40	100	
ĥН	nigh-level input cohent (into in +)	V _{ID} = 7 V			375	1000	μA
	Low-level input current (into IN+)	V _{ID} = 0.4 V	•		0.01	5	
ΙL		V _{ID} = −7 V			- 1	- 1	μA
VO(on)	On-state output voltage	$I_0 = -50 \text{ mA},$	V _{ID} = 2 V		- 1.6		V
10	Off state output surrent		V _{ID} = 0.8 V		-2		
O(off)	Off-state output current	$V_0 = V_{B-}$	Inputs open		-2	-1.1	μA
IR	Clamp diode reverse current	$V_0 = 0$			2	100	μA
Voк	Output clamp voltage	$I_0 = 50 \text{ mA}$			0.9	1.2	v
VOK	Suppr clamp voltage	$I_0 = -50 \text{ mA},$	$V_{B-} = 0$		-0.9	- 1.2	v
I _{B(on)}	On-state battery current	All drivers on			- 2	-4.4	mA
lB(off)	Off-state battery current	All drivers off			- 1	- 100	μA

[‡]All typical values are at $T_A = 25 \,^{\circ}C$.

DS3680I QUAD TELEPHONE RELAY DRIVER

switching characteristics $V_{B-} = -52 V$, $T_A = 25 °C$

PARAMETER	TEST COND	TIONS	MIN	ТҮР	MAX	UNIT
t _{on} Turn-on time	VID = 3-V pulse,	$R_L = 1 k\Omega$,		• 1	10	μs
t _{off} Turn-off time	L = 1 H,	See Figure 2		1	10	μs

PARAMETER MEASUREMENT INFORMATION

DS3680I QUAD TELEPHONE RELAY DRIVER

APPLICATION INFORMATION

FIGURE 3. RELAY DRIVER

L293 QUADRUPLE HALF-H DRIVER

D2942, SEPTEMBER 1986-REVISED MAY 1990

- 1-A Output Current Capability Per Driver
- Pulsed Current 2-A Driver
- Wide Supply Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- NE Package Designed for Heat Sinking
- Thermal Shutdown
- Internal ESD Protection
- High-Noise-Immunity Inputs
- Functional Replacement for SGS L293

description

The L293 is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to one ampere at voltages from 4.5 V to 36 V. It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other highcurrent/high-voltage loads in positive-supply applications.

[†]In the thermal shutdown mode, the output is in the high-impedance state regardless of the input levels.

(off)

Z =

high-impedance

All inputs are TTL-compatible. Each output is a complete totem-pole drive circuit with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

External high-speed output clamp diodes should be used for inductive transient suppression. A V_{CC1} terminal , separate from V_{CC2}, is provided for the logic inputs to minimize device power dissipation.

The L293 is designed for operation from 0°C to 70°C.

logic symbol[‡]

*This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

PRODUCTION DATA documents contain information ct···· s of publication date. Products conform to sg····tions per the terms of Texas Instruments st...c., warrenty. Production processing daas not necessarily include testing of all parameters.

Copyright © 1990, Texas Instruments Incorporated

L293 QUADRUPLE HALF-H DRIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage, V _{CC1} (see Note 1)
Input voltage
Output voltage range
Peak output current (nonrepetitive, t \leq 5 ms) ±2 A
Continuous output current ±1 A
Continuous total dissipation at (or below) 25 °C free-air temperature (see Notes 2 and 3)
Continuous total dissipation at 80 °C case temperature (see Note 3)
Operating case or virtual junction temperature range
Storage temperature range -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. For operation above 25 °C free-air temperature, derate linearly at the rate of 16.6 mW/ °C.

3. For operation above 25 °C case temperature, derate linearly at the rate of 71.4 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, VCC1	4.5	7	v
Output supply voltage, V _{CC2}		36	v
High-level input voltage, V _{IH} $V_{CC1} \le 7 V$	2.3		
$V_{CC1} \ge 7 V$	2.3	7	v
Low-level input voltage, VIL	-0.3†	1.5	v
Operating free-air temperature, TA	0	70	°C

[†]The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	1он = -	1 A	V _{CC2} -1.8	V _{CC2} -1.4		V
VOL	Low-level output voltage	I _{OL} = 1 /	A		1.2	1.8	V
•	A A	<u> </u>			0.2	100	μA
ЧH	High-level input current EN	Vi = 7 V			0.2	± 10	
	A				- 3	- 10	μA
μL	Low-level input current EN	VI = 0			- 2	- 100	
			All outputs at high level		13	22	
ICC1	Logic supply current	io = 0	All outputs at low level		35	60	mA
			All outputs at high impedance		8	24	
			All outputs at high level		14	24	
ICC2	Output supply current	l ₀ = 0	All outputs at low level		2	6	mA
		_	All outputs at high impedance		2	4	1

electrical characteristics, $V_{CC1} = 5 V$, $V_{CC2} = 24 V$, $T_A = 25 °C$

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = $25 \,^{\circ}$ C

	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
t PLH	Propagation delay time, low-to-high-level output from A input			800		ns
tPHL	Propagation delay time, high-to-low-level output from A input	$C_L = 30 \text{ pF},$		400		ns
t _{TLH}	Transition time, low-to-high-level output	See Figure 1		300		ns
t THL	Transition time, high-to-low-level output			300		ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

L293 QUADRUPLE HALF-H DRIVER

L293D QUADRUPLE HALF-H DRIVER

D3511, SEPTEMBER 19B6-REVISED MAY 1990

- 600-mA Output Current Capability Per Driver
- Pulsed Current 1.2-A Per Driver
- Output Clamp Diodes for Inductive Transient Suppression
- Wide Supply Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- Thermal Shutdown
- Internal ESD Protection
- High-Noise-Immunity Inputs
- Functional Replacement for SGS L293D

description

The L293D is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to 600 mA at voltages from 4.5 V to 36 V. It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

NE PACKAGE (TOP VIEW) 1,2EN 🗍 1 J₁₆ VCC1 1A [2 15 🗍 4A 1Y 🗍 3 14 4Y HEATSINK AND 13 HEATSINK AND 12 GROUND GROUND) 15 2Y 16 11 3Y 2A 🗍 7 10 🗍 3A 9 3,4EN VCC2 🛛 8

> FUNCTION TABLE (EACH DRIVER)

INPL	JTS†	OUTPUT				
А	EN	Y				
н	н	н				
L	н	L				
X	L	z				
X L Z H = high-level L = low-level X = irrelevant						

Z = high-impedance (off)

[†]In the thermal shutdown mode, the output is in the high-impedance state regardless of the input levels.

All inputs are TTL-compatible. Each output is a complete totem-pole drive circuit with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation.

The L293D is designed for operation from 0°C to 70°C.

logic symbol[‡]

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

Copyright © 1990, Texas Instruments Incorporated

L293D QUADRUPLE HALF-H DRIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage, V _{CC1} (see Note 1)
Output supply voltage, V _{CC2}
Input voltage
Output voltage range $$
Peak output current (nonrepetitive, t $\leq 100 \ \mu s$) $\pm 1.2 \ A$
Continuous output current ±600 mA
Continuous total dissipation at (or below) 25 °C free-air temperature
(see Notes 2 and 3)
Continuous total dissipation at 80 °C case temperature (see Note 3)
Operating case or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to the network ground terminal.

- 2. For operation above 25 °C free-air temperature, derate linearly at the rate of 16.6 mW/ °C.
- 3. For operation above 25 °C case temperature, derate linearly at the rate of 71.4 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC1}	4.5	7	V
Output supply voltage, V _{CC2}	V _{CC1}	36	v
V _{CC1} \leq 7 V	2.3	VCC1	
utput supply voltage, V_{CC2} igh-level input voltage, $V_{IH} = \frac{V_{CC1} \le 7 V}{V_{CC1} \ge 7 V}$ pw-level input voltage, V_{IL}	2.3	7	v
Low-level input voltage, VIL	-0.3 [†]	1.5	v
Operating free-air temperature, TA	0	70	°C

[†]The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT		
∨он	High-level output voltage		I _{OH} = -0.6 A		V _{CC2} -1.8	3 V _{CC2} -1.4		V		
VOL	Low-level output voltage		$I_{OL} = 0.6 \text{ A}$			1.2	1.8	V		
∨окн	High-level output clamp v	/oltage	IOK = 0.6 A			V _{CC2} +1.3		V		
VOKL	Low-level output clamp v	oltage	$I_{OK} = -0.6 \text{ A}$			1.3		v		
1	IH High-level input current A EN		Alish Isost is such as a fille		VI = 7 V			0.2	100	
чн			VI = 7 V			0.2	±10	μA		
L.	Low lovel innut everent			VI = 0		-3	- 10			
ηĽ	Low-level input current EN		vi = 0			-2	- 100	μA		
				All outputs at high level		13	22			
ICC1	Logic supply current		i ₀ = 0	All outputs at low level		35	60	mA		
				All outputs at high impedance		8	24			
				All outputs at high level		14	24			
ICC2	Output supply current		i ₀ ≂ 0	All outputs at low level		2	6	mA		
				All outputs at high impedance		2	4			

electrical characteristics, $V_{CC1} = 5 V$, $V_{CC2} = 24 V$, $T_A = 25 °C$

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25° C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output from A input			800		ns
tPHL	Propagation delay time, high-to-low-level output from A input	C _L = 30 pF,		÷.,		ns
tŢLH	Transition time, low-to-high-level output	See Figure 1				ns
t THL	Transition time, high-to-low-level output			300		ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. C_L includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

L293D QUADRUPLE HALF-H DRIVER

D2942, OCTOBER 1986-REVISED JUNE 1990

- 2-A Output Current Capability per Full-H Driver
- Wide Range of Output Supply Voltage . . . 5 V to 46 V
- Separate Input-Logic Supply Voltage
- Thermal Shutdown
- Internal Electrostatic Discharge Protection
- High Noise Immunity
- Functional Replacement for SGS L298

description

The L298 is a dual high-current full-H driver designed to provide bidirectional drive currents of up to two amperes at voltages from 5 V to 46 V It is designed to drive inductive loads such as relays, solenoids, dc motors, stepping motors, and other high-current or high-voltage loads in positive-supply applications All inputs are TTL compatible Each output (Y) is a complete totempole drive with a Darlington transistor sink and a psuedo-Darlington source. Each full-H driver is enabled separately Outputs 1Y1 and 1Y2 are enabled by 1EN and outputs 2Y1 and 2Y2 are enabled by 2EN. When an EN input is high, the associated channels are active. When an EN input is low, the associated channels are off (i.e., in the high-impedance state)

Each half of the device forms a full-H reversible driver suitable for solenoid or motor applications. The current in each full-H driver can be monitored by connecting a resistor between the sense output terminal 1E and ground and another resistor between sense output terminal 2E and ground.

External high-speed output-clamp diodes should be used for inductive transient suppression. To minimize device power dissipation, a V_{CC1} supply voltage, separate from V_{CC2}, is provided for the logic inputs

The L298 is designed for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

FUNCTION TABLE

Γ	INPL	JTS‡	OUTPUT
Γ	А	EN	Y
Γ	н	н	н
	L	н	L
	х	L	z

[‡]In the thermal shutdown mode, the outputs are in the high-impedance state regardless of the input levels

- H = high-level
- L = low-level
- X = irrelevant
- Z = high-impedance (off)

Copyright © 1990, Texas Instruments Incorporated

PPDNIICTIO, II'I ocuments centain infermation as o'on date Preducts conferm te taitea..., terms af Texas instruments sistuard warranty Preduction precessing does not necessarily include texting of all paramaters

L298 DUAL FULL-H DRIVER

logic diagram (positive logic) Vcc2 1Y1 1Y2 2Y1 2Y2 (2) (3) (4) (13) (14) V_{CC1}(9) (1<u>2)</u> 2A2 1A1(5) 1A2 (7) (<u>10)</u> 2A1 1EN (6) (11) 2EN (1) (8) (15) 1E GND 2E

absolute maximum ratings over operating temperature range (unless otherwise noted)

Logic supply voltage, V _{CC1} , (see Note 1) 7 V Output supply voltage, V _{CC2} 50 V Input voltage range at A or EN, V ₁ -0.3 to 7 V Output voltage range, V _O -2 V to V _{CC2} +2 V Emitter terminal (1E and 2E) voltage range -0.5 to 2.3 V
Emitter terminal (1E and 2E) voltage (nonrepetitive, $t_W \leq 50 \ \mu s$)
Peak output current, I_{OM} , (nonrepetitive, $t_W \le 0.1 \text{ ms}$) ±3 A
(repetitive, $t_W \le 10$ ms, duty cycle $\le 80\%$) ± 2.5 A
Continuous output current, IO ±2 A
Peak combined output current for each full-H driver (see Note 2)
(nonrepetitive, $t_W \leq 0.1 \text{ ms}$) $\pm 3 \text{ A}$
(repetitive, $t_W \le 10$ ms, duty cycle $\le 80\%$) ± 2.5 A
Continuous combined output current for each full-H driver (see Note 2)
Continuous dissipation at (or below) 25 °C free-air temperature (see Note 3)
Continuous dissipation at (or below) 75 °C case temperature (see Note 3)
Operating free-air, case, or virtual junction temperature range $\dots \dots \dots \dots \dots \dots -40$ °C to 150 °C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to the network ground terminal, unless otherwise noted.

 Combined output current applies to each of the two full-H drivers individually. This current is the sum of the currents at outputs 1Y1 and 1Y2 for full-H driver 1 and the sum of the currents at outputs 2Y1 and 2Y2 for full-H driver 2. The full-H drivers may carry the rated combined current simultaneously.

3. For operation above 25°C free-air temperature, derate linearly at the rate of 28.6 mW/°C. For operation above 75°C case temperature, derate linearly at the rate of 333 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	MAX	UNIT	
Logic supply voltage, V _{CC1}	• • • •	4.5	7	V	
Output supply voltage, V _{CC2}		5	46	V	
		-0.5†	2		
Emitter terminal (1E or 2E) voltage, VE (see Note 4)			V _{CC1} ~ 3.5	V	
			V _{CC2} -4		
	A	2.3	$ 7 46 2 V_{CC1}-3.5 V_{CC2}-4 V_{CC1} V_{CC2}-2.5 7 V_{CC1} 1.5 \pm 2 40$		
			V _{CC2} - 2.5	l v	
High-level input voltage, VIH (see Note 4)	EN	2.3	7		
	EN		V _{CC1}		
Low-level input voltage at A or EN, V _{1L}		-0.3 [†]	1.5	v	
Output current, IO			±2	A	
Commutation frequency, fc		•	40	kHz	
Operating free-air temperature, TA		0	70	°C	

[†]The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for emitter terminal voltage and logic voltage levels.

NOTE 4: For optimum device performance, the maximum recommended voltage at any A input is 2.5 V lower then V_{CC2}, the maximum recommended voltage at any emitter terminal is 3.5 V lower than V_{CC1} and the maximum recommended voltage at any emitter terminal is 3.5 V lower than V_{CC1} and 4 V lower than V_{CC2}.

electrical characteristics, $V_{CC1} = 5 V$, $V_{CC2} = 42 V$, $V_E = 0$, $T_J = 25 °C$ (unless otherwise noted)

	PARAMETER			TEST CONDITIONS	S	MIN	ТҮР	MAX	UNIT	
∨он	High-level output voltage		10H = -	1 A		V _{CC2} -1.8	V _{CC2} -1.2		v	
VOH	OH High over output tokuge		10H = -3	2 A		V _{CC2} -2.8	V _{CC2} -1.8		v	
VOL	Low-level output voltage		$I_{OL} = 1$	4			VE+1.2	V _E +1.8	v	
VOL	Low-level output voltage		$1_{OL} = 2 I$	A		V _E +1.7		V _E +2.6	v	
м.	Total source plus sink		IOH = -1 A, IOL = 1 A See Note 5		2.		3.4	v		
Vdrop	output voltage drop		IOH = -2 A, IOL = 2 A		IOH = -2 A, IOL = 2 A			3.5	5.2	v
1	High-level input current	Α	$V_{I} = V_{IH}$	$V_{I} = V_{IH}$ $V_{I} = V_{IH} \leq V_{CC1} - 0.6 V$			30	100		
<u> </u> ЧН	High-level input current	EN	$V_I = V_{IH}$				30	100	μA	
ΊL	Low-level input current		$V_{I} = 0$ to	1.5 V				- 10	μA	
				All outputs at hig	h level		7	12		
ICC1	Logic supply current		IO = 0	IO = 0 All outputs at low level			24	32	mA	
				All outputs at high impedance			4	6		
				All outputs at high level IO = 0 All outputs at low level			38	50		
ICC2	Output supply current		lo = 0				13	20	mA	
				All outputs at hig	h impedance			2		

NOTE 5. The V_{drop} specification applies for I_{OH} and I_{OL} applied simultaneously to different output channels. V_{drop} = V_{CC2} - V_{OH} + V_{OL} - V_E

L298 DUAL FULL-H DRIVER

switching characteristics, $V_{CC1} = 5 V$, $V_{CC2} = 42 V$, $V_E = 0$, $T_A = 25 °C$

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
td(on) Source current turn-on delay time from A input		2.5	μS
td(off) Source current turn-off delay time from A input		1.7	μs
tr Source current rise time (turning on)	C _L = 30 pF,	0.4	μs
tf Source current fall time (turning off)	See Figure 1	0.2	μs
td(on) Source current turn-on delay time from EN input		2.5	μS
td(off) Source current turn-off delay time from EN input		1.7	μs
td(on) Sink current turn-on delay time from A input		1.5	μs
td(off) Sink current turn-off delay time from A input		0.7	μs
tr Sink current rise time (turning on)	CL = 30 pF,	0.2	μs
tf Sink current fall time (turning off)	See Figure 2	0.2	μs
td(on) Sink current turn-on delay time from EN input		1.5	μs
td(off) Sink current turn-off delay time from EN input		0.7	μs

PARAMETER MEASUREMENT INFORMATION

VOLTAGE AND CURRENT WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: PRR = 2 kHz, $Z_0 = 50 \ \Omega$. B. EN is at 4 V if A is used as the switching input. A is at 4 V if EN is the switching input.
 - - C. CL includes probe and jig capacitance.

FIGURE 1. SOURCE CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

VOLTAGE AND CURRENT WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: PRR = 2 kHz, $Z_0 = 50 \Omega$.
 - B. EN is at 4 V if A is used as the switching input. A is at 0 V if EN is the switching input.
 - C. CL includes probe and jig capacitance.

FIGURE 2. SINK CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

APPLICATION INFORMATION

This circuit shows one half of an L298 used to provide full-H bridge drive for a 24-V 2-A dc motor. Speed control is achieved with a TLC555 timer. This provides variable duty cycle pulses to the EN input of the L298. In this configuration, the operating frequency is approximately 1.2 kHz. The duty cycle is adjustable from 10% to 90% to provide a wide range of motor speeds. The motor direction is determined by the logic level at the direction control input. The circuit may be enabled or disabled by the logic level at the EN input. A 5-V supply for the logic and timer circuit is provided by a TL431 shunt regulator. For circuit operation, refer to the function table.

FUNCTION	TARIE
10100101010	INDLL

ENABLE	DIRECTION CONTROL	1¥1	1¥2
н	н	source	sink
н	L	sink	source
L	x	disabied	disabled

X = don't care H = high level L = low level

[†]Diodes are 1N4934 or equivalent.

FIGURE 3. L298 AS BIDIRECTIONAL DC MOTOR DRIVER

SN55451B THRU SN55454B SN75451B THRU SN75454B DUAL PERIPHERAL DRIVERS

D2217, DECEMBER 1976-REVISED MAY 1990

PERIPHERAL DRIVERS FOR HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 20 V (After Conducting 300 mA)
- High-Speed Switching
- Circuit Flexibility for Varied Applications
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN55451B	AND [†]	FK,JG
SN554	NAND	FK,JG
	OR	FK,JG
	· ·	FK,JG
SN75451B		D,P
SN75452B	NAND	D,P
SN75453B	OR	D,P
SN75454B	NOR	D.P

SUMMARY OF SERIES 55451B/75451B

[†]With output transistor base connected externally to output of gate.

description

Series SN55451B/75451B dual peripheral drivers are a family of versatile devices designed for use in systems that employ TTL logic. This family is functionally interchangeable with and replaces the SN75450 family and the SN75450A family devices manufactured previously. The speed of the SN55451B/SN75451B family is equal to that of the SN75450 family, and the parts are designed to ensure freedom from latch-up. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic), with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

Series SN55451B drivers are characterized for operation over the full military range of -55 °C to 125 °C. Series SN75451B drivers are characterized for operation from 0 °C to 70 °C.

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

SN55451B, SN55452B, SN55453B, SN55454B...JG PACKAGE SN75451B, SN75452B, SN75453B, SN75454B...D OR P PACKAGE (TOP VIEW)

SN55451B, SN55452B, SN55453B, SN55454B, . . . FK PACKAGE (TOP VIEW)

	(Z J 3			SU VCC	U		
NC	14						18	NC
1B	5						17 [2B
NC	6 [16	NC
1Y	17						15	2A
NC	8						14	NC
		9	10	11	12	13		

NC-No internal connection

SN55451B THRU SN55454B, SN75451B THRU SN75454B DUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	,	SN55451B	SN75451B	
		SN55452B	SN75452B	UNIT
		SN55453B	SN75453B	UNIT
		SN55454B	SN75454B	
Supply voltage, V _{CC} (see Note 1)		7	7	V
Input voltage		5.5	5.5	V
Interemitter voltage (see Note 2)		5.5	5.5	V
Off-state output voltage		30	30	V
Continuous collector or output current (see Note 4)		400	400	mA
Peak collector or output current		500	500	mA
$(t_W \le 10 \text{ ms, duty cycle} \le 50\%, \text{ see Note 4})$		300	300	104
Continuous total power dissipation		See	bation Rating	Fable
Operating free-air temperature range, TA		-55 to	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	FK package	<u> </u>		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package			°C
Lead temperature 1,6 mm (1,16 inch) from case for 10 seconds	D or P package		260	°C

NOTES: 1. Voltage values are with respect to the network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter transistor.

3. This value applies when the base-emitter resistance (RBE) is equal to or less than 500 $\Omega.$

4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25 ^{\circ}C$	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
JG	1 0 50 mW	8.4 mW/°C	672 mW	210 mW
P	1000 m W	8.0 mW/ °C	640 mW	

recommended operating conditions

	SE	SERIES 55451B			SERIES 75451B		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	. 4.5	5	5.5	4.75	5	0.26	~
High-level input voltage, VIH	2			2			×
Low-level input voltage, V _{1L}			ΛR	•		0.8	V
Operating free-air temperature, TA	-55		120	0		70	°C

SN55451B, SN75451B DUAL PERIPHERAL POSITIVE-AND DRIVERS

electrical characteristics over recommended operating free-air temperature range

		TEST CON	DITIONOT	SN554	51B	SN7545		
	PARAMETER	TEST CON	DITIONS	MIN TYP	MAX	MIN TYP [§]	MAX	UNIT
ViK	input clamp voltage	$V_{CC} = MIN,$	$I_{\parallel} = -12 \text{ mA}$	- 1.3	2 – 1.5	- 1.2	- 1.5	V
ЮН	High-level output current	$V_{CC} = MIN,$ $V_{OH} = 30 V$	V _{IH} = MIN,		300		100	μA
Ver	VOI Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	$V_{IL} = 0.8 V,$	0.2	5 0.5	0.25	0.4	v
VOL	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 300 mA$	$V_{1L} = 0.8 V,$	0 9	5 O.8	0.5	0.7	
4	Input current at maximum input voltage	$V_{CC} = MAX,$	$V_{ } = 5.5 V$		1		1	mA
Ίн	High-level input current	$V_{CC} = MAX,$	$V_{I} = 2.4 V$		40		40	μA
ηL	Low-level input current	$V_{CC} = MAX,$	VI = 0.4 V		- 1.6	- 1	- 1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX,$	VI = 5 V		7 11	7	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	V ₁ = 0	53	2 65	52	65	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [§] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CO	ONDITIONS	MIN	түр	MAX	UNIT
tPLH Propagation delay time, low-to-high-level o	utput				18	25	ns
tpHL Propagation delay time, high-to-low-level o	utput	i <mark>o</mark> ≈ 200 mA,	$C_{L} = 15 pF$,		18	25	ns
tTLH Transition time, low-to-high-level output	$R_{L} = 50 \Omega$,	See Figure 1		5	8	ns	
tTHL Transition time, high-to-low-level output					7	12	ns
Very blick level putput uptons often exitabing	SN554518	$V_{\rm S} = 20 \text{ V}, \text{ I}_{\rm O} \approx 300 \text{ mA},$		Vg-6.5			mV
VOH High-level output voltage after switching	SN75451B	See Figure 2		Vg-6.	5	_	inv

SN55452B, SN75452B DUAL PERIPHERAL POSITIVE-NAND DRIVERS

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH DRIVER)

Α	В	Y
L	L	H (off state)
L	н	H (off state)
н	L	H (off state)
н	н	L (on state)

positive logic Y = \overrightarrow{AB} or $\overrightarrow{A} + \overrightarrow{B}$

schematic (each driver)

Pin numbers shown are for D, JG, and P packages.

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CON		S	N55452	2B	s	N75452	2B	LINUT
	r AnAlvic (CR	IEST CON		MIN	TYPS	MAX	MIN	түр§	MAX	UNIT
ViK	input clamp voltage	V _{CC} =	$l_1 = -12 \text{ mA}$		-1.2	- 1.5		- 1.2	- 1.5	v
юн	High-level output current	V _{CC} = V _{OH} = 30 V	$V_{IL} = 0.8 V$			300			100	μA
V _{OL} I	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	V _{IH} = MIN		0.25	0.5		0.25	0.4	v
		$V_{CC} = MIN,$ $I_{OL} = 300 \text{ mA}$	$V_{iH} = MiN,$		0.5	0.8		0.5	0.7	
ij	Input current at maximum input voltage	$V_{CC} = MAX,$	V _l = 5.5 V			1		_	1	mA
Iн	High-level input current	$V_{CC} = MAX,$	VI = 2.4 V			40			40	μA
կլ	Low-level input current	$V_{CC} = MAX,$	$V_{1} = 0.4 V$		- 1.1	-1.6		- 1.1	- 1.6	mA
Іссн	Supply current, outputs high	$V_{CC} = MAX,$	$V_{1} = 0$		11	14		11	14	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	V ₁ = 5 V		56	71		56	71	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [§] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

PARAMETER		TEST CO	MIN	ТҮР	MAX	UNIT	
tPLH Propagation delay time, low-to-high-level o	utput				26	35	ns
tPHL Propagation delay time, high-to-low-level o	i _O ≈ 200 mA,	$C_{L} = 15 pF,$		24	35	ns	
tTLH Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		5	В	ns	
tTHL Transition time, high-to-low-level output	tTHL Transition time, high-to-low-level output				7	12	กร
Vou High lavel output voltage ofter quitables	SN55452B	$V_{\rm S} = 20 V_{\rm c}$	l ₀ ≈ 300 mA,	Vs-6.5		5	
VOH High-level output voltage after switching	SN75452B	See Figure 2		Vs-6.	5		mV

SN55453B, SN75453B **DUAL PERIPHERAL POSITIVE OR DRIVERS**

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH DRIVER)

Α	В	Y
L	L	L (on state)
L	н	H (off state)
н	L	H (off state)
н	н	H (off state)

positive logic

 $Y = A + 8 \text{ or } \overline{\overline{A}\overline{B}}$

schematic (each driver)

Pin numbers shown are for D, JG, and P packages.

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CON	DITIONOT	S	N55453	в	SN75453B			
	PARAMETER	TEST CON		MIN	TYPS	MAX	MIN	TYP§	MAX	UNIT
VIK	Input clamp voltage	V _{CC} = MIN,	$I_{1} = -12 mA$		-1.2	-1.5		-1.2	- 1.5	V
юн	High-level output current	$V_{CC} = MIN,$ $V_{OH} = 30 V$	$V_{IH} = MIN,$			300			100	μA
VOL Low-lev		$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	$V_{IL} = 0.8 V,$		0.25	0.5		0.25	0.4	
	Low-level output voltage	$V_{CC} = MIN,$ IOL = 300 mA	$V_{ L} = 0.8 V,$		0.5	0.8		0.5	0.7	v
1	Input current at maximum input voltage	V _{CC} = MAX,	V _i = 5.5 V			1			1	mA
İн	High-level input current	V _{CC} = MAX,	$V_{i} = 2.4 V$			40			40	μA
μL	Low-level input current	V _{CC} = MAX,	V1 = 0.4 V		- 1	- 1.6		- 1	-1.6	mΑ
Іссн	Supply current, outputs high	V _{CC} = MAX,	V ₁ = 5 V		8	11		8	11	mA
1CCL	Supply current, outputs low	$V_{CC} = MAX,$	Vi = 0		54	68		54	68	mA

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. § All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST COND	ITIONS	MIN	түр	MAX	UNIT	
tPLH Propagation delay time, low-to-high-level or	utput				18	25	ns	
tPHL Propagation delay time, high-to-low-level or	lo ≈ 200 mA, CL	= 15 pF,		16	25	ns		
t _{TLH} Transition time, low-to-high-level output	R _L = 50 Ω, Se	e Figure 1		5	8	ns		
tTHL Transition time, high-to-low-level output	Ng				7	12	ns	
	SN55453R	$V_{S} = 20 V$, $I_{O} \approx 300 mA$,		Vs-6.5			<u> </u>	
VOH High-level output voltage after switching	SN7E	See Figure 2		V _S -6.	5		mν	

SN55454B, SN75454B DUAL PERIPHERAL POSITIVE-NOR DRIVERS

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH DRIVER)

A	В	Y
L	L	H (off state)
L	н	L (on state)
н	L.	L (on state)
н	н	L (on state)

positive logic: Y $\overline{A + B}$ or \overline{AB}

logic diagram (positive logic)

schematic (each driver)

Pin numbers shown are for D, JG, and P packages.

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CON	DITIONE	SN55454	SN55454B		SN75454B		
	FARAMETER	TEST COM	JIIONS	MIN, TYP [§]	MAX	MIN	MIN TYP [§] MAX		UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	II = -12 mA	- 1.2	-1.5		- 1.2	-1.5	v
юн	High-level output current	$V_{CC} = MIN,$ $V_{OH} = 30 V$	$V_{IL} = 0.8 V$	·····	300			100	μA
Ve	VOL Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 mA$	V _{IH} = MIN	0.25	0.5		0.25	0.4	
VOI.	Low-level butput voltage	$V_{CC} = MIN,$ $I_{OL} = 300 mA$	V _{IH} = MIN,	0.5	0.В		0.5	0. 7	v
ų	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5 V		1			1	mA
μн	High-level input current	$V_{CC} = MAX,$	$V_{1} = 2.4 V$		40			40	μA
ΙL	Low-level input current	$V_{CC} = MAX,$	$V_{1} = 0.4 V$	-1	- 1.6		- 1	- 1.6	mA
1CCH	Supply current, outputs high	$V_{CC} = MAX,$	V ₁ = 0	13	17		13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	$V_{1} = 5 V$	61	79		61	79	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [§] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, VCC = 5 V, TA = $25 \,^{\circ}$ C

PARAMETER		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level or	utput				27	35	ns
tPHL Propagation delay time, high-to-low-level or	utput	i _O ≈ 200 mA	. Cլ≃ 15 pF,		24	35	ns
tTLH Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		5	8	ns	
tTHL Transition time, high-to-low-level output					7	12	ns
VOH High-level output voltage after switching	SN55454B	$V_{\rm S} = 20 \ V_{\rm c}$	I _O ≈ 300 mA,		Vg-6.5	5	
	. 54B	See Figure 2		Vg-6.	5		mV

SN55451B THRU SN55454B SN75451B THRU SN75454B DUAL PERIPHERAL DRIVERS

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, Z₀ \approx 50 Ω . B. C_L includes probe and jig capacitance.

 $C_{I} = 15 \text{ pF}$

(Saa Note B)

FIGURE 1. SWITCHING TIMES OF COMPLETE DRIVERS

NOTES: A. The pulsa ganarator has tha following characteristics: PRR \leq 12.5 kHz, Z₀ = 50 Ω . B. C_L includas probe and jig capacitanca.

GND SUB

,453B

'454B [0.4 ∨

TEST CIRCUIT

OUTPUT

VOLTAGE WAVEFORMS

3 V

nν

3 V

0 V

۷он

Voi

TYPICAL CHARACTERISTICS

NOTE 5: These parameters must be measured using pulse techniques, t_w = 300 μ s, duty cycle \leq 2%.

FIGURE 3

SN55461 THRU SN55464 SN75461 THRU SN75463 DUAL PERIPHERAL DRIVERS

D2218, DECEMBER 1976-REVISED MAY 1990

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF SERIES 55461/75461

11.00	LOGIC	PACKAGES
· · ·	AND	FK,JG
· · 62	NAND	FK,JG
·. ·63	OR	FK,JG
·. · · 64	NOR	FK,JG
SN75461	AND	D,P
SN75462	NAND	D,P
SN75463	OR	D,P

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55454B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line dr**O**ers, and memory drivers.

The SN55461/SN75461, SN55462/SN75462, SN55463/SN75463, and SN55464 are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic), with the output of the gates internally connected to the bases of the n-p-n output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of -55 °C to 125 °C; Series SN75461 drivers are characterized for operation from 0 °C to 70 °C.

_	_		-
1 A 🗌	1	08	□ vcc
1 B [2	7	_ 2B
1 Y 🗍	3	6	🗌 2 A
GND [4	5] 2Y

SN55461, SN55462, SN55463, SN55464, . . . FK PACKAGE (TOP VIEW)

	_	N C C A A A A A A A A A A A A A A A A A	
	ſ	3 2 1 20 19	
NC	4	18 [NC
1B] 5	17 []	2B
NC 1Y NC]6	16 [NC
1 Y] 7	15 [2A
NC	8 [14 [NC
		9 10 11 12 13	
		NC AC BND	

NC-No internal connection

SN55461 THRU SN55464 SN75461 THRU SN75463 DUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55461 SN55462 SN55463 SN55464	SN75461 SN75462 SN75463	UNIT				
Supply voltage, V _{CC} (see Note 1)		7	7	V				
Input voltage		5.5	5.5	V				
emitter voltage (see Note 2)			5.5	V				
state output voltage			35	V				
Continuous collector or output current (see Note 3)		400	mA					
Peak collector or output current $\{t_w \leq 10 \text{ ms, duty cycle } \leq 50\%$, see Note 3)			500	mA				
Continuous total power dissipation		See Dissi	pation Rating T	Table				
Operating free-air temperature range, TA		-55 to '	0 to 70	°C				
Storage temperature range		-65 to .	-65 to .	°C				
Case temperature for 60 seconds	FK package	260		°C				
Lead temperature 1,6 mm {1/16 inch} from case for 60 seconds	JG package	300		°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package		260	°C				

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise specified.

2. This is the voltage between two emitters of a multiple-emitter transistor.

3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	_
FK	1375 mW	11.0 mW/°C	88 0 mW	275 mW
JG	105 0 mW	8.4 mW/°C	672 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	-

recommended operating conditions

· · · · · · · · · · · · · · · · · · ·	SN55 THRU I		SN7546 RU	-	UNIT	
	.	MAX	MIN		MAX	
Supply voltage, VCC	÷	5 5.5	4.75	5	5.25	v
High-level input voltage, VIH	2		2			V
Low-level input voltage, VIL		0.8		-		v
Operating free-air temperature, TA	- 55	125	0		,	°C

SN55461, SN75461 **DUAL PERIPHERAL POSITIVE AND DRIVERS**

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS [†]		SN55461			:	1	UNIT	
		TEST CON	DITIONS	MIN TYP [‡] MAX		MAX	MIN TYP [‡] MAX		UNIT	
VIK	Input clamp voltage	$V_{CC} = MIN,$	lį ≕ −12 mA		-1.2	- 1.5		- 1.2	- 1.5	V
юн	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	$V_{IH} = MIN,$			300			100	μA
M		$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$	$V_{IL} = 0.8 V_{,}$		0.25	0.5		0.25	0.4	v
VOL	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 300 \text{ mA}$	V _{IL} = 0.8 V,	0.5	0.8	0.5	0.7			
η	Input current at maximum input voltage	V _{CC} = MAX,	$V_{l} = 5.5 V$			1			1	mA
Чн	High-level input current	$V_{CC} = MAX,$	$V_{1} = 2.4 V$			40			40	μA
۱L	Low-level input current	$V_{CC} = MAX,$	$V_{1} = 0.4 V$		- 1	- 1.6		- 1	- 1.6	mA
Іссн	Supply current, outputs high	V _{CC} = MAX,	V ₁ = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	VI = 0		56	76		56	76	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditons. [‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	TEST CON	MIN	TYP	MAX	UNIT	
tPLH Propagation delay time, low-to-high-level output				30	55	ns
tpHL Propagation delay time, high-to-low-level output	l _O ≈ 200 mA, R _L = 50 Ω,	$C_{L} = 15 pF_{c}$		25	40	ns
tTLH Transition time, low-to-high-level output		See Figure 1		8	20	ns
tTHL Transition time, high-to-low-level output				10	20	ns
ISN55461	V _S = 30 V,	l ₀ ≈ 300 mA,		Vs-10)	mV
VOH High-level output voltage after switching . 5461	See Figure 2		Vs-10	•		niv.

SN55462, SN75462 DUAL PERIPHERAL POSITIVE-NAND DRIVERS

B

Δ

L L

L H

H L

н н

positive logic: $Y = \overline{AB} \text{ or } \overline{A} + \overline{B}$

Ŷ

H (off state)

H (off state)

H (off state)

L (on state)

Resistor valuas shown are nominal.

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS [†]		\$ 162		SN75462			UNIT	
	FARAWELER	TEST CON	ST CONDITIONS.		- n n : -	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	l∣ = −12 mA		-1.2	~ 1.5		- 1.2	- 1.5	V
юн	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	$V_{IL} = 0.8 V,$			300			100	μA
Vai	Low-level output voltage $I_{OL} \approx 100 \text{ mA}$	0.5		0.25	0.4					
VOL	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 300 \text{ mA}$	$V_{IH} = MIN$,		0.5	0.8		0.5	0.7	V
ų	Input current at maximum input voltage	V _{CC} ≕ MAX,	V _I = 5.5 V			1			1	mA
Чн	High-level input current	V _{CC} = MAX,	VI = 2.4 V			40			40	μA
ЧL	Low-level input current	V _{CC} = MAX,	$V_{l} = 0.4 V$		- 1.1	- 1.5		1.1	-1.6	mA
Іссн	Supply current, outputs high	V _{CC} = MAX,	VI ≈ 0		13	17		· 13	17	mA
ICCL	Supply current, outputs low	V _{CC} = MAX,	V ₁ ≕ 5 V		61	76		61	76	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER	TEST CO	MIN	TYP	MAX	11.11	
tpLH Propagation delay time, low-to-high-level output				45	65	- :
tpHL Propagation delay time, high-to-low-level output	io ≈ 200 mA, R _L = 50 Ω,	CL = 15 pF,		30	50	ns
tTLH Transition time, low-to-high-level output		See Figure 1		13	25	ns
tTHL Transition time, high-to-low-level output				10	20	ns
VOH High-level output voltage after switching	V _S = 30 V,	lo ≈ 300 mA,		Vs-10)	
VOH High level output voltage arter switching SN7E .	See Figure 2		Vs-10			m∨

SN55463, SN75463 DUAL PERIPHERAL POSITIVE-OR DRIVERS

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS [†]		SN 55463			SN75463			UNIT
		TEST CON	TEST CONDITIONS.		TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	input clamp voltage	$V_{CC} = MIN,$	$h_f = -12 \text{ mA}$		- 1.2	-1.5		-1.2	- 1.5	v
юн	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	$V_{IH} = MIN,$			300			100	μA
Ve		VCC = MIN, VIL = 0.8 V, 0.25 0.5 VDL = 100 mA 0.25 0.5 0.5		0.25	0.4	v				
VOL	Low-level output voltage	V _{CC} = MIN, I _{OL} = 300 mA	V _{IL} = 0.8 V,		0.5	0.8		0.5	0.7	v
łj	Input current at maximum input voltage	$V_{CC} = MAX,$	$V_l = 5.5 V$			1		_	1	mA
hΗ	High-level input current	$V_{CC} = MAX,$	$V_{1} = 2.4 V$	-		40			40	μA
4L	Low-level input current	$V_{CC} = MAX,$	$V_{1} = 0.4 V$		- 1	-1.6		- 1	- 1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX,$	V ₁ = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX,$	V _I = 0		58	76		58	76	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

L H

ΗL

н н

positive logic:

H (off state)

H (off state)

H (off state)

Y = A + B or $\overline{\overline{A} \overline{B}}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH Propagation delay time, lo	w-to-high-level output		,		30	55	ns
tpHL Propagation delay time, high-to-low-level output		0 ≈ 200 mA,	$C_{L} = 15 pF,$		25	40	ns
tTLH Transition time, low-to-high-level output		$R_{\perp} = 50 \Omega$,	See Figure 1		8	25	ns
tTHL Transition time, high-to-low-level output					10	25	ns
VOH High-level output voltage	SN55463	$V_{\rm S} = 30 V_{,}$	l _O ≈ 300 mA,		V _S -10)	
VOH migh-level butput voltage	SN75463	See Figure 2		V _S – 10			m∨

SN55464 DUAL PERIPHERAL POSITIVE-NOR DRIVER

[†] This symbol is in accordance with ANSI/IEEE STD 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the JG package.

FUNCTION TABLE (EACH DRIVER)

A	В	Y
L	L	H (off state)
L	н	L (on state)
н	L	L (on state)
Н	н	L (on state)

positive logic:

 $\mathbf{Y} = \overline{\mathbf{A} + \mathbf{B}} \text{ or } \overline{\mathbf{A}} \overline{\mathbf{B}}$

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS [†]	5	SN55464		
		TEST CONDITIONS	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MiN$, $i_{J} = -12 \text{ mA}$		-1.2	- 1.5	v
іон	High-level output current	$V_{CC} = MIN, V_{IL} = 0.8 V,$ $V_{OH} = 35 V$			300	μA
Vai	Low-level output voltage	$V_{CC} = MIN, V_{IH} = MIN,$ $I_{QL} = 100 \text{ mA}$		0.25	0.5	v
VOL		$V_{CC} = MIN, V_{IH} = MIN,$ $I_{OL} = 300 \text{ mA}$		0.5	0.8	v
4	Input current at maximum input voltage	$V_{CC} = MAX, V_{I} = 5.5 V$			1	mA
ЧΗ.	High-level input current	$V_{CC} = MAX, V_{j} = 2.4 V$			40	μA
hι	Low-level input current	$V_{CC} = MAX, V_I = 0.4 V$		- 1	1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX, V_{j} = 0$		14	19	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX, V_{i} = 5 V$		67	85	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER		TEST CONDITIONS		MIN	түр	MAX	UNIT	
^t PLH	Propagation delay time, low-to-high-level	output				40	65	ns
^t PHL	tpHL Propagation delay time, high-to-low-level output		$I_0 \approx 200 \text{ mA},$	$C_L = 15 pF$,		30	50	ns
TLH	tTLH Transition time, low-to-high-level output		$R_L = 50 \Omega$,	See Figure 1		8	20	ns
THL	tTHL Transition time, high-to-low-level output					10	20	ns
VOH Hig	High-level output voltage after switching	SN55464	Vs = 30 V,	io ≈ 300 mA,	1	Vs-10)	m٧
		SN75464	See Figure 2		Vs-10			πiv

SN55461 THRU SN55464 SN75461 THRU SN75463 DUAL PERIPHERAL DRIVERS

FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, Z_o = 50 $\Omega.$ B. CL includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

SN75372 DUAL MOSFET DRIVER

D3004, JULY 1986

- Dual Circuits Capable of Driving High-Capacitance Loads at High Speeds
- Output Supply Voltage Range Up to 24 V
- Low Standby Power Dissipation

description

The SN75372 is a dual NAND gate interface circuit designed to drive power MOSFETs from TTL inputs. It provides high current and voltage levels necessary to drive large capacitive loads at high speeds. The device operates from a VCC1 of 5 V and a VCC2 of up to 24 V.

The SN75372 is characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}.$

D OR P PACKAGE (TOP VIEW) 1A 1 8 VCC1 E 2 7 1Y 2A 3 6 2Y GND 4 5 VCC2

logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$

logic diagram (positive logic)

schematic (each driver)

PRODUCTION DATA decuments contain infermetien current an ablication date. Preducts conferm to specific -1 -1 per the terms of Texas Instruments standar -4 - enty. Preductian precessing daes not necessarily include testing of all parameters.

Copyright © * Texas Instruments Incorporated

SN75372 DUAL MOSFET DRIVER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range of V _{CC1} (see Note 1) Supply voltage range of V _{CC2} Input voltage	\cdots -0.5 V to 25 V
mput foldage	$\cdot \cdot $
Peak output current ($t_W < 10$ ms, duty cycle $< 50\%$):	Sink
	Source
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA	
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 :	seconds 260°C

NOTE 1: Voltage values are with respect to network ground terminal.

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
P	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC1	4.75	5	5.25	v
Supply voltage, VCC2	4.75	20	24	V
High-lavel input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output current, IOH			- 10	mA
Low-level output current, IOL			40	mÂ
Operating free-air temperature, TA	0		70	°C

	PARAMETER		TEST CONDI	TIONS	MIN	TYP [†]	MAX	UNIT	
VIK	Input clamp voltage		lj = -12 mA				-1.5	v	
∨он	High-level output voltage		V _{IL} = 0.8 V,	loh = -50 μA	V _{CC2} -1.3	V _{CC2} -0.8	•	v	
чŲн	riigit level output vortage		V _{IL} = 0.8 V,	$I_{OH} = -10 \text{ mA}$	V _{CC2} - 2.5	V _{CC2} -1.8			
			V _{IH} = 2 V,	$I_{OL} = 10 \text{ mA}$		0.15	0.3		
VOL	Low-level output voltage		$V_{CC2} = 15 V \text{ to } 24 V,$ IOL = 40 mA	$V_{\text{IH}} = 2 \text{ V},$		0.25	0.5	v	
VF	Output clamp diode forward voltage		V _j = 0,	iF = 20 mA			1.5	v	
4	Input current at maximum input voltage		$V_1 = 5.5 V$				1	mA	
Чн	High-level input current Any A		V ₁ = 2.4 V				40 80	μA	
l IL	Low-level input current Any A		V _l = 0.4 V			- 1 - 2	-1.6 -3.2	mA	
ICC1(H)	Supply current from V _C both outputs high	C1,	V _{CC1} = 5.25 V,	V _{CC2} = 24 V,		2	4	mA	
ICC2(H)	Supply current from V _C both outputs high	C 2 ,	All inputs at 0 V,	No load			0.5	mA	
ICC1(L)	Supply current from V _{CC1} , both outputs low		V _{CC1} = 5.25 V,	V _{CC2} = 24 V,		16	24	mA	
CC2(L)	Supply current from V _{CC2} , both outputs low		All inputs at 5 V,	No load		7	13	mA	
1CC2(S)	Supply current from VC standby condition	C2,	$V_{CC1} = 0,$ All inputs at 5 V,	V _{CC2} = 24 V, No load			0.5	mA	

electrical characteristics over recommended ranges of VCC1, VCC2, and operating free-air temperature (unless otherwise noted)

 $^{\dagger}All$ typical values are at V_{CC1} = 5 V, V_{CC2} = 20 V, and T_A = 25 °C.

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 20 V, T_A = $25 \,^{\circ}$ C

PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
t _{DLH} Delay time, low-to-high-level output			20	35	n\$
tDHL Delay time, high-to-low-level output	C ₁ = 390 pF,		10	20	ns
tTLH Transition time, low-to-high-level output	$R_{\rm D} = 10 \ \Omega,$		20	30	ns
t _{THL} Transition time, high-to-low-level output	See Figure 1		20	30	ns
tpLH Propagation delay time, low-to-high-level output		10	40	65	ns
tPHL Propagation delay time, high-to-low-level output		10	30	50	ns

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{out} \approx 50 \ \Omega$. B. C_L includes probe and µg capacitance.

TYPICAL CHARACTERISTICS

NOTE: For $R_D = 0$, operation with $C_L > 2000 \text{ pF}$ violates absolute maximum current rating.

APPLICATIONS INFORMATION

driving power MOSFETs

The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pull-up resistor is not satisfactory for high-speed applications. In Figure 12(a), an IRF151 power MOSFET switching an inductive load is driven by an open-collector transistor driver with a 470- Ω pull-up resistor. The input capacitance (C_{iss}) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the combination of C_{iss} and the pull-up resistor is shown in Figure 12(b).

FIGURE 12. POWER MOSFET DRIVE USING SN75447

APPLICATIONS INFORMATION

A faster, more efficient drive circuit uses an active pull-up as well as an active pull-down output configuration, referred to as a totem-pole output. The SN75372 driver provides the high speed, totem-pole drive desired in an application of this type, see Figure 13(a). The resulting faster switching speeds are shown in Figure 13(b).

FIGURE 13. POWER MOSFET DRIVE USING SN75372

Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as shown by the equation

$$I_{pk} = \frac{VC}{t_r}$$

where C is the capacitive load, and t_r is the desired rise time. V is the voltage that the capacitance is charged to. In the circuit shown in Figure 13(a), V is found by the equation

$$V = VOH - VOL$$

Peak current required to maintain a rise time of 100 ns in the circuit of Figure 13(a) is

$$I_{PK} = \frac{(3-0)4(10-9)}{100(10-9)} = 120 \text{ mA}$$

Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151. With a V_{CC} of 5 V, and assuming worst-cast conditions, the gate drive voltage is 3 V.

For applications in which the full voltage of V_{CC2} must be supplied to the MOSFET gate, the SN75374 QUAD MOSFET driver should be used.

THERMAL INFORMATION

power dissipation precautions

Significant power may be dissipated in the SN75372 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. Figure 5 shows the power dissipated in a typical SN75372 as a function of load capacitance and frequency. Average power dissipated by this driver is derived from the equation

 $P_{T}(AV) = P_{DC}(AV) + P_{C}(AV) + P_{S}(AV)$

where $P_{DC(AV)}$ is the steady-state power dissipation with the output high or low, $P_{C(AV)}$ is the power level during charging or discharging of the load capacitance, and $P_{S(AV)}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are

where the times are as defined in Figure 14.

 P_L , P_H , P_{LH} , and P_{HL} are the respective instantaneous levels of power dissipation, C is the load capacitance. V_C is the voltage across the load capacitance during the charge cycle shown by the equation

$$V_C = V_{OH} - V_{OL}$$

PS(AV) may be ignored for power calculations at low frequencies.

THERMAL INFORMATION

In the following power calculation, both channels are operating under identical conditions: $V_{OH} = 19.2$ V and $V_{OL} = 0.15$ V with $V_{CC1} = 5$ V, $V_{CC2} = 20$ V, $V_C = 19.05$ V, C = 1000 pF, and the duty cycle = 60%. At 0.5 MHz, $P_{S(AV)}$ is negligible and can be ignored. When the output voltage is high, I_{CC2} is negligible and can be ignored.

On a per-channel basis using data sheet values

$$P_{DC}(AV) = \left[(5 V) \left(\frac{2 mA}{2} \right) + (20 V) \left(\frac{0 mA}{2} \right) \right] (0.6) + \left[(5 V) \left(\frac{16 mA}{2} \right) + (20 V) \left(\frac{7 mA}{2} \right) \right] (0.4)$$

PDC(AV = 47 mW per channel

Power during the charging time of the load capacitance is

Total power for each driver is

 $P_{T(AV)} = 47 \text{ mW} + 182 \text{ mW} = 229 \text{ mW}$

and total package power is

 $P_{T(AV)} = (229)(2) = 458 \text{ mW}.$

D3004, SEPTEMBER 1986

- Quadruple Circuits Capable of Driving High-Capacitance Loads at High Speeds
- Output Supply Voltage Range from 5 V to 24 V
- Low Standby Power Dissipation
- V_{CC3} Supply Maximizes Output Source Voltage

description

The SN75374 is a quadruple NAND interface circuit designed to drive power MOSFETs from TTL inputs. It provides the high current and voltage necessary to drive large capacitive loads at high speeds.

The outputs can be switched very close to the V_{CC2} supply rail when V_{CC3} is about 3 V higher than V_{CC2}. The V_{CC3} pin can also be tied directly to V_{CC2} when the source voltage requirements are lower.

The SN75374 is characterized for operation from 0 ^{o}C to 70 $^{o}\text{C}.$

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

		PACK P VIEW	
Vcc2 [1Y] 1A] 1E1] 1E2] 2A] 2Y] GND [1 2 3 4 5 6 7 8	16 15 14 13 12 11 10	VCC1 4Y 4A 2E2 2E1 3A 3Y

schematic (each driver)

logic diagram (positive logic)

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range of V _{CC1} , (see Note 1)	-0.5 V to 7 V
Supply voltage range of V _{CC2}	-0.5 V to 25 V
Supply voltage range of V _{CC3}	
Input voltage	[.] 5.5 V
Peak output current ($t_W < 10$ ms, duty cycle $< 50\%$): Sink	500 mA
Source	
Continuous total power dissipation See Dissipat	
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	TA = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC1}	4.75	5	5,25	v
Supply voltage, V _{CC2}	4.75	20	24	V
Supply voltage, V _{CC3}	VCC2	24	28	V
Voltage difference between supply voltages: VCC3 - VCC2	0	4	10	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output current, IOH			- 10	mA
Low-level output current, IOL			40	mA
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended ranges of VCC1, VCC2, VCC3, and operating free-air	r
temperature (unless otherwise noted)	

I	PARAMETER			TEST C	ONDITIONS		MIN	TYP [†]	MAX	UNIT
VIK	input clamp volt	tage	lj = -12	mA					-1.5	V
Vон	High-level output voltage			V _{CC2} +3 V, V _{CC2} ,		= -10 mA = -50 μA	V _{CC2} -1.3 V _{CC2} -1	V _{CC2} -0.1 V _{CC2} -0.9 V _{CC2} -0.7 V _{CC2} -1.8		v
VOL	Low-level output voltage		V _{IH} = 2	V,	$\frac{I_{OL} = 10 \text{ mA}}{V_{IH} = 2 \text{ V}, I_{OL}}$	= 40 mA		0.15 0.25	0.3 0.5	v
VF	Output clamp di forward voltage		V _I = 0,		IF = 20 mA				1.5	v
կ	Input current at maximum input		V ₁ = 5.5	v				······	1	mA
ін	- F	Any A Any E	$V_{ } = 2.4$	v					40 80	μΑ
կլ		Any A Any E	VI = 0.4	v				1 -2	-1.6 -3.2	mA
ICC1(H)	Supply current V _{CC1} , all outpu	ıts high		5.25 V.	V _{CC2} = 24 V,			4	8	
	Supply current V _{CC2} , all outpu	from Its high	V _{CC3} =	28 V,	, All inputs at 0 V,		- 2.2 0.2	0.25	mA	
¹ CC3(H)	Supply current V _{CC3} , all outpu	its high						2.2	3.5	
ICC1(L)	Supply current V _{CC1} , all outpu	ts low	Vcc1 =	$C_{1} = 5.25 V, V_{CC2}$	$V_{CC2} = 24 V_{c}$			31	47	
ICC2(L)	Supply current	from its low			All inputs at 5 V,				2	mA
ICC3(L)	VCC3, all bulpt	its low						16	27	
ICC2(H)		uts high	V _{CC1} =	5.25 V, 24 V,	$V_{CC2} = 24 V,$ All inputs at 0 V,				0.25	- mA
ICC3(H)	Supply current from VCC3, all outputs high		No load						0.5	
CC2(S)	Supply current V _{CC2} , standby condition		V _{CC1} =		$V_{CC2} = 24 V,$				0.25	mA
ICC3(S)	Supply current V _{CC3} , standby condition		VCC3 = No load	∠4 V,	All inputs at 0 V,				0.5	- mA

[†]All typical values are at V_{CC1} = 5 V, V_{CC2} = 20 V, V_{CC3} = 24 V, and T_A = 25 °C except for V_{OH} for which V_{CC2} and V_{CC3} are as stated under test conditions.

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 20 V, V_{CC3} = 24 V, TA = 25 °C

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	Turar T
tDLH Delay time, low-to-high-level output			20	30	
tDHL Delay time, high-to-low-level output	$C_{L} = 200 \text{ pF},$		10	20	ns
t _{TLH} Transition time, low-to-high-level output			20	30	ns
t _{THL} Transition time, high-to-low-level output	R _D = 24 Ω, See Figure 1		20	30	ns
tPLH Propagation delay time, low-to-high-level output	See Figure 1	10	40	60	ns
tPHL Propagation delay time, high-to-low-level output		10	30	50	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, $Z_{out} \approx 50 \ \Omega$. B. C_L includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES, EACH DRIVER

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

driving power MOSFETs

The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pull-up resistor is not satisfactory for high-speed applications. In Figure 13(a), an IRF151 power MOSFET switching an inductive load is driven by an open-collector transistor driver with a 470- Ω pull-up resistor. The input capacitance (Ciss) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the product of input capacitance and the pull-up resistor is shown in Figure 13(b).

FIGURE 13. POWER MOSFET DRIVE USING SN75447

A faster, more efficient drive circuit uses an active pull-up as well as an active pull-down output configuration, referred to as a totem-pole output. The SN75374 driver provides the high-speed totem-pole drive desired in an application of this type, see Figure 14(a). The resulting faster switching speeds are shown in Figure 14(b).

FIGURE 14. POWER MOSFET DRIVE USING SN75374

APPLICATIONS INFORMATION

Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as shown by the equation

$$I_{pk} = \frac{VC}{t_r}$$

where C is the capacitive load, and t_r is the desired rise time. V is the voltage that the capacitance is charged to. In the circuit shown in Figure 14(a), V is found by the equation

$$V = VOH - VOL$$

Peak current required to maintain a rise time of 100 ns in the circuit of Figure 14(a) is

$$I_{PK} = \frac{(3-0)4(10-9)}{100(10-9)} = 120 \text{ mA}$$

Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151. With a V_{CC} of 5 V, and assuming worst-case conditions, the gate drive voltage is 3 V.

For applications in which the full voltage of V_{CC2} must be supplied to the MOSFET gate, V_{CC3} should be at least 3 V higher than V_{CC2}.

THERMAL INFORMATION

power dissipation precautions

Significant power may be dissipated in the SN75374 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. Figure 12 shows the power dissipated in a typical SN75374 as a function of frequency and load capacitance. Average power dissipated by this driver is derived from the equation

$$PT(AV) = PDC(AV) + PC(AV) + PS(AV)$$

where $P_{DC(AV)}$ is the steady-state power dissipation with the output high or low, $P_{C(AV)}$ is the power level during charging or discharging of the load capacitance, and $P_{S(AV)}$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are

$$PDC(AV) = \frac{P_{H}t_{H} + P_{L}t_{L}}{T}$$
$$PC(AV) \approx C V^{2}C f$$
$$PS(AV) = \frac{P_{L}Ht_{L}H + P_{H}Lt_{H}L}{T}$$

FIGURE 15. OUTPUT VOLTAGE WAVEFORM

where the times are as defined in Figure 15.

THERMAL INFORMATION

 P_L , P_H , P_{LH} , and P_{HL} are the respective instantaneous levels of power dissipation, C is the load capacitance. V_C is the voltage across the load capacitance during the charge cycle shown by the equation

PS(AV) may be ignored for power calculations at low frequencies.

In the following power calculation, all four channels are operating under identical conditions: f = 0.2 MHz, $V_{OH} = 19.9$ V and $V_{OL} = 0.15$ V with $V_{CC1} = 5$ V, $V_{CC2} = 20$ V, $V_{CC3} = 24$ V, $V_C = 19.75$ V, C = 1000 pF, and the duty cycle = 60%. At 0.2 MHz for $C_L < 2000$ pF, $P_S(AV)$ is negligible and can be ignored. When the output voltage is low, I_{CC2} is negligible and can be ignored.

On a per-channel basis using data sheet values

$$P_{DC(AV)} = \left[(5 \text{ V}) \left(\frac{4 \text{ mA}}{4} \right) + (20 \text{ V}) \left(\frac{-2.2 \text{ mA}}{4} \right) + (24 \text{ V}) \left(\frac{2.2 \text{ mA}}{4} \right) \right] (0.6) + \left[(5 \text{ V}) \left(\frac{31 \text{ mA}}{4} \right) + (20 \text{ V}) \left(\frac{0 \text{ mA}}{4} \right) + (24 \text{ V}) \left(\frac{16 \text{ mA}}{4} \right) \right] (0.4)$$

PDC(AV = 58.2 mW per channel

Power during the charging time of the load capacitance is

 $P_{C(AV)} = (1000 \text{ pF}) (19.75 \text{ V})^2 (0.2 \text{ MHz}) = 78 \text{ mW} \text{ per channel}$

Total power for each driver is

 $P_{T(AV)} = 58.2 \text{ mW} + 78 \text{ mW} = 136.2 \text{ mW}$

The total package power is

 $P_{T(AV)} = (136.2) (4) = 544.8 \text{ mW}$

D2848, FEBRUARY 1985-REVISED NOVEMBER 1989

- Saturating Outputs With Low On Resistance
- Very Low Standby Power . . . 53 mW Max
- High-Impedance MOS- or TTL-Compatible Inputs
- Standard 5-V Supply Voltage
- No Output Glitch During Power-Up or Power-Down
- Output Clamp Diodes for Transient Suppression
- 2-W Power Package . . . 60 °C/W R_{0JA}
- 600-mA Output Current
- 35-V Switching Voltage

description

The SN75435 guadruple peripheral driver is designed for use in systems requiring high current, high voltage, and high load power. It features four inverting open-collector drivers with a common enable input that, when taken low, disables all four outputs. Each driver is protected against load shorts with its own latching over-current shutdown circuitry, which will turn the output off when a load short is detected. A short on one load will not affect operation of the other three drivers. The latch for the shutdown will hold the output off until the input or enable pin is taken low and then high again. A delay circuit is incorporated in the overcurrent shutdown to allow load capacitance of up to 5 nF at 35 V.

Applications include relay drivers, lamp drivers, solenoid drivers, motor drivers, LED drivers, line drivers, logic buffers, hammer drivers, and memory drivers.

The SN75435 is characterized for operation from 0° C to 70 °C.

FUNCTION TABLE (EACH NAND DRIVER)

H = high level, L = low level X = irrelevant

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contein information current es of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Productian processing does not necesserily include testing of all parameters.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range of VCC (see Note 1)	7 V
Input voltage	5.5 V
Output supply voltage	70 V
Output diode clamp current	1 A
Continuous total power dissipation	
at (or below) 25 °C free-air temperature (see Note 2)	. 2075 mW
Operating free-air temperature range, TA 0	°C to 70°C
Storage temperature range	'C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate linearly at the rate of 16.6 mW/°C.

recommended operating conditions

MIN 4.75	NOM	MAX	UNIT
4 75			
4./5	5	5.25	V
2			V
		0.8	V
		35	V
		·	mA
		აი	nF
0		70	°C
	0	0	

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDI	TIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	V _{CC} = 4.75 V,	$i_{1} = -12 \text{ mA}$		-0.9	-1.5	v
юн	High-level output current	$V_{CC} = 4.75 V,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, V _{OH} = 70 V			100	μA
VOL	Low-level output voltage	$V_{CC} = 4.75 V,$ $V_{IH} = 2 V$	$1_{0L} = 300 \text{ mA}$ $1_{0L} = 600 \text{ mA}$		0.25 0.55	0.5 1	v
VB	Output clamp diode reverse voltage	V _{CC} = 4.75 V,		70	100		v
VF	Output clamp diode forward voltage	IF = 600 mA			1.2	1.6	V
ųн	High-level input current	V _{CC} = 5.25 V,	$V_{j} = 5.25 V$		0 .01	10	μA
hL.	Low-level input current	$V_{CC} = 5.25 V_{,}$	VI = 0.8 V		-05	- 10	μA
	Over-current shutdown current	V _{CC} = 4.75 V to 5.25 V		650			mA
ІССН	Supply current, outputs high	V _{CC} = 5.25 V,	$V_i = 0$	1	υ	10	mA
ICCL	Supply current, outputs low	V _{CC} = 5.25 V,	Vj = 5 V		55	75	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST C OF LITIONS	MIN TYP MAX	UNIT
^t PLH	Propogation delay time, low-to-high-level output		750	ns
^t PHL	Propagation delay time, high-to-low-level output	$C_{L} = 30 \text{ pF}, \text{ R}_{L} = 60 \Omega,$	750	ns
^t TLH	Transition time, low-to-high-level output	See Figure 1	200	ns
tTHL.	Transition time, high-to-low-level output		200	ns
Voн	High-level output voltage after switching	See Figure 2	V _S -10	mV

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: PRR = 100 kHz, Z_{out} = 50 Ω . B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_{out} = 50 Ω . B. CL include probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

4-WINDING STEPPER MOTOR CONTROL CIRCUIT

TIMING DIAGRAM FOR MDTOR CONTROL CIRCUIT

[†]The SN74LS194 is a universal shift register with both shift-right and shift-left capability. In this application SO (pin 9) is wired high and only the shift-right and parallel-load modes are utilized. The logic symbol shown above has been simplified to show only the utilized modes.

[‡]This signal is CW/CCW or CW/CCW depending on motor winding.

D2806, DECEMBER 1986

- Saturating Outputs With Low On-State Resistance
- High-Impedance Inputs Compatible With CMOS, MOS, and TTL Levels
- Very Low Standby Power . . 21 mW Maximum
- High-Voltage Outputs . 70 V Min
- No Output Glitch During Power Up or Power Down
- No Latch-Up Within Recommended Operating Conditions
- Output Clamp Diodes for Transient Suppression
- 2-W Power Package

description

The SN75436, SN75437A, and SN75438 quadruple peripheral drivers are designed for use in systems requiring high current, high voltage, and high load power. Each device features four inverting open-collector outputs with a common enable input that, when taken low, disables all four outputs The envelope of I-V characteristics exceeds the specifications sufficiently to avoid high-current latch-up Applications include driving relays, lamps, solenoids, motors, LEDs, transmission lines, hammers, and other high power-demand devices.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (each NAND driver)

L = low level,X = irrelevant

equivalent schematic of each input

logic diagram (positive logic, each driver)

SELECTION GUIDE

FEATURE	SN75436	SN75437A	SN78 :	[• • • •
Maximum recommended output current	0.5	05	,	「 <u>~</u>
Maximum VOL at maximum IOL	05	05	1	V
Maximum recommended output supply voltage in an inductive switching circuit, VS	50	35	3 5	v

PRODUCTION OATA decuments centain infermatien current as ef publication data Preducts conferm to specificatiens par the terms of Taxes instruments standard warrenty Preducten processing dass not necessarily include tasting of all parematers Copyright © 1986, Texas instruments incorporated

TEXAS T INSTRUMENTS POST OFFICE BOX B65303 · DALLAS, TEXAS 75265

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Output current: SN75436, SN75437A (see Note 1)
SN75438 1.25 A
Output clamp diode current 1.25 A
Output voltage (off-state)
Continuous total power dissipation at (or below) 25 °C free-air temperature
(see Note 2)
Operating free-air temperature range, TA
Storage temperature range
Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds 260 °C

NOTES: 1. All four sections of these circuits may conduct rated current simultaneously; however, power dissipation average over a short time interval must fall within the continuous dissipation ratings.

2. For operation above 25 °C free-air temperature, derate linearly to 1328 mW at 70 °C at the rate of 16.6 mW/ °C.

recommended operating conditions

	SN75436		SN75437A			SN75438				
PARAMETER	MIN	NOM	MAX	MIN	NOM	MAY	MłN	NOM	MAX	
Supply voltage, VCC	4.75	5	5.25	4.75	5		4.75	5	5.25	V
Output current, IOL			0.5			0.5			1	A
Output supply voltage in inductive switching circuit (see Figure 2), VS			50		_	35			35	v
High-level input voltage, VIH	2	_		2			2			V
Low-level input voltage, VIL	1		0.8			0.8			0.8	V
Operating free-air temperature, TA	0		70	0		70	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			5N7543	-	SN75438			UNIT
				MIN	TYP	MAX	MIN	TYPT	MAX	
VIK	Input clamp	$V_{\rm CC} = 4.75 V,$	$I_{i} = -12 \text{ mA}$		-0.9	- 1.5		-0.9	- 1.5	v
юн	High-level output current	$V_{CC} = 4.75 V,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, V _{OH} = ⁷ 0 V		1	100		1	100	μA
			l <u>оL</u> = . тА		0.14	0.25		0.14	0.25	
	Level for all an environmental second	$V_{CC} = 4.75 V,$	IOL = mA	· · ·	0.28	0.5		0.28	0.5	v
VOL	Low-level output voltage	V _{IH} = 2 ∨	IOL = 750 mA					0.42	0.75	ľ
			$t_{OL} = 1 A$					0.60	1	
V _{R(K)}	Output clamp diode reverse voltaga	$V_{\rm CC} = 4.75 V_{\rm c}$	I _R = 100 μA	70	100		70	100		v
	Output clamp diode	IF = 500 mA			1	1.6		1	1.6	
VF(K)	forward voltage	IF = 1 A						1.2	2	
ηн	High-level input current	$V_{CC} = 5.25 V,$	V _I = 5.25 V		0.1	10		0.1	10	μA
ĥΕ	Low-level input current	$V_{CC} = 5.25 V,$	$V_{ } = 0.8 V$		-0.25	- 10		-0.25	- 10	μA
ссн	Supply current, outputs high	$V_{CC} = 5.25 V,$	V ₁ = 0		1	4		1	4	mA
ICCL	Supply current, outputs low	V _{CC} = 5.25 V,	VI = 5 V		45	65		45	65	mA

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER		TEST CONDITIONS			түр	MAX	UNIT
^t PLH	Propagation delay time, lov	v-to-high-level output				1950	5000	ns
tPHL	Propagation delay time, hig	h-to-low-level output	C _L = 30 pF,	$R_L = 60 \Omega$,		150	500	ns
^t TLH	tTLH Transition time, low-to-high-level output		See Figure 1			40		ns
THL	tTHL Transition time, high-to-low-level output		1		36			ns
		SN75436	$V_{S} = 50 V,$ R _L = 100 Ω ,	l _O ≈ 500 mA, See Figure 2	V _S – 10			mV
v _{он}	High-level output voltage, after switching	SN75437A	$V_{S} = 35 V,$ R _L = 70 Ω ,	l _O ≈ 500 mA, See Figure 2	V _S -10 V _S -10			mV
		SN75438	$V_{S} = 35 V,$ R _L = 35 Ω,	t _O ≈ 1 A, See Figure 2				mV

NOTES: A. The pulse generator has the following characteristics: PRR = 100 kHz, Z_0 = 50 Ω . B. CL includes probe and jig capacitance.

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

> TEXAS VI INSTRUMENTS

FIGURE 2. LATCH-UP TEST

SN75439 QUADRUPLE PERIPHERAL DRIVER

D3116, MAY 1988 - REVISED NOVEMBER 1989

- 1.3-A Current Capability Each Channel
- Saturating Outputs With Low On-State Resistance
- Two Inverting and Two Noninverting Driver Channels With Common Active-Low Enable input
- Key Application Is as a Complete Full-Step 4-Phase DC Stepper Motor Driver Using Only Three Directly Connected Logic Control Signal Lines From Standard Microprocessors
- High-Impedance Inputs Compatible With TTL or CMOS Levels
- Very Low Standby Power . . . 10 mW Typ
- 50-V Noninductive Switching Voltage Capability
- 40-V Inductive Switching Voltage Capability
- Output Clamp Diodes for Inductive Transient Protection
- 2-W Power Package

description

The SN75439 quadruple peripheral driver is designed for use in systems requiring high current, high voltage, and high load power. The device features two inverting and two noninverting open-collector outputs with a common-enable input that, when taken high, disables all four outputs. By pairing each inverting channel with a corresponding noninverting channel (such as channel 1 paired with channel 2 and channel 3 paired with channel 4), the device may be used as a complete full-step 4-phase dc stepper motor driver using only two input logic control signals plus the enable signal, as shown in Figure 3. Other applications include driving relays, lamps, solenoids, motors, LEDs, transmission lines, hammers, and other high-power-demand loads.

The SN75439 is characterized for operation from 0°C to 70°C.

FUNCTION TABLES (Each Channel 1 or Channel 4 Driver)

inP	UTS	OUTPUT
Α	G	Y
H	L	L
L	х	н
Х	н	н

(Each Channel 2 or Channel 3 Driver)

INP	UTS	OUTPUT
Α	G	Y
L	L	L
н	х	н
X	н	н
	loval	

$$L = low level$$

X = irrelevant

 $\mathbf{X} = \text{irrelevan}$

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

PRODUCTION: ' 'souments contain information current as of ille ion date. Products conform to specifications of the time of Texes Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN75439 QUADUPLE PERIPHERAL DRIVER

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1) -0.3 V to 7 V Input voltage, V ₁ 7 V
Output voltage range, VO
Output voltage, VO (inductive load)
Output clamp-diode terminal voltage range, VOK
Input current, II
Peak sink output current, IOM (nonrepetitive, $t_W \le 0.1$ ms) (see Note 2) 1.5 A
(repetitive, $t_W \le 10$ ms, duty cycle $\le 50\%$) 1.4 A
Continuous sink output current, IQ (see Note 2) 1.3 A
Peak output clamp diode current, I_{OKM} (nonrepetitive, $t_W \le 0.1$ ms) (see Note 2) 1.5 A
(repetitive, $t_W \le 10 \text{ ms}$, duty cycle $\le 50\%$) 1.3 A
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 3)
Continuous total dissipation at (or below) 65°C case temperature (see Note 3)
Operating case or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to the network ground terminal (unless otherwise specified).

 All four channels of this device may conduct rated current simultaneously; however, power dissipation average over a short time interval must fall within the continuous dissipation range.

3. For operation above 25°C free-air temperature, derate linearly at the rate of 16.6 mW/°C. For operation above 65°C case temperature, derate linearly at the rate of 59 mW/°C. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
Output supply voltage in inductive VS ···································			40	v
High-level input voltage, VIH	2		5.25	٧
Low-level input voltage, VIL	-0.3†		0.8	٧
Low-level output current, IOL			1.3	A
Operating free-air temperature, TA	0	25	70	°C

[†] The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels.

electrical characteristics over recommended ranges of operating free-air temperature and supply voitages (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		TYPT	MAX	UNIT	
VIK	Input clamp voltage	lj = -12 mA		1	-0.9		v	
		IOL = 0.5 A			0.2	0.35		
VOL	Low-level output voltage	I _{OL} = 1 A	See Note 4	lote 4	0.4	0.7	V	
		IOL = 1.3 A	1		0.5	0.9		
		IF = 0.5 A			1.1	1.9		
V _{F(K)}	Output clamp diode forward voltage	IF = 1 A	See Note 4	See Note 4	e 4 1.3	1.3	2.2	v
		IF = 1.3 A	-	1.4	2,4			
юн	High-level output current	V _{OH} = 50 V,	VOK = 50 V			100	μA	
Iн	High-level input current	$V_{I} = V_{IH}$				10	μA	
۱ _L	Low-level input current	VI = 0 to 0.8 V				-10	μA	
I _{R(K)}	Output clamp-diode reverse current (at Y output)	V _R = 50 V,	V <mark>O</mark> = 0			100	μΑ	
		All outputs at high level (off)		1	2	8		
1	Supply ourrest	All outputs at low level (on)		1	140	200	-	
lcc	Supply current	Two outputs at high level (off) and two outputs at low level (on)			70	4 2.4 100 10 -10 100 2 8 0 200	mA	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 4: These parameters must be measured using pulse techniques, t_w = 1 ms, duty cycle \leq 10%.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CO	TEST CONDITIONS		TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output						ns
^t PHL	Propagation delay time, high-to-low-level output	l _{OL} ≈ 1 A,	C _L = 30 pF,	100		ns	
tτιΗ	Transition time, low-to-high-level output	$R_L = 30 \Omega,$	See Figure 1		170		ns
^t ⊤HL	Transition time, high-to-low-level output				50		ns
∨он	High-level output voltage (after switching inductive load)	V _S = 40 V, R _L = 31 Ω,	I⊖≈1.3 A, See Figure 2	Vg-100			mV

SN75439 QUADRUPLE PERIPHERAL DRIVER

VDLTAGE WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: duty cycle \leq 1%, Z₀ = 50 Ω .
 - B. Enable input G is at 0 V if input A is used as the switching input. When G is used as the switching input, the corresponding A input is at 0 V if testing channel 2 or channel 3 or at 3 V if testing channel 1 or channel 4.
 - C. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

SN75439 QUADRUPLE PERIPHERAL DRIVER

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: duty cycle \le 1%, Z₀ = 50 Ω . B. CL includes probe and jig capacitance.

FIGURE 2. OUTPUT LATCH-UP TEST

SN75439 QUADRUPLE PERIPHERAL DRIVER

FIGURE 3. FULL-STEP FOUR-PHASE STEPPER MOTOR DRIVER

D2481, [1978-REVISED DECEMBER 1989

- Very Low Power Requirements
- Very Low Input Current
- Characterized for Use to 350 mA
- No Output Latch-Up at 50 V (After Conducting 300 mA)
- High-Voltage Outputs (70 V Min)
- Output Clamp Diodes for Transient Suppression (350 mA, 70 V)
- TTL- or MOS-Compatible Diode-Clamped
 Inputs
- Standard Supply Voltage
- Suitable for Hammer-Driver Applications

description

Series SN75446 dual peripheral drivers are designed for use in systems that require high current, high voltage, and fast switching times. The SN75446, SN75447, SN75448, and SN75449 provide AND, NAND, OR, and NOR drivers, respectively. These devices have diode clamped inputs as well as high-current, high-voltage inductive-clamp diodes on the outputs.

Series SN75446 drivers are characterized for operation from 0 °C to 70 °C.

schematics of inputs and outputs

FUNCTION TABLES

SN75446 (EACH AND DRIVER)

INP	JTS	OUTPUT
A S		Y
н	н	н
L	х	L
х	L	L

SN75447					
(EACH NAND	DRIVER)				

INP	JTS	OUTPUT
A S		Ŷ
н	н	L
L	х	н
х	L	н

SN75448 (EACH OR DRIVER)

INP	UTS	OUTPUT
A S		Y
н	Х	н
х	н	н
L	L	L

SN75449 (EACH NOR DRIVER)

INF	• .	OUTPUT
Α	5	Y
н	Х	L
X	н	L
L	L	н

- H = high level
- L = low level

X = irrelevant

PRODUCTION DATA documents centain informatien current as of publication date. Products cenform to specifications par the terms of Taxas Instruments standard warenty. Production pracessing dees not necessarily include testing of all parematars.

logic symbols[†]

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V	V
Input voltage	V
Output current (see Note 2)	Α
Output clamp diode current	Α
Continuous total power dissipation	е
Operating free-air temperature range, TA	С
Storage temperature range	С
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C	С

NOTES: 1. Voltage values are with respect to network ground terminal.

2. Both halves of this dual circuit may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fail within the continuous dissipation ratings.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR Above T _A = 25°C	T _A = 70 °C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
Dperating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER		TEST C	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	input clamp voltage		lj = -12 mA			-0.9	-1.5	V
юн	High-level output current		$V_{CC} = 4.75 V,$ $V_{IL} = 0.8 V,$	$V_{\rm H} = 2 V,$ $V_{\rm OH} = 70 V$		1	100	μA
			V _{CC} = 4.75 V,	$I_{OL} = 100 \text{ mA}$		0.10	0.3	
	Low-level output voltage		$V_{\rm IH} = 2 V,$	$I_{OL} = 200 \text{ mA}$		0.22	0.45	ν ν ν μΑ μΑ
VOL	Low-level output voltage		$V_{\rm H} = 2.0,$ $V_{\rm H} = 0.8 V$	$I_{0L} = 300 \text{ mA}$		0.45	0.65	
			V L = 0.8 V	IOL = 350 mA		0.55	0.75	
V(BR)	Output breakdown voltage		$V_{CC} = 4.75 V,$	$I_{OH} = 100 \mu A$	70			V
VR(K)	Output clamp diode reverse voltage	je	$V_{\rm CC} = 4.75 V_{\rm c}$	i _R = 100 μA	70			v
VF(K)	Output clamp diode forward volta	ge	$V_{CC} = 4.75 V,$	IF = 350 mA	0.6	1.2	1.6	V
ЧΗ	High-level input current		$V_{\rm CC} = 5.25 V_{\rm V}$	Vi = 5.25 V		0.01	10	μA
1	t	A input	V _{CC} = 5.25 V,	<u> </u>		-0.5	- 10	
μL	Low-level input current	Strobe S		v] = 0.8 v		- 1	- 20	μΑ
		SN75446		V ₁ = 5 V		11	18	
1000	Supply current, outputs high	SN75447	V _{CC} = 5.25 V	$V_{I} = 0$		11	18	m 4
ICCH	Supply current, outputs high	SN75448	0.25 0	V ₁ = 5 V		18	25	mA
		: ;449]	$V_i = 0$		18	25	
		;446		V ₁ = 0		11	18	
100	Supply current, outputs low	SN75447	V _{CC} = 5.25 V	Vi = 5 V		11	18	mA
ICCL	Supply current, outputs low	· i448	VCC - 5.25 V	V ₁ = 0		18	25	MA
		••. •;449		V ₁ = 5 V		18	25	

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS	MiN	ТҮР	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output			300	750	ns
^t PHL	Propagation delay time, high-to-low-level output	$C_{L} = 15 \text{ pF}, R_{L} = 100 \Omega,$		200	500	ns
t TLH	Transition time, low-to-high-level output	See Figure 1		50		ns
^t THL	Transition time, high-to-low-level output			50	i	ns
v _{oH}	High-level output voltage after switching	V _S = 55 V, I _O ≈300 mA, See Figure 2	V _S -0.018			v

NOTES: A. The pulse generator has the following characteristics: PRR = 100 kHz, Z_{out} = 50 Ω . B. CL includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. LATCH-UP TEST

D2625 DECEMBER 1976-REVISED SEPTEMBER 1986

500-mA Rated Collector Current D OR N PACKAGE (Single Output) (TOP VIEW) High-Voltage Outputs . . . 100 V 18 🗍 1 U16∏1C 15 2C 28 L 2 **Output Clamp Diodes** 14 🗌 3C 3B 🗌 3 Inputs Compatible with Various Types of 4B 🗌 13 **4**C 4 5B 🗍 5 Logic 12 5C 6B 🗍 6 11 T 6C **Relay Driver Applications** 7B 🗌 7 10 7C Higher-Voltage Versions of ULN2005A, Е∏в ∍П сом ULN2001A, ULN2002A, ULN2003A, and

HIGH VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

ULN2004A, Respectively, for Commercial Temperature Range

description

The SN75465, SN75466, SN75467, SN75468, and SN75469 are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of each Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The SN75465 has a 1050- Ω series base resistor and is especially designed for use with TTL where higher current is required and loading of the driving source is not a concern. The SN75466 is a general-purpose array and may be used with TTL, P-MOS, CMOS, and other MOS technologies. The SN75467 is specifically designed for use with 14- to 25-V P-MOS devices and each input has a zener diode and resistor in series to limit the input current to a safe limit. The SN75468 has a 2700- Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS. The SN75469 has a 10.5-k Ω series base resistor to allow its operation directly from CMOS or P-MOS that use supply voltages of 6 to 15 V. The required input current is below that of the SN75468 and the required voltage is less than that required by the SN75467.

logic symbol[†]

 $^\dagger \text{This}$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

** 1. IICTION 14.1. 'Journants contain information is to finite on data. Products conform to optimized in the second second second second second standard worrownly. Production processing dees not nacessarily include testing of all parameters. logic diagram

Copyright © 1986, Texas Instruments Incorporated

SN75465 THRU SN75469 Darlington transistor Arrays

All resistor values shown are nominal.

absolute maximum ratings at 25 °C free-air temperature (unless otherwise noted)

Collector-emitter voltage
Input voltage (see Note 1): SN75465 15 V
SN75467, SN75468, SN75469
Peak collector current (see Figures 14 and 15) 500 mA
Output clamp diode current
Total emitter-terminal current
Continuous total power dissipation Table See Dissipation Rating Table
Operating free-air temperature range, TA 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltage values are with respect to the emitter/substrate terminal, E, unless otherwise noted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/ °C	608 mW
N	1150 mW	9.2 mW/°C	736 mW

SN75465, SN75466, SN75467 DARLINGTON TRANSISTOR ARRAYS

	DA DA 46770	TEST	-			S S	N7546	5	LINUS
	PARAMETER	FIGURE		EST CONDITIONS	b	[10.0.]	TYP	MAX	UNIT
	0-11		V _{CE} = 100 V,	lj = 0		† -		50	
ICEX	Collector cutoff current	1	V _{CE} = 100 V,	l _l = 0,	T _A = 70 °C			100	μΑ
l(off)	Off-state input current	3	V _{CE} =100 V,	l _C =500 μA,	T _A = 70°C	50	65		μA
4	Input current	4	V1=3 V				1.5	2.4	mA
VI(on)	On-state input voltage	5	VC==2 V,	I _C =350 mA				2.4	V
	Callesta a subtas		l ₁ =. μA,	I _C = 100 mA			0.9	1.1	
V _{CE(sat)}	Collector-emitter	6	<u>η</u> = · _μ Α,	I _C = 200 mA			1	1.3	l v
	saturation voltage		II = 500 "A,	I _C = 350 mA			1.2	1.6	
1-	Clamp diode reverse	7	VR- V					50	μA
İR	current	1 '	V _R = ' √,	T _A = 70°C				100	μΑ
¥-	Clamp diode forward	8	IF=350 mA				1.7	2	v
VF	voltage	°	1F350 IIIA				1./	2	L V
Ci	Input capacitance	1	V ₁ =0,	f=1 MHz			15	25	pF

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

	ARAMETER	TEST	TEST CON	DITIONE	s	N7546	6	5	SN7546	7	UNIT
	ANAMETEN	FIGURE	TEST CONDITIONS		MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
		1	V _{CE} = 100 V,	lj = 0	-		50			50	
ICEX	Collector cutoff current		V _{CE} =100 V,	lj=0			100			100	μA
		2	T _A = 70°C	V =6 V							
l(off)	Off-state input current	3	V _{CE} =50 V, T _A =70°C	l _C = 500 μA,	50	65		50	65		μA
lj –	Input current	4	Vi=17 V						0.82	1.25	mA
hFE	Static forward current transfer ratio	6	V _{CE} =2 V,	IC=350 mA	1000						
VI(on)	On-state input voltage	5	V _{CE} = 2 V,	I _C = 300 mA						13	V
	Collector-emitter		l _l =250 μA,	l _C = 100 mA		0.9	1.1		0.9	1.1	
VCE(sat)	saturation voltage	6	l]= πA,	lC=. nA		1	1.3		1	1.3	v
	saturation voltage		lj= ≭A,	l <u>C</u> ⁼ nA		1.2	1.6		1.2	1.6	
	Clamp diode	7	V _R =· V				50			50	μA
^I R	forward voltage	,	V _R = · V,	T _A = 70 °C			100	-		100	μ-
VF	Clamp diode forward voltage	8	l= 350 mA			1.7	2		1.7	2	v
Ci	Input capacitance	_	Vi ≃0,	f=1 MHz		15	25		15	25	pF

	ARAMETER	TEST	TECT CON			SN7546	8	S	N7546	9	UNIT		
FADAWETED		FIGURE	TEST CONDITIONS		MìN	ТҮР	MAX	MIN	ТҮР	MAX	UNII		
		1	V _{CE} = 100 V,	l = 0			50			50			
ICEX	Collector cutoff current	F	V _{CE} = 100 V,	lj=0			100			I	μA		
		2	T _A = 70 °C	V ₁ =1 V									
	Off-state input current	3	V _{CE} = 50 V,	lc = 500 μA,	50	65		50	65	_	μA		
ll(off)	On-state input current	3	T _A = 70 °C		50	05		50	05		μΑ		
			V _I =3.85 V			0.93	1.35						
lj -	Input current	4	$V_{I} = 5 V$						0.35	0.5	mA		
			V _I = 12 V						1	1.45			
	On-state input voltage	5		I <u>C</u> =125 mA						5			
			V _{CE} =2 V	IC= nA			2.4			6	· ·		
V., .				IC= nA			2.7				l v		
V _{l(on)}				VCE-2 V	VCE-2 V	VCE-2 V	VCE-2 V	I _C =275 mA					
				IC = 300 mA			3						
				IC = 350 mA						8			
	Collector-emitter		li₁= ₄A,	IC= . WW		0.9	1.1		0.9	1.1			
V _{CE(sat)}	saturation voltage	6	lj= ₊A,	I <u>C</u> = . mA		1	1.3		1	1.3	v		
	saturation voltage		lj = 500 μA,	I _C = 350 mA		1.2	1.6		1.2	1.6			
	Clamp diode	7	V _R = 100 V				50			50	μA		
IR	reverse current		V _R = 100 V,	T _A =70°C			100			100			
VF	Clamp diode forward voltage	8	l⊨=350 mA			1.7	2		1.7	2	v		
Ci	Input capacitance		V1=0,	f=1 🖓 :		15	25		15	25	pF		

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

switching characteristics at 25 °C free-air temperature

	PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	V _S ≈ 50 V,	RL=163 Ω,		0.25	1	μS
t PHL	Propagation delay time, high-to-low-level output	C _L ≕ 15 pF,	See Figure 9		0.25	1	μS
		V _S =50 V,	lo ≈ 300 mA,	Vs-20			mV
∨он	High-level output voltage after switching	See Figure 10		VS-20			IIIV

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_0 = 50 Ω .

- B. CL includes probe and jig capacitance.
 - C. For testing the '465, '466, and '468, V_{IH} = 3 V; for the '467, V_{IH} = 13 V; for the '469, V_{IH} = 8 V.

- NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_0 = 50 Ω . B. CL includes probe and jig capacitance.

 - C. For testing the '465, '466, and '468, V_{IH} = 3 V; for the '467, V_{IH} = 13 V; for the '469, V_{IH} = 8 V.

FIGURE 10. LATCH-UP TEST

TYPICAL CHARACTERISTICS COLLECTOR EMITTER COLLECTOR EMITTER SATURATION VOLTAGE SATURATION VOLTAGE 1/5 COLLECTOR CURRENT COLLECTOR CURRENT COLLECTOR CURRENT INPUT CURRENT (ONE DARLINGTON) (TWO DARLINGTONS PARALLELED) VCE(sat) -Collector-Emitter Saturation Voltage-V 2.5 2.5 500 Saturation Voltage-V RL= 10 Ω = 25 ≈ 25°C 450 T_A ≖ 25°C II = 250 µA 20 20 ₹E-400 1₁ = 250 µA Vs = 10 V 350 4 11 = Current-350 II = 350 μA VS - 8 V l₁ = 500 μA 15 1.5 300 (sat) - Collector-Emitter Collector 250 = 500 μA h 1.0 1.0 200 <u>ن</u> 150 05 0.5 100 50 ٥**١**_ 0L 0 0 L 0 , CE 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 25 50 75 100 125 150 175 200 IC-Collector Current-mA IC(tot)-Total Collector Current-mA I -- Input Current -- #A FIGURE 11 FIGURE 12 FIGURE 13 THERMAL INFORMATION D PACKAGE N PACKAGE MAXIMUM COLLECTOR CURRENT MAXIMUM COLLECTOR CURRENT vs vs DUTY CYCLE DUTY CYCLE 600 600 IC-Maximum Collector Current-mA IC-Maximum Collector Current-mA Ν 1 -500 500 ٨, 400 400 ٨, r 300 300 N -6 N 6 N -7 200 200 N 7 E $T_A = 70 °C$ TΑ = 70°C 100 100 Number of Outputs N Number of Outputs N **Conducting Simultaneously Conducting Simultaneously** 0 0 1 1 1 1 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 Duty Cycle-% Duty Cycle - % FIGURE 14 FIGURE 15

P-MOS TO LOAD

HIGHER CURRENT LOADS

USE OF PULL-UP RESISTORS TO INCREASE DRIVE CURRENT

TYPICAL APPLICATION DATA

D2130, DECEMBER 1976-REVISED MAY 1990

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 55 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability

description

Series SN75471 dual peripheral drivers are functionally interchangeable with Series SN75451B and Series SN75461 peripheral drivers, but are designed for use in systems that require higher breakdown voltages than either of those series can provide at the expense of slightly slower switching speeds than Series 75451B (limits are the same as Series SN75461). Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN75471, SN75472, and SN75473 are dual peripheral AND, NAND, and OR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

Series SN75471 drivers are characterized for operation from 0°C to 70°C.

SUMMARY OF SERIES SN75471

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
\$N75471	AND	D,P
SN75472	NAND	D,P
SN75473	OR	D,P

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Interemitter voltage (see Note 2) 5.5 V
Off-state output voltage
Continuous collector or output current (see Note 3) 400 mA
Peak collector or output current ($t_W \le 10$ ms, duty cycle $\le 50\%$, see Note 3)
Continuous total power dissipation
Operating free-air temperature range, TA 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. Voltage values are with respect to the network ground terminal unless otherwise specified.

- 2. This is the voltage between two emitters of a multiple-emitter transistor.
- 3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

PACKAGE	TA ≤ 25°C POWHRATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

DISSIPATION RATING TABLE

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	v
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS	MIN	түр‡	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 V$, $h = -12 mA$		- 1.2	1.0	•
юн	High-level output current	$V_{CC} = 4.75 V, V_{IH} = 2 V,$ $V_{OH} = 70 V$			100	μA
		$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V},$ $I_{OL} = 100 \text{ mA}$		0.25	0.4	v
VOL	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}$ $I_{OL} = 300 \text{ mA}$		0.5	0.7	v
lį	Input current at maximum input voltage	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 5.5 \text{ V}$			1	mA
Чн	High-level input current	$V_{\rm CC} = 5.25 \rm V, V_{\rm I} = 2.4 \rm V$			40	μA
111	Low-level input current	$V_{CC} = 5.25 V, V_{I} = 0.4 V$		1	-1.6	mA
Іссн	Supply current, outputs high	$V_{CC} = 5.25 V, V_{I} = 5 V$		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 V, V_{I} = 0$		56	76	mA

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	TEST CON	MIN	TYP	MAX	UNIT	
tPLH Propagation delay time, low-to-high-level output				30	55	ns
tpHL Propagation delay time, high-to-low-level output	lo ≈ 200 mA,	$C_{L} = 15 pF$,		25	40	ns
tTLH Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		8	20	ns
tTHL Transition time, high-to-low-level output				10	20	ns
VOH High-level output voltage after switching	V _S = 55 V, See Figure 2	l _O ≈ 300 mA,	V _S - 18			mV

SN75472 DUAL PERIPHERAL POSITIVE-NAND DRIVER

	PARAMETER	TEST CONDITIONS	MIN TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 V, I_{J} = -12 mA$	-1.2	- 1.5	V
^I он	High-level output current	$V_{CC} = 4.75 \vee, V_{IH} = 2 \vee, V_{OH} = 70 \vee$		100	μA
V _{OL} Low-level of		$V_{CC} = 4.75 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V},$ $I_{OL} = 100 \text{ mA}$	0.25	0.4	v
	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V}$ $i_{OL} = 300 \text{ mA}$	0.5	0.7	v
4	Input current at maximum input voltage	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 5.5 \text{ V}$		1	mA
ηн	High-level input current	$V_{CC} = 5.25 V, V_{I} = 2.4 V$		40	μA
μ	Low-level input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 0.4 \text{ V}$	- 1	-1.6	mA
ССН	Supply current, outputs high	$V_{CC} = 5.25 \vee, \vee_{I} = 5 \vee$	13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 V, V_{I} = 0$	61	76	mA

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics, V_{CC} = 5 V, T_A = 25 $^{\circ}$ C

PARAMETER	TEST CON	DITIONS	MIN	түр	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output				45	65	ns
tPHL Propagation delay time, high-to-low-level output	l _O ≈ 200 mA,	CL = 15 pF,		30	50	ns
tTLH Transition time, low-to-high-level output	$R_L = 50 \Omega$,	See Figure 1		13	25	ns
tTHL Transition time, high-to-low-level output				10	20	ns
	V _S = 55 V,	lo ≈ 300 mA,	V- 10			mν
VOH High-level output voltage after switching	See Figure 2		Vs-18			mv

SN75473 DUAL PERIPHERAL POSITIVE-OR DRIVER

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH DRIVER)

Α	В	Y
L	L	L (on state)
L	н	H (off state)
Н	L	H (off state)
н	н	H (off state)

positive logic: Y = A + B or $\overline{\overline{AB}}$ logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS	MIN	түр‡	MAX	UNIT
Vik	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, \text{ I}_{\text{I}} = -12 \text{ mA}$		1.2	- 1.5	V
юн	High-level output current	$V_{CC} = 4.75 V, V_{IH} = 2 V,$ $V_{OH} = 70 V$			100	μA
		$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V},$ $i_{OL} = 100 \text{ mA}$		0.25		v
VOL	Low-level output voltage	$V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}$ IOL = 300 mA		0.5	0.7	Ň
1į	Input current at maximum input voltage	$V_{CC} = 5.25 V, V_{I} = 5.5 V$			1	mA
Чн	High-level input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 2.4 \text{ V}$			40	μA
4L	Low-level input current	$V_{CC} = 5.25 V, V_{1} = 0.4 V$		- 1	-1.6	mA
Іссн	Supply current, outputs high	$V_{CC} = 5.25 V, V_{I} = 5 V$		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 V, V_{I} = 0$		58	76	mA

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	TEST CONDI	TIONS	MIN	ТҮР	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output				30	55	ns
tPHL Propagation delay time, high-to-low-level output	lo,≈200 mA, C	СL = 15 рF,		25	40	ns
tTLH Transition time, low-to-high-level output	$R_{L} = 50 \Omega$, S	See Figure 1		8	25	ns
tTHL Transition time, high-to-low-level output				10	25	ns
	V _S = 55 V, I	0 ≈ 300 mA,	Vs-18			mV
IOH High-level output voltage after switching	See Figure 2		VS-10			mv

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, Z₀ \approx 50 Ω . B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, Z₀ \approx 50 Ω. B. CL includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

D2284, DECEMBER 1976-REVISED DECEMBER 1989

- Characterized for Use to 300 mA
- No Output Latch-Up at 55 V (After Conducting 300 mA)
- High-Voltage Outputs (100 V Typical)
- Output Clamp Diodes for Transient Suppression (300 mA, 70 V)
- TTL- or MOS-Compatible Diode-Clamped Inputs
- P-N-P Inputs Reduce Input Current
- Standard Supply Voltage
- Suitable for Hammer-Driver Applications
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability

description

Series SN75476 dual peripheral drivers are designed for use in systems that require high current, high voltage, and fast switching times. The SN75476, SN75477, SN75478, and SN75479 provide AND, NAND, OR, and NOR drivers, respectively. These devices have diode clamped inputs as well as high-current, high-voltage clamp diodes on the outputs for inductive transient protection.

The SN75476, SN75477, SN75478, and SN75479 drivers are characterized for operation from 0°C to 70°C.

FUNCTION TABLES

SN75476 (EACH AND DRIVER)

INPUTS		OUTPUT
A	S	Y
Н	н	Н
L	x	L
х	L	L

IN/ ···		OUTPUT
A	5	Y
н	н	L
L	х	н
х	L	н

SN75478 (EACH OR DRIVER)

INI -	чĿ.	OUTPUT
Α	5	Y
н	х	н
x	н	н
L	L	L

SN75479 (EACH NOR DRIVER)

INI UT .		OUTPUT
A	0	Y
н	Х	L
х	н	L
L	L	н

H = high level

L = low level

X = irrelevant

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Taxas Instruments standard warranty. Production parcessing does not necessarily include testing of ell parameters.

Copyright © 1989, Texas Instruments Incorporated

logic symbols[†]

1A (2)

s (1)

2A (7)

SN75477

& D ۵ CLAMP logic diagrams (positive logic)

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	5.5 V
Continuous output current (see Note 2)	400 mA
Peak output current: $t_W \le 10$ ms, duty cycle $\le 50\%$	500 mA
$t_W \leq 30$ ns, duty cycle $\leq 0.002\%$	
Output clamp diode current	400 mA
Continuous total power dissipation See Dissipat	ion Rating Table
Operating free-air temperature range, TA	. 0°C to 70°C
Storage temperature range –	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. Voltage values are with respect to network ground terminal.

 Both halves of this dual circuit may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation ratings.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER		TEST C	ONDITIONS	MIN TY	Pt	MAX	UNIT
VIK	Input clamp voltage		lj = −12 mA		-0.	95 ·	- 1.5	v
юн	High-level output current		$V_{CC} = 4.5 V,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, V _{OH} = 70 V		1	100	μA
Vol		$V_{CC} = 4.5 V,$	IOL = 100 mA	0.	16	0.3		
	Low-level output voltage		V _{IH} = 2 V,	$I_{OL} = 175 \text{ mA}$	0.	22	0.5	5 V
			V _{IL} = 0.8 V	$I_{OL} = 300 \text{ mA}$	0.	33	0.6	
V(BR)O	Output breakdown voltage		$V_{CC} = 4.5 V,$	$I_{OH} = 100 \mu A$	70 1	00		V
VR(K)	Output clamp diode reverse voltage		$V_{CC} = 4.5 V,$	IR = ' 4	70 1	00		V
VF(K)	Output clamp diode forward voltage		$V_{CC} = 4.5 V,$	IF = JUU INA	0.8 1.	15	1.6	V
ЧH	High-level input current		V _{CC} = 5.5 V,	$V_{I} = 5.5 V$	0.	01	10	μA
lu.	Low-level input current	A input	V _{CC} = 5.5 V,	$V_{I} = 0.8 V$	- 80		-110	
μL		Strobe S			-1	60 -	- 220	μA
	Supply current, outputs high	SN75476	V _{CC} = 5.5 V	$V_{I} = 5 V$		10	17	
1		SN75477		$V_{I} = 0$		10	17	
ICCH		SN75478		$V_{1} = 5 V$		10	17	mA
		SN75479		$V_{1} = 0$		10	17	
	Supply current, outputs low	476		V ₁ = 0		54	75	
ICCL		SN75477	V _{CC} = 5.5 V	$V_i = 5 V$		54	75	
		SN75478		$V_{I} = 0$		54	75	mA
		5479	1	$V_1 = 5 V$	1	54	75	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CONDITIONS	_ v∴ _	_ TYP	MAX	[unit
t PLH	Propagation delay time, low-to-high-level output			. · ·		ns
tPHL	Propagation delay time, high-to-low-level output	$C_{L} = 15 \text{ pF}, R_{L} = 100 \Omega,$			· ·	ns
^t TLH	Transition time, low-to-high-level output	See Figure 1		50		ns
t _{THL}	Transition time, high-to-low-level output		_	90	•	ns
∨он	High-level output voltage after switching	V _S = 55 V, I _O ≈300 mA, See Figure 2	V _S - 18			mV

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, Z_{out} = 50 Ω . B. C_L includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. LATCH-UP TEST

D2942, NOVEMBER 1986-REVISED MAY 1990

- 1-A Output Current Capability Per Driver
- **Output Clamp Diodes for Inductive Transient** Suppression
- Applications Include Half-H and Full-H Solenoid Drivers and Motor Drivers
- **Designed for Positive-Supply Applications**
- Wide Supply Voltage Range: 4.5 V to 36 V
- TTL- and CMOS-Compatible High-Impedance **Diode-Clamped Inputs**
- Separate Input-Logic Supply
- Thermal Shutdown
- Internal ESD Protection
- Input Hysteresis Improves Noise Immunity
- **Three-State Outputs**
- Minimized Power Dissipation
- Sink/Source Interlock Circuitry Prevents Simultaneous Conduction
- No Output "Glitch" During Power-Up or Power-Down
- Improved Functional Replacement for the **SGS L293D**

description

The SN754410 is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to one ampere at voltages from 4.5 V to 36 V. It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are compatible with TTL and low-level CMOS logic. Each output (Y) is a complete totem-pole driver with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs become active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

A separate supply voltage (V_{CC1}) is provided for the logic input circuits to minimize device power dissipation. Supply voltage (VCC2) is used for the output circuits.

The SN754410 is designed for operation from -40° C to 85° C.

NE PACKAGE (TOP VIEW) 1.2EN 1 1A [15 **4**A 12 1Y 🛛 3 14 1 4Y HEATSINK AND [4 13) HEATSINK AND GROUND ∫ GROUND 5 12 2Y [7 3Y]e 11 10 🗌 3A 2A 🗍 7 9 3,4EN

> FUNCTION TABLE (EACH DRIVER)

INPL	JTSt	OUTPUT
A EN		Y
н	н	н
L	н	L
х	L	z

H = high-level

VCC2 ∐8

- L = low-level
- X = irrelevant

Z = high-impedance (off)

[†]In the thermal shutdown mode, the output is in highimpedance state regardless of the input levels.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage range, VCC1 (see Note 1)
Output supply voltage range, V _{CC2} 0.5 V to 36 V
Input voltage
Output voltage range, VO $\sim \sim
Peak output current (nonrepetitive, $t_W \le 5$ ms), IPK ± 2 A
Continuous output current, IO ±1.1 A
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2) 2075 mW
Operating free-air temperature range
Operating case or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. For operation above 25 °C free-air temperature, derate linearly at the rate of 16.6 mW/ °C. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC1}	4.5	5.5	V
Output supply voltage, V _{CC2}	4.5	36	v
High-level input voltage, V _{IH}	2	5.5	V
Low-level input voltage, VIL	-0.3†	0.8	V
Operating virtual junction temperature, TJ	- 40	125	°C
Operating free-air temperature, T _A	- 40	85	°C

[†] The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet for logic voltage levels.

	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
VIK	Input clamp voltage	կ = – 1	2 mA		-0.9	-1.5	v	
Vон	High-level output voltage	$I_{OH} = -0.5 A$		V _{CC2} -1.5	V _{CC2} -1.1			
		IOH = -1 A		V _{CC2} -2			v	
		IOH =	−1 A, Tj = 25°C	V _{CC2} -1.8	V _{CC2} -1.4			
		IOL = 0.5 A			1	1.4		
VOL	Low-level output voltage	$I_{OL} = 1$	A			2	v	
		IOL = 1	A, $T_J = 25 ^{\circ}C$		1.2	1.8		
Vокн	High-level output clamp voltage	IOK = 0	0.5 A		V _{CC2} +1.4	V _{CC2} +2		
		IOK = 1	1.A		V _{CC2} +1.9	V _{CC2} +2.5		
VOKL	Low-level output clamp voltage	Iок = ·	-0.5 A		- 1.1	- 2	v	
*UKL		∣ок = -	-1 A		- 1.3	-2.5	v	
loz	Off-state (high-impedance state)	V0 = V	/cc2			•	μA	
10Z	output current	V0 = 0				- ·	μΑ	
Чн	High-level input current	V _I = 5.	5 V				μA	
կլ	Low-level input current	$V_{I} = 0$				~ 10	μA	
	Logic supply current		All outputs at high level			38		
ICC1		I ₀ = 0	All outputs at low level			70	mA	
			All outputs at high impedance			25		
	Output supply current		All outputs at high level			33		
ICC2		$I_0 = 0$	All outputs at low level			20] mA	
			All outputs at high impedance			5		

electrical characteristics over recommended ranges of VCC1, VCC2, and operating virtual junction temperature (unless otherwise noted)

[†]All typical values are at V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25 °C.

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25 °C

PARAMETER		TEST CONDITIONS	MIN	түр	MAX	UNIT
^t DLH	Delay time, low-to-high-level output from A input		800		ns	
^t DHL	Delay time, high-to-low-level output from A input	0. 20 -F. See Figure 1		400		ns
τгн	Transition time, low-to-high-level output	CL = 30 pF, See Figure 1				ns
^t THL	Transition time, high-to-low-level output					ns
^t PZH	Enable time to the high level			•		ns
^t PZL	Enable time to the low level			: ·		ns
tphz	Disable time from the high level	C _L = 30 pF, See Figure 2				ns
tPLZ	Disable time from the low level	7		600		ns

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES FROM DATA INPUTS

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

FIGURE 2. SWITCHING TIMES FROM ENABLE INPUTS

FIGURE 3. TWO-PHASE MOTOR DRIVER

SN754411 **OUADRUPLE HALF-H DRIVER**

D2942, NOVEMBER 1986-REVISED MAY 1990

1-A Output Current Capability Per Driver **NE PACKAGE** (TOP VIEW) Applications Include Half-H and Full-H 1,2EN 1 U16 VCC1 Solenoid Drivers and Motor Drivers 15 4A 1A 12 **Designed for Positive-Supply Applications** 1Y 13 14 4Y 13 HEATSINK AND Wide Supply Voltage Range: HEATSINK AND (Π4 GROUND) Π5 12 GROUND 4.5 V to 36 V 2Y 6 11 7 3Y TTL- and CMOS-Compatible High-Impedance 2A 10 3A 7 **Diode-Clamped Inputs** VCC2 18 9 3,4EN Separate Input-Logic Supply FUNCTION TABLE **Thermal Shutdown** (EACH DRIVER) Internal ESD Protection **INPUTS**[†] OUTPUT Input Hysteresis Improves Noise Immunity EN Δ Y н н н **Three-State Outputs** L н Ł **Minimized Power Dissipation** х L z Sink/Source Interlock Circuitry Prevents H = high-level Simultaneous Conduction L = low-level X = irrelevantNo Output "Glitch" During Power-Up or . Z = high-impedance (off) Power-Down [†] In the thermal shutdown mode, the output is in the Improved Functional Replacement for the high-impedance state **SGS L293** regardless of the input levels.

description

.

.

.

.

.

The SN754411 is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to one ampere at voltages from 4.5 V to 36 V. It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are compatible with TTL and low-level CMOS logic. Each output (Y) is a complete totem-pole driver with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs become active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

External high-speed output clamp diodes should be used for inductive-transient suppression. A separate supply voltage (VCC1) is provided for the logic input circuits to minimize device power dissipation. Supply voltage (VCC2) is used for the output circuits.

The SN754411 is designed for operation from -40°C to 85°C.

PRODUCTION : " I ... 'ocuments contain information ant as of 'on date. Products contain information in the of 'on date. Products conform to in the per time terms of Texas instruments in tranty. Production processing does not include testing of all parameters. current as of

Copyright © 1990, Texas Instruments Incorporated

SN754411 QUADRUPLE HALF-H DRIVER

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

schematics of inputs and outputs

,

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage range, V _{CC1} (see Note 1)
Output voltage range, VO
Peak output current (nonrepetitive, $t_W \le 5$ ms), IpK ± 2 A
Continuous output current, IO
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2) 2075 mW
Operating free-air temperature range
Operating case or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

NOTES: 1. All voltage values are with respect to the network ground terminal.

,

2. For operation above 25 °C free-air temperature, derate linearly at the rate of 16.6 mW/°C. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC1}	4.5	5.5	V
Output supply voltage, VCC2	4.5	36	V
High-level input voltage, V _{IH}	2	5.5	V
Low-level input voltage, VIL	-0.3†	0.8	V
Operating virtual junction temperature, Tj	- 40	125	°C
Operati⊓g free-air temperature, T _A	- 40	85	°C

[†] The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet for logic voltage levels.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ViK	Input clamp voltage	$i_{1} = -1$	2 mA		-0.9	- 1.5	V	
		іон = ·	-0.5 A	V _{CC2} -1.5	V _{CC2} -1.1			
Vон	High-level output voltage	lон = -	-1 A	V _{CC2} -2			V	
		¹ 0H =	-1 A, T _J = 25°C	V _{CC2} -1.8	V _{CC2} -1.4			
		$I_{OL} = 0$.5 A		1	1.4		
VOL	Low-level output voltage	$I_{OL} = 1$	A			2	v	
		$I_{OL} = 1$	A, T _J = 25°C		1.2	1.8		
	Off-state (high-impedance state)	V ₀ = V	CC2	1			- μΑ	
oz	output current	$V_0 = 0$		ľ			μ.	
ЧН	High-level input current	V _I = 5.	5 V			iu	μA	
η_	Low-level input current	$V_{j} = 0$				- 10	μA	
			All outputs at high level			38		
ICC1	Logic supply current	$i_0 = 0$	All outputs at low level			70	mA	
001		-	All outputs at high impedance			25	1	
			All outputs at high level			33	1	
ICC2	Output supply current	$I_0 = 0$	All outputs at low level			20	mA	
002		-	All outputs at high impedance			5	ר	

electrical characteristics over recommended ranges of VCC1, VCC2, and operating virtual junction temperature (unless otherwise noted)

[†]All typical values are at $V_{CC1} = 5 V$, $V_{CC2} = 24 V$, $T_A = 25 °$ C.

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = $25 \,^{\circ}$ C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t DLH	Delay time, low-to-high-leval output from A input			•••		ns
^t DHL	Delay time, high-to-low-level output from A input	Or - 20 aF - Sao Figure 1		_ • ·		ns
^t TLH	Transition time, low-to-high-level output	CL = 30 pF, See Figure 1		300		ns
THL	Transition time, high-to-low-level output					ns
^t PZH	Enable time to the high level			- · .		ns
^t PZL	Enable time to the low level			400		ns
^t PHZ	Disable time from the high level	$C_L = 30 \text{ pF}$, See Figure 2		900		ns
TPLZ	Disable time from the low level			600		ns

SN754411 QUADRUPLE HALF-H DRIVER

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES FROM DATA INPUTS

NOTES: A. The pulse generator has the following characteristics: $t_f \le 10$ ns, $t_f \le 10$ ns, $t_W = 10 \ \mu$ s, PRR = 5 kHz, $Z_0 = 50 \ \Omega$. B. C_1 includes probe and jig capacitanca.

FIGURE 2. SWITCHING TIMES FROM ENABLE INPUTS

FIGURE 3. TWO-PHASE MOTOR DRIVER

TPIC0298 DUAL FULL-H DRIVER

D2942, JUNE 1987-REVISED JANUARY 1990

- Formerly TLP298
- 2-A Output Current Capability per Full-H Driver
- Applications Include Half-H and Full-H Solenoid Drivers and Motor Drivers
- Wide Range of Output Supply Voltage . . . 5 V to 46 V
- Separate Input-Logic Supply Voltage
- Thermal Shutdown
- Internal Electrostatic Discharge Protection
- High Noise Immunity
- Three-State Outputs
- Minimized Power Dissipation
- Sink/Source Interlock Circuitry Prevents Simultaneous Conduction
- Improved Functional Replacement for the SGS L298

description

The TPIC0298 is a dual high-current full-H driver designed to provide bidirectional drive currents of up to two amperes at voltages from 5 V to 46 V. It is designed to drive inductive loads such as relays, solenoids, dc motors, stepping motors, and other high-current or high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output (Y) is a complete totempole drive with a Darlington transistor sink and a psuedo-Darlington source. Each full-H driver is enabled separately. Outputs 1Y1 and 1Y2 are enabled by 1EN and outputs 2Y1 and 2Y2 are enabled by 2EN. When an EN input is high, the associated channels are active. When an EN input is low, the associated channels are off (i.e., in the high-impedance state).

Each half of the device forms a full-H reversible driver suitable for solenoid or motor applications. The current in each full-H driver can be monitored by connecting a resistor between the sense output terminal 1E and ground and another resistor between sense output terminal 2E and ground.

The tab is electrically connected to pin 8.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH CHANNEL)

	INP	UTS	OUTPUT		
Γ	Α	EN	Y		
	н	Н	н		
	L	н	L		
	х	L	z		

H = high-level

L = low-level

X = irrelevant

Z = high-impedance (off)

PRODUCTION DATA documents contain information curront os of publication data. Products conform to spacifications per the tarms of Texas Instrumants standard warranty. Praductian pracassing daas not nacassarily include testing of all paramaters.

Copyright © 1990, Texas Instruments Incorporated

TPIC0298 DUAL FULL-H DRIVER

description (continued)

External high-speed output-clamp diodes should be used for inductive transient suppression. To minimize device power dissipation, a V_{CC1} supply voltage, separate from V_{CC2}, is provided for the logic inputs.

The TPIC0298 is designed for operation from 0°C to 70°C.

logic diagram (positive logic)

absolute maximum ratings over operating temperature range (unless otherwise noted)

Logic supply voltage range, V _{CC1} , (see Note 1) $-0.3 \lor to 7 \lor V$ Output supply voltage range, V _{CC2} $-0.3 \lor to 50 \lor V$ Input voltage range at A or EN, VI (see Note 2) $-1.6 \lor to 7 \lor V$ Output voltage range, VO $-2 \lor to \lor V_{CC2} + 2 \lor V$ Emitter terminal (1E and 2E) voltage range, VE $-0.5 \lor to 2.3 \lor V$ Emitter terminal (1E and 2E) voltage (nonrepetitive, $t_W \le 50 \mu s$) $-1 \lor V$ Input current at A or EN, II $-15 \mod P$ Peak output current, IOM, (nonrepetitive, $t_W \le 0.1 \mod S$) $\pm 3 \land A$	
(repetitive, $t_W \le 10$ ms, duty cycle $\le 80\%$) ± 2.5 A	
Continuous output current, IO ±2 A Peak combined output current for each full-H driver (see Note 3)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	١
Continuous dissipation at (or below) 25 °C free-air temperature (see Note 4) 3.575 W Continuous dissipation at (or below) 75 °C case temperature (see Note 4) 25 W Operating free-air, case, or virtual junction temperature range -40 °C to 150 °C Storage temperature range -65 °C to 150 °C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C	

NOTES: 1. All voltage values are with respect to the network ground terminal, unless otherwise noted.

- The maximum current limitation at this terminal generally occurs at a voltage of lower magnitude than the voltage limit, Neither the maximum current nor the maximum voltage for this terminal should be exceeded.
- 3. Combined output current applies to each of the two full-H drivers individually. This current is the sum of the currents at outputs 1Y1 and 1Y2 for full-H driver 1 and the sum of the currents at outputs 2Y1 and 2Y2 for full-H driver 2. The full-H drivers may carry the rated combined current simultaneously.
- 4. For operation above 25 °C free-air temperature, derate linearly at the rate of 28.6 mW/°C. For operation above 75 °C case temperature, derate linearly at the rate of 333 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipertion.

recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, V _{CC1}	4.5	7	V	
Output supply voltage, VCC2		5	46	V
	-0.5†	2		
Emitter terminal (1E or 2E) voltage, V _E (see Note 5)			Vcc1-3.5	v
- -			V _{CC2} -4	
		2.3	Vcc1	
AND A DESCRIPTION OF A DESCRIPTION	A	1	V _{CC2} -2.5	l v
High-level input voltage, VIH (see Note 5)	- N	2.3	7] `
	EN		VCC1	
Low-level input voltage at A or EN, VIL		-0.3†	1.5	v
Output current, IO			±2	A
Commutation frequency, fc			40	kHz
Operating free-air temperature, TA		0	70	°C

[†] The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for emitter terminal voltage and logic voltage levels.

NOTE 5: For optimum device performance, the maximum recommended voltage at any A input is 2.5 V lower than V_{CC2}, the maximum recommended voltage at any emitter terminal is 3.5 V lower than V_{CC1} and 4 V lower than V_{CC2}.

electrical characteristics over recommended ranges of VCC1, VCC2, and VE, TJ = 25 °C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT	
VIK	Input clamp voltage		H = -12 mA				-0.9	- 1.5	V	
∨он	High-level output voltage	e	<u>Iон = - </u>			V _{CC2} - 1.8	V _{CC2} -1.2		v	
•01	Ingh lover eachar vertag		$I_{OH} = -2$	2 A		V _{CC2} -2.8	Vcc2-1.8		•	
Val	Low-level output voltage		$I_{OL} = 1.4$	I _{OL} = 1 A			VE+1.2	V _E +1.8	v	
VOL	Low-level output voltage	-	$I_{0L} = 2 A$	4			VE+1.7	VE+2.6	v	
ν.	Total source plus sink		I _{ОН} = - '	1 A, I _{OL} = 1 A	See Note 6		2.4	3.4	v	
Vdrop	output voltage drop		1он = -2	2 A, I _{OL} = 2 A	Jee Note o		3 .5	5.2	v	
	Off-state (high-impedance	ce state)								
юzн	output current, high-level		$V_0 = V_{CC2}$			50	500	μA		
	voltage applied									
	Off-state (high-impedant	ce state)								
^I OZL	output current, low-level		$V_0 = 0 V$, $V_E = 0 V$				500	μA		
	voltage applied									
		А	VI = VIH		EN = H	1	20	100		
ЧΗ	High-level input current	~	1 = 1		EN = L			10	μA	
		EN	VI = VIH	\leq V _{CC1} -0.6 V			6	100		
hL	Low-level input current		VI = 0 V	to 1.5 V				- 10°	μA	
				All outputs at h	igh level		7	12		
ICC1	Logic supply current		I0 = 0	All outputs at low level			20	32	mA	
				All outputs at high impedance			4	6		
				All outputs at h	igh level		25	50		
ICC2	Output supply current		lo = 0	All outputs at lo	ow level		6	20	mA	
				All outputs at h	igh impedance			2		

[†] All typical values are at V_{CC1} = 5 V, V_{CC2} = 42 V, V_E = 0 V, T_J = 25°C (unless otherwise noted). NOTE 6: The V_{drop} specification applies for I_{OH} and I_{OL} applied simultaneously to different output channels. $V_{drop} = V_{CC2} - V_{OH} + V_{CL} - V_E.$

switching characteristics, $V_{CC1} = 5 V$, $V_{CC2} = 42 V$, $V_E = 0$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
td(on)	Source current turn-on delay time from A input		0.6	μs
^t d(off)	Source current turn-off delay time from A input		0.8	μs
t _r	Source current rise time (turning on)	$C_{L} = 30 pF$,	0.8	μS
tf	Source current fall time (turning off)	See Figure 1	0.2	μS
td(on)	Source current turn-on delay time from EN input		0.5	μs
td(off)	Source current turn-off delay time from EN input		2.5	μS
td(on)	Sink current turn-on delay time from A input		1.3	μs
td(off)	Sink current turn-off delay time from A input		0.5	μS
t _r	Sink current rise time (turning on)	$C_{L} = 30 \text{ pF},$	0.2	μs
tf	Sink current fall time (turning off)	See Figure 2	0.2	μs
td(on)	Sink current turn-on delay time from EN input		0.3	μs
td(off)	Sink current turn-off delay time from EN input		1	μs

VOLTAGE AND CURRENT WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: PRR = 2 kHz, Z_0 = 50 Ω .
 - B. EN is at 4 V if A is used as the switching input. A is at 4 V if EN is the switching input.
 - C. $C_{\mbox{L}}$ includes probe and jig capacitance.

FIGURE 1. SOURCE CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE ANO CURRENT WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: PRR = 2 kHz, Z_0 = 50 Ω .
 - B. EN is at 4 V if A is used as the switching input. A is at 0 V if EN is the switching input.
 - C. CL includes probe and jig capacitance.

FIGURE 2. SINK CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

TYPICAL APPLICATION DATA

This circuit shows one half of a TPIC0298 used to provide full-H bridge drive for a 24-V 2-A dc motor. Speed control is achieved with a TLC555 timer. This provides variable duty cycle pulses to the EN input of the TPIC0298. In this configuration, the operating frequency is approximately 1.2 kHz. The duty cycle is adjustable from 10% to 90% to provide a wide range of motor speeds. The motor direction is determined by the logic level at the direction control input. The circuit may be enabled or disabled by the logic level at the EN input. A 5-V supply for the logic and timer circuit is provided by a TL431 short regulator. For circuit operation, refer to the function table.

	FUNCTION	TABLE	
ENABLE	DIRECTION CONTROL	1¥1	1¥2
н	н	source	sink
н	L	sınk	source
L	х	disabled	disabled

820 Ω $1 k\Omega$ 24 V 2.7 RESET 10 kΩ VDD kΩ SPEED DISC CONTROL 10 #F TL431 1N914 2.7 24 V REVERSIBLE тнв TLC555 OUT kO DC MOTOR **§**1 kΩ 1 2 TRIG 1N914 kΩ GND CONT Ī 0.01 µF 🕇 0.1 µl **2** 7 kΩ 1/2 TPIC0298 1Y2 1Y DIRECTION CONTROL 141 142 Vcc2 VCC1 2.7 kΩ 1E GND 1EN SN7401 1 Ī ENABLE 27 kΩ

X = don't care H = high level L = low level

[†]Diodes are 1N4934 or equivalent.

TPIC2404 INTELLIGENT-POWER QUAD LOW-SIDE SWITCH

- 1-A Current Capability Per Channel
- 45-V Inductive Switching Voltage Capability
- Current Sink Inputs Compatible with TTL or CMOS Devices
- Output Clamp Diodes for Inductive Transient Protection
- Independent Thermal Shutdown Protection
- Overvoltage Shutdown Protection
- Independent Channel Current Limit
- Error Sensing
- Extended Temperature Range of -40°C to 125°C

description

The TPIC2404 is a monolithic high-voltage highcurrent quadruple low-side switch especially designed for driving from low-level logic to peripheral loads such as relays, solenoids, motors, lamps, and other high-voltage highcurrent loads. The high-efficiency power switch is optimized for applications where a very rugged power switch is required. The device will tolerate power supply transients and reverse battery conditions up to 13 V.

The tab is electrically connected to the GND pins.

The TPIC2404 features four inverting open-collector outputs controlled by a common-enable input. When ENABLE is low, the c . \cdot .ts are disabled. An error sensing circuit monitors load and device faults. When an error is sensed, the \cdot \cdot ILT output goes to a low state. In addition, the device features on-board VCC overvoltage and thermal overload protection circuits, and the outputs are current-limit protected.

	ENABLE	A	Y	FAULT
Normal operation	H H L	H L X	L H H	H H H
Open load		1	1	
Short to GND	7 1	L		
Overvoltage shutdown	11		ы	
Thermal shutdown	- "	^	1	
Short to VCC	н	Н	н	L

FUNCTION TABLE

TPIC2404 INTELLIGENT-POWER QUAD LOW-SIDE SWITCH

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

TPIC2404 INTELLIGENT-POWER QUAD LOW-SIDE SWITCH

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage range, VCC (see Note 1)
Input voltage range, V ₁
Output voltage range, VO
Output sustaining voltage, VO(sust)
Continuous output sink current (repetitive, $t_W < 8$ ms), IOL (see Note 2) 1.5 A
Output clamp-diode voltage, V _{OK}
Continuous total dissipation at (or below) 25°C case temperature (see Note 3)
Operating case or virtual junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 s

NOTES: 1. All voltage values are with respect to the network ground terminal.

- 2. Output sink current is limited by the overcurrent limit.
- 3. For operation above 25°C free-air or case temperature refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below rated dissipation.

CASE TEMPERATURE DISSIPATION DERATING CURVE

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	9	12	16	٧
High-level input voltage, VIH	2		5.5	٧
Low-level input voltage, VIL	-0.3†		0.8	۷
Peak output voltage from external inductive kickback			45	٧
Continuous output sink current			1	Α
Fault output sink current			75	μA
Operating free-air temperature, TA	-40		125	°C

[†] The algebraic convention in which the least positive (most negative) value is designated minimum is used in this data sheet for logic voltage levels.

electrical characteristics over recommended ranges of operating free-air temperature and supply voltages (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	түр‡	MAX	UNIT
			V _O = 12 V, ENABLE low		15	100	μA
IO(off)	Off-state output current		V _O = 45 V, ENABLE high		0.6	2	mA
. ,			VO = 12 V, ENABLE high	200	400	600	μA
Ι <u>ι</u>	Low-level input current		V _l = 0 to 0.8 V	-10	25	40	μΑ
	High level input automat	A inputs		10	25	60	μA
ĥН	High-level input current	ENABLE			0.2	1	mA
			IOL = 100 mA		0.1	0.15	
V	7 1 1 1 1 A A		1 _{OL} = 500 mA	1	0.3	0.55	v
VOL	Low-level output voltage		I _{OL} = 1 A		0,8	1.3	v
			FAULT output, IOL = 30 µA		0.2	0.4	
IOL	Low-level output current		FAULT output, VOL = 1 V to 5.5 V	50	90	125	μA
IR(K)	Clamp diode reverse current		$V_{r} = 50 V, V_{O} = 0$			100	μA
N			If = 1 A			2	v
V _{F(K)}	Clamp diode forward voltage		1f = 1.5 A			2.5	v
			Outputs off, ENABLE low			0. 2 5	
lcc	Supply current		Outputs on, $T_A = -40^{\circ}C$			120	mA
			Outputs on, T _A = 25° C to 125°C			100	

operating characteristics over recommended operating free-air temperature and supply voltages (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP [‡]	MAX	UNIT
High-leve				7	٧
Low-level · · · · ·		3			V
	$T_{A} = -40^{\circ}C$			1.85	•
Overcurrent limiting	T _A = 25°C to 125°C		1.2	1.5	Α
V _{CC} Overvc · · · · shutdown		25.5		31	v
Vhys Overvous ges shutdown hysteresis			- : : :		٧
Thermal shutdown			- i. i		°C
Thermal shutdown hysteresis			15		°C
Turn-on time			8		μs
Turn-off time			8		μs

[‡] All typical values are at $V_{CC} = 12 \text{ V}$, $T_A = 25 \text{ °C}$.

D3378, FEBRUARY 1990

- Output Voltage up to 60 V
- 4 Output Channels of 700-mA Nominal Current Per Channel
- Pulsed Current 3 A Per Channel
- Low r_{DS(on)} . . . 0.5 Ω Typ
- Avalanche Energy . . . 50 mJ
- Thermal Shutdown Protection with Fault (Overtemperature) Output
- NE Package Designed for Heat Sinking
- Integral Output Clamp Diodes
- Input Transparent Latches for Data Storage
- Asynchronous Clear to Turn Off All Outputs
- Output Parallel Capability for Increased Current Drive up to 12-A Total Pulsed Load Current

description

The TPIC2406 is a monolithic, high-voltage, high-current, quadruple power driver designed for use in systems that require high load power. The

Ν		VIEW)	E
1,4 CLAMP	1	20	CLR
ENBL	2	19	LGND
1 IN	3	18	4 IN
1 DRAIN	4	17	4 DRAIN
HEATSINK /	5	16	1 HEATSINK
AND GND	6	15] AND GND
2 DRAIN	7	14	3 DRAIN
2 IN	8	13	3 IN
VCC	9	12	VDD
F	10	11	2,3 CLAMP

FUNCTION TABLE

	(ei	ach cha	nnel)		
FUNCTION	IN	PD14		OUTPUT	FAULT
FUNCTION	FNBL	CLR	IN	Y	F
NORMAL		Ļ	X	н	н
	L	н	L	н	н
OPERATION	L	н	н	L	н
	н	н	x	QO	н
THERMAL SHUTDOWN	x	x	×	н	L

H = high-level, L = low-level, X = irrelevant

device contains built-in high-speed output clamp diodes for inductive transient protection. Power driver applications include lamps, relays, solenoids, and dc stepping motors.

Each device features four inverting open-drain outputs each controlled by an input storage latch with common clear and enable controls. All inputs accept standard TTL- and CMOS-! : levels. The \overline{CLR} function is asynchronous and turns all four outputs off regardless of data inputs. Taking ': : \overline{L} low puts the input latch into a transparent mode, allowing the data inputs to affect the output. In this state, all four out: .:: will be held off while \overline{CLR} is low, but will return to the stages on the data inputs when \overline{CLR} goes high. When $\Gamma^*I:\overline{L}$ is taken high, the latch is put into a storage mode and the last state of the data inputs is held in the latches. If the \overline{CLR} input is taken low, the data in the latches is cleared, turning all outputs off. If \overline{CLR} is taken high again, \overline{ENBL} must be cycled low to read new data into the latch.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over – 40°C to 125°C case temperature range (unless otherwise noted)

Logic supply voltage, V _{CC} (see Note 1)	
Power MOSFET driver supply voltage, V _{DD} Logic input voltage, V ₁	60 V
Power MOSFET drain-source voltage, V _{DS}	
F output voltage	
Clamp diode voltage	60 V
Continuous source-drain diode anode current	
Pulsed source-drain diode anode current	6A
Pulsed drain current, each output, all outputs on; $I_{D1} = I_{D2} = I_{D3} = I_{D4}$,	
T _A = 25°C (see Note 2 and Figures 5 through 8)	3 A
Continuous drain current, each output, all outputs on, ID1 = ID2 = ID3 = ID4, TA = 25°C	770 mA
Peak drain current, single output, IDM, TA = 25°C (see Note 3)	12.5 A
Single-pulse avalanche energy, EAS	50 mJ
Continuous total dissipation at or below 25°C free-air temperature (see Note 4)	2.5 W
Continuous total dissipation at or below 100°C case temperature (see Note 4)	6W
Operating junction temperature range, T _J –	40°C to 150°C
Storage temperature range	
Lead temperature	260°C

NOTES: 1. All voltage values are with respect to the five ground (GND and LGND) terminals connected together.

2. Pulse duration = 10 ms, duty cycle = 6%.

3. Pulse duration \leq 100 µs, duty cycle \leq 2%.

4. For operation above 25°C free-air temperature, derate linearly at the rate of 20 mW/°C. For operation above 100°C case temperature, derate linearly at the rate of 120 mW/°C. To avoid exceeding the design maximum junction temperature, these ratings should not be exceeded. Due to variations in individual devices, electrical characteristics, and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Logic supply voltage, V _{CC}		4.5		5.5	V
Output supply voltage, VDD		10		35	V
High-level input voltage, VIH		2			v
Low-level input voltage, VIL				0.6	v
Setup time, t _{SU} , data before ENBL †	see Figure 1)	100			ns
Hold time, th, data after t (see	≓igure 1)	100			ns
Dute duration to (non Figure 1)	ENBL low				
Pulse duration, tw (see Figure 1)	CLR low	300			ns
ting case temperature, TC		- 40		125	°C

electrical characteristics, V_{CC} = 5 V, V_{DD} = 14 V, T_{C} = 25 °C (unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS	MIN	ТҮР	MAX	UNIT
V(BR)DSX	Drain-source breakdown voltage	1 _D = 1 mA		60			V
V _{F(K)}	Clamp diode forward voltage	lբ = 1.25 A,	See Notes 5 and 6			1.6	v
VSD	Source-drain diode forward voltage	lg = 1.25 A,	See Notes 5 and 6			1.5	V
VIK	Input clamp voltage	V _{CC} = MIN,	l ₁ = ~ 12 mA			- 1.5	V
VOL	F low-level output voltage	I _{OL} = 4 mA			0.4		V
ЧН ,	High-level input current	V _{CC} = 5.5 V,	VI = 2.7 V			20	μA
ηL	Low-level input current	V _{CC} = 5.5 V,	Vj = 0.4 V			0.1	mA
lcc	Logic supply current	1 ₀ = 0,	All outputs off			10	mA
IN	Nominal current	V _{DS(on)} = 0.5 V, T _C = 85°C,	I _N = I _D , See Notes 5, 6, and 7		700		mA
DD	Output supply current	lO = 0,	All outputs off			6	mA
		V _{DS} = 55 V,	V _O = 0			1	
IR(K)	Clamp-diode reverse current	V _{DS} - 55 V,	$V_{\rm O} = 0$, $T_{\rm C} = 125^{\circ}{\rm C}$			10	μA
	Off state drain surrant	V _R = 55 v				1	
IDSX	Off-state drain current	V _R = 55 V,	T _C = 125°C			10	μA
IO(F)	High-level fault leakage current	Voh = 5.5 V				1	μA
		I _D = 1.25 A			0.5	0.6	
^r DS(on)	Static drain-source on-state resistance	ID = 1.25 A, T _C = 125°C	See Notes 5 and 6		0.8	1	Ω
		ID = 3 A			0.55	0.65	l .

NOTES: 5. Technique should limit $T_j - T_C$ to 10°C maximum.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at 85°C at case temperature.

switching characteristics, $V_{CC} = 5 \text{ V}$, $V_{DD} = 24 \text{ V}$, $T_{C} = 25^{\circ}\text{C}$

	PARAMETER	PARAMETER TEST CONDITIONS			MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level drain output from clock			450)	ns
^t PHL	Propagation delay time, high-to-low-level drain output from clock	CL = 30 pF,	See Figure 1	55	0	ns
ттгн	Transition time, low-to-high-level of source-drain output	7		3	5	ns
THL	Transition time, high-to-low-level of source-drain output			3)	ns
TDLH	Delay time, low-to-high-level drain output from input			38)	ns
TDHL	Delay time, high-to-low-level drain output from input	CL = 30 pF,	See Figure 2,	38)	ns
TRLH	Rise time, low-to-high-level of source-drain output	i _D = i _N = 700 mA		3	5	ns
^t FHL	Fall time, high-to-low-level of source-drain output	1		7	C	ns
ta	Reverse-recovery-current rise time	IF = 3 A, See Notes 5 and 6,	di/dt = 100 A/μs, See Figure 3	4	5	ns

NOTES: 5. Technique should limit $T_j - T_C$ to 10°C maximum.

6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal resistance

[PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ReJC	Junction-to-case thermal resistance	All four outputs with equal power			8.33	°C/W
Reja	Junction-to-ambient thermal resistance				50	°C/W

operating characteristics over - 40°C to 125°C case temperature range

	PARAMETER	MIN	TYP	MAX	UNIT
Vcc	Undervoltage shutdown	3		4.5	V
	Thermal shutdown temperature		155		°C
	Thermal shutdown hysteresis		15		°C

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. SWITCHING TIMES

NOTES: A.The pulse generator has the following characteristics: t_f ≤ 10 ns, t_f ≤ 10 ns, t_w = 5 ms, PRR = 5 kHz, Z₀ = 50 Ω. B. C_L includes probe and jig capacitance.

FIGURE 2. SWITCHING TIMES

FIGURE 3. REVERSE-RECOVERY-CURRENT WAVEFORMS OF SOURCE-DRAIN DIODE

PARAMETER MEASUREMENT INFORMATION

FIGURE 4. SINGLE-PULSE AVALANCHE ENERGY TEST CIRCUIT AND WAVEFORMS

MAXIMUM RATINGS

MAXIMUM RATINGS

FREE-AIR TEMPERATURE

The single-pulse curve in Figure 11 represents measured data. The curves for various pulse durations are based on the following equation:

$$Z_{\theta JA} = \left| \frac{t_{w}}{t_{c}} \right| R_{\theta JA} + \left| 1 - \frac{t_{w}}{t_{c}} \right| Z_{\theta(t_{w} + t_{c})}$$
$$+ Z_{\theta(t_{w})} - Z_{\theta(t_{c})}$$

Where:

- $$\label{eq:constraint} \begin{split} Z_{\theta}(t_w) \ = \ the \ single-pulse \ thermal \ impedance \\ for \ t = \ t_w \ seconds \end{split}$$
- $\begin{array}{l} Z_{\theta}(t_c) \ = \ the \ single-pulse \ thermal \ impedance \\ for \ t \ = \ t_c \ seconds \end{array}$
- $Z_{\theta(t_W \ + \ t_C)} = \ the \ single-pulse \ thermal \ impedance \\ for \ t = \ t_W + \ t_C \ seconds$

$$d = t_w/t_c$$

NOTE 5: Technique should limit ${\sf T}_j-{\sf T}_C$ to 10°C maximum.

D3282, AUGUST 1989 - ED JUNE 1990

- 8-Bit Serial-In Parallel-Out Driver
- 1-A Output Current Capability per Channel or 8-A Total Current
- Over-Current Limiting and Out-of-Saturation
 Voltage Protection on Driver Outputs
- Contains Eight Open-Collector Saturating Sink Outputs with Low On-State Voltage
- High-Impedance Inputs with Hysteresis are Compatible with TTL or CMOS Levels
- Very Low Standby Power . . . 20 mW Typical
- Status of Output Drivers May Be Monitored at Serial Output
- 3-State Serial Output Permits Serial Cascading or Wire-AND Device Connections
- 25-V Transient Clamping with Inductive Switching on Outputs, 40-mJ Rating per Driver Output

The tab is electrically connected to pin 8.

description

The TPIC2801 is a monolithic BIDFET[†] integrated circuit that is designed to sink currents up to 1 A at 30 V simultaneously at each of eight driver outputs under serial input data control. Status of the individual driver outputs is available in serial data format. The driver outputs have overcurrent limiting and out-of-saturation voltage protection features. Applications include driving solenoids, relays, dc motors, lamps, and other medium-current or high-voltage loads.

The device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit parallel latch, which independently controls each of the eight Y-output drivers.

Data is entered into the device serially via the serial input (SI) and goes directly into the lowest bit (0) of the shift register. Using proper timing signals, the input data is passed to the corresponding output latch and output driver. A logic high bit at SI_n turns the corresponding output driver (Y_n) off. A logic low bit at SI turns the corresponding output driver on. Serial data is transferred into SI on the high-to-low transition of serial clock (SCLK) input in 8-bit bytes with data for Y7 output "." B) first and data for Y0 output (LSB) last. Both SI and SCLK are active when serial input-output enable (\overline{S} : ..., input is low and are disabled when \overline{SIOE} is high.

Each driver output is monitored by a voltage comparator that compares the Y-output voltage level with an internal out-of-saturation threshold voltage reference level. The logic state of the comparator output is dependent upon whether the Y output is greater or smaller than the reference voltage level. An activated driver output will be unlatched and turned off when the output voltage exceeds the out-of-saturation threshold voltage level except when the internal unlatch enable is low and disabled. The high-to-low transition of SIOE transfers the logic state of the comparator output to the shift register.

[†] BIDFET - Bipolardouble-diffused, N-channel and P-channel MOS transistors on same chip - patented process.

Copyright © 1990, Texas Instruments Incorporated

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

PI	N	1/0	DECODIDEION
NAME	NO.	1/0	DESCRIPTION
GND	8		Ground. Common return for entire chip. The current out of this pin is potentially as high as 4 A if all outputs are on. This ground is used for both logic and power circuits
RST	11	i	Reset. An asynchronous reset is provided for the shift register and the parallel latches. This pin is active when low and has no internal pulliup. When active, it causes the power outputs to turn off. A power-on clear can be implemented using an RC network to V _{CC} .
SCLK	6	I	Serial Clock. This pin clocks the shift register. The serial output (SO) will change state on the rising edge of this clock and serial input (SI) data will be accepted on the falling edge.
Si	7	I	Serial input. This pin is the serial data input. A high on this pin will program a particular output to be off and a low will turn it on.
SIOE	5	1	Serial input-Output Enable. Data is transferred from the shift registers to the power outputs on the rising edge of this signal. The failing edge of this signal parallel loads the output voltage sense bits from the power output s into the shift register. The output driver for the serial output (SO) pin is enabled when this pin is low, providec is high.
SO	9	0	Serial Output. This pin is the serial 3-state output from the shift register and is in a high-impedance state when SIOE is high or RST is low. A high for a data bit on this pin indicates that the corresponding power output (Y_n) is high. This could mean that the output was programmed to be off the last time a byte was input to the device or that the output faulted and was latched off by the output voltage sense indicator. A low on this pin for a data bit indicates that the corresponding power output (Y_n) is low (an "on" output stage or open-circuit condition).
Vcc	10		5-V supply voltage
Y0	4		
Y1	з		
Y2	2		Power Outputs. The outputs are provided with current limiting and voltage sense for fault indication and
Y3	1	0	protection. The nominal load current for these outputs is 500 mA, but the current limiting is set to a minimum o 1.2 A. The active-low outputs also have voltage clamps set at about 35 V for recirculation of inductive load curren
Y4	15	Ĭ	Internal 90-kg pull-down resistors are provided at each output. These resistors hold the output low during an open
Y5	14		circuit condition.
Y6	13		
Y7	12		

PRINCIPLES OF OPERATION

timing data transfer

Figure 1 shows the overall 8-bit data-byte transfer to and from the TPIC2801 interface bus. The logic state of the eight output drivers, Y0 through Y7, is latched into the shift register at time t₀ on the high-to-low transition of SIOE. Therefore, the SO output data (DY0, DY1...) represents the conditions at the Y-driver outputs at time t₀. The data at SO output is updated on the low-to-high transition of SCLK.

Input data present at the SI input is clocked into the shift register on the high-to-low transition of SCLK. As shown in Figure 1 on the SI input, input data DI7 is clocked in at time t_1 , DI6 is clocked in at time t_2 , etc. Eight SCLK pulses are used to serially load the eight bits of new data into the device. After all the new data is serially loaded, the low-to-high transition of SIOE parallel loads the new data to the eight driver output latches, which in turn directly control the eight Y-driver outputs.

An unlimited amount of data can be shifted through the shift register (into the SI and out the SO) and this allows other devices to be cascaded in a daisy chain with the TPIC2801. Once the last data bit has been shifted into the TPIC201, the SIOE input should be pulled high. The clock (SCLK) input should be low at both transitions of the Liut input to avoid any false clocking of the shift register. The SCLK input is gated by the SIOE input, so the SCLK input is ignored whenever the SIOE is high. At the rising edge of the SIOE input, the shift register data is latched into the parallel latch and the output stages will be actuated by the new data. An internal 100-µs delay timer is also started on this rising edge. During the time delay, the outputs will be protected only by the analog current-limiting circuits, since the resetting of the parallel latches by fault conditions will be inhibited during this time period. This allows the device to overcome any high switching currents that can flow during turn-on. Once the delay has ended, the output voltages are sensed by the comparators and any output voltages higher than nominally 1.8 V are latched off.

PRINCIPLES OF OPERATION

fault-conditions check

Open-circuit conditions on any output can be monitored or checked by programming that output off. After a short delay (microseconds), another control byte can be clocked into the the device. If the diagnostic bit for that output comes back as a low, it indicates that the output is low and open circuited. A current overload condition can be detected by programming an output on. After waiting an appropriate length of time, another byte should be clocked into the TPIC2801. The diagnostic bit clocked back from the TPIC2801 in the subsequent data transfer should indicate a low output. If a high returns, a current overload is indicated. A quick overall check can be done by clocking in a test control byte. After a sufficient time delay, another control byte (same byte can be used) is clocked in. The diagnostic data is exclusive ORed with the original control byte. If a fault condition exists, a high will result.

FIGURE 1. DATA-BYTE TRANSFER TIMING

schematics of inputs and outputs

All resistor and voltage values shown are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1) $-0.3 V \text{ to 7 V}$ Input voltage, V ₁ $7 V$ Output voltage range at SO $-0.3 V \text{ to 7 V}$ Input current, I ₁ -15 mA Peak output sink current at Y, IO repetitive, t _W = 10 ms,
Continuous output current at Y, IO (see Note 3) 1 A
Peak current through GND terminal:
Nonrepetitive t _w = 0.2 ms
Repetitive, $t_W = 10$ ms, duty cycle = 50%
Continuous current through GND terminal
Output clamp energy, E_{OK} (after turning off $I_{O(on)} = 0.5 \text{ A}$)
Continuous dissipation at (or below) 25°C free-air temperature (see Note 4)
Continuous dissipation at (or below) 75°C case temperature (see Note 4)
Operating case or virtual-junction temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

, NOTES: 1. All voltage values are with respect to network ground terminal.

2. Each Y output is individually current limited with a typical over-current limit of about 1.4 A.

 Multiple Y outputs of this device may conduct rated current simultaneously; however, power dissipation (average) over a short time interval must fail within the continuous dissipation range and the GND current must fail within the GND-terminal current range.

4. For operation above 25°C free-air temperature, derate linearly at the rate of 28.6 mW/°C. For operation above 75°C case temperature, derate linearly at the rate of 333 mW/°C. To avoid exceeding the maximum virtual-junction temperature, these ratings must not be exceeded.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, ViH	0.7 V _{CC}		5.25	V
Low-level input voltage, VIL	-0.3		0.2 V _{CC}	Ŷ
Output voltage, VO(off)			30	٧
Continuous output current, IO(on)			1	А
Operating case temperature, T _C	-40	25	105	°C

timing requirements (see Figure 2)

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	MAX	UNIT
^f SCLK	Clock frequency				0	500	kHz
twsclkh	Pulse duration, SCLK high				840		ns
twSCLKL	Pulse duration, SCLK low				840		ns
twRST	Pulse duration, RST low				1000		ns
tsut	Setup time	SIOE	SCLK†		1000		ns
t _{su2}	Setup time	SCLK	SIDE1		1000		ns
t _{su3}	Setup time	SI	SCLK		500		ns
th1	Hoid time	. SCLK	Si	···	500		ns
tr	Rise time (SCLK, SI, SIOE)					2	μs
t _f	Fall time (SCLK, SI, SIOE)					2	μs

electrical characateristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

driver array outputs (Y0 to Y7)

	PARAMETER	ER TEST CONDITIONS			TYP [†]	MAX	UNIT
∨ок	Output clamp voltage	$I_O = 0.5 A$, output programmed on and current shunted to ground		30	36	40	v
¹ O(off)	Off-state output current	Vo = 24 V with output programm			1	mA	
IO(CL)	Output current limit	V _O = 3 V with output programmed on			1.4		A
			I _{OL} = 0.5 A		0.4	0.5	V
Vac	On-state output voltage	With output programmed on	1 _{OL} = 0.75 A		0.6	1	V
VO(on)	Offstate output voltage			0.8	1.5	v	
VTOS	Out of saturation threshold voltage	With output programmed on and condition	1.6	1.8	2	v	

shift register (inputs SI, SIOE, SCLK, and RST)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+}	Positive-going threshold voltage			0.7 VCC	V
V _T -	Negative-going threshold voltage		0.2 VCC		V
Vhys	Hysteresis voltage (VT+ - VT-)		0.85	2.25	V
li .	Input current	VI = 0 to VCC		±10	μA
Ci	Inpout capacitance	$V_{I} = 0$ to V_{CC}		20	pF

[†] All typical values are at V_{CC} = 5 V, T_J = 25°C.

electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

shift register (output SO)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VOL	Low-level output voltage	1 ₀ = 1.6 mA	io = 1.6 mA			0.4	v
VOH	High-level output voltage	IO = -0.8 mA	V _{CC} -1.3			V	
D	Output current	$V_D = 0$ to V_{CC} , SIOE input high			· ±10	μA	
	Supply current	All outputs on, IO = 0.5 A at all outputs	TJ = 105°C			150	
lcc			TJ = 25°C			200	mA
			Tj ≕ −40°C			250	
lcc	Supply current	All outputs off	Tj = 25°C		4	10	mA
Co	Output capacitance	$V_{O} = 0$ to V_{CC} , SIOE input high	·······			20	pF

† All typical values are at $V_{CC} = 5 V$, $T_J = 25^{\circ}C$.

thermal characteristics

	PARAMETER	MIN	MAX	UNIT
R ₀ JC	Thermal resistance, junction-to-case temperature		3	°C/W
R ₀ JA	Thermal resistance, junction-to-ambient temperature		35	°C/W

switching characteristics over recommended ranges of supply voltage and operating case temperatures (unless otherwise noted)

PARAMETER		FROM	TO		NDITIONS	MIN	MAX	UNIT
ten	Enable time	SIOE	SD	C1 = 20 pF,See Figure 3	$R_{L} = 2 k\Omega,$		1000	лs
^t dis	Disable time	SIDE	so	CL = 20 pF,See Figure 3	$R_L = 2 k\Omega$,		1000	ns
tdt	Delay time, valid data	SCLK†	so	CL = 200 pF,	See Figure 4		740	ns
td2	Delay time, unlatch disable	SIDET	Yn	CL = 20 pF,See Figure 5	$R_{L} = 5 \Omega,$	75	250	μs
tr(so)	Rise time, SO			C _L = 200 pF,	See Figure 4		150	ns
tf(so)	Fall time, SO			C _L = 200 pF,	See Figure 4		150	ns
^t d(on)	Delay time, turn-on	SIDET	Υ _n	$I_{OL} = 500 \text{ mA},$ $R_L = 28 \Omega,$	CL = 20 pF,See Figure 6		10	μs
td(off)	Delay time, turn-off	SIDET	Υ _Π	$I_{OL} = 500 \text{ mA}, \text{ '}$ $R_{L} = 28 \Omega,$	CL = 20 pF,See Figure 6		10	μs
t _V	Valid time, SO output data remains valid after SCLK high	SCLK	SO	CL = 200 pF,	See Figure 4	0		ns

PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT FOR ENABLE AND DISABLE TIMES

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control when SIOE is high. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control when SIOE is high.

FIGURE 3. VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the low-to-high transition of SCLK causes the SO output to switch from low to high. Waveform 2 is for an output with internal conditions such that the low-to-high transition of SCLK causes the SO output to switch from high to low.

FIGURE 4. VOLTAGE WAVEFORMS FOR DELAY TIMES

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. td2 = delay until Y-output current goes off under fault condition.
 - B. CL includes probe and jig capacitance.
 - C. Output voltage and current waveforms are for an output with internal conditions such that the low-to-high transition of SIOE causes the output to switch from being off to being on.
 - D. Load voltage V_S and load resistance R_L are selected such that on-state voltage at the Y output under test, V_{on} is greater than the maximum out-of-saturation threshold voltage, V_{TOS}. Thus, V_{OL} = V_{on} > V_{TOS}(max) = 1.98 V.

FIGURE 5. VOLTAGE AND CURRENT WAVEFORMS FOR UNLATCH DISABLE DELAY

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. td(off) = tPLH, td(on) = tPHL-
 - B. CL includes probe and jig capacitance.
 - C. Waveform 1 is for an output with internal conditions such that the low-to-high transition of SIOE causes the output to switch from on to off. Waveform 2 is for an output with internal conditions such the low-to-high transition of SIOE causes the output to switch from of to on.

FIGURE 6. VOLTAGE WAVEFORMS FOR TURN-OFF AND TURN-ON DELAY TIMES

FIGURE 7. MICROCONTROLLER DRIVING EIGHT LOADS USING A TPIC2801 FOR LOAD INTERFACE

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

D2624, DECEMBER 1976-REVISED SEPTEMBER 1986

500-mA Rated Collector Current D OR N PACKAGE (Single Output) (TOP VIEW) High-Voltage Outputs . . . 50 V 1B 1 $\bigcup_{16}\Pi_{10}$ 2B 🗋 2 15 2C **Output Clamp Diodes** зв 🗋 з ٦зс 14 Inputs Compatible With Various Types of 4B 🗖 4 13174C Logic 5B 🗍 5 12 5C 6B 🗍 6 1,760 **Relay Driver Applications** 7B 🗌 7 10 🗌 7 C Designed to Be Interchangeable With E 🗌 8 9 COM Sprague ULN2001A Series

HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

description

The ULN2001A, ULN2002A, ULN2003A, ULN2004A, and ULN2005A are monolithic high-voltage, highcurrent Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions, see the SN75465 through SN75469.

The ULN2001A is a general-purpose array and may be used with TTL, P-MOS, CMOS, and other MOS technologies. The ULN2002A is specifically designed for use with 14- to 25-V P-MOS devices. Each input of this device has a zener diode and resistor in series to control the input current to a safe limit. The ULN2003A has a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. The ULN2004A has a 10.5-k Ω series base resistor to allow its operation directly from CMOS or P-MOS devices that use supply voltages of 6 to 15 V. The required input current of the ULN2004A is below that of the ULN2003A, and the required voltage is less than that required by the ULN2004A. The ULN2005A has a 1050- Ω series base resistor and is specifically designed for use with TTL devices where higher output current is required and loading of the driving source is not a concern.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Copyright © 1986, Texas Instruments Incorporated

-1 FION - couments contain information ion date. Praducts conform to countratilans pr. tu terms of Texas Instruments standard warranty. Production processing does not nacessarily include testing of all parametars.

ULN2001A THRU ULN2005A Darlington transistor arrays

All resistor values shown are nominal.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-emitter voltage
input voltage (see Note 1): ULN2002A, ULN2003A, ULN2004A
ULN2005A
Peak collector current (see Figures 14 and 15) 500 mA
Output clamp diode current
Total emitter-terminal current
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltage values are with respect to the emitter/substrate terminal, E, unless otherwise noted.

DISSIPATION	RATING	TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	TA = 85°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW
N	1150 mW	9.2 mW/°C	598 mW

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

		TEST	TERT CONDITIONS	L	LN200	1A	U	LN200	2A	UNIT
PARAMETER		FIGURE	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	
			$V_{CE} = 50 V, I_{I} = 0$			50			50	[
CEX	Collector cutoff current	1 '	$V_{CE} = 50 V, I = 0$			100			100	μA
		2	$T_A = 70 ^{\circ}C$ $V_I = 6 ^{\circ}V$						500	0
l(off)	Off-state input current	3	$V_{CE} = 50 \text{ V}, \text{ I}_{C} = 500 \ \mu\text{A},$ TA = 70 °C	50	65		50	65		μA
4	Input current	4	V ₁ = 17 V		_			0.82	1.25	mA
hFE	Static forward current transfer ratio	5	$V_{CE} = 2 V$, $I_{C} = 350 mA$	1000						
VI(on)	On-state input voltage	6	$V_{CE} = 2 V$, $I_{C} = \cdot mA$						13	V
			$I_{I} = 250 \text{ #A}, I_{C} = : mA$		0.9	1.1		0.9	1.1	
V _{CE(sat)}	Collector-emitter	5	$I_{I} = 4A, I_{C} = . mA$		1	1.3		1	1.3] v
	saturation voltage		$I_{I} = \frac{1}{2}A, I_{C} = \cdot mA$	N	1.2	1.6		1.2	1.6	
		7	V _R = 50 V			50			50	
IR	Clamp diode reverse current		$V_{R} = 50 V$, $T_{A} = 70 °C$			100			-	μΑ
VF	Clamp diode forward voltage	8	IF = 350 mA		1.7	2		1.7	1	V
Ci	Input capacitance		$V_1 = 0$, $f = 1 MHz$		15	25		15	25	pF

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

		TEST			υ	LN200	3 A	Ų	LN200	4A	
	PARAMETER	FIGURE	TEST CONDITIONS		MIN	TYP	MAX	MIR.	Түр	MAX	UNIT
		1	V _{CE} = 50 V,	lj = 0			50			50	
CEX	Collector cutoff current	'	V _{CE} = 50 V,	l ₁ = 0			100			100	μA
		2	$T_A = 70$ °C	V _I = 1 V							
ll(off)	Off-state input current	3	$V_{CE} = 50 V,$ $T_{A} = 70 ^{\circ}C$	$I_{\rm C} = 500 \ \mu {\rm A},$	50	65		50	65		μA
			V _I = 3.85 V			0.93	1.35				
կ	Input current	4	V _I = 5 V						0.35	0.5	mA
	\$		VI = 12 V						1	1.45	
			V _{CE} = 2 V	$I_{C} = 125 \text{ mA}$						5	
	On-state input voltage	6		ic = 200 mA			2.4			6	
VI(on)				V _{CE} = 2 V	$V_{CE} = 2 V$	I <u>C</u> =nA			2.7		
*I(on)	on-state inper vortage	Ŭ			I <u>C</u> = . nA						7
				$l_{\rm C} = 300 \rm mA$			3				
				IC = mA						8	
	Collector-emitter	1	$l_{I} = 250 \ \mu A$,	IC = 100 mA		0.9	1.1		0.9	1.1	
V _{CE(sat)}	saturation voltage	5	lι = 350 μA,	$I_C = 200 \text{ mA}$		1	1.3		1	1.3	V
	saturation voltage		$I_{\rm I} = 500 \ \mu A$,	l _C = nA	_	1.2	1.6		1.2	1.6	7
	Clamp diode reverse current	7	$V_{R} = 50 V$				50			50	μA
IR			$V_{\rm R} = 50 V$	$T_A = 70^{\circ}C$			100				μη
VF	Clamp diode forward voltage	8	I <u>F≕</u> ∵ mA	·		1.7	2		1.7	-	V
Ci	Input capacitance		$V_{1} = 0,$	f = 1 MHz		15	25		15	25	pF

ULN2001A THRU ULN2005A Darlington transistor arrays

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

		TEST	ST TEET CONDITIONS			A	
	PARAMETER	FIGURE	TEST CONDITIONS	MIN	ŤYP	MAX	UNIT
CEX	Collector cutoff current	1	$\frac{V_{CE} = 50 \text{ V}, I_I = 0}{V_{CE} = 50 \text{ V}, I_I = 0, \qquad T_A = 70}$			- 50	μA
ll(off)	Off-state input current	3	$\frac{V_{CE} = 50 \text{ V}, I_I = 0, \qquad T_A = 70}{V_{CE} = 50 \text{ V}, I_C = 500 \ \mu\text{A}, T_A = 70}$		65	``	μA
4	Input current	4	$V_{ } = 3 V$		1.5	2.4	mA
Vi(on)	On-state input voltage	6	V _{CE} = 2 V, I _C = 350 mA			2.4	V
V _{CE(sat)}	Collector-emitter	5	$\frac{I_{I} = 250 \ \mu A, I_{C} = 100 \ mA}{I_{I} = 100 \ \mu A, I_{C} = 100 \ mA}$		0.9	1.1	v
CC(Sal)	saturation voltage		$I_{I} = \cdot \dots A$, $I_{C} = \cdot \cdot \cdot nA$		1.2	1.6	1
I _R	Clamp dioda reversa current	7	$V_{R} = 50 V$			50	μA
			$V_{R} = 50 V, T_{A} = 70 °C$			100	
VF	Clamp diode forward voltage	8	lF = 350 mA		1.7	2	v
Ci	Input capacitance		$V_I = 0$, $f = 1 MHz$		15	25	pF

switching characteristics at 25 °C free-air temperature

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	See Figure 9		0.25		μs
^t PHL	Propagation delay time, high-to-low-level output	See Figure 5		0.25	1	μs
∨он	High-level output voltage after switching	$V_S = 50 V$, $I_O \approx 300 mA$, See Figure 10	V _S - 20			m∨

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

TEXAS VI INSTRUMENTS POST OFFICE BOX 655303 · DALLAS, TEXAS 76265

ULN2001A THRU ULN2005A Darlington transistor arrays

- NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_0 = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. For testing the ULN2001A, ULN2003A, and the ULN2005A, $V_{IH} = 3 V$; for the ULN2002A, $V_{IH} = 13 V$; for the ULN2004A, $V_{IH} = 8 V$.

FIGURE 10. LATCH-UP TEST

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

COLLECTOR EMITTER COLLECTOR-EMITTER SATURATION VOLTAGE SATURATION VOLTAGE COLLECTOR CURRENT vs COLLECTOR CURRENT COLLECTOR CURRENT INPUT CURRENT (TWO DARLINGTONS PARALLELED) (ONE DARLINGTON) VCE(sat)-Collector-Emitter Saturation Voltage-V 500 VCE (sat)-Collector-Emitter Saturation Voltage-V 2.5 2.5 RL = 10 Ω = 26°C = 25°C 450 T_A = 25°C lι = 250 μ ₹ 400 2.0 2.0 νs = 10 ν = 350 µ lı = 250 μA Current-350 VS = 8 V $11 = 350 \mu A$ 300 500 µÁ 1.5 1.5 Collector 250 = 500 µA ĥ 200 10 10 6 150 100 0.5 0.5 50 0 L 0 ٥L n 150 175 200 100 200 300 400 500 600 700 800 'n 25 50 75 100 125 200 300 400 500 600 700 800 100 ij-input Current-#A IC(tot)-Total Collector Current-mA IC-Collector Current-mA FIGURE 13 FIGURE 11 FIGURE 12

ULN2001A THRU ULN2005A Darlington transistor arrays

P-MOS TO LOAD

HIGHER CURRENT LOADS

TTL TO LOAD

USE OF PULL-UP RESISTORS TO INCREASE DRIVE CURRENT

APPLICATION INFORMATION

- Output Collector Current . . . 1.5 A Max
- 2-W Dissipation Rating
- High Output-Voltage Capability
- Outputs Diode-Clamped for Inductive Loads
- Common-Emitter Circuit for Current Sink
- ULN2064 and ULN2065 Have TTL Compatible Inputs
- ULN2066 and ULN2067 Have CMOS- and PMOS-Compatible Inputs
- Designed for Interchangeability With Sprague ULN2064 thru ULN2067, Respectively

description

The ULN2064, ULN2065, ULN2066, and ULN2067 are monolithic high-voltage, highcurrent darlington transistor switches. Each comprises four n-p-n darlington pairs. All units feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. Outputs and inputs may each be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. These commonemitter circuits are designed to operate as current sinks to the load.

The ULN2064 and ULN2065 are intended for use with TTL and 5-V MOS logic. The ULN2066 and ULN2067 are intended for use with PMOS and higher-voltage CMOS logic.

The ULN2064, ULN2065, ULN2066, and ULN2067 are characterized for operation from -20 °C to 85 °C.

logic symbol[†]

[†]Trus symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA decuments contain information current as of publication dete. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

NC-No internal connection

schematic (each darlington pair)

ULN2064, ULN2065: $R_{in} = 350 \Omega$ NOM ULN2066, ULN2067: $R_{in} = 3 k\Omega$ NOM

logic diagram

Copyright © 1986, Texas Instruments Incorporated

absolute maximum ratings at 25 °C free-air temperature for each switch (unless otherwise noted)

	6152063	U	ULN2066	ULN.	UNIT
Collector-emitter voltage			50		v
Input voltage (see Note 1)	15	15	30	30	v
Peak collector current (see Figures 12, 13, and 14)	1.5	1.5	1.5	1.5	A
Input current	25	25	25	25	mA
Total power dissipation at (or below) 25 °C free-air temperature (sae Note 2)	2075	2075	2075	2075	mW
Operating free-air temperature range	-20 to 85	-20 to 85	-20 to 85	- 20 to 85	°C
Storage temperature range	-55 to 150	-55 to 150	-55 to	-55 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	260	260	260	260	°C

NOTES: 1. All voltage values (unless otherwise noted) are with respect to the emitter/substrate terminal E.

2. For operation above 25 °C free-air temperature, derate total power linearly to 1079 mW at 85 °C at the rate of 16.6 mW/ °C.

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

	PARAMETER	TEST FIGURE	TEST CONDITIONS	ULN2 MIN	2064 MAX		2065 MAX	ULN: MIN	2066 MAX	ULN: MIN	2067 MAX	UNIT
V _{CEX(su}	Collector s) sustaining voltage	1	Vi = 0.4 V, ic = 100 mA	35		50		35		50		v
ICEX	Collector output cutoff current	2			100 500		100		100 500		100	μΑ
li(on)	On-state input current	3	$V_{i} = 2.4 V$ $V_{i} = 3.75 V$ $V_{i} = 5 V$ $V_{i} = 12 V$	1.4 3.3	4.3 9.6	1.4	4.3 9.6	0.6	1.8	0.6	1.8	mA
VI(on)	On-state input voltage	4	$V_{CE} = 2 V, i_C = 1 A$ $V_{CE} = 2 V, i_C = 1.5 A,$ See Note 3		2 2.5		2 2.5		6.5 10		6.5 10	V
V _{CE(sat)}	Collector-emitter saturation voltage	5			1.1 1.2 1.3 1.4		1.1 1.2 1.3		1.1 1.2 1.3 1.4		1.1 1.2 1.3	v
IR.	Clamp-diode reverse current	6	$\begin{split} I_{I} &= 2.25 \text{ mÅ, } I_{C} &= 1.5 \text{ A},\\ &\text{See Note 3} \\ V_{R} &= 50 \text{ V} \\ V_{R} &= 50 \text{ V}, \\ V_{R} &= 80 \text{ V}, \\ V_{R} &= 80 \text{ V}, \\ &\text{V}_{R} &= 80 \text{ V}, \\ \end{split}$		50 100		1.5 50		50 100		1.5 50	μΑ
VF	Clamp-diode forward voltage	7	IF = 1 A IF = 1.5 A, See Note 3		1.75 2		1.75		1.75 2		1.75	v

NOTE 3: These parameters must be measured on one output at a time using pulse techniques, $t_w = 10$ ms, duty cycle $\leq 10\%$.

switching characteristics at 25 °C free-air temperature, $V_{CC} = 5 V$											
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT					
^t PLH	Propagation delay time, low-to-high-level output	Coo Figure 9			1	μs					
^t PHL	Propagation delay time, high-to-low-level output	See Figure 8			1.5	μs					

PARAMETER MEASUREMENT INFORMATION

FIGURE 5. VCE(sat)

FIGURE 2. ICEX

FIGURE 4. VI(on)

FIGURE 6. IR

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 50 kHz, duty cycle = 10%, Z₀ = 50 Ω.
 B. C_L includes all probe and stray capacitance.
 - C. $V_{1H} = 2.5$ V for ULN2064 and ULN2065. $V_{1H} = 10$ V for ULN2065 and ULN2067.

FIGURE 8. SWITCHING TIMES

ELECTRICAL CHARACTERISTICS

FIGURE 12

- Output Collector Current . . . 1.5 A Max
- 2-W Dissipation Rating
- High Output-Voltage Capability
- Preamp for High Current Gain
- Outputs Diode-Clamped for Inductive Loads
- Common-Emitter Circuit for Current Sink
- Inputs Compatible With TTL and 5-V CMOS
- Designed for Interchangeability With Sprague ULN2068 and ULN2069

description

The ULN2068 and ULN2069 are monolithic integrated circuits each consisting of four high-voltage, high-current n-p-n cascaded transistor switches. Each switch includes a first stage compatible with both TTL and 5-V CMOS signal levels. The second and third stages form uncommitted-collector outputs with common-cathode clamp diodes for switching inductive loads.

The ULN2068 and ULN2069 can sink up to 1.5 A per switch. Applications include logic buffers, MOS drivers, memory drivers, line drivers, relay drivers, hammer drivers, lamp drivers, and display drivers (LED and gas discharge).

The ULN2068 and ULN2069 are characterized for operation from -20 °C to 85 °C.

logic symbol

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

NC-No internal connection

schematic (each switch)

Resistor values shown are nominal.

logic diagram (positive logic)

PRODUCTION OATA documents contain information current as of publication date. Preducts conform to specifications par the terms of Texas Instrumants standard warranty. Production processing does not necessarily include testing of ell parameters.

Copyright © 1986, Texas instruments Incorporeted

absolute maximum ratings at 25 °C free-air temperature for each switch (unless otherwise noted)

	U: • •	U	T oration
Collector-emitter voltage	υc	30	T
Supply voltage, V _{CC} (see Note 1)	10	10	V
Input voltage	15	15	V
Peak collector current (see Figures 10, 11, and 12)	1.5	1.5	A
Total power dissipation at (or below) 25 °C free-air temperature (see Note 2)	2075	2075	mW
Operating free-air temperature range	- 20 to 85	- 20 to 85	°C
Storage temperature range	- 55 to 150	-55 to	°C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	260	260	°C

NOTES: 1. All voltage values (unless otherwise noted) are with respect to the emitter/substrate terminal E.

2. For operation above 25°C free-air temperature, derate total power linearly to 1079 mW at 85°C at the rate of 16.6 mW/°C.

electrical characteristics at 25 °C free-air temperature, VCC = 5 V (unless otherwise noted)

	PARAMETER	TEST	TEST CONDITIONS	ULN	2068	ULN	2069	
	FARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	MIN	MAX	
VCEX(sus)	Collector sustaining voltage	1	$V_{I} = 0.4 V$, $I_{C} = 100 mA$	35		50		V
			V _{CE} = 50 V		100			
ICEX	Collector output cutoff current	2	$V_{CE} = 50 \text{ V}, T_{A} = 70 \text{ °C}$	•	500		_	1.
UEX	conector butput cutori current		V _{CE} = 80 V				100	μA
			$V_{CE} = 80 V$, $T_{A} = 70 °C$					1
ll(on)	On-state input current	3	$V_{l} = 2.4 V$					
-1(01)		Ĭ	$V_{l} = 3.75 V$					μA
V _{I(on)}	On-state input voltage	4	$V_{CE} = 2 V$, $I_{C} = 1.5 A$,		2.4		2.4	V
- 1(011)			See Note 3		2.4		2.4	ľ
			$V_{I} = 2.4 V$, $I_{C} = 500 mA$		1.1		1.1	
	Collector-emitter saturation voltage	5	$V_1 = 2.4 V$, $1_C = 750 mA$		1.2		1.2	
			$V_1 = 2.4 V$, $I_C = 1 A$		1.3		1.3	
VCE(sat)			$V_{I} = 2.4 V$, $I_{C} = 1.25 A$,		1.4		1	V
			See Note 3		1.4			
			$V_{I} = 2.4 V$, $I_{C} = 1.5 A$,	1		}	1.5	
			Sea Note 3					
			$V_{R} = 50 V$	1	50			
IR '	Clamp-diode reverse current	6	$V_{R} = 50 V$, $T_{A} = 70 °C$		100			μΑ
'n			V _R = 80 V				50] "
			$V_{R} = 80 V$, $T_{A} = 70 °C$				100	
VF	Clamp-diode forward voltage	7	IF = 1 A		1.75		1.75	v
· ·		Ĺ	I _F = 1.5 V, See Note 3		2		2	Ľ
lcc	Supply current (only one switch conducting)	8	$V_{I} = 2.4 V$, $I_{C} = 500 mA$		6		6	mA

NOTE 3: These parameters must be measured on one output at a time using pulse techniques, $t_W = 10$ ms, duty cycle $\leq 10\%$.

switching characteristics at 25 °C free-air temperature, VCC = 5 V

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	San Figure 9			1	μs
^t PHL	Propagation delay time, high-to-low-level output	See Figure 9			1.5	μS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 50 kHz, duty cycle = 10%, Z₀ = 50 Ω. B. CL includes all probe and stray capacitance.

FIGURE 9. SWITCHING TIMES

D2580, MAY 1980-REVISED SEPTEMBER 1986

- Output Collector Current . . . 1.5 A Max
- 9 2-W Dissipation Rating
- High Output-Voltage Capability
- Output Sink- or Source-Current Capabilities
- Input Compatible with TTL or 5-V CMOS
- Designed for Interchangeability with Sprague ULN2074 and ULN2075

description

The ULN2074 and ULN2075 are monolithic, quadruple, high-voltage, high-current n-p-n darlington-transistor amplifier devices. They feature high-voltage outputs with collectorcurrent ratings of 1.5 A for each Darlington pair.

The ULN2074 and ULN2075 are unique generalpurpose devices, each featuring uncommitted collectors and emitters to allow for either sinking or sourcing the output current. These devices offer the system designer the flexibility of tailoring the circuit to the application. Typical applications include logic buffers, relay drivers, lamp drivers, and hammer drivers.

For proper operation, the substrate must be connected to the most negative voltage.

The ULN2074 and ULN2075 are characterized for operation from -20 °C to 85 °C.

[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematic (each switch)

Copyright © 1986, Texas Instruments Incorporated

absolute maximum ratings at 25 °C free-air temperature for each switch (unless otherwise noted)

	ULN2074	ULN2075	UNIT
Collector-emitter voltage	50	80	V
Input voltage with respect to substrate	30	60	V
Peak collector current (see Figures 9, 10, and 11)	1.5	1.5	A
Input current	25	25	mA
Total power dissipation at (or below) 25 °C free-air temperature (see Note 1)	2075	2075	mW
Operating free-air temperature range	- 20 to 85	- 20 to 85	°C
Storage temperature range	- 55 to	55 **	°C
Lead temparature 1,6 mm (1/16 inch) from the case for 10 seconds	260	200	°C

NOTE 1: For operation above 25 °C free-air temperature, derate total power linearly to 1079 mW at 85 °C at the rate of 16.6 mW/ °C.

electrical characteristics at 25 °C free-air temperature (unless otherwise noted)

	PARAMETER	TEST	TEST CON	DITIONS	T · · ·	.074	ULN2075		UNIT
	FARAMETER	FIGURE	TEST CONDITIONS		MIN	MAX	MIN	MAX	UNIT
VCEX(sus)	Collector sustaining voltage	1	$V_{j} = 0.4 V,$	ic = 100 mA	35		50		v
	<u></u>		$V_{CE} = 50 V$			·····			
1	Collector output cutoff current	2	VCE = 50 V,	T _A = 70°C		·			
CEX Collector output cut	Conector output cuton current		VCE = 80 V				1	100	μ A
			VCE = 80 V,	$T_A = 70 ^{\circ}C$				5 0 0	
1		3	VI = 2.4 V		2	4.3	2	4.3	mA
li(on)	On-state input current		Vi = 3.75 V		4.5	9.6	4.5	9.6	mA
	On-state input voltage	4	$V_{CE} = 2 V$,	$l_{\rm C} = 1$ A		2		2	-
VI(on)			$V_{CE} = 2 V$,	IC = 1.5 A,		2.5		2.5	v
			See . 2			2.5		2.5	
			۱ ₁ = ۲. ، ،A,	I _C = 500 mA		1.1		1.1	
			lį = 935 μA,	$i_{\rm C} = 750 \rm{mA}$		1.2		1.2	
	Collector-emitter		lj = 1.25 mA,	IC = 1 A		1.3		1.3	
V _{CE(sat)}		5	$I_1 = 2 mA$,	I _C = 1.25 A,		1.4			v
	saturation voltage		See Note 2		ļ	1.4			
			$i_1 = 2.25 mA$,	$I_{\rm C} = 1.5 {\rm A},$				1.5	
			See Note 2					1.5	

NOTE 2: These parameters must be measured on one output at a time using pulse techniques, t_{yy} = 10 ms, duty cycle \leq 10%.

switching characteristics at 25 °C free-air temperature, VCC = 5 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay tima, low-to-high-level output	See Figure 6			1	μS
^t PHL	Propagation delay time, high-to-low-level output	See Figure o			1.5	μs

ELECTRICAL CHARACTERISTICS

THERMAL INFORMATION

FIGURE 11

APPLICATION INFORMATION

FIGURE 12. RELAY DRIVER INTERFACE WITH EXTERNAL CLAMP DIODES

