General Information

1

Data Transmission and Control Circuits

Display Drivers

Peripheral Drivers/Power Actuators

Mechanical Data

Explanation of Logic Symbols

- Designed for -52-V Battery Operation
- 50-mA Output Current Capability
- Input Compatible with TTL and CMOS
- High Common-Mode Input Voltage Range
- Very Low Input Current
- Fail-Safe Disconnect Feature
- Built-ln Output Clamp Diode
- Direct Replacement for National DS3680 and Fairchild $\mu \mathrm{A} 3680$

D OR N PACKAGE
(TOP VIEW)

description

The DS3680I telephone relay driver is a monolithic integrated circuit designed to interface $-48-\mathrm{V}$ relay systems to TTL or other systems in telephone applications. It is capable of sourcing up to 50 mA from standard $-52-V$ battery power. To reduce the effects of noise and IR drop between logic ground and battery ground, these drivers are designed to operate with a common-mode input range of $\pm 20 \mathrm{~V}$ referenced to battery ground. The common-mode input voltages for the four drivers can be different, so a wide range of input elements can be accommodated. The high-impedance inputs are compatible with positive TTL and CMOS levels or negative logic levels. A clamp network is included in the driver outputs to limit highvoltage transients generated by the relay coil during switching. The complementary inputs ensure that the driver output will be "off" as a fail-safe condition when either output is open.
The DS36801 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

symbol (each driver)

schematic diagram (each driver)

All resistor values shown are nominal.

DS3680I

QUAD TELEPHONE RELAY DRIVER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range at BAT NEG, V_{B} - (see Note 1) -70 V to 0.5 V
Input voltage range with respect to BAT GND -70 V to 20 V
Input voltage range with respect to BAT NEG -0.5 V to 70 V
Differential input voltage, VID (see Note 2) $\pm 20 \mathrm{~V}$
Output current: resistive load $-100 \mathrm{~mA}$
inductive load - 50 mA
Inductive output load 5 H
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, TA $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16$ inch $)$ from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. All voltages are with respect to the BAT GND terminal unless otherwise specified.
2. Differential input voltages are at the noninverting input terminal $\mathbb{N}+$ with respect to the inverting input terminal $\mathbb{N}-$.
dissipation rating table

PACKAGE	$T_{\mathbf{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	TA $_{\mathbf{A}}=70^{\circ} \mathrm{C}$ POWER RATING	TA $_{A}=85^{\circ} \mathrm{C}$ POWER RATING
	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	608 mW	494 mW
N	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW	598 mW

recommended operating conditions

	MIN	MAX
Supply voltage, V_{B-}	-10	-60
UNIT		
High-level differential input voltage, $V_{I D H}$	-20^{\dagger}	20
Low-level differential input voltage, $V_{I D L}$	2	\mathbf{V}
Operating free-air temperature, T_{A}	-20	V

${ }^{\dagger}$ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for input voltage levels.

$$
\text { electrical characteristics over recommended operating free-air temperature range, } \mathrm{V}_{\mathrm{B}}=-52 \mathrm{~V}
$$ (unless otherwise noted)

PARAMETER	TEST CDNDITIONS		MIN TYP ${ }^{\ddagger}$	MAX	UNIT
High-level input current (into $\mathbb{N}+1$	$\mathrm{V}_{\text {ID }}=2 \mathrm{~V}$		40	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {ID }}=7 \mathrm{~V}$		375	1000	
Low-level input current (into $\operatorname{IN}+$)	$\mathrm{V}_{\text {ID }}=0.4 \mathrm{~V}$		0.01	5	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {ID }}=-7 \mathrm{~V}$		-1	-	
Volon! On-state output voltage	$10=-50 \mathrm{~mA}$,	$\mathrm{V}_{\text {ID }}=2 \mathrm{~V}$	-1.6		\checkmark
IO(off) Off-state output current	$V_{O}=V_{B-}$	$V_{10}=0.8 \mathrm{~V}$	-2	- ${ }^{\prime}$:"	$\mu \mathrm{A}$
		Inputs open	-2	1.	
IR Clamp diode reverse current	$V_{0}=0$		2	100	$\mu \mathrm{A}$
VOK Output clamp voltage	$10=50 \mathrm{~mA}$		0.9	1.2	\checkmark
	$\mathrm{IO}_{0}=-50 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{B}-}=0$		-0.9	-1.2	
IB(on) On-state battery current	All drivers on		-2	-4.4	mA
$\mathrm{I}_{\text {B(off) }}$ Off-state battery current	All drivers off		-1	-100	$\mu \mathrm{A}$

[^0]switching characteristics $\mathrm{V}_{\mathrm{B}}-=-52 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {on }}$ Turn-on time	$\begin{array}{ll} V_{I D}=3-V \text { pulse, } & R_{L}=1 \mathrm{k} \mathrm{\Omega}, \\ L=1 \mathrm{H}, & \text { See Figure } 2 \end{array}$			1	10	$\mu \mathrm{S}$
toff Turn-off time				1	10	$\mu \mathrm{S}$

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. GENERALIZED TEST CIRCUIT, EACH DRIVER

TEST CIRCUIT

VOLTAGE WAVEFORMS
FIGURE 2. SWITCHING CHARACTERISTICS, EACH DRIVER

APPLICATION INFORMATION

FIGURE 3. RELAY DRIVER

NE PACKAGE
(TOP VIEW)

FUNCTION TABLE
(EACH DRIVER)

INPUTS $^{\boldsymbol{~}}$		OUTPUT
A	EN	
H	H	H
L	H	L
X	L	Z

$H=$ high-level
$L=$ low-level
$X=$ irrelevant
$Z=$ high-impedance
(off)
In the thermal shutdown mode, the output is in the high-impedance state regardless of the input levels.

All inputs are TTL-compatible. Each output is a complete totem-pole drive circuit with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by $3,4 \mathrm{EN}$. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full- H (or bridge) reversible drive suitable for solenoid or motor applications.
External high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation.
The L 293 is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic symbol ${ }^{\ddagger}$

FThis symbol is in accordance with ANSI/IEEE Std 91-1984 and
IEC Publication $617-12$.
logic diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Logic supply voltage, VCC1 (see Note 1) 36 V
Output supply voltage, VCC2 36 V
Input voltage 7 V
Output voltage range $+3 \mathrm{~V}$
Peak output current (nonrepetitive, $\mathrm{t} \leq 5 \mathrm{~ms}$) $\pm 2 \mathrm{~A}$
Continuous output current ± 1 AContinuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature(see Notes 2 and 3)2075 mW
Continuous total dissipation at $80^{\circ} \mathrm{C}$ case temperature (see Note 3). 5000 mW
Operating case or virtual junction temperature range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. All voltage values are with respect to the network ground terminal.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. For operation above $25^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $71.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.
recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, $\mathrm{V}_{\mathrm{CC}} 1$		4.5	7	V
Output supply voltage, V_{CC}			36	V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC} 1} \leq 7 \mathrm{~V}$	2.3		V
	$\mathrm{V}_{\mathrm{CC} 1} \geq 7 \mathrm{~V}$	2.3	7	
Low-level input voltage, V_{IL}		-0.3^{\top}	1.5	V
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$		0	70	${ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.
electrical characteristics, $\mathrm{VCC1}=5 \mathrm{~V}, \mathrm{VCC2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN TYP	MAX	UNIT	
V_{OH}	High-level output voltage		$\mathrm{l}^{\mathrm{OH}}=-1 \mathrm{~A}$		$\mathrm{VCC2}^{-1.8} \mathrm{~V}_{\text {CC2 }}{ }^{-1.4}$		V	
V_{OL}	Low-level output voltage		$1 \mathrm{OL}=1 \mathrm{~A}$		1.2	1.8	V	
Ith	High-level input current	A	$V_{1}=7 \mathrm{~V}$		0.2	100	$\mu \mathrm{A}$	
		EN			0.2	± 10		
	Low-level input current	A	$\mathrm{V}_{1}=0$		-3	-10	$\mu \mathrm{A}$	
		EN			-2	-100		
${ }^{\text {ICC1 }}$	Logic supply current		$10=0$	All outputs at high level	13	22	mA	
			All outputs at low level	35	60			
			All outputs at high impedance	8	24			
${ }^{\text {ICC2 }}$	Output supply current			$1_{0}=0$	All outputs at high level	14	24	mA
			All outputs at low level		2	6		
			All outputs at high impedance		2	4		

switching characteristics, $\mathrm{V}_{\mathrm{CC}} 1=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from A input	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$ See Figure 1		800	ns
$\mathbf{t}_{\text {PHL }}$ Propagation delay time, high-to-low-level output from A input			400	ns
$\mathbf{t}_{\text {TLH }}$ Transition time, low-to-high-level output			300	ns
tTHL Transition time, high-to-low-level output			300	ns

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: $t_{r} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

APPLICATION INFORMATION

Figure 2. Two-Phase Motor Driver

- 600-mA Output Current Capability Per Driver
- Pulsed Current 1.2-A Per Driver
- Output Clamp Diodes for Inductive Transient Suppression
- Wide Supply Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- Thermal Shutdown
- Internal ESD Protection
- High-Noise-Immunity Inputs
- Functional Replacement for SGS L293D

description

The L293D is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to 600 mA at voltages from 4.5 V to 36 V . It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/highvoltage loads in positive-supply applications.

NE PACKAGE
(TOP VIEW)

function TAble
(EACH DRIVER)

INPUTS †		OUTPUT
A	EN	
H	H	H
L	H	L
X	L	Z

$H=$ high-level
$\mathrm{L}=$ low-level
$X=$ irrelevant
$Z=$ high-impedance (off)
†In the thermal shutdown mode, the output is in the high-impedance state regardiess of the input levels.

All inputs are TTL-compatible. Each output is a complete totem-pole drive circuit with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by 1.2EN and drivers 3 and 4 enabled by $3,4 \mathrm{EN}$. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

A $V_{C C 1}$ terminal, separate from $V_{C C 2}$, is provided for the logic inputs to minimize device power dissipation.
The L293D is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic symbol ${ }^{\ddagger}$

[^1]
logic diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Logic supply voltage, $\mathrm{V}_{\mathrm{CC}} 1$ (see Note 1 . 36 V
Output supply voltage, VCC2 . 36 V
Input voltage .. 7 V
Output voltage range ... -3 V to $\mathrm{V}_{\mathrm{CC} 2}+3 \mathrm{~V}$
Peak output current (nonrepetitive, $\mathrm{t} \leq 100 \mu \mathrm{~s}$) . $\pm 1.2 \mathrm{~A}$
Continuous output current . 4600 mA
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature
(see Notes 2 and 3) . 2075 mW
Continuous total dissipation at $80^{\circ} \mathrm{C}$ case temperature (see Note $31 . \ldots$. 5000 mW
Operating case or virtual junction temperature range . $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds . $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to the network ground terminal.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. For operation above $25^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $71.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.
recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, VCC1		4.5	7	V
Output supply voltage, $\mathrm{V}_{\mathrm{CC} 2}$		$\mathrm{V}_{\text {CC1 }}$	36	V
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC} 1} \leq 7 \mathrm{~V}$	2.3	$\mathrm{V}_{\mathrm{CC} 1}$	V
	$\mathrm{V}_{\mathrm{CC} 1} \geq 7 \mathrm{~V}$	2.3	7	
Low-level input voltage, $\mathrm{V}_{\text {IL }}$.		$-0.3{ }^{\text {f }}$	1.5	\checkmark
Operating free-air temperature, T_{A}		0	70	${ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.
electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{VCC} 2=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT	
VOH	High-level output voltage		$\mathrm{I}_{\mathrm{OH}}=-0.6 \mathrm{~A}$		$\mathrm{VCC2}^{-1.8}$	$\mathrm{V}_{\mathrm{CC} 2}-1.4$		V	
V_{OL}	Low-level output voltage		$\mathrm{I}_{\mathrm{OL}}=0.6 \mathrm{~A}$			1.2	1.8	V	
VOKH	High-level output clamp voltage		$\text { lok }=0.6 \mathrm{~A}$			$\mathrm{VCC2}+1.3$		V	
VOKL	Low-level output clamp voltage		$1 \mathrm{OK}=-0.6 \mathrm{~A}$			1.3		V	
$\mathrm{IIH}^{\text {H }}$	High-level input current	A	$\mathrm{V}_{1}=7 \mathrm{~V}$			0.2	100	$\mu \mathrm{A}$	
		EN				0.2	± 10		
IIL	Low-level input current	A	$V_{1}=0$			-3	-10	$\mu \mathrm{A}$	
		EN				-2	-100		
ICC1	Logic supply current		$I_{0}=0$	All outputs at high level		13	22	mA	
			All outputs at low level		35	60			
			All outputs at high impedance		8	24			
${ }^{\text {ICC2 }}$	Output supply current			$10=0$	All outputs at high level		14	24	mA
					All outputs at low level		2	6	
			All outputs at high impedance			2	4		

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from A input	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$ See Figure 1	ROn		ns
tPHL Propagation delay time, high-to-low-levet output from A input		\therefore		ns
tTLH Transition time, low-to-high-level output				ns
tTHL Transition time, high-to-low-level output		300		ns

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $t_{f} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \mathrm{n}$.
B. C_{L} includes probe and jig capacitance.
FIGURE 1. SWITCHING TIMES

FIgure 2. Two-Phase Motor Drlver

- 2-A Output Current Capability per Full-H Driver
- Wide Range of Output Supply Voltage . . 5 V to 46 V
- Separate Input-Logic Supply Voltage
- Thermal Shutdown
- Internal Electrostatic Discharge Protection
- High Noise Immunity
- Functional Replacement for SGS L298

description

The L298 is a dual high-current full-H driver designed to provide bidirectional drive currents of up to two amperes at voltages from 5 V to 46 V It is designed to drive inductive loads such as relays, solenotds, dc motors, stepping motors, and other high-current or high-voltage loads in positive-supply applicatıons All inputs are TTL compatible Each output (Y) is a complete totempole drive with a Darlington transistor sink and a psuedo-Darlington source. Each full-H driver is enabled separately Outputs 1 Y 1 and 1 Y 2 are enabled by 1 EN and outputs 2 Y 1 and 2 Y 2 are enabled by $2 E N$ When an EN input is high, the associated channels are active When an EN input is low, the associated channels are off (1 e, in the high-impedance state)

Each half of the device forms a full-H reversible driver suitable for solenoid or motor applications The current in each full-H driver can be monitored by connecting a resistor between the sense output terminal $1 E$ and ground and another resistor between sense output terminal 2 E and ground.
External high-speed output-clamp diodes should be used for inductive transient suppression To mınımize device power dissipation, a VCC1 supply voltage, separate from VCC2, is provided for the logic inputs
The L 298 is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

KV PACKAGE
(TOP VIEW)

The tab is electrically connected to pin 8

logic symbol \dagger

${ }^{\dagger}$ This symbol is in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12

FUNCTION TABLE
(EACH CHANNEL)

INPUTS ${ }^{\ddagger}$		OUTPUT
A	EN	
H	H	H
L	H	L
X	L	Z

[^2]
logic diagram (positive logic)

absolute maximum ratings over operating temperature range (unless otherwise noted)

$$
\text { Logic supply voltage, } \mathrm{V}_{\mathrm{CC}} 1 \text {, (see Note } 1 \text {) . } 7 \text { V }
$$

Output supply voltage, $\mathrm{V}_{\mathrm{CC}} 2$ 50 V
Input voltage range at A or $\mathrm{EN}, \mathrm{V}_{\mathrm{I}}$ -0.3 to 7 V
Output voltage range, V_{O} $-2 V$ to $V C C 2+2 V$
Emitter terminal (1 E and 2 E) voltage range -0.5 to 2.3 V
Emitter terminal (1 E and 2 E) voltage (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 50 \mu \mathrm{~s}$) $-1 \mathrm{~V}$
Peak output current, IOM, (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 0.1 \mathrm{~ms}$) $\pm 3 \mathrm{~A}$
(repetitive, $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 80 \%$) $\pm 2.5 \mathrm{~A}$
Continuous output current, lo $\pm 2 \mathrm{~A}$Peak combined output current for each full-H driver (see Note 2)
(nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 0.1 \mathrm{~ms}$) $\pm 3 \mathrm{~A}$
(repetitive, $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 80 \%$) $\pm 2.5 \mathrm{~A}$
Continuous combined output current for each full-H driver (see Note 2) 3.575 W
Continuous dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 3) 3.575 W
Continuous dissipation at (or below) $75^{\circ} \mathrm{C}$ case temperature (see Note 3) 25 W
Operating free-air, case, or virtual junction temperature range. $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage vatues are with respect to the network ground terminal, untess otherwise noted.
2. Combined output current applies to each of the two full-H drivers individually. This current is the sum of the currents at outputs 1 Y 1 and 1 Y 2 for full-H driver 1 and the sum of the currents at outputs 2 Y 1 and 2 Y 2 for full-H driver 2 . The full- H drivers may carry the rated combined current simultaneously.
3. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For operation above $75^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $333 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, $\mathrm{V}_{\mathrm{CC} 1}$		4.5	7	V
Output supply voltage, $\mathrm{V}_{\mathrm{CC} 2}$		5	46	V
Emitter terminal (1E or 2 E) voltage, V_{E} (see Note 4)		$-0.5{ }^{\dagger}$	2	V
			-3.5	
			C2-4	
High-level input voltage, $\mathrm{V}_{\mathbf{I H}}$ (see Note 4)	A	2.3	$\mathrm{V}_{\mathrm{CCl}}$	V
			-2.5	
	EN	2.3	7	
			VCCl	
Low-level input voltage at A or EN, $\mathrm{V}_{1 /}$		-0.3^{\dagger}	1.5	\checkmark
Output current, lo			± 2	A
Commutation frequency, f_{C}			40	kHz
Operating free-air temperature, T_{A}		0	70	${ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for emitter terminal voltage and logic voltage levels.
NOTE 4: For optimum device performance, the maximum recommended voltage at any A input is 2.5 V lower then $\mathrm{V}_{\mathrm{CC} 2}$, the maximum recommended voltage at any EN input is V_{CC}, and the maximum recommended voltage at any emitter terminal is 3.5 V lower than $\mathrm{V}_{\mathrm{CC} 1}$ and 4 V lower than $\mathrm{V}_{\mathrm{CC} 2}$.
electrical characteristics, $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYP	MAX	UNIT		
V_{OH}	High-level output voltage		$\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC} 2}-1.8 \mathrm{~V}_{\mathrm{CC2}}-1.2$			\checkmark		
			$1 \mathrm{OH}=-2 \mathrm{~A}$			$\mathrm{V}_{\text {CC2 }}-2.8 \mathrm{~V}_{\text {CC2 }}-1.8$					
V_{OL}	Low-level output voltage		$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~A}$				$\mathrm{V}_{\mathrm{E}}+1.2$	$\mathrm{V}_{\mathrm{E}}+1.8$	V		
			${ }^{1} \mathrm{OL}=2 \mathrm{~A}$				$\mathrm{V}_{\mathrm{E}+1.7}$	$\mathrm{V}_{\mathrm{E}+2.6}$			
$V_{\text {drop }}$	Total source plus sink output voltage drop		$\begin{aligned} & I_{\mathrm{OH}}=-1 \mathrm{~A}, \quad \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~A}, \quad \mathrm{IOL}=2 \mathrm{~A} \end{aligned}$		See Note 5		2.4	3.4	V		
				3.5		5.2					
${ }_{1 / 2}$	High-level input current	A			$V_{1}=V_{1 H}$				30	100	$\mu \mathrm{A}$
		EN	$V_{1}=V_{1 H} \leq V_{C C 1}-0.6 \mathrm{~V}$				30	100			
g L	Low-level input current		$V_{1}=0$ to 1.5 V					-10	$\mu \mathrm{A}$		
${ }^{\prime} \mathrm{CC} 1$	Logic supply current		$\mathrm{I}_{0}=0$	All outputs at hi	level		7	12	mA		
			All outputs at lo	level		24	32				
			All outputs at h	impedance		4	6				
'cc2	Output supply current			$10=0$	All outputs at h	level		38	50	mA	
					All outputs at lo	level		13	20		
			All outputs at hish		impedance			2			

NOTE 5. The $V_{\text {drop }}$ specification applies for $I_{O H}$ and I° OL applied simultaneously to different output channels.
$V_{\text {drop }}=V_{C C 2}-V_{O H}+V_{O L}-V_{E}$
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$t_{\text {di(on }}$. Source current turn-on delay time from A input	$\mathrm{c}_{\mathrm{L}}=30 \mathrm{pF},$ See Figure 1	2.5		$\mu \mathrm{S}$
$t_{\text {dfoff }}$ Source current turn-off delay time from A input		1.7		$\mu \mathrm{s}$
t_{r} Source current rise time (turning on)		0.4		$\mu \mathrm{s}$
t_{f} Source current fall time (turning off)		0.2		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$ Source current turn-on delay time from EN input		2.5		$\mu \mathrm{s}$
$t_{\text {d }}$ (off) Source current turn-off delay time from EN input		1.7		$\mu \mathrm{s}$
$t_{\text {dion }}$ Sink current turn-on delay time from A input	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$ See Figure 2	1.5		$\mu \mathrm{s}$
$t_{\text {d }}$ (off) Sink current turn-off delay time from A input		0.7		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}} \quad$ Sink current rise time (turning on)		0.2		$\mu \mathrm{s}$
$\mathrm{t}_{\boldsymbol{f}} \quad$ Sink current fall time (turning off)		0.2		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$ Sink current turn-on delay time from EN input		1.5		$\mu \mathrm{S}$
$\mathrm{t}_{\text {d }}$ (off) S Sink current turn-off delay time from EN input		0.7		$\mu \mathrm{s}$

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE AND CURRENT WAVEFORMS
NOTES:
A. The pulse generator has the following characteristics: $\operatorname{PRR}=2 \mathrm{kHz}, Z_{0}=50 \Omega$.
B. $E N$ is at $4 V$ if A is used as the switching input. A is at 4 V if EN is the switching input.
C. C_{L} includes probe and jig capacitance.

FIGURE 1. SOURCE CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

PARAMETER MEASUREMENT INFORMATION

test circuit

VOLTAGE AND CURRENT WAVEFORMS
NOTES: A. The putse generator has the following characteristics: $P R R=2 \mathrm{kHz}, \mathrm{Z}_{0}=50 \Omega$.
B. $E N$ is at $4 V$ if A is used as the switching input. A is at 0 V if $E N$ is the switching input.
C. C_{L} includes probe and jig capacitance.

FIGURE 2. SINK CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

APPLICATION INFORMATION

This circuit shows one half of an L298 used to provide full-H bridge drive for a $24-\mathrm{V} 2-\mathrm{A}$ dc motor. Speed control is achieved with a TLC555 timer. This provides variable duty cycle pulses to the EN input of the L298. In this configuration, the operating frequency is approximately 1.2 kHz . The duty cycle is adjustable from 10% to 90% to provide a wide range of motor speeds. The motor direction is determined by the logic level at the direction control input. The circuit may be enabled or disabled by the logic level at the EN input. A 5-V supply for the logic and timer circuit is provided by a TL431 shunt regulator. For circuit operation, refer to the function table.

FUNCTION TABLE

ENABLE	DIRECTION CONTROL	1 Y 1	1 Y 2
H	H	source	sink
H	L	sink	source
L	X	disabied	disabled

$$
X=\text { don't care } H=\text { high level } L=\text { low level }
$$

${ }^{\dagger}$ Diodes are 1 N 4934 or equivalent.
FIGURE 3. L298 AS BIDIRECTIONAL DC MOTOR DRIVER

PERIPHERAL DRIVERS FOR HIGH-CURRENT SWITCHING AT VERY HIGH SPEEDS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 20 V (After Conducting 300 mA)
- High-Speed Switching
- Circuit Flexibility for Varied Applications
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability
- Package Options Include Plastic "'Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF SERIES 55451B/75451B

DEVICE	LOGIC OF COMPLETE CIRCUIT	PACKAGES
SN55451R	AND ${ }^{\dagger}$	FK,JG
SN55 2.	NAND	FK,JG
$\because:$	OR	FK,JG
$\because:$	\ddots	FK,JG
SN754518	Riv	D,P
SN754528	NAND	D,P
SN754538	OR	D,P
SN75454B	NOR	D,P

${ }^{\dagger}$ With output transistor base connected externally to output of gate.

SN55451B, SN55452B,
SN55453B, SN55454B . . . JG PACKAGE SN75451B, SN75452B,
SN75453B, SN75454B . . . D OR P PACKAGE
(TOP VIEW)

SN55451B, SN55452B, SN55453B, SN55454B، . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description

Series SN55451B/75451B dual peripheral drivers are a family of versatile devices designed for use in systems that employ TTL logic. This family is functionally interchangeable with and replaces the SN75450 family and the SN75450A family devices manufactured previously. The speed of the SN55451B/SN75451B family is equal to that of the SN75450 family, and the parts are designed to ensure freedom from latchup. Diode-clamped inputs simplify circuit design. Typical applications include high-speed logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55451B/SN75451B, SN55452B/SN75452B, SN55453B/SN75453B, and SN55454B/SN75454B are dual peripheral AND, NAND, OR, and NOR drivers, respectively, (assuming positive logic), with the output of the logic gates internally connected to the bases of the n-p-n output transistors.

Series SN55451B drivers are characterized for operation over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Series SN75451B drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55451B SN55452B SN55453B SN55454B	SN75451B SN75452B SN75453B SN75454B	UNIT
Supply voltage, VCC (see Note 1)		7	7	V
Input voltage		5.5	5.5	V
Interemitter voltage (see Note 2)		5.5	5.5	V
Off-state output voltage		30	30	V
Continuous collector or output current (see Note 4)		400	400	mA
Peak collector or output current ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$, see Note 4)		500	500	mA
Continuous total power dissipation		See . Jation Rating Table	jation Rating Table	
Operating free-air temperature range, $\mathrm{T}_{\text {A }}$		-55 to	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 + ¢ 150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds	FK package			${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 60 seconds	JG package			${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1,16 inch) from case for 10 seconds	D or P package		260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to the network ground terminal unless otherwise specified.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. This value applies when the base-emitter resistance ($R_{B E}$) is equal to or less than 500Ω.
4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.
dissipation rating table

PACKAGE	$T_{A} \leq 25{ }^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25$${ }^{\circ} \mathrm{C}$	$\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{\mathbf{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	-
FK	1375 mW	$11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	880 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	210 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW	-

recommended operating conditions

SN55451B, SN75451B DUAL PERIPHERAL POSITIVE-AND DRIVERS

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	L (on state)
L	H	L (on state)
H	L	L (on state)
H	H	H (off state)

positive logic:
$Y=A B$ or $\overline{\bar{A}}+\overline{\bar{B}}$

Pin numbers shown are for $D, J G$, and P packages.
logic diagram (positive logic)

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS ${ }^{\ddagger}$	SN55451B		SN75451B			UNIT
		MIN	TYP§ MAX	MIN	TYP ${ }^{5}$	MAX	
V_{iK} input clamp voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2-1.5		-1.2	-1.5	V
${ }^{\text {IOH }}$ High-level dutput current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} & \\ \hline \end{array}$		300			100	$\mu \mathrm{A}$
VOL Low-level output voitage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{OL}=100 \mathrm{~mA} & \end{array}$		$0.25 \quad 0.5$		0.25	0.4	V
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{t}_{\mathrm{OL}}=300 \mathrm{~mA} \end{aligned}$		050.8		0.5	0.7	
I \quad Input current at maximum input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$		1			1	mA
$I_{\text {IH }}$ High-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad \mathrm{V}_{1}=2.4 \mathrm{~V}$		40			40	$\mu \mathrm{A}$
I/L Low-level input current	$\mathrm{V}_{\text {CC }}=$ MAX, $\quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		$\begin{array}{ll}-1 & -1.6\end{array}$		-1	-1.6	mA
ICCH Supply current, outputs high	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5 \mathrm{~V}$		$7 \quad 11$		7	11	mA
ICCL Supply current, dutputs low	$V_{C C}=M A X, \quad V_{1}=0$		5265		52	65	mA

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\$$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	$\frac{\text { UNIT }}{\mathrm{ns}}$
tPLH Propagation delay time, low-to-high-ievel output		$\begin{array}{ll} O_{0}=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } \end{array}$	18	25	
tPHL Propagation delay time, high-to-low-level dutput			18	25	ns
$\mathrm{t}_{\text {TLH }}$ Transition time, low-to-high-level output			5	8	ns
$\mathrm{t}_{\text {THL }}$ Transition time, high-to-low-level output			7	12	
VOH High-level dutput voltage after switching	SN554518	$V_{S}=20 \mathrm{~V}, \quad 10=300 \mathrm{~mA},$ See Figure 2	$\mathrm{V}_{\mathrm{S}}-6.5$		mV
	SN75451B		$\mathrm{V}_{\mathrm{S}}-6.5$		

logic symbol \dagger

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	H (off state)
L	H	H (off state)
H	L	H (off state
H	H	L (on state)

positive logic
$Y=\overrightarrow{A B}$ or $\bar{A}+\bar{B}$

Pin numbers shown are for D, JG, and P packages.
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS ${ }^{\ddagger}$	SN55452B			SN75452B			UNIT	
		MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP ${ }^{5}$	MAX			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{C C}=\because . \quad \begin{aligned} & \text { a }\end{aligned}$		-1.2	-1.5		-1.2	-1.5	v
${ }^{\text {I OH}}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\because \because . & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} & \end{array}$			300			100	${ }_{\mu} \mathrm{A}$	
V_{OL}	Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=M I N \\ \mathrm{IOL}_{\mathrm{OL}}=100 \mathrm{~mA} & \\ \hline \end{array}$		0.25	0.5		0.25	0.4	v	
		$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=M I N, \\ \mathrm{IOL}=300 \mathrm{~mA} & \\ \hline \end{array}$		0.5	0.8		0.5	0.7		
11	Input current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA	
IIH	High-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$V_{C C}=\mathrm{MAX}, \quad V_{1}=0.4 \mathrm{~V}$		-1.1	-1.6		-1.1	-1.6	mA	
${ }^{1} \mathrm{CCH}$	Supply current, outputs high	$V_{C C}=M A X, \quad V_{1}=0$		11	14		11	14	mA	
$\mathrm{ICCL}^{\text {c }}$	Supply current, outputs low	$V_{C C}=M A X, \quad V_{1}=5 \mathrm{~V}$		56	71		56	71	mA	

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
tplh Propagation delay time, low-to-high-level output		$\begin{array}{ll} I_{O}=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } \end{array}$	26	35	ns
tphL Propagation delay time, high-to-low-level output			24	35	ns
$\mathrm{t}_{\text {TLH }}$ Transition time, low-to-high-level output			5	B	ns
tTHL Transition time, high-to-low-level output			7	12	ns
VOH High-level output voltage after switching	SN55452B	$\begin{aligned} & V_{S}=20 \mathrm{~V}, \quad l_{0}=300 \mathrm{~mA}, \\ & \text { See Figure } 2 \end{aligned}$	$\mathrm{V}_{S}-6.5$		
	SN754528		$\mathrm{V}_{\mathrm{S}}-6.5$		

SN55453B, SN75453B DUAL PERIPHERAL POSITIVE-OR DRIVERS

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/JEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH DRIVER)

A	B	Y
L	L	L (on state)
L	H	H (off state)
H	L	H (off state)
H	H	H (off state)

positive logic

$$
Y=A+8 \text { or } \overline{\bar{A} \bar{B}}
$$

Pin numbers shown are for $D, J G$, and P packages.
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS ${ }^{\text { }}$		SN55453B			SN754538			UNIT		
		MiN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP ${ }^{5}$	MAX					
$V_{\text {IK }}$	input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$H_{1}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{10 H}$	High-level output current	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{O H}=30 \mathrm{~V} \end{aligned}$	$V_{I H}=M I N,$			300			100	$\mu \mathrm{A}$		
$\mathrm{VOL}_{\text {OL }}$	Low-level ourpur volrage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \\ & \hline \end{aligned}$	$V_{\mathrm{IL}}=0.8 \mathrm{~V} .$		0.25	0.5		0.25	0.4	v		
		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MiN}, \\ & \mathrm{l}_{\mathrm{OL}}=300 \mathrm{~mA} \end{aligned}$	$V_{\mathrm{IL}}=0.8 \mathrm{~V},$		0.5	0.8		0.5	0.7			
4	input current at maximum input voltage	$V_{C C}=$ MAX,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA		
$\mathrm{IIH}^{\text {H }}$	High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {IL }}$	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$V_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA		
${ }^{1} \mathrm{CCH}$	Supply current, outputs high	$V_{C C}=$ MAX ,	$V_{1}=5 \mathrm{~V}$		8	11		8	11	mA		
${ }^{1} \mathrm{CCL}$	Supply current, outputs low	$V_{C C}=$ MAX ,	$V_{1}=0$		54	68		54	68	mA		

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output		$\begin{array}{ll} 10=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } 1 \end{array}$	18	25	ns
${ }^{\text {tPHL }}$ Propagation delay time, high-to-low-level output			16	25	ns
tTLH Transition time, low-to-high-level output			5	8	ns
tTHL Transition time, high-to-low-level output			7	12	ns
V_{OH} High-level output voltage after switching	SN5EA53R	$V_{S}=20 \mathrm{~V}, \quad 10=300 \mathrm{~mA},$ See Figure 2	$\mathrm{V}_{S}-6$.		mV
	SN7E		$\mathrm{V}_{\mathrm{S}}-6.5$		mV

SN55454B, SN75454B

DUAL PERIPHERAL POSITIVE-NOR DRIVERS

logic symbolt

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABIE
(EACH DRIVER)

A	B	Y
L	L	H (ofi state)
L	H	L (on state)
H	L	L (on state)
H	H	L (on state)

positive logic:
$Y \quad \overline{A+B}$ or $\overline{A B}$

Pin numbers shown are for $D, J G$, and P packages.

logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS ${ }^{\ddagger}$	SN55454B			SN75454B			UNIT		
		MIN	TYP ${ }^{\text {S }}$	MAX	MIN	TYP ${ }^{\text {T }}$	MAX				
VIK	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \\|=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V	
${ }^{\mathrm{I}} \mathrm{OH}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V} & \end{array}$			300			100	$\mu \mathrm{A}$		
V OL	Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \\ \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} & \\ \hline \end{array}$		0.25	0.5		0.25	0.4	V		
		$\begin{array}{ll} V_{C C}=\mathrm{MIN} & V_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA} & \\ \hline \end{array}$		0.5	0.8		0.5	0.7			
11	Input current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1			1	mA		
${ }_{1} \mathrm{H}$	High-level input current	$V_{C C}=M A X, \quad V_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
IIL	Low-level input current	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA		
${ }^{1} \mathrm{CCH}$	Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0$		13	17		13	17	mA		
${ }^{\mathrm{C} C \mathrm{Cl}}$	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5 \mathrm{~V}$		61	79		61	79	mA		

\ddagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output		$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \quad \text { See Figure } 1 \end{aligned}$	27	35	ns
${ }^{\text {t PHL }}$ Propagation delay time, high-to-low-level output			24	35	ns
tTLH Transition time, low-to-high-level output			5	8	ns
t THL Transition time, high-to-low-level output			7	12	ns
V_{OH} High-level output voltage after switching	CNIF5454B	$V_{S}=20 \mathrm{~V}, \quad 10=300 \mathrm{~mA},$ See Figure 2	$\mathrm{V}_{S}-6.5$		mV
	-54B		$\mathrm{V}_{\mathrm{S}}-6.5$		mV

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse genarator has tha following characteristics: PRR $\leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}} \approx 50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES OF COMPLETE DRIVERS

NOTES: A. The puisa ganarator has tha following charactaristics: PRR $\leq 12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includas probo and jig capacitanca.

FIGURE 2. LATCH-UP TEST OF COMPLETE DRIVERS

TYPICAL CHARACTERISTICS

TRANSISTOR
COLLECTOR-EMITTER SATURATION VOLTAGE
VS
COLLECTOR CURRENT

NOTE 5: These parameters must be measured using pulse techniques, $\mathrm{t}_{\mathrm{w}}=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
FIGURE 3

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE,

 HIGH-CURRENT DRIVER APPLICATIONS- Characterized for Use to $\mathbf{3 0 0} \mathbf{~ m A}$
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting $\mathbf{3 0 0} \mathbf{~ m A}$)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic "'Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

SUMMARY OF SERIES 55461/75464

1 I I I :	LOGIC	PACKAGES
	AND	FK,JG
$\cdots \quad 62$	NAND	FK,JG
$\cdots \cdot 63$	OR	FK,JG
- • 64	NOR	FK,JG
SN75461	AND	D. P
SN75462	NAND	D, P
SN75463	OR	D, P

SN55461, SN55462,
SN55463, SN55464 . . JG PACKAGE
SN75461, SN75462,
SN75463 . . D OR P PACKAGE
(TOP VIEW)

SN55461, SN55462,
SN55463, SN55464, . . FK PACKAGE (TOP VIEW)

NC-No internal connection

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55454B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line droers, and memory drivers.

The SN55461/SN75461, SN55462/SN75462, SN55463/SN75463, and SN55464 are dual peripheral AND, NAND, OR, and NOR drivers, respectively, lassuming positive logic), with the output of the gates internally connected to the bases of the n-p-n output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; Series SN75461 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55461 SN55462 SN55463 SN55464	SN75461 SN75462 SN75463	UNIT
Supply voltage, V_{CC} (see Note 1)		7	7	V
Input voltage		5.5	5.5	V
-emitter voltage (see Note 2)		5.5	5.5	V
vi-state output voltage		25	35	V
Continuous collector or output current (see Note 3)		.	400	mA
Peak collector or output current ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$, see Note 3)		500	500	mA
Continuous total power dissipation		See Dissipation Rating Table		
Operating free-air temperature range, $\mathrm{T}_{\mathbf{A}}$		-55 to ${ }^{*}$	0 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to	-65 to	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds	FK package	26 C		${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 60 seconds	JG package	300		${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds	D or P package		260	${ }^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal unless otherwise specified.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA $=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING	$T_{A}=125^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	-
FK	1375 mW	11.0 mW/ ${ }^{\circ} \mathrm{C}$	880 mW	275 mW
JG	1050 mW	$8.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	672 mW	210 mW
P	1000 mW	8.0 mW/ ${ }^{\circ} \mathrm{C}$	640 mW	-

recommended operating conditions

	$\begin{gathered} \text { SN55461 } \\ \text { THRU } \times: \cdot: \text { 464 } \end{gathered}$						UNIT
	\because		MAX	MIN		MAX	
Supply voltage, VCC	$\stackrel{4}{4}$	5	5.5	4.75	5	5.25	V
High-level input voltage, V_{iH}	2			2			V
Low-level input voltage, $\mathrm{V}_{1 \mathrm{~L}}$	0.8					-	V
Operating free-air temperature, $\mathrm{T}_{\mathbf{A}}$	-55		125	0		,	${ }^{\circ} \mathrm{C}$

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE STD 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, JG, and P packages.
FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	L (on state)
L	H	L (on state)
H	L	L (on state)
H	H	H (off state)

positive logic:

$$
Y=A B \text { or } \overline{\bar{A}}+\bar{B}
$$

logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	SN55461			SN75461			UNIT
		MIN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$\mathrm{V}_{\mathrm{IK}} \quad$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad I_{1}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
'OH High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} & \end{array}$			300			100	$\mu \mathrm{A}$
Low-level output voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA} & \end{array}$		0.25	0.5		0.25	0.4	V
	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{IOL}=300 \mathrm{~mA} \end{array}$		0.5	0.8		0.5	0.7	
IIInput current at maximum input voltage	$V_{C C}=$ MAX, $\quad V_{1}=5.5 \mathrm{~V}$			1			1	mA
$\mathrm{I}_{\mathrm{IH}} \quad$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
ILL Low-level input current	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA
$\mathrm{I}_{\text {CCH }}$ Supply current, outputs high	$V_{C C}=$ MAX. $\quad V_{1}=5 \mathrm{~V}$		8	11		8	11	mA
${ }^{1} \mathrm{CCL}$ Supply current, outputs low	$V_{C C}=M A X, \quad V_{1}=0$		56	76		56	76	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditons.
${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
tplH Propagation delay time, low-to-high-level output	$\begin{array}{ll} l_{O}=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } 1 \end{array}$	$30 \quad 55$	ns
tpHL Propagation delay time, high-to-low-level output		2540	ns
tTLH Transition time, low-to-high-level output		$8 \quad 20$	ns
tTHL Transition time, high-to-low-level output		1020	ns
	$V_{S}=30 \mathrm{~V}, \quad 10 \approx 300 \mathrm{~mA},$ See Figure 2	$\mathrm{V}_{\mathrm{S}}-10$	mV

dUAL PERIPHERAL POSITIVE-NAND DRIVERS

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/IEEE STD 91-1984 and IEC Publication 617-12.
Pin numbers shown are for $D, J G$, and P packages.

FUNCTION TABLE (EACH DRIVER)

A	B	\mathbf{Y}
L	L	H (off state)
L	H	H (off state)
H	L	H (off state)
H	H	L (on state)

positive logic:
$Y=\overline{A B}$ or $\bar{A}+\bar{B}$
logic diagram (positive logic)

schematic (each driver)

Resistor valuas shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS ${ }^{\dagger}$	¢.\%'"..-162			SN75462			UNIT
		MIN	$1,1{ }^{\text {: }}$	MAX	MIN	TYP ${ }^{\ddagger}$	MAX	
$V_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \quad \mathrm{I}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
IOH High-level output current	$\begin{array}{ll} V_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ V_{\mathrm{OH}}=35 \mathrm{~V} & \\ \end{array}$			300			100	$\mu \mathrm{A}$
Low-level output voltage	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=M I N, \\ \mathrm{IOL}_{\mathrm{OL}}=100 \mathrm{~mA} & \\ \hline \end{array}$		0.25	0.5		0.25	0.4	v
	$\begin{array}{ll} V_{C C}=M I N, & V_{I H}=M I N, \\ I_{O L}=300 \mathrm{~mA} & \end{array}$		0.5	0.8		0.5	0.7	
I \quadInput current at maximum input voltage	$V_{C C}=\mathrm{MAX}, \quad \mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
IIH High-level input cursent	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IfL Low-level input current	$V_{C C}=$ MAX, $\quad V_{1}=0.4 \mathrm{~V}$		-1.1	-1.5		-1.1	-1.6	mA
$\mathrm{I}_{\mathrm{CCH}}$ Supply current, outputs high	$V_{C C}=$ MAX,,$~ V_{1}=0$		13	17		13	17	mA
ICCL Supply current, outputs low	$V_{C C}=\mathrm{MAX}, \quad V_{1}=5 \mathrm{~V}$		61	76		61	76	mA

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	! IT.II :
Propagation delay time, low-to-high-level output		$\begin{aligned} & 10=200 \mathrm{~mA}, \\ & R_{L}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See Figure 1		45	65	
Propagation delay time, high-to-low-level output					30	50	ns
Transition time, low-to-high-level output					13	25	ns
Transition time, high-to-low-level output					10	20	ns
VOH High-level output voltage after switching	$\begin{array}{\|l} \hline \text { SN5546? } \\ \hline \text { SN7E } \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}$	$10=300 \mathrm{ma}$,		$V_{S}-10$		mV
		See Figure 2		$\mathrm{V}_{S}-10$			mV

logic symbol ${ }^{\dagger}$

	$\geq 1 \mathrm{D}$	(3)
$1 \mathrm{~A} \frac{(1)}{(2)}$		
2A (6)		(5)
2 B (7)		

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE STD 91-1984 and IEC Publication 617-12.
Pin numbers shown are for $D, J G$, and P packages.

FUNCTION TABLE (EACH DRIVER)

A	B	V
L	L	L (on state)
L	H	H (off state)
H	L	H (off state)
H	H	H (off state)

positive logic.

$$
Y=A+B \text { or } \overline{\bar{A}} \overline{\bar{B}}
$$

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.
electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS ${ }^{\dagger}$	SN55463			SN75463			UNIT	
		MiN	TYP ${ }^{\text { }}$	MAX	MIN	TYP ${ }^{\text { }}$	MAX			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \quad \mathrm{l}_{1}=-12 \mathrm{~mA}$		-1.2	-1.5		-1.2	-1.5	V
${ }^{1} \mathrm{OH}$	High-level output current	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \\ \mathrm{~V}_{\mathrm{OH}}=35 \mathrm{~V} & \\ \hline \end{array}$			300			100	$\mu \mathrm{A}$	
V_{OL}	Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{OL}=100 \mathrm{~mA} \end{aligned}$		0.25	0.5		0.25	0.4	v	
		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ \mathrm{IOL}=300 \mathrm{~mA} & \\ \end{array}$		0.5	0.8		0.5	0.7		
1	Input current at maximum input voltage	$V_{C C}=$ MAX, $\quad V_{1}=5.5 \mathrm{~V}$			1			1	mA	
IIH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \quad \mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$	
IIL	Low-level input current	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \quad \mathrm{V}_{1}=0.4 \mathrm{~V}$		-1	-1.6		-1	-1.6	mA	
ICCH	Supply current, outputs high	$V_{C C}=$ MAX, $\quad V_{1}=5 \mathrm{~V}$		8	11		8	11	mA	
${ }^{\text {I CCL }}$	Supply current, outputs low	$V_{\text {CC }}=$ MAX, $\quad V_{1}=0$		58	76		58	76	mA	

${ }^{\dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output		$\begin{array}{ll} l_{0}=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF}, \\ R_{L}=50 \mathrm{n}, & \text { See Figure } 1 \end{array}$			30	55	ns
Propagation deiay time, high-to-low-level output					25	40	ns
Transition time, low-to-high-level output					8	25	ns
Transition time, high-to-low-level output					10	25	ns
V_{OH} High-level output voltage after switching	SN55463	$\begin{aligned} & V_{S}=30 \mathrm{~V}, \quad l_{0} \approx 300 \mathrm{~mA}, \\ & \text { See Figure 2 } \end{aligned}$			$V_{S}-10$		
	SN75463			$\mathrm{V}_{\mathrm{S}}-10$			V

SN55464
 DUAL PERIPHERAL POSITIVE-NOR DRIVER

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE STD 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the JG package.

FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	H (off state)
L	H	L (on state)
H	L	L (on state)
H	H	L (on state)

positive logic:
$Y=\overline{A+B}$ or $\bar{A} \bar{B}$
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nomanal.
electrical characteristics over recommended operating free-air temperature range

\dagger^{\dagger} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
$\ddagger_{\text {All }}$ typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output		$\begin{array}{ll} I_{0}=200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } 1 \end{array}$			40	65	ns
tPHL Propagation delay time, high-to-low-level output					30	50	ns
Transition time, low-to-high-level output					8	20	ns
Transition time, high-to-low-level output					10	20	ns
VOH High-ievel output voltage after switching	SN55464	$V_{S}=30 \mathrm{~V}, \quad 10 \approx 300 \mathrm{~mA},$ See Figure 2			V^{-}		mV
	SN75464			$V_{S}-10$			

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR $\leq 1 \mathrm{MHZ}, \mathrm{Z}_{\text {out }} \approx 50 \Omega$.
B, C_{L} includes probe and lig capacitance.
FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generator has the following characteristics: PRR $\leq 12.5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

- Dual Circuits Capable of Driving HighCapacitance Loads at High Speeds
- Output Supply Voltage Range Up to 24 V
- Low Standby Power Dissipation

description

The SN75372 is a dual NAND gate interface circuit designed to drive power MOSFETs from TTL inputs. It provides high current and voltage levels necessary to drive large capacitive loads at high speeds. The device operates from a $V_{C C 1}$ of 5 V and a $V_{C C}$ of up to 24 V .
The SN75372 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

schematic (each driver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range of V_{CC} (see Note 1) -0.5 V to 7 V
Supply voltage range of $\mathrm{VCC2}$ $-0.5 \vee$ to 25 V
Input voltage 5.5 V
Peak output current ($\mathrm{t}_{\mathrm{w}}<10 \mathrm{~ms}$, duty cycle $<50 \%$): Sink 500 mA
Source 500 mAContinuous total power dissipation
\qquadSee Dissipation Rating Table
Operating free-air temperature range, T_{A}
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature rang
Storage temperature rang $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTE 1: Voltage values are with respect to network ground terminal.
dissipation rating table

PACKAGE	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE T $_{A}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{A}=70^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW

recommended operating conditions

	PIN:	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\mathrm{CC} 1}$	-3	5	5.25	V
Supply voltage, VCC2	4.75	20	24	V
High-lavel input voltage, $\mathrm{V}_{1 \mathrm{H}}$	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8	V
High-level output current, ${ }^{\text {I }} \mathrm{OH}$			-10	mA
Low-level output current, lol			40	mA
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended ranges of $\mathrm{VCC1}^{2}, \mathrm{VCC}_{\mathrm{C}}$, and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	TYP ${ }^{\text { }}$	MAX	UNIT
$V_{\text {IK }}$	Input clamp voltage		$\boldsymbol{Y}=-12 \mathrm{~mA}$				-1.5	V
VOH	High-level output voltage		$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$,	${ }^{10 H}=-50 \mu \mathrm{~A}$	$V_{\text {CC2 }}-1.3$	$\mathrm{V}_{\mathrm{CC} 2}-0.8$		V
			$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	$\mathrm{T}_{\mathrm{OH}}=-10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC} 2}-2.5$	$\mathrm{V}_{\mathrm{CC2}}-1.8$		
VOL	Low-level output voltage		$\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$,	$1 \mathrm{OL}=10 \mathrm{~mA}$		0.15	0.3	v
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V} \text { to } 24 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{OL}=40 \mathrm{~mA} \end{aligned}$			0.25	0.5	
V_{F}	Output clamp diode forward voltage		$V_{1}=0$,	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$			1.5	V
1	input current at maximum input voltage		$V_{1}=5.5 \mathrm{~V}$				1	mA
IIH	High-level input current	Any A	$V_{1}=2.4 \mathrm{~V}$				40	${ }_{\mu} \mathrm{A}$
		Any E					80	
${ }^{\text {ILI }}$	Low-level input current	Any A	$\mathrm{V}_{l}=0.4 \mathrm{~V}$			-1	-1.6	mA
		Any E				-2	-3.2	
${ }^{[} \mathrm{CC} 1$ (H)	Supply current from VCC1, bath outputs high		$V_{\mathrm{CC} 1}=5.25 \mathrm{~V},$ All inputs at 0 V ,	$V_{C C 2}=24 \mathrm{~V} .$ No load		2	4	mA
${ }^{\prime} \mathrm{CC} 2(\mathrm{H})$	Supply current from $\mathrm{V}_{\mathrm{CC} 2}$, both outputs high						0.5	mA
ICC1 (L)	Supply current from VCC1, both outputs low		$V_{C C 1}=5.25 \mathrm{~V},$ All inputs at 5 V .	$\begin{aligned} & \mathrm{VCC2}_{\mathrm{CC}}=24 \mathrm{~V} \text {, } \\ & \text { No load } \end{aligned}$		16	24	mA
'CC2(L)	Supply current from V_{CC}, both outputs low					7	13	mA
${ }^{1} \mathrm{CC} 2(\mathrm{~S})$	Supply current from $\mathrm{V}_{\mathrm{CC} 2}$, standby condition		$v_{C C 1}=0,$ All inputs at 5 V .	$V_{\mathrm{CC} 2}=24 \mathrm{~V},$ No load			0.5	mA

$\dagger_{\text {All typical values are at }} V_{C C 1}=5 \mathrm{~V}, V_{C C 2}=20 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}} 1=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	$\mathbf{M I N}$	TYP	MAX	UNIT
tDLH Delay time, low-to-high-level output	$\begin{gathered} C_{L}=390 \mathrm{pF}, \\ R_{D}=10 \Omega, \end{gathered}$ See Figure 1		20	35	ns
tDHL Delay time, high-to-low-level output			10	20	ns
t TLH Transition time, low-to-high-level out put			20	30	ns
t THL. Transition time, high-to-low-level output			20	30	ns
tPLH Propagation delay time, low-to-high-level output		10	40	65	ns
tpHL Propagation delay time, high-to-low-level output		10	30	50	ns

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $P R R=1 \mathrm{MHz}, \mathbf{Z}_{\text {out }} \approx 50 \Omega$.
B. C_{L} includes probe and j g capacitance.

FIGURE 1. SWITCHING TIMES, EACH DRIVER

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

NOTE: For $R_{D}=0$, operation with $C_{L}>2000 \mathrm{pF}$ violates absolute maximum current rating.

APPLICATIONS INFORMATION

driving power MOSFETs

The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pull-up resistor is not satisfactory for high-speed applications. In Figure 12(a), an IRF151 power MOSFET switching an inductive load is driven by an open-collector transistor driver with a $470-\Omega$ pull-up resistor. The input capacitance ($\mathrm{C}_{\text {iss }}$) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the combination of $\mathrm{C}_{\text {iss }}$ and the pull-up resistor is shown in Figure 12(b).

(b)

FIGURE 12. POWER MOSFET DRIVE USING SN75447

APPLICATIONS INFORMATION

A faster, more efficient drive circuit uses an active pull-up as well as an active pull-down output configuration, referred to as a totem-pole output. The SN75372 driver provides the high speed, totempole drive desired in an application of this type, see Figure $13(a)$. The resulting faster switching speeds are shown in Figure 13(b).

(b)
(a)

FIGURE 13. POWER MOSFET DRIVE USING SN75372
Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as shown by the equation

$$
I_{p k}=\frac{V C}{t_{\mathrm{r}}}
$$

where C is the capacitive load, and t_{r} is the desired rise time. V is the voltage that the capacitance is charged to. In the circuit shown in Figure $13(a), V$ is found by the equation

$$
\mathrm{V}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}
$$

Peak current required to maintain a rise time of 100 ns in the circuit of Figure 13(a) is

$$
I P K=\frac{(3-0) 4(10-9)}{100(10-9)}=120 \mathrm{~mA}
$$

Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151. With a VCC of 5 V , and assuming worst-cast conditions, the gate drive voltage is 3 V .
For applications in which the full voltage of $V_{C C 2}$ must be supplied to the MOSFET gate, the SN75374 QUAD MOSFET driver should be used.

THERMAL INFORMATION

power dissipation precautions

Significant power may be dissipated in the SN75372 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. Figure 5 shows the power dissipated in a typical SN75372 as a function of load capacitance and frequency. Average power dissipated by this driver is derived from the equation

$$
P_{T}(\mathrm{AV})=P_{\mathrm{DC}}(\mathrm{AV})+\mathrm{P}_{\mathrm{C}}(\mathrm{AV})+\mathrm{P}_{\mathrm{S}}(\mathrm{AV})
$$

where $\operatorname{PDC}(A V)$ is the steady-state power dissipation with the output high or low, $\mathrm{PC}(\mathrm{AV})$ is the power level during charging or discharging of the load capacitance, and $\operatorname{PS}(A V)$ is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.
The power components per driver channel are

$$
\begin{aligned}
& P_{D C}(A V)=\frac{P_{H^{t} H}+P_{L} t_{L}}{T} \\
& P_{C(A V)} \approx C V_{C}^{2} f \\
& P_{S}(A V)=\frac{P_{L H}{ }^{t} L H+P_{H L} H_{H L}}{T}
\end{aligned}
$$

FIGURE 14, OUTPUT VOLTAGE WAVEFORM
where the times are as defined in Figure 14.
$\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{H}}, \mathrm{P}_{\mathrm{LH}}$, and P_{HL} are the respective instantaneous levels of power dissipation, C is the load capacitance. V_{C} is the voltage across the load capacitance during the charge cycle shown by the equation

$$
V_{\mathrm{C}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}
$$

$P_{S}(A V)$ may be ignored for power calculations at low frequencies.

THERMAL INFORMATION

In the following power calculation, both channels are operating under identical conditions:
$\mathrm{V}_{\mathrm{OH}}=19.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=0.15 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=19.05 \mathrm{~V}, \mathrm{C}=1000 \mathrm{pF}$, and the duty cycle $=60 \%$. At $0.5 \mathrm{MHz}, \mathrm{PS}(\mathrm{AV})$ is negligible and can be ignored. When the output voltage is high, ICC2 is negligible and can be ignored.

On a per-channel basis using data sheet values

$$
\begin{aligned}
& \operatorname{PDC}(\mathrm{AV})=\left[(5 \mathrm{~V})\left(\frac{2 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{2}\right)\right](0.6)+\left[(5 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{2}\right)+(20 \mathrm{~V})\left(\frac{7 \mathrm{~mA}}{2}\right)\right](0.4) \\
& \operatorname{PDC}(A V=47 \mathrm{~mW} \text { per channel }
\end{aligned}
$$

Power during the charging time of the load capacitance is

$$
\operatorname{PC}(A V)=(1000 \mathrm{pF})(19.05 \mathrm{~V})^{2}(0.5 \mathrm{MHz})=182 \mathrm{~mW} \text { per channel }
$$

Total power for each driver is

$$
P_{T}(A V)=47 \mathrm{~mW}+182 \mathrm{~mW}=229 \mathrm{~mW}
$$

and total package power is

$$
P_{T}(A V)=(229)(2)=458 \mathrm{~mW} .
$$

- Quadruple Circuits Capable of Driving HighCapacitance Loads at High Speeds
- Output Supply Voltage Range from 5 V to 24 V
- Low Standby Power Dissipation
- Vcc3 Supply Maximizes Output Source Voltage

description

The SN75374 is a quadruple NAND interface circuit designed to drive power MOSFETs from TTL inputs. It provides the high current and voltage necessary to drive large capacitive loads at high speeds.
The outputs can be switched very close to the V_{CC} supply rail when V_{CC} is about 3 V higher than VCC2. The VCC3 pin can also be tied directly to VCC2 when the source voltage requirements are lower.

The SN75374 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

D OR N PACKAGE
(TOP VIEW)

C2 1	\cup_{16}	VCCl_{1}
$1 \mathrm{Y} \mathrm{Cl}_{2}$	15	4Y
$1 \mathrm{~A} \mathrm{Cl}^{3}$	14	4A
$1 \mathrm{E1} \mathrm{C}_{4}$	13	2E2
1E2 5	12	2E1
$2 \mathrm{~A} \mathrm{C}_{6}$	11	3A
$2 \mathrm{Y}^{-7}$	10	З 3
GND \square^{8}		VCC3

schematic (each driver)

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

NOTE 1: Voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE

PACKAGE	TA $_{A}=25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE TA$=25^{\circ} \mathrm{C}$	$\mathrm{TA}_{A}=70^{\circ} \mathrm{C}$ POWER RATING
	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	608 mW
N	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC1 }}$	4.75	5	5.25	\checkmark
Supply voltage, VCC2	4.75	20	24	V
Supply voltage, $\mathrm{VCC3}$	VCC2	24	28	V
Voltage difference between supply voltages: V_{CC} - $\mathrm{V}_{\text {CC2 }}$	0	4	10	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$	2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8	V
High-level output current, $\mathrm{IOH}^{\text {OH}}$			-10	mA
Low-level output current, IOL			40	mA
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended ranges of $\mathrm{V}_{\mathrm{C}} 1, \mathrm{~V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$, and operating free-air temperature (unless otherwise noted)

${ }^{\dagger}$ All typical values are at $V_{C C 1}=5 \mathrm{~V}, V_{C C 2}=20 \mathrm{~V}, V_{C C 3}=24 \mathrm{~V}$, and $T_{A}=25^{\circ} \mathrm{C}$ except for $V_{O H}$ for which V_{CC} and V_{CC} are as stated under test conditions.

$$
\text { switching characteristics, } V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	$1 \cdot \mathrm{~F}, 17$
tDLH Delay time, low-to-high-level output	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF} \\ \mathrm{R}_{\mathrm{D}}=24 \Omega \end{gathered}$ See Figure 1		20	30	0
$\mathrm{t}_{\text {DHL }}$ Delay time, high-to-low-level output			10	20	ns
$\mathrm{t}_{\text {TLH }}$ Transition time, low-to-high-level output			20	30	ns
$\mathrm{t}_{\text {THL }}$ Transition time, high-to-low-level output			20	30	ns
${ }^{\text {t PLH }}$ Propagation delay time, low-to-high-level output		10	40	60	ns
tPHL Propagation delay time, high-to-low-level output		10	30	50	ns

NOTES: A. The pulse generator has the following characteristics: $P R R=1 \mathrm{MHz}, Z_{\text {out }} \approx 50 \Omega$. B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES, EACH DRIVER

TYPICAL CHARACTERISTICS

HIGH-LEVEL OUTPUT VOLTAGE vs OUTPUT CURRENT

FIGURE 2

LOW-LEVEL OUTPUT VOLTAGE vs
 OUTPUT CURRENT

FIGURE 4

HIGH-LEVEL OUTPUT VOLTAGE OUTPUT CURRENT

FIGURE 3

FIGURE 5

TYPICAL CHARACTERISTICS

PROPAGATION DELAY TIME, LOW-TO-HIGH-LEVEL OUTPUT
vs
FREE-AIR TEMPERATURE

FIGURE 6

PROPAGATION DELAY TIME, LOW-TO-HIGH-LEVEL OUTPUT
vs
VCC2 SUPPLY VOLTAGE

FIGURE 8

PROPAGATION DELAY TIME, high-TO-LOW-LEVEL OUTPUT vs
Ta-FREE-AIR TEMPERATURE

FIGURE 7

PROPAGATION DELAY TIME, HIGH-TO-LOW-LEVEL OUTPUT
vs
$V_{C C 2}$ SUPPLY VOLTAGE

FIGURE 9

TYPICAL CHARACTERISTICS

POWER DISSIPATION (ALL DRIVERS)
vs
FREQUENCY

FIGURE 12
NOTE: For $R_{D}=0$, operation with $C_{L}>2000 \mathrm{pF}$ violates absolute maximum current rating.

APPLICATIONS INFORMATION

driving power MOSFETs

The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The input impedance of a FET consists of a reverse biased PN junction that can be described as a large capacitance in parallel with a very high resistance. For this reason, the commonly used open-collector driver with a pull-up resistor is not satisfactory for high-speed applications. In Figure 13(a), an IRF151 power MOSFET switching an inductive load is driven by an open-collector transistor driver with a 470- Ω pull-up resistor. The input capacitance ($C_{i s s}$) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time due to the product of input capacitance and the pull-up resistor is shown in Figure 13(b).

FIGURE 13. POWER MOSFET DRIVE USING SN75447

A faster, more efficient drive circuit uses an active pull-up as well as an active pull-down output configuration, referred to as a totem-pole output. The SN75374 driver provides the high-speed totempole drive desired in an application of this type, see Figure 14(a). The resulting faster switching speeds are shown in Figure 14(b).

FIGURE 14. POWER MOSFET DRIVE USING SN75374

APPLICATIONS INFORMATION

Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as shown by the equation

$$
I_{p k}=\frac{V C}{t_{r}}
$$

where C is the capacitive load, and t_{r} is the desired rise time. V is the voltage that the capacitance is charged to. In the circuit shown in Figure $14(\mathrm{a}), \mathrm{V}$ is found by the equation

$$
\mathrm{V}=\mathrm{VOH}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}
$$

Peak current required to maintain a rise time of 100 ns in the circuit of Figure $14(\mathrm{a})$ is

$$
I_{P K}=\frac{(3-0) 4\left(10^{-9}\right)}{100\left(10^{-9}\right)}=120 \mathrm{~mA}
$$

Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151. With a VCC of 5 V , and assuming worst-case conditions, the gate drive voltage is 3 V .
For applications in which the full voltage of $V_{C C 2}$ must be supplied to the MOSFET gate, VCC3 should be at least 3 V higher than V_{CC}.

THERMAL INFORMATION

power dissipation precautions

Significant power may be dissipated in the SN75374 driver when charging and discharging high-capacitance loads over a wide voltage range at high frequencies. Figure 12 shows the power dissipated in a typical SN75374 as a function of frequency and load capacitance. Average power dissipated by this driver is derived from the equation

$$
P_{T}(A V)=P_{D C}(A V)+P_{C}(A V)+P_{S}(A V)
$$

where $\operatorname{PDC}(A V)$ is the steady-state power dissipation with the output high or low, $\operatorname{PC}(A V)$ is the power level during charging or discharging of the load capacitance, and PS(AV) is the power dissipation during switching between the low and high levels. None of these include energy transferred to the load and all are averaged over a full cycle.

The power components per driver channel are

$$
\begin{aligned}
& P D C(A V)=\frac{P_{H^{t} H}+P_{L} t L}{T} \\
& P_{C}(A V)=C V^{2} C f \\
& P_{S}(A V)=\frac{P L H^{t} L H+P_{H L} t H L}{T}
\end{aligned}
$$

FIGURE 15. OUTPUT VOLTAGE WAVEFORM
where the times are as defined in Figure 15.

THERMAL INFORMATION

$\mathrm{P}_{\mathrm{L}}, \mathrm{P}_{\mathrm{H}}, \mathrm{P}_{\mathrm{LH}}$, and P_{HL} are the respective instantaneous levels of power dissipation, C is the load capacitance. V_{C} is the voltage across the load capacitance during the charge cycle shown by the equation

$$
V_{\mathrm{C}}=V_{O H}-V_{O L}
$$

PS(AV) may be ignored for power calculations at low frequencies.
In the following power calculation, all four channels are operating under identical conditions: $f=0.2 \mathrm{MHz}$, $\mathrm{VOH}_{\mathrm{OH}}=19.9 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=0.15 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=19.75 \mathrm{~V}$, $\mathrm{C}=1000 \mathrm{pF}$, and the duty cycle $=60 \%$. At 0.2 MHz for $\mathrm{CL}_{L}<2000 \mathrm{pF}, \mathrm{PS}(\mathrm{AV})$ is negligible and can be ignored. When the output voltage is low, ICC2 is negligible and can be ignored.

On a per-channel basis using data sheet values

$$
\begin{aligned}
\operatorname{PDC}(A V)= & {\left[(5 \mathrm{~V})\left(\frac{4 \mathrm{~mA}}{4}\right)+(20 \mathrm{~V})\left(\frac{-2.2 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\left(\frac{2.2 \mathrm{~mA}}{4}\right)\right](0.6)+} \\
& {\left[(5 \mathrm{~V})\left(\frac{31 \mathrm{~mA}}{4}\right)+(20 \mathrm{~V})\left(\frac{0 \mathrm{~mA}}{4}\right)+(24 \mathrm{~V})\left(\frac{16 \mathrm{~mA}}{4}\right)\right](0.4) } \\
\mathrm{PDC}_{\mathrm{D}}(\mathrm{AV}= & 58.2 \mathrm{~mW} \text { per channel }
\end{aligned}
$$

Power during the charging time of the load capacitance is

$$
P_{\mathrm{C}}(\mathrm{AV})=(1000 \mathrm{pF})(19.75 \mathrm{~V})^{2}(0.2 \mathrm{MHz})=78 \mathrm{~mW} \text { per channel }
$$

Total power for each driver is

$$
\mathrm{P}_{\mathrm{T}(\mathrm{AV})}=58.2 \mathrm{~mW}+78 \mathrm{~mW}=136.2 \mathrm{~mW}
$$

The total package power is

$$
\mathrm{P}_{\mathrm{T}}(\mathrm{AV})=(136.2)(4)=544.8 \mathrm{~mW}
$$

- Saturating Outputs With Low On Resistance
- Very Low Standby Power . . . 53 mW Max
- High-Impedance MOS- or TTL-Compatible Inputs
- Standard 5-V Supply Voltage
- No Output Glitch During Power-Up or Power-Down
- Output Clamp Diodes for Transient Suppression
- 2-W Power Package . . . $60^{\circ} \mathrm{C} / \mathrm{W}_{\text {R }}$ JA
- 600-mA Output Current
- 35-V Switching Voltage

description

The SN75435 quadruple peripheral driver is designed for use in systems requiring high current, high voltage, and high load power. It features four inverting open-collector drivers with a common enable input that, when taken low, disables all four outputs. Each driver is protected against load shorts with its own latching over-current shutdown circuitry, which will turn the output off when a load short is detected. A short on one load will not affect operation of the other three drivers. The latch for the shutdown will hold the output off until the input or enable pin is taken low and then high again. A delay circuit is incorporated in the overcurrent shutdown to allow load capacitance of up to 5 nF at 35 V .

Applications include relay drivers, lamp drivers, solenoid drivers, motor drivers, LED drivers, line drivers, logic buffers, hammer drivers, and memory drivers.

The SN75435 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

NE DUAL-IN-LINE PACKAGE
(TOP VIEW)

FUNCTION TABLE
(EACH NAND DRIVER)

INPUTS		OUTPUT
\mathbf{A}	\mathbf{G}	
L	X	\mathbf{H}
X	L	\mathbf{H}
H	H	L

$H=$ high level, $L=$ low level $X=$ irrelevant
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN75435
QUADRUPLE PERIPHERAL DRIVER WITH OUTPUT FAULT PROTECTION

schematic of inputs

EQUIVALENT OF EACH INPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range of V_{CC} (see Note 1) 7 V
Input voltage 5.5 V
Output supply voltage 70 V
Output diode clamp current 1 A
Continuous total power dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 2) 2075 mW
Operating free-air temperature range, T_{A} $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. All voltage values are with respect to network ground terminal.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
recommended operating conditions

	MIN	NOM
MAX	UNIT	
Supply voltage, $V_{C C}$	4.75	5
High-level input voltage, V_{IH}	5.25	V
Low-level input voltage, V_{IL}	2	
Output voltage	V	
Output current		0.8
Load capacitance (See Figure 3)	V	
Operating free-air temperature, T_{A}		V

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{\text {t }}$	MAX	UNIT
V_{IK} Input clamp voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$		-0.9	-1.5	V
OH High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~m} \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.55 \end{aligned}$	$\begin{array}{r} 0.5 \\ 1 \end{array}$	V
$\mathrm{V}_{\mathrm{R}} \quad$ Output clamp diode reverse voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{R}}=\ldots$	70	100		v
$\mathrm{V}_{\mathrm{F}} \quad$ Output clamp diode forward voltage	$\mathrm{I}_{\mathrm{F}}=600 \mathrm{~mA}$			1.2	1.6	V
$\mathrm{IIH}^{\text {H }}$ High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$V_{1}=5.25 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$
HL Low-level input current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		-05	-10	$\mu \mathrm{A}$
Over-current shutdown current	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}$ to 5.25 V		650			mA
I'CH Supply current, outputs high	$V_{C C}=5.25 \mathrm{~V}$.	$V_{1}=0$		\checkmark	10	mA
ICCL Supply current, outputs low	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$.	$\mathrm{V}_{1}=5 \mathrm{~V}$		55	75	mA

[^3]switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST C HIMTIONS	MIN TYP MAX	UNIT
tpLH Propogation delay time, low-to-high-level output		750	ns
tPHL Propagation delay time, high-to-low-leve! output	$C_{L}=30 \mathrm{pF}, \mathrm{A}_{\mathrm{L}}=60 \Omega$,	750	ns
tTLH Transition time, low-to-high-level output	See Figure 1	200	ns
tTHL Transition time, high-to-low-level output		200	ns
V_{OH} High-level output voltage after switching	See Figure 2	$V_{S}-10$	mV

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR $=100 \mathrm{kHz}, Z_{\text {out }}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

QUADRUPLE PERIPHERAL DRIVER

WITH OUTPUT FAULT PROTECTION
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR $=12.5 \mathrm{kHz}, \mathrm{Z}_{\text {out }}=50 \Omega$.
B. C_{L} include probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

RECOMMENDED OPERATING CONDITIONS
MAXIMUM OUTPUT SUPPLY VOLTAGE
vs
LOAD CAPACITANCE

FIGURE 3

$\dagger_{\text {The }}$ SN74LS194 is a universal shift register with both shift-right and shift-left capability. In this application SO (pin 9) is wired high and only the shift-right and parallel-load modes are utilized. The logic symbol shown above has been simplified to show only the utilized modes.
${ }^{\ddagger}$ This signal is $\mathrm{CW} / \overline{\mathrm{CCW}}$ or $\overline{\mathrm{CW}} / \mathrm{CCW}$ depending on motor winding.

- Saturating Outputs With Low On-State

Resistance

- High-Impedance Inputs Compatible With CMOS, MOS, and TTL Levels
- Very Low Standby Power . . 21 mW Maximum
- High-Voltage Outputs . 70 V Min
- No Output Glitch During Power Up or Power Down
- No Latch-Up Within Recommended Operatıng Conditions
- Output Clamp Diodes for Transient Suppression
- 2-W Power Package
description
The SN75436, SN75437A, and SN75438 quadruple peripheral drivers are designed for use in systems requiring high current, high voltage, and high load power. Each device features four inverting open-collector outputs with a common enable input that, when taken low, disables all four outputs The envelope of I-V characteristics exceeds the specifications sufficiently to avoid high-current latch-up Applications include driving relays, lamps, solenoids, motors, LEDs, transmission lines, hammers, and other high-power-demand devices.
logic symbol ${ }^{\dagger}$

t This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

NE PACKAGE
(TOP VIEW)

FUNCTION TABLE
(each NAND driver)

INPUTS		OUTPUT
A	G	Y
H	H	L
L	X	H
X	L	H

$\mathbf{H}=$ nigh level,
$\mathbf{L}=$ low level,
$\mathbf{X}=$ irrelevant
equivalent schematic of each input

logic diagram (positive logic, each driver)

SELECTION GUIDE

FEATURE	SN75436	SN75437A	SN74 : 4	P.**
Maximum recommended output current	0.5	05	1	M
Maximum V_{OL} at maximum I_{OL}	05	05	1	V
Maximum recommended output supply voltage in an inductive switching circuit, V_{S}	50	35	35	V

SN75436, SN75437A, SN75438 QUADRUPLE PERIPHERAL DRIVERS

absolute maximum ratings over operating temperature range (unless otherwise noted)
\qquad
Supply voltage, VCC
Input voltage 30 V
Output current: SN75436, SN75437A (see Note 1) 0.75 A

SN75438
1.25 A

Output clamp diode current . 1.25 A
Output voltage (off-state) . 70 V
Continuous total power dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature
(see Note 2)
Operating free-air temperature range, T_{A}. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16-\mathrm{inch})$ from case for 10 seconds . $260^{\circ} \mathrm{C}$
NOTES: 1. All four sections of these circuits may conduct rated current simultaneously; however, power dissipation average over a short time interval must fall within the continuous dissipation ratings.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly to 1328 mW at $70^{\circ} \mathrm{C}$ at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
recommended operating conditions

PARAMETER	SN75436			SN75437A			SN75438			UNIT
	MIN	NOM	MAX	MIN	NOM	MAY	MiN	NOM	MAX	
Supply voltage, VCC	. 4.75	5	5.25	4.75	5	- , - -	4.75	5	5.25	V
Output current, l_{OL}			0.5			0.5			1	A
Output supply voltage in inductive switching circuit (see Figure 2), V_{S}			50			35			35	V
High-level input voltage, $\mathrm{V}_{1 H}$	2			2			2			V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$			0.8			0.8			0.8	V
Operating free-air temperature, T_{A}	0		70	0		70	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\begin{gathered} \text { SN75436 } \\ \text { SN75437A } \end{gathered}$			SN75438			UNIT		
		MIN	TYP ${ }^{\text {¢ }}$	MAX	MIN	TYP ${ }^{\text {t }}$	MAX					
$\mathrm{V}_{\text {IK }}$	Input clamp			$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$		-0.9	-1.5		-0.9	-1.5	V
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=7 n \mathrm{~V} \end{aligned}$		1	100		1	100	$\mu \mathrm{A}$		
VOL	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=$ - -mA		0.14	0.25		0.14	0.25	V		
			$\mathrm{I}_{\mathrm{OL}}=\mathrm{mA}$		0.28	0.5		0.28	0.5			
			$\mathrm{I}^{\mathrm{OL}}=750 \mathrm{~mA}$					0.42	0.75			
			$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~A}$					0.60	1			
$\mathrm{V}_{\mathrm{R}(\mathrm{K})}$	Output clamp diode reverse voltaga	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	70	100		70	100		\checkmark		
$V_{\text {F }}(\mathrm{K})$	Output clamp diode forward voltage	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$			1	1.6		1	1.6	v		
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$						1.2	2			
l_{i}	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=5.25 \mathrm{~V}$		0.1	10		0.1	10	$\mu \mathrm{A}$		
'iL	Low-level input current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$\mathrm{V}_{1}=0.8 \mathrm{~V}$		-0.25	-10		-0.25	-10	$\mu \mathrm{A}$		
ICCH	Supply current. outputs high	$V_{\text {CC }}=5.25 \mathrm{~V}$,	$v_{1}=0$		1	4		1	4	mA		
${ }^{\text {I CCL }}$	Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$,	$V_{1}=5 \mathrm{~V}$		45	65		45	65	mA		

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high-level output		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$ See Figure 1	$\mathrm{R}_{\mathrm{L}}=60 \mathrm{n}$,		1950	5000	ns
tPHL	Propagation delay time, high-to-low-level output					150	500	ns
tTLH	Transition time, low-to-high-level output					40		ns
tTHL	Transition time, high-to-low-level output					36		ns
V_{OH}	High-level output voltage, after switching	SN75436	$\begin{aligned} & V_{S}=50 \mathrm{~V}, \\ & R_{L}=100 \Omega, \end{aligned}$	$I_{0} \approx 500 \mathrm{~mA},$ See Figure 2	$V_{S}-10$			mV
		SN75437A	$\begin{aligned} & V_{S}=35 \mathrm{~V} \\ & R_{\mathrm{L}}=70 \Omega \end{aligned}$	$\mathrm{l}_{\mathrm{O}} \approx 500 \mathrm{~mA}$ See Figure 2	$\mathrm{V}_{S}-10$			mV
		SN75438	$\begin{aligned} & V_{S}=35 \mathrm{~V}, \\ & R_{\mathrm{L}}=35 \Omega \end{aligned}$	$I_{0} \approx 1 \mathrm{~A},$ See Figure 2	$\mathrm{V}_{S}-10$			mV

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The puise generator has the following characteristics: $P R R=100 \mathrm{kHz}, \mathrm{Z}_{\mathbf{o}}=50 \Omega$.
8. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

NOTES: A. The pulse generator has the following characteristics: $\operatorname{PRR}=12.5 \mathrm{kHz}, Z_{0}=50 \Omega$.
8. C_{L} includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST
vs
DUTY CYCLE

FIGIJRE 3
MAXIMUM COLLECTOR CURRENT
vs
DUTY CYCLE

FIGURE 4

APPLICATION INFORMATION

FIGURE 5. 4-WINDING STEPPER MOTOR CONTROL CIRCUIT

FIGURE 6. TIMING DIAGRAM

- 1.3-A Current Capability Each Channel
- Saturating Outputs With Low On-State Resistance
- Two Inverting and Two Noninverting Driver Channels With Common Active-Low Enable input
- Key Application Is as a Complete Full-Step 4-Phase DC Stepper Motor Driver Using Only Three Directly Connected Logic Control Signal Lines From Standard Microprocessors
- High-Impedance Inputs Compatible With TTL or CMOS Levels
- Very Low Standby Power . . 10 mW Typ
- 50-V Noninductive Switching Voltage Capability
- 40-V Inductive Switching Voltage Capability
- Output Clamp Diodes for Inductive Transient Protection
- 2-W Power Package

description

The SN75439 quadruple peripheral driver is designed for use in systems requiring high current, high voltage, and high load power. The device features two inverting and two noninverting open-collector outputs with a common-enable input that, when taken high, disables all four outputs. By pairing each inverting channel with a corresponding noninverting channel (such as channel 1 paired with channel 2 and channel 3 paired with channel 4), the device may be used as a complete full-step 4-phase dc stepper motor driver using only two input lagic control signals plus the enable signal, as shown in Figure 3. Other applications include driving relays, lamps, solenoids, motors, LEDs, transmission lines, hammers, and other high-power-demand loads.
The SN75439 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

INPUTS		OUTPUT
A	$\overline{\mathbf{G}}$	Y
H	L	L
L	X	H
X	H	H

(Each Channel 2 or
Channel 3 Driver)

INPUTS		OUTPUT
A	\bar{G}	Y
L	L	L
H	X	H
X	H	H

$H=$ high level
L = low level
X = irrelevant
logic symboit

[^4]loglc diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply voltage range, VCC (see Note 1) . -0.3 V to 7 V
Input voltage, VI . 7 V
Output voltage range, V_{O}. -0.3 V to 52 V
Output voltage, Vo (inductive load) . 43 V
Output clamp-diode terminal voltage range, VOK . 0.3 V to 52 V
Input current, II . 15 mA
Peak sink output current, IOM (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 0.1 \mathrm{~ms}$) (see Note 2) 1.5 A
(repetitive, $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$) 1.4 A
Continuous sink output current, lo (see Note 2) . 1.3 A
Peak output clamp diode current, IOKM (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 0.1 \mathrm{~ms}$) (see Note 2) 1.5 A
(repetitive, $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$) 1.3 A
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 3) 2075 mW
Continuous total dissipation at (or below) $65^{\circ} \mathrm{C}$ case temperature (see Note 3) 5000 mW
Operating case or virtual junction temperature range . $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds . $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to the network ground terminal (unless otherwise specified).
2. All four channels of this device may conduct rated current simultaneously; however, power dissipation average aver a short time Interval must fall within the continuous dissipation range.
3. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For operation above $65^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $59 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded.
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V_{CC}		4.75	5	5.25	V
Output supply voltage in inductive	$\overline{V_{s}} \quad: \quad: \cdot \square$			40	V
High-level input voltage, $\mathrm{V}_{\text {IH }}$		2		5.25	V
Low-level input voltage, V_{IL}		$-0.3{ }^{\dagger}$		0.8	V
Low-level output current, loL				1.3	A
Operating free-alr temperature, T_{A}		0	25	70	${ }^{\circ} \mathrm{C}$

\dagger The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels.
electrical characteristics over recommended ranges of operating free-air temperature and supply voitages (uniess otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
$\overline{\mathrm{V} \text { IK }}$	Input clamp voltage	$4=-12 \mathrm{~mA}$			-0.9	-1.5	V
VOL	Low-level output voltage	$1 \mathrm{OL}=0.5 \mathrm{~A}$	See Note 4		0.2	0.35	V
		$1 \mathrm{OL}=1 \mathrm{~A}$			0.4	0.7	
		$1 \mathrm{OL}=1.3 \mathrm{~A}$			0.5	0.9	
$V_{F(K)}$	Output clamp diode forward voltage	$\mathrm{I}^{\prime} \mathrm{F}=0.5 \mathrm{~A}$	See Note 4		1.1	1.9	V
		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$			1.3	2.2	
		$\mathrm{I}_{\mathrm{F}}=1.3 \mathrm{~A}$			1.4	2.4	
1 OH	High-level output current	$\mathrm{VOH}=50 \mathrm{~V}$,	$\mathrm{VOK}_{\mathrm{OK}}=50 \mathrm{~V}$			100	$\mu \mathrm{A}$
I H	High-level input current	$\mathrm{V}_{1}=\mathrm{V}_{1 \mathrm{H}}$				10	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{1}=0$ to 0.8 V				-10	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{R}$ (K)	Output clamp-diode reverse current (at Y output)	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$,	$V_{O}=0$			100	$\mu \mathrm{A}$
${ }^{\text {c C }}$	Supply current	All outputs at high level (off)			2	8	mA
		All outputs at low level (on)			140	200	
		Two outputs at high level (off) and two outputs at low level (on)			70	110	

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
NOTE 4: These parameters must be measured using pulse techniques, $t_{w}=1 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
switching characteristics, $\mathrm{V}_{\mathrm{C}} \mathrm{C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tplh	Propagation delay time, low-to-high-level output	$\begin{gathered} \mathrm{IOL}=1 \mathrm{~A}_{1} \\ \mathrm{R}_{\mathrm{L}}=30 \Omega \end{gathered}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF},$$\text { See Figure } 1$		1500		ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output				100		ns
${ }^{\text {tTLH }}$	Transition time, low-to-high-level output				170		ns
${ }^{\text {T THL }}$	Transition time, high-to-low-level output				50		ns
VOH	High-level output voltage (after switching inductive load)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=31 \Omega . \end{aligned}$	$10 \approx 1.3 \mathrm{~A},$ See Flgure 2	$V_{S}-100$			mV

PARAMETER MEASUREMENT INFORMATION

VDLTAGE WAVEFORMS
NOTES: A. The pulse generator has the following characteristics; duty cycle $\leq 1 \%, Z_{0}=50 \Omega$.
B. Enable input \bar{G} is at 0 V if input A is used as the switching input. When \bar{G} is used as the switching input, the corresponding A input is at 0 V if testing channel 2 or channel 3 or at 3 V if testing channel 1 or channel 4.
C. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: duty cycle $\leq 1 \%, Z_{0}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 2. OUTPUT LATCH-UP TEST

APPLICATION INFORMATION

WAVEFORMS

FIGURE 3. FULL-STEP FOUR-PHASE STEPPER MOTOR DRIVER

- Very Low Power Requirements
- Very Low Input Current
- Characterized for Use to $\mathbf{3 5 0} \mathbf{~ m A}$
- No Output Latch-Up at 50 V (After Conducting $\mathbf{3 0 0} \mathbf{m A}$)
- High-Voltage Outputs (70 V Min)
- Output Clamp Diodes for Transient Suppression ($350 \mathrm{~mA}, 70 \mathrm{~V}$)
- TTL- or MOS-Compatible Diode-Clamped Inputs
- Standard Supply Voltage
- Suitable for Hammer-Driver Applications

description

Series SN75446 dual peripheral drivers are designed for use in systems that require high current, high voltage, and fast switching times. The SN75446, SN75447, SN75448, and SN75449 provide AND, NAND, OR, and NOR drivers, respectively. These devices have diodeclamped inputs as well as high-current, highvoltage inductive-clamp diodes on the outputs.
Series SN75446 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
schematics of inputs and outputs

FUNCTION TABLES
SN75446
(EACH AND DRIVER)

INPUTS		OUTPUT
\mathbf{A}	\mathbf{S}	\mathbf{Y}
\mathbf{H}	H	H
L	X	L
X	L	L

SN75447
(EACH NAND DRIVER)

INPUTS		OUTPUT
A	S	Y
H	H	L
L	X	H
X	L	H

SN75448
(EACH OR DRIVER)

INPUTS		OUTPUT
A	S	V
H	X	H
X	H	H
L	L	L

SN75449
(EACH NOR DRIVER)
\(\left.\begin{array}{|cc|c|}\hline IN: \& \&

\hline A \& 0 \& OUTPUT

V\end{array}\right]\)| X | L |
| :---: | :---: |
| X | H |
| L | L |

$H=$ high level
$\mathrm{L}=$ low level
X = irrelevant
logic symbols ${ }^{\dagger}$

SN75446

SN75449

${ }^{\dagger}$ Thes e symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagrams (positive logic)

positive logic: $\mathbf{Y}=\mathbf{A S}$ or $\overline{\bar{A}+\bar{S}}$

positive togic: $Y=\overline{A S}$ or $\bar{A}+\bar{S}$

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
\qquad
Supply voltage, VCC (see Note 1)
Input voltage 5.5 V

Output current (see Note 2) 400 mA
Output clamp diode current 400 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Both halves of this dual circuit may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation ratings.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mathbf{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE	$T_{\mathbf{A}}=25^{\circ}=$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW

recommended operating conditions

	MIN	NOM	MAX
Supply voltage, $V_{C C}$	4.75	5	5.25
High-level input voltage, $V_{i H}$	2		V
Low-level input voltage, V_{IL}		V	
Dperating free-air temperature, T_{A}	0	0.8	V

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{\dagger}$	MAX	UNIT	
Input clamp voltage		$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-0.9	-1.5	V	
High-level output current		$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{array}$			1	100	$\mu \mathrm{A}$	
$V_{O L}$ Low-level output voltage		$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \\ & V_{I H}=2 \mathrm{~V}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$	$1 \mathrm{OL}=100 \mathrm{~mA}$		0.10	0.3	V	
		${ }^{1} \mathrm{OL}=200 \mathrm{~mA}$		0.22	0.45			
		$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.45	0.65			
		$1 \mathrm{OL}=350 \mathrm{~mA}$		0.55	0.75			
$\mathrm{V}_{\left(\text {(} \text { P }^{\prime} \text { O }\right.}$ Output breakdown voltage			$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$		70			V
Output clamp diode reverse voltage			$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		70			V
Output clamp diode forward voltage			$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		0.6	1.2	1.6	V
High-level input current		$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \quad \mathrm{~V}_{1}=5.25 \mathrm{~V}$			0.01	10	$\mu \mathrm{A}$	
Low-level input current	A input	$V_{C C}=5.25 \mathrm{~V}, \quad V_{1}=0.8 \mathrm{~V}$			-0.5	-10	$\mu \mathrm{A}$	
	Strobe S				-1	-20		
${ }^{1} \mathrm{CCH}$ Supply current, outputs high	SN75446	$V_{C C}=5.25 \mathrm{~V}$	$\mathrm{V}_{1}=5 \mathrm{~V}$		11	18	mA	
	SN75447		$V_{1}=0$		11	18		
	SN75448		$\mathrm{V}_{1}=5 \mathrm{~V}$		18	25		
	- $\quad 3449$		$V_{1}=0$		18	25		
ICCL Supply current, outputs low	$\cdots \because 3446$	$V_{C C}=5.25 \mathrm{~V}$	$V_{1}=0$		11	18	mA	
	SN75447		$V_{1}=5 \mathrm{~V}$		11	18		
	$\because \quad i 448$		$V_{1}=0$		18	25		
	\cdots.		$V_{1}=5 \mathrm{~V}$		18	25		

switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$\begin{gathered} C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ \text { See Figure } 1 \end{gathered}$	300	750	ns
tPHL Propagation delay time, high-to-low-level output		200	50%	ns
tTLH Transition time, low-to-high-level output		50		ns
${ }^{\text {THL }}$ L . Transition time, high-to-low-level output		50	ius	ns
V_{OH} High-level output voltage after switching	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=55 \mathrm{~V}, \mathrm{I}_{\mathrm{O}} \approx 300 \mathrm{~mA}, \\ \text { See Figure 2 } \end{gathered}$	$V_{S}-0.018$		V

VOLTAGE WAVEFORMS
NOTES: A. The pulse generator has the foliowing characteristics: $P R R=100 \mathrm{kHz}, Z_{\text {out }}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the foflowing characteristics: $\operatorname{PRR}=12.5 \mathrm{kHz}, \mathrm{Z}_{\text {out }}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

SN75465 THRU SN75469 dARLINGTON TRANSISTOR ARRAYS

HIGH VOLTAGE HIGH-CIIRRENT DARLINGTON TRANSISTOR ARRAYS

- 500-mA Rated Collector Current
(Single Output)
- High-Voltage Outputs . . . 100 V
- Output Clamp Diodes
- Inputs Compatible with Various Types of Logic
- Relay Driver Applications
- Higher-Voltage Versions of ULN2005A, ULN2001A, ULN2002A, ULN2003A, and ULN2004A, Respectively, for Commercial Temperature Range

D OR N PACKAGE
(TOP VIEW)

description

The SN75465, SN75466, SN75467, SN75468, and SN75469 are monolithic high-voltage, high-current Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of each Darlington pair is 500 mA . The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The SN75465 has a 1050- 2 series base resistor and is especially designed for use with TTL where higher current is required and loading of the driving source is not a concern. The SN75466 is a general-purpose array and may be used with TTL, P-MOS, CMOS, and other MOS technologies. The SN75467 is specifically designed for use with 14 - to $25-\mathrm{V}$ P-MOS devices and each input has a zener diode and resistor in series to limit the input current to a safe limit. The SN75468 has a $2700-\Omega$ series base resistor for each Darlington pair for operation directly with TTL or $5-V$ CMOS. The SN75469 has a $10.5-\mathrm{k} \Omega$ series base resistor to allow its operation directly from CMOS or P-MOS that use supply voltages of 6 to 15 V . The required input current is below that of the SN75468 and the required voltage is less than that required by the SN75467.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram

schematics (each Darlington pair)

SN75467

SN75465, SN75468, SN75469
All resistor values shown are nominal.
absolute maximum ratings at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-emitter voltage 100 V
Input voltage (see Note 1): SN75465 15 V
SN75467, SN75468, SN75469 30 V
Peak collector current (see Figures 14 and 15) 500 mA
Output clamp diode current 500 mA
Total emitter-terminal current -2.5 A
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to the emitter/substrate terminal, E, unless otherwise noted.

DISSIPATION RATING TABLE

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING
D	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	608 mW
N	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW

SN75465, SN75466, SN75467 DARLINGTON TRANSISTOR ARRAYS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS			SN75465			UNIT	
		:1.f.				TYP	MAX			
ICEX	Collector cutoff current		1	$\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V}$,	$l_{1}=0$				50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V}$,		$\mathrm{l}=0$,	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			100		
Il(off)	Off-state input current	3	$\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V}$,	$\mathrm{I} C=500 \mu \mathrm{~A}$,	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	50	65		${ }_{\mu} \mathrm{A}$	
1	Input current	4	$\mathrm{V}_{1}=3 \mathrm{~V}$				1.5	2.4	mA	
$V_{\text {I }}$ (on)	On-state input voltage	5	$\mathrm{V}_{C L}=2 \mathrm{~V}$,	${ }^{1} \mathrm{C}=350 \mathrm{~mA}$				2.4	V	
$V_{\text {CE }}$ (sat)	Collector-emitter saturation voltage	6	$I_{1}=. \quad \mu A$,	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=100 \mathrm{~mA}$			0.9	1.1	V	
			$l_{1}=\cdot \mu \mathrm{A}$,	$1 \mathrm{C}=200 \mathrm{~mA}$			1	1.3		
			$\mathrm{I}_{1}=5 \cap \cap \cdots \mathrm{~A}$,	$1 \mathrm{C}=350 \mathrm{~mA}$			1.2	1.6		
${ }_{8}$	Clamp diode reverse current	7	$\mathrm{V}_{\mathrm{R}}=\cdot \mathrm{V}$					50	$\mu \mathrm{A}$	
			$V_{R}=\cdot \quad V_{\text {d }}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				100		
V_{F}	Clamp diode forward voltage	8	$\mathrm{IF}_{\mathrm{F}}=350 \mathrm{~mA}$				1.7	2	V	
C_{i}	Input capacitance		$\mathrm{V}_{1}=0$,	$\mathrm{f}=1 \mathrm{MHz}$			15	25	pF	

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS		SN75468			SN75469			UNIT	
		MiN			TYP	MAX	MIN	TYP	MAX			
ICEX	Collector cutoff current		1	$V_{C E}=100 \mathrm{~V}, \mathrm{I}_{1}=0$				50			50	$\mu \mathrm{A}$
		$\begin{aligned} & V_{C E}=100 \mathrm{~V}, \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$		$l_{1}=0$			100					
			2	$\mathrm{V}_{1}=1 \mathrm{~V}$								
I(off)	Off-state input current	3	$\begin{aligned} & V_{C E}=50 \mathrm{~V}, \quad \mathrm{I} \mathrm{C}=500 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$		50	65		50	65		$\mu \mathrm{A}$	
1	Input current	4	$\mathrm{V}_{1}=3.85 \mathrm{~V}$			0.93	1.35				mA	
			$\mathrm{V}_{1}=5 \mathrm{~V}$						0.35	0.5		
			$\mathrm{V}_{1}=12 \mathrm{~V}$						1	1.45		
$V_{\text {Ifon) }}$	On-state input voltage	5	$V_{C E}=2 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=125 \mathrm{~mA}$						5	v	
				${ }^{1} \mathrm{C}=\mathrm{ma}$			2.4			6		
				${ }^{1} \mathrm{C}=\mathrm{ma}$			2.7					
				${ }^{1} \mathrm{C}=275 \mathrm{~mA}$						7		
				${ }^{1} \mathrm{C}=300 \mathrm{~mA}$			3					
				${ }^{1} \mathrm{C}=350 \mathrm{~mA}$						8		
$\mathrm{V}_{\text {CE(sat) }}$	Collector-emitter saturation voltage	6	$I_{1}=\quad \quad A$,			0.9	1.1		0.9	1.1	v	
			$\underline{I}=14$,	$\mathrm{I}^{\mathrm{C}}=. \quad \mathrm{mA}$		1	1.3		1	1.3		
			$l_{1}=500 \mu \mathrm{~A}$,	${ }^{1} \mathrm{C}=350 \mathrm{~mA}$		1.2	1.6		1.2	1.6		
${ }^{\text {I }}$ R	Clamp diode reverse current	7	$\begin{aligned} & V_{R}=100 \mathrm{~V} \\ & V_{R}=100 \mathrm{~V} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			50 100			50 100	$\mu \mathrm{A}$	
V_{F}	Clamp diode forward voltage	8	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$			1.7	2		1.7	2	V	
C_{i}	Input capacitance		$\mathrm{V}_{1}=0$,	$f=1:$		15	25		15	25	pF	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	$V_{S}=50 \mathrm{~V}$, $R_{\mathrm{L}}=163 \Omega$, $C_{L}=15 \mathrm{pF}$, See Figure 9			0.25	1	$\mu \mathrm{s}$
tPHL	Propagation delay time, high-to-low-level output				0.25	1	$\mu \mathrm{s}$
V OH	High-level output voltage after switching	$V_{S}=50 \mathrm{~V},$ See Figure 10	$\mathrm{I}_{\mathrm{O}}=300 \mathrm{~mA},$	$\mathrm{V}_{S}-20$			mV

PARAMETER MEASUREMENT INFORMATION

figure 1. ICex

FIGURE 3. II(off)

FIGURE 5. VIlon)

FIGURE 7. IR

figure 2. Icex

FIGURE 4. II

NOTE: I_{1} is fixed for measuring $\vee_{C E(\text { sat })}$, variable for measuring $h_{\text {FE }}$.
FIGURE 6. hFE, VCE(sat)

FIGURE 8. VF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The puise generator has the following characteristics: $P R R=12.5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.
C. For testing the ' $465,{ }^{\prime} 466$, and ${ }^{\prime} 468, V_{I H}=3 \mathrm{~V}$; for the ' $467, V_{l H}=13 \mathrm{~V}$; for the ${ }^{\prime} 469, V_{I H}=8 \mathrm{~V}$.

FIGURE 9. PROPAGATION DELAY TIMES

NOTES: A. The pulse generator has the following characteristics: $P R R=12.5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.
C. For testing the ' 465 , '466. and ' 468 . $V_{I H}=3 \mathrm{~V}$; for the ${ }^{\prime} 467, V_{I H}=13 \mathrm{~V}$; for the ${ }^{\prime} 469, V_{I H}=8 \mathrm{~V}$.

FIGURE 10. LATCH-UP TEST

SN75465 THRU SN75469 DARLINGTON TRANSISTOR ARRAYS

TYPICAL CHARACTERISTICS

FIGURE 11
collector emittin
saturation voltage
collector current (TWO DARLINGTONS PARALLELED)

FIGURE 12
collector current
INPIST CURRENT

FIGURE 13

THERMAL INFORMATION

D PACKAGE
 MAXIMUM COLLECTOR CURRENT

vs
DUTY CYCLE

FIGURE 14

N PACKAGE
MAXIMUM COLLECTOR CURRENT
VS
DUTY CYCLE

FIGURE 15

TYPICAL APPLICATION DATA

PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to $\mathbf{3 0 0} \mathbf{~ m A}$
- High-Voltage Outputs
- No Output Latch-Up at 55 V (After Conducting $\mathbf{3 0 0} \mathrm{mA}$)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability

description

Series SN75471 dual peripheral drivers are functionally interchangeable with Series SN75451B and Series SN75461 peripheral drivers, but are designed for use in systems that require higher breakdown voltages than either of those series can provide at the expense of slightly slower switching speeds than Series 75451B (limits are the same as Series SN75461). Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.
The SN75471, SN75472, and SN75473 are dual peripheral AND, NAND, and OR drivers, respectively, (assuming positive logic) with the output of the logic gates internally connected to the bases of the $n-p-n$ output transistors.
Series SN75471 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

SN75471 THRU SN75473 DUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 7 V
Input voltage 5.5 V
Interemitter voltage (see Note 2) 5.5 V
Off-state output voltage 70 V
Continuous collector or output current (see Note 3) 400 mA
Peak collector or output current ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$, see Note 3) 500 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A} $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature 1.6 mm ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
NOTES: 1. Voltage values are with respect to the network ground terminal unfess otherwise specified.
2. This is the voltage between two emitters of a multiple-emitter transistor.
3. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.

DISSIPATION RATING TABLE

PACKAGE	$\begin{gathered} T_{A} \leq 25^{\circ} \mathrm{C} \\ \text { PO } \because \cdot H \text { BATING } \end{gathered}$	DERATING FACTOR ABOVE $T_{A}=25^{\circ} \mathrm{C}$	$T_{A}=70^{\circ} \mathrm{C}$ POWER RATING
D	mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW

recommended operating conditions

	MIN	NOM	MAX
Uupply voltage, $V_{C C}$	4.75	5	5.25
High-level input voltage, $V_{\text {IH }}$	2		V
Low-level input voltage, $V_{\text {IL }}$		\mathbf{V}	
Operating free-air temperature, T_{A}	$\mathbf{0}$	\mathbf{V}	

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(EACH DRIVER)

\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L (on state
L	H	L (on state
H	L	L (on state)
H	H	H (off state)

positive logic:
$Y=A B$ or $\overline{\bar{A}+\bar{B}}$
logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS	MIN TYP \ddagger MAX	I INIT
$\mathrm{V}_{\text {IK }}$ Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{4} \mathrm{I}_{\mathrm{i}}=-12 \mathrm{~mA}$	-1.2 $\quad \because=$,
1 OH High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{aligned}$	100	$\mu \mathrm{A}$
VOt Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{O}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$	$0.25 \quad 0.4$	V
OL Low-leval output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{IOL}=300 \mathrm{~mA} \end{aligned}$	0.50 .7	
II Input current at maximum	$V_{C C}=5.25 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$	1	mA
IIH High-level input current	$V_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=2.4 \mathrm{~V}$	40	$\mu \mathrm{A}$
I/L Low-level input current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$	$-1-1.6$	mA
$\mathrm{I}_{\mathrm{CCH}}$ Supply current, outputs high	$V_{C C}=5.25 \mathrm{~V}, V_{1}=5 \mathrm{~V}$	$8 \quad 11$	mA
${ }^{1} \mathrm{CCL}$ Supply current, outputs low	$V_{C C}=5.25 V_{1} V_{1}=0$	5676	mA

\ddagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
${ }^{\text {t PLH }}$ Propagation delay time, low-to-high-level output	$\begin{array}{ll} \mathrm{I}_{\mathrm{O}} \approx 200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, & \text { See Figure } 1 \end{array}$	30	55	ns
$\mathrm{t}_{\mathrm{PHL}}$ Propagation delay time, high-to-low-level output		25	40	ns
tTLH Transition time, low-to-high-level output		8	20	ns
tTHL Transition time, high-to-low-level output		10	20	ns
V_{OH} High-level output voltage after switching	$V_{\mathrm{S}}=55 \mathrm{~V}, \quad 1_{0} \approx 300 \mathrm{~mA}$ See Figure 2	$V_{S}-18$		mV

logic symbol ${ }^{\text {t }}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	H (off state)
L	H	H loff state)
H	L	H loff state)
H	H	L Ion state)

positive logic
$Y=\overline{\mathrm{AB}}$ or $\overline{\mathrm{A}}+\overline{\mathrm{B}}$
logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal
electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS	MIN TYP \ddagger	MAX	UNIT
VIK Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, I $=-12 \mathrm{~mA}$	-1.2	-1.5	V
l_{OH} High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{aligned}$		100	$\mu \mathrm{A}$
$V_{\text {OL }}$ Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$	0.25	0.4	V
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA} \end{aligned}$	0.5	0.7	
IIInput current at maximum input voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$		1	mA
$\mathrm{IIH}^{\text {H }}$ High-level input current	$V_{C C}=5.25 V_{1} V_{1}=2.4 \mathrm{~V}$		40	$\mu \mathrm{A}$
lil Low-level input current	$\mathrm{V}_{C C}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0.4 \mathrm{~V}$	-1	-1.6	mA
ICCH Supply current, outputs high	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{1} \mathrm{~V}_{1}=5 \mathrm{~V}$	13	17	mA
ICCL Supply current, outputs low	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1}=0$	61	76	mA

${ }^{\dagger}$ All typical velues are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$\begin{array}{ll} \mathrm{I}_{0}=200 \mathrm{~mA}, & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, & \text { See Figure } 1 \end{array}$		45	65	ns
tPHL Propagation delay time, high-to-low-level output			30	50	ns
tTLH Transition time, low-to-high-level output			13	25	ns
tTHL Transition time, high-to-low-level output			10	20	ns
V_{OH} High-level output voltage after switching	$V_{S}=55 \mathrm{~V}, \quad I_{0} \approx 300 \mathrm{~mA},$ See Figure 2	$V_{S}-18$			mV

SN75473
 DUAL PERIPHERAL POSITIVE-OR DRIVER

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE
(EACH DRIVER)

A	B	Y
L	L	L (on state)
L	H	H (off state)
H	L	H (off state)
H	H	H (off state)

positive logic:
$Y=A+B$ or $\overline{\bar{A} \bar{B}}$
logic diagram (positive logic)

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range

PARAMETER	TEST CONDITIONS	MIN TYP ${ }^{\text { }}$	MAX	UNIT
$V_{\text {IK }}$ Input clamp voltage	$V_{C C}=4.75 \mathrm{~V}, \mathrm{I}=-12 \mathrm{~mA}$	-1.2	-1.5	V
${ }^{1} \mathrm{OH}$ High-level output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{aligned}$		100	${ }_{\mu} \mathrm{A}$
VOL Low-level output voltage	$\begin{aligned} & V_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad V_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA} \end{aligned}$	0.25	0.4	V
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{lOL}=300 \mathrm{~mA} \end{aligned}$	0.5	0.7	
i) Input current at maximum	$V_{C C}=5.25 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$		1	mA
IIH High-level input current	$V_{C C}=5.25 \mathrm{~V}, V_{1}=2.4 \mathrm{~V}$		40	${ }_{\mu} \mathrm{A}$
I_{LL} Low-level input current	$V_{C C}=5.25 \mathrm{~V}, V_{1}=0.4 \mathrm{~V}$	-1	-1.6	mA
$\mathrm{I}_{\mathrm{CCH}}$ Supply current, outputs high	$V_{C C}=5.25 \mathrm{~V}, V_{1}=5 \mathrm{~V}$	8	11	mA
${ }^{\text {I CCL }}$ Supply current, outputs low	$V_{C C}=5.25 \mathrm{~V}, V_{1}=0$	58	76	$m \mathrm{~A}$

${ }^{\ddagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$\begin{array}{ll} I_{O} \approx 200 \mathrm{~mA}, & C_{L}=15 \mathrm{pF} \\ R_{L}=50 \Omega, & \text { See Figure } 1 \end{array}$	30	55	ns
$\mathrm{t}_{\text {PHL }}$ Propagation delay time, high-to-low-level output		25	40	ns
trLH Transition time, low-to-high-level output		8	25	ns
tTHL Transition time, high-to-low-level output		10	25	ns
1 OH High-level output voltage after switching	$\begin{aligned} & V_{S}=55 \mathrm{~V}, \quad l_{0} \approx 300 \mathrm{~mA}, \\ & \text { See Figure } 2 \end{aligned}$	$V_{S}-18$		mV

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $P R R \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
8. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generator has the following characteristics: PRR $\leq 12.5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \mathrm{a}$.
B. C_{i} includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

- Characterized for Use to $\mathbf{3 0 0} \mathrm{mA}$
- No Output Latch-Up at 55 V (After Conducting $\mathbf{3 0 0} \mathbf{~ m A)}$
- High-Voltage Outputs (100 V Typical)
- Output Clamp Diodes for Transient Suppression ($\mathbf{3 0 0} \mathrm{mA}, 70 \mathrm{~V}$)
- TTL- or MOS-Compatible Diode-Clamped Inputs
- P-N-P Inputs Reduce Input Current
- Standard Supply Voltage
- Suitable for Hammer-Driver Applications
- Plastic DIP (P) with Copper Lead Frame Provides Cooler Operation and Improved Reliability

description

Series SN75476 dual peripheral drivers are designed for use in systems that require high current, high voltage, and fast switching times. The SN75476, SN75477, SN75478, and SN75479 provide AND, NAND, OR, and NOR drivers, respectively. These devices have diodeclamped inputs as well as high-current, highvoltage clamp diodes on the outputs for inductive transient protection.
The SN75476, SN75477, SN75478, and SN75479 drivers are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

D OR P PACKAGE

(TOP VIEW)

FUNCTION TABLES

SN75476
(EACH AND DRIVER)

INPUTS		OUTPUT
A	S	
H	H	H
L	X	L
X	L	L

SN75477
(EACH NAND DRIVER)

IN $\cdot:$	\cdot	OUTPUT
A	S	Y
H	H	L
L	X	H
X	L	H

SN75478
(EACH OR DRIVER)

INi $\cdot \boldsymbol{I} \cdot$		OUTPUT
A	\mathbf{S}	
H	X	H
X	H	H
L	L	L

SN75479
(EACH NOR DRIVER)

INI	I':	OUTPUT
A	O	Y
H	X	L
X	H	L
L	L	H

$H=$ high level
$\mathrm{L}=$ low level
$\mathrm{X}=$ irrelevant

SN75476 THRU SN75479

DUAL PERIPHERAL DRIVERS

logic symbols ${ }^{\dagger}$

logic diagrams (positive logic)

positive logic: $\mathrm{Y}=\mathrm{A}+\mathrm{S}$ or $\overline{\bar{A} \bar{S}}$

[^5]
SN75476 THRU SN75479 DUAL PERIPHERAL DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1) 7 V
Input voltage 5.5 V
Continuous output current (see Note 2) 400 mA
Peak output current: $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 50 \%$ 500 mA
$\mathrm{t}_{\mathrm{w}} \leq 30 \mathrm{~ns}$, duty cycle $\leq 0.002 \%$ 3 A
Output clamp diode current 400 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_{A}. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Both halves of this dual circuit may conduct rated current simultaneousiy; however, power dissipation averaged over a short time interval must fall within the continuous dissipation ratings.

dissipation rating table

PACKAGE	$T_{A} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE T $_{A}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW
P	1000 mW	$8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	640 mW

recommended operating conditions

	MIN	NOM
MAPply voltage, V_{CC}	4.5	$\mathbf{5}$
	5.5	V
High-level input voltage, V_{IH}	2	
Low-level input voltage, V_{IL}		V
Operating free-air temperature, T_{A}	0	0.8

electrical characteristics over recommended operating free-air temperature range

PARAMETER			TEST CONDITIONS		MIN	TYPt	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\\|_{1}=-12 \mathrm{~mA}$			-0.95	-1.5	V	
${ }^{1} \mathrm{OH}$	High-level output current		$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \\ & V_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=70 \mathrm{~V} \end{aligned}$		1	100	$\mu \mathrm{A}$	
VOL	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & V_{\mathrm{IH}}=2 \mathrm{~V} . \\ & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.16	0.3		
			$\mathrm{I}_{\mathrm{OL}}=175 \mathrm{~mA}$		0.22	0.5	v		
			$\mathrm{I}_{\mathrm{OL}}=300 \mathrm{~mA}$		0.33	0.6			
$V_{\text {(BR) }}$	Output breakdown voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$.	$\mathrm{I}_{\mathrm{OH}}=10 \mathrm{n} \mu \mathrm{A}$	70	100		V
$V_{\text {R }}(\mathrm{K})$	Output clamp diode reverse voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,		70	100		V
$V_{\text {F }}(\mathrm{K})$	Output clamp diode forward voltage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{F}}=$ unu inA	0.8	1.15	1.6	V	
I_{H}	High-level input current		$V_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		0.01	10	$\mu \mathrm{A}$	
ILL	Low-level input current	A input	$\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$.	$V_{1}=0.8 \mathrm{~V}$		-80	-110	$\mu \mathrm{A}$	
		Strobe S				-160	-220		
${ }^{\text {I CCH }}$	Supply current, outputs high	SN75476	$V_{C C}=5.5 \mathrm{~V}$	$\mathrm{V}_{1}=5 \mathrm{~V}$		10	17	mA	
		SN75477		$V_{1}=0$		10	17		
		SN75478		$V_{1}=5 \mathrm{~V}$		10	17		
		SN75479		$V_{1}=0$		10	17		
${ }^{1} \mathrm{CCL}$	Supply current, outputs low	\because - 4776	$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	$V_{1}=0$		54	75	mA	
		SN75477		$V_{1}=5 \mathrm{~V}$		54	75		
		SN75478		$V_{1}=0$		54	75		
		$\cdots \cdot 1479$		$V_{1}=5 \mathrm{~V}$		54	75		

[^6]
SN75476 THRU SN75479

DUAL PERIPHERAL DRIVERS
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	$:$ TYP MAX	I'! 1
tPLH Propagation delay time, low-to-high-level output	$\begin{aligned} C_{L}= & 15 \mathrm{pF}, R_{\mathrm{L}}=100 \Omega \\ & \text { See Figure } 1 \end{aligned}$. \cdot.	115
tpHL Propagation delay time, high-to-low-level output		-	ns
${ }^{\text {T TLH }}$ (Transition time, low-to-high-level output		30	ns
tTHL Transition time, high-to-low-level output		90	ns
VOH High-level output voltage after switching	$V_{S}=55 \mathrm{~V}, \mathrm{I}_{\mathrm{O}} \approx 300 \mathrm{~mA}$ See Figure 2	$V_{S}-18$	mV

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: PRR $=1 \mathrm{MHz}, Z_{\text {out }}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR $=12.5 \mathrm{kHz}, \mathrm{Z}_{\text {out }}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 2. LATCH-UP TEST

- 1-A Output Current Capability Per Driver
- Output Ciamp Diodes for Inductive Transient Suppression
- Applications Inciude Haif-H and Fuil-H Solenoid Drivers and Motor Drivers
- Designed for Positive-Supply Applications
- Wide Supply Voltage Range: 4.5 V to 36 V
- TTL- and CMOS-Compatible High-Impedance Diode-Clamped Inputs
- Separate Input-Logic Supply
- Thermal Shutdown
- Internal ESD Protection
- Input Hysteresis Improves Naise Immunity
- Three-State Outputs
- Minimized Power Dissipation
- Sink/Source Interlock Circuitry Prevents Simultaneous Conduction
- No Output "Glitch" During Pawer-Up or Power-Down
- Improved Functional Replacement for the SGS L293D

NE PACKAGE
(TOP VIEW)

FUNCTION TABLE
(EACH DRIVER)

inputs ${ }^{\dagger}$		$\begin{gathered} \text { OUTPUT } \\ Y \end{gathered}$
A	EN	
H	H	H
L	H	L
X	L	2

$\mathrm{H}=$ high-level
$\mathrm{L}=$ low-level
$X=$ irrelevant
$Z=$ high-impedance (off)
\dagger In the thermal shutdown mode, the output is in highimpedance state regardless of the input levels.

description

The SN754410 is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to one ampere at voltages from 4.5 V to 36 V . It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are compatible with TTL and low-level CMOS logic. Each output (Y) is a complete totem-pole driver with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by $1,2 \mathrm{EN}$ and drivers 3 and 4 enabled by $3,4 \mathrm{EN}$. When an enable input is high, the associated drivers are enabled and their outputs become active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

A separate supply voitage ($\mathrm{V}_{\mathrm{CC}} 1$) is provided for the logic input circuits to minimize device power dissipation. Supply voltage (V_{CC}) is used for the output circuits.

The SN754410 is designed for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

QUADRUPLE HALF-H DRIVER

logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage range, $\mathrm{V}_{\mathrm{CC} 1}$ (see Note 1)	-0.5 V to 36 V
Output supply voltage range, $\mathrm{V}_{\text {CC2 }}$	-0.5 V to 36 V
Input voltage	36
Output voltage range, V_{0}	-3 V to $\mathrm{VCc2}+3 \mathrm{~V}$
Peak output current (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 5 \mathrm{~ms}$), IPK	$\pm 2 \mathrm{~A}$
Continuous output current, lo	± 1.1 A
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-a	2075 mW
Operating free-air temperature range	$40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating case or virtual junction temperature range	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case	

NOTES: 1. All voltage values are with respect to the network ground terminal.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.
recommended operating conditions

	MIN	MAX
UNIT		
Logic supply voltage, $V_{C C 1}$	4.5	5.5
Hight supply voltage, $V_{C C 2}$	4.5	$\mathbf{3 6}$
Low-level input voltage, $\mathrm{V}_{\text {IH }}$	2	\mathbf{V}
Operating virtual junction temperature, T_{J}	-0.3^{\dagger}	V
Operating free-air temperature, T_{A}	-40	0.8

${ }^{\dagger}$ The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet for logic voltage levels.
electrical characteristics over recommended ranges of $\mathrm{VCC}_{\mathrm{C}}, \mathrm{VCC}_{\mathrm{C}}$, and operating virtual junction temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\dagger}$	MAX	$\begin{gathered} \text { UNIT } \\ \hline V \end{gathered}$
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-0.9	-1.5	
V_{OH}	High-level output voltage	$\mathrm{IOH}_{\mathrm{OH}}=-0.5 \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC2}}-1.5$	$\mathrm{V}_{\mathrm{CC} 2}-1.1$		v
		$\mathrm{IOH}=-1 \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC2}}{ }^{-2}$			
		$\mathrm{IOH}^{\prime}=-1 \mathrm{~A}, \quad \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		$\mathrm{V}_{\mathrm{CC} 2}{ }^{-1.8} \mathrm{~V}_{\mathrm{CC} 2}{ }^{-1.4}$			
VOL	Low-level output voltage	$\mathrm{IOL}^{\mathrm{OL}}=0$	5 A		1	1.4	V
		$\mathrm{IOL}=1 \mathrm{~A}$				2	
		IOL $=1$	$\mathrm{A}, \quad \mathrm{TJ}^{2}=25^{\circ} \mathrm{C}$		1.2	1.8	
VOKH	High-level output clamp voltage	lok $=0.5 \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC} 2}+1.4$	$\mathrm{VCC2}^{+2}$	
		$\mathrm{I}_{\mathrm{OK}}=1 \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC} 2}+1.9$	$\mathrm{V}_{\mathrm{CC} 2}+2.5$	
VOKL	Low-level output clamp voitage	IOK $=-0.5 \mathrm{~A}$			-1.1	-2	V
		${ }^{1} \mathrm{OK}=-1 \mathrm{~A}$			-1.3	-2.5	
loz	Off-state (high-impedance state) output current	$\mathrm{V}_{0}=\mathrm{V}_{\text {CC2 }}$		-			$\mu \mathrm{A}$
		$V_{0}=0$					
IIH	High-level input current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$					${ }_{\mu}{ }^{\text {A }}$
ILL	Low-level input current	$\mathrm{V}_{1}=0$				-10	$\mu \mathrm{A}$
ICC1	Logic supply current	$\mathrm{I}_{0}=0$	All outputs at high level			38	mA
			All outputs at low level			70	
			All outputs at high impedance			25	
${ }^{\text {I CC2 }}$	Output supply current	$\mathrm{l}_{0}=0$	All outputs at high level			33	mA
			All outputs at low level			20	
			All outputs at high impedance			5	

${ }^{\dagger}$ All typical values are at $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $\mathrm{VCC}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{VCC}_{2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	Max	UNIT
tDLH Delay time, low-to-high-level output from A input	$C_{L}=30 \mathrm{pF}$, See Figure 1	800		ns
tDHL Delay time, high-to-low-level output from A input		400		ns
tTLH Transition time, low-to-high-level output				ns
tTHL Transition time, high-to-low-level output				ns
$t_{\text {PRH }}$ Enable time to the high level	$C_{L}=30 \mathrm{pF}$, See Figure 2			ns
tPZL Enable time to the low level		.		ns
tPHZ Disable time from the high level				ns
tplz Disable time from the low level		600		ns

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES: A. The pulse generator has the following characteristics: $t_{r} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$. B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES FROM DATA INPUTS

VOLTAGE WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{W}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

FIGURE 2. SWITCHING TIMES FROM ENABLE INPUTS

APPLICATION INFORMATION

FIGURE 3. TWO-PHASE MOTOR DRIVER

- 1-A Output Current Capability Per Driver

- Applications Include Half-H and Full-H Solenoid Drivers and Motor Drivers
- Designed for Positive-Supply Applications
- Wide Supply Voltage Range: 4.5 V to 36 V
- TTL- and CMOS-Compatible High-Impedance Diode-Clamped Inputs
- Separate Input-Logic Supply
- Thermal Shutdown
- Internal ESD Protection
- Input Hysteresis Improves Noise Immunity
- Three-State Outputs
- Minimized Power Dissipation
- Sink/Source Interlock Circuitry Prevents Simultaneous Conduction
- No Output "Glitch' During Power-Up or Power-Down
- Improved Functional Replacement for the SGS L293

NE PACKAGE
(TOP VIEW)
$\begin{array}{rl}\text { 1,2EN } \\ 1 \mathrm{~A} & 16 \\ 1 \mathrm{Y}\end{array}$
FUNCTION TABLE
(EACH DRIVER)

INPUTS †		OUTPUT
\mathbf{A}	EN	
H	H	H
L	H	L
X	L	Z

$H=$ high-level
$L=$ low-level
$X=$ irrelevant
$Z=$ high-impedance (off)
t In the thermal shutdown mode, the output is in the high-impedance state regardless of the input levels.

description

The SN754411 is a quadruple high-current half-H driver designed to provide bidirectional drive currents of up to one ampere at voltages from 4.5 V to 36 V . It is designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are compatible with TTL and low-level CMOS logic. Each output (Y) is a complete totem-pole driver with a Darlington transistor sink and a psuedo-Darlington source. Drivers are enabled in pairs with drivers 1 and 2 enabled by $1,2 E N$ and drivers 3 and 4 enabled by $3,4 E N$. When an enable input is high, the associated drivers are enabled and their outputs become active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in a high-impedance state. With the proper data inputs, each pair of drivers form a full-H (or bridge) reversible drive suitable for solenoid or motor applications.
External high-speed output clamp diodes should be used for inductive-transient suppression. A separate supply voltage ($V_{C C 1}$) is provided for the logic input circuits to minimize device power dissipation. Supply voltage ($\mathrm{VCC}_{\mathrm{C}}$) is used for the output circuits.

The SN754411 is designed for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ This symbel is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Logic supply voltage range, V_{CC} (see Note 1) -0.5 V to 36 V
Output supply voltage range, V_{C} 2 -0.5 V to 36 V
Input voltage 36 V
Output voltage range, V_{0} $-3 V$ to $V_{C C 2}+3 V$
Peak output current (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 5 \mathrm{~ms}$), IPK $\pm 2 \mathrm{~A}$
Continuous output current, Io $\pm 1.1 \mathrm{~A}$
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 2) 2075 mW
Operating free-air temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating case or virtual junction temperature range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTES: 1. All voltage values are with respect to the network ground terminal.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power leveis slightly above or below the rated dissipation.

recommended operating conditions

	MIN	MAX
Logic supply voltage, $V_{C C 1}$	4.5	5.5
Output supply voltage, V_{CC}	V	
High-level input voltage, V_{IH}	4.5	36
Low-level input voltage, V_{IL}	2	\mathbf{V}
Operating virtual junction temperature, TJ_{J}	-0.3^{\dagger}	$\mathbf{5 . 5}$
Operating free-air temperature, T_{A}	-40	V

[^7]
SN754411 QUADRUPLE HALF-H DRIVER

electrical characteristics over recommended ranges of VCC1, VCC2, and operating virtual junction temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP ${ }^{\text { }}$	MAX	$\frac{\text { UNIT }}{V}$
V_{IK}	Input ciamp voltage	$\mathrm{I}_{1}=-12 \mathrm{~mA}$		-0.9 -1.5			
VOH	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=$	0.5 A	$\mathrm{V}_{\mathrm{CC2}}-1.5$	$\mathrm{V}_{\mathrm{CC2}}-1$		v
		$\mathrm{IOH}^{\text {OH }}=-1 \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC2}}{ }^{-2}$			
		$\mathrm{IOH}^{\prime}=-1 \mathrm{~A}, \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		$\mathrm{V}_{\text {CC2 }}-1.8 \mathrm{~V}_{\text {CC2 }}-1.4$			
V_{OL}	Low-level output voltage	$\mathrm{I}^{\mathrm{OL}}=0$	5 A		1	1.4	V
		$\mathrm{IOL}=1 \mathrm{~A}$				2	
		$\mathrm{IOL}^{\prime}=1 \mathrm{~A}_{1} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.2	1.8	
Ioz	Off-state (high-impedance state) output current	$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{CC} 2}$				\cdots	$\mu \mathrm{A}$
		$\mathrm{V}_{0}=0$					
${ }_{\text {IH }}$	High-level input current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$				iv	$\mu \mathrm{A}$
	Low-level input current	$V_{1}=0$				-10	$\mu \mathrm{A}$
ICC1	Logic supply current	$10=0$	All outputs at high level			38	mA
			All outputs at low level			70	
			All outputs at high impedance			25	
ICC2	Output supply current	$10=0$	All outputs at high level			33	mA
			All outputs at low level			20	
			All outputs at high impedance			5	

${ }^{\dagger}$ All typical values are at $\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics, $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP$\cdots$$\cdots$$\cdots$	MAX	UNIT
tDLH Delay time, low-to-high-leval output from A input	$C_{L}=30 \mathrm{pF}$, See Figure 1				ns
tDHL Delay time, high-to-low-level output from A input					ns
tTLH Transition time, low-to-high-level output					ns
${ }^{\text {t THL }}$ Transition time, high-to-low-level output					ns
tpZH Enable time to the high level	$C_{L}=30 \mathrm{pF}$, See Figure 2				ns
tPZL Enable time to the low level			400		ns
tPHZ Disable time from the high level			900		ns
tplz Disable time from the low level			600		ns

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. Tha pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \mathrm{R}$. B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES FROM DATA INPUTS

NOTES: A. Tha pulse genarator has the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=10 \mu \mathrm{~s}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \mathrm{a}$. B. C_{L} includes probe and jig capacitanca.

FIGURE 2. SWITCHING TIMES FROM ENABLE INPUTS

APPLICATION INFORMATION

FIGURE 3. TWO-PHASE MOTOR DRIVER

- Formerly TLP298
- 2-A Output Current Capability per Full-H Driver
- Applications Include Half-H and Full-H Solenoid Drivers and Motor Drivers
- Wide Range of Output Supply Voltage . . 5 V to 46 V
- Separate Input-Logic Supply Voltage
- Thermal Shutdown
- Internal Electrostatic Discharge Protection
- High Noise Immunity
- Three-State Outputs
- Minimized Power Dissipation
- Sink/Source Interlock Circuitry Prevents Simultaneous Conduction
- Improved Functional Replacement for the SGS L298

description

The TPICO298 is a dual high-current full-H driver designed to provide bidirectional drive currents of up to two amperes at voltages from 5 V to 46 V . It is designed to drive inductive loads such as relays, solenoids, de motors, stepping motors, and other high-current or high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output (Y) is a complete totempole drive with a Darlington transistor sink and a psuedo-Darlington source. Each full-H driver is enabled separately. Outputs 1 Y 1 and 1 Y 2 are enabled by 1 EN and outputs 2 Y 1 and 2 Y 2 are enabled by $2 E N$. When an EN input is high, the associated channels are active. When an EN input is low, the associated channels are off (i.e., in the high-impedance state).
Each half of the device forms a full-H reversible driver suitable for solenoid or motor applications. The current in each full-H driver can be monitored by connecting a resistor between the sense output terminal 1E and ground and another resistor between sense output terminal 2E and ground.

KV PACKAGE
(TOP VIEW)

The tab is electrically connected to pin 8 .
logic symbol ${ }^{\dagger}$

[^8]
FUNCTION TABLE

(EACH CHANNEL)

INPUTS		OUTPUT
A	EN	
H	H	H
L	H	L
X	L	Z

[^9]
description (continued)

External high-speed output-clamp diodes should be used for inductive transient suppression. To minimize device power dissipation, a $V_{C C 1}$ supply voltage, separate from $V_{C C 2}$, is provided for the logic inputs.

The TPIC0298 is designed for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

logic diagram (positive logic)

absolute maximum ratings over operating temperature range (unless otherwise noted)

Output supply voltage range, VCC2 . -0.3 V to 50 V
Input voltage range at A or $E N, V_{I}$ (see Note 2) . -1.6 V to 7 V

Emitter terminal (1E and 2E) voltage (nonrepetitive, $t_{w} \leq 50 \mu s$) 1 V
Input current at A or EN, II . -15 mA
Peak output current, IOM, (nonrepetitive, $\mathrm{t}_{\mathrm{w}} \leq 0.1 \mathrm{~ms}$) 3 A
(repetitive, $\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 80 \%$) $\pm 2.5 \mathrm{~A}$
Continuous output current, lo . ± 2 A
Peak combined output current for each full-H driver (see Note 3)
(nonrepetitive, $t_{w} \leq 0.1 \mathrm{~ms}$) . ± 3 A
(repetitive, $\mathrm{t}_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 80 \%$) . $\pm 2.5 \mathrm{~A}$
Continuous combined output current for each full-H driver (see Note 3) ± 2 A
Continuous dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 4) 3.575 W
Continuous dissipation at (or below) $75^{\circ} \mathrm{C}$ case temperature (see Note 4) 25 W
Operating free-air, case, or virtual junction temperature range $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}\left(1 / 16\right.$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to the network ground terminal, unless otherwise noted.
2. The maximum current limitation at this terminal generally occurs at a voltage of lower magnitude than the voltage limit, Neither the maximum current nor the maximum voltage for this terminal should be exceeded.
3. Combined output current applies to each of the two full-H drivers individually. This current is the sum of the currents at outputs 1 Y 1 and 1 Y 2 for full-H driver 1 and the sum of the currents at outputs 2 Y 1 and 2 Y 2 for full-H driver 2 . The full-H drivers may carry the rated combined current simultaneously.
4. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For operation above $75^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $333 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipetion.

recommended operating conditions

		MIN	MAX	UNIT
Logic supply voltage, $\mathrm{V}_{\mathrm{CC} 1}$		4.5	7	V
Output supply voltage, $\mathrm{V}_{\mathrm{CC} 2}$		5	46	V
Emitter terminal (1E or 2E) voltage, $\mathrm{V}_{\mathrm{E}}($ see Note 5)		-0.5^{\dagger}	2	V
		$\mathrm{VCCl}^{-3.5}$		
		$\mathrm{VCC2}^{-4}$		
High-level input voltage, $\mathrm{V}_{1 \mathrm{H}}$ (see Note 5)	A	2.3	$\mathrm{V}_{\mathrm{CCl}}$	V
			-2.5	
	EN	2.3	7	
			$\mathrm{V}_{\mathrm{CCl}}$	
Low-level input voltage at A or EN, $\mathrm{V}_{\text {IL }}$		$-0.3{ }^{\dagger}$	1.5	V
Output current, I_{0}			± 2	A
Commutation frequency, f_{G}			40	kHz
Operating free-air temperature, $T_{\text {A }}$		0	70	${ }^{\circ} \mathrm{C}$

${ }^{\dagger}$ The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for emitter terminal voltage and logic voltage levels.
NOTE 5: For optimum device performance, the maximum recommended voltage at any A input is 2.5 V lower than V_{CC}, the maximum recommended voltage at any $E N$ input is $V_{C C 1}$, and the maximum recommended voltage at any emitter terminal is 3.5 V lower than $V_{C C 1}$ and $4 V$ lower than $V_{C C 2}$.
electrical characteristics over recommended ranges of $\mathrm{V}_{\mathrm{CC}} 1, \mathrm{~V}_{\mathrm{CC}}$, and $\mathrm{V}_{\mathrm{E}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYp ${ }^{\text {¢ }}$	MAX	UNIT			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{I}_{1}=-12 \mathrm{~mA}$				-0.9	-1.5	V			
V OH	High-level output voltage		$1 \mathrm{OH}=-1 \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC} 2}-1.8 \mathrm{~V}_{\mathrm{CC2}}-1.2$						
			$1 \mathrm{OH}=-2 \mathrm{~A}$			$\mathrm{V}_{\mathrm{CC2}}-2.8$	$\mathrm{VCC2}^{-1.8}$		v			
V_{OL}	Low-level output voltage		${ }^{1} \mathrm{OL}=1 \mathrm{~A}$				$\mathrm{V}_{\mathrm{E}}+1.2$	$V_{E}+1.8$	v			
			$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~A}$				$\mathrm{V}_{\mathrm{E}}+1.7$	$\mathrm{V}_{\mathrm{E}}+2.6$				
$V_{\text {drop }}$	Total source plus sink output voltage drop		$\begin{array}{ll}1 \mathrm{OH}=-1 \mathrm{~A}, & I_{\mathrm{OL}}=1 \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~A}, & I_{\mathrm{OL}}=2 \mathrm{~A}\end{array}$ See Note 6				2.4	3.4				
				3.5	5.2							
lozh	Off-state (high-impedance state) output current, high-level voltage applied					$V_{0}=V_{c c}$					500	$\mu \mathrm{A}$
${ }^{\text {I OLL }}$	Off-state (high-impedance state) output current, low-level voltage applied		$\mathrm{V}_{0}=0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$					-500	$\mu \mathrm{A}$			
IIH	High-level input current	A	$V_{1}=V_{1 H}$		$\mathrm{EN}=\mathrm{H}$		20	100	$\mu \mathrm{A}$			
					$\mathrm{EN}=\mathrm{L}$			10				
		EN	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \leq \mathrm{Vcc}_{1}-0.6 \mathrm{~V}$				6	100				
IfL	Low-level input current		$\mathrm{V}_{1}=0 \mathrm{~V}$ to 1.5 V					-10	$\mu \mathrm{A}$			
ICC1	Logic supply current		$10=0$	All outputs at hig	gh level		7	12	mA			
				All outputs at low	w level		20	32				
				All outputs at high	h impedance		4	6				
'cc2	Output supply curient		$10=0$	All outputs at high	high level		25	50	mA			
				All outputs at low	w level		6	20				
				All outputs at hig	h impedance			2				

${ }^{\dagger}$ All typical values are at $V_{C C 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise noted).
NOTE 6: The $V_{\text {drop }}$ specification applies for 1 OH and lol applied simultaneously to different output channels.
$V_{\text {drop }}=V_{C C 2}-V_{O H}+V_{C L}-V_{E}$.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=42 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d} \text { (on) }}$ Source current turn-on delay time from A input	$\begin{aligned} & C_{\mathrm{L}}=30 \mathrm{pF}, \\ & \text { See Figure } 1 \end{aligned}$	0.6		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{d} \text { (off) }}$ Source current turn-off delay time from A input		0.8		$\mu \mathrm{S}$
$\mathrm{t}_{\mathbf{r}} \quad$ Source current rise time (turning on)		0.8		$\mu \mathrm{s}$
t_{f} Source current fall time (turning off)		0.2		$\mu \mathrm{s}$
$\mathrm{t}_{\text {dion) }} \quad$ Source current turn-on delay time from EN input		0.5		$\mu \mathrm{s}$
$\mathrm{t}_{\text {d }(\text { off })}$ Source current turn-off delay time from EN input		2.5		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{d} \text { (on) }}$ Sink current turn-on delay time from A input	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ See Figure 2	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{d} \text { (off) }}$ Sink current turn-off delay time from A input		0.5		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r}} \quad$ Sink current rise time (turning on)		0.2		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{f}} \quad$ Sink current fall time (turning off)		0.2		$\mu \mathrm{S}$
$t_{\text {d(on) }}$ Sink current turn-on delay time from EN input		0.3		$\mu \mathrm{S}$
$t_{\text {d }}$ (off) \quad Sink current turn-off delay time from EN input		1		$\mu \mathrm{s}$

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE AND CURRENT WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: $P R R=2 \mathrm{kHz}, Z_{0}=50 \Omega$.
B. $E N$ is at $4 V$ if A is used as the switching input. A is at $4 V$ if $E N$ is the switching input.
C. C_{L} includes probe and jig capacitance.

FIGURE 1. SOURCE CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR $=2 \mathrm{kHz}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. $E N$ is at 4 V if A is used as the switching input. A is at $O V$ if $E N$ is the switching input.
C. C_{L} includes probe and jig capacitance.

FIGURE 2. SINK CURRENT SWITCHING TIMES FROM DATA AND ENABLE INPUTS

TYPICAL APPLICATION DATA

This circuit shows one half of a TPICO298 used to provide full-H bridge drive for a 24-V 2-A dc motor. Speed control is achieved with a TLC555 timer. This provides variable duty cycle pulses to the EN input of the TPICO298. In this configuration, the operating frequency is approximately 1.2 kHz . The duty cycle is adjustable from 10% to 90% to provide a wide range of motor speeds. The motor direction is determined by the logic level at the direction control input. The circuit may be enabled or disabled by the logic level at the EN input. A 5-V supply for the logic and timer circuit is provided by a TL431 short regulator. For circuit operation, refer to the function table.

FUNCTION TABLE

ENABLE	DIRECTION CONTROL	1 Y 1	TY2
H	H	source	sink
H	L	sink	source
L	X	disabled	disabled

$$
X=\text { don't care } H=\text { high level } L=\text { low level }
$$

${ }^{\text {t}}$ Diodes are 1N4934 or equivalent.
FIGURE 3. TPIC0298 AS BIDIRECTIONAL DC MOTOR DRIVER

- 1-A Current Capablllty Per Channel

- 45-V Inductive Switching Voltage Capability
- Current SInk Inputs Compatlble with TTL or CMOS Devices
- Output Clamp Diodes for Inductive Transient Protection
- Independent Thermal Shutdown Protection
- Overvoltage Shutdown Protection
- Independent Channel Current Limit

- Error Sensing

- Extended Temperature Range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

description

The TPIC2404 is a monolithic high-voltage highcurrent quadruple low-side switch especially designed for driving from low-level logic to peripheral loads such as relays, solenoids, motors, lamps, and other high-voltage highcurrent loads. The high-efficiency power switch is optimized for applications where a very rugged power switch is required. The device will tolerate power supply transients and reverse battery conditions up to 13 V .
The TPIC2404 features four inverting open-collector outputs controlled by a common-enable input. When ENABLE is low, the c. .ts are disabled. An error sensing circuit monitors load and device faults. When an error is sensed, the $: \therefore$ ILT output goes to a low state. In addition, the device features on-board VCC overvoltage and thermal overload protection circuits, and the outputs are current-limit protected.

FUNCTION TABLE

	ENABLE	A	Y	FAULT
Normal operation	H	H	L	H
	H	L	H	H
Open load	H	X	H	L
Short to GND	L	L		
Overvoltage shutdown	H	X	H	L
Thermal shutdown	H	H	H	L
Short to V_{CC}				

logic symbol ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSI/AEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

schematics of inputs and outputs
EQUIVALENT OF EACH A INPUT

TPIC2404

absolute maximum ratings over operating temperature range (unless otherwise noted)
Supply voltage range, VCC (see Note 1) -13 V to 24 V
input voltage range, V_{1} -0.6 V to 7 V
Output voltage range, V_{O} -0.6 V to 45 V
Output sustaining voltage, VO (sust) 45 V
Continuous output sink current (repetitive, $\mathrm{t}_{\mathrm{w}}<8 \mathrm{~ms}$), loL (see Note 2) 1.5 A
Output clamp-diode voltage, V_{OK} 45 V
Continuous total dissipation at (or below) $25^{\circ} \mathrm{C}$ case temperature (see Note 3) 50 W
Operating case or virtual junction temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 s $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to the network ground terminal.
2. Output sink current is limited by the overcurrent limit.
3. For operation above $25^{\circ} \mathrm{C}$ free-air or case temperature refer to Figures 1 and 2. To avoid exceeding the design maximum virtual junction temperature, these ratings should not be exceeded. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below rated dissipation.

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 1

CASE TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 2

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	9	12	16	V
High-level input voitage, $\mathrm{V}_{1 \mathrm{H}}$	2		5.5	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	-0.3^{\dagger}		0.8	V
Peak output voitage from external inductive kickback			45	V
Continuous output sink current			1	A
Fault output sink current			75	$\mu \mathrm{A}$
Operating free-air temperature, T_{A}	-40		125	${ }^{\circ} \mathrm{C}$

t The algebraic convention in which the least positive (most negative) vatue is designated minimum is used in this data sheet for logic voltage levels.
electrical characteristics over recommended ranges of operating free-air temperature and supply voltages (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TVP \ddagger	MAX	UNIT
lo(off)	Off-state output current		$\mathrm{V}_{0}=12 \mathrm{~V}$, ENABLE low		15	100	$\mu \mathrm{A}$
			$V_{0}=45 \mathrm{~V}$, ENABLE high		0.6	2	mA
			$\mathrm{V}_{0}=12 \mathrm{~V}$, ENABLE high	200	400	600	$\mu \mathrm{A}$
ILL	Low-level input current		$\mathrm{V}_{1}=0$ to 0.8 V	-10	25	40	$\mu \mathrm{A}$
IH	High-level input current	A inputs		10	25	60	$\mu \mathrm{A}$
		ENABLE			0.2	1	mA
VOL	Low-level output voltage		$1 \mathrm{OL}=100 \mathrm{~mA}$		0.1	0.15	V
			$1 \mathrm{OL}=500 \mathrm{~mA}$		0.3	0.55	
			$\mathrm{l}^{\mathrm{OLL}}=1 \mathrm{~A}$		0.8	1.3	
			FAULT output, $\mathrm{l}_{\mathrm{OL}}=30 \mu \mathrm{~A}$		0.2	0.4	
lOL	Low-leval output current		FAULT output, $\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$ to 5.5 V	50	90	125	$\mu \mathrm{A}$
IR(K)	Clamp diode reverse current		$\mathrm{V}_{\mathrm{r}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0$			100	$\mu \mathrm{A}$
$V_{F(K)}$	Clamp diode forward voltage		$\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A}$			2	V
			$\mathrm{If}_{f}=1.5 \mathrm{~A}$			2.5	
	Supply current		Outputs off, ENABLE low			0.25	mA
			Outputs on, $T_{A}=-40^{\circ} \mathrm{C}$			120	
			Outputs on, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			100	

operating characteristics over recommended operating free-air temperature and supply voltages (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP \ddagger	MAX	UNIT
High-leve $\quad .$., .				7	V
Low-level . . .		3			V
Overcurrent limiting	$T_{A}=-40^{\circ} \mathrm{C}$			1.85	A
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		1.2	1.5	
V ${ }_{\text {CC }}$ Overvc \cdots. shutdown		25.5		31	V
Vhys Oveivuiuges shutdown hysteresis			:		V
Thermal shutdown			1.		${ }^{\circ} \mathrm{C}$
Thermal shutdown hysteresis			15		${ }^{\circ} \mathrm{C}$
Turn-on time			8		$\mu \mathrm{s}$
Turn-off time			8		$\mu \mathrm{s}$

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

- Output Voltage up to 60 V
- 4 Output Channels of $700-\mathrm{mA}$ Nominal Current Per Channel
- Pulsed Current 3 A Per Channel
- Low rDS(on) ... 0.5Ω Typ
- Avalanche Energy . . 50 mJ
- Thermal Shutdown Protection with Fault (Overtemperature) Output
- NE Package Designed for Heat Sinking
- Integral Output Clamp Diodes
- Input Transparent Latches for Data Storage
- Asynchronous Clear to Turn Off All Outputs
- Output Parallel Capability for Increased Current Drive up to 12-A Total Pulsed Load Current

description

The TPIC2406 is a monolithic, high-voltage, high-current, quadruple power driver designed for use in systems that require high load power. The device contains built-in high-speed output clamp diodes for inductive transient protection. Power driver applications include lamps, relays, solenoids, and dc stepping motors.
Each device features four inverting open-drain outputs each controlled by an input storage latch with common clear and enable controls. All inputs accept standard TTL- and CMOS-1 : levels. The CLR function is asynchronous and turns all four outputs off regardless of data inputs. Taking ' \because. Llow puts the input latch into a transparent mode, allowing the data inputs to affect the output. In this state, all four out: \because will be held off while $\overline{C L R}$ is low, but will return to the stages on the data inputs when CLR goes high. Wher ['! 1 - \bar{L} is taken high, the latch is put into a storage mode and the last state of the data inputs is held in the latches. If the $\overline{\mathrm{CLR}}$ input is taken low, the data in the latches is cleared, turning all outputs off. If $\overline{C L R}$ is taken high again, ENBL must be cycled low to read new data into the latch.
logic symboi ${ }^{\dagger}$

\dagger This symbol is in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

schematics of inputs and outputs

Power MOSFET driver supply voltage, $\mathrm{V}_{D D}$. ... 60 V

Power MOSFET drain-source voltage, V_{DS}.. 60 V

Clamp diode voltage .. 60 V
Continuous source-drain diode anode current ... 1.25 A
Pulsed source-drain diode anode current ... 6 A
Pulsed drain current, each output, all outputs on; $I_{D 1}=I_{D 2}=I_{D 3}=I_{D 4}$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 2 and Figures 5 through 8) .. 3 A
Continuous drain current, each output, all outputs on, $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{D} 3}=\mathrm{I}_{\mathrm{D} 4}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \ldots \ldots . . .770 \mathrm{~mA}$
Peak drain current, single output, $\mathrm{I}_{\mathrm{DM}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 3) 12.5 A

Continuous total dissipation at or below $25^{\circ} \mathrm{C}$ free-air temperature (see Note 4) 2.5 W
Continuous total dissipation at or below $100^{\circ} \mathrm{C}$ case temperature (see Note 4) 6 W

Storage temperature range . $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to the five ground (GND and LGND) terminals connected together.
2. Pulse duration $=10 \mathrm{~ms}$, duty cycle $=6 \%$.
3. Pulse duration $\leq 100 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
4. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For operation above $100^{\circ} \mathrm{C}$ case temperature, derate linearly at the rate of $120 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. To avoid exceeding the design maximum junction temperature, these ratings should not be exceeded. Due to variations in individual devices, electrical characteristics, and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Logic supply voltage, $V_{C C}$		4.5		5.5	V
Output supply voltage, V_{DD}		10		35	V
High-level input voltage, V_{IH}		2			V
Low-level input voitage, V_{IL}				0.6	V
Setup time, $\mathrm{t}_{\text {Su }}$, data before ENBL \uparrow (see Figure 1)		100			ns
Hold time, th, data aftel $\cdots \cdots$ ((see Figure 1)		100			ns
Pulse duration, t_{W} (see Figure 1)	ENBEL low	300			ns
	CLR low				
- ting case temperature, $\mathrm{T}^{\text {C }}$		-40		125	${ }^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=2.5^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {(BR) }{ }^{\text {d }} \text { (}}$	Drain-source breakdown voltage	${ }^{1} \mathrm{D}=1 \mathrm{~mA}$		60			V
$V_{F(K)}$	Clamp diode forward voltage	$l \mathrm{~F}=1.25 \mathrm{~A}_{1}$	See Notes 5 and 6			1.6	V
$V_{\text {SD }}$	Source-drain diode forward voltage	$\mathrm{S}=1.25 \mathrm{~A}$,	See Notes 5 and 6			1.5	V
$\mathrm{V}_{\text {IK }}$	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$4_{1}=-12 \mathrm{~mA}$			-1.5	V
V_{OL}	$\overline{\mathrm{F}}$ low-level output voltage	$1 \mathrm{OL}=4 \mathrm{~mA}$			0.4		V
IH	High-level input current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}_{1}$	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILL	Low-level input current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=0.4 \mathrm{~V}$			0.1	mA
ICC	Logic supply current	$\mathrm{l}_{0}=0$,	All outputs off			10	mA
in	Nominal current	$\begin{aligned} & V_{D S}(\mathrm{on})=0.5 \mathrm{~V}, \\ & T_{\mathrm{C}}=85^{\circ} \mathrm{C}, \end{aligned}$	$I_{N}=I_{D_{1}}$ See Notes 5, 6, and 7		700		mA
IDD	Output supply current	$10=0$,	All outputs off			6	mA
	Clamp-diode reverse current	$\mathrm{V}_{\mathrm{DS}}=55 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$			1	
		$\mathrm{V}_{\text {DS }} \mathrm{V}^{-52} \mathrm{~V}$,	$V_{\mathrm{O}}=0, \quad \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
IDSX	Off-state drain current	$\mathrm{V}_{\mathrm{R}}=u{ }^{\text {d }}$				1	
		$\mathrm{V}_{\mathrm{R}}=55 \mathrm{~V}$,	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
$\mathrm{IO}(\overline{\mathrm{F}})$	High-level fault leakage current	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$				1	$\mu \mathrm{A}$
${ }^{\text {ros }}$ (on)	Static drain-source on-state resistance	$\mathrm{l}^{\mathrm{D}} \mathrm{D}=1.25 \mathrm{~A}$	See Notes 5 and 6		0.5	0.6	Ω
		$\begin{aligned} & I_{D}=1.25 \mathrm{~A}, \\ & T_{C}=125^{\circ} \mathrm{C} \end{aligned}$			0.8	1	
		$\mathrm{l} D=3 \mathrm{~A}$			0.55	0.65	

NOTES: 5. Technique should limit $T_{j}-T_{C}$ to $10^{\circ} \mathrm{C}$ maximum.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.
7. Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at $85^{\circ} \mathrm{C}$ at case temperature.
switching characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
tpu Propagation delay time, low-to-high-level drain output tPLH from clock	$C_{L}=30 \mathrm{pF}, \quad$ See Figure 1	450	ns
tPHL $\begin{aligned} & \text { Propagation delay time, high-to-low-level drain output } \\ & \text { from clock }\end{aligned}$		550	ns
TTLH Transition time, low-to-high-level of source-drain output		35	ns
THL Transition time, high-to-low-level of source-drain output		30	ns
tDLH Delay time, low-to-high-level drain output from input	$\begin{array}{ll} C_{L}=30 \mathrm{pF}, & \text { See Figure 2, } \\ \mathrm{I}_{\mathrm{D}}=\mathrm{IN}=700 \mathrm{~mA} & \end{array}$	380	ns
tDHL Delay time, high-to-low-level drain output from input		380	ns
trLH Rise time, low-to-high-level of source-drain output		35	ns
$\mathrm{tFHL}^{\text {che }}$ Fall time, high-to-low-level of source-drain output		70	ns
ta Reverse-recovery-current rise time	$\mathrm{I} F=3 \mathrm{~A}$, $\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$, See Notes 5 and 6, See Figure 3	45	ns

NOTES: 5. Technique should limit $T_{j}-T_{C}$ to $10^{\circ} \mathrm{C}$ maximum.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

thermal resistance

PARAMETER	TEST CM.EITIONS	MIN	TYP MAX	UNIT
$\mathrm{R}_{\text {QJC }}$ Junction-to-case thermal resistance	All four outputs with equal power		8.33	${ }^{\circ} \mathrm{C}$ W
R $\mathrm{BJJA}^{\text {d }}$ Junction-to-ambient thermal resistance			50	${ }^{\circ} \mathrm{CN}$

operating characteristics over $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ case temperature range

	PARAMETER	MIN	TYP
VCC	Undervoltage shutdown	3	UNIT
Thermal shutdown temperature	4.5	V	
Thermal shutdown hysteresis	155	${ }^{\circ} \mathrm{C}$	

PARAMETER MEASUREMENT INFORMATION

(a) TEST CIRCUIT

(b) SWITCHING TIMES FROM ENABLE INPUT

(c) INPUT SETUP AND HOLD WAVEFORMS
 B. C_{L} includes probe and jig capacitance.

FIGURE 1. SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION

(a) TEST CIRCUIT

(b) VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=5 \mathrm{~ms}, \mathrm{PRR}=5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \Omega$. B. C_{L} includes probe and iig capacitance.

FIGURE 2. SWITCHING TIMES

FIGURE 3. REVERSE-RECOVERY-CURRENT WAVEFORMS OF SOURCE-DRAIN DIODE

NOTES: A. The pulse generator has the following characteristics: $\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{w}}=1 \mathrm{~ms}, \mathrm{PAR}=5 \mathrm{kHz}, \mathrm{Z}_{0}=50 \Omega$.
B. Input pulse duration is increased until peak current IDM $=3 \mathrm{~A}$.

Energy test level is defined as $E_{A S}=\frac{I_{D M} \times V_{(B R) D S X} \times t_{x}}{2}=50 \mathrm{~mJ} \mathrm{~min}$.
FIGURE 4. SINGLE-PULSE AVALANGHE ENERGY TEST CIRCUIT AND WAVEFORMS

MAXIMUM RATINGS

NOTE 8: For Figures 5,6 , and $7, d=\frac{t_{w}}{t_{C}}=\frac{10 \mathrm{~ms}}{t_{C}}$. Where t_{W} and t_{c} are defined by the following:

MAXIMUM RATINGS

MAXIMUM CONTINUOUS DRAIN CURRENT
vs
FREE-AIR TEMPERATURE

FIGURE 9

FIGURE 11

FREE-AIR TEMPERATURE DISSIPATION DERATING CURVE

FIGURE 10

The single-pulse curve in Figure 11 represents measured data. The curves for various pulse durations are based on the following equation:

$$
\begin{aligned}
\mathrm{Z}_{\theta \mathrm{JA}}= & \left|\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{c}}}\right| \mathrm{R}_{\theta \mathrm{JA}}+\left|1-\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{c}}}\right| \mathrm{Z}_{\theta\left(\mathrm{t}_{\mathrm{w}}+\mathrm{t}_{\mathrm{c}}\right)} \\
& +\mathrm{Z}_{\theta\left(\mathrm{t}_{\mathrm{w}}\right)}-\mathrm{Z}_{\theta\left(\mathrm{t}_{\mathrm{c}}\right)}
\end{aligned}
$$

Where:
$Z_{\theta\left(t_{\mathrm{w}}\right)}=$ the single-pulse thermal impedance for $t=t_{w}$ seconds
$\mathrm{Z}_{\theta\left(\mathrm{t}_{\mathrm{c}}\right)}=$ the single-pulse thermal impedance for $t=t_{c}$ seconds
$\mathrm{Z}_{\theta(\mathrm{tw}}+\mathrm{t}_{\mathrm{c})}=$ the single-pulse thermal impedance for $t=t_{w}+t_{c}$ seconds
$d=t_{w} / t_{c}$

TYPICAL CHARACTERISTICS

STATIC DRAIN-SOURCE
ON-RESISTANCE
vs
DRAIN CURRENT

STATIC DRAIN-SOURCE ON-RESISTANCE vs
POWER MOSFET DRIVER SUPPLY VOLTAGE

FIGURE 13

NOTE 5: Technique should limit $T_{j}-T_{C}$ to $10^{\circ} \mathrm{C}$ maximum.

- 8-Bit Serial-In Parallel-Out Driver
- 1-A Output Current Capability per Channel or 8-A Total Current
- Over-Current Limiting and Out-of-Saturation Voltage Protection on Driver Outputs
- Contains Eight Open-Collector SaturatIng Sink Outputs wlth Low On-State Voltage
- High-Impedance Inputs with Hysteresis are Compatible with TTL or CMOS Levels
- Very Low Standby Power . . . 20 mW Typical
- Status of Output Drivers May Be Monitored at Serial Output
- 3-State Serial Output Permits Serial Cascading or Wire-AND Device Connections
- 25-V Transient Clamping with Inductive Switching on Outputs, $40-\mathrm{mJ}$ Rating per Driver Output

description

The TPIC2801 is a monolithic BIDFETt integrated circuit that is designed to sink currents up to 1 A at 30 V simultaneously at each of eight driver outputs under serial input data control. Status of the individual driver outputs is available in serial data format. The driver outputs have overcurrent limiting and out-of-saturation voltage protection features. Applications include driving solenoids, relays, dc motors, lamps, and other medium-current or high-voltage loads.
The device contains an 8 -bit serial-in, parallel-out shift register that feeds an 8 -bit parallel latch, which independently controls each of the eight Y-output drivers.
Data is entered into the device serially via the serial input (SI) and goes directly into the lowest bit (0) of the shift register. Using proper timing signals, the input data is passed to the corresponding output latch and output driver. A logic high bit at $S I_{n}$ turns the corresponding output driver $\left(Y_{n}\right)$ off. A logic low bit at $S I$ turns the corresponding output driver on. Serial data is transferred into SI on the high-to-low transition of serial clock (SCLK) input in 8 -bit bytes with data for $Y 7$ output \because B) first and data for Yo output (LSB) last. Both SI and SCLK are active when serial input-output enable ($\overline{\mathrm{S}}$: : , input is low and are disabled when $\overline{S I O E}$ is high.
Each driver output is monitored by a voltage comparator that compares the Y-output voltage level with an internal out-of-saturation threshold voltage reference level. The logic state of the comparator output is dependent upon whether the Y output is greater or smaller than the reference voltage level. An activated driver output will be unlatched and turned off when the output voltage exceeds the out-of-saturation threshold voltage level except when the internal unlatch enable is low and disabled. The high-to-low transition of SIOE transfers the logic state of the comparator output to the shift register.
\dagger BIDFET - Bipolardouble-diffused, N -channel and P-channel MOS transistors on same chip - patented process.
logic symbol \dagger

${ }^{\dagger}$ This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

PIN		I/O	DESCRIPTION
NAME	No.		
GND	8		Ground. Common return for entire chip. The current out of this pin is potentially as high as 4 A if ail outputs are on. This ground is used for both logic and power circuits
$\overline{\text { RST }}$	11	i	Reset. An asynchronous reset is provided for the shift register and the paraliel latches. This pin is active when low and has no internal pulliup. When active, it causes the power outputs to turn off. A power-on clear can be impiemented using an RC network to V_{CC}.
SCLK	6	1	Serial Ciock. This pin clocks the shift register. The serial output (SO) will change state on the rising edge of this ciock and serial input (S!) data will be accepted on the falling edge.
Si	7	1	Seriai input. This pin is the serial data input. A high on this pin will program a particuiar output to be off and a low will turn it on.
$\overline{\text { SIOE }}$	5	1	Seriai input-Output Enable. Data is transferred from the shift registers to the power outputs on the rising edge of this signal. The falling edge of this signal parallel loads the output voltage sense bits from the power output sinto the shift register. The oulput driver for the serial output (SO) pin is enabled when this pin is low, providec is high.
SO	9	0	Serial Output. This pin is the serial 3-state output from the shift register and is in a high-impedance state when SIOE is high or RST is low. A high for a data bit on this pin indicates that the corresponding power output (Y n) is high. This could mean that the output was programmed to be off the last time a byte was input to the device or that the output faulted and was latched off by the output voltage sense indicator. A low on this pin for a data bit indicates that the corresponding power output (Y_{n}) is low (an "on" output stage or open-circuit condition).
VCC	10	0	$5-\mathrm{V}$ supply voitage
Yo	4		Power Outputs. The outputs are provided with current limiting and voitage sense for fault indication and protection. The nominal load current for these outputs is 500 mA . but the current limiting is set to a minimum of 1.2 A. The active-low outputs also have voltage clamps set at about 35 V for recirculation of inductive load current. Internal 90 -k Ω pull-down resistors are provided at each output. These resistors hold the output low during an opencircuit condition.
Y 1	3		
Y2	2		
Y3	1 15		
Y5	14		
Y6	13		
Y7	12		

PRINCIPLES OF OPERATION

timing data transfer

Figure 1 shows the overall 8 -bit data-byte transfer to and from the TPIC2801 interface bus. The logic state of the eight output drivers, $Y 0$ through Y , is latched into the shitt register at time to on the high-to-low transition of SIOE. Therefore, the SO output data (DYO, DY1 . .) represents the conditions at the Y-driver outputs at time to. The data at SO output is updated on the low-to-high transition of SCLK.
Input data present at the SI input is clocked into the shift register on the high-to-low transition of SCLK. As shown in Figure 1 on the SI input, input data DI7 is clocked in at time t_{1}, Di6 is clocked in at time t_{2}, etc. Eight SCLK pulses are used to serially load the eight bits of new data into the device. After all the new data is serially loaded, the low-to-high transition of SIOE parallel loads the new data to the eight driver output latches, which in turn directly control the eight Y -driver outputs.
An unlimited amount of data can be shifted through the shift register (into the SI and out the SO) and this allows other devices to be cascaded in a daisy chain with the TPIC2801. Once the last data bit has been shifted into the TP!~? ${ }^{\circ} 11$, the SIOE input should be pulled high. The clock (SCLK) input should be low at both transitions of the $!=$ input to avoid any false clocking of the shift register. The SCLK input is gated by the SIOE input, so the SCLK input is ignored whenever the SIOE is high. At the rising edge of the SIOE input, the shift register data is latched into the parallel latch and the output stages will be actuated by the new data. An internal $100-\mu$ s delay timer is also started on this rising edge. During the time delay, the outputs will be protected only by the analog current-limiting circuits, since the resetting of the parallel latches by fault conditions will be inhibited during this time period. This allows the device to overcome any high switching currents that can flow during turn-on. Once the delay has ended, the output voltages are sensed by the comparators and any output voltages higher than nominally 1.8 V are latched off.

PRINCIPLES OF OPERATION

fault-conditions check

Open-circuit conditions on any output can be monitored or checked by programming that output off. After a short delay (microseconds), another control byte can be clocked into the the device. If the diagnostic bit for that output comes back as a low, it indicates that the output is low and open circuited. A current overload condition can be detected by programming an output on. After waiting an appropriate length of time, another byte should be clocked into the TPIC2801. The diagnostic bit clocked back from the TPIC2801 in the subsequent data transfer should indicate a low output. If a high returns, a current overload is indicated. A quick overall check can be done by clocking in a test control byte. After a sufficient time delay, another control byte (same byte can be used) is clocked in. The diagnostic data is exclusive ORed with the original control byte. If a fault condition exists, a high will result.

FIGURE 1. DATA-BYTE TRANSFER TIMING

All resistor and voltage values shown are nominal.

absolute maximum ratings over operating temperature range (unless otherwise noted)

Supply voltage range, VCC (see Note 1) -0.3 V to 7 V
Input voltage, V_{1} 7 V
Output voltage range at SO -0.3 V to 7 V
input current, II $-15 \mathrm{~mA}$
Peak output sink current at Y , 10 repetitive, $\mathrm{t}_{\mathrm{W}}=10 \mathrm{~ms}$, Internally Limitedduty cycle $=50 \%$, see Notes 2 and 3Continuous output current at Y , lo (see Note 3)1 A
Peak current through GND terminal:
Nonrepetitive $\mathrm{t}_{\mathrm{w}}=0.2 \mathrm{~ms}$ $-8 \mathrm{~A}$
Repetitive, $\mathrm{t}_{\mathrm{w}}=10 \mathrm{~ms}$, duty cycle $=50 \%$ $-6 \mathrm{~A}$
Continuous current through GND terminal -4.5 A.
Output clamp energy, EOK (atter turning off IO(on) $=0.5 \mathrm{~A}$) 40 mJ
Continuous dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 4) 3.575 W
Continuous dissipation at (or below) $75^{\circ} \mathrm{C}$ case temperature (see Note 4) 25 W
Operating case or virtual-junction temperature range $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds $260^{\circ} \mathrm{C}$
NOTES: 1. All voltage values are with respect to network ground terminal.
2. Each Y output is individually current limited with a typical over-current limit of about 1.4 A .
3. Multipie Y outputs of this device may conduct rated current simultaneously; however, power dissipation (average) over a short time interval must fall within the continuous dissipation range and the GND current must fali within the GND-terminal current range.
4. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate linearly at the rate of $28.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For operation above $75^{\circ} \mathrm{C}$ case temperature, derate lineraly at the rate of $333 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. To avoid exceeding the maximum virtual-junction temperature, these ratings must not be exceeded.
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}$	4.75	5	5.25	V
High-level input voltage, V_{iH}	0.7 VCC		5.25	V
Low-ievei input voitage, $\mathrm{V}_{\text {IL }}$	-0.3		0.2 VCC	V
Output voltage, $\mathrm{V}_{\mathrm{O} \text { (off) }}$			30	V
Continuous output current, IO(on)			1	A
Operating case temperature, T_{C}	-40	25	105	${ }^{\circ} \mathrm{C}$

timing requirements (see Figure 2)

	PARAMETER	FROM	TO	TEST CONDITIONS	MIN	MAX	UNIT
fsCLK	Clock frequency				0	500	kHz
${ }^{\text {W WSCLKH }}$	Pulse duration, SCLK high				840		ns
${ }_{\text {wSCLKL }}$	Pulse duration, SCLK low				840		ns
${ }^{\text {twhST }}$	Pulse duration, $\overline{\text { AST }}$ low				1000		ns
$\mathrm{t}_{\text {Sul }}$	Setup time	SIOE \downarrow	SCLK \uparrow		1000		ns
$\mathrm{t}_{\text {SU2 }}$	Setup time	SCLK \downarrow	SIOE个		1000		ns
${ }_{4}{ }_{\text {Su3 }}$	Setup time	Sl	SCLK \downarrow		500		ns
th1	Hoid time	SCLK \downarrow	Si		500		ns
tr_{t}	Rise time (SCLK, SI, SiOE)					2	$\mu \mathrm{s}$
tf	Fall time (SCLK, SI, $\overline{\text { SIOE }}$)					2	$\mu \mathrm{s}$

electrical characateristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)
driver array outputs (YO to Y7)

	FARSARELER	1ES「COM		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
VOK	Output clamp voltage	to ground		30	36	40	\checkmark
IO(off)	Off-state output current	$\mathrm{V}_{\mathrm{O}}=24 \mathrm{~V}$ with output programmed off				1	mA
$\mathrm{iO}(\mathrm{CL})$	Output current limit	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ with output programmed on		1.05	1.4		A
$\mathrm{V}_{\mathrm{O}(\mathrm{on})}$	On-state output voltage	With output programmed on	$\mathrm{IOL}=0.5 \mathrm{~A}$		0.4	0.5	V
			$1 \mathrm{OL}=0.75 \mathrm{~A}$		0.6	1	V
			${ }^{\prime} \mathrm{OL}=1 \mathrm{~A}$, During unlatch disable		0.8	1.5	V
$V_{\text {tos }}$	Out of saturation threshoid voitage	With output programmed on and an over-current fauit condition		1.6	1.8	2	V

shift register (inputs SI, $\overline{\text { SIOE, SCLK, and }} \overline{\mathrm{RST}}$)

PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT
V_{T+}	Positive-going threshold voltage			$0.7 \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {T- }}$	Negative-going threshold voltage		$0.2 \mathrm{~V}_{\mathrm{CC}}$		V
$V_{\text {hys }}$			0.85	2.25	V
It	Input current	$V_{1}=0$ to $V_{C C}$		± 10	$\mu \mathrm{A}$
C_{i}	Inpout capacitance	$\mathrm{V}_{1}=0$ to $\mathrm{V} C \mathrm{C}$		20	pF

${ }^{f}$ All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$.

TPIC2801
OCTAL INTELLIGENT-POWER SWITCH
WITH SERIAL INPUT
electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)
shift register (output SO)

PARAMETER		TEST CONDITIONS		MIN	TYP \dagger	MAX	UNIT
VOL	Low-level output voltage	${ }^{10} 0=1.6 \mathrm{~mA}$			0.2	0.4	V
VOH	High-level output voltage	$\mathrm{l}^{\circ}=-0.8 \mathrm{~mA}$		$\mathrm{V}_{\text {CC }}-1.3$			V
10	Output current	$V_{D}=0$ to $V_{C C}$, STOE input high				± 10	$\mu \mathrm{A}$
${ }^{1} \mathrm{CC}$	Supply current	All outputs on, $10=0.5 \mathrm{~A}$ at all outputs	$T_{J}=105^{\circ} \mathrm{C}$			150	mA
			$T_{J}=25^{\circ} \mathrm{C}$			200	
			$T_{J}=-40^{\circ} \mathrm{C}$			250	
ICC	Supply current	All outputs off	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4	10	mA
C_{0}	Output capacitance	$V_{O}=0$ to $\mathrm{VCC}_{\text {c }}$, SIOE input high				20	pF

\dagger All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
thermal characteristics

	PARAMETER	MIN	MAX
$R_{\theta J C}$	Thermal resistance, junction-to-case temperature	UNIT	
$R_{\theta J A}$	Thermal resistance, junction-to-ambient temperature	${ }^{\circ} \mathrm{CMW}$	

switching characteristics over recommended ranges of supply voltage and operating case temperatures (unless otherwise noted)

	PARAMETER	FROM	TO	TEST CONDITIONS	MIN	MAX	UNIT
ton	Enable time	SIOE \downarrow	SD	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \text { See } \quad \mathrm{A}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { Figure }, \end{aligned}$		1000	ns
$t_{\text {dis }}$	Disable time	SIOE \uparrow	SO	$\begin{aligned} & \mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}, \text { See } \quad \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \\ & \text { Figure }, \end{aligned}$		1000	ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, valid data	SCLK¢	So	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \quad$ See Figure 4		740	ns
ta 2	Delay time, unlatch disable	SIOE¢	Y_{n}	$\begin{aligned} & \mathrm{CL}=20 \mathrm{pF}, \text { See } \quad \mathrm{R}_{\mathrm{L}}=5 \Omega, \\ & \text { Figure } 5 \end{aligned}$	75	250	μs
$\mathrm{t}_{\text {r(so) }}$	Rise time, SO			$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \quad$ Se日 Flgure 4		150	ns
t(so)	Fall time, SO			$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \quad$ See Figure 4		150	ns
td(on)	Delay time, turn-on	SIOE \uparrow	Y_{n}	$\begin{array}{ll} \mathrm{lOL}=500 \mathrm{~mA}, & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \text { See } \\ \mathrm{R}_{\mathrm{L}}=28 \Omega, & \text { Figure } 6 \end{array}$		10	μs
'd(off)	Delay time, turn-off	SIOE \uparrow	Y_{n}	$\begin{array}{ll} \mathrm{lOL}=500 \mathrm{~mA}, & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{Se} \mathrm{\theta} \\ \mathrm{R}_{\mathrm{L}}=28 \Omega, & \text { Figure } 6 \end{array}$		10	$\mu \mathrm{s}$
tv	Valid time, SO output data remains valid after SCLK high	SCLK \uparrow	SO	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \quad$ See Figure 4	0		ns

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. INPUT TIMING WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT FOR ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control when SIOE is high. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output controi when SlOE is high.

FIGURE 3. VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the low-to-high transition of SCLK causes the SO output to switch from low to high. Waveform 2 is for an output with internal conditions such that the low-to-high transition of SCLK causes the SO output to switch from high to low.

FIGURE 4. VOLTAGE WAVEFORMS FOR DELAY TIMES

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT FOR UNLATCH DISABLE DELAY TIME $\mathrm{t}_{\mathrm{d} 2}$ (See Note A)

NOTES: A. ${ }^{t_{d} 2}=$ delay until Y-output current goes off under fault condition.
B. C_{L} includes probe and jig capacitance.
C. Output voltage and current waveforms are for an output with internal conditions such that the low-to-high transition of $\overline{\mathrm{SIOE}} \mathrm{Causes}$ the output to switch from being of to being on.
D. Load voltage V_{S} and load resistance R_{L} are selected such that on-state voltage at the Y output under test, $V_{O n}$ is greater than the maximum out-of-saturation threshold voltage, $V_{T O S}$. Thus, $V_{O L}=V_{\text {On }}>V_{T O S}(\max)=1.98 \mathrm{~V}$.

FIGURE 5. VOLTAGE AND CURRENT WAVEFORMS FOR UNLATCH DISABLE DELAY

PARAMETER MEASUREMENT INFORMATION

NOTES:
A. $t_{d(o f f)}=t_{p L H}, t_{d}(o n)=t_{P H L}$.
B. C_{L} includes probe and jig capacitance.
C. Waveform 1 is for an output with internal conditions such that the low-to-high transition of STOE causes the output to switch from on to off. Waveform 2 is for an output with internal conditions such the low-to-high transition of SIOE causes the output to switch from off to on.

FIGURE 6. VOLTAGE WAVEFORMS FOR TURN-OFF AND TURN-ON DELAY TIMES

TYPICAL APPLICATION DATA

FIGURE 7. MICROCONTROLLER DRIVING EIGHT LOADS USING A TPIC2801 FOR LOAD INTERFACE

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

- 500-mA Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications
- Designed to Be Interchangeable With Sprague ULN2001A Series

D OR N PACKAGE
(TOP VIEW)

description

The ULN2001A, ULN2002A, ULN2003A, ULN2004A, and ULN2005A are monolithic high-voltage, highcurrent Darlington transistor arrays. Each consists of seven n-p-n Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA . The Darlington pairs may be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions, see the SN75465 through SN75469.

The ULN2001A is a general-purpose array and may be used with TTL, P-MOS, CMOS, and other MOS technologies. The ULN2002A is specifically designed for use with 14 - to $25-\mathrm{V}$ P-MOS devices. Each input of this device has a zener diode and resistor in series to control the input current to a safe limit. The ULN2003A has a $2.7-\mathrm{k} \Omega$ series base resistor for each Darlington pair for operation directly with TTL or $5-\mathrm{V}$ CMOS devices. The ULN2004A has a $10.5-\mathrm{k} \Omega$ series base resistor to allow its operation directly from CMOS or P-MOS devices that use supply voltages of 6 to 15 V . The required input current of the ULN2004A is below that of the ULN2003A, and the required voltage is less than that required by the ULN2002A. The ULN2005A has a 1050- Ω series base resistor and is specifically designed for use with TTL devices where higher output current is required and loading of the driving source is not a concern.
logic symbol ${ }^{\dagger}$

†This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram

All resistor values shown are nominal.
absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)
Collector-emitter voltage 50 V
Input voltage (see Note 1): ULN2002A, ULN2003A, ULN2004A 30 V
ULN2005A 15 V
Peak collector current (see Figures 14 and 15) 500 mA
Output clamp diode current 500 mA
Total emitter-terminal current - 2.5 A
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from case for 10 seconds $260^{\circ} \mathrm{C}$

NOTE 1: All voltage values are with respect to the emitter/substrate terminal, E, unless otherwise noted.
dissipation rating table

PACKAGE	$T_{A}=25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR ABOVE T_{A}	$T_{A}=85^{\circ} \mathrm{C}$
C	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	494 mW
N	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	598 mW

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS	ULN2001A			ULN2002A			UNIT	
		MIN		TYP	MAX	MIN	TYP	MAX			
${ }^{\text {I CEX }}$	Collector cutoff current		1	$\mathrm{V}_{C E}=50 \mathrm{~V}, \mathrm{I}_{1}=0$			50			50	$\mu \mathrm{A}$
		$\begin{array}{\|l\|l} \hline V_{C E}=50 \mathrm{~V} & 1 \\ T_{A}=70^{\circ} \mathrm{C} & V_{1}=6 \mathrm{~V} \\ \hline \end{array}$				100			100		
			2						500		
I/ (off)	Off-state input current	3	$\begin{aligned} & V_{C E}=50 \mathrm{~V}, I \mathrm{I}=500 \mu \mathrm{~A}, \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$	50	65		50	65		$\mu \mathrm{A}$	
1	Input current	4	$\mathrm{V}_{1}=17 \mathrm{~V}$					0.82	1.25	mA	
$h_{\text {fe }}$	Static forward current transfer ratio	5	$V_{C E}=2 \mathrm{~V}, \quad \mathrm{IC}=350 \mathrm{~mA}$	1000							
$V_{\text {llon) }}$	On-state input voltage	6	$\mathrm{V}_{C E}=2 \mathrm{~V}$, $\mathrm{I}_{\mathrm{C}}=. \quad \mathrm{mA}$						13	V	
$V_{C E}$ (sat)	Collector-emitter saturation voltage	5	$\mu_{1}=2504 \mathrm{~A}, \mathrm{lC}=: ~ n A$		0.9	1.1		0.9	1.1	V	
					1	1.3		1	1.3		
			$\frac{I_{1}}{}=\frac{x A, I_{C}}{}=1$		1.2	1.6		1.2	1.6		
${ }^{\prime} \mathrm{R}$	Clamp diode reverse current	7	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$			50			5	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			100					
V_{F}	Clamp diode forward voltage	8	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.7	2		1.7	-	V	
C_{i}	Input capacitance		$\mathrm{V}_{1}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		15	25		15	25	pF	

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS	ULN2003A			ULN2004A			UNIT	
		MIN		TYP	MAX	P.ili.	TYP	Max			
ICEX	Collector cutoff current		1	$V_{C E}=50 \mathrm{~V}, \mathrm{I}_{1}=0$			50			100	$\mu \mathrm{A}$
		$\begin{array}{l\|l} \hline V_{C E}=50 \mathrm{~V}, & Y_{1}=0 \\ T_{A}=70^{\circ} \mathrm{C} & V_{I}=1 \mathrm{~V} \\ \hline \end{array}$				100					
			2								
II(off)	Off-state input current	3	$\begin{aligned} & V_{C E}=50 \mathrm{~V}, \mathrm{I} \mathrm{C}=500 \mu \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$	50	65		50	65		$\mu \mathrm{A}$	
1	Input current	4	$\mathrm{V}_{1}=3.85 \mathrm{~V}$		0.93	1.35				mA	
			$V_{1}=5 \mathrm{~V}$					0.35	0.5		
			$\mathrm{V}_{1}=12 \mathrm{~V}$					1	1.45		
$V_{\text {lion] }}$	On-state input voltage	6	$V_{C E}=2 \mathrm{~V}$						5	V	
						2.4			6		
						2.7	7				
						3					
									8		
$V_{\text {CE(sat }}$	Collector-emitter saturation voltage	5	$I_{1}=250 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=\operatorname{ivu} \mathrm{mA}$		0.9	1.1		0.9	1.1	v	
			$4=350 \mu \mathrm{~A}, ~ \mathrm{IC}={ }^{2 n n} \mathrm{nA}$		1	1.3		1	1.3		
			$\mathrm{I}_{1}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=\ldots n{ }^{\text {nA }}$		1.2	1.6		1.2	1.6		
I_{R}	Clamp diode reverse current	7	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$			50	50			$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{R}}-\mathrm{Ln} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			100					
V_{F}	Clamp diode forward voltage	8	$\mathrm{IF}_{\mathrm{F}}=\cdots \quad \mathrm{mA}$		1.7	2		1.7	-	V	
C_{i}	Input capacitance		$\mathrm{V}_{1}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		15	25		15	25	pF	

electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS	UL:-.			UNIT	
		MIN		「ıF	MAX			
ICEX	Collector cutoff current		1	$\begin{array}{ll} V_{C E}=50 \mathrm{~V}, \quad I_{1}=0 & \\ V_{C E}=50 \mathrm{~V}, \quad 1=0, & T_{A}=70^{\circ} \mathrm{C} \end{array}$			5 n	$\mu \mathrm{A}$
I(0ff)	Off-state input current	3	$V_{C E}=50 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=500 \mu \mathrm{~A}, \mathrm{~T}{ }^{\text {a }}=70^{\circ} \mathrm{C}$	50	65		$\mu \mathrm{A}$	
1	Input current	4	$\mathrm{V}_{1}=3 \mathrm{~V}$		1.5	2.4	mA	
$V_{1(0 n)}$	On-state input voltage	6	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{I}^{2}=350 \mathrm{~mA}$			2.4	V	
$V_{\text {CEI }}$ (sat)	Collector-emitter saturation voltage	5	$I_{1}=250 \mu \mathrm{~A}, \mathrm{I}^{2}=\mathrm{ivu} \mathrm{mA}$		0.9	1.1	V	
					1	1.3		
			$\mathrm{I}_{1}=\cdots \cdot \mathrm{A}, \mathrm{I}_{\mathrm{C}}=\cdots \cdot \mathrm{nA}$		1.2	1.6		
$I_{\text {R }}$	Clamp dioda reversa current	7	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$			50	$\mu \mathrm{A}$	
			$V_{R}=50 \mathrm{~V}, \quad T_{A}=70^{\circ} \mathrm{C}$			100		
v_{F}	Clamp diode forward voltage	8	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$		1.7	2	\checkmark	
C_{i}	Input capacitance		$\mathrm{V}_{1}=0, \quad \mathrm{f}=1 \mathrm{MHz}$		15	25	pF	

switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature

	PARAMETER	TEST CONDITIONS	MiN	TYP	MAX	UNIT
${ }^{\text {tPLH }}$	Propagation delay time, low-to-high-level output	See Figure 9		0.25	1	$\mu \mathrm{s}$
tPHL	Propagation delay time, high-to-low-level output			0.25	1	$\mu \mathrm{s}$
VOH	High-ievel output voltage after switching	$V_{S}=50 \mathrm{~V}, \quad \mathrm{l}_{0} \approx 300 \mathrm{~mA} .$ See Figure 10	$V_{S}-20$			mV

figure 1. ICEX

FIGURE 3. II(off)

NOTE: I_{I} is fixed for measuring $V_{C E}($ sat $)$, variable for measuring $h_{\text {FE }}$.
FIGURE 5. hfe. VCE(sat)
-

FIGURE 2. ICEX

FIGURE 4. II

FIGURE 6. VI(on)

FIGURE 8. V_{F}

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

FIGURE 9. PROPAGATION DELAY TIMES

NOTES: A. The pulse generator has the following characteristics: $P R R=12.5 \mathrm{kHz}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.
C. For testing the ULN2001A, ULN2OO3A, and the ULN2005A, $V_{I H}=3 V_{;}$for the ULN2002A, $V_{I H}=13 V_{\text {; }}$ for the ULN2004A, $V_{I H}=8 \mathrm{~V}$.

FIGURE 10. LATCH-UP TEST

ULN2001A THRU ULN2005A DARLINGTON TRANSISTOR ARRAYS

TYPICAL CHARACTERISTICS

COLLECTOR EMITTER
SATURATION VOLTAGE
vs
COLLECTOR CURRENT
(ONE DARLINGTON)

FIGURE 11

COLLECTOR EMATTER
saturation voltage
v v
collector current (TWO DARLINGTDNS PARALLELED)

FIGURE 12
collector current
input current

FIGURE 13

THERMAL INFORMATION

D PACKAGE
 MAXIMUM COLLECTOR CURRENT

vs
DUTY CYCLE

Duty Cycle - \%
FIGURE 14

N PACKAGE
MAXIMUM COLLECTOR CURRENT
vs
DUTY CYCLE

FIGURE 15

- Output Collector Current . . . 1.5 A Max
- 2-W Dissipation Rating
- High Output-Voltage Capability
- Outputs Diode-Clamped for Inductive Loads
- Common-Emitter Circuit for Current Sink
- ULN2064 and ULN2065 Have TTL Compatible Inputs
- ULN2066 and ULN2067 Have CMOS- and PMOS-Compatible Inputs
- Designed for Interchangeability With Sprague ULN2064 thru ULN2067, Respectively

description

The ULN2064, ULN2065, ULN2066, and ULN2067 are monolithic high-voltage, highcurrent darlington transistor switches. Each comprises four n-p-n darlington pairs. All units feature high-voltage outputs with commoncathode clamp diodes for switching inductive loads. Outputs and inputs may each be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. These commonemitter circuits are designed to operate as current sinks to the load.

The ULN2064 and ULN2065 are intended for use with TTL and 5-V MOS logic. The ULN2066 and ULN2067 are intended for use with PMOS and higher-voltage CMOS logic.

The ULN2064, ULN2065, ULN2066, and ULN2067 are characterized for operation from $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol ${ }^{\dagger}$

${ }^{\dagger}$ Tnus symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

NE PACKAGE
(TOP VIEW)
$\begin{array}{rr}\text { CLAMP } \square 1 & J_{16} \square 4 \mathrm{C} \\ 1 \mathrm{C} \square & 15\end{array} \square 11 \mathrm{C}$
18
HEAT SINK, E, $\left\{\begin{array}{l}4 \\ \hline\end{array} 13\right.$ HEAT SINK, E, AND SUBSTRATE $\left\{\begin{array}{ll}5 & 12\end{array}\right\}$ and SUBSTRATE

NC - No internal connection
schematic (each darlington pair)

ULN2064, ULN2065: $R_{i n}=350 \Omega$ NOM
ULN2066, ULN2067: $R_{i n}=3 \mathrm{k}$ ® NOM
logic diagram

ULN2064, ULN2065, ULN2066, ULN2067 QUADRUPLE HIGH-CURRENT DARLINGTON SWITCHES

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature for each switch (unless otherwise noted)

		U. '..' , '	ULN2066	ULN, $\because \cdot \square$	UNIT
Collector-emitter voltage	u	u	50	us	V
Input voitage (see Note 1)	15	15	30	30	V
Peak collector current (see Figures 12, 13, and 14)	1.5	1.5	1.5	1.5	A
Input current	25	25	25	25	mA
Total power dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (sae Note 2)	2075	2075	2075	2075	mW
Operating free-air temperature range	-20 to 85	-20 to 85	-20 to 85	-20 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature range	-55 to 150	-55 to 150	-55 to	-55 to 150	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from the case for 10 seconds	260	260	260	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. All voltage values (unless otherwise noted) are with respect to the emitter/substrate terminal E.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate total power linearly to 1079 mW at $85^{\circ} \mathrm{C}$ at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER	$\begin{array}{c\|} \hline \text { TESST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS	$\begin{aligned} & \text { ULN2064 } \\ & \text { MIN MAX } \end{aligned}$	$\begin{aligned} & \text { ULN2065 } \\ & \text { MIN MAX } \end{aligned}$	$\begin{aligned} & \text { ULN2066 } \\ & \text { MIN MAX } \end{aligned}$	$\begin{aligned} & \text { ULN2067 } \\ & \text { MIN MAX } \end{aligned}$	UNIT
$\mathrm{V}_{\text {CEX(sus) }}$Collector vostaining voltage	1	$V_{1}=0.4 \mathrm{~V}, \quad I_{C}=100 \mathrm{~mA}$	35	50	35	50	v
Collector output cutoff current	2	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}$	100		100		$\mu \mathrm{A}$
		$\mathrm{V}_{C E}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	500		500		
		$\mathrm{V}_{C E}=80 \mathrm{~V}$		100		100	
		$\mathrm{V}_{\text {CE }}=80 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		500		500	
On-state input current	3	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	1.44 .3	1.44 .3			mA
		$\mathrm{V}_{1}=3.75 \mathrm{~V}$	3.3 9.6	3.39 .6			
		$\mathrm{V}_{1}=5 \mathrm{~V}$			$\begin{array}{lll}0.6 & 1.8\end{array}$	$0.6 \quad 1.8$	
		$\mathrm{V}_{1}=12 \mathrm{~V}$			1.75	1.75	
On-state input voltage	4	$V_{C E}=2 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$	2	2	6.5	6.5	v
		$V_{C E}=2 \mathrm{~V}, \quad I_{C}=1.5 \mathrm{~A},$ See Note 3	2.5	2.5	10	10	
Collector-emitter saturation voltage	5	$l_{1}=625 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	1.1	1.1	1.1	1.1	v
		$I_{1}=935 \mu \mathrm{~A}, \quad I_{C}=750 \mathrm{~mA}$	1.2	1.2	1.2	1.2	
		$\Lambda_{1}=1.25 \mathrm{~mA},{ }_{\mathrm{I}} \mathrm{C}=1 \mathrm{~A}$	1.3	1.3	1.3	1.3	
		$\begin{array}{ll} l_{1}=2 \mathrm{~mA}, & { }^{\mathrm{I}} \mathrm{C}=1.25 \mathrm{~A}, \\ \text { See Note } 3 \end{array}$	1.4		1.4		
		$\begin{aligned} & I=2.25 \mathrm{~mA}, \mathrm{I} \mathrm{C}=1.5 \mathrm{~A}, \\ & \text { See Note } 3 \end{aligned}$		1.5		1.5	
Clamp-diode reverse current	6	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	50		50		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	100		100		
		$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}$		50		50	
		$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		100		100	
$V_{F} \quad$ Clamp-diode	7	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	1.75	1.75	1.75	1.75	V
V forward voitage		$\mathrm{I}_{\mathrm{F}}=1.5 \mathrm{~A}, \quad$ See Note 3	2	2	2	2	

NOTE 3: These parameters must be measured on one output at a time using pulse techniques, $t_{w}=10 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{VCC}=5 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS	MIN	TYP
tPLH	Propagation delay time, low-to-high-level output		UNIT	
tPHL	Propagation delay time, high-to-low-level output		1	$\mu \mathrm{~S}$

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. VCEX(sus)

FIGURE 3. II (on)

FIGURE 5. $V_{\text {CE(sat) }}$

FIGURE 2. ICEX

FIGURE 4. $V_{\text {I(on) }}$

FIGURE 6. IR

ULN2064, ULN2065, ULN2066, ULN2067

QUADRUPLE HIGH-CURRENT DARLINGTON SWITCHES

PARAMETER MEASUREMENT INFORMATION

FIGURE 7. V_{F}

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\mathrm{PRR}=50 \mathrm{kHz}$, duty $\mathrm{cycle}=10 \%, \mathrm{Z}_{\mathrm{o}}=50 \Omega$.
B. C_{L} includes all probe and stray capacitance.
C. $V_{1 H}=2.5 \mathrm{~V}$ for ULN2064 and ULN2065. $V_{I H}=10 \mathrm{~V}$ for ULN2065 and ULN2067.

FIGURE 8. SWITCHING TIMES
ELECTRICAL CHARACTERISTICS
COLLECTOR CURRENT
VS
BASE CURRENT

FIGURE 9

FIGURE 10

MAXIMUM COLLECTOR CURRENT
vs
DUTY CYCLE

FIGURE 11

FIGURE 12

FIGURE 13. RELAY DRIVER INTERFACE

- Output Collector Current . . . 1.5 A Max
- 2-W Dissipation Rating
- High Output-Voltage Capability
- Preamp for High Current Gain
- Outputs Diode-Clamped for Inductive Loads
- Common-Emitter Circuit for Current Sink
- Inputs Compatible With TTL and 5-V CMOS
- Designed for Interchangeability With Sprague ULN2068 and ULN2069

description

The ULN2O68 and ULN2O69 are monolithic integrated circuits each consisting of four highvoltage, high-current n-p-n cascaded transistor switches. Each switch includes a first stage compatible with both TTL and 5-V CMOS signal levels. The second and third stages form uncommitted-collector outputs with commoncathode clamp diodes for switching inductive loads.

The ULN2068 and ULN2O69 can sink up to 1.5 A per switch. Applications include logic buffers, MOS drivers, memory drivers, line drivers, relay drivers, hammer drivers, lamp drivers, and display drivers (LED and gas discharge).
The ULN2068 and ULN2069 are characterized for operation from $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol 1

[^10]NE PACKAGE
(TOP VIEW)

1 C [${ }_{2}$ 15 ${ }^{15}$ 4B

HEAT SINK, E, $\{4$ 13 4 HEAT SINK, E, AND SUBSTRATE $\left.\left.\square_{5} 12\right]^{2}\right\}$ AND SUBSTRATE

NC - No internal connection
schematic (each switch)

Resistor values shown are nominal.
logic diagram (positive logic)

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature for each switch (unless otherwise noted)

	U: ': : ', "	U: $\square_{\text {\% }}$:-]
Collector-emitter voltage	ou	un	\cdots
Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	10	10	V
Input voltage	15	15	V
Peak collector current (see Figures 10, 11, and 12)	1.5	1.5	A
Total power dissipation at (or below) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 2)	2075	2075	mW
Operating free-air temperature range	-20 to 85	-20 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature range	-55 to 150	-55 to	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from the case for 10 seconds	260	260	${ }^{\circ} \mathrm{C}$

NOTES: 1. All voltage values (unless otherwise noted) are with respect to the emitter/substrate terminal E.
2. For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate total power linearly to 1079 mW at $85^{\circ} \mathrm{C}$ at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		$\begin{array}{c\|} \hline \text { TEST } \\ \text { FIGURE } \end{array}$	TEST CONDITIONS	ULN2068		ULN2069		UNIT	
		MIN		MAX	MIN	MAX			
$V^{\text {CEX }}$ (sus)	Collector sustaining voltage		1	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \quad \mathrm{I}^{\text {C }}=100 \mathrm{~mA}$	35		50		V
ICEX	Collector output cutoff current	2	$V_{C E}=50 \mathrm{~V}$		100			$\mu \mathrm{A}$	
			$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		500				
			$\mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V}$				100		
			$\mathrm{V}_{\text {CE }}=80 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$						
I(on)	On-state input current	3	$\mathrm{V}_{1}=2.4 \mathrm{~V}$					${ }_{\mu}{ }^{\text {A }}$	
			$\mathrm{V}_{1}=3.75 \mathrm{~V}$						
VIIon)	On-state input voltage	4	$V_{C E}=2 \mathrm{~V}, \quad \mathrm{IC}=1.5 \mathrm{~A},$ See Note 3		2.4		2.4	V	
$V_{\text {CE }}$ (sat)	Collector-emitter saturation voltage	5	$\mathrm{V}_{1}=2.4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$		1.1		1.1	\checkmark	
			$\mathrm{V}_{1}=2.4 \mathrm{~V}, \quad \mathrm{I} \mathrm{C}=750 \mathrm{~mA}$		1.2		1.2		
			$\mathrm{V}_{1}=2.4 \mathrm{~V}, \quad \mathrm{I}^{\mathrm{C}}=1 \mathrm{~A}$		1.3		1.3		
			$V_{1}=2.4 \mathrm{~V}, \quad I_{C}=1.25 \mathrm{~A},$ See Note 3		1.4				
			$V_{1}=2.4 \mathrm{~V}, \quad \mathrm{I} \mathrm{C}=1.5 \mathrm{~A},$ Sea Note 3				1.5		
${ }^{\prime}{ }^{\prime}$	Clamp-diode reverse current	6	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$		50			${ }_{\mu} \mathrm{A}$	
			$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		100				
			$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}$				50		
			$\mathrm{V}_{\mathrm{R}}=80 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				100		
V_{F}	Clamp-diode forward voltage	7	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$		1.75		1.75	\checkmark	
			$\mathrm{I}_{\mathrm{F}}=1.5 \mathrm{~V}, \quad$ See Note 3		2		2		
${ }^{\text {I CC }}$	Supply current (only one switch conducting)	8	$\mathrm{V}_{1}=2.4 \mathrm{~V}, \quad \mathrm{I} C=500 \mathrm{~mA}$		6		6	mA	

NOTE 3: These parameters must be measured on one output at a time using pulse techniques, $t_{w}=10 \mathrm{~ms}$, duty $\mathrm{cycte} \leq 10 \%$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{VCC}=5 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS	MIN	TYP
PRLH	Propagation delay time, low-to-high-level output		UNIT	
tPHL	Propagation delay time, high-to-low-level output		See Figure 9	

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. VCEX(sus)

FIGURE 3. II(on)

FIGURE 5. VCE(sat)

FIGURE 7. V_{F}

FIGURE 2. ICEX

FIGURE 4. VI(on)

FIGURE 6. IR

FIGURE 8. ICC

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $\operatorname{PRR}=50 \mathrm{kHz}$, duty cycie $=10 \%, \mathrm{Z}_{\mathrm{o}}=50 \Omega$. B. C_{L} includes all probe and stray capacitance.

FIGURE 9. SWITCHING TIMES

THERMAL INFORMATION

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13. RELAY DRIVER INTERFACE

- Output Collector Current . . . 1.5 A Max
- 2-W Dissipation Rating
- High Output-Voltage Capability
- Output Sink- or Source-Current Capabilities
- Input Compatible with TTL or 5-V CMOS
- Designed for Interchangeability with Sprague ULN2074 and ULN2075

description

The ULN2074 and ULN2075 are monolithic, quadruple, high-voltage, high-current $n-p-n$ darlington-transistor amplifier devices. They feature high-voltage outputs with collectorcurrent ratings of 1.5 A for each Darlington pair.
The ULN2074 and ULN2075 are unique generalpurpose devices, each featuring uncommitted collectors and emitters to allow for either sinking or sourcing the output current. These devices offer the system designer the flexibility of tailoring the circuit to the application. Typical applications include logic buffers, relay drivers, lamp drivers, and hammer drivers.

For proper operation, the substrate must be connected to the most negative voltage.
The ULN2074 and ULN2075 are characterized for operation from $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol ${ }^{\dagger}$

NE PACKAGE
(TOP VIEW)

schematic (each switch)

[^11]
ULN2074, ULN2075
 QUADRUPLE HIGH-CURRENT DARLINGTON SWITCHES

absolute maximum ratings at $25^{\circ} \mathrm{C}$ free-air temperature for each switch (unless otherwise noted)

	ULN2074	ULN2075	UNIT
Collector-emitter voltage	50	80	V
Input voitage with respect to substrate	30	60	V
Peak coliector current (see Figures 9, 10, and 11)	1.5	1.5	A
Input current	25	25	mA
Total power dissipation at (or beiow) $25^{\circ} \mathrm{C}$ free-air temperature (see Note 11)	2075	2075	mW
Operating free-air temperature range	-20 to 85	-20 to 8 c	${ }^{\circ} \mathrm{C}$
Storage tempereture range	-55 to	-55*~:	${ }^{\circ} \mathrm{C}$
Lead temparature $1,6 \mathrm{~mm}$ ($1 / 16$ inch) from the case for 10 seconds	260	cus	${ }^{\circ} \mathrm{C}$

NOTE 1: For operation above $25^{\circ} \mathrm{C}$ free-air temperature, derate total power linearly to 1079 mW at $85^{\circ} \mathrm{C}$ at the rate of $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
electrical characteristics at $25^{\circ} \mathrm{C}$ free-air temperature (unless otherwise noted)

PARAMETER		TEST FIGURE	TEST CONDITIONS	- 1's. 074		ULN2075		UNIT	
		Min		MAX	MIN	MAX			
$V_{\text {CEX }}$ (sus)	Collector sustaining voitage		1	$\mathrm{V}_{1}=0.4 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	35		50		V
ICEX	Collector output cutoff current	2	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}$					$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$						
			$\mathrm{V}_{\text {CE }}=80 \mathrm{~V}$				100		
			$\mathrm{V}_{\text {CE }}=80 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$				500		
Ifon)	On-state input current	3	$\mathrm{V}_{1}=2.4 \mathrm{~V}$	2	4.3	2	4.3	mA	
			$\mathrm{V}_{1}=3.75 \mathrm{~V}$	4.5	9.6	4.5	9.6		
$V_{\text {(Ion) }}$	On-state input voltage	4	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \quad \mathrm{I}^{2}=1 \mathrm{~A}$		2		2	V	
			$\begin{aligned} & V_{C E}=2 \mathrm{~V}, \quad \mathrm{IC}=1.5 \mathrm{~A}, \\ & \text { See }: \quad 2 \end{aligned}$		2.5		2.5		
$V_{C E}$ (sat)	Collector-emitter saturation voltage	5	$I_{1}=\\| \cdot \quad i A, \quad I_{C}=500 \mathrm{~mA}$		1.1		1.1	v	
			$4=935 \mu \mathrm{~A}, \quad \mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}$		1.2		1.2		
			$I_{1}=1.25 \mathrm{~mA}, \quad I_{C}=1 \mathrm{~A}$		1.3		1.3		
			$\begin{aligned} & I_{1}=2 \mathrm{~mA}, \quad I_{C}=1.25 \mathrm{~A}, \\ & \text { See Note } 2 \end{aligned}$		1.4				
			$\begin{aligned} & I_{1}=2.25 \mathrm{~mA}, \quad \mathrm{C}=1.5 \mathrm{~A}, \\ & \text { See Note } 2 \end{aligned}$				1.5		

NOTE 2: These parameters must be measured on one output at a time using pulse techniques, $\mathrm{t}_{\mathrm{w}}=10 \mathrm{~ms}$, duty cycle $\leq 10 \%$.
switching characteristics at $25^{\circ} \mathrm{C}$ free-air temperature, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
tPLH	Propagation delay tima, low-to-high-level output	See Figure 6		1	$\mu \mathrm{S}$
${ }_{\text {tPHL }}$	Propagation delay time, high-to-low-lovel output			1.5	$\mu \mathrm{S}$

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. VCEX(sus)

FIGURE 3. II(on)

figure 2. ICEX

FIGURE 4. $V_{\text {I(on) }}$

FIGURE 5. VCE(sat)

TEST CIRCUITS

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characterıstics: $P R R=50 \mathrm{kHz}$, duty cycle $=10 \%, Z_{0}=50 \Omega$.
B. C_{L} includes all probe and stray capacitance.

FIGURE 6. SWITCHING CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

figure 7

FIGURE 8

THERMAL INFORMATION

FIGURE 9

MAXIMUM COLLECTOR CURRENT
vs

FIGURE 10

FIGURE 11

APPLICATION INFORMATION

FIGURE 12. RELAY DRIVER INTERFACE WITH EXTERNAL CLAMP DIODES

[^0]: ${ }^{\ddagger}$ All typical values are at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

[^1]: fois symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^2]: ${ }^{\ddagger}$ In the thermal shutdown mode, the outputs are in the high-mpedance state regaraiess of the input levels
 H $=$ high-level
 L = low-level
 $\mathrm{X}=$ irrelevant
 Z $=$ high-Impedance (off)

[^3]: ${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^4]: ${ }^{\dagger}$ This symbol is in accordance with ANSI//EEE Std 91-1984 and IEC Publication 617-12

[^5]: ${ }^{\dagger}$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^6]: ${ }^{\dagger}$ All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^7]: \dagger The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet for logic voltage levels.

[^8]: † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^9]: $H=$ high-level
 L = low-level
 $X=$ irrelevant
 $Z=$ high-impedance (off)

[^10]: This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[^11]: ${ }^{\ddagger}$ This symbol is in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12.

