General Information

Data Transmission and Control Circuits

Display Drivers

Peripheral Drivers/Power Actuators

Mechanical Data 5

Explanation of Logic Symbols 6

1

2

3

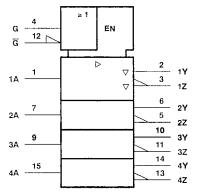
4

D2433, JANUARY 1979-REVISED MAY 1990

- Meets EIA Standard RS-422-A
- **Operates From a Single 5-V Supply**
- TTL Compatible
- **Complementary Outputs**
- High Output Impedance in Power-Off Conditions
- **Complementary Output Enable Inputs**

description

The AM26LS31C is a guadrupie complementaryoutput line driver designed to meet the requirements of EIA Standard RS-422-A and Federal Standard 1020. The 3-state outputs have high-current capability for driving balanced lines such as twisted-pair or parallel-wire transmission lines, and they provide a high-impedance state in the power-off condition. The enable function is common to all four drivers and offers the choice of an active-high or active-low enable input. Lowpower Schottky circuitry reduces power consumption without sacrificing speed.


The AM26LS31C is characterized for operation from 0°C to 70°C.

logic symbol[†]

PRODUC

ATA documents data. Products s Instrumants

data. Products · ntc · = · •==sinstrumants · iwa = · ...es not nacase..t., ...cluit te...

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

ain i

n (atic

- roo

_! .na

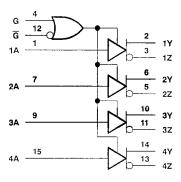
D, J, OR N PACKAGE (TOP VIEW)							
1A [1	16	V _{CC}				
1Y [2	15	4A				
1Z]	3	14	4Y				
ENABLE G [4	13	4Z				
2Z [5	12	ENABLE G				
2Y [6	11	3Z				
2A [7	10	3Y				
GND]	8	9	3A				

FUNCTION TABLE (EACH DRIVER)

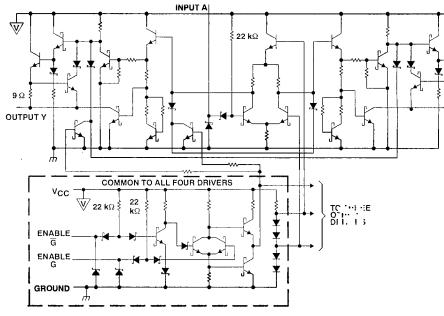
INPUT	ENA	BLES	ουτι	PUTS
A	G	Ğ	Y	z
н	н	x	н	L
L	н	х	L	н
н	X	L	н	L
L	X	L	L L	н
X	L	н	Z	Z

H = high level

L = low level


X = irrelevant

Z = high impedance (off)



POST OFFICE BOX 655303 * DALLAS, TEXAS 75265

logic diagram (positive logic)

schematic (each driver)

All resistor values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	. ,
Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Output off-state voltage	5.5 V
Continuous total dissipation	See Dissipation Rating Table
Operating free-air temperature range	0 to 70°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N paci	kage 260°C

NOTE 1: All voltage values, except differential output voltage VOD, are with respect to network ground terminal.

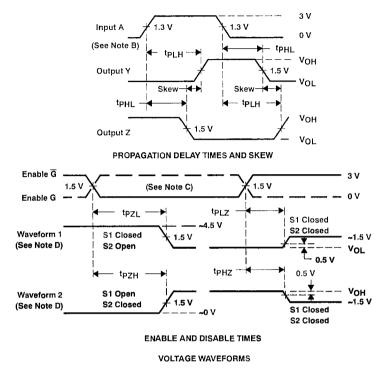
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/°C	656 mW
N	1 150 mW	9.2 mW/°C	736 mW

DISSIPATION RATING TABLE

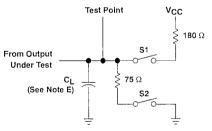
recommended operating conditions

	MIN N	IOM M	AX	UNIT
Supply voltage, VCC	4.75	5 5	.25	V
High-level input voltage, VIH	2			٧
Low-level input voltage, VIL			0.8	V
High-level output current, IOH			20	mA
Low-level output current, IOL			20	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over operating free-air temperature range (unless otherwise noted)

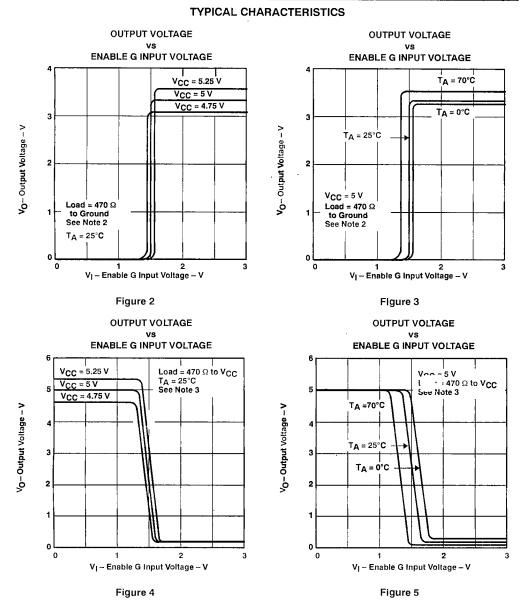

	PARAMETER	TEST	CONDITIONS	MIN TYPT	MAX	UNIT
VIK	Input clamp voltage	V _{CC} = 4.75 V,	lj = 18 mA		- 1.5	v
Vон	High-level output voltage	V _{CC} = 4.75 V,	IOH = - 20 mA	2.5		v
VOL	Low-level output voltage	V _{CC} = 4.75 V,	ioL = 20 mA		0.5	v
			V _O = 0.5 V		- 20	
loz	Off-state (high-impedance-state) output current VCC = 4.75 V	Vo = 2.5 V		20	μA	
1	Input current at maximum input voltage	V _{CC} = 5.25 V,	Vi = 7 V		0.1	mA
ін	High-level input current	V _{CC} = 5.25 V,	V ₁ = 2.7 V	1	20	μA
ΊL	Low-level input current	V _{CC} = 5.25 V,	VI = 0.4 V		- 0.36	mA
los	Short-circuit output current [‡]	V _{CC} = 5.25 V		- 30	- 150	mA
lcc	Supply current	V _{CC} = 5.25 V,	All output disebled	32	80	mA

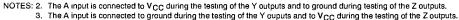
⁺ All typical values are at V_{CC} = 5 V end T_A = 25°C.
 ⁺ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.


switching characteristics, $V_{CC} = 5 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ}\text{C}$

PARAMETER			TEST CONDITIONS			TYP	MAX	UNIT
	Propagation delay time,				1			
^t PLH	low-to-high-level output		See Figure 1,	S1 and S2 open		14	20	ns
	Propagation delay time,	CL = 30 pF,			14			
tpHL	high-to-low-level output					14	20	ns
	Output-to-output skew					1	6	ns
^t PZH	Output enable time to high level	C _L = 30 pF,	R _L = 75 Ω,	See Figure 1		25	40	ns
^t PZL	Output enable time to low level	CL = 30 pF,	R _L =180 Ω,	See Figure 1		37	45	ЛŞ
t _{PHZ}	Output disable time from high level	0. 105			<u> </u>	21	30	ЛŞ
^t PLZ	Output disable time from low level	C _L = 10 pF,	See Figure 1,	S1 and S2 closed		23	35	ns

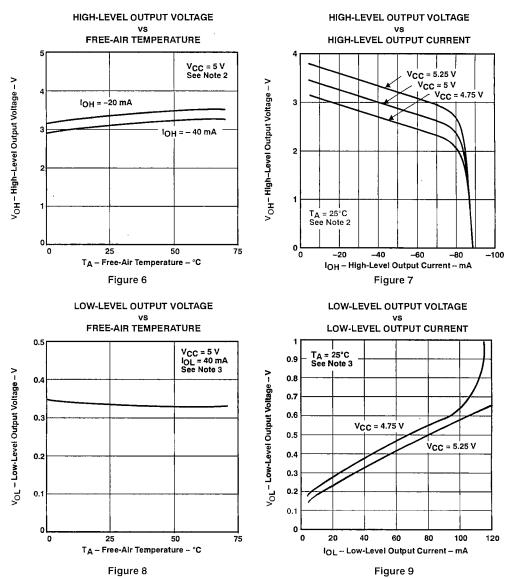
PARAMETER MEASUREMENT INFORMATION

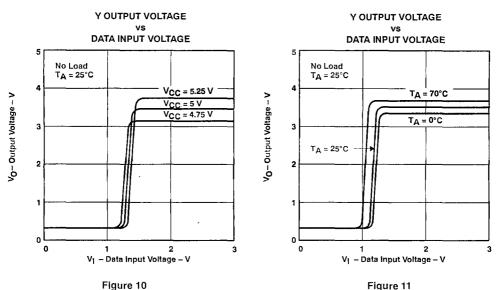



TEST CIRCUIT

- NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z₀ ~ 50 Ω, t_f ≤ 15 ns, and t_f ≤ 6 ns.
 - B. When measuring propagation delay times and skew, switches S1 and S2 are open.
 - C. Each enable is tested separately.
 - D. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - E. CL includes probe and jig capacitance.

Figure 1. Switching Times





NOTES: 2. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during testing of the Z outputs. 3. The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs.

TYPICAL CHARACTERISTICS

TEXAS INSTRI MENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

D2434, OCTOBER 1980-REVISED SEPTEMBER 1986

16 VCC

15 🗌 4B

14 🗌 4A

13 🗍 4 Y

12 🗌 Ğ

11 3Y

9 🗍 3B

3A

- AM26LS32A Meets EIA Standards RS-422-A and RS-423-A
- AM26LS32A Has ±7-V Common-Mode Range With ±200-mV Sensitivity
- AM26LS33A Has ± 15-V Common-Mode Range With ± 500 mV Sensitivity
- Input Hysteresis . . . 50 mV Typical
- Operates From a Single 5-V Supply
- Low-Power Schottky Circuitry
- 3-State Outputs
- Complementary Output Enable Inputs
- Input Impedance . . . 12 kΩ Min
- Designed to Be Interchangeable With Advanced Micro Devices AM26LS32C and AM26LS33C

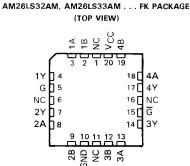
description

The AM26LS32A and AM26LS33A are quadruple line receivers for balanced and unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. Three-state outputs permit connection directly to a bus-organized system. Fail-safe design ensures that if the inputs are open, the outputs will always be high.

Compared to the AM26LS32C and the AM26LS33C, the AM26LS32A and AM26LS33A incorporate an additional stage of amplification to improve sensitivity. The input impedance has been increased resulting in less loading of the bus line. The additional stage has increased propagation delay; however, this will not affect interchangeability in most applications.

The AM26LS32AC and AM26LS33AC are characterized for operation from 0°C to 70°C. The AM26LS32AM and the AM26LS33AM are characterized for operation over the full military temperature range of -55°C to 125°C.

DIFFERENTIAL	ENA	BLES	OUTBUT
INPUT	G	Ĝ	OUTPUT
	н	Х	н
V _{ID} ≥ V _{TH}	X	L	н
	н	х	?
VTL ≤ VID ≤ VTH	X	Ĺ	?
	н	х	L
V _{ID} ≤ V _{TL}	X	L	L
х	L	H	z


FUNCTION TABLE (EACH RECEIVER)

H = high level, L = low level, X = irrelevant Z = high impedance (off), ? = indeterminate

Copyright © 1986, Texas Instruments Incorporated

NC-No internal connection

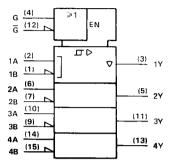
1B 🛛 1

 $1 \wedge \Pi_2$

1Y 🗍 3

 $G \prod 4$

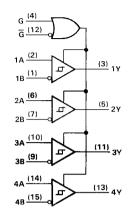
2Y 🛛 5

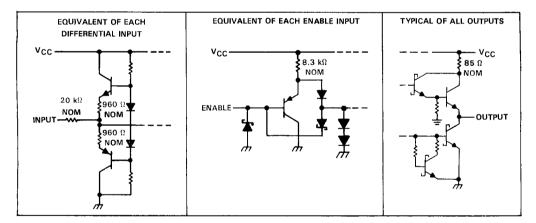

2A 🛛 6

7 10

2в Г

GND


logic symbol[†]


 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		AM26LS32AC AM26LS33AC	AM26LS32AM AM26LS33AM	UNIT	
Supply voltage, V _{CC} (see Note 1)		7	7	V	
voltage, any differential input		± 25	± 25	V	
ential input voltage (see Note 2)		± 25	± 25	V	
Continuous total power dissipation		See Dissipation Rating Table			
Operating free-air temperature range	0 to 70	-55 to 125	°C		
Storage temperature range		-65 to 150	65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package	260		°C	
Case temperature for 60 seconds	FK package			°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package	300	300	°C	

NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	-
FK	1375 mW	11 0 mW/°C	880 mW	275 mW
J (C-SUFFIX)	102 5 mW	8.2 mW/°C	656 mW	_
J (M-SUFFIX)	1375 mW	11.0 mW/°C ·	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_

recommended operating conditions

			126LS32 126LS33		AM26LS32 AM2		2AM -AM	
		MIN	NOM	MAX	MIN		MAX	
Supply voltage, VCC		4.75	5	5.25	4.5	5	5.5	V
High-level input voltage, VIH		2			2			V
Low-level input voltage, VIL				0.8			0.8	v
	AM26LS32AC, AM26LS32AM			±7			±7	v
Common-mode input voltage, V _{IC}	AM26LS33AC, AM26LS33AM			±15			±15	ľ
High-level output current, IOH				-440			- 440	μA
Low-level output current, IQ				8			8	mA
Operating free-air temperature, TA		0		70	- 55		125	°C

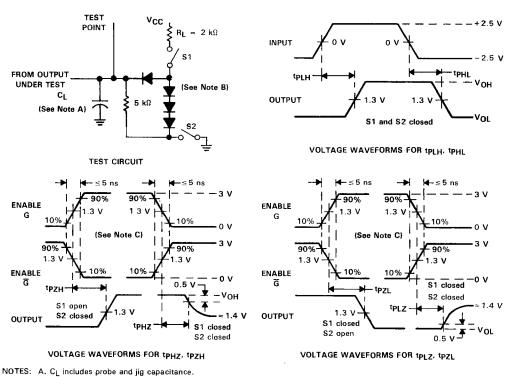
^{2.} Differential voltage values are at the noninverting (A) input terminals with respect to the inverting (B) input terminals.

	PARAMETER		TEST CONDITIONS		MIN	TYPT	MAX	UNIT
Vтн	Differential input high-threshold voltage	V _O = V _{OH} min,	I _{OH} = -440 μA	AM26LS32A			0.2 0.5	v
VTL	Differential input low-threshold voltage	$V_0 = 0.45 V_0$	$I_{OL} = 8 \text{ mA}$	AM26LS33A	-0.2 [‡]			v
V _{hys}	Hysteresis, VT+ - VT- §					50		mV
Viк	Enable input clamp voltage	V _{CC} = ∵∵	lj ≕ −18 mA				- 1.5	V
Val	High-level output voltage	V _{CC} = ∵··	$V_{1D} = 1 V_{,}$	'32AC, '33AC	2.7	_		v
Vон	High-level output voltage	$V_{I(G)} = 0.8 V,$	$I_{OH} = -440 \ \mu A$	'32AM, '33AM	2.5			v
N.e.	Low-level output voltage	$V_{CC} = MIN,$	$V_{ID} = -1 V_{,}$	$I_{OL} = 4 \text{ mA}$			0.4	v
VOL	Low-level output voltage	VI(G) = 0.8 V		$I_{OL} = 8 \text{ mA}$			0.45	v
1	Off-state (high-impedance-state)	Vee - MAX		$V_0 = 2.4 V$			20	
loz	output current	V _{CC} = MAX		$V_0 = 0.4 V$			- 20	μA
	Line input current	V _I = 15 V,	Other input at -10	V to 15 V			1.2	mA
4		$V_{\rm I} = -15 V_{\rm c}$	Other input at -15	V to 10 V			- 1.7	ША
i(EN)	Enable input current	$V_{1} = 5.5 V$					100	μA
Чн	High-level enable current	V ₁ = 2.7 V					20	μA
կլ	Low-level enable current	V ₁ = 0.4 V					-0.36	mA
r;	Input resistance	$V_{IC} = -15$ V to 15 V, One input to AC ground			12	15		kΩ
los	Short-circuit output current	V _{CC} = MAX			- 15		-85	mA
lcc	Supply current	$V_{CC} = MAX,$	All outputs disabled	1		52	70	mA

electrical characteristics over recommended ranges of V_{CC}, V_{IC}, and operating free-air temperature (unless otherwise noted)

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C, and V_{IC} = 0.

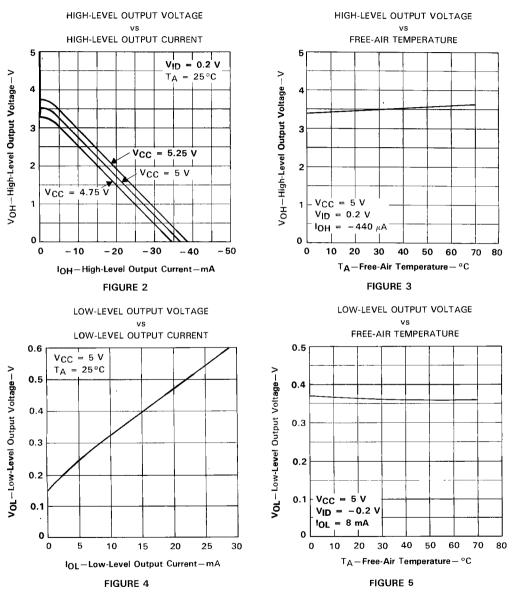
⁺The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.


[§]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. See Figures 10 and 11.

Not more than one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

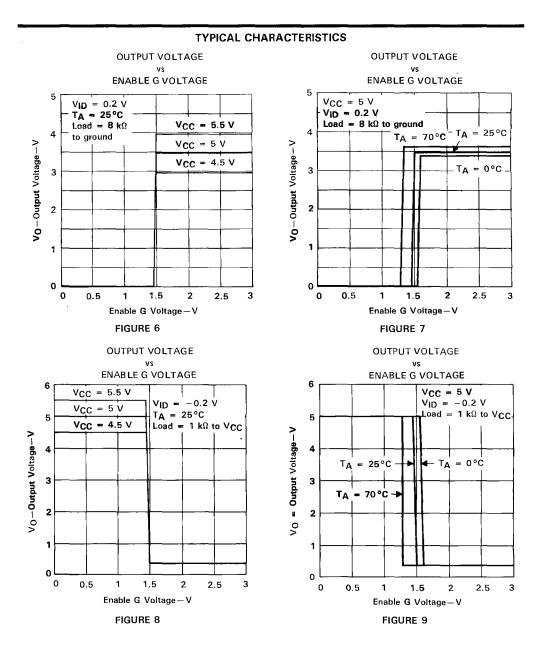
switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

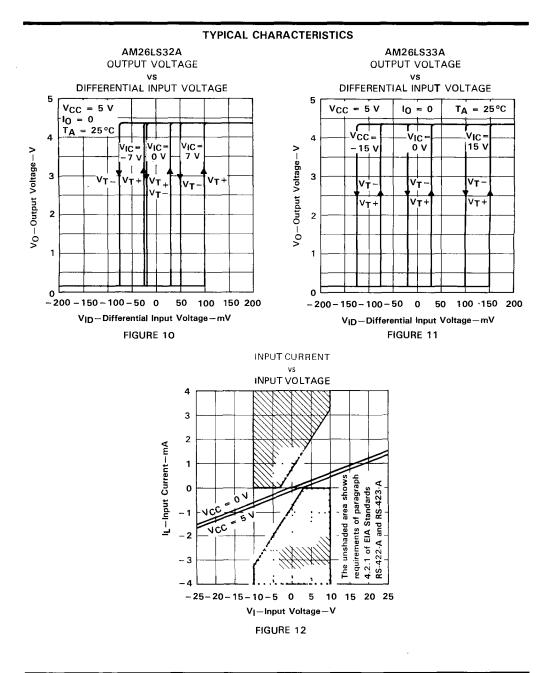
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			20	35	ns
^t PHL	Propagation delay time, high-to-low-level output	$C_L = 15 \text{ pF}$, See Figure 1		22	35	ns
^t PZH	Output enable time to high level			17	22	ns
tPZL	Output enable time to low level	- C _L = 15 pF, See Figure 1		20	25	ns
tPHZ	Output disable time from high level			21	30	ns
TPLZ	Output disable time from low level	$C_L = 5 pF$, See Figure 1		30	40	ns

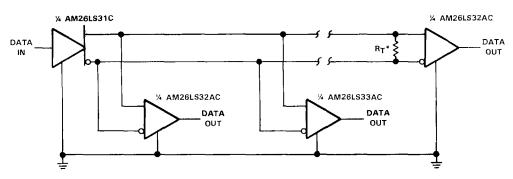


PARAMETER MEASUREMENT INFORMATION

B. All diodes are 1N3064 or equivalent.
C. Enable G is tested with G high; G is tested with G low.


FIGURE 1





APPLICATION INFORMATION

*RT equals the characteristic impedance of the line.

FIGURE 13. CIRCUIT WITH MULTIPLE RECEIVERS

D2298, JANUARY 1977-REVISED MAY 1990

 Schottky Circuitry for High Speed, Typical Propagation Delay Time 12 ns 	AM26S10C, AM26S11C D, J, OR N PACKAGE (TOP VIEW)				
 Drivers Feature Open-Collector Outputs for Party-Line (Data Bus) Operation 	GND $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 15 \end{bmatrix} = 4B$				
 Driver Outputs Can Sink 100 mA at 0.8 V Maximum 	1R []3 14] 4R 1D []4 13] 4D 2D []5 12] S				
 P-N-P Inputs for Minimal Input Loading 	2R 6 11 3D				
 Designed to Be Interchangeable With Advanced Micro Devices AM26S10 and 	2B [] 7 10] 3R GND [] 8 9] 3B				

description

AM26S11

The AM26S10 and AM26S11 are quadruple bus transceivers utilizing Schottky-diode-clamped transistors for high speed. The drivers feature open-collector outputs capable of sinking 100 mA at 0.8 V maximum. The driver and strobe inputs use p-n-p transistors to reduce the input loading.

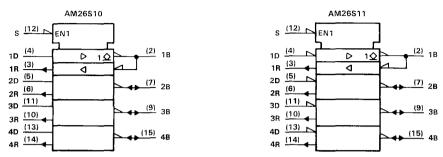
The driver of the AM26S10 is inverting; the driver of the AM26S11 is noninverting. Each device has two ground connections for improved ground current-handling capability. For proper operation, the ground pins should be tied together.

The AM26S10C and AM26S11C are characterized for operation over the temperature range of 0 $^{\circ}$ C to 70 $^{\circ}$ C.

AM26S10 FUNCTION TABLE (TRANSMITTING) AM26S11 FUNCTION TABLE (TRANSMITTING)

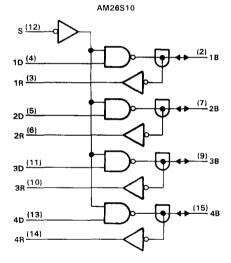
INP	JTS	OUT	PUTS
S	D	8	R
L	Ĥ	L	н
L	L	н	L

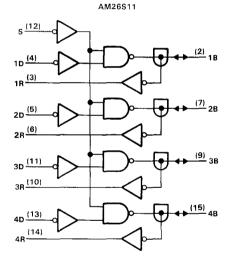
INP	UTS	OUT	PUTS
s	0	В	R
L	н	н	L
L	L	L	н


AM26S10 AND AM26S11 FUNCTION TABLE (RECEIVING)

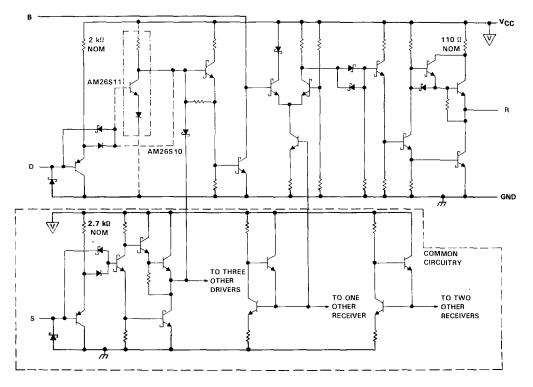
[INPUTS	OUTPUT	
S	В	D	R
н	Н	X	L
н	L	х	н

H = high level, L = low level, X = irrelevant




logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagrams (positive logic)

schematic (each transceiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1)
Driver or strobe input voltage range
Bus voltage range, driver output off
Driver or strobe input current range
Driver output current
Receiver output current
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

NOTE 1: All voltage values are with respect to network ground terminals connected together.

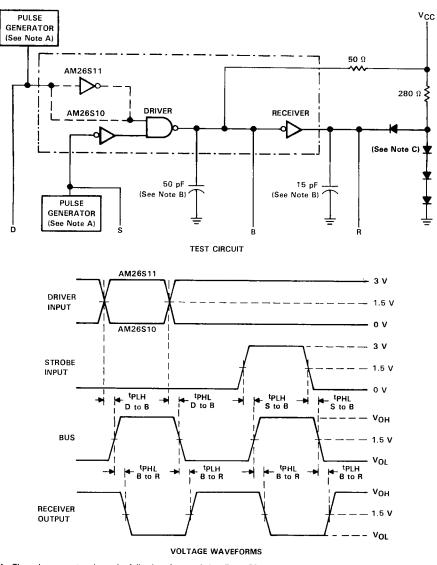
DISSIPATI	ON RAT	ring t	ABLE	

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C Po∷i + RATING
D	950 mW	7.6 mW/°C	• • mW
J	1025 mW	8 2 mW/°C	656 mw
N	1150 mW	9 2 mW/°C	736 mW

recommended operating conditions

•		MIN NOM	MAX	UNIT	
Supply voltage, VCC		4.75 5	5.25	v	
Liter level to an inclusion of the	D or S	2			
High-level input voltage, VIH	В	2.25		-	
	D or S		0.8	l v	
Low-level input voltage, VIL	В		1,75	v	
Receiver high-level output current, IOH			- 1	mA	
	Driver		100		
Low-level output current, IDL	Receiver		20	mA	
Operating free-air temperature, TA		0	70	°C	

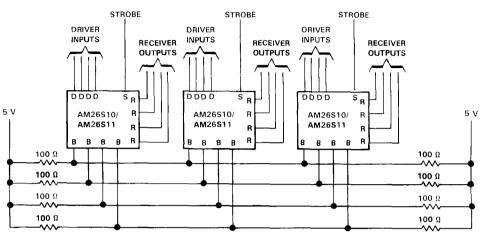
	PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
VIK.	Input clamp voltage	D or S	V _{CC} = 4.75 V,	lı = -18 mA				-1.2	v
v _{он}	High-level output voltage	R	$V_{CC} = 4.75 V,$ IOH = -1 mA	V _{IH} = 2 V,	$V_{IL} = 0.8 V,$	2.7	3.4		v
		R			IOL = 20 mA			0.5	
	1		$V_{CC} = 4.75 V,$		$I_{OL} = 40 \text{ mA}$		0.33	0.5	v
VOL	Low-level output voltage	8	$V_{\rm H} = 2 V,$		loL = 70 mA		0.42	0.7	v
			V _{IL} = 0.8 V		$I_{OL} = 100 \text{ mA}$		0.51	0.8	
				$V_{CC} = 5.25 V_{,}$	V _O = 0.8 V			- 50	
[[] O(off)	Off-state output current	в	$V_{IH} = 2 V,$	V _{CC} = 5.25 V,	Vo = 4.5 V			100	μA
,			V _{IL} = 0.8 V	$V_{CC} = 0,$	$V_0 = 4.5 V$			100	
		D		<u> </u>				30	μA
ЧΗ	High-level input current	s	$V_{CC} = 5.25 V,$	$v_1 = 2.7 v$				20	μΑ
	Input current at maximum	Dor						100	μA
1	input voltage	s	$V_{CC} = 5.25 V_{c}$	vi = 5.5 v				100	μΑ
		D		V - 0.4.V				-0.54	mA
μL	Low-level input current	S	$V_{CC} = 5.25 V, V_{I} = 0.4 V$				-0.36		
los	Short-circuit output current [‡]	R	$V_{CC} = 5.25 V$			- 1B		- 60	mA
	Constant and the second		$V_{CC} = 5.25 V_{c}$	Strobe at 0 V,	No load,		45	70	mA
lcc	Supply current		All driver output	ts low				80	


electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]All typical values are at $T_A = 25$ °C and $V_{CC} = 5$ V. [‡]Not more than one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER		то	TEST	TEST AM26S10			AM26S11			UNIT
PARAMETER	FROM		CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output		DB			10	15		12	19	
tPHL Propagation delay time, high-to-low-level output					10	15		12	19	ns
tPLH Propagation delay time, low-to-high-level output	S B		[14	18		15	20	ns	
tPHL Propagation delay time, high-to-low-level output]	5 8	See Figure 1		13	18		14	20	115
tPLH Propagation delay time, low-to-high-level output			See Figure 1		10	15		10	15	
tPHL Propagation delay time, high-to-low-level output] °	8 R			10	15		10	15	ns
tTLH Transition time, low-to-high-level output		8		4	10		4	10		ns
tTHL Transition time, high-to-low-level output		1 0		2	4		2	4		


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: Z_{0} = 50 $\Omega,$ tr = 10 \pm 5 ns.

- B. Includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.

FIGURE 1

APPLICATION INFORMATION

100-Ω TRANSMISSION LINE

FIGURE 2. PARTY-LINE SYSTEM

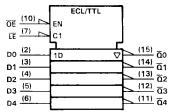
. ..

and the second the second s

D3058, NOVEMBER 1987-REVISED DECEMBER 1988

ECL Control Inputs						
3-State Outputs	(TOP VIEW)					
• 10K ECL Input Compatible	V _{EE} [] 1					
Package Options Include Plastic "Small	D1 🗍 3 14 🗍 🖸 1					
Outline" Package and Standard Plastic	D2 4 13 02					
300-mil DIPs	D3 [] 5 12 [] 03					
Direct Daylocoment for National	D4 [6 11] 04					
Direct Replacement for National Semiconductor DP8480						
Semiconductor Dro400	GND 🛛 🛚 8 9 🗍 GND					

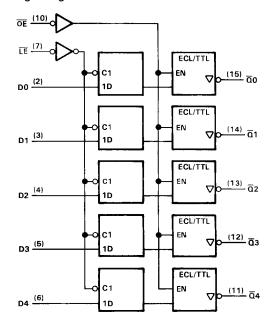
description


This circuit translates ECL input levels to TTL output levels and provides an inverting transparent latch. The 3-state outputs are designed to drive highly capacitive loads. All inputs operate at ECL levels.

If Latch Enable (\overline{LE}) is low, the latches are transparent and the $\overline{\Omega}$ outputs follow the complement of the D inputs. If \overline{LE} is high, the outputs are latched. If output enable (\overline{OE}) is high, the outputs are in the high-impedance state, as they are during power up and power down.

logic diagram

The DP8480 is characterized for operation from 0°C to 75°C.


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH LATCH/TRANSLATOR)

ŌE	LE	D	ā
н	х	х	z
L	L	L	н
L	L	н	L
L	н	Х	<u>a</u> o

PRDDUCTION DATA decuments centain information current as of publication date. Products cenfarm te specifications per (the terms of Taxes Instruments standard warrenty. Production processing dees net necessarily include testing ef all parameters.

Copyright © 1987, Texas Instruments Incorporated

DP8480 **10K ECL-TO-TTL LEVEL TRANSLATOR WITH LATCH**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Supply voltage, VEE
Input voltage, VI
Output voltage, VO
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

PACKAGE	T _A ≤25 °C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 75°C POWER RATING			
D	950 mW	7 6 mW/°C	570 mW			
N	1150 mW	9.2 mW/°C	690 mW			

DISSIPATION BATING TABLE

recommended operating conditions

		MIN NOM	MAX	UNIT	
Supply voltage, V _{CC}		4.5 5	5.5	V	
Supply voltage, V _{EE}		-4.68 -5.20	-5.72	v	
	$T_A = 0 °C$	- 1145	- 840	1	
High-level input voltage, VIH (see Note 1)	$T_A = 25 ^{\circ}C$	1105	-810	m٧	
	T _A = 75°C	- 1045	- : • 1		
	T _A = 0°C	- 1870	- 1.:•• •		
Low-level input voltage, VIL	$T_A = 25 ^{\circ}C$	- 1850	- 1475	mν	
(see Note 1)	T _A = 75°C		- 1450		
Pulse duration, LE low, tw (see Fig	ure 1)	ن		ns	
Setup time, data before LEt, t _{su} (see Figure 1)		3		ns	
Hold time, data after LEt, th (see F	gure 1)	3		กร	
Operating free-air temperature, TA		0	75	°C	

NOTE 1: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic levels only.

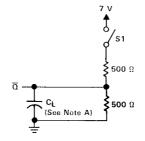
electrical characteristics over recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP [†]	MAX	UNIT
∨он	High-level output voltage	$l_{OH} = -10 \text{ mA}$	V _{CC-2}		V
VOL	Low-level output voltege	IOL = 12 mA	0.2	0.5	v
Чн	High level input current	VIH = VIH max	75	350	μA
ЧL	Low-level input current	VIL = VIL min	50	85	μA
IOHS	High-state short-circuit output current	V _{OHS} = 0, See Note 2	- 70 - 150		mA
IOLS	Low-state short-circuit output current	VOLS = 2.5 V, See Note 2	70 150		mA
loz	High-impedance state output current	$V_{O} = 0$ to 5 V	± 1	± 50	μA
1cc	Supply current from VCC	$\cdot :: \cdot \cdot \cdot = V_{ L}$	16	35	mA
IEE	Supply current from VEE	: · = V _{IL}	- 30	- 50	mA

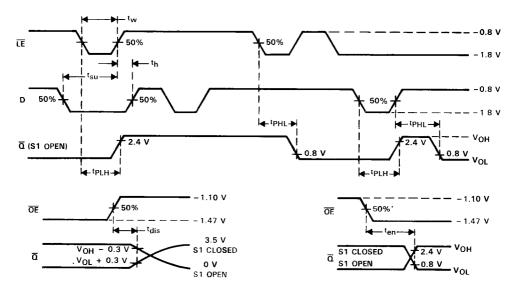
[†]Typical values are at V_{CC} = 5 V, V_{EE} = -5.2 V, T_A = 25° C. NOTE 2: During testing of I_{OHS} or I_{OLS}, only one output should be tested at a time and the current should be limited to a maximum of ± 120 mA.

.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output from LE input		4	10	15	ns
tPHL	Propagation delay time, high-to-low-level output from LE input		4	11	15	ns
^t PLH	Propagation delay time, low-to-high-level output from D input	C _L = 50 pF,	3.5	10	15	ns
tPHL	Propagation delay time, high-to-low-level output from D input	See Figure 1	3.5	11	15	ns
ten	en Output enable time from ÖE input		6	12	25	ns
^t dis	Output disable time from OE input	1	4.5	8	22	ns

[†]Typical values are at V_{CC} = 5 V, V_{EE} = -5.2 V, T_A = 25 °C, and with all channels switched simultaneously.


DP8480 10K ECL TO TTL LEVEL TRANSLATOR WITH LATCH

PARAMETER MEASUREMENT INFORMATION

OUTPUT LOAD CIRCUIT

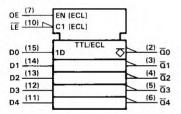
NOTE A: $\ensuremath{\mathsf{CL}}$ includes probe and $\ensuremath{\mathfrak{g}}$ capacitance.

NOTE B: ECL input rise times and fall time are 2 ns ± 0.2 ns from 20% to 80%.

FIGURE 1. SWITCHING CHARACTERISTICS

D3059, NOVEMBER 1987-REVISED AUGUST 1989

•	ECL Control Inputs	D OR N PACKAGE
•	10K ECL Compatible	
•	Propagation Delay 4 ns Typ	$V_{EE} \square 1 \cup 16 \square V_{CC}$ $\boxed{0} \square 2 \qquad 15 \square D0$
•	Package Options Include Plastic "Small	
	Outline" Package and Standard Plastic	02 04 13 D2
	300-mil DIPs	
	Direct Replacement for National	$\overline{\mathbf{Q}}4 \Box 6 \qquad 11 \Box D4$
	Semiconductor DP8481	
		GND 🗌 8 🛛 9 🗍 GND

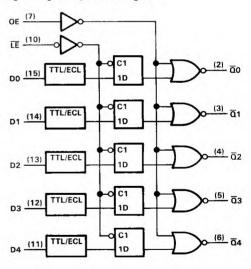

description

This circuit translates TTL input levels to ECL output levels and provides a 5-bit transparent latch. The outputs are gated by Output Enable (OE) and can be wire-OR connected. The Latch Enable ($\overline{\text{LE}}$) and OE inputs are ECL.

If Latch Enable (\overline{LE}) is low, the latches are transparent and the $\overline{\Omega}$ outputs follow the complement of the D inputs. If \overline{LE} is high, the outputs are latched. If Output Enable (OE) is low, the outputs are forced to the low level.

The DP8481 is characterized for operation from 0°C to 75°C.

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE (EACH LATCH/TRANSLATOR)

OE	ĪĒ	D	ā
н	L	н	L
н	L	L	н
н	н	х	00
L	х	х	L

logic diagram (positive logic)

Copyright © 1987, Texas Instruments Incorporated

DP8481 TTL-TO-ECL (10K) LEVEL TRANSLATOR WITH LATCH

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Input voltage, VI: OE or LE input 0 V to VEE
D inputs
Output current, IO
Continuous total dissipation
Operating temperature range, TA 0°C to 75°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

DISSIP	ATION	RATING	TABLE

PACKAGE	T _A ≤25 °C PO∵ - RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 75°C PO∴ I -RATING
D	mW	7.6 mW/°C	mW
N	1150 mW	9.2 mW/°C	690 mW

recommended operating conditions

				MIN	NOM	MAX	UNIT
Supply voitage, \	/cc			4.5	5		V
Supply voltage, \	/EE			-4.68	- 5.20	- 6.72	V
High-level input v	oitage, VIH (TTL-level D inputs)		1	:		V
Low-level input v	oltage, V _{IL} (1	TL-level D inputs)				• •	v
High-level input v	oitage, VIH	$T_A = 0 °C$		- 1145	i	-:+.	
(ECL-level OE and LE inputs)		$T_A = 25 °C$		- 1105	i	- 810	mV
(see Note 1)		T _A = 75°C		- 1045			
Low-level input v	oltage, VIL	$T_A = 0 °C$				-1'	
(ECL-level OE and	d LE Inputs)	T _A = 25°C				-1475	mV
(see Note 1)		T _A = 75°C				- 1450	
Pulse duration, L	E low, t _w		(see Figure 1)		;		ns
Catura diman di	Data before	: LEt	(see Figure 1)	Ę	i		
Setup time, t _{su}	Data before	OEt (see Note 2)	(see Figure 1)	5.5	;		ns
Hold time, data a	fter LEt, th		(see Figure 1)	1			ns
Operating free-air	r temperature	, T _A		()	75	°C

NOTES: 1. The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic levels only.

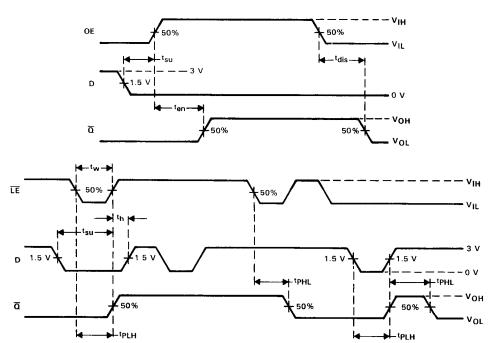
 This setup time applies when operating in the transparent mode (LE is low) and it is necessary that valid data be available at the output immediately after the outputs are enabled.

PARAMETER			TEST CONDITIONS		MIN	TYPt	MAX	UNIT	
VIK	Input clamp voltage	D0-D4	lj = −12 mA			-0.8	- 1.2	V	
lιΗ	High-level input	D0-D4	V _I = 2.5 V			1	40	μA	
	current	OE, LE	$V_{1} = -0.8 V$				20n		
ίL	Low-level input current	D0-D4	$V_{ } = 0.5 V$			- 50	- 1	μA	
		OE, LE	$V_{\rm I} = -1.8 V$				100	μ	
V _{OH}	High-level output voltage (see Notes 1 and 3)		$V_{EE} = -5.2 V_{,}$	$T_A = 0^{\circ}C$	- '		-840	mV	
			$V_{EE} = -5.2 V,$	$T_A = 25 °C$	-		- 810		
			$V_{EE} = -5.2 V_{,}$	$T_A = 75 °C$	- 900		- 720		
	Critical high-level output voltage (see Notes 1 and 3)		$V_{EE} = -5.2 V,$	$T_A = 0^{\circ}C$	- 1020			mV	
VDHC			$V_{EE} = -5.2 V,$	$T_A = 25 ^{\circ}C$	- 980				
5110			VEE = -5.2 V,	T _A = 75°C	- •.				
VOL	Low-level output voltage (see Notes 1 and 3)		$V_{EE} = -5.2 V,$	$T_A = 0^{\circ}C$			-	mV	
			$V_{EE} = -5.2 V_{,}$	$T_A = 25 ^{\circ}C$			_ ·		
			$V_{EE} = -5.2 V_{,}$	$T_A = 75 ^{\circ}C$	- 1030		- 1625		
	Critical low-level output voltage (see Notes 1 and 3)		$V_{EE} = -5.2 V_{,}$	$T_A = 0^{\circ}C$			- 1645		
Volc			$V_{EE} = -5.2 V_{,}$	$T_A = 25 ^{\circ}C$			- 1630	m∨	
			V _{EE} = -5.2 V,	$T_A = 75 ^{\circ}C$			- 1605		
ICC	Supply current from VCC		$V_{CC} = 5.5 V$				20	mA	
IEE	Supply current from VEE		V _{EE} = -5.7 V				- 90	mA	

electrical characteristics over recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

NOTES: 1. The algebraic convention, in which the least positive (most negative) value is designated one minimum, is used in this data sheet for logic levels only.

3. V_{OH} and V_{OL} are tested using the "outer-limit" values V_{IH} max and V_{IL} min. The "critical" values V_{OHC} and V_{OLC} are tested using the "inner-limit" values V_{IH} min and V_{IL} max. The latter values ensure the noise margins of 155 mV high and 125 mV low associated with 10K ECL.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
^t PLH	Propagation delay time, low-to-high level output from LE input		1.5	4	6	ns
^t PHL	Propagation delay time, high-to-low-level output from LE input		1.5	4	6	ns
^t PLH	Propagation delay time, low-to-high-level output from D input	$R_L = 50 \Omega$ to $-2 V$,	2.5	4	7.5	ns
^t PHL	Propagation delay time, high-to-low-level output from D input	See Figure 1	2.5	4	7.5	ns
ten	Output enable time from DE input		1	3	4	ns
tdis	Output disable time from OE input		1	3	4	ns

[†]Typical values are at V_{CC} = 5 V, V_{EE} = -5.2 V, T_A = 25 °C.

DP8481 TTL-TO-ECL (10K) LEVEL TRANSLATOR WITH LATCH

PARAMETER MEASUREMENT INFORMATION

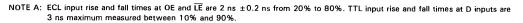


FIGURE 1. SWITCHING TIME WAVEFORMS

OUAD LOW-POWER LINE DRIVER

D3297, APRIL 1989-REVISED JULY 1989

- Low Supply Voltage ... ±5 V to ±15 V
- Supply Current ... 500 µA Typ
- Zero Supply Current When Shut Down
- Outputs Can Be Driven ± 30 V
- Output Open When Off (3-State)
- 10-mA Output Drive
- **Output of Several Devices Can Be Paralleled**
- Meets ANSI/EIA-232-D-1986 Specifications (Revision of EIA Std RS-232-C)
- **Designed to Be Interchangeable With Linear** Technology LT1030

description

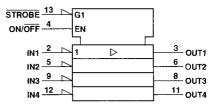
The LT1030 is an EIA-232 line driver that operates over a ±5-V to ±15-V supply voltage range on low supply current. The device can be shut down to zero supply current. Current-limiting fully protects the outputs from externally applied voltages of ±30 V. Since the output swings to within 200 mV of the positive supply and to within 1 V of the negative supply, supply voltage requirements are minimized.

A major advantage of the LT1030 is the highimpedance output state when the device is off or powered down. This feature allows several different drivers on the same bus.

The device can be used as an EIA-232 driver, micropower interface, or level translator, among others.

The LT1030 is characterized for operation from 0°C to 70°C.

LT1030 D OR N PACKAGE (TOP VIEW)							
V _{CC} - [1	14 VCC +					
IN1]	2	13 STROBE					
OUT1 [3	12 IN4					
ON/OFF]	4	11 OUT4					
IN2]	5	10 NC					
OUT2]	6	9 IN3					
GND]	7	8 OUT3					


NC - No internal connection

AVAILABLE OPTIONS

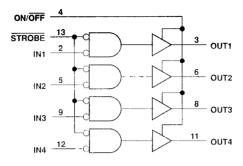
	PACH AGE			
TA	SMALL OUTLINE	PLASTIC DIP		
	(D)	(N)		
0°C to 70°C	LT1030CD	LT1030CN		

The D package is available taped and reeled. Add the suffix R to the device type (i.e., LT1030CDR).

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

pin descriptions


PIN		DESCRIPTION		
NAME	NO	DESCRIPTION		
·:.	7	Ground pin.		
IN1, IN2,	2, 5,	Logic inputs. Operate properly on TTL or CMOS levels. Output valid from VI = V _{CC-} + 2 V to 15 V. Connect to		
IN3, IN4	9, 12	5 V when not used.		
ON/OFF	4	Shuts down entire circuit. Cannot be left open. For "normally on" operation, connect between 5 V and 10 V. If VIL		
UN/OFF		is at or near 0.8 V, significant settling time may be required.		
OUT1, OUT2,	3, 6,	Line deiver extente		
OUT3, OUT 4	8, 11	Line driver outputs.		
STROBE	13	Forces all outputs low. Drive with 3 V. Strobe terminal input impedance is approximately $2 k\Omega$ to GND. Leave open		
STROBE	13	when not used.		
VCC+	14	Positive supply.		
Vcc-	1	Negative supply.		

Copyright © 1989, Texas Instruments incorporated

LT1030 QUAD LOW-POWER LINE DRIVER

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC+} (see Note 1). 0 V to 15 V Supply voltage range, V _{CC-} 0 V to -15 V Input voltage range, logic inputs V _{CC-} to 25 V Input voltage range, ON/OFF pin 0 V to 12 V
Output voltage range (any output)
Storage temperature range

NOTES: 1. All voltage values, except differential voltages, are with respect to the GND terminal.

The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

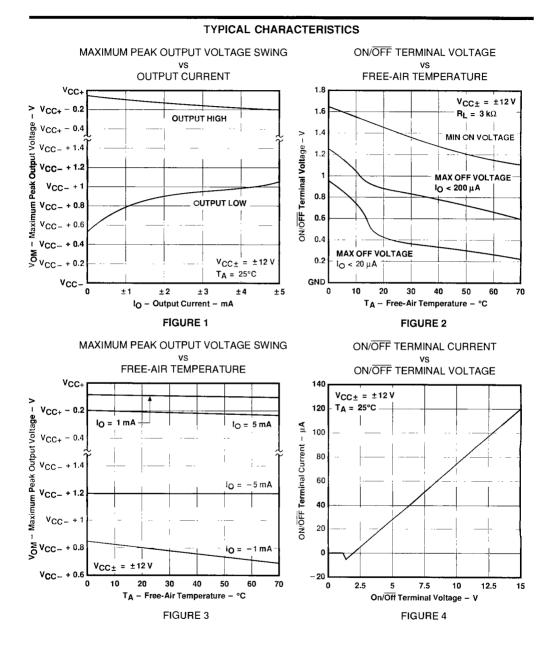
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
N	1150 mW	9.2 mW/-C	736 mW

recommended operating conditions

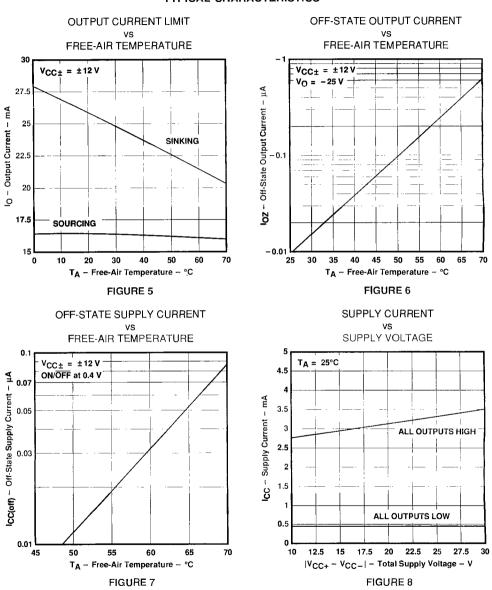
	MIN	TYP	MAX	UNIT
Supply voltage, V _{CC+}	5		15	v
Supply voltage, .	-5		-15	v
High-level input VIH 3)	2		15	v
Low-level input vonage. Vit vere ivoie 3)			0.8	v
Operating free-air temperature, TA	0		70	°C

NOTE 3: These V_{IH} and V_{IL} specifications apply only for inputs IN1-IN4. For operating levels for ON/ $\overline{\text{OFF}}$, see Figure 2.

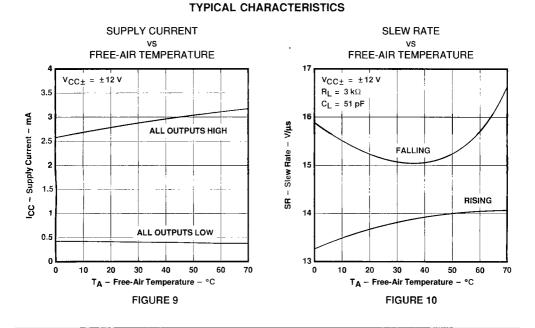
electrical characteristics over operating free-air temperature range, V_{CC\pm} = ± 5 V to ± 15 V (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN TYP [†] MA	
V _{OM+}	Maximum positive peak output voltage swing	$I_{O} = -2 \text{ mA}, T_{A} = 25^{\circ}\text{C}$	$V_{CC+} = 0.3$ $V_{CC+} = 0.1$	v
V _{OM-}	Maximum negative peak output voltage swing	$I_{O} = 2 \text{ mA}, \qquad T_{A} = 25^{\circ}\text{C}$	V _{CC} -+ 0.9 V _{CC} -+ 1	.4 V
Чн	High-level input current	$V_1 \ge 2V$, $T_A = 25^{\circ}C$	2	20 µA
IL	Low-level input current	$V_{ } \le 0.8 V, T_{A} = 25^{\circ}C$	10	20 µA
lį.	ON/OFF terminal current	$V_{I} = 0$ $V_{I} = 5 V$		10 35 μΑ
10	Output current	$T_A = 25^{\circ}C$	5 12	mA
loz	Off-state output current	$V_{O} = \pm 30 V$, $T_{A} = 25^{\circ}C$	±2 ±1	DO μA
lcc	Supply current (all outputs low)	$V_i \ge at 2.4 V, _O = 0$	500 10	D0 μA
ICC(off)	Off-state supply current	ON/OFF at 0.4 V ON/OFF at 0.1 V		1 0 μΑ 50 μΑ

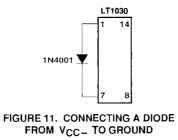
operating characteristics, $V_{CC\pm} = \pm 5 V$ to $\pm 15 V$, $T_A = 25^{\circ}C$


PARAMETER	TEST C . NDL . N .	MP+ [TYP	MAX	Г пи г]
SR Driver stew rate	$R_{L} = 3 k\Omega, \qquad C_{L} = 5 t \mu f$	÷	15	30	ν/μ۵

[†]All typical values are at V_{CC±} = ±12 V, T_A = 25°C.



TYPICAL CHARACTERISTICS


LT1030 QUAD LOW-POWER LINE DRIVER

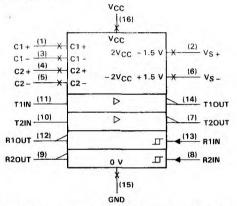
TYPICAL APPLICATION DATA

forward biasing the substrate

As with other bipolar integrated circuits, forward biasing the substrate diode can cause problems. The LT1030 will draw high current from V_{CC+} to ground if the V_{CC-} terminal is open-circuited or pulled above ground. If this is possible, connecting a diode from V_{CC-} to ground will prevent the high-current state. Any low-cost diode can be used (see Figure 11).

MAX232 DUAL EIA-232 DRIVER/RECEIVER

D3120, FEBRUARY 1989-REVISED JUNE 1989


- Operates with Single 5-V Power Supply
- LinBiCMOS[™] Process Technology
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current . . . 8 mA Typ
- Meets ANSI/EIA-232-D-1986 Specifications (Revision of EIA Standard RS-232-C)
- Designed to be Interchangeable with Maxim MAX232
- Applications
 - EIA-232 Interface
 - Battery-Powered Systems
 - Terminals
 - Modems
 - Computers

description

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-232 voltage levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V and a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into EIA-232 levels. The driver, receiver, and voltagegenerator functions are available as cells in the Texas Instruments LinASIC[™] library.

	N PACK	
C1 + []1	016	JVcc
Vs+Q2	15	GND G
C1 🔲 🕯	8 14	TIOUT
C2+[]4	13	R1IN
C2 - []	5 12	RIOUT
Vs-De	5 11	T1IN
T2OUT	10	T2IN
R2IN [9	R20UT

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Innut oursely valtage. Mag. Joog N.	
	ote 1)0.3 V to 6 V
Positive output supply voltage, Vg	s+ V _{CC} −0.3 V to 15 V
Negative output supply voltage, V	s 0.3 V to -15 V
Input voltage range: Driver	-0.3 V to Vcc + 0.3 V
Receiver	± 30 V
Output voltage range: T1OUT, T2	20UT VS 0.3 V to VS+ + 0.3 V
R1OUT, R2	20UT
Short-circuit duration: VS+	30 s
Vs	
T10UT, T2	OUT unlimited
Operating free-air temperature ran	ge
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 in	nch) from case for 10 seconds 260°C

NOTE 1: All voltage values are with respect to network ground terminal.

LinASIC and LinBiCMOS are trademarks of Texas Instruments Incorporated.

MAX232 DUAL EIA-232 DRIVER/RECEIVER

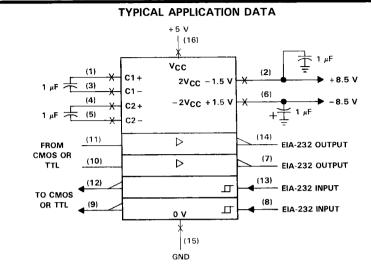
recommended operating conditions

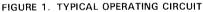
	MIN	NOM	MAN	UNIT
Supply voltage, V _{CC}	4.5	5	0.0	V
High-level input voltage, VIH (T1IN, T2IN)	2			v
Low-level input voltage, VIL (T1IN, T2IN)		_	0.8	v
Receiver input voltage, R1IN, R2IN			± 30	v
Operating free-air temperature, TA	0		70	°C

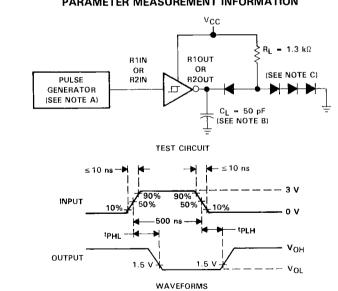
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

	PARAMATER		TEST CONDITIONS	l ∵n;	TYPT	MAT	[וואוי]
Varia	High lovel entruit veltege	T10UT, T20UT	$R_L = 3 k\Omega$ to GND	- D	7		
Vон	High-level output voltage	R1OUT, R2OUT	IOH = -1 mA	3.5			v
N	Low-level output voltage [‡]	T10UT, 1.	$R_L = 3 k\Omega$ to GND		-7	- 5	v
VOL	Low-level output voltage*	R10UT, .	I _{OL} = 3.2 mA			0.4	v
VT+	Receiver positive-going input threshold voltage	R1IN, R2IN	$V_{CC} = 5 V, T_{A} = 25 °C$		1.7	2.4	v
V _T _	Receiver negative-going input threshold voltage	R1IN, R2IN	$V_{CC} = 5 V, T_{A} = 25 °C$	0.8	1. 2		v
Vhys	Input hysteresis	R1IN, R2IN	$V_{CC} = 5 V$	0.2	0.5	1	kΩ
ri	Receiver input resistance	**. R2IN	$V_{CC} = 5 V, T_{A} = 25 °C$	3	5	7	kΩ
ro	Output resistance	• ; T2OUT	$V_{S+} = V_{S-} = 0, V_{O} = \pm 2 V$	300			Ω
los⁵	Short-circuit output current	T10UT, T20UT	$V_{CC} = 5.5 V, V_{O} = 0$		±10	_	mA
lis	Short-circuit input current	T1IN, T2IN	$V_{I} = 0$				μA
lcc	Supply current		$V_{CC} = 5.5 V$, All outputs open, $T_A = 25 °C$		8	10	mA

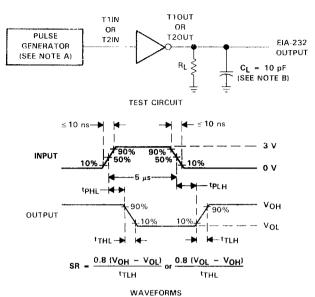
[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.


⁺The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.


§Not more than one output should be shorted at a time.

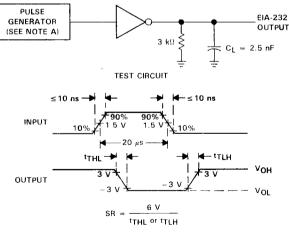

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMLIER		ILST COMMONS	MIN	MIN TYP		UNIT
^t PLH(R)	Receiver propagation delay time, low-to-high-level output	See Figure 2		500		ns
^t PHL(R)	Receiver propagation delay time, high-to-low-level output	See Figure 2		500		ns
SR	Driver slew rate	$R_L = 3 k\Omega$ to 7 k Ω , See Figure 3			30	V/µs
SR(tr)	Driver transition region slew rate	See Figure 4		3		V/µs


PARAMETER MEASUREMENT INFORMATION

- B. CL includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

FIGURE 2. RECEIVER TEST CIRCUIT AND WAVEFORMS FOR tPHL AND tPLH MEASUREMENT



PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: Z_{out} = 50 Ω, Duty Cycle ≤ 50%.
 8. C_L includes probe and jig capacitance.

FIGURE 3. DRIVER TEST CIRCUIT AND WAVEFORMS FOR tPHL AND tPLH MEASUREMENT (5-µs INPUT)

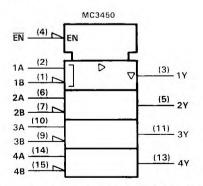
WAVEFORMS

NOTE A: The pulse generator has the following characteristics: Z_{OUT} = 50 Ω , Duty Cycle \leq 50%

FIGURE 4. TEST CIRCUIT AND WAVEFORMS FOR tTHL AND tTLH MEASUREMENT (20-µs INPUT)

D3006, FEBRUARY 1986-REVISED OCTOBER 1986

- Four Independent Receivers with Common Enable Input
- High Input Sensitivity . . . 25 mV Max
- High Input Impedance
- MC3450 has Three-State Outputs
- MC3452 has Open-Collector Outputs
- Glitch-Free Power-Up/Power-Down
 Operation

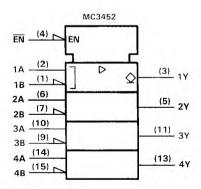

description

The MC3450 and MC3452 are quadruple differential line receivers designed for use in balanced and unbalanced digital data transmission. The MC3450 and MC3452 are the same except that the MC3450 has three-state ouputs whereas the MC3452 has open-collector outputs, which permit the wire-AND function with similar output devices. Three-state and open-collector outputs permit connection directly to a bus-organized system.

The MC3450 and MC3452 are designed for optimum performance when used with either the MC3453 quadruple differential line driver or SN75109A, SN75110A, and SN75112 dual differential drivers.

The MC3450 and MC3452 are characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}.$

logic symbols[†]

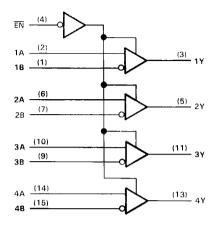

D. J. OR N PACKAGE (TOP VIEW) 1B [1 U16 VCC + $1A \square 2$ 15 7 4B 1Y []3 14 4A EN 4 13 1 4Y 2Y 🗍 5 12 VCC -11 3Y 2A 16 2B 7 10 3A GND 18 9 🗍 3B

FUNCTION TABLE

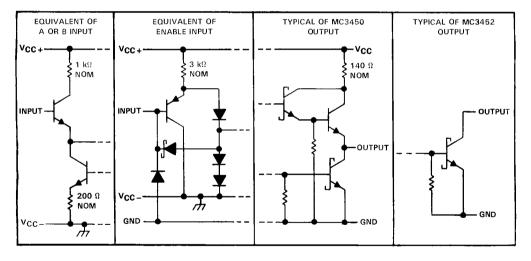
DIFFERENTIAL INPUTS A-B $V_{1D} \ge 25 \text{ mV}$ $O_{2} = 0.000 \text{ mV}$	ENABLE EN	OUTPUT Y
$V_{1D} \ge 25 \text{ mV}$	L	Н
$-25 \text{ mV} < \text{V}_{\text{ID}} < 25 \text{ mV}$	L	?
$V_{ID} \le 25 \text{ mV}$	L	L
x	н	Z

H = high level, L = low level, ? = indeterminate,

Z = impedance (off)



[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


I tit: • 110N DATA documents contain information current...s of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

logic diagram (positive logic)

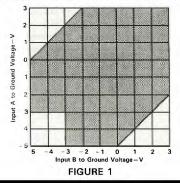
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)				. 7 V
Supply voltage, V _{CC}				-7 V
Differential input voltage (see Note 2)				±6 V
Common-mode input voltage (see Note 3)				±5 V
Enable input voltage				5.5 V
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 4):				
D package			. 9	50 mW
J package			10	25 mW
N package			11	50 mW
Operating free-air temperature range		0	°C te	5 70°C
Storage temperature range	- 6	5°	C to	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package .				260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package				300°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

- 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. Common-mode input voltage is the average of the voltages at the A and B inputs.
- 4. For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C. In the J package, MC3450 and MC3452 chips are glass mounted.


recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC +}	4.75	5	5.25	V
Supply voltage, V _{CC} _	-4.75	- 5 -	-5.25	V
High-level enable input voltage, VIH	2			V
Low-level enable input voltage, VIL			0.8	V
Low-level output current, IOL			- 16	mA
Differential input voltage, VID (see Note 5)	-51		5	V
Common-mode input voltage, VIC (see Note 5)	-3†		3	V
Input voltage range, any differential input to ground	-5†		3	V
Operating free-air temperature, TA	0		70	°C

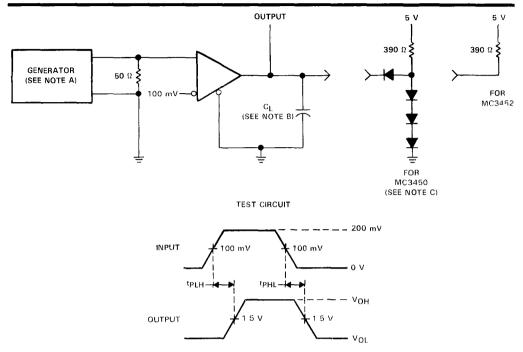
[†] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for commonmode input voltage.

NOTE 5: The recommended combinations of input voltages fall within the shaded area of Figure 1.

RECOMMENDED COMBINATIONS OF INPUT VOLTAGES

electrical characteristics over recommended operating free-air temperature range, $V_{CC\pm} = \pm 5.25 V$ (unless otherwise noted)

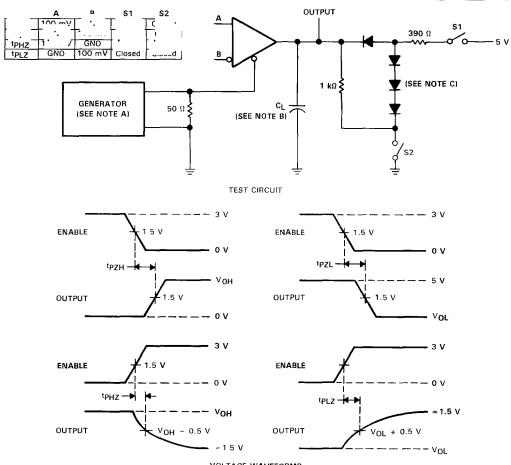
PARAMETER								м		
	PARAMETER TEST C		TEST CONDITIONS	MIN		MAX	MIN	118	MAX	UNIT
		A inputs	$V_{ID} = -2 V$		30	75		30	75	μA
1	High-level	B inputs	$V_{ID} = -2 V$		30	75		30	75	μΑ
чн	input current	ĒN	V _{IH} = 2.4 V			40			40	μA
			V _{IH} = 5.25 V			1			1	mA
	Low-level	A inputs	$V_{ID} = 2 V$			- 10			-10	
ήĽ	B inputs		$V_{ID} = 2 V$		•	- 10			- 10	μA
	input current	ËN	$V_{IL} = 0.4 V$			-1.6			- 1.6	mA
Voн	High-level out voltage	tput		2.4						v
^і он	High-level ou current	lput	$V_{CC\pm} = \pm 4.75 \text{ V}, \text{ V}_{OH} = 5.25 \text{ V}$						25 0	μA
VOL	Low-level out voltage	put				0.5			0.5	v
	High-impedar	ce-state	$V_0 = 2.4 V$			40				
loz	output curren	t	$V_0 = 0.4 V$			- 40				μA
los	Short-circuit output curren	t‡	V _{ID} = 25 mV, V _O = 0, EN at 0.8 V	- 18		70				mA
ICCH +	Supply currer VCC +, output					60			60	mA
ICCH -	Supply currer					- 30			- 30	mA


 † All typical values are at V_CC $_+$ = 5 V, V_CC $_-$ = -5 V, T_A = 25 °C. ‡ Not more one output should be shorted at a time.

switching characteristics, V_{CC} \pm = ± 5 V, T_A \pm 25 °C

	FROM	то			MC3450)		÷ •:.	•		
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP [†]	MAX	MIN	i ۲۴۰	MAX	UNIT	
	A	~	CL = 50 pF, See Figure 2		17	25					
^t PLH	A and B	ř	CL = 15 pF, See Figure 2					19	25	ns	
	A and B		v	CL = 50 pF, See Figure 2		17	25				
^t PHL		Y	CL = 15 pF, See Figure 2					19	25	ns	
tpzH	ËN	Y				21					
^t PZL	ËN	Y	$C_L = 50 \text{ pF}$, See Figure 2			27				ns	
tPHZ	EN	Y				18					
^t PLZ	EN	Y	$C_L = 15 \text{ pF}$, See Figure 3			29				ns	
tPLH	ĒN	Y	CL = 15 pF, See Figure 4						25	ns	
^t PHL	ĒŇ	Y	CL = 15 pF, See Figure 4						25	ns	

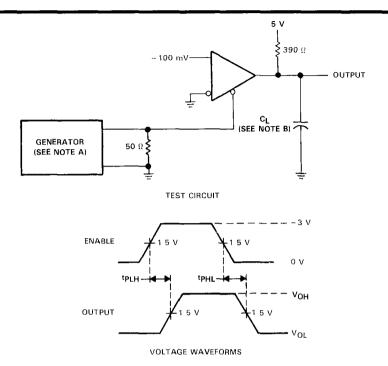
[†]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25 °C.



- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r \leq 6 ns, t_f \leq 6 ns.
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.

VOLTAGE WAVEFORMS

FIGURE 2. PROPAGATION DELAY TIMES



VOLTAGE WAVEFORMS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, duty cycle = 50%, t_r ≤ 6 ns, t_f ≤ 6 ns.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent

FIGURE 3. MC3450 ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r \leq 6 ns, t_f \leq 6 ns.
 - B. C_L includes probe and jig capacitance.

FIGURE 4. MC3452 PROPAGATION DELAY TIMES FROM ENABLE

D3000, FEBRUARY 1986 - REVISED JULY 1990

- Similar to a Dual Version of SN75110A Line Driver
- Improved Stability Over Supply Voltage and Temperature Ranges
- Constant-Current Outputs
- High Output Impedance
- High Common-Mode Output Voltage Range (-3 V to 10 V)
- Glitch-Free Power-Up/Power-Down
 Operation
- TTL Input Compatibility
- Common Enable Circuit
- Designed to be Interchangeable with Motorola MC3453

description

The MC3453 features four line drivers with a common enable input. When the enable input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the enable is low, all channel outputs are nonconductive (transistors biased to cutoff). This minimizes loading in party-line systems where a large number of drivers share the same line.

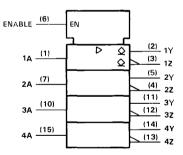
The driver outputs have a common-mode voltage range of -3 volts to 10 volts, allowing common-mode voltages on the line without affecting driver performance.

All outputs should be maintained within the recommended common-mode output voltage range to ensure that the channels do not interact with each other. To minimize power dissipation, all unused outputs should be grounded.

All inputs are diode clamped and are designed to satisfy TTL-system requirements. The inputs are tested at 2 volts for high-logic-level input conditions and 0.8 volt for low-logic-level input conditions. These tests guarantee 400 millivolts of noise margin when interfaced with Series 54/74 TTL.

The MC3453 is characterized for operation from 0 $^\circ\text{C}$ to 70 $^\circ\text{C}.$

D, J, I DUAL-IN-LIN (TOP \	E PACKAGE
1A 1	16 V _{CC} +
1Y 2	15 4A
1Z 3	14 4Y
2Z 4	13 4Z
2Y 5	12 3Z
ENABLE 6	11 3Y
2A 7	10 3A
GND 8	9 V _{CC} -

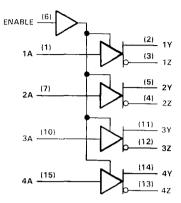

FUNCTION TABLE

LOGIC INPUT	ENABLE INPUT	OUT CURF Z	
н	н	ON	OFF
L	н	OFF	ON
н	L L	OFF	OFF
L	L	OFF	OFF

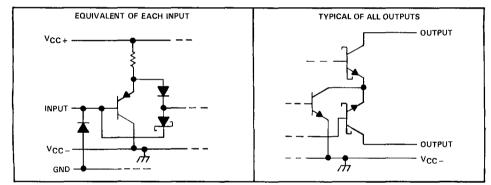
L = low logic level

H = high logic level

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



MC3453 QUADRUPLE LINE DRIVER WITH COMMON ENABLE

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	ply voltage, V _{CC+} (see Note 1)
Sup	ply voltage, V _{CC} - · · · · · · · · · · · · · · · · · ·
Inp	ut voltage (any input)
	put voltage range (any output)
Cor	ntinuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
	D package
	J package
	N package
Opt	erating free-air temperature range
	rage temperature range
	d temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N package
	d temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/°C, derate the J package to 656 mW at 70 °C at the rate of 8.2 mW/°C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/°C. In the J package the MC3453 is glass mounted.

recommended operating conditions

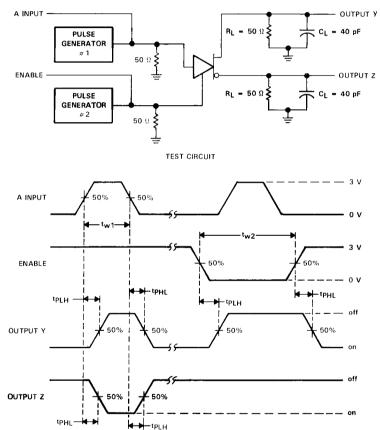
		MIN	NOM MAX	UNIT
Supply voltage, V _{CC+}		4.75	5 5.25	V
Supply voltage, V _{CC} -		-4.75	-5 -5.25	V
High-level input voltage, VIH		2	5.5	V
Low-level input voltage, VIL		0	0.8	V
0	VOCR+	0	75 5 5.25 75 -5 -5.25 2 5.5	V
Common-mode output voltage range	VOCR-	0	- 3	V
Operating free-air temperature, TA		0	70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 5.25 \text{ V}$, $V_{CC-} = -5.25 \text{ V}$ (unless otherwise noted)

	PARAMETER	1	EST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	lj = −12 mA				-0.9	- 1.5	v
		$V_{CC+} = 5.25 V,$	$V_{CC-} = -5.25 V$			11	15	mA
10(on)	On-state output current	$V_{\rm CC+} = 4.75 V_{\rm c}$	$V_{CC} = -4.75 V$		6.5	11		
lO(off)	Off-state output current	$V_{CC+} = 4.75 V_{,}$	$V_{\rm CC} = -4.75 V_{\rm c}$	V ₀ = 10 V			100	μA
		$V_{1} = 2.4 V$				40	μA	
ЧH	High-level input current	V _I = 5.25 V					1	mΑ
ΙL	Low-level input current	$V_{I} = 0.4 V$					- 1.6	mA
			Enable at 2 V			33	50	mA
ICC + Supply cu	Supply current from V _{CC +}	A inputs at 0.4 V	Enable at 0.4 V			33	50	ma
1		A impute at 0.4 M	Enable at 2 V			- 68	- 90	mA
ICC –	Supply current from V _{CC} –	A inputs at 0.4 V	Enable at 0.4 V			- 31	- 40	

[†]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, and T_A = 25 °C.

MC3453 QUADRUPLE LINE DRIVER WITH COMMON ENABLE


avuitabing abayaataviatiaa Vaa

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
tPLH Propagation delay time, low-to-high-level output	A	Y or Z			9	15	ns
tPHL Propagation delay time, high-to-low-level output	A	Y or Z			7	15	ns
tPLH Propagation delay time, low-to-high-level output	Enable	YorZ	See Figure 1		14	25	ns
tPHL Propagation delay time, high-to-low-level output	Enable	YorZ	1		15	25	ns

.....

EV D. EOO C. 40 ... T. 2500

- EV Vee

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

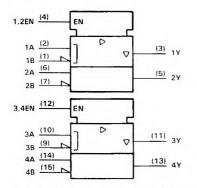
NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \ \Omega$, $t_r = t_f = 10 \pm 5 \ ns$, $t_{w1} = 200 \ ns$, PRR $\leq 1 \ MHz$, $t_{w2} = 1 \ \mu s$, PRR $\leq 500 \ HHz$.

B. CL includes probe and jig capacitance.

MC3486 QUADRUPLE LINE RECEIVER WITH 3-STATE OUTPUT

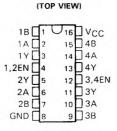
D2434, JUNE 1980-REVISED SEPTEMBER 1986

- Meets EIA Standards RS-422-A and RS423-A and Federal Standards 1020 and 1030
- 3-State, TTL-Compatible Outputs
- Fast Transition Times
- Operates from Single 5-V Supply
- Designed to be Interchangeable with Motorola MC3486


description

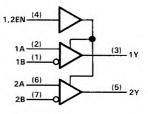
The MC3486 is a monolithic quadruple differential line receiver designed to meet the specifications of EIA Standards RS-422-A and RS-423-A and Federal Standards 1020 and 1030. The MC3486 offers four independent differential-input line receivers that have TTL-compatible outputs. The outputs utilize 3-state circuitry to provide a high-impedance state at any output when the appropriate output enable is at a low logic level.

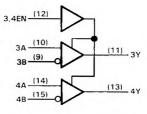
The MC3486 is designed for optimum performance when used with the MC3487 quadruple differential line driver. It is supplied in a 16-pin package and operates from a single 5-V supply.


The MC3486 is characterized for operation from 0 °C to 70 °C.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

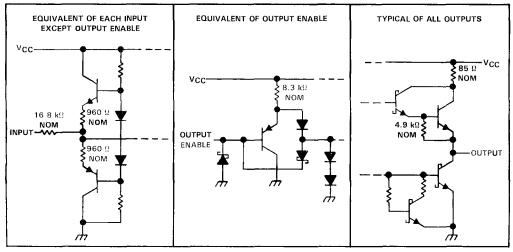

D, J OR N PACKAGE


FUNCTION TABLE (EACH RECEIVER)

DIFFERENTIAL INPUTS A-B	ENABLE	OUTPUT Y
V _{ID} ≥ 0.2 V	Н	н
$-0.2 V < V_{1D} < 0.2 V$	н	7
$V_{ID} \leq -0.2 V$	Н	L
Irrelevant	L	Z

H = high level, L = low level, Z = high-impedance (off), ? = indeterminate

logic diagram (positive logic)



Copyright © 1986, Texas Instruments Incorporated

MC3486 QUADRUPLE LINE RECEIVER WITH 3-STATE OUTPUT

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage, A or B inputs $\ldots \pm 15$ V
Differential input voltage (see Note 2) ±25 V
Enable input voltage
Low-level output current
Continuous total power dissipation
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package

NOTES: 1. All voltage values, except differential-input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DIGBIL ATTOM NATING TABLE					
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	TA = 70°C POWER RATING		
D	950 mW	7.6 mW/°C	608 mW		
J	1025 mW	8.2 mW/°C	656 mW		
N	1150 mW	9.2 mW/°C	736 mW		

DISSIPATION RATING TABLE

recommended operating conditions

	MIN	NOM	MAX	UŅIT
Supply voltage, V _{CC}	_4.75	5	5.25	v
non-mode input voltage, VIC			± 7	v
ential input voltage, V _{ID}			±6	v
High-level enable input voltage, VIH	2			v
Low-level enable input voltage, VIL			0.8	v
Operating free-air temperature, T _A	0		70	°C

	PARAMETER	TEST CONDITIONS		MIN	MAX	UNIT
∨тн	Differential-input high-threshold voltage	$V_0 = 2.7 V$, $I_0 = -0.4 m$	۱A		0.2	V
VTL	Differential-input low-threshold voltage	$V_0 = 0.5 V$, $I_0 = 8 mA$	$V_0 = 0.5 V$, $I_0 = 8 mA$.			V
VIK	Enable-input clamp voltage	$h_{\rm I} = -10 \rm{mA}$			- 1.5	V
∨он	High-level output voltage	$V_{ID} = 0.4 V$, $I_O = -0.4 n$ See Note 3 and Figure 1	ηA,	2.7		v
Vol	Low-level output voltage	$V_{ID} = -0.4 V$, $I_O = 8 mA$, See Note 3 and Figure 1			0.5	v
1		$V_{1L} = 0.8 V$, $V_{1D} = -3 V$, V _O = 2.7 V		40	μA
νΟΖ	OZ High-impedance-state output current	$V_{IL} = 0.8 V$, $V_{ID} = 3 V$,	$V_0 = 0.5 V$		- 40	μ-
			V _I = -10 V		-3.25	
		$V_{CC} = 0 V \text{ or } 5.25 V,$	$V_{1} = -3 V$		- 1.5	
IIВ	Differential-input bias current	Other inputs at 0 V	V = 3 V		1.5	mA
			V = 10 V	1	3.25	
		$V_{I} = 5.25 V$		100		
ЧΗ	High-level enable input current	VI = 2.7 V			20	μA
ΙL	Low-level enable input current	$V_1 = 0.5 V$		1	- 100	μA
los	Short-circuit output current	$V_{1D} = 3 V$, $V_0 = 0$,	See Note 4	- 15	-100	mA
ICC	Supply current	V _{II} = 0			85	mA

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

[†]The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.

NOTES: 3. Refer to EIA Standards RS-422-A and RS-423-A for exact conditions.

4. Only one output at a time should be shorted.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CONDITIONS	MIN	түр	MAX	UNIT
^t PHL	Propagation delay time, high-to-low-level output			28	35	ns
^t PLH	Propagation delay time, low-to-high-level output	$C_L = 15 \text{ pF}$, See Figure 2		27	30	ns
^t PZH	Output enable time to high level			13	30	ns
tPZL	Output enable time to low level			20	30	ns
tPHZ	Output disable time from high level	$C_L = 15 \text{ pF}$, See Figure 3		26	35	ns
tPLZ	Output disable time from low level			27	35	ns

MC3486 QUADRUPLE LINE RECEIVER WITH 3-STATE OUTPUT

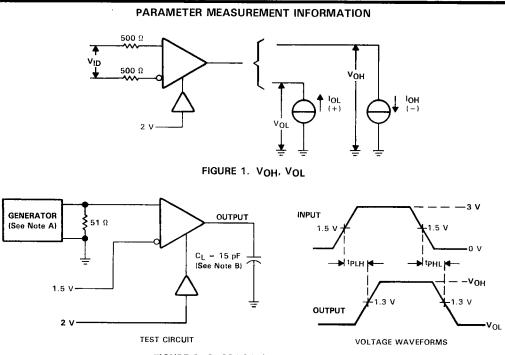
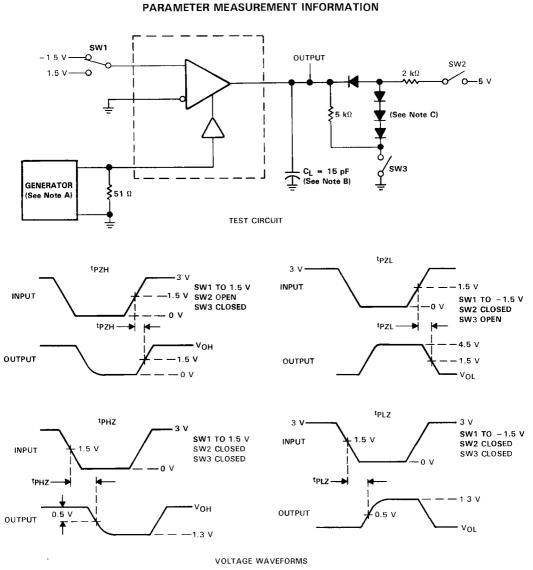



FIGURE 2. PROPAGATION DELAY TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, duty cycle ≈ 50%, t_r ≤ 6 ns, t_f ≤ 6 ns.
 - ${\bf B}$. ${\bf C}_{L}$ includes probe and stray capacitance.

FIGURE 3. ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \approx 50%, t_r \leq 6 ns, t_f \leq 6 ns.
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or equivalent.

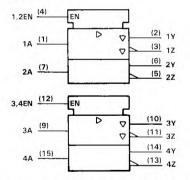
and a second second

QUADRUPLE DIFFERENTIAL LINE DRIVER WITH 3-STATE OUTPUTS

D2578, MAY 1980-REVISED SEPTEMBER 1986

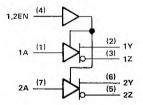
 Meets EIA Standard RS-422-A and Federal Standard 1020 	D, J, OR N PACKAGE (TOP VIEW)
 3-State, TTL-Compatible Outputs 	
Fast Transition Times	1Y 2 15 4A 1Z 3 14 4Y
High-Impedance Inputs	1,2EN 4 13 4Z
Single 5-V Supply	2Z 5 12 3,4EN 2Y 6 11 3Z
Power-Up and Power-Down Protection	2A 🛛 7 10 🗋 3Y
 Designed to Be Interchangeable with Motorola MC3487 	GND <u>8</u> 9 3A

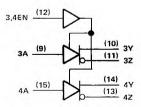
description


The MC3487 offers four independent differential line drivers designed to meet the specifications of EIA Standard RS-422-A and Federal Standard 1020. Each driver has a TTL-compatible input buffered to reduce current and minimize loading.

The driver outputs utilize 3-state circuitry to provide high-impedance states at any pair of differential outputs when the appropriate output enable is at a low logic level. Internal circuitry is provided to ensure a highimpedance state at the differential outputs during power-up and power-down transition times, provided the output enable is low. The outputs are capable of source or sink currents of 48 mA.

The MC3487 is designed for optimum performance when used with the MC3486 guadruple line receiver. It is supplied in a 16-pin dual-in-line package and operates from a single 5-V supply.

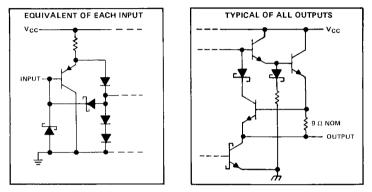

The MC3487 is characterized for operation from 0°C to 70°C.


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

PROBIN IN A DATA documents contain information بالمرابع المرابع Copyright © 1986, Texas Instruments Incorporated


MC3487 QUADRUPLE DIFFERENTIAL LINE DRIVER WITH 3-STATE OUTPUTS

INPUT	OUTPUT	OUTPUTS		
INPOT	ENABLE	Ŷ	Z	
н	н	н	L	
L	н	L	н	
×	L	High-Impedance	High-Impedance	

FUNCTION TABLE (EACH DRIVER)

H = TTL high level X = irrelevant L = TTL low level

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and N packages 260°C

NOTE 1: All voltage values, except differential output voltage, VOD, are with respect to the network ground terminal.

DISSIPATION RATING TABLE	
--------------------------	--

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70 °C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8 2 mW/°C	656 mW
N	1150 mW	9.2 mW/ °C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.75	5	5.25	v
High-level input voltage, VIH	2			×
Low-level input voltage, VIL			0.8	v
Operating free-air temperature, TA	0		70	°C

	PARAMETER	Т	EST CONDITIONS	MIN	MAX	UNIT
VIK	Input clamp voltage	lj ≕ −18 mA		- 1.5		V
VOH	High-level output voltage	V _{IL} = 0.8 V,	$V_{IH} = 2 V$, $I_{OH} = -20 mA$	2.5		V
VOL	Low-level output voltage	$V_{ L} = 0.8 V,$	$V_{IH} = 2 V$, $I_{OL} = 48 mA$		0.5	V
Vod	Differential output voltage	$R_{L} = 100 \Omega$,	See Figure 1	2		ν
∆[V _{OD}]	Change in magnitude of differential output voltage [†]	R _L = 100 Ω,	See Figure 1		±0.4	v
Voc	Common-mode output voltage [‡]	$R_L = 100 \Omega$,	See Figure 1	-	3	ν
∆ Voc	Change in magnitude of common-mode output voltage [†]	$R_L = 100 \Omega$,	See Figure 1		±0.4	v
1 ₀	Output current with power off	V _{CC} = 0	V ₀ = 6 V		100	μA
			$V_0 = -0.25 V$		- 100	μΑ
1.	High-impedance-state	Output enables	V ₀ = 2.7 V		100	
loz	output current	at 0.8 V	V ₀ = 0.5 V		- 100	
11	Input current at maximum input voltage	V _I = 5.5 V			100	μA
Чн	High-level input current	V ₁ = 2.7 V			50	μA
ηĽ	Low-level input current	V ₁ = 0.5 V			- 400	μA
los	Short-circuit output current§	V ₁ = 2 V		-40	- 140	mA
lcc	Supply current (all drivers)	Outputs disabled			105	
		Outputs enabled,	No load		85	mA

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

 $^{\dagger}\Delta|V_{OD}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

[‡]In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. [§]Only one output at a time should be shorted and duration of the short-circuit should not exceed one second.

switching characteristics over recommended range of operating free-air temperature, VCC = 5 V

	PARAMETER	TEST CONDITION	MIN	MAX	UNIT
t PLH	Propagation delay time, low-to-high-level output			20	ns
t PHL	Propagation delay time, high-to-low-level output	$C_L = 15 pF$, See Figure 2		20	ns
	• #			6	ns
tTD	· rential-output transition time	CL = 15 pF, See Figure 3		20	ns
^t PZH	Output enable time to high level			30	ns
tPZL	Output enable time to low level	$C_1 = 50 \text{ pF}$, See Figure 4		30	ns
t PHZ	Output disable time from high level			25	ns
TPLZ	Output disable time from low level]		30	ns

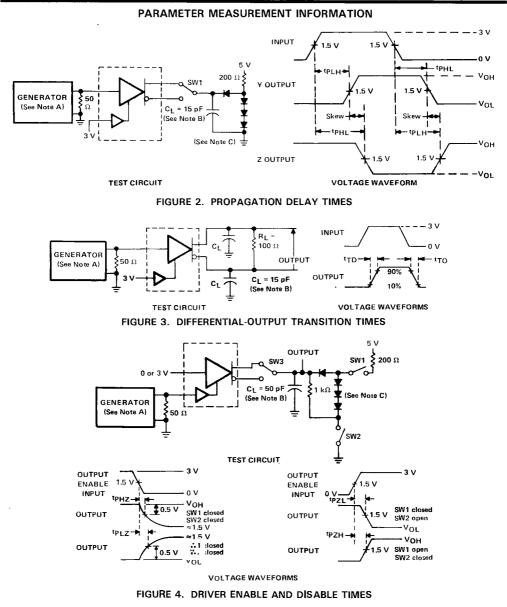

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES

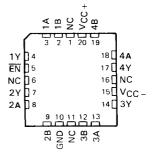
MC3487 QUADRUPLE DIFFERENTIAL LINE DRIVER WITH 3-STATE OUTPUTS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_0 = 50$ Ω .
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or 1N3064.

D3171, FEBRUARY 1989

- Four Independent Receivers with Common Enable Input
- High Input Sensitivity . . . 25 mV Max
- High Input Impedance
- MC3550 has Three-State Outputs
- MC3552 has Open-Collector Outputs
- Glitch-Free Power-Up/Power-Down Operation
- Military-Temperature-Range Versions of MC3450 and MC3452

description


The MC3550 and MC3552 are quadruple differential line receivers designed for use in balanced and unbalanced digital data transmission. The two devices are the same except that the MC3550 has three-state outputs whereas the MC3552 has open-collector outputs, which permit the wire-AND function with similar output devices. Three-state and open-collector outputs permit direct connection to a bus-organized system.

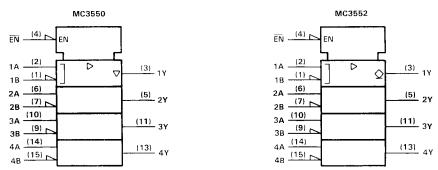
The MC3550 and MC3552 are designed for optimum performance when used with either the MC3553 quadruple differential line driver or SN55109A, SN55110A, and SN55112 dual differential drivers.

The MC3550 and MC3552 are characterized for operation over the full military temperature range of $-55\,^{\rm o}{\rm C}$ to $125\,^{\rm o}{\rm C}.$

	ACKAGE P VIEW)
1B 1 1A 2 1Y 3 EN 4 2Y 5 2A 6 2B 7 GND 8	16 VCC + 15 4B 14 4A 13 4Y 12 VCC - 11 3Y 10 3A 9 3B

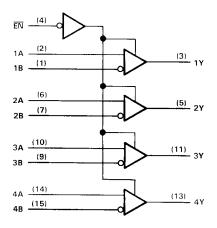
FK PACKAGE (TOP VIEW)

NC-No internal connection

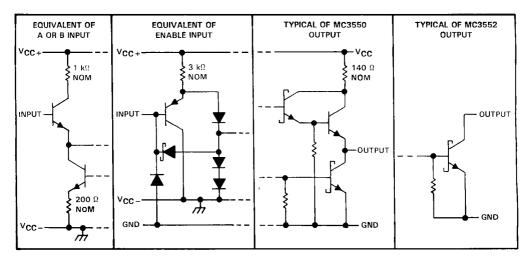

FUNCTION TABLE

DIFFERENTIAL INPUTS A-B	ENABLE EN	OUTPUT Y	
V _{ID} ≥ 25 mV	L	н	
$-25 \text{ mV} < \text{V}_{\text{ID}} < 25 \text{ mV}$	L	?	
$V_{ID} \le 25 \text{ mV}$	L	L	
×	н	Z	

H = high level, L = low level, ? = indeterminate, Z = impedance (off)



logic symbols[†]



[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

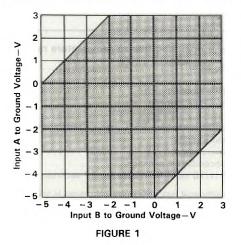
Supply voltage, V _{CC+} (see Note 1) 7 V Supply voltage, V _{CC}
Differential input voltage (see Note 2) ±6 V
Common-mode input voltage (see Note 3) ±5 V
Enable input voltage
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 4) 1375 mW
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds: FK package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

3. Common-mode input voltage is the average of the voltages at the A and B inputs.

4. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/°C.


recommended operating conditions

		MIN	NOM	MAX	UNIT
Current Martin Martin	T _A ≥ 25°C	4.5	5	5.5	v
Supply voltage, V _{CC+}	TA < 25°C	4.75	5	5.5	
Supply voltage, V _{CC-}	T _A ≥ 25 °C	-4.5	- 5	- 5.5	v
	T _A < 25 °C	-4.75	- 5	- 5.5	
High-level enable input voltage, VIH		2			V
Low-level enable input voltage, VIL				0.8	V
Low-level output current, IOL				- 16	mA
Differential input voltage, VID (see Note 5)		-5†		5	v
Common-mode input voltage, VIC (see Note 5)		-3†		3	v
Input voltage range, any differential input to ground		-5†		3	v
Operating free-air temperature, TA		- 55		125	°C

[†] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for commonmode input voltage.

NOTE 5: The recommended combinations of input voltages fall within the shaded area of Figure 1.

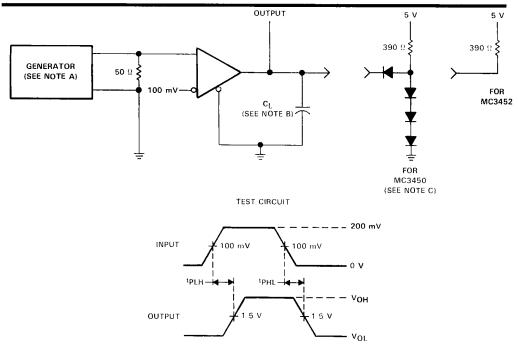
RECOMMENDED COMBINATIONS OF INPUT VOLTAGES

	PARAMETER		TEST CONDITIONS [†]			MC3550	0	MC3552			UNIT
					MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
		A inputs	$V_{iD} = -2V$			30	75		30	75	μA
	High-level	B inputs	$V_{ID} = -2 V$			30	75		30	75	μA
ЧН	input current	ĒŇ	V _{IH} = 2.4 V			_	40			40	μA
		EN	VIH = VCC+MA	x			1			1	mA
	1 1. 1	A inputs	$V_{1D} = 2 V$				- 10			- 10	μΑ
Ι _{ΙL}	Low-level	B inputs	V _{ID} = 2 V				- 10			- 10	μ-
	input current	ĒN	$V_{IL} = 0.4 V$				- 1.6			- 1.6	mA
V _{OH}	High-level outp voltage	ut	VCC ± = MIN, EN at 0.8 V, VIC = -3 V to 3	$I_{OH} = -400 \ \mu A$,	2.4						v
^і Он	High-level outp current	ut	$V_{CC\pm} = MIN,$	$V_{OH} = V_{CC+}MAX$					-	250	μA
VOL	Low-level outp voltage	ut	V _{CC±} = MIN, EN at 0 8 V, V _{IC} = −3 V to 3				0.5			0.5	v
-	High-impedanc	e-state	$V_0 = 2.4 V$				40				
loz	output current		$V_0 = 0.4 V$				- 40				μA
los	Short-circuit output current	5	V _{ID} = 25 mV, EN at 0.8 V	V ₀ = 0,	18		70				mA
іссн+	Supply current VCC+, output		A inputs at GND,	B inputs at 3 V,			60			60	mA
ІССН-	Supply current V _{CC} , output	from	EN at 3 V				- 30			- 30	mA

electrical characteristics over recommended operating free-air temperature range, $V_{CC\pm} = MAX$ (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25 °C.

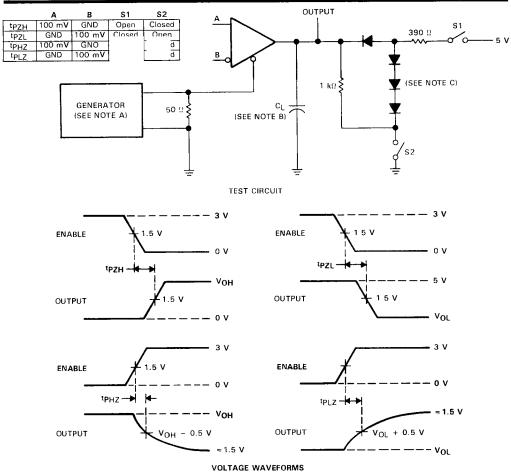

§ Not more than one output should be shorted at a time.

switching characteristics, $V_{CC\pm} = \pm 5 V$, $T_A = 25 °C$

	FROM	TO		- 10	ι-÷ 50)		Mi - 1 - 2	2	
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	n f	MAX	MIN	"na•€"	MAX	UNIT
	A and B	~	CL = 50 pF, See Figure 2		17	25				
	A and B	i t	CL = 15 pF, See Figure 2					19	25	ns
tpHL A and E	1	v	CL = 50 pF, See Figure 2		17	25				
		l r	CL = 15 pF, See Figure 2					19	25	ns
tPZH	EN	Y				21				
tPZL	EN	Y	CL = 50 pF, See Figure 2		27				ns	
tPHZ	EN	Ý				18				
tPLZ	EN	Ý	$C_{L} = 15 \text{ pF}$, See Figure 3			29				ns
^t PLH	EN	Y	CL = 15 pF, See Figure 4						25	กร
tPHL	EN	Y	C _L = 15 pF, See Figure 4					<u>.</u>	25	ns

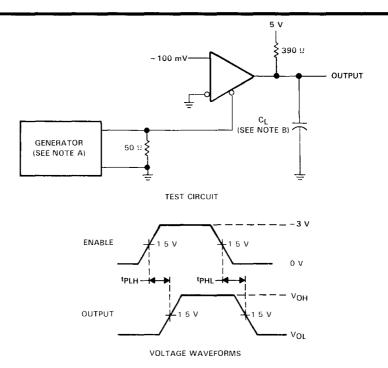
¶All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25° C.

MC3550, MC3552 QUADRUPLE DIFFERENTIAL LINE RECEIVERS


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, t_r \leq 6 ns, t_f ≤ 6 ns.
 - B. C_L includes probe and jig capacitance.
 C. All diodes are 1N916 or equivalent.

VOLTAGE WAVEFORMS

MC3550, MC3552 QUADRUPLE DIFFERENTIAL LINE RECEIVERS


VULTAGE WAVEFORMS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r \leq 6 ns, t_f \leq 6 ns.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent

FIGURE 3. MC3550 ENABLE AND DISABLE TIMES

MC3550, MC3552 QUADRUPLE DIFFERENTIAL LINE RECEIVERS

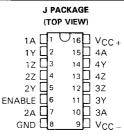
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns.
 - B. CL includes probe and jig capacitance.

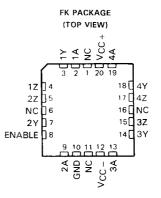
FIGURE 4. MC3552 PROPAGATION DELAY TIMES FROM ENABLE

MC3553 QUADRUPLE LINE DRIVER WITH COMMON ENABLE

- Similar to a Dual Version of SN55110A Line Driver
- Improved Stability Over Supply Voltage and Temperature Ranges
- Constant-Current Outputs
- High Output Impedance
- High Common-Mode Output Voltage Range (-3 V to 10 V)
- Glitch-Free Power-Up/Power-Down Operation
- TTL Input Compatibility
- Common Enable Circuit
- Military-Temperature-Range Version of MC3453

description


The MC3553 features four line drivers with a common enable input. When the enable input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the enable is low, all channel outputs are nonconductive (transistors biased to cutoff). This feature minimizes loading in party-line systems where a large number of drivers share the same line.


The driver outputs have a common-mode voltage range of -3 V to 10 V, allowing common-mode voltages on the line without affecting driver performance.

All outputs should be maintained within the recommended common-mode output voltage range to ensure that the channels do not interact with each other. To minimize power dissipation, all unused outputs should be grounded.

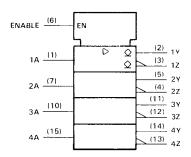
All inputs are diode clamped and are designed to satisfy TTL-system requirements. The inputs are tested at 2 V for high-logic-level input conditions and 0.8 V for low-logic-level input conditions. These tests guarantee 400 mV of noise margin when interfaced with Series 54 TTL.

The MC3553 is characterized for operation over the full military temperature range of -55 °C to 125 °C.

NC-No internal connection

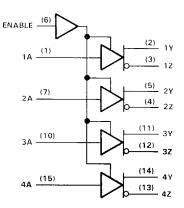
FUNCTION TABLE

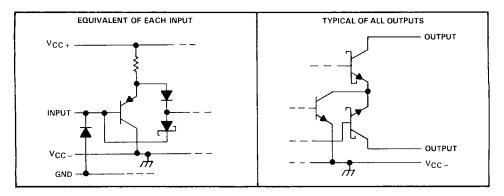
LOGIC INPUT		OUT CURI Z	
н	н	ON	OFF
L	н	OFF	ON
н	L	OFF	OFF
L	Ł	OFF	OFF


L = low logic level

H = high logic level

D3170, OCTOBER 1988


MC3553 QUADRUPLE LINE DRIVER WITH COMMON ENABLE


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 7 V Supply voltage, V _{CC-} -7 V
Input voltage (any input) 5.5 V
Output voltage range (any output)
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2) 1375 mW
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

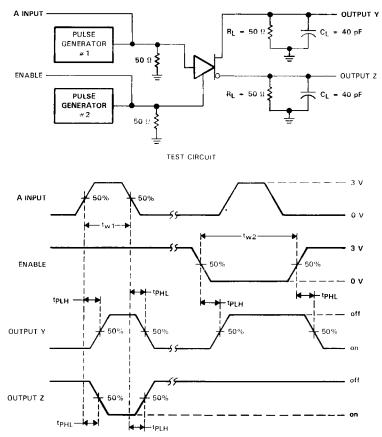
NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/ °C.

recommended operating conditions

		MIN	NOM	MAX	UNIT	
Complexitere V	$T_A \ge 25^{\circ}C$	4.5	5	5.5	v	
Supply voltage, VCC +	$T_A < 25^{\circ}C$	4.75	5	5.5	v	
Sumply unitage 1/	T _A ≥ 25°C	-4.5	- 5	- 5.5	v V	
Supply voltage, V _{CC} -	T _A < 25 °C	-4.75	- 5	- 5.5	ľ	
High-level input voltage, VIH		2		5.5	V	
Low-level input voltage, VIL		0		0.8	V	
	VOCR+	0		10	v	
Common-mode output voltage range	VOCR-	0		-3	V	
Operating free-air temperature, TA		- 55		125	°C	

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = MAX$, $V_{CC-} = -MAX$ (unless otherwise noted)


PARAMETER		TEST CONDITIONS [†]			TYP‡	MAX	UNIT
VIK	Input clamp voltage	$I_{j} = -12 \text{ mA}$			-0.9	- 1.5	V
10(on) On-state output current		$\frac{V_{CC+} = MAX}{V_{CC+} = WIN}$			11	15	
				6.5	11		mA
lO(off)	Off-state output current	$V_{CC+} = MIN, V_{C}$	$C_{C} = MIN, V_{O} = 10 V$			100	μA
	High-level input current	V ₁ = 2.4 V				40	μA
ŀΗ	High-level input current	$V_i = V_{CC+} MAX$				1	mA
hL	Low-level input current	$V_1 = 0.4 V$				- 1.6	mA
1	Supply suggest from Vis a	A insults at 0.4 V	Enable at 2 V		33	50	mA
ICC+	Supply current from VCC+	pply current from V _{CC+} A inputs at 0.4 V Enable at 0.4 V		Г	33	50	IDA
1		A inputs at 0.4 V	Enable at 2 V		- 68	- 90	mA
¹ CC –	Supply current from VCC-	A inputs at 0.4 V	Enable at 0,4 V		- 31	-40	ma

[†]For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions. [‡]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, and T_A = 25 °C.

MC3553 QUADRUPLE LINE DRIVER WITH COMMON ENABLE

switching characteristics, $V_{CC+} = 5 V$, V	/cc- =	-5V, R	$L = 50 \Omega, C$	L = 4	0 pF,	TA =	25°C
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	мах	UNIT
tpLH Propagation delay time, low-to-high-level output	Α	YorZ		-	9	15	ns
tpHL Propagation delay time, high-to-low-level output	Α	YorZ			7	15	ns
tpLH Propagation delay time, low-to-high-level output	Enable	YorZ	See Figure 1		14	25	ns
tpHL Propagation delay time, high-to-low-level output	Enable	YorZ	1		15	25	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: $Z_0 \approx 50 \ \Omega$, $t_r = t_f = 10 \pm 5 \text{ ns}$, $t_{w1} \leq 200 \text{ ns}$, PRR $\leq 1 \text{ MHz}$, $t_{w2} \leq 1 \ \mu$ s, PRR $\leq 500 \text{ kHz}$.

B. CL includes probe and jig capacitance.

FIGURE 1. PROPAGATION DELAY TIMES

D2462, MAY 1978-REVISED SEF

- P-N-P Inputs for Minimal Input Loading (200 µA Maximum)
- High-Speed Schottky Circuitry
- 3-State Outputs for Driver and Receiver
- Party-Line (Data-Bus) Operation
- Single 5-V Supply
- Designed to Be Interchangeable with Signetics N8T26, also Called 8T26

description

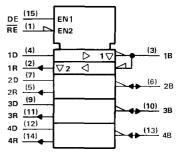
The N8T26 is a quadruple transceiver utilizing Schottky-diode-clamped transistors. Both the driver and receiver have 3-state putputs. With p-n-p inputs, the input loading is reduced to a maximum input current of 200 µA. This device is capable of high switching rates into highcapacitance loads and are suitable for driving long bus lines.

The N8T26 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (DRIVER)

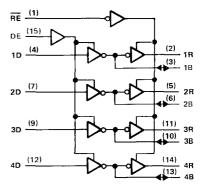
INP	UT	OUTPUT
DE	D	В
н	L	н
∣н	н	L
L	х	z

FUNCTION TABLE (RECEIVER)

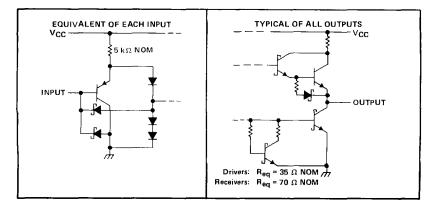

IN	PUT	Ουτρυτ
RE	в	R
L	L	Н
L	н	L
н	x	z

- H = high level
- L = low level
- X = irrelevant
- Z = high impedance

Π)	ΟP \	/IEW)	
RE (1 C	16] VCC
1 R (2	15] DE
1 B (3	14] 4R
1 D (4	13] 4B
2 R (5	12] 4D
2 B (6	11] 3R
2 D (7	10] 3B
GND (8	9] 3D


D, J, OR N PACKAGE

logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V
Input voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	TA = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	TA = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/ °C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	B, D, DE, RE	2			V
Low-level input voltage, VIL	B, D, DE, RE			0.85	V
	Driver, B			- 10	
High-level output current, IOH	Receiver, R			- 2	mA
	Driver, B			40	
Low-level output current, IOL	Receiver, R			16	mA
Operating free-air temperature, TA	· · · · · · · · · · · · · · · · · · ·	0		70	°C

	PARAMETER			TEST CONDITION	VS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	B,D,DE,RE	$1_{j} = -5 \text{ mA}$					- 1	v
Vон	High-level output voltage	В	$V_{IH} = 2 V_{,}$	V _{IL} = 0.85 V,	OH = -10 mA	2.6	3.1		v
чон	nigh-level output voltage	R	V _{IL} = 0.85 V	IOH -2 mA		2.6	3.1		
Voi	Low-level output voltage	В	$V_{IH} = 2 V$,	$I_{OL} = 40 \text{ mA}$				0.5	v
VOL	Low-level output voltage	R	$V_{1H} = 2 V,$	$V_{IL} = 0.85 V_{,}$	$I_{OL} = 16 \text{ mA}$			0.5	Ň
loz	Off-state (high-impedance	B,R	DE at 0.85 V	RE at 2 V,	$V_0 = 2.6 V$			100	μA
ΰZ	state) output current	R	RE at 2 V,	$V_0 = 0.5 V$				- 100	μΑ
١н	High-level input current	D,DE,RE	V ₁ = 5.25 V					25	μA
ΊL	Low-level input current	B,D,DE,RE	V ₁ = 0.4 V					- 200	μA
100	Short-circuit output current [‡]	8	V _{CC} = 5.25 V	,		- 50		- 150	mA
os	onore-encore output current.	R	VUC - 5.25 V			- 30		- 75	
lcc	Supply current		V _{CC} = 5.25 V	, No load				87	mΑ

electrical characteristics over recommended operating free-air temperature and supply voltage range (unless otherwise noted)

[†]All typical values are at $T_A = 25$ °C and $V_{CC} = 5$ V. [‡]Only one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	FROM	то	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	в	R	$C_L = 30 \text{ pF},$		8	18	
tPHL Propagation delay time, high-to-low-level output			See Figure 1		7	10	ns
tPLH Propagation delay time, low-to-high-level output	р	в	$C_L \simeq 300 \text{ pF},$		14	20	
tpHL Propagation delay time, high-to-low-level output			See Figure 2		12	20	ns
tpLZ Output disable time from low level	RE	R	$C_{L} = 30 pF,$		9	17	
tpzL Output enable time to low level			See . 3		15	30	ns
tpLZ Output disable time from low level	DE	в	$C_L = 0F,$		20	43	
tpzL Output enable time to low level			See Figure 4		20	38	ńs

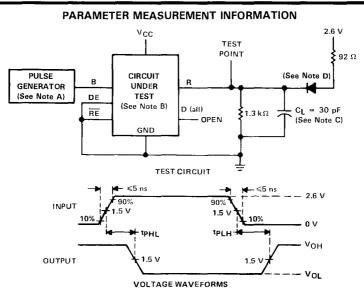
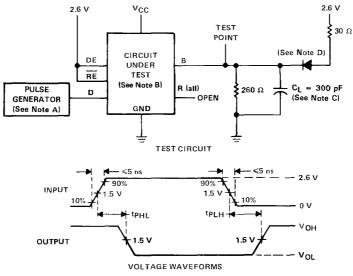
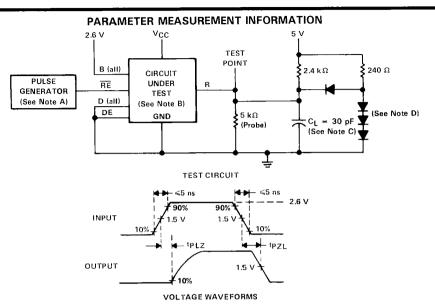
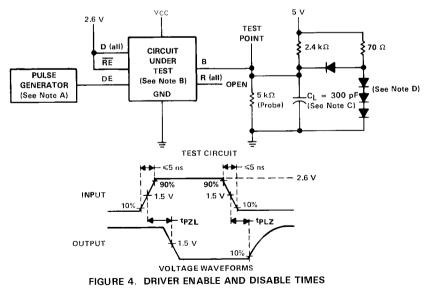


FIGURE 1. PROPAGATION DELAY TIMES FROM BUS TO RECEIVER OUTPUT


FIGURE 2. PROPAGATION DELAY TIMES FROM DRIVER INPUT TO BUS

- NOTES: A. The pulse generator in Figures 1 and 2 has the following characteristics: PRR \leq 10 MHz, duty cycle = 50%, Z₀ \approx 50 Ω . B. All inputs and outputs not shown are open.
 - C. CL includes probe and jig capacitance.
 - D. All diodes are 1N916 or 1N3064.

- NOTES: A. The pulse generator in Figures 3 and 4 has the following characteristics: PRR \leq 5 MHz, duty cycle = 50%, Z₀ \approx 50 Ω . B. All inputs and outputs not shown are open.
 - C. Cl includes probe and jig capacitance.
 - D. All diodes are 1N916 or 1N3064.

D2304, JANOANT

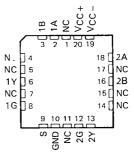
- High Speed
- Standard Supply Voltage
- Dual Channels
- High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Range of ± 3 V
- Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- TTL Drive Capability
- High DC Noise Margin
- '107A and '107B Have Totem-Pole Outputs
- '108A and '108B Have Open-Collector Outputs
- ''B'' Versions Have Diode-Protected Input for Power-Off Condition

description

These circuits are TTL-compatible high-speed line receivers. Each is a monolithic dual circuit featuring two independent channels. They are designed for general use as well as such specific applications as data comparators and balanced, unbalanced, and party-line transmission systems. These devices are unilaterally interchangeable with and are replacements for the SN55107, SN55108, SN75107, and SN75108, but offer diode-clamped strobe inputs to simplify circuit design.

SN55107A, SN55107B, SN55108A SN55108B . . . J PACKAGE SN75107A, SN75107B, SN75108A SN75108B . . . D, J, OR N PACKAGE (TOP VIEW) UI4DVCC+ 1A 13 Vcc -1B[2 NCL 3 12 72A 11 2B 1Y 🛛 4 1G 🗌 5 10 🗌 NC

SN55107A, SN55107B, SN55108A, SN55108B . . . FK PACKAGE


s∏6

GND 7

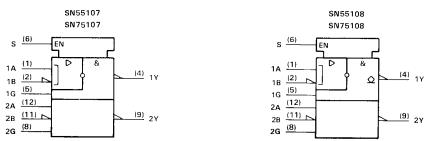
9]]2Y

8 T 2 G

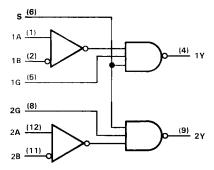
NC-No internal connection

The essential difference between the "A" and "B" versions can be seen in the schematics. Input-protection diodes are in series with the collectors of the differential-input transistors of the "B" versions. These diodes are useful in certain "party-line" systems that may have multiple V_{CC+} power supplies and may be operated with some of the V_{CC+} supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

This would be a problem in specific systems that might possibly have the transmission lines biased to some potential greater than 1.4 V.


The SN55107A, SN55107B, SN55108A, and SN55108B are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75107A, SN75107B, SN75108A, and SN75108B are characterized for operation from 0 °C to 70 °C.

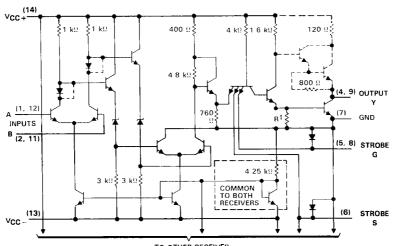
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1990, Texas Instruments Incorporated

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)


FUNCTION TABLE

DIFFERENTIAL			
INPUTS	STR	OBES	OUTPUT
A-B	G	S	Y
V _{ID} ≥ 25 mV	X	x	н
	X	L	н
$-25 \text{ mV} < \text{V}_{\text{ID}} < 25 \text{ mV}$	L	x	н
	н	н	Indeterminate
	X	L	н
$V_{ID} \leq -25 \text{ mV}$	L	х	н
	н	н	L

H = high level, L = low level, X = irrelevant

schematic (each receiver)

TO OTHER RECEIVER

Pin numbers shown are for D, J, and N packages.

 † B = 1 k Ω for '107A and '107B, 750 Ω for '108A and '108B.

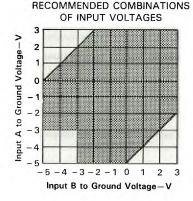
- NOTES: 1. Resistor values shown are nominal.
 - 2. Components shown with dashed lines in the output circuitry are applicable to the '107A and '107B only. Diodes in series with the collectors of the differential input transistors are short circuited on '107A and '108A.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 3) 7 V Supply voltage, V _{CC-} -7 V Differential input voltage (see Note 4) ±6 V Common-mode input voltage (see Note 5) ±5 V Strobe input voltage. 5.5 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 6):
D package
FK or J package: Series 55 1375 mW
J package: Series 75 1025 mW
N package
Operating free air temperature range: Series 55 55°C to 125°C
Series 75
Storage temperature range65°C to 150°C
Case temperature for 60 seconds: FK package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C

- NOTES: 3. All voltage values, except differential voltages, are with respect to network ground terminal.
 - 4. Differential voltage values are at the noninverting (A) terminal with respect to the inverting (B) terminal.
 - 5. Common-mode input voltage is the average of the voltages at the A and B inputs.
 - 6. For operation above 25 °C free-air temperature, derate linearly at the following rates: 7.6 mW/ °C for the D package, 11.0 mW/ °C for the FK and J packages with series 55 chips, 8.2 mW/°C for the J package with series 75 chips, and 9.2 mW/°C for the N package.

recommended operating conditions (see Note 7)

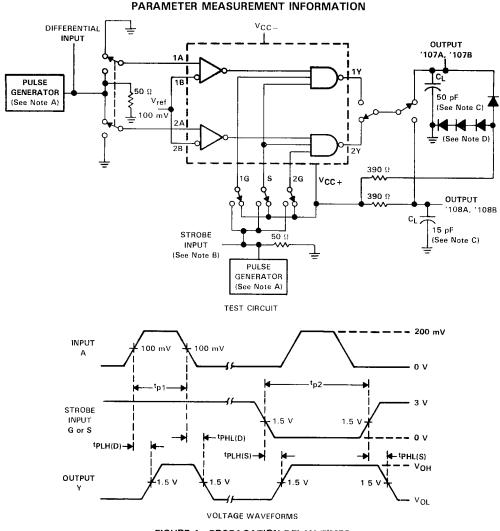

	SN55107A, SN55107B SN55108A, SN55108B		SN75107A, SN75107B SN75108A, SN75108B			UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC+}	4.5	5	5.5	4.75	5	5.25	V
Supply voltage, V _{CC} _	-4.5	- 5	- 5.5	-4.75	- 5	-5.25	v
High-level input voltage between differential inputs, V _{IDH} (see Note 8)	0.025		5	0.025		5	v
Low-level input voltage between differential inputs, V _{IDL} (see Note 8)	-5†		-0.025	-5†		-0.025	v
Common-mode input voltage, VIC (see Notes 8 and 9)	-3†		3	-31		3	V
Input voltage, any differential input to ground (see Note 8)	-5†		3	-51		3	V
High-level input voltage at strobe inputs, VIH(S)	2		5.5	2		5.5	V
Low-level input voltage at strobe inputs, VIL(S)	0		0.8	0		0.8	V
Low-level output current, IOL			- 16		5.6	- 16	mA
Operating free-air temperature, TA	- 55		125	0		70	°C

[†] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for input voltage levels only.

NOTES: 7. When using only one channel of the line receiver, the strobe G of the unused channel should be grounded and at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3 V and 3 V.

8. The recommended combinations of input voltages fall within the shaded area of the figure shown.

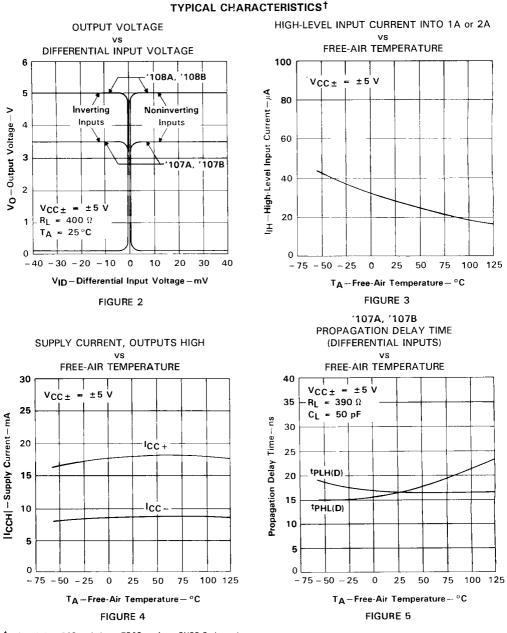
9. The common-mode voltage may be as low as -4 V provided that the more positive of the two inputs is not more negative than -3 V.

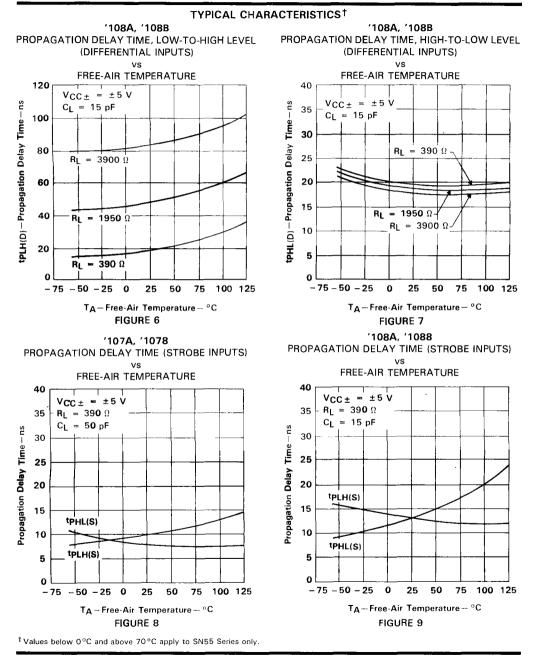

electric	lectrical characteristics over recommended free-air temperature range (unless otherwise noted)							
	PARAMETER	TEST CONDITIO	NS [†]	107A, 107B	'108A, '108B MIN TYP [‡] MAX	UNIT		
Iн	High-level A input current B	V _{CC±} = MAX	$V_{ID} = 5 V$ $V_{ID} = -5 V$	30 75 30 75		μA		
ί _{ΙL}	Low-level A input current B	V _{CC±} = MAX	$V_{\text{ID}} = -5 V$ $V_{\text{ID}} = 5 V$	- 10 - 10		μA		
ι _Η	High-level input current into 1G or 2G	$V_{CC\pm} = MAX, V_{IH(S)} = 2.4 V$ $V_{CC\pm} = MAX, V_{IH(S)} = MAX$		40		μA mA		
ΊĮL	Low-level input current into 1G or 2G	$V_{CC\pm} = MAX, V_{IL(S)} = 0.4 V$		- 1.6	- 1.6	mA		
¹ IH	High-level input current into S	$V_{CC\pm} = MAX, V_{IH(S)} = 2.4 V$ $V_{CC\pm} = MAX, V_{IH(S)} = MAX$		80		μA mA		
կլ	Low-level input current into S	$V_{CC\pm} = MAX, V_{IL(S)} = 0.4 V$		- 3.2	-3.2	mA		
v _{он}	High-level output voltage	$V_{CC\pm} = MIN, V_{IL(S)} = 0.8 V$ $I_{OH} = -400 \ \mu A, V_{IC} = -3 V t_{C}$		2.4		v		
V _{OL}	Low-level output voltage	$V_{CC\pm} = MIN, V_{IH(S)} = 2 V,$ IOL = 16 mA, VIC = -3 V to	$V_{IDL} = -25 \text{ mV},$	0.4	0.4	v		
юн	High-level output current	$V_{CC\pm} = MIN, V_{OH} = MAX V$			250	μA		
los	Short-circuit output current [§]	V _{CC±} = MAX		-18 -70)	mA		
ICCH+	Supply current from V _{CC+} , outputs high	$V_{CC\pm} = MAX, T_A = 25 °C$		18 30	18 30	mA		
	Supply current from V _{CC-} , ouputs high	$V_{CC\pm} = MAX, T_A = 25 °C$		-8.4 -1	5 -8.4 -15	mA		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at V_{CC} + = 5 V, V_{CC} - = -5 V, T_A = 25°C. [§] Not more than one output should be shorted at a time.

switching characteristics, V_{CC ±} = \pm 5 V, T_A = 25 °C (see Figure 1)

				'107A, '107B			'108A, '1088		
	PARAMETER	TEST CONDITIONS	20.	TYP	MAX	MIN	TYP	МАХ	UNIT
	Propagation delay time, low-to-high-level	$R_{L} = 390 \Omega, C_{L} = 50 pF$	_	17	25				ns
^t PLH(D)	output, from differential inputs A and B	$R_L = 390 \Omega, C_L = 15 pF$					19	25	115
	Propagation delay time, high-to-low-level	$R_{L} = 390 \Omega, C_{L} = 50 pF$		17	25				ns
tPHL(D)	output, from differential inputs A and B	$R_{L} = 390 \Omega$, $C_{L} = 15 pF$					19	25	
	Propagation delay time, low-to-high-level	$R_{L} = 390 \Omega, C_{L} = 50 pF$		10	15				ns
^t PLH(S)	output, from strobe input G or S	$R_L = -2$, $C_L = 15 \text{ pF}$					13	20	
	Propagation delay time, high-to-low-level	$R_L = \cdot \Omega, C_L = 50 \text{ pF}$		8	15				ns
^t PHL(S)	output, from strobe input G or S	$R_{L} = 390 \Omega, C_{L} = 15 pF$					13	20	113





- NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \Omega$, $t_r = 10 \pm 5 ns$, $t_f = 10 \pm 5 ns$, $t_{pd1} = 500 ns$, PRR $\leq 1 MHz$, $t_{pd2} = 1 \mu s$, PRR $\leq 500 \text{ kHz}$.
 - B. Strobe input pulse is applied to Strobe 1G when inputs 1A-1B are being tested, to Strobe S when inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
 - C. CL includes probe and jig capacitance.
 - D. All diodes are 1N916.

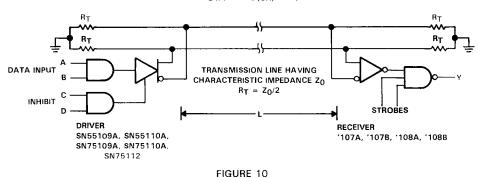
[†] Values below 0 °C and above 70 °C apply to SN55 Series only.

TEXAS INSTRUMENTS

basic balanced-line transmission system

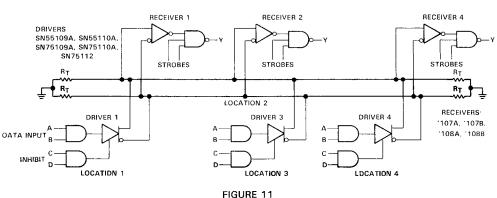
The '107A, '107B, '108A, and '108B dual line circuits are designed specifically for use in high-speed data transmission systems that utilize balanced, terminated transmission lines such as twisted-pair lines. The system operates in the balanced mode, so noise induced on one line is also induced on the other. The noise appears common mode at the receiver input terminals where it is rejected. The ground connection between the line driver and receiver is not part of the signal circuit so that system performance is not 'affected by circulating ground currents.

The unique driver-output circuit allows terminated transmission lines to be driven at normal line impedances. High-speed system operation is ensured since line reflections are virtually eliminated when terminated lines are used. Crosstalk is minimized by low signal amplitudes and low line impedances.


The typical data delay in a system is approximately (30 + 1.3 L) ns, where L is the distance in feet separating the driver and receiver. This delay includes one gate delay in both the driver and receiver.

Data is impressed on the balanced-line system by unbalancing the line voltages with the driver output current. The driven line is selected by appropriate driver-input logic levels. The voltage difference is approximately:

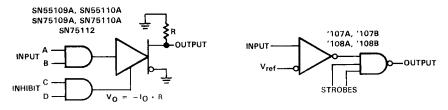
$$V_{DIFF} \approx 1/2I_{O(on)} \cdot R_T$$


High series line resistance will cause degradation of the signal. The receivers, however, will detect signals as low as 25 mV (or less). For normal line resistances, data may be recovered from lines of several thousand feet in length.

Line-termination resistors (R_T) are required only at the extreme ends of the line. For short lines, termination resistors at the receiver only may prove adequate. The signal amplitude will then be approximately:

data-bus or party-line system

The strobe feature of the receivers and the inhibit feature of the drivers allow these dual line circuits to be used in data-bus or party-line systems. In these applications, several drivers and receivers may share a common transmission line. An enabled driver transmits data to all enabled receivers on the line while other drivers and receivers are disabled. Data is thus time-multiplexed on the transmission line. The device specifications allow widely varying thermal and electrical environments at the various driver and receiver locations. The data-bus system offers maximum performance at minimum cost.


APPLICATION INFORMATION

unbalanced or single-line systems

These dual line circuits may also be used in unbalanced or single-line systems. Although these systems do not offer the same performance as balanced systems for long lines, they are adequate for very short lines where environmental noise is not severe.

The receiver threshold level is established by applying a dc reference voltage to one receiver input terminal. The signal from the transmission line is applied to the remaining input. The reference voltage should be optimized so that signal swing is symmetrical about it for maximum noise margin. The reference voltage should be in the range of -3 V to 3 V. It can be provided by a voltage supply or by a voltage divider from an available supply voltage.

A single-ended output from a driver may be used in single-line systems. Coaxial or shielded line is preferred for minimum noise and crosstalk problems. For large signal swings, the high output current (typically 27 mA) of the SN75112 is recommended. Drivers may be paralleled for higher current. When using only one channel of the line drivers, the other channel should be inhibited and/or have its outputs grounded.

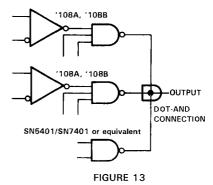


FIGURE 12

'108A, '108B dot-AND output connections

The '108A, '108B line receivers feature an opencollector-output circuit that can be connected in the dot-AND logic configuration with other similar open-collector outputs. This allows a level of logic to be implemented without additional logic delay.

increasing common-mode input voltage range of receiver

The common-mode voltage range or CMVR is defined as the range of voltage applied simultaneously to both input terminals that if exceeded does not allow normal operation of the receiver.

The recommended operating CMVR is ± 3 V, making it useful in all but the noisiest environments. In extremely noisy environments, common-mode voltage can easily reach ± 10 V to ± 15 V if some precautions are not taken to reduce ground and power supply noise, as well as crosstalk problems. When the receiver must operate in such conditions, input attenuators should be used to decrease the system common-mode noise to a tolerable level at the receiver inputs. Differential noise is also reduced by the same ratio.

These attenuators have been intentionally omitted from the receiver input terminals so the designer may select resistors that will be compatible with his particular application or environment. Furthermore, the use of attenuators adversely affects the input sensitivity, the propagation delay time, the power dissipation, and in some cases (depending on the selected resistor values) the input impedance, therefore reducing the versatility of the receiver.

The ability of the receiver to operate with approximately \pm 15 V common-mode voltage at the inputs has been checked using the circuit shown in Figure 14. The resistors R1 and R2 provide a voltage divider network. Dividers with three different values presenting a 5-to-1 attenuation were used so as to operate the differential inputs at approximately \pm 3 V common-mode voltage. Careful matching of the two attenuators is needed so as to balance the overdrive at the input stage. The resistors used are shown in Table A.

TABLE A	
---------	--

Attenuator 1:	$R1 = 2 k\Omega, R2 = 0.5 k\Omega$
Attenuator 2:	$R1 = 6 k\Omega, R2 = 1.5 k\Omega$
Attenuator 3:	$R1 = 12 k\Omega$, $R2 = 3 k\Omega$

Table B shows some of the typical switching results obtained under such conditions.

TABLE B.	TYPICAL PROPAGATION DELAYS FOR
RECEIVE	R WITH ATTENUATOR TEST CIRCUIT
	SHOWN IN FIGURE 14

DE: 405	PARAMETERS	INPUT	TYPICAL
DEVICE	PARAMETERS	ATTENUATOR	(ns)
		1	20
	^t PLH	2	32
11074 11070		3	42
'107А, '107В	tphl	1	22
		2	31
		3	33
		1	36
	tPLH	2	47
'108A, '108B	1	3	57
		1	29
	^t PHL	2	38
		3	41

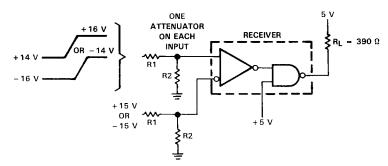


FIGURE 14. COMMON-MODE CIRCUIT FOR TESTING INPUT ATTENUATORS, WITH RESULTS SHOWN IN TABLE B

Two methods of terminating a transmission line to reduce reflections are:

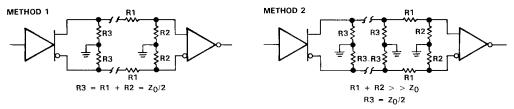


FIGURE 15

The first method uses the resistors as the attenuation network and line termination. The second method uses two additional resistors for the line terminations.

For party-line operation, method 2 should be used as follows:

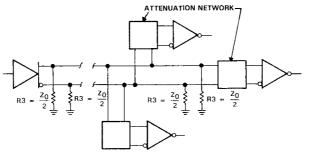
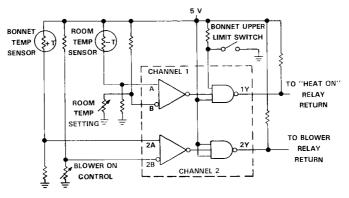


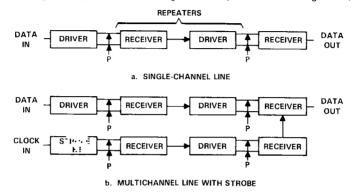
FIGURE 16

To minimize the loading, the values of R1 and R2 should be fairly large. Examples of possible values are shown in Table A.

furnace control using the SN75108A

The furnace control circuit in Figure 17 is an example of the possible use of the SN55107A Series in areas other than what would normally be considered electronic systems. Basically the operation of this control is as follows. When the room temperature is below the desired level, the resistance of the room temperature sensor is high and channel 1 noninverting input is below (less positive than) the reference level set on the input differential amplifier. This situation causes a low output, operating the "heat on" relay and turning on the heat. The channel 2 noninverting input is below the reference level when the bonnet temperature of the furnace reaches the desired level. This causes a low output, thus operating the blower relay. Normally the furnace is shut down when the room temperature reaches the desired level and the channel 1 output goes high, turning the heat off. The blower remains on as long as the bonnet temperature is high, even after the "heat on" relay is off. There is also a safety switch in the bonnet that shuts the furnace down if the temperature there exceeds desired limitations. The types of temperature-sensing devices and biasresitor values used are determined by the particular operating conditions encountered.

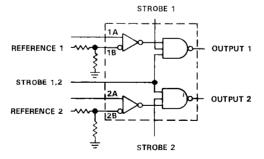



FIGURE 17. FURNACE CONTROL USING SN75108A

APPLICATION INFORMATION

repeaters for long lines

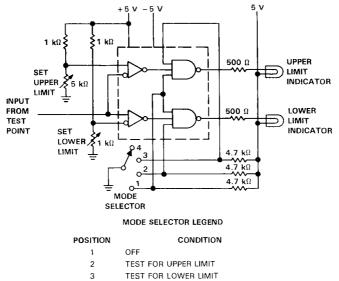
In some cases, the driven line may be so long that the noise level on the line reaches the common-mode limits or the attenuation becomes too large and results in poor reception. In such a case, a simple application of a receiver and a driver as repeaters [shown in Figure 18(a)] restores the signal level and allows an adequate signal level at the receiving end. If multichannel operation is desired, then proper gating for each channel must be sent through the repeater station using another repeater set as in Figure 18(b).



receiver as dual differential comparator

There are many applications for differential comparators, such as voltage comparison, threshold detection, controlled Schmitt triggering, and pulse width control.

As a differential comparator, a '107A or '108A may be connected so as to compare the noninverting input terminal with the inverting input as shown in Figure 19. Thus the output will be high or low resulting from the A input being greater or less than the reference. The strobe inputs allow additional control over the circuit so that either output or both may be inhibited.


FIGURE 19. SN55107A SERIES RECEIVER AS A DUAL DIFFERENTIAL COMPARATOR

APPLICATION INFORMATION

window detector

The window detector circuit in Figure 20 has a large number of applications in test equipment and in determining upper limits, lower limits, or both at the same time — such as detecting whether a voltage or signal has exceeded its limits or "window". Illumination of the upper-limit (lower-limit) indicator shows that the input voltage is above (below) the selected upper (lower) limit. A mode selector is provided for selecting the desired test. For window detecting, the "upper and lower limits" test position is used.

4 TEST FOR UPPER AND LOWER LIMITS

FIGURE 20. WINDOW DETECTOR USING SN75108A

temperature controller with zero-voltage switching

The circuit in Figure 21 switches an electric resistive heater on or off by providing negative-going pulses to the gate of a triac during the time interval when the line voltage is passing through zero. The pulse generator is the 2N5447 and four diodes. This portion of the circuit provides negative-going pulses during the short time (approximately 100 μ s) when the line voltage is near zero. These pulses are fed to the inverting input of one channel of the '108A. If the room temperature is below the desired level, the resistance of the thermistor is high and the noninverting input of channel 2 is above the reference level determined by the thermostat setting. This provides a high-level output from channel 2. This output is AND'ed with the positive-going pulses from the output of channel 1, which are reinverted in the 2N5449.

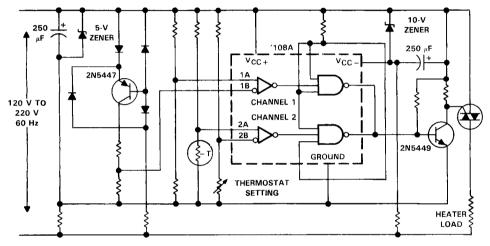
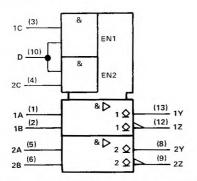


FIGURE 21. ZERO-VOLTAGE SWITCHING TEMPERATURE CONTROLLER

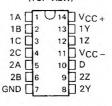
D2106, DECEMBER 1975-REVISED MAY 1990

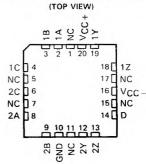

- Improved Stability over Supply Voltage and Temperature Ranges
- Constant-Current Outputs
- High Speed
- Standard Supply Voltages
- High Output Impedance
- High Common-Mode Output Voltage Range (-3 V to 10 V)
- TTL Input Compatibility
- Inhibitor Available for Driver Selection
- Glitch-Free During Power-Up/Down

-55°C to 125°C J or FK PACKAGE	0°C to 70°C J or N PACKAGE	OUTPUT FUNCTION
SN55109A	SN75109A	6-mA Current Switch
SN55110A	SN75110A	12-mA Current Switch
	SN75112	27-mA Current Switch

description

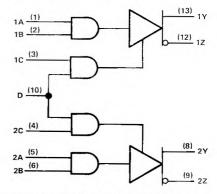
The SN55109A, SN55110A, SN75109A, SN75110A, and SN75112 have improved output current regulation with supply voltage and temperature variations. In addition, the higher current of the SN75112 (27 mA) allows data to be transmitted over longer lines. These drivers offer optimum performance when used with the SN55107A, SN55108A, SN75107A, and SN75108A line receivers.


logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IED Publication 617-12.

PROPIECTION DATA documents contain information I II-II as of publication date. Products conform to Updational production processing does not necessarily include testing of all parameters. SN55109A, SN55110A, . . . J PACKAGE SN75109A, SN75110A, SN75112 . . . D, J, OR N PACKAGE

(TOP VIEW)



SN55109A, SN55110A . . FK PACKAGE

NC-No internal connection

logic diagram (positive logic)

Pin numbers shown are for D, J, and N packages.

Copyright © 1990, Texas Instruments Incorporated

IEXAS V INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

description (continued)

These drivers feature independent channels with common voltage supply and ground terminals. The significant difference between the three drivers is in the output current specification. The driver circuits feature a constant output current that is switched to either of two output terminals by the appropriate logic levels at the input terminals. The output current can be switched off (inhibited) by low logic levels on the enable inputs. The output current is nominally 6 mA for the '109A, 12 mA for the '110A, and 27 mA for the SN75112.

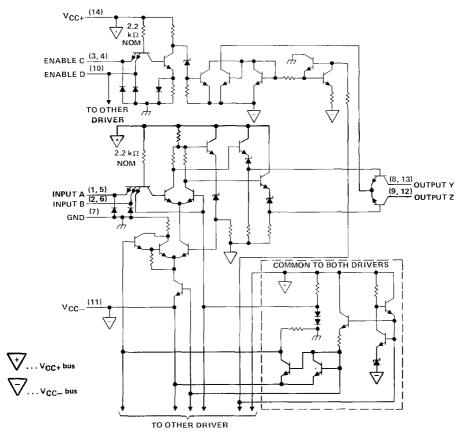
The enable/inhibit feature is provided so the circuits can be used in party-line or data-bus applications. A strobe or inhibitor (enable D), common to both drivers, is included for increased driver-logic versatility. The output current in the inhibited mode, $I_{O(off)}$, is specified so that minimum line loading is induced when the driver is used in a party-line system with other drivers. The output impedance of the driver in the inhibited mode is very high—the output impedance of a transistor biased to cutoff.

The driver outputs have a common-mode voltage range of -3 V to 10 V, allowing common-mode voltage on the line without affecting driver performance.

All inputs are diode clamped and are designed to satisfy TTL-system requirements. The inputs are tested at 2 V for high-logic-level input conditions and 0.8 V for low-logic-level input conditions. These tests assure 400 mV of noise margin when interfaced with Series 54/74 TTL.

The SN55109A and SN55110A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75109A, SN75110A, and SN75112 are characterized for operation from 0 °C to 70 °C.

LO			UTS	OUTPUTS [†]		
A	В	С	D	Y	Z	
X	x	L	х	OFF	OFF	
X	х	×	L	OFF OFF		
L	х	н	н	ON OFF		
X	L	н	Н	ON OFF		
н	н	н	н	OFF	ON	


FUNCTION TABLE (EACH DRIVER)

H = high level, L = low level, X = irrelevant

[†]When using only one channel of the line drivers, the other channel should be inhibited and/or have its outputs grounded.

schematic (each driver)

Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55109A SN55110A	SN75109A SN75110A	SN75112	UNIT
V _{CC+} Supply voltage (see Note 1)		7	7	7	v
V _{CC} _ Supply voltage		-7	- 7	-7	V
VI Input voltage		5.5	5.5	5.5	v
Output voltage range		-5 to 12	-5 to 12	-5 to 12	V
Continuous total power dissipation (see Note 2)		S	e Dissipation	Rating Table	
Operating free-air temperature range		-55 to 125	0 to 70	0 to 70	°C
Storage temperature range			-65 to 150	-65 to 150	°C
Case temperature for 60 seconds: FK package	260			°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds:	300		300	°C	
		1		260	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	N package		260	260	ະບ

NOTES: 1. Voltage values are with respect to network ground terminal.

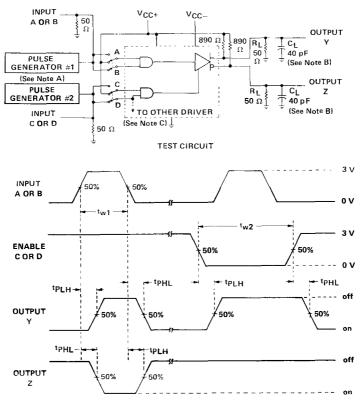
 In the FK or J package, SN55109A and SN55110A chips are either silver glass or alloy mounted, and SN75109A, SN75110A, and SN75112 chips are glass mounted.

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C PO∴: ATING	T _A = 125°C POWER RATING	
D	950 mW	7.6 mW/°C	mW		
FK	1375 mW	11.0 mW °C	880 mW	275 mW	
J (SN55 A)	1375 mW	11.0 m₩+°C	880 mW	275 mW	
J (SN75)	1025 mW	8.2 mW/°C	656 mW		
N	1150 mW	9.2 mW/°C	736 mW		

DISSIPATION RATING TABLE

ž	comme	recommended operating conditions (see Note 3)	onditions (see N	lote 3)											
								_	SN65109A.	9A.	┝	SN75	SN75109A,		<u> </u>
									SN55110A	10A		SN7	SN75110A SN75112		UNIT
_								;			++	N N		MAX	-
L_*	4-14	M				TA 2	TA ≥ 0°C	; ;	م ۱	2 2 1	┣—	4./5	с 2	5.25	;
	lion Aiddns	supply voltage vCC +				1, A	1_A < 0°C	4.75	5	5.5	25				>
						TA ≥	TA ≥ 0°C	- 4.5	1.5	1 1 1	┝┷─	4.75	ອ - ເ ອ	5.25]]
	- CC -			:	ļ	TA <	TA < 0°C	-4.75	5	- 5,5	5				>
Ľ.	Positive cor	Positive common-mode output voltage							0	1	10	0		10	>
<u>ل</u> ــــــ	Vegative cc	Negetive common-mode output voltage						0		1	-3	0		-3	>
<u> </u>	High-level in	High-level input voltage, VIH							2			2			>
-	-ow-level ir	Low-level input voitage, V _{IL}								0.8	8			0.8	>
<u> </u>	Operating fi	Operating free-air temperature, TA						- 55		125	2	0		70	ç
e	ectrical	electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)	recommended o	perating free-	air temp erature	e range (r	nless c	otherw	č rise not	ted)					
L						SN551094	401		SN551104	104	┢			ŀ	Γ
		PARAMETER		TEST CO	TEST CONDITIONS [†]	SN75109A	109A		SN75110A	10A	-	SN	SN75112		UNIT
						MIN TYP [‡]	P [‡] MAX		MIN TYP ¹		MAX	MIN	түр‡	MAX	
17	VIK	Input clamp voltage		V _{CC} = MIN,	lı = -12 mA	0 -	-09 -15	ъ ъ	- 0.9	J	- 1.5		60-	- 1.5	>
L -				VCC± = MAX,	V0 = 10 V		9	7	-	12	15		27	36	
-	(UO)O,	Oli-State Output current		VCC± = MIN.	$V_{0} = -3 V$	3.5	9	9	6.5 1	12		18	27		¥ E
	O(off)	Off-state output current		$V_{CC\pm} = MIN,$	V0 = 10 V		10	1 00		-	100			100	Åμ
		Input current at maximum	A, B, or C inputs	V MAV	V 6 F.V	Ì		1							Ś
	-	input voltage	D input					2			2			2	(
		High layed insuit current	A, B, or C inputs	VAN - 00V	V - 2 4 V		4	40			40			40	Ý
	H	שופוו-ובאפו וווסחר כחנופער	D input				8	80			80			80	4
		four lowed frame armore	A, B, or C inputs	V	V. F.O V		1	-3			- 3			- 3	
-			D input	VCC± - WAX.				-6			- 6			9-	ſ
	lcC + (on)	Supply current from VCC + with driver enabled	with driver enabled	VCC± = MAX, A and B inputs at 0.4 V,	t 0.4 V,		18 3	30	2	23	35		25	6	٩W
-	ICC - {onl	Supply current from V _{CC} with driver enabled	with driver enabled	C and D inputs at 2 V	rt 2 V	1	- 18 - 3	30	- 34		-50		- 65	- 100	
	lCC + (off)	Supply current from VCC+ with driver inhibited	with driver inhibited	VCC± = MAX,			18		14	21			30		Ň
-	ICC - (off)	Supply current from VCC - with driver inhibited	with driver inhibited	A, B, C, and D inputs at 0.4 \vee	nputs at 0.4 V	'	- 10		- 17	1	Η		- 32	Π	Į
l															

-


^T for conditions shown as MIN or MAX, use appropriate value specified under recommended operating conditions. ³All typical values are at V_{CC} + = 5 V, V_{CC} - = -5 V, T_A = 25°C.

switching characteristics, $V_{CC+} = 5 V$, $V_{CC-} = -5 V$, $T_A = 25 °C$

PARAMETER [†]	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	МАХ	UNIT
tPLH	A or B	Y or Z	$C_{l} = 40 pF,$		9	15	ns
tPHL		1 01 2	$R_{\rm L} = 50 \Omega,$		9	15	n\$
tplH	CorD	Y or Z	See Figure 1		16	25	ns
^t PHL		TOTZ			13	25	ns

[†]tpLH = Propagation delay time, low-to-high-level output.

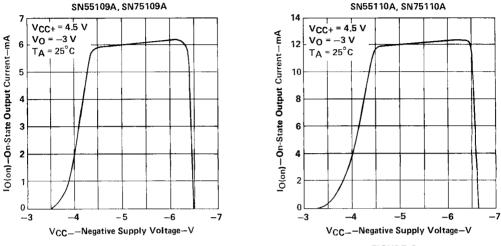
tpHL = Propagation delay time, high-to-low-level output.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

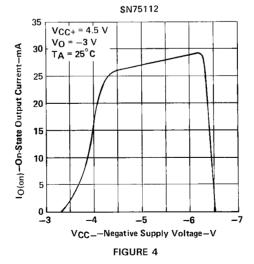
- NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \ \Omega$, $t_e = t_f = 10 \pm 5 \text{ ns}$, $t_{w1} = 500 \text{ ns}$, PRR $\leq 1 \text{ MHz}$, $t_{w2} = 1 \ \mu s$, PRR $\leq 500 \text{ kHz}$.
 - B. CL includes probe and jig capacitance.
 - C. For simplicity, only one channel and the enable connections are shown.

FIGURE 1. PROPAGATION DELAY TIMES



SN55109A, SN55110A SN75109A, SN75110A, SN75112 DUAL LINE DRIVERS

TYPICAL CHARACTERISTICS


ON-STATE OUTPUT CURRENT

•

SN55109A, SN55110A SN75109A, SN75110A, SN75112 DUAL LINE DRIVERS

APPLICATION INFORMATION

special pulse-control circuit

Figure 5 shows a circuit that may be used as a pulse generator output or in many other testing applications.

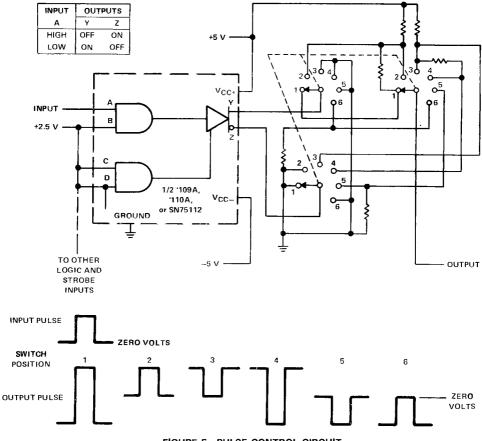


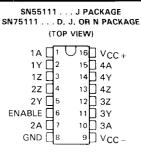
FIGURE 5. PULSE CONTROL CIRCUIT

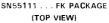
SN55111, SN75111 QUADRUPLE LINE DRIVERS WITH COMMON ENABLES

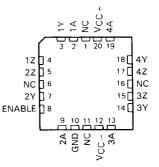
D3000, FEBRUARY 1986-REVISED OCTOBER 1988

- Similar to a Dual Version of the SN55109A/SN75109A Line Driver
- Improved Stability Over Supply Voltage and Temperature Ranges
- Constant-Current Outputs
- High Output Impedance
- High Common-Mode Output Voltage Range (-3 V to 10 V)
- Glitch-Free Power-Up/Power-Down Operation
- TTL Input Compatibility
- Common Enable Circuit

description

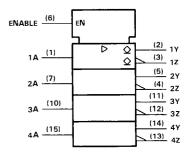

The SN55111 and SN75111 feature four line drivers with a common enable input. When the enable input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the enable is low, all channel outputs are nonconductive (transistors biased to cutoff). This feature minimizes loading in party-line systems where a large number of drivers share the same line.


The driver outputs have a common-mode voltage range of -3 V to 10 V, allowing common-mode voltages on the line without affecting driver performance.


All outputs should be maintained within the recommended common-mode output voltage range to ensure that the channels do not interact with each other. To minimize power dissipation, all unused inputs should be grounded.

All inputs are diode clamped and are designed to satisfy TTL-system requirements. The inputs are tested at 2 V for high-logic-level input conditions and 0.8 V for low-logic-level input conditions. These tests guarantee 400 mV of noise margin when interfaced with Series 54/74 TTL.

The SN55111 is characterized for operation from -55 °C to 125 °C. The SN75111 is characterized for operation from 0 °C to 70 °C.



NC-No internal connection

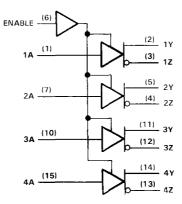
logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

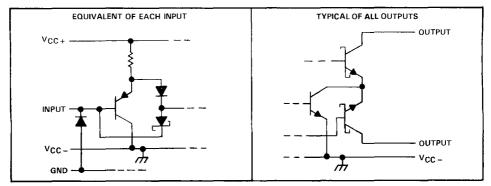
Pin numbers shown are for D, J, and N packages.

۲۱:۱۰۱ (۱۱: ۱۱۵) : ۱۰ documents contain information ۱۰۰۰ : s of . ۲۰ : itien date. Products conform to میری:ارسوانی اور: ایم terms of Texas Instruments Standard warenty. Production processing does not necessarily include testing of ell parameters.

SN55111, SN75111 QUADRUPLE LINE DRIVERS WITH COMMON ENABLES


FUNCTION TABLE

LOGIC INPUT	ENABLE INPUT		PUT RENT Y
н	н	ON	OFF
L	н	OFF	ON
н	Ĺ	L OFF	
L	L	OFF	OFF


L = low logic level

H = high logic level

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)
Supply voltage, V _{CC} -7 V Input voltage (any input) 5.5 V
Output voltage range (any output)
Continuous total dissipation See Dissipation Rating Table
Operating free-air temperature range: SN55111
SN75111
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C PDWER RATING	TA = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	N/A
FK	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN55111)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75111)	1025 mW	8.2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/°C	736 mW	N/A

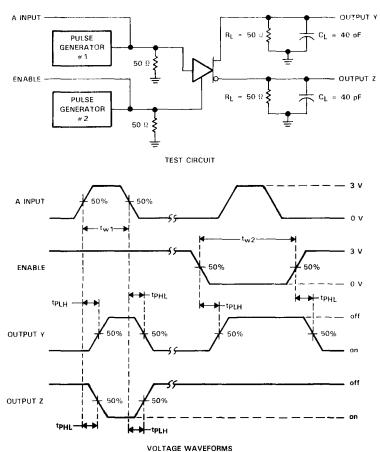
recommended operating conditions (see Note 2)

		SN55111			SN75111				
		MIN	NOM	MAX	MIN	NOM	MAX		
	T _A ≥ 25°C	4.5	5	5.5	4.75	5	5.25	v	
Supply voltage, V _{CC +}	T _A < 25°C	4.75	5	5.5	4.75	5	5.25	1 °	
	T _A ≥ 25°C	- 4.5	- 5	- 5.5	-4.75	- 5	- 5.25	. v	
Supply voltage, V _{CC} –	T _A < 25°C	- 4.75	- 5	-5.5	-4.75	-5	- 5.25	1 °	
High-level input voltage, VIH		2		5.5	2		5.5	V	
Low-level input voltage, VIL		0		0.8	0		0.8	V	
	VOCR+	0		10	0		10	l v	
Common-mode output voltage range	VOCR-	0		- 3	0		-3	Ň	
Operating free-air temperature, TA		55		125	0		70	°C	

NOTE 2: All unused outputs should be grounded.

SN55111, SN75111 QUADRUPLE LINE DRIVERS WITH COMMON ENABLES

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = MAX$, $V_{CC-} = MAX$ (unless otherwise noted)


	PARAMETER	TEST C	ONDITIONS	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	$l_{1} = -12 \text{ mA}$			-0.9	-1.5	v
	Un-state output current	V _{CC} = MAX	1	5.5	7		
lO(on)		V _{CC+} = ∵.	V _{CC} - = MIN	3.5	5.5		mA
O(off)	Off-state output current	V _{CC+} =	$V_{CC-} = MIN, V_0 = 10V$	-		100	μA
۱н	High-level input current	$V_{1} = 2.4 V$				40	μA
		$V_{I} = V_{CC+} MAX$				1	mA
μL	Low-level input current	$V_{1} = 0.4 V$				- 1.6	mA
ICC+	Supply current from VCC +	A inputs at 0.4 V	Enable at 2 V		28	40	
	Supply current noin vCC+		Enable at 0.4 V		27	40	mA
100	Supply current from Vee	A inputs at 0.4 V	Enable at 2 V	1	-43	-55	·
CC –	Supply current from VCC-	Supply current from V _{CC} A inputs at 0.4 V			- 25	- 35	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, and T_A = 25 °C.

switching characteristics, V_{CC+} = 5 V, V_{CC-} = -5 V, R_L = 50 Ω , C_L = 40 pF, T_A = 25 °C

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	МАХ	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Α	Y or Z			9	15	ns
TPHL	Propagation delay time, high-to-low-level output	A	Y or Z	0		7	15	ns
tPLH	Propagation delay time, low-to-high-level output	Enable	Y or Z	See Figure 1		14	25	пs
^t PHL	Propagation delay time, high-to-low-level output	Enable	Y or Z			15	25	ns

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generators have the following characteristics: $Z_0 \approx 50 \ \Omega$, $t_f = t_f = 10 \pm 5 \text{ ns}$, $t_{w1} \leq 200 \text{ ns}$, PRR $\leq 1 \text{ MHz}$, $t_{w2} \leq 1 \ \mu \text{s}$, PRR $\leq 500 \text{ kHz}$.
 - B. CL includes probe and jig capacitance.

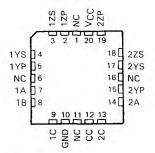
FIGURE 1. PROPAGATION DELAY TIMES

D1315. SEPTEMBER 1973--REVISED SEPTEMBER 1986

- Choice of Open-Collector, Open-Emitter, or 3-State Outputs
- High-Impedance Output State for Party-Line Applications
- Single-Ended or Differential AND/NAND
 Outputs
- Single 5-V Supply
- Dual Channel Operation
- Compatible With TTL
- Short-Circuit Protection
- High-Current Outputs
- Common and Individual Output Controls
- Clamp Diodes at Inputs and Outputs
- Easily Adaptable to SN55114 and SN75114 Applications
- Designed for Use With SN55115 and SN75115

description

The SN55113 and SN75113 dual differential line drivers with 3-state outputs are designed to provide all the features of the SN55114 and SN75114 line drivers with the added feature of driver output controls. Individual controls are provided for each output pair, as well as a common control for both output pairs. If any output is low, the associated output is in a highimpedance state and the output can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.


The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pull-up terminals, YP and ZP, available on adjacent package pins.

The SN55113 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75113 is characterized for operation over the temperature range of 0 °C to 70 °C.

			ACKAGE	
5113	. D.	J, OR	N PACKAGE	
	(TO	VIEW)	
1ZP	1	U_{16}] ∨cc	
1ZS	2	15	2ZP	
1YS	3	14] 2ZS	
1YP	4	13	2YS	
1A	5	12	2YP	
1B	6	11] 2A	
1C	7	10	_ 2C	
GND	8	9] CC	

SN7

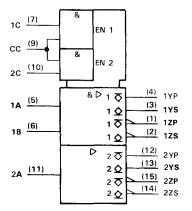
SN55113 ... FK PACKAGE (TOP VIEW)

NC-No internal connection

FUNCTION TABLE

INF	OUT	PUTS			
OUTPUT C	CONTROL CC	DA A	B [†]	AND Y	NAND
L	x	X	X	Z	Z
х	L	x	х	z	z
н	н	L	x	L	н
н	н	×	L	L	н
н	н	н	н	н	L

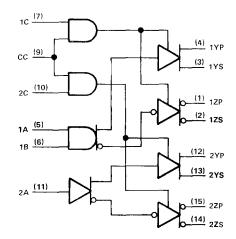
H = high level, L = low level, X = irrelevant,


Z = high impedance (off)

[†]B input and 4th line of function table are applicable only to driver number 1.

PRODUCTION II، 1: for a locuments contain information current as of · '... tion date. Products conform to specifications المراجع the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

logic symbol†



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

schematic

logic diagram (positive logic)

[‡]These components common to both drivers. Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage
Off-state voltage applied to open-collector outputs
Continuous total power dissipation (see Note 2)
Operating free-air temperature range: SN55113
SN75113
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package

NOTES: 1. All voltage values are with respect to network ground terminal.

2. In the J and FK packages, SN55113 chips are alloy mounted; SN75113 chips are glass mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55113)	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN75113)	1025 mW	8 2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/°C	736 mW	N/A

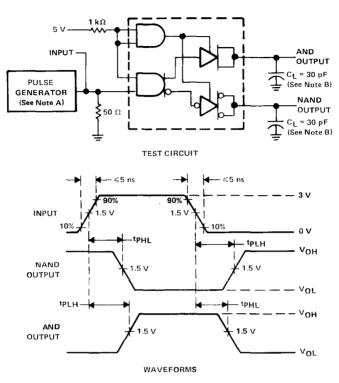
DISSIPATION RATING TABLE

recommended operating conditions

	5	SN55113			SN75113			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	v	
High-level input voltage, VIH	2			2			V	
Low-level input voltage, VIL			0.8			0.8	V	
High-level output current, IOH			-40			-40	mA	
Low-level output current, IOL			40			40	mA	
Operating free-air temperature, TA	- 55		125	0		70	°C	

	0.00			TEST CONDITIONS		S	155113		S													
	PARAMETER	۲ ۱				MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT										
VIK	Input clamp vol	tage	V _{CC} = MIN,	l₁ = −12 mA			- 0.9	- 1.5		-0.9	- 1.5	V										
	I Barle Barral and		$V_{CC} = MIN,$	$V_{ H} = 2 V_{,}$	OH = -10 mA	2.4	3.4		2.4	3.4		l v										
∨он	High-level outpu	it voitage	$V_{IL} = 0.8 V$		1 _{0H} = -40 mA	2	3.0		2	3.0		1 [×]										
Vol	Low-level output	ut voltage	00	$V_{IH} = 2 V$,			0.23	0.4		0.23	0.4	v										
				l _{OL} = 40 mA								ļ										
VOK	Output clamp v	oltage	$V_{CC} = MAX,$	$l_0 = -40 \text{ mA}$			- 1.1	- 1.5		-1.1	- 1.5	V										
			V _{OH} = 12 V	T _A = 25 °C		1	10															
O(off)	Off-state open-o	collector	Vcc = MAX	= MAX	$T_A = 125^{\circ}C$			200				μA										
output current	output current			V _{OH} = 5.25 V	$T_A = 25 ^{\circ}C$					1	10] ‴										
					$T_A = 70 ^{\circ}C$						20											
			T _A = 25 °C,	$V_0 = 0$ to V_{CC}			± 10			± 10												
	Off-state	Off-state V _{CC} = MAX.		V ₀ = 0			- 150			- 20	1											
loz	(high-impedance	e-state)	Output controls	$T_A = MAX$	V ₀ = 0.4 V			±80			± 20	μA										
	output current		at 0.8 V	IA - MAA		IA - WAA	IA - WAA	IA - MAA	IA - MAA	IA - MAA	IA - MAA	IA - MAA	IA - MAA	IA - MAA	V ₀ = 2.4 V			± 80			± 20	1
		1			$V_0 = V_{CC}$			80			20	1										
		А, В, С						1			1											
կ	at maximum input voltage	сс	V _{CC} ⊭ MAX,	$V_{I} = 5.5 V$				2			2	m A										
I	High-level	A, 8, C	Vcc = MAX,	V - 24V				40			40											
чн	Input current	CC	VCC = WAA,	v] = 2.4 v				80			80	μA										
	Low-level	А. В. С	VCC = MAX.	V 0.4 V				- 1.6			- 1.6											
ίL	input current	cc	VCC - MAX.	$v_{\parallel} = 0.4 v$				- 3.2			- 3.2	mA										
I _{0S}	Short-circuit output current§		V _{CC} MAX,	V _O - 0.	T _A 25'C	40	90	- 120	- 40	90	- 120	mA										
	Supply current		All inputs at 0 V,	No load,	V _{CC} = MAX		47	65		47	65											
lcc	(both drivers)		T _A = 25°C		V _{CC} = 7 V		65	85		65	85	m A										

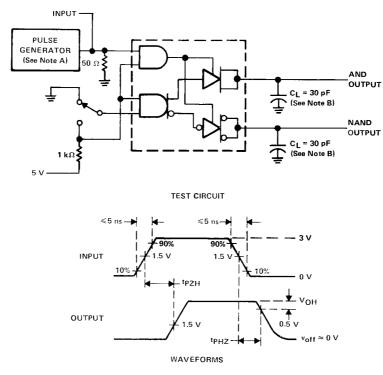
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


[†]All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output. [‡]All typical values are at $T_A = 25 \,^{\circ}$ C and $V_{CC} = 5 \,$ V, with the exception of I_{CC} at 7 V.

[§]Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = $25 \,^{\circ}$ C

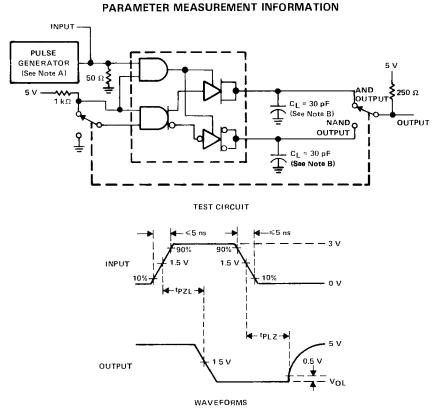
	PARAMETER	TEST CONDITIONS	\$N55113			S			
	FARAMETER		MIN	түр	MAX	MIN	TYP	MAX	
tpLH	Propagation delay time, low-to-high-level output	See Figure 1		13	20		13	30	ns
^t PHL	Propagation delay time, high-to-low-level output	Jee rigure 1		12	20		12	30	ns
tPZH	Output enable time to high level	$R_{L} = 180 \Omega$, See Figure 2		7	15		7	20	ns
tPZL	Output enable time to low level	$R_L = 250 \Omega$, See Figure 3		14	30		14	40	ns
tPHZ	Output disable time from high level	R _L = 180 Ω, See Figure 2		10	20		10	30	ns
^t PLZ	Output disable time from low level	$R_L = 250 \Omega$, See Figure 3		17	3 5		17	35	ns



PARAMETER MEASUREMENT INFORMATION

FIGURE 1. tPLH and tPHL

NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \text{ }$, PRR $\leq 500 \text{ kHz}$, $t_w = 100 \text{ ns}$. B. C_L includes probe and jig capacitance.



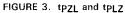
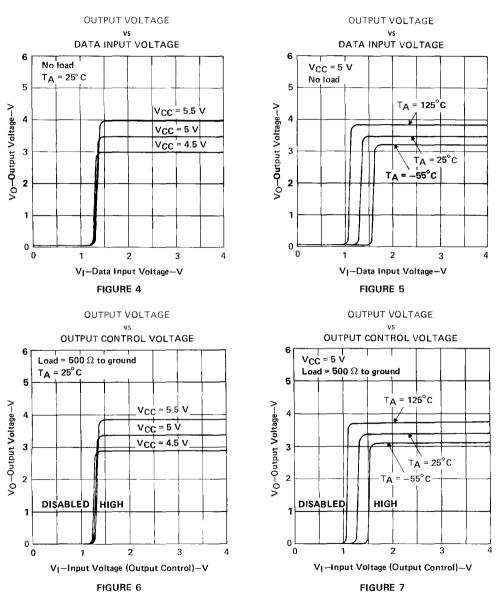
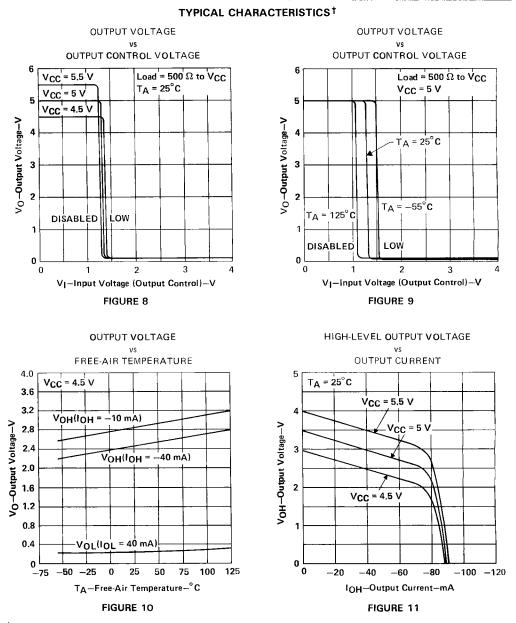

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. tpzH and tpHZ

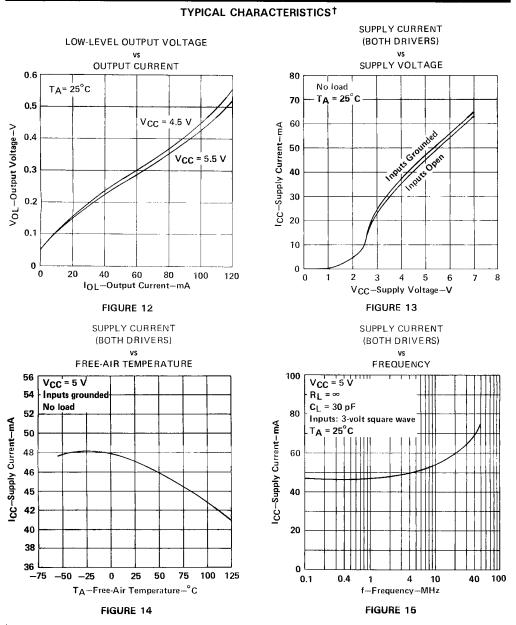
NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, PRR $\leq 500 \ kHz$, $t_w = 100 \ ns$. B. C_L includes probe and jig capacitance.

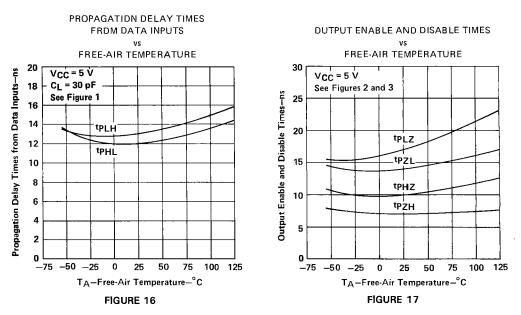


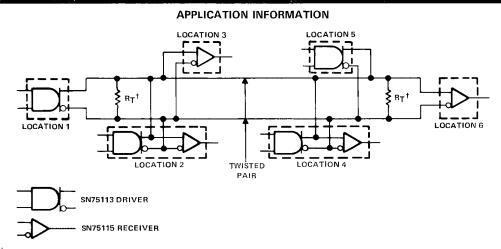
NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W = 100 \text{ ns}$. B. C_L includes probe and jig capacitance.



TYPICAL CHARACTERISTICS[†]


[†]Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.


[†]Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.



[†]Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

TYPICAL CHARACTERISTICS[†]

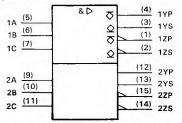
[†]Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55113 circuits only. These parameters were measured with the active pull-up connected to the sink output.

 ${}^{\dagger}R_{T} = Z_{0}$. A capacitor may be connected in series with R_{T} to reduce power dissipation.

FIGURE 18. BASIC PARTY-LINE OR DATA-BUS DIFFERENTIAL DATA TRANSMISSION

.

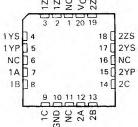
D1315. SEPTEMBER 1973-REVISED SEPTEMBER 1986


- Choice of Open-Collector, Open-Emitter, or Totem-Pole Outputs
- Single-Ended or Differential AND/NAND Outputs
- Single 5-V Supply
- Dual-Channel Operation
- TTL-Compatible
- Short-Circuit Protection
- High-Current Outputs
- Triple Inputs
- Clamp Diodes at Inputs and Outputs
- Designed for Use with SN55115 and SN75115 Differential Line Receivers
- Designed to Be Interchangeable with Fairchild 9614 Line Driver

description

The SN55114 and SN75114 dual differential line drivers are designed to provide differential output signals with the high-current capability for driving balanced lines, such as twisted pair, at normal line impedances without high power dissipation. The output stages are similar to TTL totem-pole outputs, but with the sink outputs, YS and ZS, and the corresponding active pullup terminals, YP and ZP, available on adjacent package pins. Since the output stages provide TTL-compatible output levels, these devices may also be used as TTL expanders or phase splitters.

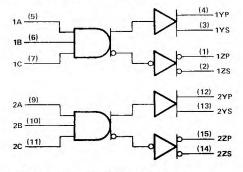
The SN55114 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75114 is characterized for operation from 0 °C to 70 °C.


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN5511	4.	J P	ACKAGE
5114	. D	, J, OR	N PACKAGE
(то	P VIEW	()
1ZP	1	U16	
1ZS	2	15	2ZP
1YS	3	14	2ZS
1 Y P [4	13] 2YS
1A	5	12	2YP
1B [6	11] 2C
1C [7	10] 2B
GND [8	9] 2A
SN55114	1.	. FK F	ACKAGE
(то	P VIEW	()
1ZS	17P	NCC VCC	2ZP

SN7

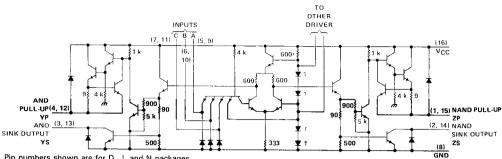

NC-No internal connection

FUNCTION TABLE

	INPUTS		OUT	PUTS
A	В	С	Y	Z
н	Н	н	Н	L
ALL OTHER I	VPUT COMBI	NATIONS	L	н

H = high level, L = low level

logic diagram (positive logic)


Copyright © 1986. Texas Instruments Incorporated

Pin numbers shown are for D, J, and N packages.

2-129

schematic (each driver)

Pin numbers shown are for D, J, and N packages

[†]These components are common to both drivers. Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55114	SN75114	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	V
t voltage	5.5	5.5	V
state voltage applied to open-collector outputs	12	12	V
Continuous total power dissipation (see Note 2)	See Dissi	pation Rating Table	e
Operating free-air temperature range	-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds: FK package			°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package			°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		260	°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. In the FK and J packages, SN55114 chips are either silver glass or alloy mounted. In the J package, SN75114 chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°CC	608 mW	_
FK	1375 mW	11.0 mW/ °C	880 mW	275 mW
J (SN55114)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75115)	1025 mW	8 2 mW/°C	656 mw	_
N	1150 mW	9.2 mW/°C	736 mW	_

recommended operating conditions

	St.1-1	Sf.!.: 114 SN75114				
		MAX	MIN	NOM	MAX	
Supply voltage, V _{CC1}		, 5.5	4.75	5	5.25	v
High-level input voltage, VIH	2		2			v
Low-level input voltage, VIL		0.8			0.8	v
High-level output current, IOH		- 40	1		- 40	mA
Low-level output current, IOL		40			40	mA
Operating free-air temperature, TA	- 55	125	0		70	°C

				and t		SN5511	4		SN7511	4	UNIT
	PARAMETER	IE	ST CONDITIO	JNS	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
Viĸ	Input clamp voltage	V _{CC}	l₁ = − 12 mA	\		-0.9	- 1.5		-0.9	-1.5	V
	High-level output	Vcc= ··	V _{IH} = 2 V,	IOH = - 10 mA	2.4	3.4		2.4	3.4		v
∨он	voltage	VIL=0.8 V,		$l_{OH} = -40 \text{ mA}$	2	3	-	2	3		v
VOL	Low-level output	V _{CC} = MIN,				0.2	0.4		0.2	0.45	v
VUL	voltage	V _{IL} =0.8 V,	$l_{OL} = 40 \text{ mA}$	N							
Vau	Output clamp voltage	V _{CC} = 5 V,	l _O = 40 mA,	T _A = 25 °C		6.1	6.5		6.1	6.5	v
∨ок	Output clamp voltage	V _{CC} =MAX,	$l_0 = -40 \text{ m}$	A, T _A ≕ 25 °C		-1.1	- 1.5		-1.1	- 1.5	
			V _{OH} = 12 V	T _A = 25 °C		1	100				
	Off-state open-collector			A = 126 °C			200				μA
^I O(off)	output current	VCC=MAX	V	$V \frac{T_A = 25 °C}{T_A = 70 °C}$					1	100	μΑ
			VOH = 5.25	^v T _A = 70 °C						200	
4	Input current at maximum input voltage	V _{CC} =MAX,	V =5.5 V			•	1			1	mA
Чн	High-level input current	V _{CC} = MAX	., V∣=2.4 V				40			40	μA
μL	Low-level input current	V _{CC} =MAX,	V1=0.4 V			- 1.1	- 1.6		1.1	- 1.6	mA
los	Short-circuit output current [§]	V _{CC} =MAX	V ₀ =0,	T _A =25 °C	- 40	- 90	- 120	- 40	- 90	- 120	mA
	Supply current	All inputs at	0 V, No load	I, V _{CC} ≕MAX		37	50		37	50	mA
'cc	(both drivers)	T _A =25°C		V _{CC} =7 V		47	65		47	70	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

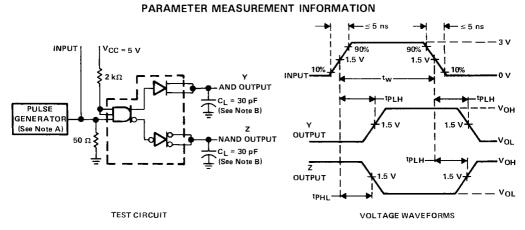
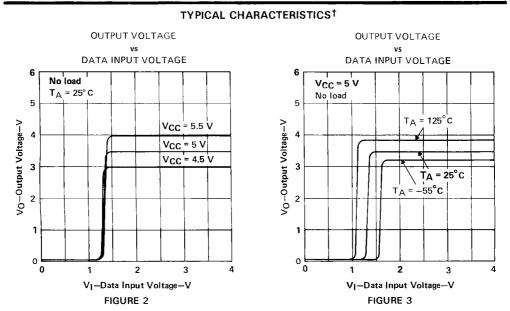
[†]All parameters with the exception of off-state open-collector output current are measured with the active pullup connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

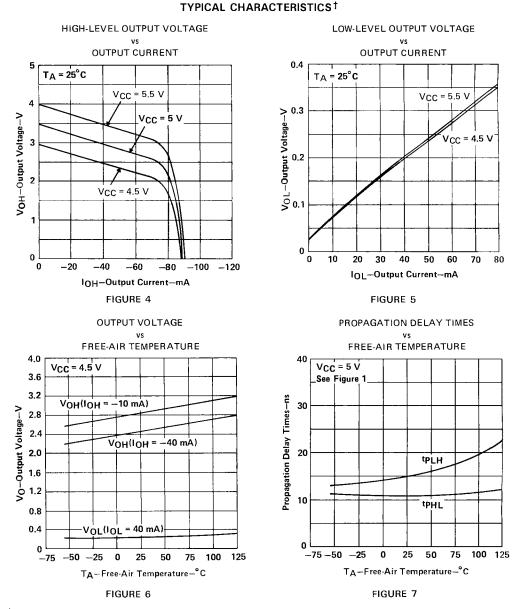
[‡]All typical values are at $T_A = 25$ °C and $V_{CC} = 5$ V, with the exception of I_{CC} at 7 V.

Sonly one output should be shorted at a time, and duration of the short circuit should not exceed one second.

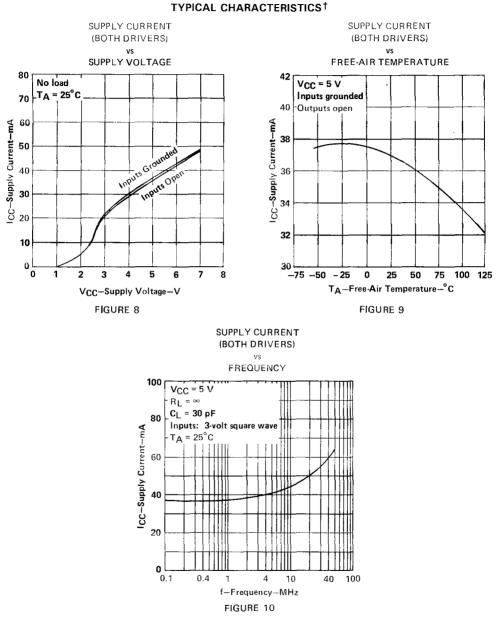
switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

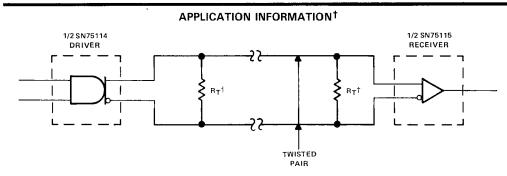
		TEST	S	N5511	4	S	N7511	4	UNIT
	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	C _L = 30 pF,		15	20		15	30	ns
^t PHL	Propagation delay time, high-to-low-level output	See Figure 1		11	20		11	30	ns


FIGURE 1. PROPAGATION DELAY TIMES

NOTES: A. The pulse generator has the following characteristics: $Z_o = 500 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W \leq 100 \text{ ns}$. B. CL includes probe and jig capacitance.


[†] Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55114 circuits only. These parameters were measured with the active pullup connected to the sink output.


[†] Data for temperatures below 0 °C and above 70 °C are applicable to SN55114 circuits only. These parameters were measured with the active pullup connected to the sink output.

[†] Data for temperatures below 0 °C and above 70 °C are applicable to SN55114 circuits only. These parameters were measured with the active pullup connected to the sink output.

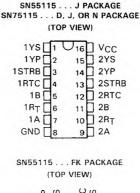
 $^{\dagger}R_{T}$ = $Z_{0}.$ A capacitor may be connected in series with R_{T} to reduce power dissipation.

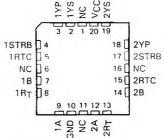
FIGURE 11. BASIC PARTY-LINE OR DATA-BUS DIFFERENTIAL DATA TRANSMISSION

4

. ...

.. ...


D1315, SEPTEMBER 1973-REVISED OCTOBER 1986


- Choice of Open-Collector or Active Pull-Up (Totem-Pole) Outputs
- Single 5-V Supply
- Differential Line Operation
- Dual-Channel Operation
- TTL Compatible
- ± 15 V Common-Mode Input Voltage Range
- Optional-Use Built-In 130-Ω Line-Terminating Resistor
- Individual Frequency Response Controls
- Individual Channel Strobes
- Designed for Use With SN55113, SN75113, SN55114, and SN75114 Drivers
- Designed to Be Interchangeable With Fairchild 9615 Line Receivers

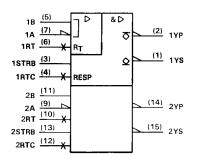
description

The SN55115 and SN75115 dual differential line receivers are designed to sense small differential signals in the presence of large common-mode noise. These devices give TTL-compatible output signals as a function of the differential input voltage. The open-collector output configuration permits the wire-ANDing of similar TTL outputs (such as SN5401/SN7401) or other SN55115/SN75115 line receivers. This permits a level of logic to be implemented without extra delay. The output stages are similar to TTL totem-pole outputs, but with sink outputs, 1YS and 2YS, and the corresponding active pull-up terminals, 1YP and 2YP, available on adjacent package pins. The frequency response and noise immunity may be provided by a single external capacitor. A strobe input is provided for each channel. With the strobe in the low level, the receiver is disabled and the outputs are forced to a high level.

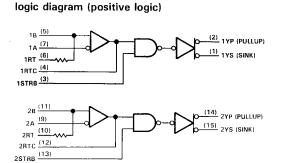
The SN55115 is characterized for operation over the full military range of -55 °C to 125 °C. The SN75115 is characterized for operation from 0 °C to 70 °C.

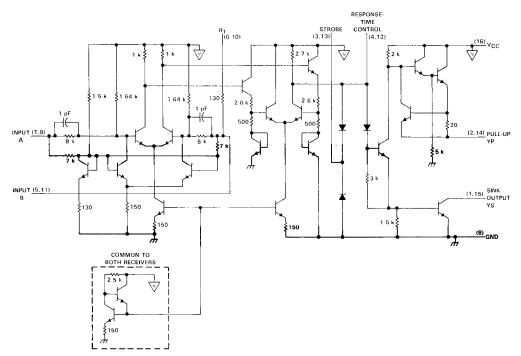
NC-No internal connection

FUNCTION TABLE


STROBE	DIFF INPUT	OUTPUT (YP AND YS TIED TOGETHER)
L	х	н
н	L	н
н	н	L

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.


Copyright © 1986, Texas Instruments Incorporated


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic (each receiver)

Pin numbers shown are for D, J, and N packages. Resistor values are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55115	SN75115	UNIT	
Supply voltage, V _{CC} (see Note 1)	7	7	V	
Input voltage at A, B, and R _T inputs	± 25	± 25	V	
Input voltage at strobe input	5.5	5.5	V	
Off-state voltage applied to open-collector outputs	14	14	V	
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table			
Operating free-air temperature range	-55 to 125	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds: FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		260	J°	

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. In the FK and J packages, SN55115 chips are either silver glass or alloy mounted and SN75115 chips are glass mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/ °C	608 mW	
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55115)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75115)	1025 mW	8.2 mW/°C	656 mW	
N	1150 mW	9.2 mW/°C	736 mW	-

DISSIPATION RATING TABLE

recommended operating conditions

	S	S'. 15		SN75115			
	MIN	·	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level (strobe) input voltage, VIH	2.4			2.4			v
Low-level (strobe) input voltage, VIL			0.4			0.4	v
High-level output current, IOH			5			- 5	mA
Low-level output current, IOL			15			15	mA
Operating free-air, temperature, TA	- 55		125	0		70	°C

SN55115 SN75115 PARAMETER TEST CONDITIONS[†] UNIT MIN TYP[‡] MAX MIN TYP[‡] MAX Differential input V_{TH}§ $V_0 = 0.4 V$, $I_{0L} = 15 mA$, $V_{IC} = 0$ 500 500 m٧ high-threshold voltage Differential input VTL[§] $V_0 = 2.4 V$, $I_{OH} = -5 mA$, $V_{IC} = 0$ - 500 500¶ m٧ low-threshold voltage +15 +24 +15 +24 Common-mode VICR $V_{ID} = \pm 1 V$ to to to to v input voltage range - 15 -- 19 - 19 - 15 2.2 $T_A = MIN$ 2.4 V_{CC} = MIN, V_{ID} = -0.5 V, $T_A = 25 °C$ VOH High-level output voltage 2.4 3.4 2.4 3.4 v 1_{0H} = -5 mA $T_A = MAX$ 2.4 2.4 $V_{CC} = MIN, V_{ID} = 0.5 V,$ VOL Low-jevel output voltage 0.22 0.4 0.22 v 0.45 IOL = 15 mA TA = MIN - 0.9 -0.9 $V_{CC} = MAX, V_{i} = 0.4 V,$ ΨL Low-level input current $T_A = 25 °C$ -0.5-07 -0.5 ~ 0.7 mΑ Other input at 5.5 V $T_A = MAX$ -0.7 -0.7 $V_{CC} = MIN, V_{ID} = -0.5 V,$ T_A = 25 °C 2 5 ISH High-level strobe current μA $V_{strobe} = 4.5 V$ $T_A = MAX$ 5 $V_{CC} = MAX, V_{ID} = 0.5 V,$ ISL Low-level strobe current T_A = 25 °C -1.15 ~2.4 -1.15 - 2.4 mΑ V_{strobe} = 0.4 V Response-time-control $V_{CC} = MAX, V_{ID} = 0.5 V,$ T_A = 25°C -3.4 - 1.2 - 1.2 - 3.4 mΑ (RTC) current $V_{RC} = 0$ $V_{CC} = MIN, V_{OH} = 12 V,$ $T_A = 25 °C$ 100 Off-state open-collector $V_{ID} = -4.5 V$ $T_A = MAX$ 200 μA lO(off) T_A = 25°C output current V_{CC} = MIN, V_{OH} = 5.25 V, 100 V_{ID} = -4,75 V $T_A = MAX$ 200 Line-terminating RT $V_{CC} = 5 V$ $T_A = 25 \circ C$ 77 130 167 74 130 179 Ω resistance $V_{CC} = MAX, V_O = 0,$ Short-circuit $T_A = 25°C$ - 15 - 40 - 80 - 40 - 100 ios -14 mΑ output current $V_{1D} = -0.5 V$ $V_{CC} = MAX, V_{ID} = 0.5 V,$ Supply current T_A = 25°C 32 50 32 · 50 mΑ 'cc (both receivers) $V_{ic} = 0$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] Unless otherwise noted V_{strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output.

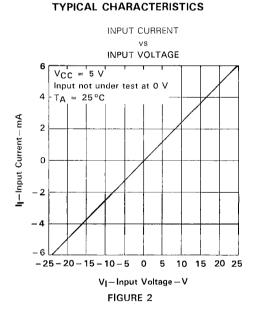
[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C, and V_{IC} = 0.

[§] Differential voltages are at the B input terminal with respect to the A input terminal.

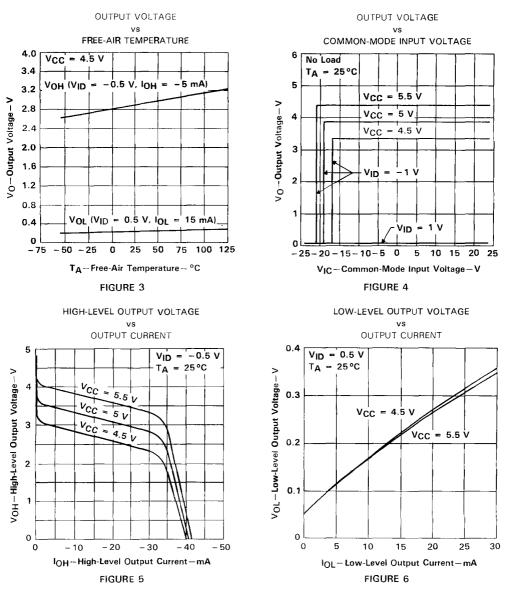
1 The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.
I Only one output should be shorted to ground at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = $25 \,^{\circ}$ C

PARAMETER		TEST CONDITIONS	SN55115			SN75115			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
tPLH	Propagation delay time, low-to-high-level output	$R_L = 3.9 k\Omega$, See Figure 1		18	50		18	75	ns
^t PHL	Propagation delay time, high-to-low-level output	$R_L = 390 \Omega$, See Figure 1		20	50		20	75	ns

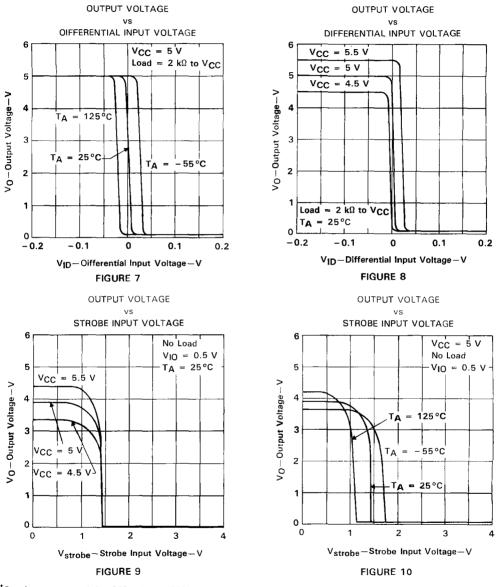

+ 3 V

-31

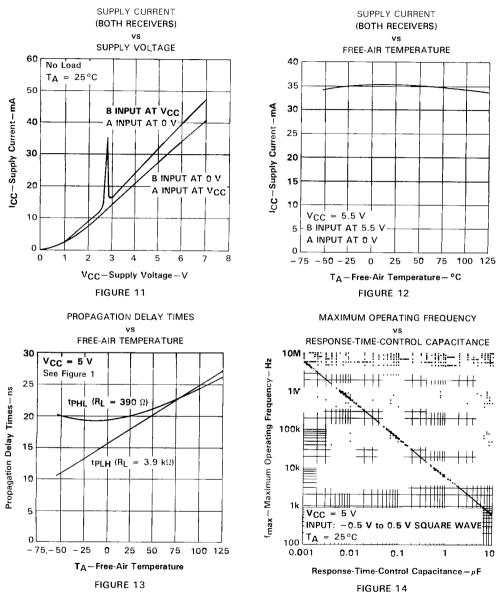

PARAMETER MEASUREMENT INFORMATION OPEN 24 V 5 V RT STROBE INPUT-≤ 5 ns—) < 5 ns DIFFERENTIAL 90% 90% RL PULSE INPUT в GENERATOR 10% 10% (See Note A) ٧n H- TPLH - tPHL ۸ CL = 30 pF ٧он (See Note B) RESPONSE Ουτρυτ TIME CONTROL 5 \ 15 - Vol OPEN TEST CIRCUIT WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_w \leq 100 \text{ ns}$, duty cycle = 50%. B. CI includes probe and jig capacitance.

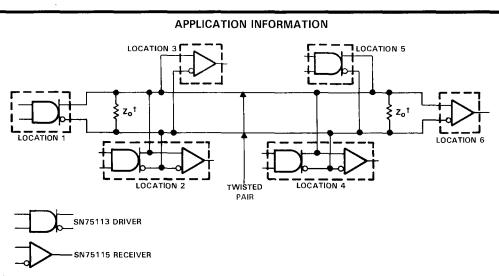
FIGURE 1. PROPAGATION DELAY TIMES



TYPICAL CHARACTERISTICS[†]


[†] Data for temperatures below 0°C and above 70°C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pull-up connected to the sink output.

TYPICAL CHARACTERISTICS[†]


[†] Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pull up connected to the sink output.

TYPICAL CHARACTERISTICS[†]

[†] Data for temperatures below 0 °C and above 70 °C and for supply voltages below 4.75 V and above 5.25 V are applicable to SN55115 circuits only. These parameters were measured with the active pull-up connected to the sink output.

SN55115, SN75115 DUAL DIFFERENTIAL LINE RECEIVERS

[†]A capacitor may be connected in series with Z₀ to reduce power dissipation.

FIGURE 15. BASIC PARTY-LINE OR DATA-BUS DIFFERENTIAL DATA TRANSMISSION

D2143, MAY 1976-REVISED MAY 1990

Features common to all types

- Single 5-V Supply
- 3-State Driver Output Circuitry
- TTL-Compatible Driver Inputs
- TTL-Compatible Receiver Output
- Differential Line Operation
- Receiver Output Strobe ('116, SN75117) or Enable (SN75118, SN75119)
- Designed for Party-Line (Data-Bus) Applications
- Choice of Ceramic or Plastic Packages

Additional features of the SN55116/SN75116

- Independent Driver and Receiver
- Choice of Open-Collector or Totem-Pole Outputs on Both Driver and Receiver
- Dual Data Inputs on Driver
- Optional Line-Termination Resistor in Receiver
- ±15-V Receiver Common-Mode Capability
- Receiver Frequency Response Control

Additional features of the SN75117

 Driver Output Internally Connected to Receiver Input

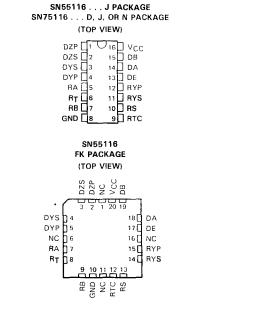
The S .75 18 is an SN75116 with 3-State Receiver Output Circuitry The SN75119 is an SN75117 with 3-State Receiver Output Circuitry

description

These integrated circuits are designed for use in interfacing between TTL-type digital systems and differential data transmission lines. They are especially useful for party-line (data-bus) applications. Each of these circuit types combine in one package a 3-state differential line driver and a differential-input line receiver, both of which operate from a single 5-V power supply. The driver inputs and receiver outputs are TTL compatible. The driver employed is similar to the SN55113/SN75113 3-state line driver, and the receiver is similar to the SN55115/SN75115 line receiver.

The '116 and SN75118 circuits offer all the features of the SN55113/SN75113 driver and the SN55115/SN75115 receiver combined. The driver performs the dual input AND and NAND functions when enabled, or presents a high impedance to the load when in the disabled state. The driver output stages are similar to TTL totem-pole outputs, but have the current-sink portion separated from the current-sourcing portion and both are brought out to adjacent package pins. This feature allows the user the option of using the driver in the open-collector output configuration, or, by connecting the adjacent source and sink pins together, of using the driver in the normal totem-pole output configuration.

The receiver portion of the '116 and SN75118 features a differential-input circuit having a common-mode voltage range of \pm 15 V. An internal 130- Ω resistor is also provided, which may optionally be used for terminating the transmission line. A frequency response control pin allows the user to reduce the speed of the receiver or to improve differential noise immunity. The receiver of the '116 also has an output strobe and a split totem-pole output. The receiver of the SN75118 has an output-enable for the 3-state split totem-pole output. The receiver of the circuit is independent of the driver section except for the V_{CC} and ground pins.


The SN75117 and SN75119 circuits provide the basic driver and receiver functions of the '116 and SN75118, but use a package that is only half as large. The SN75117 and SN75119 are intended primarily for party-line or bus-organized systems as the driver outputs are internally connected to the receiver inputs. The driver has a single data input and a single enable input, and the SN75117 receiver has an output strobe while the SN75119 receiver has a 3-state-output enable. These devices do not, however, provide output connection options, line termination resistors, or receiver frequency-response controls.

The SN55116 is characterized for operation over the full military temperature range of -55 °C to 125 °C; the SN75116, SN75117, SN75118, and SN75119 are characterized for operation from 0 °C to 70 °C.

Ii · · · · · documents contain information tion date. Products conform to standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1990, Texas Instruments Incorporated

NC-No internal connection

SN75118 . . . D, J, OR N PACKAGE (TOP VIEW)

DZP [1 U 16	D ∨cc
DZS []:	2 15	DB
DYS [3 14	DA
D YP []	4 13] DE
RA 🗋	5 12	BYP
RT []	6 11	RYS
RB 🗌	7 10	🗋 RE
GND [89	🗍 втс

SN75117 . . . D, JG, OR P PACKAGE (TOP VIEW)

ין אם	U 8	Dvcc
В 🗌 2	7] DE
A [] 3	6	🗍 អY
GND [🗠	5] RS

SN75119 . . . D, JG, OR P PACKAGE (TOP VIEW)

ר] וס	U 8	D vcc
В [2	7	DE
A [3	6	🗌 RY
GND	5] RE

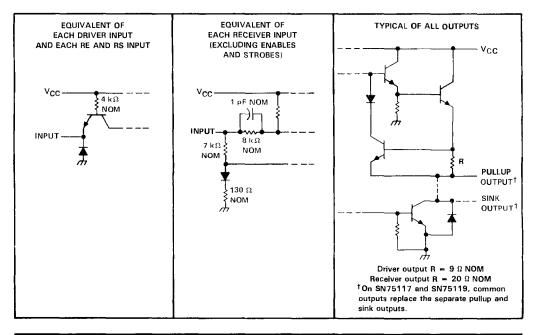
'116, SN75118 FUNCTION TABLE OF DRIVER

	INPUT	OUTPUTS			
DE	DA	DB	DY	DZ	
L	x	×	Z	Z	
н	L	х	L .	н	
H	х	L	L	н	
н	Н	Н	н	L	

'116, SN75118 FUNCTION TABLE OF RECEIVER

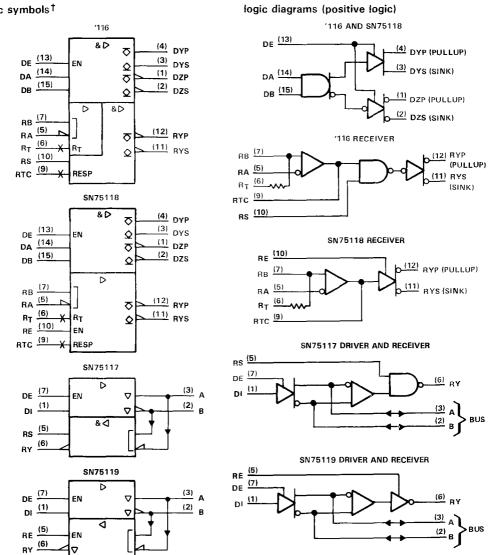
RS/RE	DIFF	OUTPI IT RY				
K5/KE	INPUT	'116	554/5118			
L	x	н	z			
н	L	н	н			
н	н	L	L_			

 $\begin{array}{ll} H = \mbox{ high level (V_I \geq V_{I|I}\mbox{ min or }V_{ID}\mbox{ more}\\ \mbox{positive than }V_{T|I}\mbox{ max})\\ L = \mbox{ low level }(V_I \leq V_{I|L}\mbox{ max or }V_{ID}\mbox{ more}\\ \mbox{negative than }V_{T|L}\mbox{ max})\\ X = \mbox{ irrelevant}\\ Z = \mbox{ high impedance (off)} \end{array}$


schematics of inputs and outputs

SN75117, SN75119 FUNCTION TABLE OF DRIVER

INP	UTS	OUTPUTS			
DI	DE	Α	B		
н	н	н	L		
L	н	L	н		
х	L	z	Z		


SN75117, SN75119 FUNCTION TABLE OF RECEIVER

	INP	JTS	OUTPUT RY				
Α	В	RS/RE	SN75117	SN75119			
н	L	н	н	н			
L	н	н	L	L			
х	х	L	н	Z			

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown for '116 and SN75118 are for J and N packages; those shown for SN75117 and SN75119 are for JG and P packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		116, \$N75118	SN75117, SN75119	UNIT
Supply voltage, V _{CC} (see Not	e 1)	7	7	V
······································	DA, DB, DE, DI, RE, RS	5.5	5.5	
Input voltage, Vį	RA, RB, RT	± 25		7 v
	A and B		0 to 6	1
Off-state voltage applied to op	en-collector outputs	12		V

	SN55116	SN75116 THRU SN75119	UNIT	
Continuous total power dissipation (see Note 2)	See Dissipation Rating Tal			
Operating free-air temperature range	- 55 to 125	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds: FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J and JG packages	300	300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or P package		260	°C	

NOTES: 1. All voltage values are with respect to network ground terminal.

2. In the FK and J packages, SN55116 chip is alloy mounted and SN75116 through SN75119 chips are glass mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	725 mW	5.8 mW/°C	464 mW	
D (16 pin)	950 mW	7.6 m₩/°C	608 mW	~~
FK	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN55116)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (all others)	1025 mW	8.2 mW/°C	656 mW	-
JG	825 mW	6.6 mW/°C	528 mW	_
N	1150 mW	9.2 mW/°C	736 mW	
Р	1000 mW	B.0 mW/°C	640 mW	-

DISSIPATION RATING TABLE

recommended operating conditions

PARAMETER			SN551	16		SN75			
PARAMETER		MIN	ТҮР	MAX	MIN	4.75 5 5.25 2 0.8 -40 -5 40 15 ±15 0 6 ±15	MAX		
Supply voltage, VCC		4.5	5	5 5	4.75	5	5.25	v	
High-level input voltage, VIH	All inputs except	2		-	2			V	
Low-level input voltage, VIL	differential inputs		- <u>-</u>	0.8			0.8	v	
	Drivers			- 40			- 40	m∆	
High-level output current, IOH	Receivers			- 5	[- 5		
	Drivers			40			40		
Low-level output current, IOL	Receivers		-	15			15	mA	
Baseline land table a M	'116, '11B			±15			±15		
Receiver input voltage, V _I	'117, '119	0		6	0		6	l v	
	'116, '118			±15			±15		
Common mode receiver input voltage, VICR	/117, /119	0		6	0		6		
Operating free-air temperature, TA		- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

driver section

	PARAMETER			TEST CONDITIONS ¹		11	16, SN7	5118	SN75117, SN75119			UNJT
	PARAMETE	n				MIN	TYP‡	MAX	MiN	TYP [‡]	мах	
VIK	input clamp vo	oltage	$V_{CC} = MIN,$	= MIN, 1 ₁ = ~12 mA			-0.9	-1.5		-0.9	- 1.5	v
			Vec - MiN	$T_A = 25 ^{\circ}C (SN55116)$	I _{OH} = -10 mA		3.4		2.4	3.4		
Voн	High-level out	nut voltage	$V_{\rm H} = 0.8 V$	$T_A = 0 \circ C \text{ to } 70 \circ C (SN75')$ $T_A = -55 \circ C \text{ to } 125 \circ C$ (SN55116)	$t_{OH} = -40 \text{ mA}$	2	3		2	3		v
·un		par voltage	$V_{1L} = 2 V$	$T_{A} = -55^{\circ}C \text{ to } 125^{\circ}C$	<u>i</u> OH = -10 mA	2			2			v
					$I_{OH} = -40 \text{ mA}$	1.6			1.8			
VOL	Low-level outp	out voltage	$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 V,$ $I_{DL} = 40 mA$				0.4			0.4	v
v _{ок}	Output clamp	voltage		I _O = -40 mA, DE at 0.6 V				- 1.5			- 1.5	v
	Off-state open	collector	V _{CC} = MAX,	T _A = 25°C			1	10				
IO(off)	output current		$V_{0} = 12 V$		·. ·16			200				μA
	output culterit		v0 = 12 v	aivio 2		20						
	Off-state		V _{CC} = MAX, T _A = 25°C	$V_{CC} = MAX$, $V_{O} = 0$ to V_{CC} , DE at 0.8 V, $T_A = 25^{\circ}C$				±10				
loz	(high-impedan	ce-state)	$V_{CC} = MAX,$	V ₀ = 0	SN55116			300				μA
	output current		DE at D.8 V,	$V_0 = 0.4 V \text{ to } V_{CC}$	SN55116			±150				
			$T_A = MAX$	$V_0 = 0$ to V_{CC}	SN75'			± 20				
4	Input current at maximum input voltage	Driver or	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
чн	High-lavel input current	enable input	V _{CC} = MAX,	V _I = 2.4 V				40			40	μA
կլ	Low-level input current		V _{CC} ≃ MAX,	$V_{ } = 0.4 V$				1.6			- 1.6	mA
los	Short-circuit output current	5	V _{CC} ≖ MAX,	$V_{O} = 0, T_{A} = 25 ^{\circ}\text{C}$		40		120	- 40		- 1 20	mA
lcc	Supply current and receiver c		V _{CC} = MAX,	T _A = 25°C			42	60		42	60	mA

[†]All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 1 All typical values are at V_{CC} = 5 V and T_A = 25°C. [§]Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = 25 °C

driver section

PARAMETER	TEST CONDITIONS	MiN	ТҮР	мах	UNIT
tpLH Propagation delay time, low-to-high-level output			14	30	
tpHL Propagation delay time, high-to-low-level output	See Figure 13		12	30	ns
tPZH Output enable time to high level	$R_L = 180 \Omega$, See Figure 14		8	20	ns
tpzL Output enabla time to low level	RL =), See Figure 15		17	40	пѕ
tPHZ Output disable time from high level	RL = 100 J, Sea Figure 14		16	30	пs
tpLZ Output disable time from low level	$R_L = 250 \Omega$, See Figure 15		20	35	ns

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

receiver section

rece	receiver section							
			TOT CONDUCT		116, SN75118	SN75117, SN75119	-1	TINIT
	PARAMETER		TEST CONDITIONS		Mr. TYP [‡] MAX	MIN TYP [‡]	MAX	
	Differential input	VO = 0.4 V,	loi = 15 mÅ,	$V_{CC} = MIN, V_{ICR} = 0,$ See Note 4	0.5		0.5	
VTH	_	See Note 3	5	VCC = 5 V, VICR = MAX, See Note 5	-		-	>
	Differential innut	V 2 - 2 4 V	-5 mb	VCC = MIN, VICR = 0, See Note 4	-0.51	-0.51		
VTL		See Note 3	E D	VCC = 5 V, VICR = MAX, See Note 5	- 15	-11		>
					15	9		
>	Input voltage range#	$V_{CC} = 5 V,$	$V_{ID} = -1 V \text{ or } 1 V$	See Note 3	to	to		>
-)	1			-15	0	_	
			VCC = MIN,	VID = -0.5 V.	7 6	2.4		
		1DH = -5 mA,	VICR = 0,	See Note 4				>
HON	VOH High-level output voltage	See Note 3	$V_{CC} = 5 V,$	$V_{ID} = -1 V,$	2 4	2.4		
			VICR = MAX,	See Note 5				
			VCC = MIN,	$V_{ID} = 0.5 V.$	0.4		0.4	
:		loL = 15 mA,	VICR = 0,	See Note 4				>
VOL	Low-ievel output vonage	See Note 3	$V_{CC} = 5 V,$	$V_{ID} = 1 V$,	0.4		0.4	
			VICR = MAX,	See Note 5				
			$V_{I} = 0,$	Other input at 0 V	-0.5 -0.9	- 0.5	-	
litrac	litrac) Receiver input current	VCC = MAX,	$V_{1} = 0.4 V,$	Other input at 2.4 V	-0.4 -07	-0.4	- 0.8	٩u
		See Note 3	$V_{l} = 2.4 V,$	Other input at 0.4 V	0.1 0.3	0.1	0.4	
-	Input current at Strobe	$V_{CC} = MIN,$ $V_{CC} = 4.5 V$	VID = -0.5 V,	116, S N75117	2 C		۔ م	∀#
-	voltage	VCC = MAX,	V ₁ = 5.5 V	SN75118, SN75119	1		-	ΨW
[†] Unle.	ss otherwise noted V _{strobe} = sink output. For conditions sh	2.4 V. All paramete own as MIN or MAX	irs with the exception of use the appropriate val	Unless otherwise noted V _{strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to the sink output. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.	urrent are measured wi d operating conditions.	ith the active pull-up	o connect	ted to
⁺ All t ⁵ Diffe	All typical values are at VCC = 5 V, IA = 25 C, and VIC = 0.5° C, and VIC = 0.5° fifferential voltages are at the Binput terminal with respect to the 1	v, IA = גסילי, and ut terminal with resp	r vIC = 0. ect to the A input termina	+All typical values are at VCC = 5 V, IA = 25 C, and VIC = 0. Splifferential voltages are at the Binput terminal with respect to the A input terminal. Neither receiver input of the SN75117 or SN75119 should be taken negative with respect	1 751 17 or SN75119 sho	ould be taken negativ	ve with re	spect
to G The	ND. algebraic convention, where t	he less positive (mor	e negative) limit is desig	to GND. The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltages only.	is data sheet for thresh	nold voltages only.		

TEXAS V INSTRUMENTS POST DIFICE BOX 655303 • DALLAS, TEXAS 75265 For '116 and SN75118, this applies with the more positive receiver input at 15 V or the more negative receiver input at -15 V. For SN75117 and SN75119,

NOTES: 3. Measurement of these characteristics on the SN75117 and SN75119 requires the driver to be disabled with the driver enable at 0.8 V.

This applies with the less positive receiver input grounded. For SN55116, $V_{ID} = -1 V$.

this applies with the more positive receiver input at 6 V.

4. ro

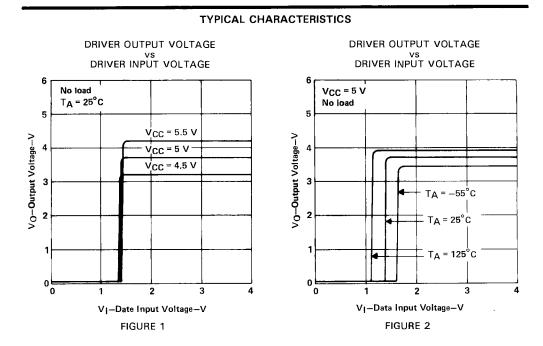
finput voltage range is the voltage range that, if exceeded at either input, will cause the receiver to cease functioning properly.

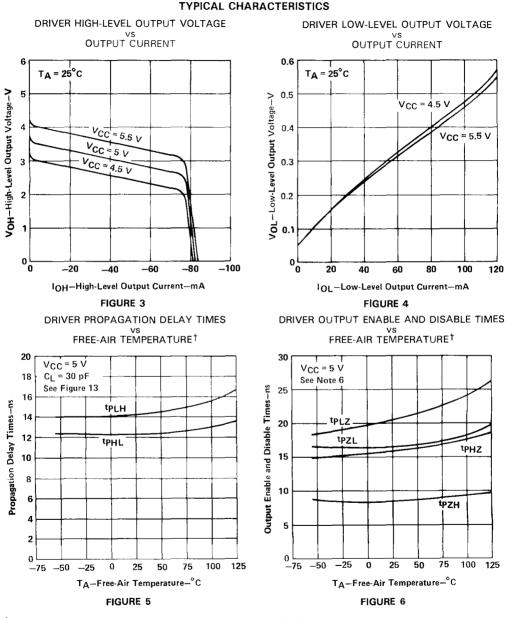
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

-
ō
풍
ĕ
é
<u>ه</u> .
õ
<u>۳</u>

recei	receiver section								ł	
					, ,	7116, SN75118		-5117, SN75119		TIMUT
	PARAMETER		_	TESI CONDITIONS	-0	MIN TYP [‡] MAX		түр [‡] МАХ	-	
Ē	High-level input current	Enable	VCC = MAX,	$V_{j} = 2.4 V$	SN75118, SN75119	7	40		40	Ψ
_=	Low-level	Strobe	VCC = MAX, Vstrobe = 0.4 V,	V _I D = 0.5 V, See Note 4	'116, SN75117	-2.4	4	ï	-24	mΑ
i	input current	Enable	+	V ₁ = 0.4 V	SN75118, SN75119	-1.6	.6		- 1.6	
I(RC)	Response-time-control current (Pin 9)	ntrol	VCC = MAX, RC at 0 V,	V _{ID} = 0.5 V, See Note 4	$T_A = 25 °C$	- 1.2				мА
			VCC = MAX,	TA = 25°C		+	10			
lofof	Off-state open-collector	llector	$V_{0} = 12 V,$		SN55116	50	200			μA
5	output current		ViD = -1 V	IA = MAX	SN75		20			
	Off-state		VCC = MAX,	TA = 25°C	SN75118, SN75119	+	± 10	+1	± 10	
102	(high-impedance state)	state)	$V_0 = 0$ to V_{CC} ,	×***	SN75118	#	± 20			Aμ
	output current		RE at 0.4 V		SN75119			H	± 20	
Æ	Line-terminating resistance	esistance	VCC = 5 V		$T_A = 25 ^{\circ}C$	77 16	167			c;
	Short-circuit		VCC = MAX,	VO = 0,	T 25°C	- 15	- 80 - 15	1	- 80	Am.
so	output current [§]		$V_{ID} = -0.5 V_{.}$	See Note 4	> c = ∀.				;	
	Supply current (driver	river	VCC = MAX,	$V_{ID} = 0.5 V,$	T 25°C	4	en	42	60	Am
ບ ບ	and receiver combined)	bined)	See Note 4	Ì	A = 2			-	;	
† Unle	ss otherwise noted	Vstrobe -	= 2.4 V. All paramete	ars with the exception of	¹ Unless otherwise noted V _{strobe} = 2.4 V. All parameters with the exception of off-state open-collector output current are measured with the active pull-up connected to	current are measured	d with the a	ctive pull-up	o conne	cted to

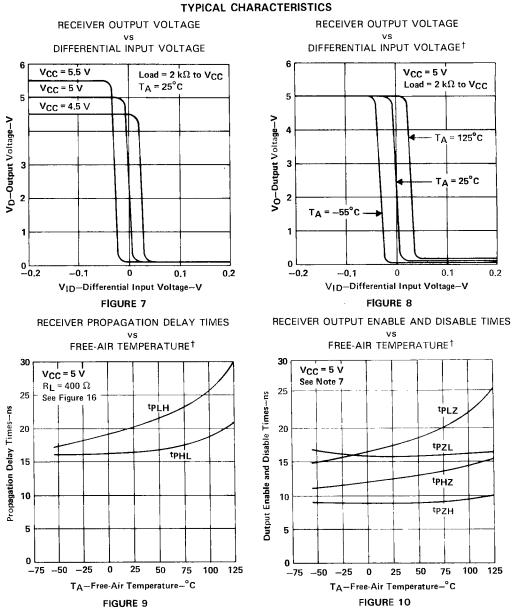
The singular variable -2 with the answer of V and V

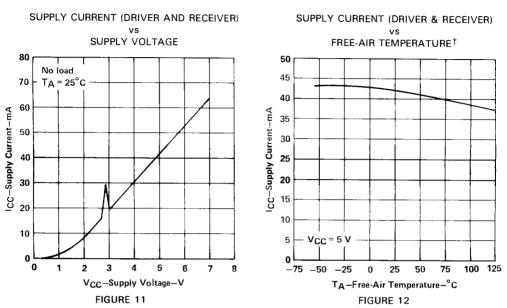

SN55116, SN75116 THRU SN75119 DIFFERENTIAL LINE TRANSCEIVERS


switching characteristics, V_{CC} = 5 V, C_L = 30 pF, T_A = $25 \,^{\circ}$ C

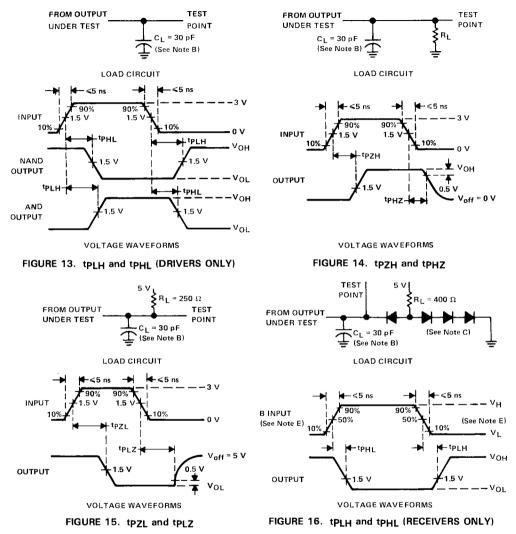
receiver section

	PARAMETER		TEST CONDITION	S MI	Ν ΤΥΡ	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-l	evel output	D. 400.0 Car Firm	- 16	20	75	ns
^t PHL	Propagation delay time, high-to-low-	evel output	$R_{L} = 400 \Omega$, See Figu	re to	17	75	ns
tPZH	Output enable time to high level	SN75118	$R_L = 480 \Omega$, See Figu	ire 14	9	20	ns
tPZL	Output enable time to low level	and	$R_L = 250 \Omega$, See Figu	ire 15	16	35	ns
tPHZ	Output disable time from high level	SN75119	$R_L = 480 \Omega$, See Figu	ire 14	12	30	ns
tPLZ	Output disable time from low level	only	RL = 250 Ω, See Figu	ire 15	17	35	ns




[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55116. NOTE 6: For tp_{ZH} and tp_{HZ}: R_L = 180 Ω , see Figure 14. For tp_{ZL} and tp_{LZ}: R_L = 250 Ω , see Figure 15.

[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55116. NOTE 7: For tp_{ZH} and tp_{HZ}: R_L = 480 Ω , see Figure 14. For tp_{ZL} and tp_{LZ}: R_L = 250 Ω , see Figure 15.



TYPICAL CHARACTERISTICS

[†]Data for temperatures below 0°C and above 70°C are applicable to SN55116.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by generators having the following characteristics $Z_0 = 50 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W = 100 \text{ ns}$. B. CL includes probe and jig capacitance.

- C. All diodes are 1N3064 or equivalent.
- D. When testing the '116 and SN75118 receiver sections, the response-time control and the termination resistor pins are left open.
- E. For '116 and SN75118, V_H = 3 V, V_L = -3 V, the A input is at 0 V. For SN75117 and SN75119, V_H = 3 V, V_L = 0, the A input is at 1.5 V.

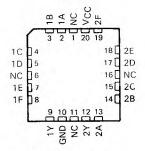
SN55121, SN75121 DUAL LINE DRIVERS

D1334, SEPTEMBER 1973-REVISED SEPTEMBER 1986

- Designed for Digital Data Transmission over 50-Ω to 500-Ω Coaxial Cable, Strip Line, or Twisted Pair
- High-Speed
 t_{pd} = 20 ns Max at C_L = 15 pF
- TTL Compatible With Single 5-V Supply
- 2.4-V Output at IOH = -75 mA
- Uncommitted Emitter-Follower Output Structure for Party-Line Operation
- Short-Circuit Protection
- AND-OR Logic Configuration
- Designed for Use With Triple Line Receivers SN55122, SN75122
- Designed to Be Interchangeable With Signetics N8T13

description

The SN55121 and SN75121 dual line drivers are designed for digital data transmission over lines having impedances from 50 to 500 ohms. They are also compatible with standard TTL logic and supply voltage levels.


The low-impedance emitter-follower outputs of the SN55121 and SN75121 will drive terminated lines such as coaxial cable or twisted pairs. Having the outputs uncommitted allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network which turns on when the output voltage drops below approximately 1.5 V. All of the inputs are in conventional TTL configuration and the gating can be used during power-up and power-down sequences to ensure that no noise is introduced to the line.

The SN55121 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75121 is characterized for operation from 0 °C to 70 °C.

			ACKAGE	
/5121.		P VIEW		AGE
1A	Гī	O_{16}	D vcc	
1B	2	15	2F	
1C	3	14	2E	
1D	4	13	2D	
1E	5	12	2C	
1F	6	11	2B	
1Y		10	2A	
GND	8	9	🗋 2Y	

SN

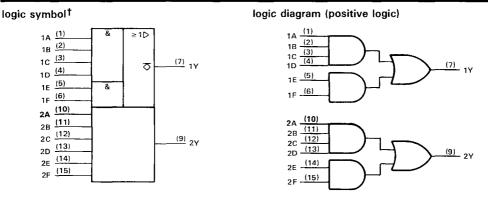
SN55121 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

FUNCTION TABLE

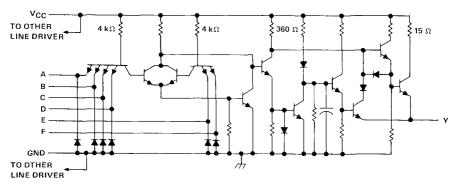
		INP	UTS			OUTPUT
Α	В	С	D	E	F	Y
Н	н	Н	H	Х	Х	н
х	х	х	х	н	н	н
A	I othe	r input	t comb	ination	IS	L

H = high level


L = low level

X = irrelevant

PRONNETION Is A secuments contain r -nt - ation stript soft is n rion date. Products - nt m to v-n 12 - ations par U.L. terms of Texas Is - nt ments - st - twarranty. Production processing dues not messawilly include testing of all parameters.



SN55121, SN75121 DUAL LINE DRIVERS

 $^\dagger This$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

schematic (each driver)

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55121	SN75121	UNIT
Supply voltage, VCC (see Note 1)	6	6	V
Input voltage	6	6	V
Output voltage	6	6	V
Continuous total power dissipation (see Note 2)	See Dissi	pation Rating Table	9
Operating free-air temperature range	-55 to 125	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds: FK package			°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	·		°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		· ·	°C

NOTES: 1. All voltage values are with respect to both ground terminals connected together.

2. In the FK and J packages, SN55121 chips are either silver glass or alloy mounted and SN75121 chips are glass mounted.

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 125°C
	POWER RATING	ABOVE $T_A = 25 °C$	PO ATING	POWER RATING
D	950 mW	7.6 mW/°C	nW	
FK	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN55121)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75121)	1025 mW	8.2 mW/°C	656 mW	_
N	1150 mW	9.2 mW/°C	736 mW	-

DISSIPATION RATING TABLE

recommended operating conditions

		5N 12	1		SN 1512	1	UNIT
	MIN	1.00A	MAX	MIN	Mυ	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	4.75	5	5.25	V
High-level input voltage, VIH	2			2			V
Low-level input voltage, VIL			0.8			0.8	V
High-level output current, IOH			- 75			- 75	mA
Operating free-air temperature, TA	- 55		125	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

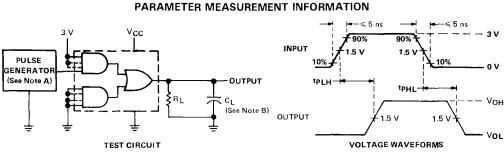
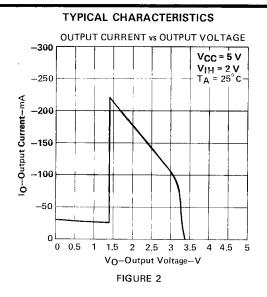
	PARAMETER	ו ו	TEST CONDITIONS		MIN	MAX	UNIT
Vik	Input clamp voltage	$V_{CC} = 5 V$,	lj = -12 mA			- 1.5	V
V(BR)I	Input breakdown voltage	$V_{CC} = 5 V_{,}$	lj = 10 mA		5.5		V
∨он	High-level output voltage	$V_{IH} = 2 V,$	ioн = -75 mA,	See Note 3	2.4		v
юн	High-level output current	$V_{CC} = 5 V,$ $T_A = 25 °C,$	$V_{IH} = 4.5 V,$ See Note 3	V _{OH} = 2 V,	- 100	- 250	mA
IOL	. level output current	$V_{1L} = 0.8 V,$	$V_{0L} = 0.4 V_{,}$	See Note 3		- 800	μA
O(off)	ui-state output current	$V_{CC} = 3 V,$	$V_0 = 3 V$			500	μA
<u>I</u> IH	High-level input current	$V_{1} = 4.5 V$				40	μA
ЧL	Low-level input current	$V_{I} = 0.4 V$			-0.1	- 1.6	mA
los	Short-circuit output current [†]	$V_{CC} = 5 V$,	$T_A = 25 °C$			- 30	mA
ССН	Supply current, outputs high	$V_{CC} = 5.25 V_{,}$	All inputs at 2 V,	Outputs open		28	mА
ICCL	Supply current, outputs low	V _{CC} = 5.25 V,	All inputs at 0.8 V,	Outputs open		60	mA

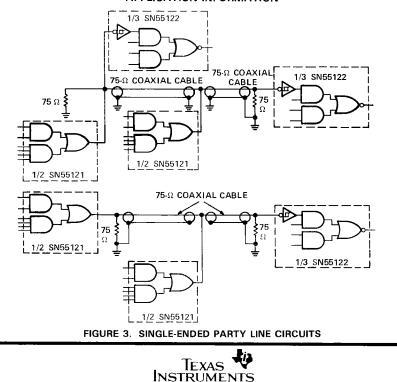
[†]Not more than one output should be shorted at a time.

NOTE 3: The output voltage and current limits are valid for any appropriate combination of high and low inputs specified by the function table for the desired output.

switching characteristics, VCC = 5 V, TA = 25C

PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$R_{L} = 37 \Omega$, $C_{L} = 15 pF$,		11	20	
tPHL Propagation delay time, high-to-low-level output	See Figure 1		8	20	ns
tPLH Propagation delay time, low-to-high-level output	$R_L = 37 \Omega$, $C_L = 1000 pF$,		22	50	
tPHL Propagation delay time, high-to-low-level output	See Figure 1		20	50	ns


FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generators have the following characteristics: $Z_0 \approx 50 \ \Omega$, $t_W = 200 \ ns$, duty cycle $\leq 50\%$, PRR $\leq 500 \ kHz$. 8. CL includes probe and jig capacitance.

POST OFFICE BOX 655303 - DALLAS, TEXAS 75265

,. ·.-*

D1334, SEPTEMBER 1973-REVISED SEPTEMBER 1986

15 1S

13 1 1Y

] 1R

SN55122 . . . J PACKAGE

SN75122 . . . D. J. OR N PACKAGE (TOP VIEW)

1A ∏1 U16∏ VCC

14

1B 2

2S 🛛 4

3

2R 🗋

- Designed for Digital Data Transmission Over Coaxial Cable, Strip Line, or Twisted Pair
- Designed for Operation With 50- Ω to 500- Ω Transmission Lines
- TTL Compatible
- Single 5-V Supply
- **Built-In Input Threshold Hysteresis**
- High Speed . . . Typical Propagation Delay Time = 20 ns
- Independent Channel Strobes
- Input Gating Increases Application Flexibility
- Fanout to 10 Series 54/74 Standard Loads
- Can Be Used With Dual Line-Drivers SN55121 and SN75121
- Interchangeable With Signetics N8T14

description

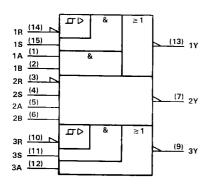
The SN55122 and SN75122 are triple linereceivers that are designed for digital data transmission over lines having impedances from 50 to 500 Ω . They are also compatible with standard TTL-logic and supply voltage levels.

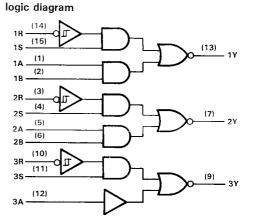
The SN55122 and SN75122 have receiver inputs with built-in hysteresis to provide increased noise margin for single-ended systems. The high impedance of this input presents a minimum load to the driver and allows termination of the transmission line in its characteristic impedance to minimize line reflection. An open line will affect the receiver input as would a low-level voltage. The receiver can withstand a level of -0.15 V with power on or off. The other inputs are in TTL configuration. The S input must be high to enable the receiver input. Two of the line receivers have A and B inputs that, if both are high, will hold the output low. The third receiver has only an A input that, if high, will hold the output low.

The SN55122 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75122 is characterized for operation from 0°C to 70°C.

n
R Y
Ċ
A
s

NC-No internal connection


10 11


3 ∑

SN55122, SN75122 TRIPLE LINE-RECEIVERS

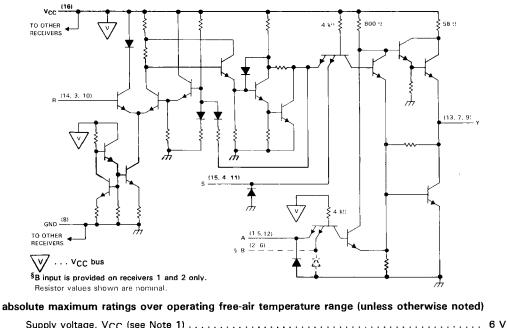
logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$

Pin numbers shown are for D, J, and N packages.

FUNCTION TABLE

	INPU	OUTPUT		
Α	B‡	R	S	Y
Н	н	Х	Х	L
X	Х	L	н	L
L	Х	Н	х	н
L	Х	х	L	н
X	L	н	Х	н
X	L	х	L	н


¹B input and last two lines of the function table are applicable to receivers 1 and 2 only.

н	=	higt	n level
L	-	low	level

X - irrelevant

schematic diagram (each receiver)

	· · · · · · · · · · · · · · · · · · ·
Input voltage: R input	
A, B, or S input	5.5 V
Output voltage	6 V
Output current	± 100 mA
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Operating free-air temperature range: SN55122	
SN75122	0°C to 70°C
Storage temperature range	
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds:	J package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds:	D or N package 260°C

NOTES: 1. Voltage values are with respect to network ground terminal.

2. In the FK and J packages, SN55122 chips are alloy mounted and in the J package, SN75122 chips are glass mounted.

PACKAGE	T _A ≲ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/ °C	608 mW	
FK	13 7 5 mW	11.0 mW/°C	880 mW	275 mW
J (SN55122)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75122)	1025 mW	8.2 mW/°C	656 mW	-
N	1150 mW	9.2 mW/°C	736 mW	—

DISSIPATION RATING TABLE

SN55122, SN75122 TRIPLE LINE-BECEIVERS

recommended operating conditions

		MIN	NOM MAX	UNIT
Supply voltage, VCC		4.75	5 5.25	V
High-level input voltage, V _{IH}	A, B, R, or S	2		V
Low-level input voltage, VIL	A, B, R, or S		0.8	V
High-level output current, IOH			- 500	μA
Low-level output current, IOL			16	mA
Operating free-air temperature, 1		- 55	125	°C
operating free-air temperature,	A	0	70	°C

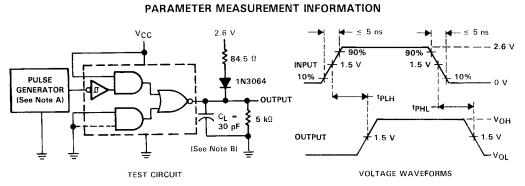
electrical characteristics over recommended operating free-air temperature, VCC = 4.75 V to 5.25 V (unless otherwise noted)

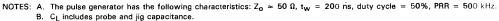
	PARAMETER		TEST CONDITIONS	MIN	TYP [†] I	MAX	UNIT	
V _{hys} ‡	Hysteresis	R	$V_{CC} = 5 V$, $T_{A} = 25 °C$	0.3	0.6		v	
VIK	Input clamp voltage	A,B, or S	$V_{CC} = 5 V$, $I_{I} = -12 mA$		-	- 1.5	V	
VI(BR)	input breakdown voltage	A,B, or S	$V_{CC} = 5 V$, $h = 10 mA$	5.5			V	
			$V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = - \cdot \mu A$	2.6				
Vон	High-level output voltage		$V_{I(A)} = 0, V_{I(B)} = 0, V_{I(S)} = 2, v,$				v	
•UH	Inginievel output voltage		VI(R) = 1.45 V (see Note 3),	2.6			V I	
			I _{OH} = −500 μA	1				
			$V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $i_{OL} = 16 mA$			0.4		
VoL	Low-level output voltage		$V_{I(A)} = 0, V_{I(B)} = 0, V_{I(S)} = 2 V,$		-		v	
•UL			Vi(R) = 1.45 V (see Note 4),			0.4	v	
			l _{OL} = 16 mA					
ηн	High-level input current	A,B, or S	$V_{I} = 4.5 V$			40	μA	
111	- ingritever inpat carrent	R	$V_{I} = 3.8 V$			170	μΑ	
կլ	Low-level input current	A,B, or S	$V_{I} = 0.4 V, V_{IR} = 0.8 V$	-0.1	-	- 1.6	mA	
los⁵	Short-circuit output curren	t	$V_{CC} = 5 V$, $T_{A} = 25 °C$	-50		100	mΑ	
Іссн	High-level supply current		V _{CC} = 5.25 V, All inputs at 0.8 V, Outputs open			72	mA	
ICCL	Low-level supply current		$V_{CC} = 5.25 \text{ V}$, All inputs at 2 V, Outputs open (see Note 5)			100	mA	

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C. [‡]Hysteresis is the difference between the positive-going input threshold voltage, V_{T +}, and the negative-going input threshold voltage, VT-. See Figure 4.

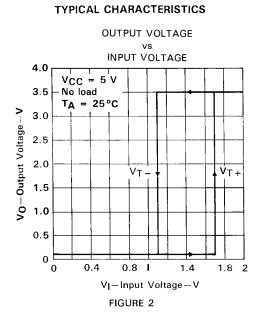
[§]Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

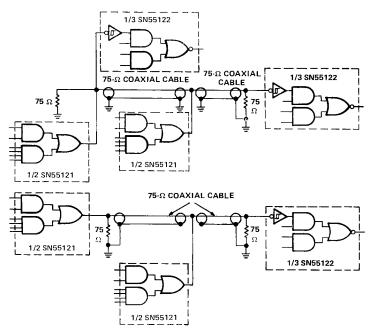
NOTES: 3. The receiver input was high immediately before being reduced to 1.45 V.

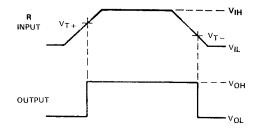

4. The receiver input was low immediately before being increased to 1.45 V.


5. For SN55122, V_{CC} = 5.5 V

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$


PARAMETER	TEST CONFILMINS	MIN	түр	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output from R input	See Figure .		20	30	ns
tpHL Propagation delay time, high-to-low-level output from R input	See Figure 1		20	30	ns




TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN55122, SN75122 TRIPLE LINE-RECEIVERS

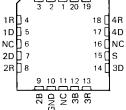
APPLICATION INFORMATION

The high gain and built-in hysteresis of the SN55122 and SN75122 line receivers enable them to be used as Schmitt triggers in squaring pulses.

FIGURE 4. PULSE SQUARING

D1663, SEPTEMBER 1973-REVISED SEPTEMBER 1986

- Single 5-V Supply
- High-Input-Impedance, High-Threshold Receivers
- Common Driver Strobe
- TTL-Compatible Driver and Strobe Inputs with Clamp Diodes
- High-Speed Operation
- 100-mA Open-Collector Driver Outputs
- Four Independent Channels
- TTL-Compatible Receiver Output


description

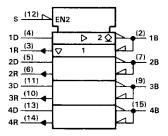
The SN55138 and SN75138 quad bus transceivers are designed for two-way data communication over single-ended transmission lines. Each of the four identical channels consists of a driver with TTL inputs and a receiver with a TTL output. The driver open-collector output is designed to handle loads of up to 100 mA open-collector. The receiver input is internally connected to the driver output, and has a high impedance to minimize loading of the transmission line. Because of the high driver-output current and the high receiver-input impedance, a very large number (typically hundreds) of transceivers may be connected to a single data bus.

The receiver design also features a threshold of 2.3 V (typical), providing a wider noise margin than would be possible with a receiver having the usual TTL threshold. A strobe turns off all drivers (high impedance) but does not affect receiver operation. These circuits are designed for operation from a single 5-V supply and include a provision to minimize loading of the data bus when the power-supply voltage is zero.

The SN55138 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN75138 is characterized for operation from 0°C to 70°C.

SN55138 J PACKAGE SN75138 D, J, OR N PACKAGE (TOP VIEW)
$ \begin{array}{c} \text{GND} \begin{bmatrix} 1 \\ 16 \end{bmatrix} \text{V}_{\text{CC}} \\ 18 \\ 2 \\ 15 \end{bmatrix} 48 \\ 1R \\ 3 \\ 14 \end{bmatrix} 4R \\ 10 \\ 4 \\ 13 \end{bmatrix} 44 \\ 20 \\ 5 \\ 12 \\ 5 \\ 2R \\ 6 \\ 11 \\ 3D \\ 28 \\ 7 \\ 10 \\ 3R \\ \text{GND} \\ \begin{bmatrix} 8 \\ 9 \end{bmatrix} 38 \\ \end{array} $
SN55138 FK PACKAGE (TOP VIEW)
$\begin{array}{c} \begin{array}{c} 0 \\ m \\ m \\ 0 \\ m $

NC-No internal connection

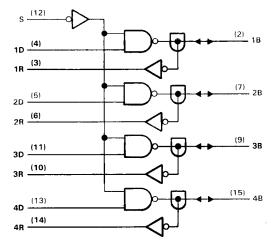

FUNCTION TABLE (TRANSMITTING)

FUNCTION TABLE (RECEIVING)

INP	UTS	OUT	OUTPUTS		INPUTS		rs	OUTPUT
S	D	В	R		S	в	D	R
L	Н	L	н		н	н	х	L
L	L	н	L.		н	L	х	н

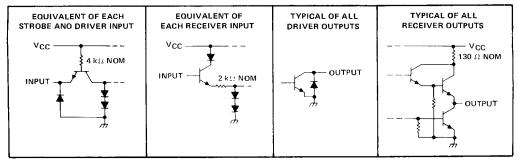
H = high level, L = low level, X = irrelevant

logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

Copyright © 1986, Texas Instruments Incorporated



logic diagram (positive logic)

Pin numbers showns are for D, J, and N packages

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55138	SN75138	UNIT	
Supply voltage, V _{CC} (see Note 1)	7	7	l v	
Input voltage	•	5.5	v	
Driver off-state output voltage	,	7	V	
Low-level output current into the driver output	150	150	mA	
Continuous total power dissipation (see Note 2)	See Dissi	See Dissipation Rating Table		
Operating free-air temperature range	- 55 to 125	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		260	°C	
Case temperature for 60 seconds: FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package		300	°C	

NOTES: 1. All voltage values are with respect to both ground terminals connected together.

2. In the FK and J packages, SN55138 chips are alloy mounted and SN75138 chips are glass mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55138)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75138)	1025 mW	8.2 mW/°C	656 mW	-
N	1150 mW	9.2 mW/°C	736 mW	_

DISSIPATION RATING TABLE

recommended operating conditions

		:	SN5513	8	SN75138			
		MIN	NOM	MAX	MIL	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	÷./5	5	5.25	V
like to al include a Al	Driver or strobe	2			2			v
High-level input voltage, VIH	Receiver	3.2			2.9			v
	Driver or strobe			0.8			0.8	
Low-level input voltage, VIL	Receiver			1.5			0.8 1.8	v
High-level output current, IOH	Receiver output	1		-400			-400	μA
	Driver output	100				100		
Low-level output current, IOL	Receiver output			16			16	mA
Operating free-air temperature, TA		- 55		125	0		70	°C

PARAMETER		TEST CONDITIONS [†]		1138			SN75138				
			TEST CONDITIONS'		MIN	тп ^{,‡}	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	Driver or strobe	V _{CC} = MIN,	$I_{I} = -12 \text{ mA}$			- 1.5			- 1.5	v
∨он	High-level output voltage	Receiver	$V_{CC} = MIN,$ $V_{IL(R)} = V_{IL} max,$	$V_{IH(S)} = 2 V,$ $I_{OH} = -400 \ \mu A$	2.4	3.5		2.4	3.5		v
Vol	Low-level output voltage	Driver	V _{CC} MIN, V _{IL(S)} = 0.8 V,	V _{IH(D)} = 2 V, I _{OL} = 100 mA			0.45			0.45	v
		Receiver	$V_{CC} = MIN,$ $V_{IH(S)} = 2 V,$	$V_{IH(R)} = V_{IH} min,$ $I_{OL} = 16 mA$			04			0.4	V
ų	Input current at maximum input voltage	Driver or strobe	V _{CC} = MAX,	VI = VCC			1			1	mA
	High-level	Driver or strobe	$V_{CC} = MAX,$	VI = 2.4 V			40			40	
Чн	input current	Receiver	V _{CC} = 5 V, V _{I(S)} = 2 V	$V_{I(R)} = 4.5 V,$		25	300		25	300	μA
	Low-level	Driver or strobe	$V_{CC} = MAX,$	VI = 0.4 V		- 1	- 1.6		- 1	- 1.6	mA
կլ	Input current	Receiver	$V_{CC} = MAX,$ $V_{I(S)} = 2 V$	$V_{I(R)} = 0.45 V_{,}$			- 50			- 50	μA
	Input current with power off	Receiver	$V_{CC} = 0,$	VI = 4.5 V		1.1	1.5		1.1	1.5	mA
lo s	Short-circuit output current [§]	Receiver	V _{CC} = MAX		- 20		- 55	- 18		- 55	mA
		All driver outputs low	$V_{CC} = MAX,$ $V_{I(S)} = 0.8 V$	$V_{\dagger (D)} = 2 V,$		50	65		50	65	
1cc	Supply current	All driver outputs high	$V_{CC} = MAX,$ $V_{I(S)} = 2 V,$ Receiver outputs of	V _{I(R)} = 3.5 V,		42	55		42	55	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. Parenthetical letters D, R, and S used with VI refer to the driver input, receiver input, and strobe input, respectively.

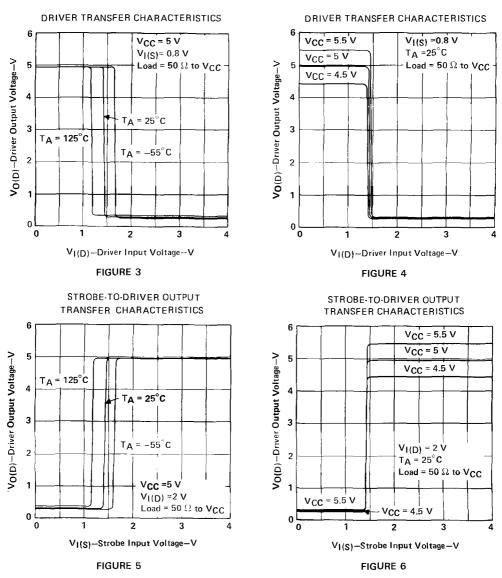
[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$. [§]Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH	Driver	Driver Driver			15	24	
tPHL			$C_{L} = 50 pF, R_{L} = 50 \Omega,$		14	24	ns
tPLH	Strobe		See Figure 1		18	28	
^t PHL	Strobe				22	32	n\$
^t PLH	Receiver	Receiver	$C_{L} = 15 \text{ pF}, R_{L} = 400 \Omega,$		7	15	
L TPHL	Aucuiver	Heceiver	See Figure 2		8	15	ns

[†]tpLH = propagation delay time, low-to-high-level output

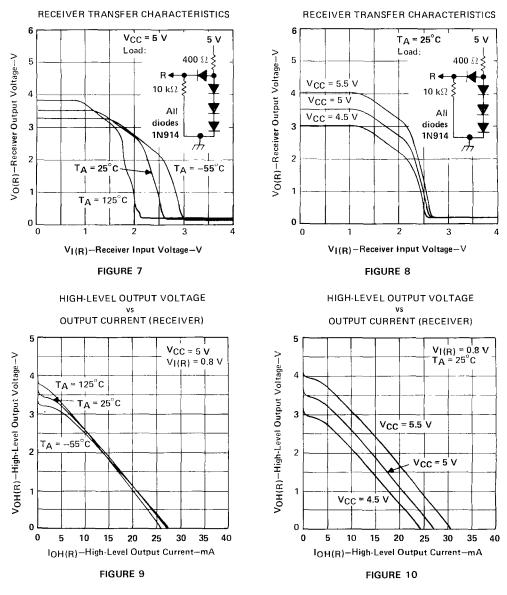
tpHL = propagation delay time, high-to-low-level output.



TEST Vcc Vcc POINT Rı ₹_{вl} FROM OUTPUT TEST FROM OUTPUT UNDER TEST POINT UNDER TEST . °CL c_{L} (See Note C) (See Note B) (See Note B) DRIVER • 3 V • 4 V INPUT RECEIVER 2.5 V (See Note O) 1.5 V 1.5 V 2.5 V INPUT STROBE • 0 V - 0 V INPUT ^tPLH ^tPLH - tPHL ^tPHL 1 ۷он - voн DRIVER RECEIVER 2.5 V 1.5 V2.5 V 1.5 V OUTPUT OUTPUT VOL VOL VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS FIGURE 2. PROPAGATION DELAY TIMES FIGURE 1. PROPAGATION DELAY TIMES FROM DATA AND STROBE INPUTS FROM RECEIVER INPUT

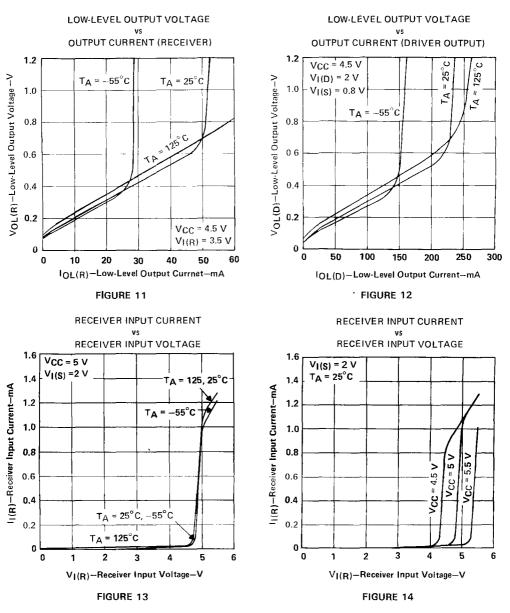
PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Input pulses are supplied by generators having the following characteristics: $t_W = 100$ ns, PRR ≤ 1 MHz, $t_f \leq 10$ ns, $t_f \leq 10$ ns, $Z_0 \approx 50 \ \Omega$.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or 1N3064.
 - O. When testing driver input (solid line) strobe must be low; when testing strobe input (dashed line) driver input must be high.



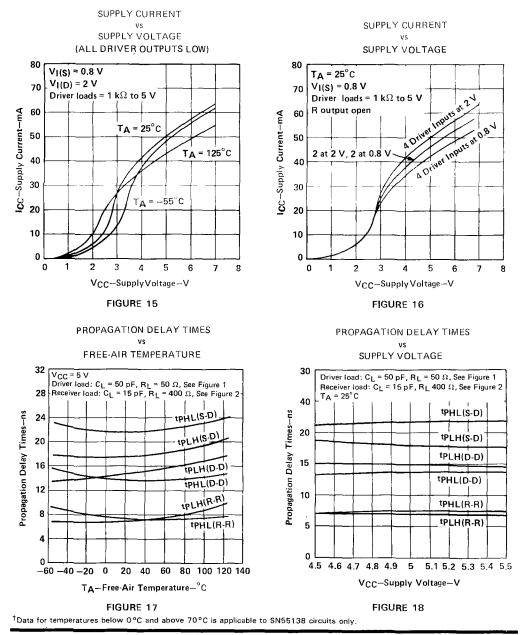
TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0 °C and above 70 °C is applicable to SN55138 circuits only.



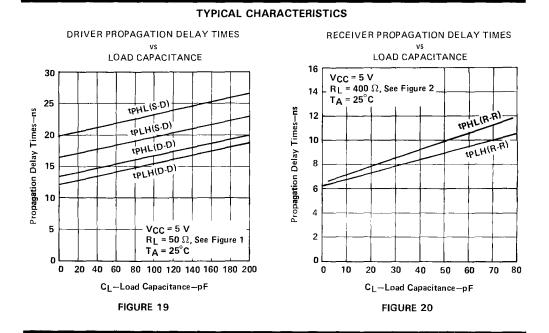
TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0 °C and above 70 °C is applicable to SN55138 circuits only.



TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0 °C and above 70 °C is applicable to SN55138 circuits only.



TYPICAL CHARACTERISTICS[†]

SN55138, SN75138 QUADRUPLE BUS TRANSCEIVERS

APPLICATION INFORMATION

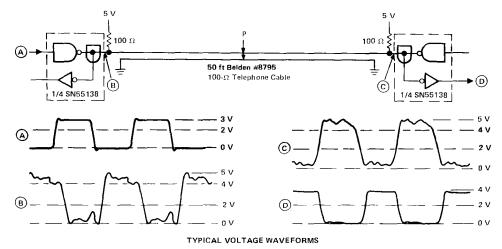
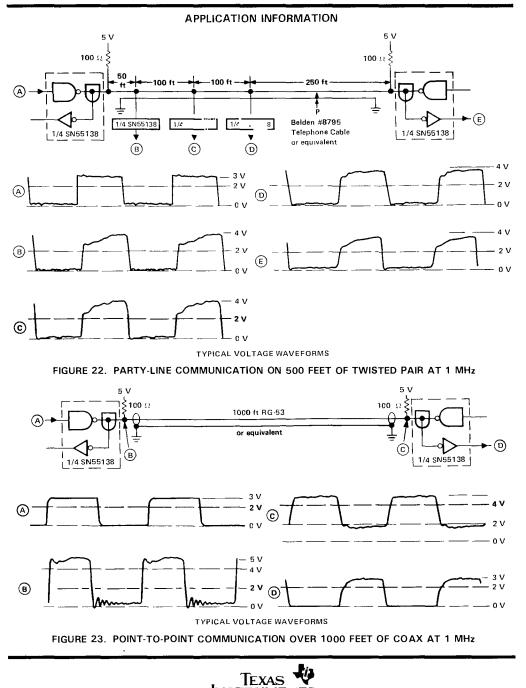
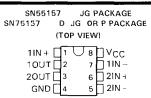



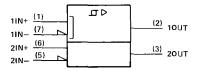
FIGURE 21. POINT-TO-POINT COMMUNICATION OVER 50 FEET OF TWISTED PAIR AT 5 MHz

SN55138, SN75138 QUADRUPLE BUS TRANSCEIVERS

D2300, SEPTEMBER 1980-REVISED SEPTEMBER 1986

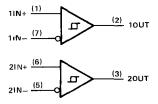

- Meets EIA Standards RS-422-A and RS-423-A
- Meets Federal Standards 1020 and 1030
- Operates from Single 5-V Power Supply
- Wide Common-Mode Voltage Range
- High Input Impedance
- TTL-Compatible Outputs
- High-Speed Schottky Circuitry
- 8-Pin Duat-In-Line Package
- Similar to uA9637AC except for Corner VCC and Ground Pin Positions

description


The SN75157 is a dual differential line receiver designed to meet EIA standards RS-422-A and RS-423-A and Federal Standards 1020 and 1030. It utilizes Schottky circuitry and has TTLcompatible outputs The inputs are compatible with either a single-ended or a differential-line system. The device operates from a single 5-volt power supply and is supplied in an 8-pin dual-inline package and small outline package

The SN55157 is characterized over the full military temperature range of -55 °C to 125 °C The SN75157 is characterized for operation from 0 °C to 70 °C

schematics of inputs and outputs



logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12$

logic diagram

PRODUCTION DATA documents contoin information current as of publication date Products conform to specifications per the terms of Texas Instruments standard worranty Praduction processing does not nocessarily include testing of all parameters

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Differential input voltage (see Note 2)	
Output voltage (see Note 1)	
Low-level output current	50 mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3):	
SN551 5 7 JG package	1050 mW
SN75157 D package	725 mW
JG package	825 mW
P package	1000 mW
Operating free-air temperature range: SN55157	
SN75157	
Storage temperature range	5°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds JG package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D or P package	260°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

Differential input voltage is measured at the nonnverting input with respect to the corresponding inverting input.
 For operation above 25°C free-air temperature, derate the SN55157 JG package to 672 mW at 70°C at the rate of 8.4 mW/°C, the SN75157 JG package to 528 mW at 70°C at the rate of 6.6 mW/°C, the D package to 464 mW at 70°C at the rate of 5.8 mW/°C, and the P package to 640 mW at 70°C at the rate of 8.0 mW/°C. In the JG package, SN55157 chips are alloy mounted and SN75157 chips are glass mounted.

recommended operating conditions

		[:::n	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.10	5	5.25	V
Common-mode input voltage, VIC				±7	V
	SN55157	- 55	25	125	°c
Operating free-air temperature, T _A	SN75157	0	25	70	

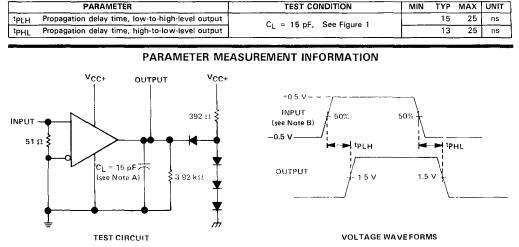
electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS		TYP [†] se Note		UNIT
				-0.2		0.2	v
VT Threshold voltage (VT + and VT -)		See Note 5		-0.4	0.4		1 °
Vhys	Hysteresis (VT + - VT -)	<u> </u>			70		m٧
VOH	High-level output voltage	$V_{ID} = 0.2 V,$	$l_0 = -1 mA$	2.5	3.5		V
VOL	Low-level output voltage	$V_{ID} = -0.2 V,$	lo = 20 mA		0.35	0.5	v
1.		$V_{CC} = 0$ to 5.5 V,	VI = 10 V		1.1	3.25	mA
ų.	Input current	See Note 6	$V_{I} = -10 V$	_	-1.6	-3.25	
los	Short-circuit output current [‡]	V ₀ = 0,	$V_{1D} = 0.2 V$	- 40	- 75	- 100	mA
Icc	Supply current	$V_{ID} = -0.5 V,$	No load		35	50	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[‡]Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

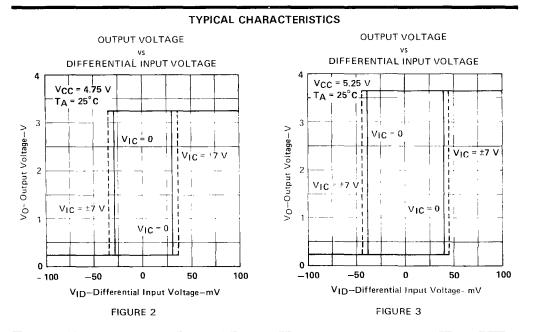
NOTES: 4. The algebraic convention, where the less-positive (more-negative) limit is designated as minimum, is used in this data sheet for threshold levels only.


5. The expanded threshold parameter is tested with a 500- Ω resistor in series with each input.

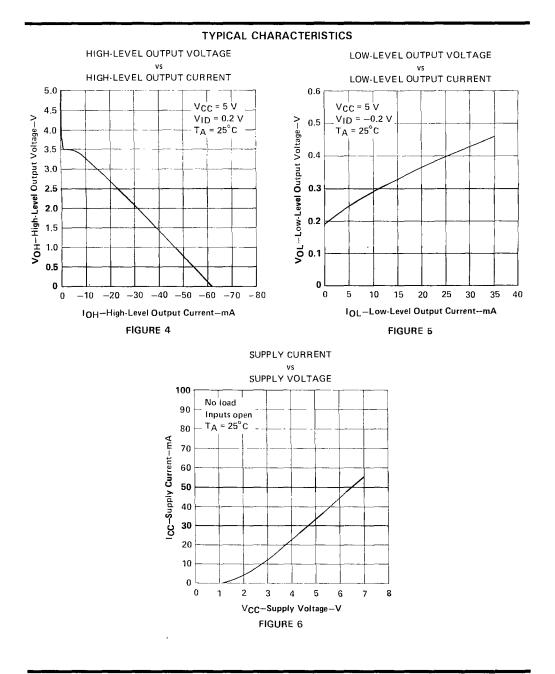
6. The input not under test is grounded.

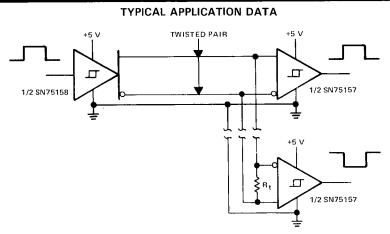
MIN

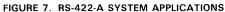
TYP


UNIT

NOTES: A. CL includes probe and jig capacitance.


B. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 5 MHz, duty cycle = 50%.

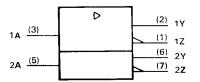




switching characteristics, VCC = 5 V, TA = 25°C

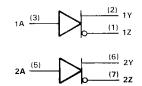
SN75157 DUAL DIFFERENTIAL LINE RECEIVER

D2292, JANUARY 1977-REVISED SEPTEMBER 1986

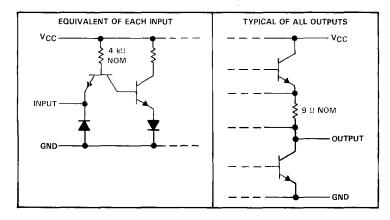

- Meets EIA Standard RS-422-A SN55158 . . . JG PACKAGE SN75158 . . . D, JG, OR P PACKAGE Single 5-V Supply (TOP VIEW) **Balanced-Line Operation** 1Z 🗍 8 D vcc 1Y [2 7 2Z **TTL-Compatible** 1A 🗍 3 6 🗌 2 Y High Output Impedance in Power-Off GND [5 🗌 2A 4 Condition **High-Current Active-Pullup Outputs**
- Short-Circuit Protection
- Dual Channels
- Input Clamp Diodes

description

The SN55158 and SN75158 are dual complementary-output line drivers designed to satisfy the requirements set by the EIA Standard RS-422-A interface specifications. The outputs provide complementary signals with high-current capability for driving balanced lines, such as twisted pair, at normal line impedance without high power dissipation. The output stages are TTL totem-pole outputs providing a high-impedance state in the power-off condition.


The SN55158 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75158 is characterized for operation from 0 °C to 70 °C.

logic symbol[†]


[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range: SN55158
SN75158
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260 °C

NOTES: 1. All voltage values except differential output voltage VOD are with respect to network ground terminal. VOD is at the Y output with respect to the Z output.

2. In the JG package, SN55158 chips are alloy mounted and SN75158 chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	N/A
JG (SN55158)	1050 mW	8.4 mW/°C	672 mW	210 mW
JG (SN75158)	825 mW	6.6 mW/°C	528 mW	N/A
Р	1000 mW	8.0 mW/°C	640 mW	N/A

recommended operating conditions

		SN55158						
		MIN	Need	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	v
High-level input voltage, VIH		2			2			v
Low-level input voltage, VIL	••••••			0.8			0.8	v
High-level output current, IOH	`			- 40			- 40	mA
Low-level output current, IOL				40			40	mA
Operating free-air temperature, TA		- 55		125	0		70	°C

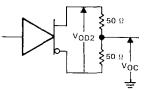
PARAMETER		TEO	TEST CONDITIONS [†]		:	1. 15	8	1	SN7515	8	
		TES	I CONDI	HONS	MIN	MIN		MIN TYP [‡]		MAX	
VIK	Input clamp voltage	V _{CC} = MI	N, I _I =	= - 12 mA		-0.9	- 1.5		-0.9	-1.5	V
∨он	High-level output voltage	$V_{CC} = MI$ $V_{IH} = 2 V$		= 0.8 V, H =40 mA	2	3.0		2.4	3.0		v
V _{OL}	Low-level output voltage	V _{CC} = MI V _{IH} = 2 V		= 0.8 V, = 40 mA		0.2	0.4		0.2	0.4	v
VOD1	Differential output voltage	$V_{CC} = MA$	X, IO	= 0		3.5	2VOD2		3.5	2VOD2	V
V002	Oifferential output voltage	$V_{CC} = MI$	N	ļ	2	3.0		2	3.0		V
Δ VOD	Change in magnitude of differential output voltage [§]	V _{CC} ≈ MI	N	$-R_{\rm I} = 100 \Omega,$		±0.02	±0.4		± D.02	±0.4	v
	Common-mode output voltage	$V_{CC} = M/$	4X	See Figure 1		1.9	3		1.8	3	l v
Voc	Common-mode output voltage	V _{CC} = MI				1.4	3		1.5	3	Ľ
∆ Voc	Change in magnitude of common-mode output voltage §	V _{CC} = MI	N or MA	×		±0.01	±0.4	ļ	± 0.01	±0.4	v
			$V_0 = 6$	S V		0.1	100		0.1	100	
ю	Output current with power off	$V_{CC} = 0$	Vo = -	-0.25 V		- 0.1	- 100		-0.1	- 100	μA
			V0 = ·	– D.25 to 6 V			± 100			±100	
lj	Input current at maximum input voltage	V _{CC} = M	AX, VI	= 5.5 V			1			1	mA
ін	High-level input current	V _{CC} = M	AX, VI	= 2.4 V			4D			40	μA
ŧι	Low-level input current	$V_{CC} = M_{i}$		= 0.4 V		- 1	- 1.6		- 1	- 1.6	mA
los	Short-circuit output current#	$V_{CC} = M_i$	٩X		- 40	- 90	- 150	- 40	- 90	- 150	mA
lcc	Supply current (both drivers)	V _{CC} = M/ No load,		outs grounded, = 25 °C		37	50		37	50	mA

electrical characteristics over operating free-air temperature range (unless otherwise noted)

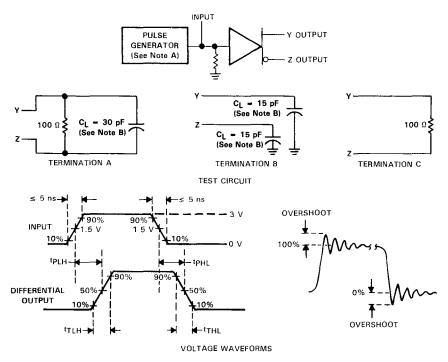
[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

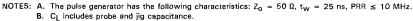
[‡] All typical values are at V_{CC} = 5 V and T_A = 25 °C except for V_{OC}, for which V_{CC} is as stated under test conditions.

 $\frac{1}{2}$ $\frac{1}$


In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. #Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

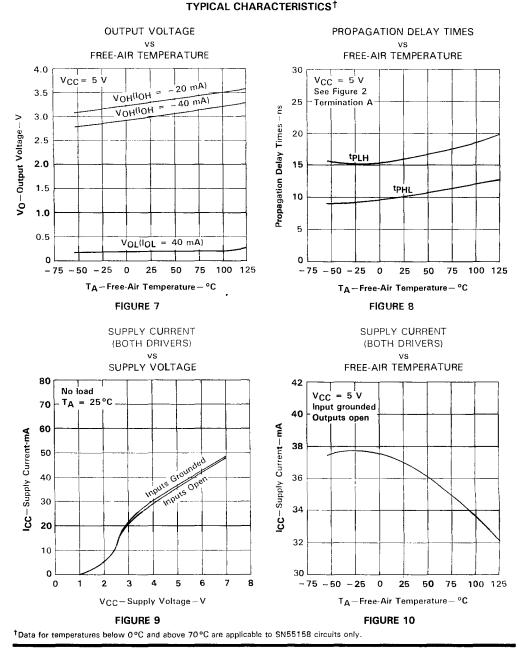
switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$


DADAMETED		TEST SN55158		8	9	SN75158			
	PARAMETER	CONDITIONS	[.:r.]	· . ·]		[: r.]	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	See Figure 2,	T -	16	ນ	ſ	16	25	ns
t PHL	Propagation delay time, high-to-low-level output	Termination A		10	20		10	20	ns
^t PLH	Propagation delay time, low-to-high-level output	See Figure 2,		13	20		13	20	ns
tPHL	Propagation delay time, high-to-low-level output	Termination B		9	15		9	15	ns
^t TLH	Transition time, low-to-high-level output	See Figure 2,	1	4	20	·	4	20	ns
tTHL	Transition time, high-to-low-level output	Termination A		4	20		4	20	ns
	Quere hand for the	See Figure 2,			10			10	%
	Overshoot factor	Termination C			10			10	70



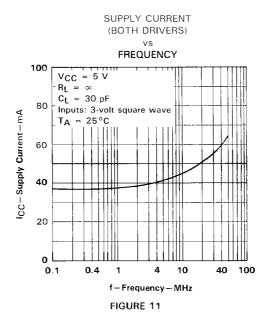
PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES



OUTPUT VOLTAGE OUTPUT VOLTAGE VS VS DATA INPUT VOLTAGE DATA INPUT VOLTAGE 6 6 No load Vcc = 5'V TA = 25°C No load 5 5 $T_{A} = 125 °C$ V₀-Output Voltage-V VO-Output Voltage-V $V_{CC} = 5.5 V$ 4 4 $V_{CC} = 5 V$ 3 3 $V_{CC} = 4.5 \overline{V}$ $T_A = 25^{\circ}C$ 2 2 τ_Α = – 55°C 1 1 0 0 0 2 1 3 4 0 1 2 3 4 VI-Data Input Voltage-V Vi-Data input Voltage-V FIGURE 3 FIGURE 4 HIGH-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE VS VS OUTPUT CURRENT OUTPUT CURRENT 0.4 5 TA = 25°C = 25°C ТΑ $V_{CC} = 5.5 V$ $V_{CC} = 5.5 V$ 4 VoH-Output Voltage-V VOL-Output Voltage-V 0.3 5 V 'cc = 3 Vcc = 4.5 V 0.2 2 = 4.5 V Vcc 0.1 1 0 0 0 10 40 50 60 70 80 20 30 0 - 20 -40 - 60 -80 -100 -120 IOL-Output Current-mA IOH-Output Current-mA FIGURE 5 FIGURE 6

TYPICAL CHARACTERISTICS[†]

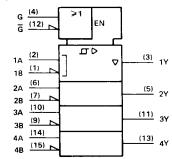

 $^\dagger\textsc{Data}$ for temperatures below 0 °C and above 70 °C are applicable to SN55158 circuits only.

F

DECEMBER 1988

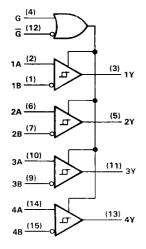
- Meets EIA Standards RS-422-A, RS-423-A, and RS-485
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range . . . - 12 to 12 V
- Input Sensitivity . . . ± 200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5-Volt Supply
- Low Power Requirements
- Plug-In Replacement for AM26LS32

description,


The SN55173 is a monolithic quadruple differential line receiver with three-state outputs. It is designed to meet the requirements of EIA Standards RS-422-A, RS-423-A, and RS-485 and several CCITT recommendations. The device is optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. The four receivers have an ORed pair of enables in common. Either G being high or G being low enables all of the receivers. The device features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ±200 mV over a common-mode input voltage range of -12 to 12 V. The SN55173 is designed for optimum performance when used with the SN55172 or SN55174 quadruple differential line drivers.

The SN55173 is characterized for operation from -55 °C to 125 °C.

		KAGE VIEW)		
1E 1A 1Y 2Y 2A 2E GND		16 15 14 13 12 11 10 9	V _{CC} 4B 4A 4Y G 3Y 3A 3B	
	(TOP	CKAGE VIEW)		
	1 A 1 B 1	A V N	2	
(1 20 19		
1Y 0 4			18	4A
G 5			17 [16 [4Y
			15[4A 4Y NC G
1Y 4 G 5 NC 6 2Y 7 2A 8			14	ЗY
	9 10		3	
	2B GND	3B NC	5	


NC-No internal connection

logic symbol

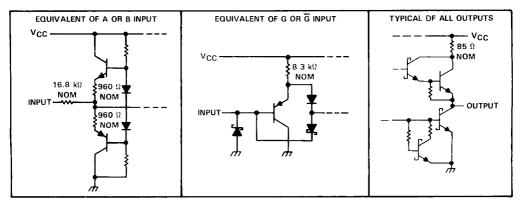
logic diagram (positive logic)

FUNCTION TABLE (EACH RECEIVER)

DIFFERENTIAL	ENABLES		OUTPUT
A-B	G	G	Y
	н	х	н
$V_{iD} \ge 0.2 V$	х	L	н
	н	x	?
$-0.2 V < V_{1D} < 0.2 V$	х	L	?
	н	x	L
$V_{ID} \leq -0.2 V$	х	L	L
Х	L	н	Z

.

H = high level


L = low level

X = irrelevant

? = indeterminate

Z = high-impedance (off)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage, A or B inputs ±25 V
Differential input voltage (see Note 2) ± 25 V
Enable input voltage
Low-level output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3) 1375 mW
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

3. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/ °C.

recommended operating conditions

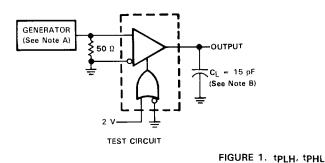
	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	v
 non-mode input voltage, VIC 			±12	v
······································			±12	v
High-level input voltage, V _{1H}	2			V
Low-level input voltage, VIL				v
High-ievel output current, IOH				μA
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	- 55		125	°C

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

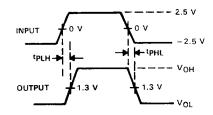
	PARAMETER	TEST CONC	DITIONS	MIN	TYPT	MAX	UNIT
VťH	rential-input high-threshold voltage	$V_0 = 2.7 V,$	$l_0 = -0.4 \text{ mA}$			0.2	V
VTL	Differential-input low-threshold voltage	V _O = 0.5 V,	l ₀ = 16 mA	-0.2‡			V
V _{hvs}	Hysteresis §				50		mV
VIK	Enable-input clamp voltage	lj = -18 mA				- 1.5	v
Vон	High-level output voltage	VID = 200 mV,	I _{OH} = -400 μA	2.5			V
VOL	Low-level output voltage	VID ≈ -200 mV,	i _{OL} = 8 mA		_	0.45	v
			I _{OL} = 16 mA				v
loz	High-impedance-state output current	$V_0 = 0.4 \text{ V to } 2.4 \text{ V}$				± 20	μA
I.	Line input current	Other input at 0 V,	VI = 12 V			1	mA
կ		See Note 4	$V_{ } = -7 V$			-0.8	IIIA
hн	High-level enable-input current	V _{IH} = 2.7 V				20	μA
机	Low-level enable-input current	V _{IL} = 0.4 V				- 100	μA
los	Short-circuit output current			- 15		- 85	mA
lcc	Supply current	Outputs disabled				70	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

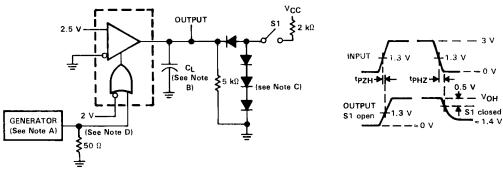
⁺The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for threshold voltage levels only.


⁵Hysteresis is the difference between the positive-going input threshold voltage, V_{T+} , and the negative-going input threshold voltage, V_{T-} . See Figure 4.

Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 4: Refer to EIA Standard RS-422-A and RS-423-A for exact conditions.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST COM	NDITIONS	MIN	ТҮР	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{1D} = -1.5 V$ to 1	1.5 V, CL = 15 pF,		20	35	ns
tPHL	Propagation delay time, high-to-low-level output	See Figure 1			22	35	ns
^t PZH	Output enable time to high level	CL = 15 pF,	See Figure 2		17	22	ns
^t PZL	Output enable time to low level	CL = 15 ρF,	See Figure 3		20	25	ns
^t PHZ	Output disable time from high level	CL = 5 pF,	See Figure 2		21	30	ns
^t PLZ	Output disable time from low level	С <u>L</u> ≕ 5 рF,	See Figure 3		30	40	ns



PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

TEST CIRCUIT

VOLTAGE WAVEFORMS

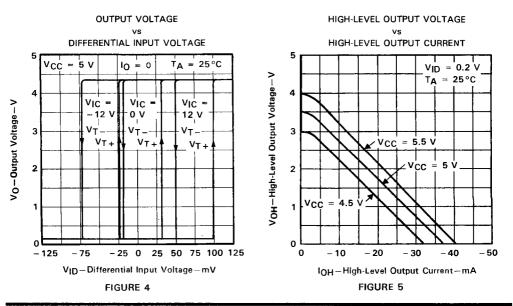
FIGURE 2. tPHZ, tPZH

NOTES: A. The input pulse is supplied by a generator having the following cheracteristics: PRR \leq 1 MHz, duty cycle = 50%, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_{out} = 50 \Omega$.

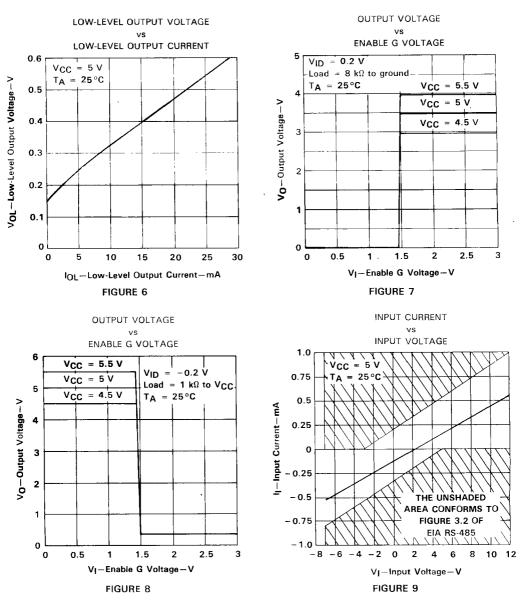
- B. CL includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.
- D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

Vcc --3V r $\mathbf{2} \mathbf{k} \Omega$ -2.5 V INPUT 1 1.3 V οv †PZL 🔶 CL [†]PLZ S2 open (See Note ≥5 ks S2 closed B) OUTPUT 1.3 V ≈ 1.4 V VOL 2 ١. GENERATOR 0 5 V (See Note A) **\$** 50 Ω **S2** TEST CIRCUIT VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION


FIGURE 3. tPZL, tPLZ

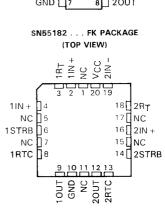
NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .


- B. CL includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.

D. To test the active-low enable $\overline{G},$ ground G and apply an inverted input waveform to $\overline{G}.$

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

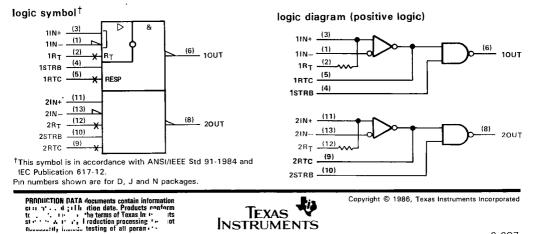

D1292, OCTOBER 1972-REVISED SEPTEMBER 1986

Single 5-V SupplyDifferential Line Operation	SN55182 J PACKAGE SN75182 D, J, OR N PACKAGE (TOP VIEW)
Dual Channels	
TTL Compatibility	1R⊤ []2 13] 2IN – 1IN + []3 12] 2R⊤
 ± 15 V Common-Mode Input Voltage Range 	1STRB 4 11 2IN +
• ±15 V Differential Input Voltage Range	1RTC 5 10 2STRB
Individual Channel Strobes	
 Built-In Optional Line-Termination Resistor 	
Individual Frequency Response Controls	SN55182 FK PACKAGE
 Designed for Use With Dual Differential Drivers SN55183 and SN75183 	(TOP VIEW) $\frac{1}{2} \frac{1}{2} \frac$

Designed to Be Interchangeable With National Semiconductor DS7820A and DS8820A

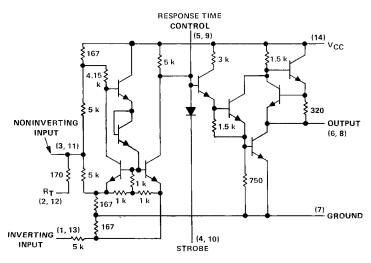
description

The SN55182 and SN75182 dual differential line receivers are designed to sense small differential signals in the presence of large common-mode noise. These devices give TTL-compatible output signals as a function of the polarity of the differential input voltage. The frequency response of each channel may be easily controlled by a single external capacitor to



NC No internal connection

provide immunity to differential noise spikes. The output goes to a high level when the inputs are opencircuited. A strobe input is provided which, when in the low level, disables the receiver and forces the output to a high level.


The receiver is of monolithic single-chip construction, and both halves of the dual circuits use common power supply and ground terminals.

The SN55182 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN75182 is characterized for operation from 0°C to 70°C.

INSTRUMENTS POST OFFICE BOX 655303 + DALLAS, TEXAS 75265

schematic (each receiver)

FUNCTION TABLE

STROBE	DIFF	Ουτρυτ
L	х	н
н	н	н
н	L	L

L = V_I ≤ V_{IL} max or V_{ID} more negative than V_{TL} max

X = irrelevant

Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55182	SN75182	UNIT	
Supply voltage, VCC1 (see Note 1)	8	8	v	
Common-mode input voltage	±20	± 20	v	
Differential input voltage (see Note 2)	± 20	± 20	v	
Strobe input voltage	8	8	v	
Output sink current	50	50	mA	
Continuous total power dissipation (see Note 3)	See Dissip	See Dissipation Rating Tabl		
Operating free-air temperature range	-55 to 125	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		260	°C	
Case temperature for 60 seconds: FK package	260		°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	°C	

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground terminal.

2. Differential voltage values are at the noninverting terminal with respect to the inverting terminal.

3. In the FK and J packages, SN55182 chips are alloy mounted and SN75182 chips are glass mounted.

in the FK and 5 packages, 5195162 chips are andy mounted and 51975162 chips are glass mounted

DISSIPATION RATING TABLE

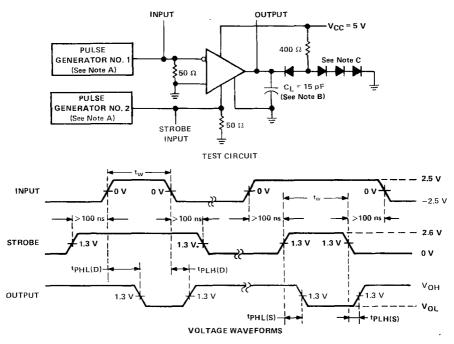
PACKAGE	T _A ≤ 25 °C	DERATING FACTOR	$T_A = 70^{\circ}C$	T _A = 125°C
PACKAGE	POWER RATING	ABOVE TA = 25°C	POWER RATING	POWER RATING
D	950 mW	7.6 mW/°C	608 mW	-
FK	1 3 75 mW	11.0 mW/°C	880 mW	275 mW
J (SN55182)	1 3 75 mW	11.0 mW/°C	880 mW	275 mW
J (SN75182)	1025 mW	8.2 mW/°C	656 mW	-
N	1150 mW	9.2 mW/°C	736 mW	—

recommended operating conditions

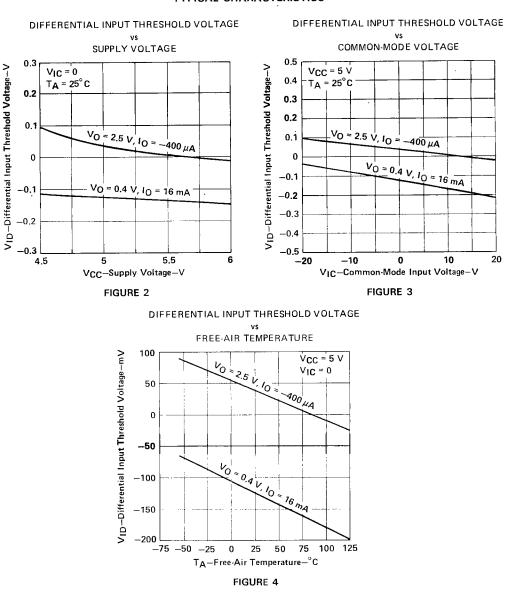
		SN55182			SN75182		
	MIN	NOM	644	MN	1,0M	MA	UNIT
Supply voltage, V _{CC}	4.5	5		4.0	 	ີ ບ.ບ	V
Common-mode input voltage, VIC			±15			±15	V
High-level strobe input voltage, VIH(strobe)	2.1		5.5	2.1		5.5	V
Low-level strobe input voltage, VIL(strobe)	0		0.9	0		0.9	v
High-level output current, IOH			- 400			- 400	μA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	~ 55		125	0		70	°C

electrical characteristics over recommended ranges of VCC, VIC, and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	MIN	түр‡	MAX	UNIT
∨тн	Differential input high-th	reshold voltage	$V_0 = 2.5 V,$	$V_{IC} = -3 V \text{ to } 3 V$			0.5	v
				$V_{IC} = -15 V \text{ to } 15 V$			1	
VTL	Differential input low-threshold voltage			$V_{IC} = -3 V \text{ to } 3 V$			-0.5	l v
•11				$V_{IC} = -15 \vee to 15 \vee to 15$			- 1	<u> </u>
	High-level output voltage			$V_{strobe} = 2.1 V,$	2.5	4.2	5. 5	
VOH			$I_{OH} = -400 \ \mu A$ $V_{ID} = -1 \ V,$	V _{strobe} = 0.4 V,	2.5	4.2	5.5	V
			$i_{OH} = -400 \ \mu A$		2.0	-7.2.		
	Low-level output voltage	· ·	$V_{ID} = -1 V,$	$V_{strobe} = 2.1 V_{strobe}$		0.25	0.4	
VOL			IOL = 16 mA			0.20	0.4	
	Input current	Inverting input	$V_{IC} = 15 V$			3	4.2	
			$V_{IC} = 0$			0	-0.5	mA
			$V_{IC} = -15 V$			- 3	-4.2	
Ц			V _{IC} = 15 V			5	7	
			$V_{IC} = 0$			- 1	-1.4	mA
			$V_{iC} = -15 V$			- 7	-9.8	
ISH	High-level strobe curren	t	V _{strobe} = 5.5 V				5	μA
ISL	Low-level strobe curren		V _{strobe} = 0			- 1	-1.4	mA
		nput resistance Inverting input Noninverting input	•		3.6	5		kΩ
rj	Input resistance				1.8	2.5		kΩ
RT	Line terminating resistan	nce	$T_A = 25 °C$		120	170	2 50	Ω
los	Short-circuit output cur	rent	V _{CC} = 5.5 V,	$V_0 = 0$	- 2.8	-4.5	- 6.7	mA
	Supply current (average per receiver)		$V_{IC} = 15 V$,	$V_{ID} = -1 V$		4.2	6	
1cc			$V_{IC} = 0,$			6.8	10.2	mA
00				$V_{iD} = -1 V$		9.4	14	1

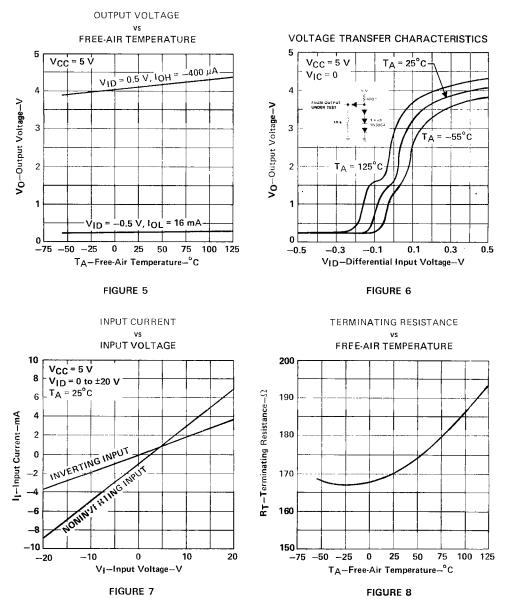

 $^{\dagger} \text{Unless otherwise noted, } V_{\text{strobe}} \geq 2.1 \text{ V or open.}$ $^{\ddagger} \text{All typical values are at } V_{CC}$ = 5 V, V_{IC} = 0, and T_{A} = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$


	PARAMETLIK	HALCHAMDO'S	<u></u>	TYP	MAX	[u .]
^t PLH(D)	Propagation delay time, low-to-high-level output from differential input		1-	18	40	ns
^t PHL(D)	Propagation delay time, high-to-low-level output from differential input	$R_L = 400 \Omega,$ $C_L = 15 pF,$ See Figure 1		31	45	ns
tPLH(S)	Propagation delay time, low-to-high-level output from strobe input			9	30	ns
tPHL(S)	Propagation delay time, high-to-low-level output from strobe input			15	25	ns

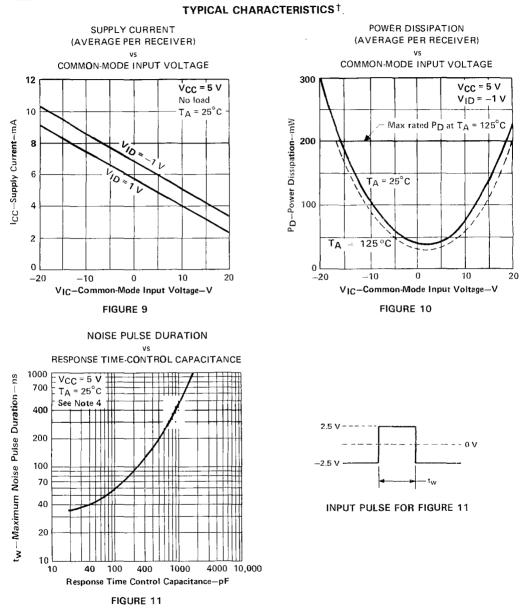
PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \Omega$, $t_f \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$, $t_W = 0.5 \pm 0.1 \mu \text{s}$, PRR $\le 1 \text{ MHz}$. B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.


FIGURE 1. PROPAGATION DELAY TIMES

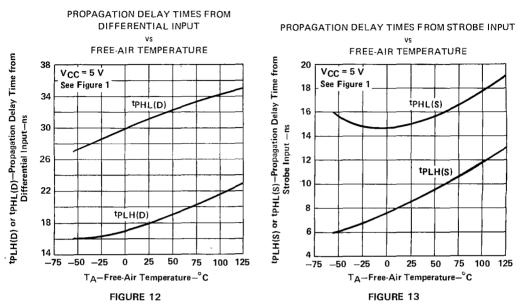
TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0°C and above 70°C are applicable to SN55182 circuits only.



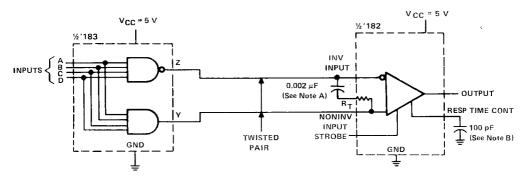
TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0°C and above 70°C are applicable to SN55182 circuits only.



[†]Data for temperatures below 0°C and above 70°C are applicable to SN55182 circuits only.

NOTE 4: Figure 11 shows the maximum duration of the illustrated pulse that can be applied differentially without the output changing from the low to high level.



TYPICAL CHARACTERISTICS[†]

[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55182 circuits only.

APPLICATION INFORMATION

NOTES: A. When the inputs are open circuited, the output will be high. A capacitor may be used for dc isolation of the line-terminating resistor. At the frequency of operation, the impedance of the capacitor should be relatively small.

Example: let
$$f = 5 \text{ MHz}$$

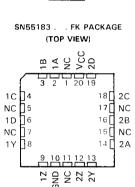
 $C = 0.002 \mu\text{F}$
 $Z_{C} = \frac{1}{2\pi\text{f}C} = \frac{1}{2\pi (5 \times 10^{6}) (0.002 \times 10^{-6})}$
 $Z_{C} = 16 \Omega$

B. Use of a capacitor to control response time is optional.

FIGURE 14. TRANSMISSION OF DIGITAL DATA OVER TWISTED-PAIR LINE

1 A strategy of the second s second s Second secon second sec 1. 1. 1. A Rest Provide the Control of Control (1997) and the Control of C

SN55183, SN75183 DUAL DIFFERENTIAL LINE DRIVERS


D1292, OCTOBER 1972-REVISED SEPTEMBER 1986

Single 5-V SupplyDifferential Line Operation	SN55183 J PACKAGE SN75183 D, J, OR N PACKAGE (TOP VIEW)
Dual Channels	
TTL Compatibility	1B 2 13 2D 1C 3 12 2C
Short-Circuit Protection of Outputs	1C [] 3 12 [] 2C 1D [] 4 11 [] 2B
 Output Clamp Diodes to Terminate Line Transients 	1Y []5 10] 2A 1Z []6 9] 2Y GND []7 8] 22
High-Current Outputs	
Quad Inputs	SN55183 FK PACKAGE
 Single-Ended or Differential AND/NAND Outputs 	(TOP VIEW) ပ
 Designed for Use With Dual Differential Drivers SN55182 and SN75182 	

 Designed to Be Interchangeable With National Semiconductor DS7830 and DS8830

description

The SN55183 and SN75183 dual differential line drivers are designed to provide differential output signals with high-current capability for driving balanced lines, such as twisted-pair, at normal line impedances without high power dissipation. These devices may be used as TTL expander/phase splitters, as the output stages are similar to TTL totem-pole outputs.

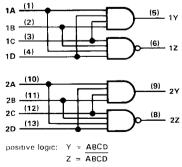


NC-No internal connection

The driver is of monolithic single-chip construction, and both halves of the dual circuits use common power supply and ground terminals.

The SN55183 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75183 is characterized for operation from 0 °C to 70 °C.

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

PROOUCTION DATA documents centain infermation current as of publication date. Products conferm to specifications per the terms of Texas Instruments standard warrenty. Production precessing does net necessarily include testing of all parameters.

logic diagram (positive logic)

Copyright © 1986, Texas Instruments Incorporated

SN55183, SN75183 DUAL DIFFERENTIAL LINE DRIVERS

schematic (each driver) (14) V_{CC} 545 \forall ₹2 k з 9 (6, 8) Z A (1, 10) ۲ ۱ ş 300 ħ в (2, 11) Ť, \forall 545 c (3, 12) Ť, ₹3.2 k ₹4 k 31 D (4, 13) g <u>(5,9)</u> Y 300 2 k (7) GND ħ,

Resistor values shown are nominal and in ohms.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55183	SN75183	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	V
Input voltage	5.5	5.5	V
Duration of output short-circuit (see Note 2)	1	1	S
Continuous total power dissipation (see Note 3)	See [ation Rating T	able
Operating free-air temperature range	-55 to	0 to 70	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds: D or N package		260	°C
Case temperature for 60 seconds: FK package	260		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	°C

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground terminal.

2. Not more than one output should be shorted to ground at a time.

3. In the FK and J packages, SN55183 chips are alloy mounted and SN75183 chips are glass mounted.

DISSIPATION RATING TABLE

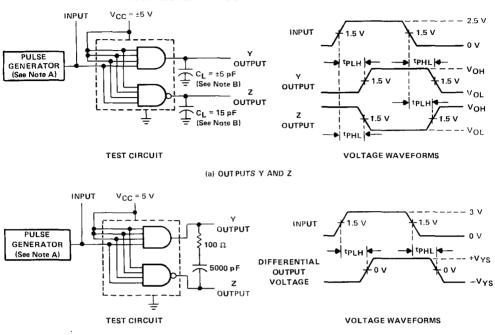
PACKAGE	T _A ≲ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70 °C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55183)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75183)	1025 mW	8.2 mW/°C	656 mW	
N	1150 mW	9.2 mW/°C	736 mW	

recommended operating conditions

	•	SN55183			SN75183			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5 25	V	
High-level input voltage, VIH	2			2		_	V	
Low-level input voltage, VIL			0.8			0.8	V	
High-level output current, IOH			40			- 40	mA	
Low-level output current, IOL			40			40	mA	
Operating free-air temperature, TA	- 55		125	0		70	°C	

SN55183, SN75183 **DUAL DIFFERENTIAL LINE DRIVERS**

electrical characteristics over recommended ranges of VCC and operating free-air temperature (unless otherwise noted)

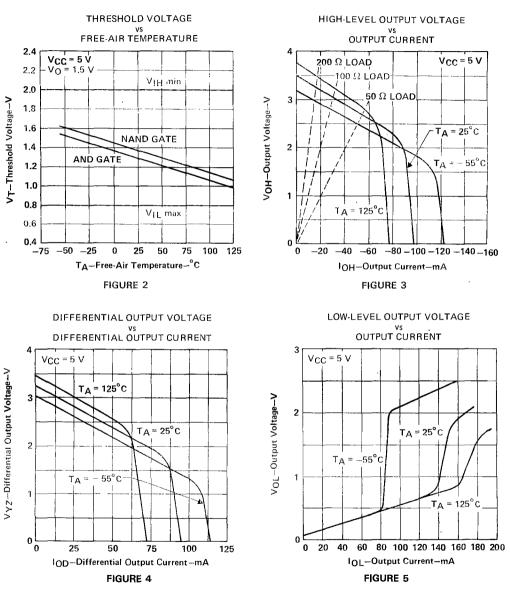

	PARAMETER		TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
	High-level output voltage		V _{1H} = 2 V,	I _{OH} = -0.8 mA	2.4			v
vон	High-level output voltage		V _{IH} ≕ 2 V,	I _{OH} = -40 mA	1.8	3.3		v
VOL	Low-level output voltage		$V_{IL} = 0.8 V_{,}$	l _{OL} = 32 mA		0.2		v
VOL	Low-level output voltage		$V_{IL} = 0.8 V,$	l _{OL} = 40 mA		0.22	0.4	v
voн	High-level output voltage	7	V _{IL} = 0.8 V,	I _{OH} ≕ −0.8 mA	2.4			v
VOH	Tign-level output voltage	(NANO)	$-$ V _I = 0.8 V. O_{II} = -40 mA 1	1.8	3.3		v	
VoL	Low-levael output voltage		V _{IH} ≃ 2 V,	I _{OL} = 32 mA		0.2		v
VOL	Low-levael output voltage		$V_{\rm H} = 2 V_{\rm r}$	$I_{OL} = 40 \text{ mA}$		0.22	Λ4	v
ίн	High-level input current		V _{IH} = 2.4 V				120	μA
łį –	Input current at maximum in	put voltage	V _{IH} = 5.5 V				2	mA
հլ	Low-level input current		$V_{1L} = 0.4 V$				-4.8	mA
los	Short-circuit output current		$V_{CC} = 5 V$,	T _A = 125°C	- 40	- 100	-120	mA
lcc	Supply current (average per	driver)	V _{CC} = 5 V, No load	All inputs at 5 V,		10	18	mA

[†]All typical values are at V_{CC} = 5 V, $T_A = 25$ °C. [‡]Not more than one output should be shorted to ground at a time and duration of the short circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

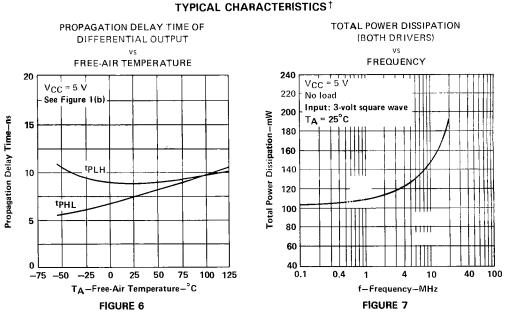
	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tplh	Propagation delay time, low-to-high-level Y output	ANO			8	12	ns
tPHL	Propagation delay time, high-to-low-level Y output	gates	CL = 15 pF, See Figure 1(a)		12	18	ns
^t PLH	Propagation delay time, low-to-high-level Z output	NANO			6	12	ns
^t PHL	Propagation delay time, high-to-low-level Z output	gates			6	8	ns
tplh	Propagation delay time, low-to-high-level differential output	Y output	$Z_L = 100 \Omega$ in series		9	16	ns
tPHL	Propagation delay time high-to-low-level differential output	with respect to Z output	with 5000 pF, See Figure 1(b)		8	16	ns

PARAMETER MEASUREMENT INFORMATION

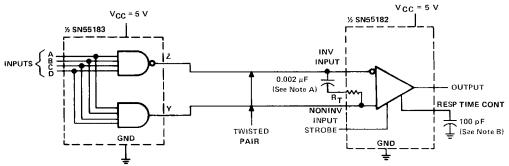

(b) DIFFERENTIAL OUTPUT

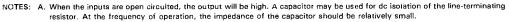
- NOTES: A. The pulse generators have the following characteristics: $Z_0 = 50 \ \Omega$, $t_f \le 10 \ ns$, $t_f \le 10 \ ns$, $t_W = 0.5 \ \mu s$, PRR $\le 1 \ MHz$. B. CL includes probe and jig capacitance.
 - C. Waveforms are monitored on an oscilloscope with $R_{in} \ge 1 M\Omega$.

FIGURE 1. PROPAGATION DELAY TIMES


SN55183, SN75183 DUAL DIFFERENTIAL LINE DRIVERS

TYPICAL CHARACTERISTICS[†]


[†]Data for temperatures below 0°C and above 70°C are applicable to SN55183 circuits only.



[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55183 circuits only.

Example: let f = 5 MHz $C = 0.002 \ \mu\text{F}$ $Z_C = \frac{1}{2\pi fC} = \frac{1}{2\pi (5 \times 10^6) (0.002 \times 10^{-6})}$ $Z_C \approx 16 \ \Omega$

B. Use of a capacitor to control response time is optional.

FIGURE 8. TRANSMISSION OF DIGITAL DATA OVER TWISTED-PAIR LINE

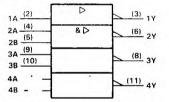
Ì

•

•, i,

te Trai

D1323 SEPTEMBER 1983-BEVISED SEPTEMBER 1986


- Meets Specifications of EIA RS-232-C .
- Designed to Be Interchangeable With Motorola MC1488
- Current-Limited Output: 10 mA Typ
- Power-Off Output Impedance: 300
 Min
- Slew Rate Control by Load Capacitor
- Flexible Supply Voltage Range
- Input Compatible With Most TTL Circuits

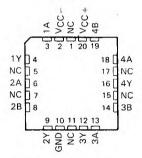
description

The SN55188 and SN75188 are monolithic quadruple line drivers designed to interface data terminal equipment with data communications equipment in conformance with EIA Standard RS-232-C using a diode in series with each supply-voltage terminal as shown under typical applications.

The SN55188 is characterized for operation over the full military temperature range of -55 °C to 125°C. The SN75188 is characterized for operation from 0°C to 70°C.

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


FUNCTION TABLE (DRIVERS 2 THRU 4)

A	в	Y
н	н	L
L	X	н
х	L	н
X H = h L = lo		rel,
X = ir	releva	nt

SN75188 (1		D OR . P VIEW	
Vcc-D	1	U14	DVcc+
1 A 🗌	2	13] 4B
1Y 🗌	3	12	_ 4A
2A 🗌	4	11	_ 4Y
2B 🗌	5	10] 3B
2Y 🗌	6	9] 3A
GND	7	8] 3Y

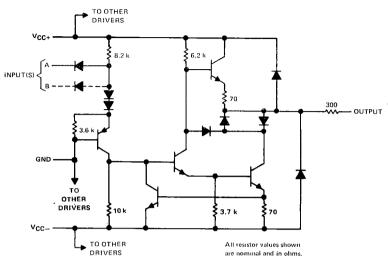
SN55188 . . . J PACKAGE

SN55188 FK CHIP CARRIER PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

 $Y = \overline{AB}$ or $\overline{A} + \overline{B}$ (drivers 2 thru 4)


Pin numbers shown are for D and J packages.

acuments contain information $\begin{array}{cccc} r_{10}, r_{11}, r_{12}, r_{13}, r_{$

Copyright © 1986, Texas Instruments Incorporated

schematic (each driver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	ĺ	SN55188	SN75188	UNIT			
Supply voltage V _{CC+} at (or below) 25 °C free-air temperature (se	ee Notes 1 and 2)	15	15	V			
Supply voltage V _{CC-} at (or below) 25 °C free-air temperature (see Notes 1 and 2)		- 15	- 15	V			
Input voltage range	-15 to 7	- 15 to 7	V				
Output voltage range		-15 to 15	-15 to 15	V			
Continuous total power dissipation (see Note 2)		See Dissipation Rating Table					
Operating free-air temperature range		- 55 to '.	0 to 70	°C			
Storage temperature range		-65 to .	-65 to 150	٥C			
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package	260		°C			
Case temperature for 60 seconds FK package				1			
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package		300	°C			

NOTES: 1. All voltage values are with respect to the network ground terminal.

 For operation above 25 °C free-air temperature, refer to the maximum supply voltage curve, Figure 6. In the FK and J packages, SN55188 chips are alloy mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C PO∷:יו:RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	πW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55188)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75188)	1025 mW	8.2 mW/°C	656 mW	-
N	1150 mW	9.2 mW/°C	736 mW	

DISSIPATION RATING TABLE

recommended operating conditions

	SN55188				SN75188			
	MIN	1. M	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC+}	7.5		15	7,5	9	15	V	
Supply voltage, VCC-	- 7.5	~ 9	- 15	- 7.5	- 9	- 15	V	
High-level input voltage, VIH	1.9			1.9			V	
Low-level input voltage, VIL			0.8			0.8	V	
Operating free-air temperature, TA	55		125	0		70	°C	

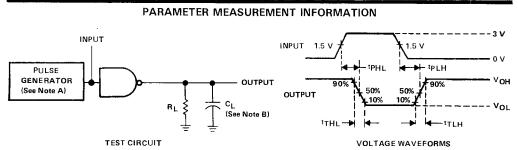
electrical characteristics over operating free-air temperature range, $V_{CC+} = 9 V$, $V_{CC-} = -9 V$ (unless otherwise noted)

			s	N5518	8	s	N75188			
	PARAMETER	TEST CONDITIONS		MIN	τ γp †	MAX	MIN	TYPT	MAX	UNIT
				(See Not	te 3)	(See Note 3)			
		V _{II} = 0.8 V,	$V_{CC+} = 9 V,$ $V_{CC-} = -9 V$	6	7		6	7		
VOH High-level output voltage	$R_{L} = 3 k\Omega$	$V_{CC+} = 13.2 V,$ $V_{CC-} = -13.2 V$	9	10.5		9	1 0.5		V	
VÖL	Low-level output voltage	V _{IH} = 1.9 V,	$V_{CC+} = 9 V,$ $V_{CC-} = -9 V$		-7	-6		7	- 6	v
VOL Low-level output voltage	$\begin{array}{c} \text{DL} \text{Low-level output voltage} \\ \text{R}_{L} = 3 \text{ k}\Omega \\ \text{V}_{CC+} = 13.2 \text{ V}, \\ \text{V}_{CC-} = -13.2 \text{ V}. \end{array}$		- 10.5	- 9		- 10.5	- 9			
ЧН	High-level input current	V ₁ = 5 V				10			10	μA
μL	Low-level input current	VI = 0			- 1	- 1.6		- 1	- 1.6	mA
IOS(H)	Short-circuit output current at high level [‡]	V ₁ = 0.8 V,	V ₀ = 0	-4.6	- 9	- 13.5	- 6	- 9	- 12	mA
IOS(L)	Short-circuit output current at low level [‡]	V _I = 1.9 V,	V0 = 0	4.6	9	13 5	6	9	12	mA
ro	Output resistance, power off	$V_{CC+} = 0,$ $V_{O} = -2 \lor \text{ to } 2 \lor$	V _{CC} = 0,	300			300			Ω
		$V_{CC+} = 9 V,$	All inputs at 1.9 V		15	20		15	20	
		No load	All inputs at 0.8 V		4.5	6		4.5	6	
100	Supply current	$V_{CC+} = 12 V,$	All inputs at 1.9 V		19	25		19	25	mA
CC+	from VCC+	No load	All inputs at 0.8 V		5.5	7		5.5	7	IIIA
		$V_{CC+} = 15 V$,	All inputs at 1.9 V			34			34	
		No load, T _A = 25 °C	All inputs at 0.8 V			12			12	
		$V_{CC-} = -9 V,$	All inputs at 1.9 V		- 13	- 17		- 13	- 17	
		No load	All inputs at 0.8 V			-0.5			-0.015	
Icc-	Supply current	$V_{CC-} = -12 V$,	All inputs at 1.9 V		- 18	- 23		18	- 23	mA
·CC -	from ICC -	No load	All inputs at 0.8 V			-0.5			-0.015	mas
		$V_{CC-} = -15 V_{,}$	All inputs at 1.9 V			- 34			- 34	
		No load, $T_A = 25 ^{\circ}C$				-2.5			-2.5	
PD	Total power dissipation	V _{CC+} = 9 V, No ioad	$V_{\rm CC-} = -9 V,$			333			333	mW
٢D	iotal power dissipation	V _{CC+} = 12 V, No load	$V_{\rm CC} - = -12 V,$			576			576	11178

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

[‡]Not more than one output should be shorted at a time.

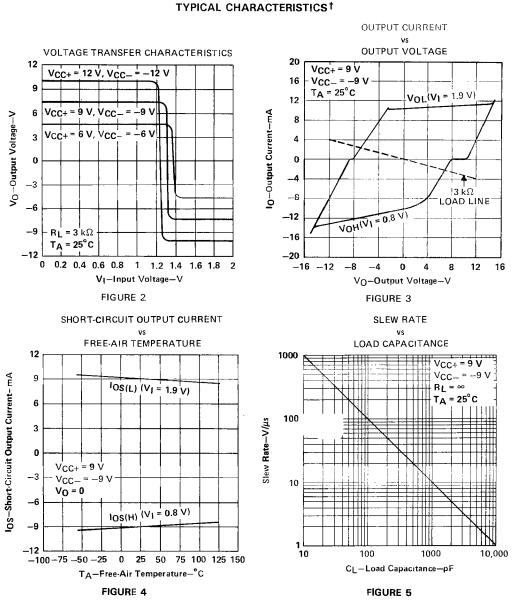
NOTE 3: The algebraic convention in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic voltage levels only, e.g., if $-6 \lor$ is a maximum, the typical value is a more negative voltage.

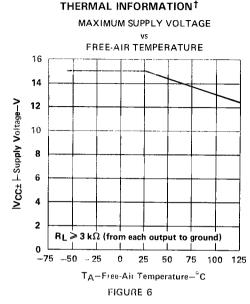


	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
t <u>p</u> lh	Propagation delay time, low-to-high-level output			220	350	ns
^t PHL	Propagation delay time, high-to-low-level output	$R_L = 3 k\Omega$, $C_L = 15 pF$,		100	175	ns
^t TLH	Transition time, low-to-high-level output [†]	See Figure 1		55	·	ns
^t THL	Transition time, high-to-low-level output [†]			45		ns
t TLH	Transition time, low-to-high-level output [‡]	$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 2500 pF$,		2.5		μS
^t THL	Transition time, high-to-low-level output [‡]	See Figure 1		3.0		μs

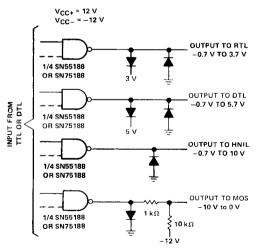
switching characteristics, $V_{CC+} = 9 V$, $V_{CC-} = -9 V$, $T_A = 25 °C$

[†]Measured between 10% and 90% points of output waveform.


[‡]Measured between +3 V and -3 V points on the output waveform (EIA RS-232-C conditions)


NOTES: A. The pulse generator has the following characteristics: $t_W = 0.5 \ \mu$ s, PRR $\leq 1 \ MHz$, $Z_0 = 50 \ \Omega$.

B. C_L includes probe and jig capacitance.


FIGURE 1. PROPAGATION AND TRANSITION TIMES

[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55188 circuit only.

[†]Data for temperatures below 0°C and above 70°C are applicable to SN55188 circuit only.

APPLICATION INFORMATION

Diodes placed in series with the V_{CC} $_+$ and V_{CC} $_-$ leads will protect the SN55188/SN75188 in the fault condition in which the device outputs are shorted to \pm 15 V and the power supplies are at low voltage and provide low-impedance paths to ground.

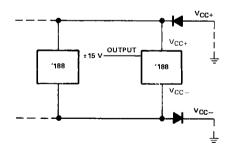
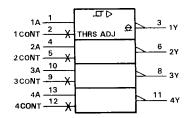


FIGURE 8. POWER SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS OF EIA STANDARD RS-232-C

SN55189, SN55189A . . . J PACKAGE

D1619, SEPTEMBER 1973-REVISED MAY 1990

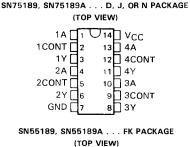

- Input Resistance . . . 3 k Ω to 7 k Ω
- Input Signal Range . . . ± 30 V
- Operates from Single 5-V Supply
- Built-In Input Hysteresis (Double Thresholds)
- Response Control Provides: Input Threshold Shifting Input Noise Filtering
- Satisfies Requirements of EIA RS-232-C
- Fully Interchangeable with Motorola MC1489, MC1489A

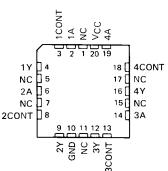
description

These devices are monolithic low-power Schottky quadruple line receivers designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA Standard RS-232-C. A separate response control terminal is provided for each receiver. A resistor or a resistor and bias voltage source can be connected between this terminal and ground to shift the input threshold levels. An external capacitor can be connected between this terminal and ground to provide input noise filtering.

The SN55189 and SN55189A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN75189 and SN75189A are characterized for operation from 0 °C to 70 °C.

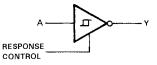
logic symbol[†]

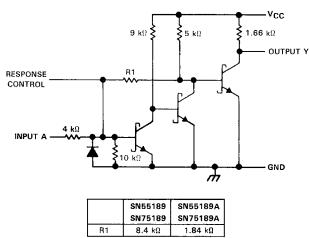



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

PRODUCTION .: 1.1 decuments contein infermetian current as of . 1 • ation deta. Products canform to spacificatian.... the terms of Texas Instruments standard werrenty. Praductian pracossing daas not nacessarily include testing of ell peramaters.




NC-No internal connection

logic diagram (each receiver)

Copyright © 1990, Texas Instruments Incorporated

schematic (each receiver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN55189 SN55189A	SN75189 SN75189A	UNIT
Supply voltage, V _{CC} (see Note 1)	10	10	V
Input voltage	± 30	± 30	v
Output current	20	20	mA
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table		
Operating temperature range	- 55 to 125	O to 70	°C
Storage temperature range	-65 to 150	-65 to	°C
Case temperature for 60 seconds: FK package	260		°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300		°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package			°C

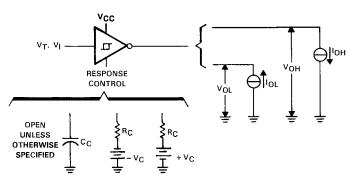
NOTES: 1. All voltage values are with respect to network ground terminals.

 In the J package, SN55189 and SN55189A chips are either silver glass or alloy mounted and SN75189 and SN75189A chips are glass mounted.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C PO∷ IF RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	mW	N/A
FK	137 5 mW	11.0 mW/°C	880 mW	2 7 5 mW
J (SN55)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75)	1025 mW	8 2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/°C	736 mW	N/A

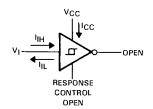
1	PARAMETER TEST TEST CONDITIONS [†]		TEST CONDITIONS ¹			SN5518 N55189			N75189		UNIT	
		FIGURE			MIN	100	MAX	ar.		MAX		
	$T_{A} = 25^{\circ}C$		$T_A = 25°C$	1	1.3	1.5	- ·	1.3	1.5			
			'189	$T_A = 0^{\circ}C$ to $70^{\circ}C$				0.9		1.6		
V-	Positive-going	1		$T_{A} = -55^{\circ}C \text{ to } 125^{\circ}C$	0.6		1.9				v	
VT+	threshold voltage			$T_A = 25 ^{\circ}C$	1.75	1.9	2.25	1.75	1.9	2.25		
			'189A	$T_A = 0$ °C to 70 °C		_		1.55		2.25		
		1		$T_A = -55 ^{\circ}C \text{ to } 125 ^{\circ}C$	1.30		2.65					
	Negative-going		'189,	$T_A = 25 °C$	0.75	1.0	1.25	0.75	1.0	1.25		
V _T -	threshold voltage	1	189A TA	$T_A = 0 ^{\circ}C \text{ to } 70 ^{\circ}C$				0.65		1.25	l v	
	threshold voltage			$T_A = -55$ °C to '. C	0.35		1.6					
Val	High-level	1	$V_{1} = 0.7$	75 V, IOH = -0.5 mA	2.6	4	5	2.6	4	5	v	
∨он	output voltage		Input op	en, i _{OH} = -0.5 mA	2.6	4	5	2.6	4	5	Ň	
Va	Low-level	1	V 3 V	V, i _{OL} = 10 mA		0 2	0.45		0.2	0.45	V	
VOL	output voitage	' _	VI 5 -			02	0.45	1	0.2	0.45	v	
1	High-level	2	$V_{ } = 25$	v	3.6	_	8.3	3.6		8.3	mА	
ήн	input current	-	V = 3 \	v — — — —	0.43			0.43			- MA	
1	Low-level	2	$V_{1} = -2$	25 V	- 3.6		-8.3	-3.6		- 8.3	mA	
ųг	input current	2	V _I = -:	3 V	-0.43			-0.43				
100	Short-circuit	3				- 3			- 3		mA	
los	output current					- 3			- 3		IIIA	
lcc	Supply current	2	$V_{1} = 5$	V, Outputs open		20	26		20	26	mA	

electrical characteristics over operating free-air temperature range, $V_{CC} = 5 V \pm 1\%$, (unless otherwise noted)


[†]All characteristics are measured with the response control terminal open.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$


	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	түр	мах	UNIT
^t PLH	Propagation delay time, low-to-high-level output		$C_{L} = 15 \text{ pF}, R_{L} = 3.9 \text{ k}\Omega$		25	85	
^t PHL	Propagation delay time, high-to-low-level outut		C _L = 15 pF, R _L = 390 Ω		25	50	ns
t TLH	Transition time, low-to-high-level output	1 4	$C_{L} = 15 \text{ pF}, R_{L} = 3.9 \text{ k}\Omega$		120	175	-
^t THL	Transition time, high-to-low-level output		$C_{L} = 15 \text{ pF}, R_{L} = 390 \Omega$		10	20	ns



PARAMETER MEASUREMENT INFORMATION[†]

FIGURE 1. VT+, VT-, VOH, VOL

ICC is tested for all four receivers simultaneously

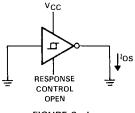
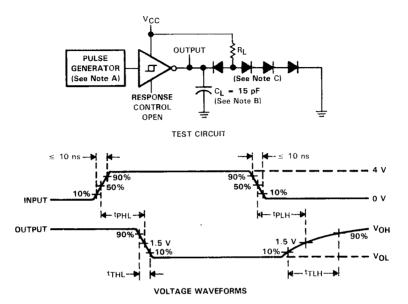
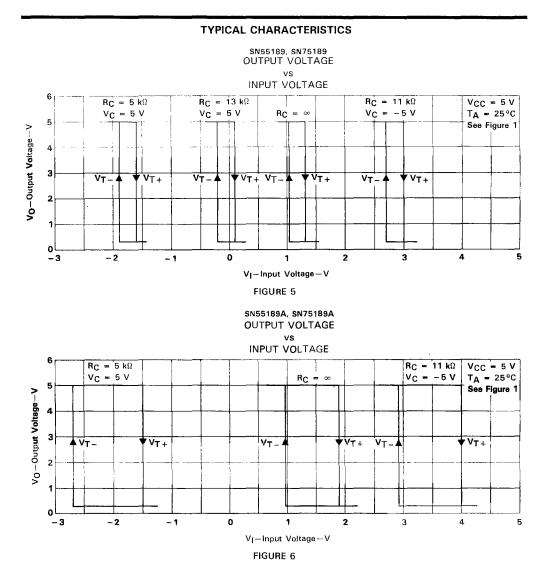
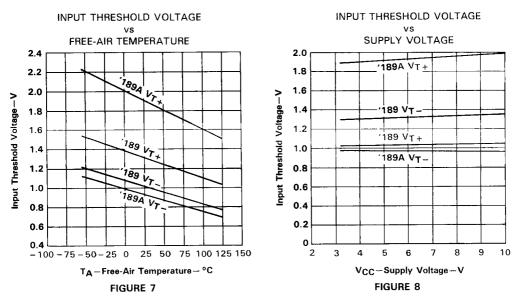
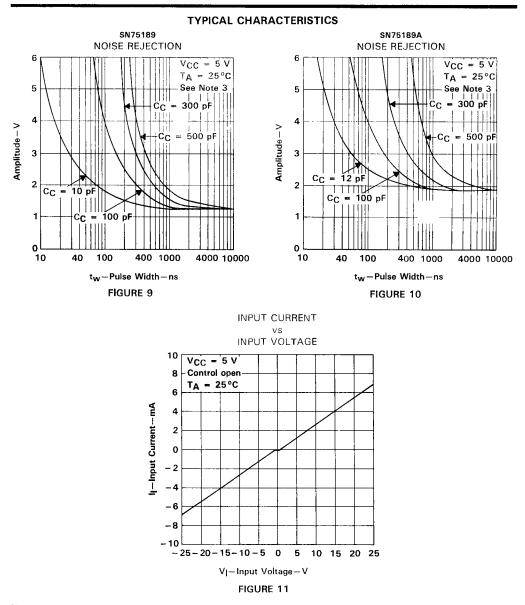



FIGURE 3. IOS

[†]Arrows indicate actual direction of current flow. Current into a terminal is a positive value.


PARAMETER MEASUREMENT INFORMATION


- NOTES: A. The pulse generator has the following characteristics: $Z_0 \approx 50 \Omega$, $\tau_W = 500 ns$.
 - B. CL includes probe and jig capacitances.
 - C. All diodes are 1N3064 or equivalent.



TYPICAL CHARACTERISTICS[†]

[†]Data for free-air temperatures below 0 °C and above 70 °C are applicable to SN55189 and SN55189A circuits only.

NOTE 3: This figure shows the maximum amplitude of a positive-going pulse that, starting from zero volts, will not cause a change of the output level.

R2 14

D3 06

R3 7

D4 08

R4 9

TE 10

VCC 5

17 E2

15 B3

84

14 E3

12 E4

11 RE

13

D3275, APRIL 1989

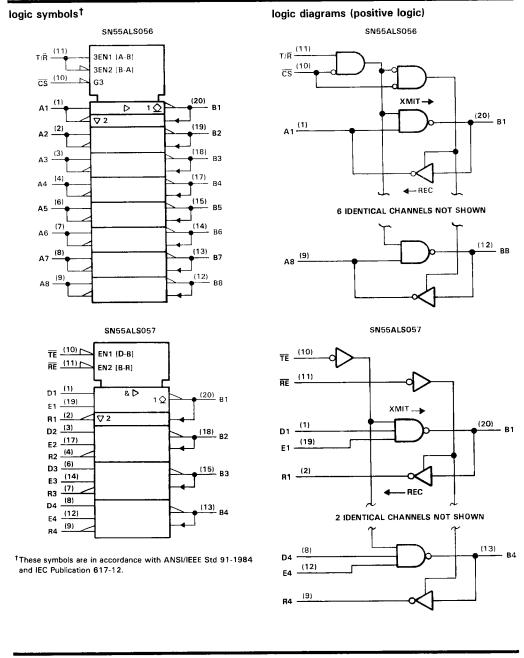
SUITABLE FOR IEEE STANDARD 896 APPLICATIONS[†]

 SN55ALS056 Is an Octal Transceiver 	SN55ALS056 J OR W PACKAGE
SN55ALS057 Is a Quad Transceiver	
 High-Speed Advanced Low-Power Schottky Circuitry 	A2 2 19 B2 A3 3 18 B3
 Low Power Dissipation 60 mW/Channel Max 	A4 []4 17] B4 V _{CC} []5 16] GND A5 []6 15] B5
High-Impedance P-N-P Inputs	A6 7 14 B6 A7 8 13 B7
● BTL [™] Logic Level 1-V Bus Swing Reduces Power Consumption	A8 0 9 12 B8 CS 0 11 T/R
 Trapezoidal Bus Output Waveform Reduces Noise Coupling to Adjacent Lines 	SN55ALS057 J OR W PACKAGE (TOP VIEW)
 Power-Up/Down Protection (Glitch-Free) 	D1 1 20 B1
Open-Collector Driver Outputs Allow Wired-OR Connections	R1 2 19 E1 D2 3 18 B2

description

The SN55ALS056 is an 8-channel, monolithic, high-speed, Advanced Low-Power Schottky device designed for 2-way data communication in a densely populated backplane. The SN55ALS057 is a 4-channel version with independent driver input (Dn) and receiver output (Rn) pins and a separate driver disable for each driver (En). Both are compatible with Backplane Tranceiver Logic (BTL[™]) technology at significantly reduced power dissipation per channel.

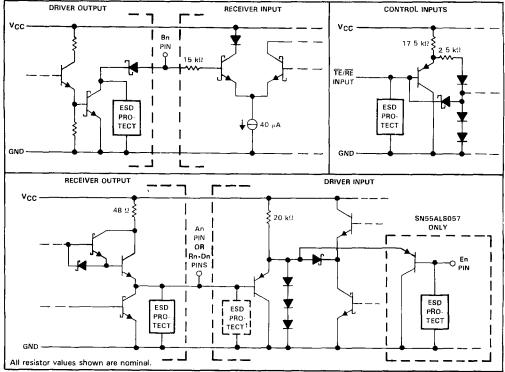
These transceivers feature open-collector driver outputs with a series Schottky diode to reduce capacitive
loading to the bus. By using a 2-V pull-up termination on the bus, the output signal swing will be
approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs
generate trapezoidal waveforms that reduce crosstalk between channels. The drivers are capable of driving
an equivalent dc load as low as 18.5 Ω . The receivers have internal low-pass filters to further improve
noise immunity.


The SN55ALS056 and SN55ALS057 are characterized for operation from -55 °C to 125 °C.

¹ The transceivers are suitable for IEEE Standard 896 applications to the extent of the operating conditions and characteristics specified in this data sheet. Certain limits contained in the IEEE specification are not met or cannot be tested over the entire military temperature range. BTL is a trademark of National Semiconductor Corporation.

SN55ALS056 FK PACKAGE SN55ALS (TOP VIEW)		SN55ALS057 F (TOP VIE)	
ي م م			B3
R2] 4	18 🚺 B2	A4 🛛 4	18 🗍 B3
vcc⊉⁵	17 🗋 E2	VccD₅	17 🚺 B4
D3 🛛 6	16 🛛 GND	A5 🛛 6	16 🖸 GND
R3 🛛 /	15[] B3	A6 🗋 7	15 🖸 B5
D4 🛛 8	14 🗍 E3	A7 🛛 8	14 🖸 B6
9 10			2 13
RE E 4 B 4 B 4		A8 CS B8	B7

SN55ALS056 FUNCTION TABLE TRANSMIT/RECEIVE


CHANNELS	CONTROLS		
A ↔ B	T/R	ĈS	
T (A → B)	H	L	
R (B → A)	L	L	
D	х	Н	

SN55ALS057
FUNCTION TABLE
TRANSMIT/RECEIVE

cc	ONTRO	LS	CHANNELS			
TE	RE	En	D → B	B → R		
L	L	L	D	R		
L L	L	н	Т	R		
L	н	L	D	D		
Ł	н	н	ĮΤ	D		
н	L	х	D	R		
н	н	х	D	D		

H = high-level, L = low-level, R = receive, T = transmit, D = disable, X = irrelevant Direction of data transmission is from An to Bn for the SN55ALS056 and from Dn to Bn for the SN55ALS057. Direction of data reception is from Bn to An for the SN55ALS056 and from Bn to Rn for the SN55ALS057. Data transfer is inverting in both directions.

schematics of inputs and outputs

[†]Additional ESD protection is on the SN55ALS057, which has separate receiver output and driver input pins.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, VCC (see Note 1) 6 V
Control input voltage
Driver input voltage
Driver output voltage
Receiver input voltage 2.5 V
Receiver output voltage
Continuous total power dissipation at (or below) $25^{ m o} m C$ free-air temperature
(see Note 2)
Operating free-air temperature range
Storage temperature range65 °C to 150 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/ °C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	V
High-level driver and control input voltage, VIH	2			V
Low-level driver and control input voltage, VIL			0.8	V
Bus termination voltage	1.9		2.1	V
Operating free-air temperature, TA	- 55		125	°C

SN55ALS056 electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

	PARAMETER	1	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Vik	Input clamp voltage at An	, T/R, or CS	$V_{CC} = 4.5 V, I_{I} = -18 mA$			-1.5	v
V~	Receiver input threshold a		$V_{CC} = 5 V$, $T_A = 25 °C$	1.45		1.65	v
VT	neceiver input unreshold a		$V_{CC} = 5 V$, $T_A = -55 °C$ to 125 °C	1.4		1.7	
v _{он}	High-level output voltage	at An	V _{CC} = 4.5, Bn at 1.2 V, <u>CS</u> at 0.8 V, T/R at 0.8 V, I _{OH} = -400 μA	2.4			v
		An	V _{CC} = 4.5 V, Bn at 2 V, CS at 0.8 V, T/R at 0.8 V, T/R at 0.8 V, i _{OL} = 16 mA			0.5	
VOL	Low-level output voltage	Bn	V _{CC} = 4.5 V, An at 2 V, CS at 0.8 V, T/R at 2 V, See Figure 1	0.75		1.2	V
		An, T/R, or CS	$V_{I} = V_{CC} = 5.5 V$			40	
ŀН	High-level input current	Bn	V _{CC} = 5.5 V, V ₁ = 2 V, An at 0.8 V, T/Ā at 0.8 V			100	μΑ
Ι _{ΙL}	Low-level input current at	t An, T/R, or CS	$V_{CC} = 5.5 V, V_{I} = 0.4 V$			- 400	μA
los	Short-circuit output curre	nt at An	V _{CC} = 5.5 V, An at 0 V, Bn at 1.2 V, CS at 0.8 V, T/R at 0.8 V	- 35		-125	μA
ICC	Supply current		V _{CC} = 5.5 V			85	mΑ
Co(B) Driver output capacitance	P		[4.5		pF

SN55ALS057 electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

	PARAMETER	3	TES	T CONDITIONS	MIN	TYP	MAX	UNIT
VIK	Input clamp voltage at Dr	, En, TE, or RE	$V_{CC} = 4.5 V,$	lj = 18 mA			- 1.5	V
	Descives insut threehold a	+ P-	V _{CC} = 5 V,	T _A = 25 °C	1.45		1.65	v
۷T	Receiver input threshold a		$V_{CC} = 5 V$,	$T_A = -55 ^{\circ}C \text{ to } 125 ^{\circ}C$	1.4		1.7	v
Vau	High lovel output voltage	at Pa	$V_{CC} = 4.5,$	Bn at 1.2 V,	2.4			v
∨он	High-level output voltage	atinn	RE at 0.8 V,	IOH = -400 µA	2.4	_		v
		Rn	$V_{CC} = 4.5 V_{,}$	Bn at 2 V,			0.5	
		nn	RE at 0.8 V,	IOL = 16 mA			0.5	
VOL	Low-level output voltage		$V_{CC} = 4.5 V_{,}$	Dn at 2 V,				v
		Bn	En at 2 V,	TE at 0.8 V	0.75		1.2	
			See Figure 1					
		Dn, En, TE, or RE	VI = VCC = 5.	5 V			40	
1	Line laund imput oursens		$V_{CC} = 5.5 V_{,}$	$V_i = 2 V_i$				
Чн	High-level input current	Bn	Dn at 0.8 V,	En at 0.8 V,			100	μΑ
			TE at 0.8 V					
ηL	Low-level input current at	Dn, En, TE, or RE	$V_{CC} = 5.5 V_{c}$	V ₁ = 0.4 V			- 400	μA
			$V_{CC} = 5.5 V,$	Rn at 0 V,	05		105	
OS	Short-circuit output currer	ntal nn	Bn at 1.2 V,	RE at 0.8 V	- 35		- 125	μA
l c c	Supply current		$V_{CC} = 5.5 V$				45	mA
C _{o(B)}	Driver output capacitance	1				4.5		рF

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

receiver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COND	ITIONS	τ _A †	ΜΙΝ ΤΥΡ	MAX	UNIT
	Propagation delay time,			<u>CS</u> at 0.8 V.	T/R at 0.8 V,	25°C		20	
^t PLH	low- to high-level output	Bn	An		S1 closed,	Full 3		22	ns
	Propagation delay time,		An	See Figure 4	ST Closed,	2		18	115
^t PHL	high- to low-level output			See Figure 4		Full range		20	
	Output disable time			Bn at 2 V.	T/R at 0.8 V,	25°C		20	
^t PLZ	from low level	- CS	An	$V_1 = 5 V_2$	S1 closed,	Full range		22	ns
	Output enable time			See Figure 5	ST closed,	25°C		13	113
^t PZL	to low level			See Figure 5		Ful e		14	
	Output disable time			Bn at 0.8 V,	T/R at 0.8 V,	2		12	
^t PHZ	from high level	<u>cs</u>	•-	$V_L = 0$, S1 closed,	See Figure 5	Full range		13	ns
	Output enable time		An	Bn at 0.8 V,	T/R at O.B V,	25°C		14	113
^t PZH	to high-level			S1 open,	See Figure 5	Full range		22	
	Output disable time			CS at 0.8 V,	VC at 2 V.	25°C		17	
^t PLZ	from low level				S1 closed,	Full range		20	ns
	Output enable time	T/R	An	$V_{L} = 5 V$	ST Closed,	25°C		25	113
^t PZL	to low level			See Figure 5		Full • 3		40	
	Output disable time	1		CS at 0.8 V,	$V_L = 0$	2		12	
^t PHZ	from high level			S1 closed,	See Figure 5	Ful e		13	ns
	Output enable time	− T/R	An	CS at 0.8 V,	S1 open,	2		15	13
tpzh	to high level		1	See Figure 5	_	Full range		22	
	Receiver noise rejection		An	$V_{L} = 5 V_{i}$	S1 closed,	25 °C	4		ns
^t w(NR)	pulse duration	Bn	or,Rn	See Figure 6		Full range	2		

driver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	τ _A †	MIN	ТҮР‡	MAX	דואט
tPLH	Propagation delay time,					25°C			10	
	low- to high-level output	An	Bn	\overline{CS} at 0.8 V, V ₁ = 2 V,	T/R at 2 V, See Figure 2	Full range 25°C			40	ns
^t PHL	Propagation delay time, high- to low-level output			v _ = 2 v,	See Figure z	Full range			15	1
	Propagation delay time,					25°C			18	
tPLH	low- to high-level output	cs	Bn	An and T/R at 2 V,	$V_{L} = 2 V$,	Full range			30	ns
	Propagation delay time,		DI	See Figure 2		25°C			20	
^t PHL	high- to low-level output	1				Full range			22	
	Propagation delay time,					25°C			18	
tplh	low- to high-level output		Bn	CS at 0.8 V,	$V_{L} = 2 V_{r}$	F			37	ns
	Propagation delay time,	<u> </u> ''"	Bri	See Figure 3					18	
^t PHL	high- to low-level output					Fui e			21	
	Transition time,					•	1	3	8]
^t TLH	low- to high-level output		Bn	CS at 0.8 V,	T/Ãat2V,	Full 3	1		33	ns
	Transition time,	An	вп	V _L = 2 V,	See Figure 2		1	3	10	
ťΤΗL	high- to low-level output					Full range	1		13	

 $^{\dagger}Full$ range is $-55\,^{o}C$ to 125 $^{o}C.$ $^{\ddagger}Typical$ values are at V_{CC} = 5.

switching characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

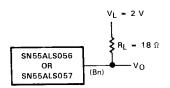
receiver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	ONDITIONS	TAT	MIN	мах	UNIT
4	Propagation delay time,			RE at 0.8 V,	TE at 2 V,	25°C		20	
^t PLH	low- to high-level output	Bn	D	$V_{I} = 5 V_{i}$		Full range		22]
	Propagation delay time,	BU	Rn		S1 closed,	25°C		18	ns
^t PHL	high- to low-level output			See Figure 4		Full range		20	1
	Output disable time			D		25°C		15	
^t PLZ	from low level	RE	_	Bn at 2 V,	TE at 2 V,	Full range		17	1
	Output enable time		Rn	$V_L = 5 V$,	S1 closed,	25°C		13	ns
^t PZL	to low level			See Figure 5		Full range		14	1
	Output disable time			8n at 0.8 V, TE	at 2 V, $V_L = 0$,	25°C		12	
^t PHZ	from high level	RE		S1 closed,	See Figure 5	Full range		13]
	Output enable time	HE	Rn	Bn at 0.8 V,	TE at 2 V,	25°C		14	ns
tpzh	to high-level			S1 closed,	See Figure 5	Full range		15	
	Receiver noise rejection			$V_{L} = 5 V_{,}$	S1 closed,	25°C	4		
^t w(NR)	pulse duration	Bn	Rn	See Figure 6		Full range	2		ns

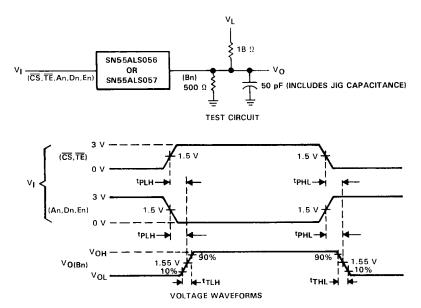
driver

_	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	TAT	MIN	ryp‡	мах	UNIT
	Propagation delay time,					25°C			10	
tPLH	low- to high-level output	Dn	.	TE at 0.8 V,	RE at 2 V,	Full range			27] .
	Propagation delay time,	or En	Bn	V _L = 2 V,	See Figure 2	25°C			12	ns
tPHL	high- to low-level output			_		Full range			15	1
	Propagation delay time,				····	25°C			10	1
tplh	low- to high-level output	-	_	Dn, En, RE at 2 V,	V _L = 2 V,	Full range			27]
•	Propagation delay time,	TE	Bn	See Figure 2		25°C			17	ns
^t PHL	high- to low-level output					Full range			19]
	Transition time,				····	25°C	1	3	8	
^t TLH	low- to high-level output	Dn	_	RE at 2 V,	$V_{L} = 2 V_{r}$	Full range	1		33	1
	Transition time,	or En	Bn	See Figure 2		25°C	1	3	10	ns
^t THL	high- to low-level output					Full range	1		13	1

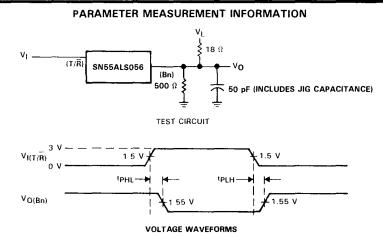
 ‡ Typical values are at V_{CC} = 5 V.


driver plus receiver

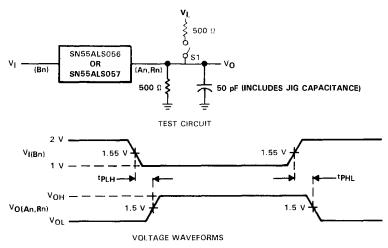
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TA [†]	MIN	мах	UNIT
	Propagation delay time,			RE at 0.8 V, TE at 0.8 V,	25°C		25	
^t PLH	low- to high-level output	Dn	Bn	$V_1 = 2 V, \qquad See Figure 7$	Full range		35	
****	Propagation delay time,	Un	F O	Both loads are used)	25°C		25	п 5
^t PHL	high- to low-level output				Full range		35	

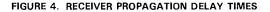

[†]Full range is -55°C to 125°C.

PARAMETER MEASUREMENT INFORMATION

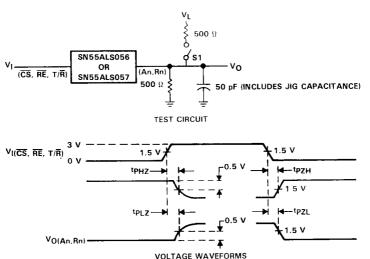


NOTE: $t_r = t_f \le 5$ ns from 10% to 90%.

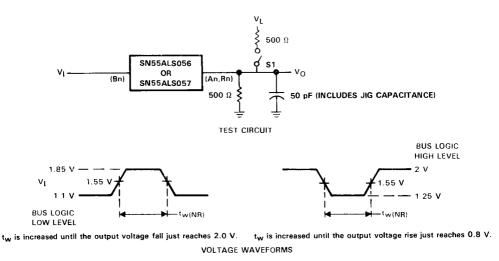




NOTE: $t_f = t_f \le 5$ ns from 10% to 90%.

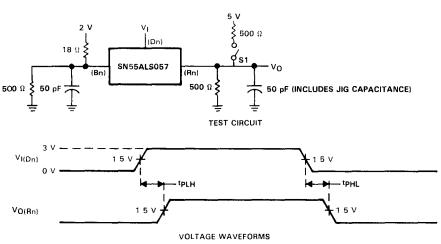


NOTE: $t_f = t_f \le 10$ ns from 10% to 90%.



PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \le 5$ ns from 10% to 90%.


FIGURE 5. PROPAGATION DELAY FROM CS OR T/R TO An OR FROM RE TO Rn

NOTE: $t_f = t_f \le 2$ ns from 10% to 90%.

FIGURE 6. RECEIVER NOISE IMMUNITY

PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \le 5$ ns from 10% to 90%.

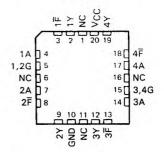
FIGURE 7. DRIVER PLUS RECEIVER DELAY TIMES

SN55ALS126, SN75ALS126 QUADRUPLE LINE DRIVERS

D2299, FEBRUARY 1986-REVISED OCTOBER 1989

- Meets IBM 360/370 I/O Interface Specification GA22-6974-3 (Also See SN55ALS130 and SN75ALS130)
- Minimum Output Voltage of 3.11 V at IOH = -60 mA
- Fault Flag Circuit Output Signals Driver Output Fault
- Fault-Detection Current Limit Circuit Minimizes Power Dissipation During a Fault Condition
- Advanced Low-Power Schottky Circuitry
- Dual Common Enable
- Individual Fault Flags
- Designed to Be an Improved Replacement for the MC3481

description


The SN55ALS126 and SN75ALS126 quadruple line drivers are designed to meet the IBM 360/370 I/O specification GA22-6974-3. The output voltage is 3.11 V minimum (at $I_{OH} = -59.3$ mA) over the recommended ranges of supply voltage (4.5 V to 5.95 V) and temperature. Driver outputs use a fault-detection current-limit circuit to allow high drive current but still minimize power dissipation when the output is shorted to ground. The SN55ALS126 and SN75ALS126 are compatible with standard TTL logic and supply voltages.

The SN55ALS126 and SN75ALS126 employ the IMPACT™ process to achieve fast switching speeds and low power dissipation. Fault-flag circuitry is designed to sense and signal a line short on any Y line. Upon detecting an output fault condition, the fault-flag circuit forces the driver output into a low state and signals a fault condition by causing the fault-flag output to go low.

SN55ALS126 ... FK PACKAGE (TOP VIEW)

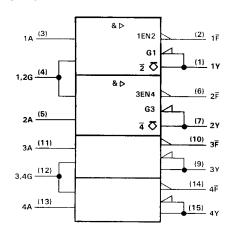
NC-No internal connection

FUNCTION TABLE

INP	UTS	OUT	PUTS					
G A		G A		G A		Y	F	
L	х	L	н					
н	н	н	н					
н	н	S	L					

H = high level, L = low level, X = irrelevant, S = shorted to ground

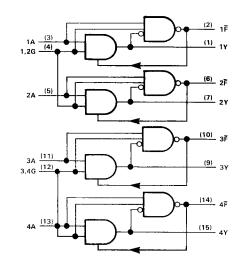
The SN55ALS126 and SN75ALS126 can drive a 50- Ω load as required in the IBM GA22-6974-3 specification or a 90- Ω load as used in many I/O systems. Optimum performance can be achieved when the devices are used with either the SN75125, SN75127, SN75128, or SN75129 line receivers.

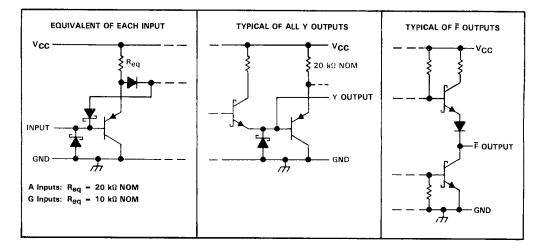

The SN55ALS126 is characterized for operation from -55 °C to 125 °C, and the SN75ALS126 is characterized for operation from 0 °C to 70 °C.

IMPACT is a trademark of Texas Instruments Incorporated

SN55ALS126, SN75ALS126 QUADRUPLE LINE DRIVERS

logic symbol[†]




[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

schematics of inputs and outputs

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} Input voltage	7 V
Operating free-air temperature range: SN55ALS126	o 125°C
Storage temperature range65 °C t	o 150°C
Case temperature for 60 seconds: FK package Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	260°C

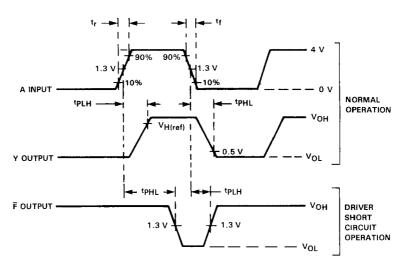
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	N/A
FK	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN55ALS126)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75ALS126)	1025 mW	8.2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/°C	736 mW	N/A

DISSIPATION RATING TABLE

recommended operating conditions

	SN	55ALS1	26	SN	SN75ALS126		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.0		5.95	4.3	5	5 95	v
High-level input voltage, VIH	2			2			V
Low-level input voltage, VIL			0.8			0.8	V
High-level output current, IOH			-59.3			- 59.3	mA
Operating free-air temperature, TA	- 55		125	0		70	°C

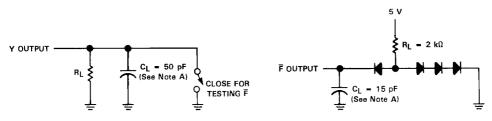
	PARAMETER		TEST CONDITIONS	MIN	MAX	UNIT			
VIK	Input clamp voltage	A,G	$V_{CC} = 4.5 V$, $I_{I} = -18 mA$		- 1.5	v			
v _{он}		Y	$V_{CC} = 4.5 V$, $I_{OH} = -59.3 mA$ $V_{IH} = 2 V$	3.11					
	High-level output voltage	Y	$V_{CC} = 5.25 \text{ V}, I_{OH} = -41 \text{ mA}$ $V_{IH} = 2 \text{ V}$	3.9		v			
		Ĩ	$V_{CC} = 4.5 \text{ V}, I_{OH} = -400 \ \mu\text{A}$ $V_{IH} = 2 \text{ V}$	2.5					
VOL		Y	$V_{CC} = 5.5 V, I_{OL} = -240 \mu A,$ $V_{IL} = 0.8 V$		0.15				
	Low-level output voltage	Low-level output voltage	Low-level output voltage	Low-level output voltage	Low-level output voltage Y		$V_{CC} = 5.95 \text{ V}, I_{OL} = -1 \text{ mA},$ $V_{IL} = 0.8 \text{ V}$		0.15
		F	$V_{CC} = 4.5 V$, $I_{OL} = 8 mA$, Y at 0 V		0.5				
O(off)	Off-state output current	Ŷ	$V_{CC} = 4.5 \text{ V}, \text{ V}_{I} = 0, \text{ V}_{O} = 3.11 \text{ V}$		100	μA			
'U(ott)		Y	$V_{CC} = 0, V_{I} = 0, V_{O} = 3.11 V$		200	μ			
1	Input current	A G	$V_{CC} = 4.5 V, V_{I} = 5.5 V$		<u> </u>	μA			
ΙΗ	High-level input current	AG	V _{CC} = 4.5 V, V _I = 2.7 V		20 80	μA			
կլ	Low-level input current	A G	$V_{CC} = 5.95 V, V_{I} = 0.4 V$		250 1000	μA			
		Y	$V_{CC} = 5.5 V, V_{O} = 0, V_{IH} = 2.7 V$		- 5				
1	Short-circuit output	Ē	$V_{CC} = 5.5 V, V_{O} = 0$	-15	- 100	mA			
los	Short-Ground Output	Y	$V_{CC} = 5.95 V, V_{O} = 0, V_{IH} = 2.7 V$		- 5	inA			
		F	$V_{CC} = 5.95 V, V_{O} = 0$	- 15	- 110				
10011	Supply current, all		$V_{CC} = 5.5 \text{ V}$, No load, $V_{IH} = 2.7 \text{ V}$		25	mA			
ССН	outputs high		V _{CC} = 5.95 V, No load, V _{IH} = 2.7 V		27	MA			
	Supply currant,		V _{CC} = 5.5 V, No load, V _{IL} = 0.4 V		45	mA			
ICCL	Y outputs low		VCC = 5.95 V, No load, VIL = 0.4 V		47	- INA			


electrical characteristics over recommended operating free-air temperature range

switching characteristics over recommended operating free-air temperature range

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output			$V_{CC} = 4.5 V \text{ to } 5.5 V,$		30	ns
tphl	Propagation delay time, high-to-low-level output	A	Y	$R_L = 50 \Omega,$ $C_L = 50 pF,$ $V_{H(ref)} = 3.11 V^{\dagger},$		28	ns
	Ratio of propagation delay times			See Figures 1 and 2	0.3	3	
^t PLH	Propagation delay time, low-to-high-level output	A	Y	$V_{CC} = 5.25 V \text{ to } 5.95 V,$ $R_{L} = 90 \Omega,$ $C_{L} = 50 \text{ pF},$		34	ns
^t PHL	Propagation delay tima, high-to-low-level output] $$		$V_{H(ref)} = 3.9 V$ See Figures 1 and 2		34	ns
^t PLH	Propagation delay time, low-to-high-level output	A	Ŧ	$V_{CC} = 5 V, \qquad R_{L} = 2 k\Omega,$ $C_{L} = 15 pF,$		45	ns
tPHL	Propagation delay time, high-to-low-level output			See Figures 1 and 2		75	ns

[†] For SN55ALS126 at T_A = -55 °C, V_{H(ref)} = 2.5 V.



PARAMETER MEASUREMENT INFORMATION

NOTE: The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} \approx 50 Ω.

FIGURE 1. INPUT AND OUTPUT VOLTAGE WAVEFORMS

NOTE A: CL includes probe and stray capecitance.

FIGURE 2. SWITCHING CHARACTERISTICS LOAD CIRCUITS

D2299, FEBRUARY 1986-REVISED AUGUST 1989

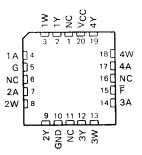
- Meets IBM 360/370 I/O Interface Specification GA22-6974-3 (Also see SN55ALS126 and SN75ALS126)
- Minimum Output Voltage of 3.11 V at IOH = -60 mA
- Fault-Flag Circuit Output Signals Driver Output Fault
- Fault-Detection Current Limit Circuit Minimizes Power Dissipation During a Fault Condition
- Advanced Low-Power Schottky Circuitry
- Common Enable and Common Fault Flag
- Designed to be an Improved Replacement for the MC3485

description

The SN55ALS130 and SN75ALS130 quadruple line drivers are designed to meet the IBM 360/370 I/O specification GA22-6974-3. The output voltage is 3.11 V minimum (at $I_{OH} = -59.3$ mA) over the recommended ranges of supply voltage (4.5 V to 5.95 V) and temperature. Driver outputs use a fault-detection current-limit circuit to allow high drive current but still minimize power dissipation when the output is shorted to ground. The SN55ALS130 and SN75ALS130 are compatible with standard TTL logic and supply voltages.

The SN55ALS130 and SN75ALS130 employ the IMPACT™ process to achieve fast switching speeds and low power dissipation. Fault-flag circuitry is designed to sense and signal a line short on any Y line. Upon detecting an output fault condition, the fault-flag circuit forces the driver output into a low state and signals a fault condition by causing the fault-flag output to go low.

The SN55ALS130 and SN75ALS130 can drive a 50- Ω load as required in the IBM GA22-6974-3 specification or a 90- Ω load as used in many I/O systems. Optimum performance can be achieved when the devices are used with either the SN75125, SN75127, SN75128, or SN75129 line receivers.

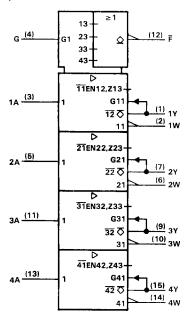

The SN55ALS130 is characterized for operation from -55°C to 125°C. The SN75ALS130 is characterized for operation from 0°C to 70°C.

IMPACT is a trademark of Texas Instruments Incorporated

1 Y	[]	U16	□ Vcc
1 W	2	15	🛛 4Y
1A	3	14	🗋 4 W
G	4	13	🛛 4A
2A	5	12	ĪĒ
2W	6	11	∐ 3A
2Y	<u>Ц</u> 7	10	⊇ зw
GND	8	9	Ц зү

SN55ALS130 . . . FK PACKAGE (TOP VIEW)

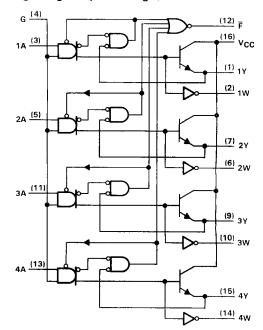
NC-No internal connection


FUNCTION TABLE

INP	UTS	0	OUTPUTS				
G†	Α	Y	Ē	w			
L	Х	L	н	н			
х	L	L	н	н			
н	н	н	н	L			
н	н	s	L	н			

H = high level, L = low level, X = irrelevant, S = shorted to ground

[†]G and F are common to the four drivers. If any of the four Y outputs is shorted, the Fault-Flag will respond.


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

EQUIVALENT OF EACH INPUT TYPICAL OF ALL Y OUTPUTS Vcc -- v_{cc} R_{eq} 20 kΩ NOM Y OUTPUT INPUT GND GND ሐ A inputs: $R_{eq} = 20 \text{ k}\Omega \text{ NOM}$ G inputs: Reg = 10 k^Ω NOM TYPICAL OF F OUTPUT TYPICAL OF ALL W OUTPUTS Vcc - vcc F OUTPUT W OUTPUT GND 'n GND m

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} 7 V Input voltage 7 V
Continuous total dissipation
Operating free-air temperature range: SN55ALS130
SN75ALS130
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C

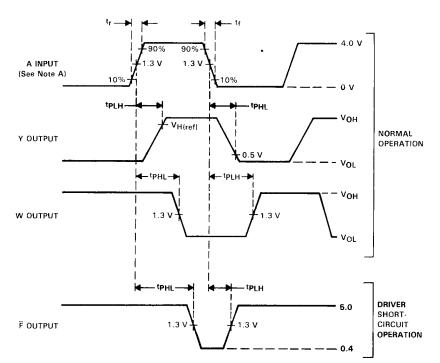
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	TA = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	Wπ	N/A
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55ALS130)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75ALS130)	1025 mW	8.2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/ °C	736 mW	N/A

DISSIPATION RATING TABLE

recommended operating conditions

	SN	5541 51	30	SN7: AL-130		UNIT	
	MIN	NOM	MAX	MIN	้าเห	MAX	
Supply voltage, V _{CC}	4.5		5.95	4.5	- 5	5.95	V
High-level input voltage, VIH	2			2			V
Low-level input voltage, VIL			0.8			0.8	V
High-level output current, IOH			-•••				mA
Operating free-air temperature, TA	- 55		- · . ·	0		,;	°C

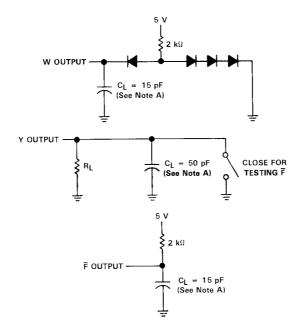
	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT	
VIK	input clamp voltage	A,G	$V_{CC} = 4.5 V$, $I_{I} = -18 mA$			- 1.5	V	
	-		Y	$V_{CC} = 4.5 V$, $I_{OH} = -59.3 mA$,	V _{IH} = 2 V	3.11		
∨он	High-level output voltage	Y	$V_{CC} = 5.25 \text{ V}, 1_{OH} = -41 \text{ mA},$	VIH = 2 V	3.9		v	
		w	$V_{CC} = 4.5 V$, $I_{OH} = -400 \mu A$,	V _{IH} = 2 V	2.5			
		Y	$V_{CC} = 5.5 V$, $I_{OL} = -240 \mu A$,	$V_{1L} = 0.8 V$		0.15		
	the collected in the contraction	Y	$V_{CC} = 5.95 \text{ V}, I_{OL} = -1 \text{ mA},$	VIL = 0.8 V		0.15	v	
VOL	Low-level output voltage	F	V _{CC} = 4.5 V, I _{OL} = 8 mA,	Yat 0 V		0.5	v	
		W	V _{CC} = 4.5 V, I _{OL} = 8 mA			0.5		
1	0//	Y	$V_{CC} = 4.5 V, V_{IL} = 0,$	$V_0 = 3.11 V$		100	\Lambda	
lO(off)	Off-state output current	Y	$V_{CC} = 0, V_{IL} = 0,$	$V_0 = 3.11 V$		2 00	μA	
юн	High-level output current	F	V _{CC} = 5.95 V, V _{OH} = 5.95 V			100	μA	
	Input current	Α				100	μA	
lj –		G	$V_{CC} = 4.5 V, V_{IH} = 5.5 V$			400	μΑ	
		Α	VCC = 4.5 V, VIH = 2.7 V			20	μA	
ŀΗ	High-level input current	G	$v_{CC} = 4.5 v, v_{IH} = 2.7 v$			80	μΑ	
1	Low lovel in sub-surgest	Α	V _{CC} = 5.95 V, V _{IL} = 0.4 V			250	μA	
μL	Low-level input current	G	$v_{CC} = 5.95 v, v_{IL} = 0.4 v$			- 1000	μA	
		Y	$V_{CC} = 5.5 V, V_{O} = 0,$	VIH = 2.7 V		- 5		
	Characteristic states at	W	$V_{CC} = 5.5 V, V_{O} = 0$		- 15	- 100	mA	
los	Short-circuit output	Y	$V_{CC} = 5.95 V, V_{O} = 0,$	VIH = 2.7 V		- 5	IIIA	
		w	$V_{CC} = 5.95 V, V_{O} = 0$		15	- 110		
	Supply current, all		V _{CC} = 5.5 V, No load,	V _{IH} = 2.7 V		30	mA	
ICCH	outputs high		V _{CC} = 5.95 V, No load,	VIH = 2.7 V		32		
	Supply current,		V _{CC} = 5.5 V, No load,	$V_{IL} = 0.4 V$		45	mA	
ICCL	Y outputs low		V _{CC} = 5.95 V, No load,	$V_{IL} = 0.4 V$		47		


electrical characteristics over recommended operating free-air temperature range

switching characteristics over recommended operating free-air temperature range

[PARAMETER	FROM	TO	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			V _{CC} = 4.5 V to 5.5 V,		30	ns
^t PHL	Propagation delay time, high-to-low-level output	A	Y	$R_L = 50 \Omega$, $C_L = 50 pF$, $V_{H(ref)} = 3.11 V^{\dagger}$, Input f = 1 MHz,		28	ns
t <u>PLH</u> tPHL	Ratio of propagation delay times			See Figures 1 and 2	0.3	3	
tPLH	Propagation delay time, low-to-high-level output		v	$V_{CC} = 5.25 V \text{ to } 5.95 V,$ $R_{L} = 90 \Omega, \qquad C_{L} = 50 \text{ pF},$		34	ns
^t PHL	Propagation delay time, high-to-low-level output			$V_{H(ref)} = 3.9 V$, input f = 5 MHz, See Figures 1 and 2		34	ns
^t PLH	Propagation delay time, low-to-high-level output	A	w	$V_{CC} = 5 V, \qquad R_{L} = 2 k\Omega,$		34	ns
^t PHL	Propagation delay time, high-to-low-level output		VV	$C_L = 15 \text{ pF},$ See Figures 1 and 2		21	ns
tPLH	Propagation delay time, low-to-high-level output	- A	Ē	$V_{CC} = 5 V$, $R_L = 2 k\Omega$, $C_L = 15 pF$,		45	ns
^t PHL	Propagation delay time, high-to-low-level output			See Figures 1 and 2		75	ns

 1 For SN55ALS130 at T_{A} = $-\,55\,^{o}C,~V_{H(ref)}$ = 2.5 V.



PARAMETER MEASUREMENT INFORMATION

NOTE A: The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, t_F \leq 6 ns, t_f \leq 6 ns, Z_{out} \approx 50 Ω .

FIGURE 1. INPUT AND OUTPUT VOLTAGE WAVEFORMS

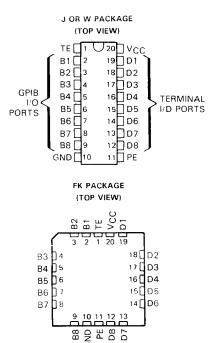
PARAMETER MEASUREMENT INFORMATION

NOTE A: CL includes probe and stray capacitance.

FIGURE 2. SWITCHING CHARACTERISTICS LOAD CIRCUITS

D3276, APRIL 1989

SUITABLE FOR IEEE STANDARD 488-1978 (GPIB)[†]


- 8-Channel Bidirectional Transceiver
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 56 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 550 mV Typ
- Open-Collector Driver Output Option
- No Loading of Bus When Device Is Powered Down (VCC = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

description

The SN55ALS160 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky device designed for two-way data communications over single-ended transmission lines. The transceiver features driver outputs that can be operated in either the passive-pullup or three-state mode. If Talk Enable (TE) is high, these ports have the characteristics of passivepullup outputs when Pullup Enable (PE) is low and of three-state outputs when PE is high. Taking TE low places these ports in the highimpedance state. The driver outputs are designed to handle loads up to 48 mA of sink current.

An active turn-off feature has been incorporated into the bus-terminating resistors so that the device exhibits a high impedance to the bus when $V_{CC} = 0$. When combined with the SN55ALS161 management bus transceiver, the device provides the complete 16-wire interface for the IEEE 488 bus.

The SN55ALS160 is characterized for operation from -55 °C to 125 °C.

FUNCTION TABLES

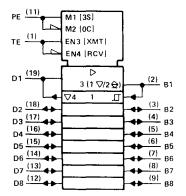
EACH DRIVER

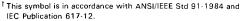
EACH RECEIVER

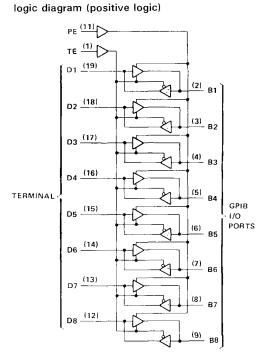
l II	VPUT	s	OUTPUT	11	NPUT	s	OUTPUT
D	TE	PE	В	B	TE	PE	D
н	н	н	н	L	L	х	L
L	н	х	L	н	L	х	н
н	х	L	z†	x	н	х	z
×	L	×	Z†	·			ł

H = high level, L = low level, X = irrelevant, Z = high-impedance state.

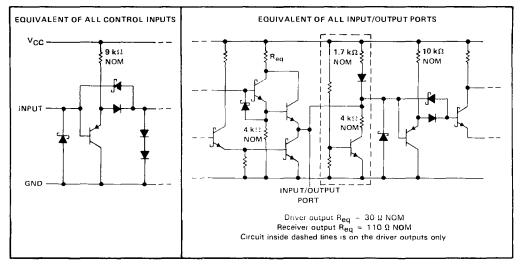
[†] This is the high-impedance state of a normal 3-state output modified by the internal resistors to V_{CC} and ground.


[†]The transceivers are suitable for IEEE Standard 896 applications to the extent of the operating conditions and characteristics specified in this data sheet. Certain limits contained in the IEEE specification are not met or cannot be tested over the entire military temperature range.


Phillul. (IOA 1:414 :scuments centain information - (rea) is 0'...(h)...(inon date. Products conferm to spont.tutions por the terms of Texas Instruments stondard worranty. Production processing does not necessarily include testing of ell parametors.



Copyright © 1989, Texas Instruments Incorporated


logic symbol[†]

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Suppiy voitage, V _{CC} (see Note 1)	
Low-level driver output current	
Low-level output current	50 mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):	13 75 mW
Operating free-air temperature range	C to 125°C
Storage temperature range	C to 150°C
Lead temperature 1,6 mm (1/16 inch) from the case for 60 seconds: J or W package	300°C
Case temperature for 60 seconds: FK package	. 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/°C.

recommended operating conditions

	· · · · · · · · · · · · · · · · · · ·	MIN	NOM	MAX	UNIT		
Supply voltage, VCC		4.75	5	5.25	٧		
	TE and PE at T _A = -55°C to 125°C	2					
High-level input voltage, V _{IH}	Bus and terminal at T _A = 25 °C or 125 °C	2			v		
	Bus and terminal at $T_A = -55$ °C	2.1			1		
	TE and PE at TA = -55°C to 125°C			0.8			
Low-levei input voltage, Vij	Bus and terminal at T _A = 25 °C or -55 °C			0.8	v		
	Bus and terminal at $T_A = 125 ^{\circ}\text{C}$			0.7			
	Bus ports with pullups active ($V_{CC} = 5 V$)			- 5.2	mA		
High-level output current, IOH	Terminal ports			- 800	μA		
	Bus ports			48	mA		
Low-level output current, IOL	Terminal ports			16			
Operating free-air temperature, TA		- 55		125	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

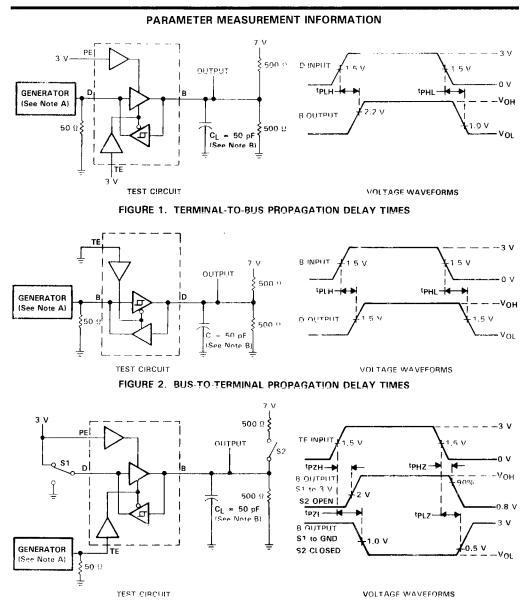
	PARAMETER			TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage		V _{CC} - 4 75 V,			- 0.8	-15	V
V _{hys}	Hysteresis (VT+ - VT-)	Bus	$\frac{V_{CC} = 5 V}{V_{CC} = 5 V}$	$T_{A} = 25^{\circ}C$ $T_{A} = 125^{\circ}C$	0.4 0.25	0.55		v
			V _{CC} = 5 V,		0.4			
	High-level	Terminal		$I_{OH} = -800 \ \mu A$, TE at 0.8 V	2.7	3.5		
∨он	Dutput voltage	Bus		$I_{OH} = -5.2 \text{ mA}$, PE and TE at 2 V	2.5	3.3		V
	· · · · · · · · · · · · · · · · · · ·			$I_{OH} = -5.2 \text{ mA}$, PE and TE at 2 V	2.2			
	I	Terminal		IOL = 16 mA, TE at 0.8 V		0.3	0.5	
VOL	Low-level	Rue	V _{CC} = 4.75 V, TE at 2 V,	$I_{OL} = 48 \text{ mA},$ $T_A = 25^{\circ}\text{C} \text{ pr } 125^{\circ}\text{C}$		0.35	0.5	v
	output voltage	Bus	$V_{CC} = 4.75 V$, $I_{OL} = 48 mA$, TE at 2 V, $T_A = -55 °C$			0.35	0.55	
h	Input current at maximum input voltage	Terminal	V _{CC} = 5 25 V,	V1 55V		0.2	1 0 0	μΑ
Чн	High-level input current	Terminal,	V _{CC} = 5.25 V,	VI = 2.7 V		0.1	20	μA
ηL	Low-level input current	PE, or TE	V _{CC} = 5.25 V,	VI = 0.5 V		- 30	- 100	μA
Man	Voltage at bus port		$V_{CC} = 5 V$,	$I_{I(bus)} = 0$	2.5	3.0	3.7	v
VIO(bus	voltage at bus port		Oriver disabled	$I_{(bus)} = -12 \text{ mA}$			- 1.5	v
				$V_{i(bus)} = -1.5 V to 0.4 V$	- 1.3			
		1		$V_{l(bus)} = 0.4 V \text{ to } 2.5 V$	0		- 3.2	
	Current into	Power on	V _{CC} ≈ 5 V,	$V_{I(bus)} = 2.5 V to 3.7 V$			2.5	mA
I/O(bus)	bus port	1 DWCF OIL	Oriver disabled				- 3.2	in A
				$V_{I(bus)} = 3.7 V t_{D} 5 V$	0		2.5	
				$V_{I(bus)} = 5 V to 5.5 V$	0.7		2.5	
		Power off	V _{CC} = 0,	VI(bus) = 0 to 2.5 V	_		40	μA
10.0	Short-circuit	Terminal	Vcc = 5.25 V		- 15	- 35	- 75	mA
los	output current	Bus			- 25	- 50	- 125	
	Supply current		$V_{CC} = 5.25 V$	Terminal outputs low and enabled		42	56	mA
lcc			No load	Bus putputs low and enabled		52	85	m A
Ci/o(bus	Bus-port capacitance		$V_{CC} = 5 V to 0$	$V_{1/O} = 0$ to 2 V, f = 1 MHz		30		рF

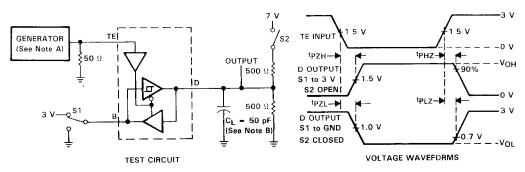
[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

	PARAMETER	FROM (INPUT)	то (OUTPUT)	TEST CONDITIONS	$^{T}A^{T}$	MIN	ΤYP‡	мах	UNIT
•	Propagation delay time,				25°C		10	17	
^t PLH	low- to high-level output	Terminal	Bus	See Figure 1	Full range			20	
	Propagation delay time,	remina	bus	Jee rigule i	25°C		10	14	ns
^t PHL	high- to low-level output				Full range			16	
	Propagation delay time,				25°C		8	15	
t PLH	low- to high-level output	Bus	Terminal	See Figure 2	Full range			18	
	Propagation delay time,	Bus	Terminal	See Figure 2	25°C		8	15	ns
tphl	high- to low-level output				Full range			18	
	Output enable time				25 °C		24	30	
tPZH	to high level		Full range				41		
	Output disable time	- 1			25 °C		9	14	
tphz	from high level	TE	0.	See Figure 3	Full s			16	
	Output enable time	TE	Bus	See Figure 3	2		16	28	
tpzl	to low level				Full range			34	
	Output disable time				25°C		12	19	
tplz	from low level	1 1			Full range			24	
	Output enable time				25°C		24	36	
^t PZH	to high level	1			Full range			50	
	Output disable time				25°C		10	18	
^t PHZ	from high level		- · ·		Full .3			23	
	Output enable time	- TE	Terminal	See Figure 4	2		15	26	
^t PZL	to low level				Full range	1		30	
	Output disable time	7			25°C		15	24	
tplz	from low level				Full range			31	
	Output pullup	1			25°C		16	24	
ten	enable time		P		Full 9			25	
	Output pullup	PE	Bus	See Figure 5	2 -		9	16	ns
tdis	disable time			1	Full range			20	1

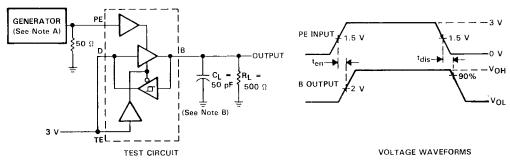
[†]Full range is - 55°C to 125°C.

[‡]All typical values are at $V_{CC} = 5 V$.

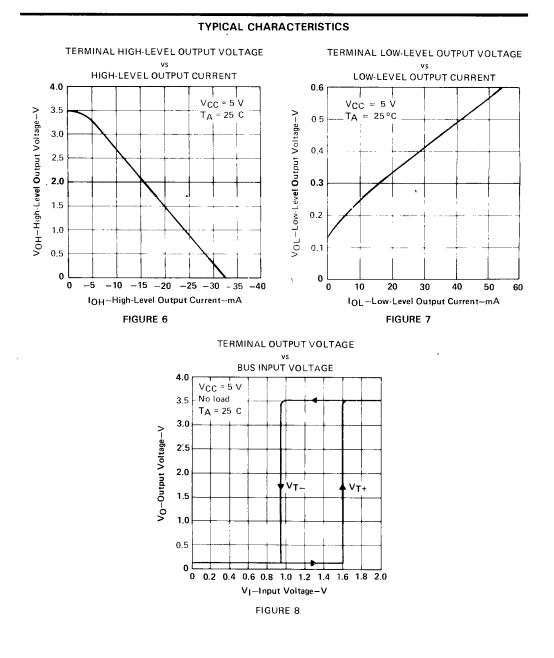


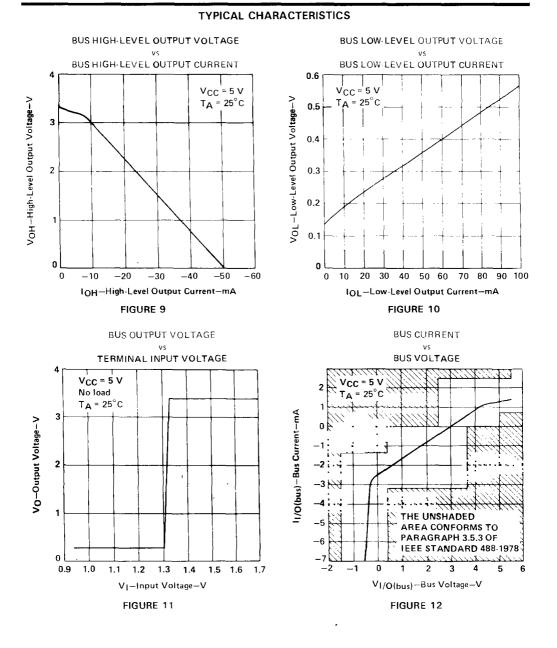

FIGURE 3 TE-TO-BUS ENABLE AND DISABLE TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 5 ns, Z₀ \approx 50 Ω .


B. CL includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION




FIGURE 5. PE-TO-BUS PULLUP ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 5 ns, Z₀ = 50 Ω .
 - B. CL includes probe and jig capacitance.

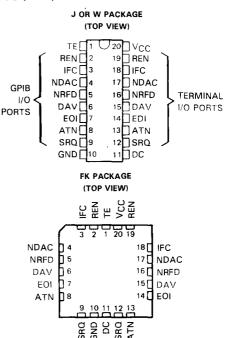
TEXAS INSTRUMENTS POST OFFICE BOX 855303 • DALLAS, TEXAS 75265

TEXAS V INSTRUMENTS POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

. .

D3277, APRIL 1989

SUITABLE FOR IEEE STANDARD 488-1978 (GPIB) APPLICATIONS[†]


- 8-Channel Bidirectional Transceiver
- Designed to Implement Control Bus Interface
- Designed for Single Controller
- High-Speed Advanced Low Power Schottky Circuitry
- Low Power Dissipation . . . 59 mW Max per Channel
- Fast Propagation Times . . . 25 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 550 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

description

The SN55ALS161 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky process device designed to provide the busmanagement and data-transfer signals between operating units of a single controller instrumentation system. When combined with the SN55ALS160 octal bus transceiver, the SN55ALS161 provides the complete 16-wire interface for the IEEE 488 bus.[†]

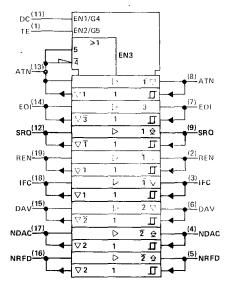
The SN55ALS161 features eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. The direction of data through these driver-receiver pairs is determined by the DC and TE enable signals.

The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when

CHANNEL IDENTIFICATION TABLE

NAME	IDENTITY	CLASS			
DC	Direction Control	Control			
TE	Talk Enable	Control			
ATN	Attention				
SRQ	Service Request	Bus			
REN	Remote Enable				
IFC	Interface Clear	Management			
EOI	End or Identify				
DAV	Data Valid	Data			
NDAC	Not Data Accepted				
NRFD	Not Ready for Data	Transfer			

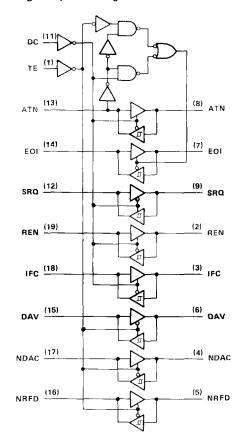
V_{CC} = 0. The drivers are designed to handle loads up to 48-mA sink current. Each receiver features p-n-p transistor inputs for high input impedance and a hysteresis of 250 mV minimum for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.


The SN55ALS161 is characterized for operation from ~55°C to 125°C.

[†] The transceivers are suitable for IEEE Standard 488 applications to the extent of the operating conditions and characteristics specified in this data sheet. Certain limits contained in the IEEE specification are not met or cannot be tested over the entire military temperature range.

Itilitii TION IA1A rocuments contain information (IIII) ss of INT kY end date. Products conform to spc.II.-utions per Ity, terms of Taxas Instruments stondard warranty. Production processing daes not necessarily include testing of all parameters.

Copyright © 1989, Texas Instrumenta Incorporated



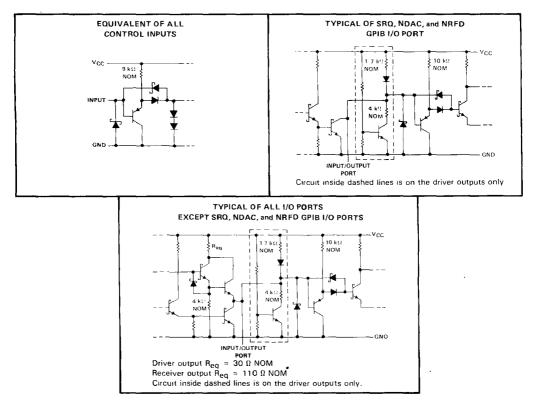
logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Designates passive-pullup outputs.

logic diagram (positive logic)

RECEIVE/TRANSMIT FUNCTION TABLE


Ċ	ONTRO	LS	BUS-MANAGEMENT CHANNELS					DATA-TRANSFER CHANNELS			
DC	TE	ATN [†]	ATN [†]	SRQ (Con	REN trol)ed by	IFC DC)	EOI	DAV (Co	NDAC	NRFD TE)	
н	н	н	B				Т		B		
н	н	L] ^ _	I	R	R	R] '	n	R	
L	L	н			-	+	R	В	-		
Ĺ	L	L] '	R	!	'	т	ן ר		1	
н	L	x	R	T	R	R	R	R	T	т	
L	н	x	Т	R	т	т	T	Ť	R	R	

H = high level, L = low level, R = receive, T = transmit, X = irrelevant

Oirection of data transmission is from the terminal side to the bus side, and the direction of data reception is from the bus side to the terminal side. Data transfer is noninverting in both directions.

[†]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When OC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Low-level driver output current	100 mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2)	1375 mW
Operating free-air temperature range	–55°C to 125°C
Storage temperature range	-65°C to 150°C
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from the case for 60 seconds	300°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate to 275 mW at 125 °C at the rate of 11.0 mW/ °C.

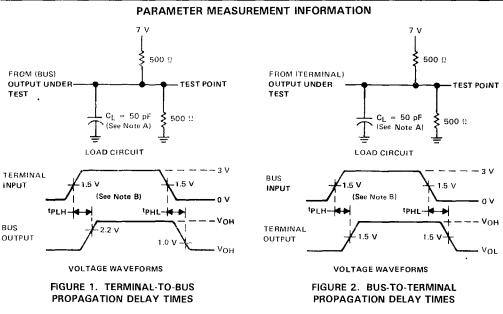
recommended operating conditions

.

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	v
	TE and DC at $T_A = -55^{\circ}C$ to 125°C	2			
High-level input voltage, VIH	Bus and terminal at $T_A = 25 ^{\circ}C$ or $125 ^{\circ}C$	2			v
	Bus and terminal at $T_A = -55^{\circ}C$	2.1			
	TE and DC at $T_A = -55^{\circ}C$ to $125^{\circ}C$			0.8	
Low-level input voltage, VIL	Bus and terminal at TA = 25°C or -55°C			0.8	V V
	Bus and terminal at TA = .20 C				
	Bus ports with pullups active ($V_{CC} = 5 V$)			-5.2	mA
High-level output current, IOH	Terminal ports			- 800	μA
	Bus ports			48	
Low-level output current, IOL	Terminal ports				mA
Operating free-air temperature, TA		- 55		125	°C

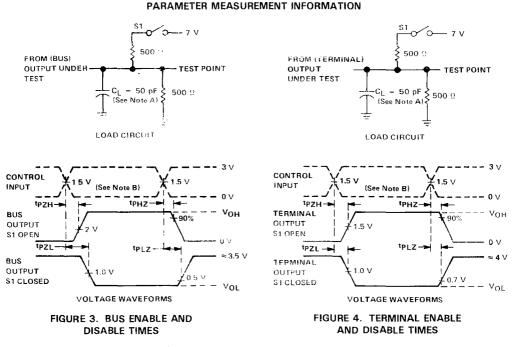
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TES	T CONDITIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage		$V_{CC} = 4.75 V$,	$l_{1} = -18 \text{ mA}$		0.8	- 1.5	V
			$V_{CC} = 5 V$,	$T_A = 25 ^{\circ}C$	0.4	0.55		
V _{hys}	Hysteresis (VT + - VT -)	Bus	$V_{CC} = 5 V_{i}$	T _A = 125 °C	0.25			v
			$V_{CC} = 5 V_{i}$		0.4			
		Terminal	V _{CC} = 4.75 V,	IOH = -800 µA	2.7	3.5		
VoH‡	High-level output voltage		$V_{CC} = 5 V$,	IOH = -5.2 mA	2.5	3.3		v
		Bus	V _{CC} = 4.75 V,		2.2			
		Terminal	VCC = 4.75 V,	IOL = 16 mA		0.3	0.5	
N -			$V_{CC} = 4.75 V_{,}$	loL = 48 mA,		0.35	0.5	v
VOL	Low-level output voltage	Bus	T _A = 25 °C or 12	5°C		0.35	0.5	v
			V _{CC} = 4.75 V, I	$0 = 4B \text{ mA}, T_A = -55^{\circ}C$		0.35	0.55	
ij	Input current at maximum input voltage	Terminal	$V_{\rm CC} = 5.25 V,$			0.2	100	μA
Чн	High-level	Terminal and	V _{CC} = 5.25 V,	VI = 2.7 V		0.1	20	μΑ
	Low-level	control						
ካር	input current	inputs	$V_{\rm CC} = 5.25 V,$	$v_{1} = 0.5 v$		- 30	- 100	μA
Nuce in			$V_{CC} = 5 V$,	$I_{i(bus)} = 0$	2.5	3.0	3.7	
VI/O(bus)	Voltage at bus port		Driver disabled	$I_{i(bus)} = -12 \text{ mA}$			- 1.5	v
_				$V_{i(bus)} = -1.5 V \text{ to } 0.4 V$	-1.3			
				VI(bus) = 0.4 V to 2.5 V	0		- 3.2	
		Power on	$V_{CC} = 5 V,$	VI(bus) = 2.5 V to 3.7 V			2.5	mA
li/O(bus)	Current into bus port	Fower on	Driver disabled	$v_{1(bus)} = 2.5 v_{1(bus)} v_{1(bus)}$			- 3.2	ma
				VI(bus) = 3.7 V to 5 V	0		2.5	
				$V_{i(bus)} = 5 V \text{ to } 5.5 V$	0.7		2.5	
	······	Power off	V _{CC} = 0	$V_{i(bus)} = 0$ to 2.5 V	L		40	μA
los‡	Short-circuit	Terminal	V _{CC} = 5.25 V		- 15	- 35	- 75	mA
.08*	output current	Bus			- 25	50	-125	
ICC	Supply current			No load, TE and DC low		55	90	mA
Ci/o(bus)	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0,$ $V_{I/O} = 0 \text{ to } 2 V,$	f = 1 MHz		30		pF

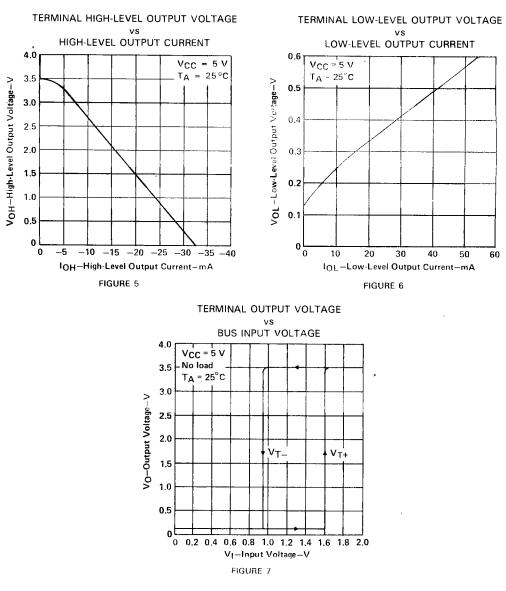

 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ V_OH and Ios apply for three-state outputs only.

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	τ _A †	MIN	түр‡	мах	UNIT
	Propagation delay time,		Bus		25°C		10	17	
tplh	low- to high-level output	Touring	(Except	See Figure 1	Full range			20	ns
	Propagation delay time,	Terminal	SRQ, NDAC,	See Figure 1	25 °C		10	14	ns
tPHL	high- to low-level output		and NRFD)		Full range			16	
	Propagation delay time		But		25°C			25	
tplh	low- to high-level output	<u> </u>	Bus	See Figure 2	Full range			30	ns
	Propagation delay time,	Terminal	NRFD, SRQ,	See Figure 2	25°C		10	14	115
tphl	high- to low-level output		NDAC		Full 3			16	
	Propagation delay time,				2		10	15	
tplh	low- to high-level output	_		0.5	Full range	1		18	
	Propagation delay time,	Bus	Terminal	See Figure 2	25°C		10	15	ns
tphl	high- to low-level output				Full range			18	
	Output enable time				25°C	1	20	30	
tPZH	to high level				Full • •			41	
	Output disable time	TE or DC	Bus (ATN, REN, IFC, and DAV)	See Figure 3	2		8	14	
tphz	from high level				Full e			16	ns -
	Output enable time				2	1	16	28	
tpzl	to low level				Full range			34	
	Output disable time				25 °C		10	19	
tplz	from low level				Full range	1		24	
	Output enable time	1			25°C	1	24	30	
tpzh	to high level				Full range	1		48	
	Output disable time	1			25 °C	<u> </u>	13	19	
tphz	from high level	TE	Bus		Full range			25	1
	Output enable time	or DC	(EOI)	See Figure 3	25°C		21	35	ns
tPZL	to low level	0, 20			Full 3			43	1
	Output disable time	1			2	1	13	20	1
^t PLZ	from low level	•			Full range			27	1
	Output enable time				25 °C		24	36	
tpzh	to high level				Full range			50	
	Output disable time	-			25°C		12	20	-
tphz	from high level	TE			Full range	+		33	1
	`	or DC	Terminal	See Figure 4	25°C	+	20	34	
^t PZL	Output enable time				Full range	-	20	41	1
	to low level	-			25°C		13	24	1
^t PLZ	Output disable time				Full range	+		35	4
	from low level				<u>I run range</u>				

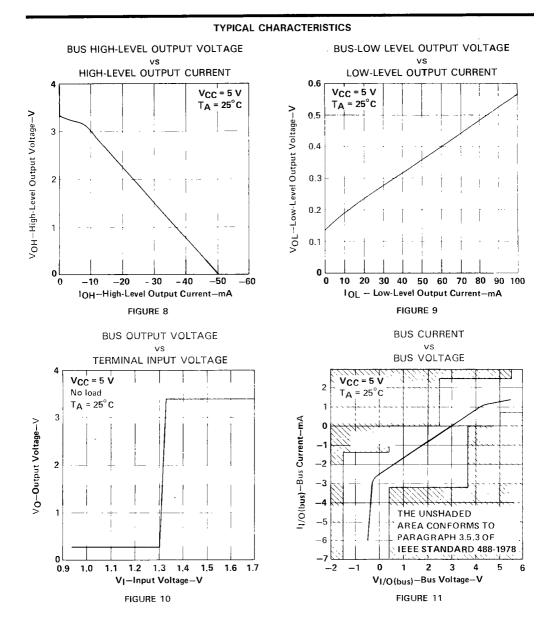
[†]Full range is ~55°C to 125°C.


[‡]All typical values are at $V_{CC} = 5$ V.

- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .



NOTES: A. CL includes probe and jig capacitance.


B. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50.9

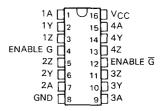
TYPICAL CHARACTERISTICS

.

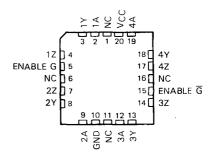
··· ···

D2904, JULY 1985- REVISED JUNE 1986

- Meets EIA Standard RS-422-A
- High-Speed, Low-Power ALS Design
- 3-State TTL Compatible
- Single 5-V Supply Operation
- High Output Impedance in Power-Off Condition
- Complementary Output Enable Inputs
- Improved Replacement for the AM26LS31


description

These quadruple complementary-output line drivers are designed for data transmission over twisted-pair or parallel-wire transmission lines. They meet the requirements of EIA Standard RS-422-A and are compatible with 3-state TTL circuits. Advanced Low-Power Schottky technology provides high speed without the usual power penalties. Standby supply current is typically only 26 mA, while typical propagation delay time is less than 10 ns.


High-impedance inputs maintain input currents low, less than 1 μ A for a high level and less than 10D μ A for a low level. Complementary control inputs, G and G, allow these devices to be enabled at either a high input level or low input level. The SN75ALS192 is capable of data rates in excess of 20 megabits per second and is designed to operate with the SN75ALS193 quadruple line receiver. The SN55ALS192 is also capable of data rates in excess of 20 megabits per second and designed to operate with the SN55ALS193; however, it may be limited to a lower bit rate based on the temperature. Reference should be made to the Dissipation Rating Table and Figure 15.

The SN55ALS192 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN75ALS192 is characterized for operation from 0°C to 70°C.

SN55ALS192 . . . J PACKAGE SN75ALS192 . . . D, J, OR N PACKAGE (TOP VIEW)

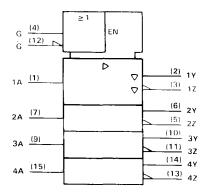
SN55ASL192 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

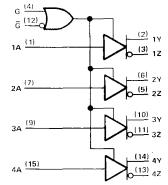
FUNCTION TABLE (EACH DRIVER)

INPUT	ENABLES	OUTPUTS
Α	GĞ	ΥZ
н	нх	ΗL
L	нх	ιH
н	ХL	HL
L	XL	LН
X	LH	ZZ

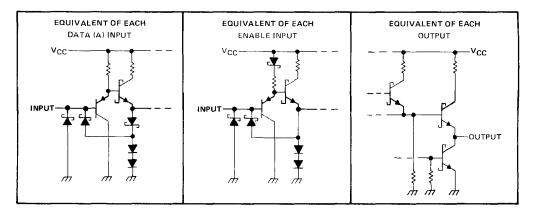
H = high level, L = low level,


Z = high impedance (off),

X = irrelevant


PRODUCTION OATA dacuments contain information current as of publication date. Pr • onform to spacifications per the terms of :-.. Instruments stendard warranty. Production processing does not necessarily include testing of all perameters.

logic symbol[†]


logic diagram (positive logic)

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		SN55ALS192	SN75ALS192		
Supply voltage, V _{CC} (see Note 1)	7	7	V		
Input voltage, VI	7	7	V		
Output off-state voltage	6	6	V		
	D package		950		
Continuous total dissipation at (or below)	FK package	1375			
25°C free-air temperature (see Note 2)	J package	1375	1025	m₩	
	N package		1150	1	
Operating free-air temperature range		-55 to 125	0 to 70	°C	
Storage temperature range		-65 to 150	65 to 150	°C	
Case temperature for 60 seconds FK package		260		- °C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package	300	300	1 °	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package		260	°C	

NOTES: 1. All voltage values except differential output voltage VOD are with respect to network ground terminal.

 For operation above 25 °C free-air temperature, refer to the Dissipation Rating Table. In the J package, SN55ALS192 chips are either alloy or silver glass mounted and SN75ALS192 chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C PO₩FB RATING	TA = 125°C POWER RATING
D	950 mW	7.6 mW/ °C	πW	
FK or J (SN55ALS912)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75ALS192)	1025 mW	8.2 mW/*C	656 mW	
N	1150 mW	9.2 mW/°C	736 mW	

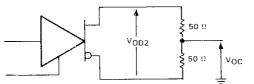
recommended operating conditions

	SN	SN55ALS192			SN75ALS192		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	v
High level input voltage, VIH	2			2			V
Low-level input voltage, VIL			0.8			0.8	V
High-level output current, IOH			- 20			- 20	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	- 55		125	0		70,	°C

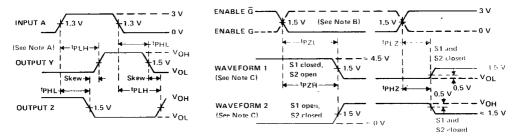
PARAMETER		TEST CONDITIONS ¹		SN55ALS192			SN75ALS192			
				MIN	түр‡	MAX	MIN	түр‡	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	ij = -18 mA			- 1.5			- 1.5	V
∨он	High-level output voltage	$V_{CC} = MIN,$	IOH = -20 mA	24			2.5			~
VOL	Low-level output voltage	$V_{CC} = MIN,$	IOL = 20 mA			0.5			0.5	V
Vo	Output voltage	$V_{CC} = MAX,$	0 = 0	0		6	0		6	V
VOD1	Differential output voltage	$V_{CC} = MIN,$	l0 = 0	15		6	1.5		6	V
Maad	Differential output voltage	$R_L = 100 \Omega$,	See Figure 1	½ VOD	1		½ VOD	1		
MOD 21	billerential output voltage	n[= 100 <i>u</i> ,	See Figure 1	2			2			v
	Change in magnitude of					±0.2	_		±0.2	v
1 001	differential output voltage §		i							
Voc	Common-mode output voltage	$R_L = 100 \Omega$,	See Figure 1			±3			±3	<u>v</u>
∆∣Voc∣	Change in magnitude of				±0.2			±0.2	v	
-1.001	common-mode output voltage [§]					_				
lo	Output current with power off	$V_{CC} = 0$	V ₀ = 6 V			100			100	μA
.0		• • • • •	$V_0 = -0.25 V$			100			- 100	
loz	Off-state (high-impedance	V _{CC} = MAX	$V_0 = 0.5 V$			- 20			- 20	μA
-02	state) output current		$V_0 = 2.5 V$			20			20	μ.
4	Input current at maximum	$V_{CC} = MAX,$	V = 7 V			0.1			0.1	mA
	input voltage									
Чн	High-level input current	$V_{CC} = MAX,$				20			20	μA
<u>н∟</u>	Low-level input current	$V_{CC} = MAX,$	$V_{I} = 0.4 V$			-0.2	L		0.2	mA
los	Short-circuit output current#	$V_{CC} = MAX$		- 30		- 150	30		- 150	mA
lcc	Supply current (all drivers)	$V_{CC} = MAX,$	All outputs disabled		26	45		26	45	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions. [‡]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

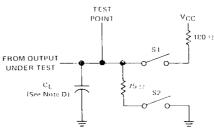

 $\frac{1}{2}$ V_{0D} and $\frac{1}{2}$ V_{0C} are the changes in magnitude of V_{0D} and V_{0C} , respectively, that occur when the input is changed from a high level to a low level.

[§]In EIA Standard RS-422A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. [#]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$ (see Figure 2)

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			6	13	ns
^t PHL	Propagation delay time, high-to-low-level output			9	14	ns
	Output-to-output skew	$C_L = 30 \text{ pF}$, S1 and S2 open		3	6	ns
tPZH -	Output enable time to high level	$R_L = 75 \Omega$		11	15	ns
^t PZL	Output enable time to low level	$R_L = 180 \Omega$		16	20	ns
tPHZ	Output disable time from high level	C _I = 10 pF S1 and S2 closed	[8	15	ns
^t PLZ	Output disable time from low level	CL = 10 pr ST and S2 closed		18	20	ns

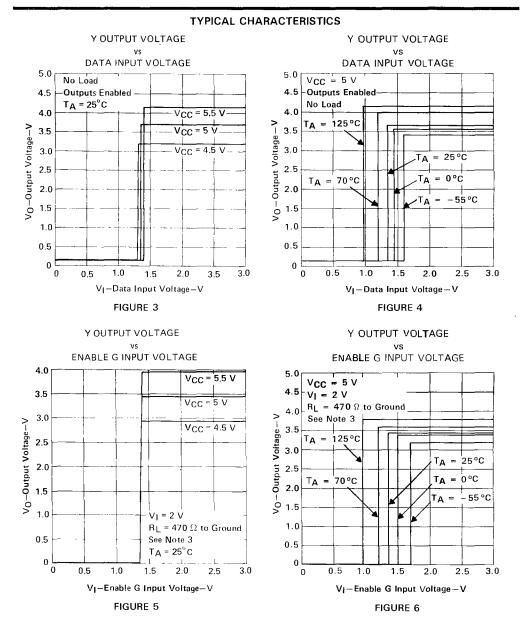
PARAMETER MEASUREMENT INFORMATION


FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES

PROPAGATION DELAY TIMES AND SKEW

ENABLE AND DISABLE TIMES

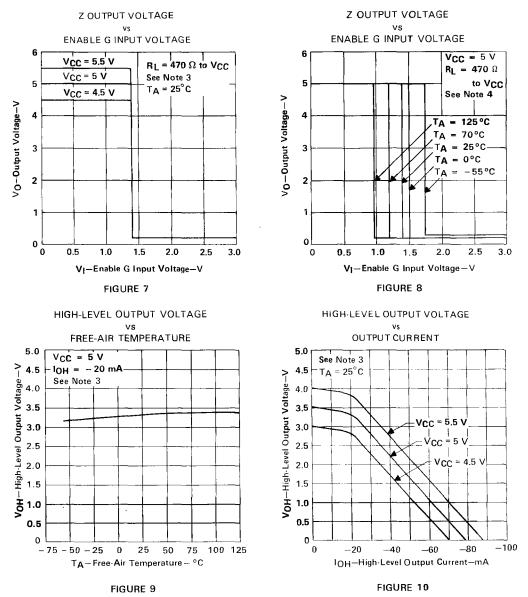
VOLTAGE WAVEFORMS

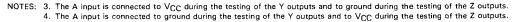


TEST CIRCUIT

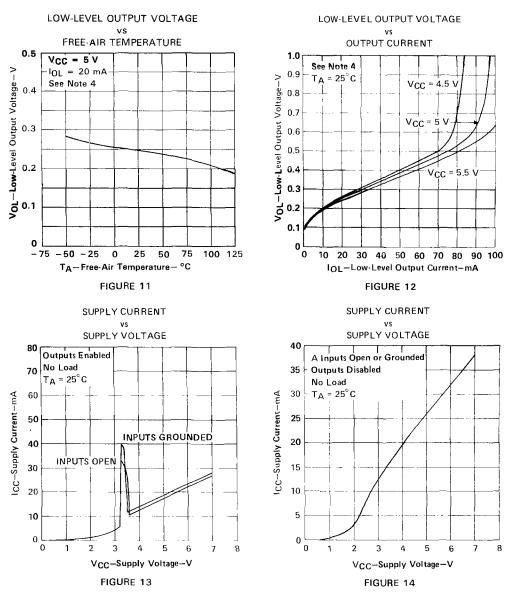
- NOTES: A. When measuring propagation delay times and skew, switches S1 and S2 are open.
 - B. Each enable is tested separately.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. CL includes probe and jig capacitance.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ \approx 50 Ω , t_r \leq 15 ns, and t_f \leq 6 ns

FIGURE 2. SWITCHING TIMES

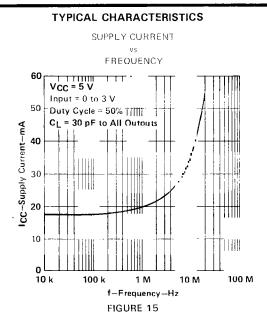




NOTE 3: The A input is connected to VCC during the testing of the Y outputs and to ground during the testing of the Z outputs.



TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

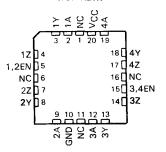
NOTE 4: The A input is connected to ground during the testing of the Y outputs and to VCC during the testing of the Z outputs.

D2917, OCTOBER 1985-REVISED OCTOBER 198B

- Meets EIA Standard RS-422-A
- High-Speed ALS Design
- 3-State TTL-Compatible
- Single 5-V Supply Operation
- High Output Impedance in Power-Off Condition
- Two Pairs of Drivers Independently Enabled
- Designed as a Replacement for the MC3487 with Improvements: ICC 50% Lower, Switching Speed 30% Faster, Full-Temperature-Range Version

description

These quadruple complementary-output line drivers are designed for data transmission over twisted-pair or parallel-wire transmission lines. They meet the requirements of EIA Standard RS-422-A and are compatible with 3-state TTL circuits. Advanced Low-Power Schottky technology provides high speed without the usual power penalty. Standby supply current is typically only 26 mA, while typical propagation delay time is less than 10 ns and enable/disable times are typically less than 16 ns.


High-impedance inputs keep input currents low, less than 1 μA for a high level and less than 100 μA for a low level. The driver circuits can be enabled in pairs by separate active-high enable inputs. The SN55ALS194 and SN75ALS194 are capable of data rates in excess of 10 megabits per second and are designed to operate with the SN55ALS195 and SN75ALS195 quadruple line receivers.

The SN55ALS194 is characterized for operation from $-55\,^{\circ}$ C to $125\,^{\circ}$ C. The SN75ALS194 is characterized for operation from 0 °C to 70 °C.

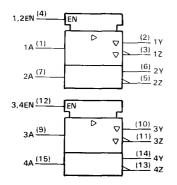
	J PACKAGE), J, OR N PACKAGE								
(TOP VIEW)									
1A 1 1Y 2 1Z 3 1,2EN 4 2Z 5 2Y 6 2A 7 GND 8	16 V _{CC} 15 4A 14 4Y 13 4Z 12 3,4EN 11 3Z 10 3Y 9 3A								

SN7

SN55ALS194 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

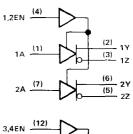
FUNCTION TABLE (EACH DRIVER)

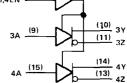

INPUT	OUTPUT	OUTPUTS			
INPUT	ENABLE	Y	Z		
н	н	н	L		
L	н	L	н		
X	L	High-Impedance	High-Impedance		

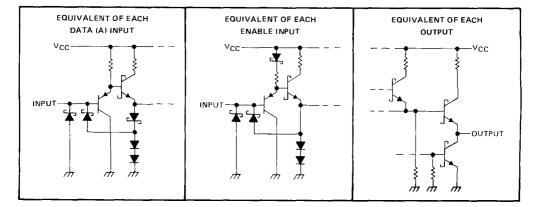
H = TTL high level, L = TTL low level, X = irrelevant

PRODUCTION DATA documents contain information current as af publication date. Products conform to specifications per the tarms of Texas instruments stendard warrenty. Production processing daes not necassarily include testing of all paremeters.

logic symbol[†]




 $^{\dagger} \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$


Pin numbers shown are for D, J, and N packages.

schematics of inputs and outputs

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage, V _I 5.5 V Continuous total dissipation See Dissipation Rating Table
Operating free-air temperature range: SN55ALS194 - 55 °C to 125 °C SN75ALS194 0 °C to 70 °C
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C

NOTE 1: All voltage values are with respect to network ground terminal.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	N/A
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN55ALS194)	1375 mW	11 0 mW/°C	880 mW	275 mW
J (SN75ALS194)	1025 mW	8.2 mW/°C	656 mW	N/A
N	1150 mW	9.2 mW/°C	736 mW	N/A

DISSIPATION RATING TABLE

recommended operating conditions

		SN:5-A15194		SN75ALS194			UNIT		
		MIN	ົນທີ	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	- 5	5.25	V	
	All inputs, $T_A = 25 ^{\circ}C$	2			2				
High-level input voltage, V _{IH}	A inputs, $T_A =$ Full range	2			2			l v	
	EN inputs, $T_A =$ Full range	2.1			2			[
Low-level input voltage, VIL				0.8			0.8	V	
High-level output current, IOH				- 20			- 20	mA	
	T _A = 25°C			48			48		
Low-level output current, IOL	T _A ≠ Full range			20			48	- mA	
Operating free-air temperature, TA		~ 55		125	0		70	°C	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	CONDITIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	$l_i = -18 \text{ mA}$			- 1.5	V
v _{oн}	High-level output voltage	$V_{CC} = MIN,$ $I_{OH} = -20 \text{ mA}$	SN55ALS194	2.4 2.5			v
VOL	Low-level output voltage	VCC = MIN,	IOL = MAX			0.5	v
VO	Output voltage	10 = 0		0		6	v
VOD1	. ··· rential output voltage	10 = 0		2		6	v
VOD2	Differential output voltage			½ VOC 2	01		v
AIVOD!	Change in magnitude of differential output voltage [‡]	R _L = 100 Ω,	See Figure 1			±0.4	v
Voc	Common-mode output voltage					±3	v
∆ V _{OC}	Change in magnitude of common-mode output voltage [‡]					±0.4	v
10	Output current with power off	V _{CC} = 0	$V_0 = 6 V$ $V_0 = -0.25 V$			100 - 100	μA
loz	High-impedance state output current	V _{CC} = MAX, Output enables	V ₀ = 2.7 V			100	μA
.02		at 0.8 V	V ₀ = 0.5 V			- 100	<i></i>
4	Input current at maximum input voltage	VCC = MAX,	$V_1 = 5.5 V$			100	μA
Чн	High-level input current	$V_{CC} = MAX,$	V ₁ = 2.7 V			50	μA
կլ	Low-level input current	V _{CC} = MAX,	$V_{1} = 0.5 V$			·]	μA
los	Short-circuit output current [§]	V _{CC} = MAX,	$V_{I} = 2 V$	- 40		- : +	mA
^I CC	Supply current (all drivers)	V _{CC} = MAX,	All outputs disabled		26	45	mA

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

 $^{+}\Delta|V_{0D}|$ and $\Delta|V_{0C}|$ are the changes in magnitude of V_{0D} and V_{0C}, respectively, that occur when the input is changed from a high level to a low level.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST	SN5141-194			SN75ALS194			
	PARAMETER	CONDITIONS	MIN	· 1	MAX	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	0 15 -5		6	13		6	13	ns
tPHL	Propagation delay time, high-to-low-level output	$C_L = 15 \text{ pF},$		9	14		9	14	ns
_	Output-to-output skew	See Figure 2		3.5	6		3.5	6	ns
•	Differential-output transition time	C _L = 15 pF,	8	14	8		14		
tΤD	Differential-output transition time	See Figure 3				0	14	ns	
^t PZH	Output enable time to high level			9	12		9	12	ns
tPZL	Output enable time to low level	С _L = 15 рF,		12	20		12	20	ns
tPHZ	Output disable time from high level	See Figure 4		9	15		9	14	ns
tPLZ	Output disable time from low level			12	15		12	15	ns

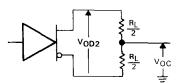
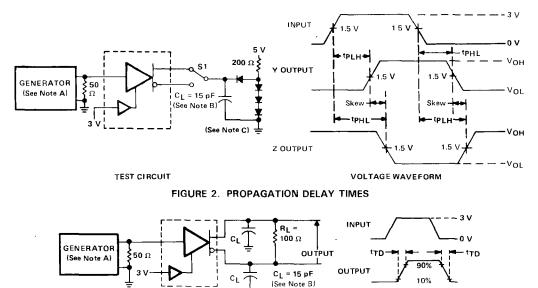
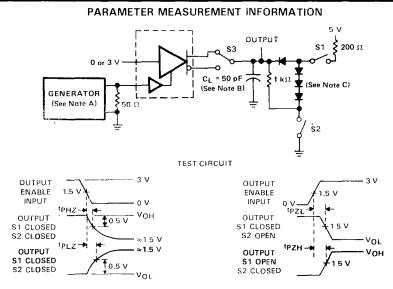



FIGURE 1. DRIVER VOD AND VOC

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A
Vo	V _{oa} , V _{ob}
VOD1	Vo
VOD2	$V_t (R_L = 100 \Omega)$
	$ V_t - \overline{V}_t $
Voc	Vos
	V _{os} – ∇ _{os}
los	Isa , Isb
ю	li _{xa} , li _{xb}

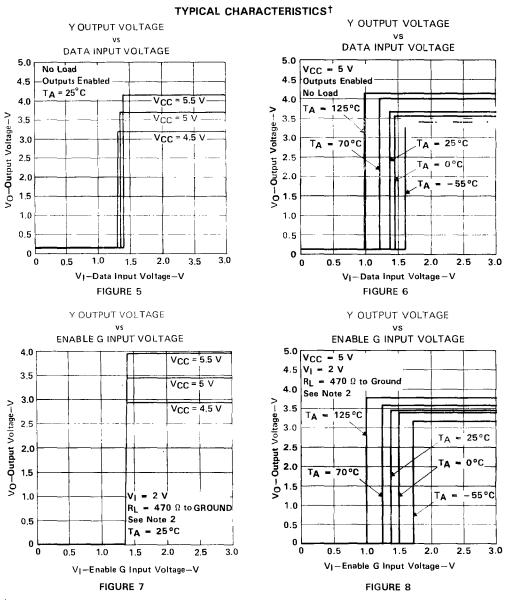
PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 3. DIFFERENTIAL-OUTPUT TRANSITION TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_0 \approx 50$ Ω .
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or 1N3064.



VOLTAGE WAVEFORMS

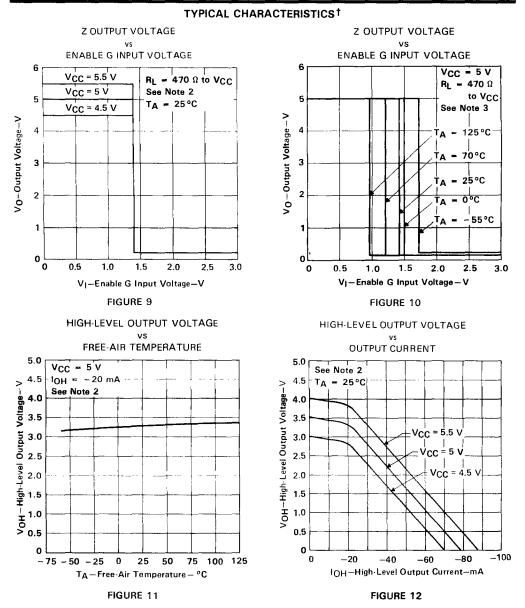
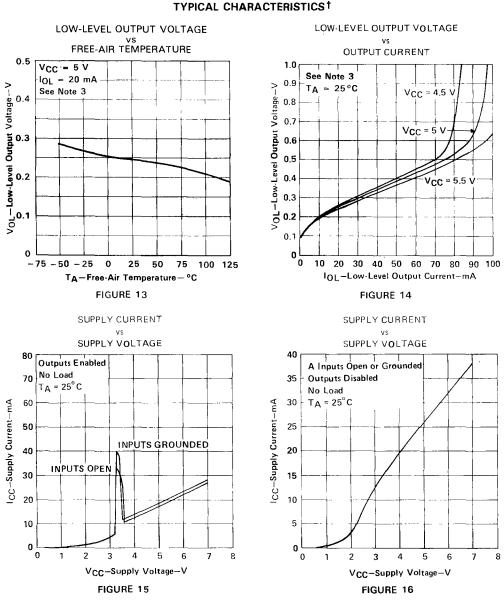
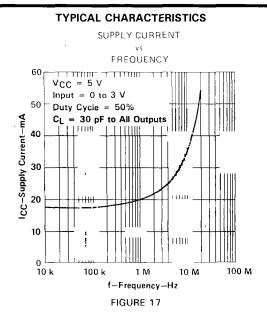

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_0 = 50$ Ω .
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or 1N3064.

FIGURE 4. DRIVER ENABLE AND DISABLE TIMES

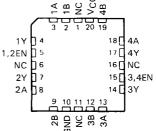

[†]Data for temperatures below 0 °C and above 70 °C are applicable to SN55ALS194 circuits only. NOTE 2: The A input is connected to V_{CC} during the testing of the Y outputs and to ground during the testing of the Z outputs.


[†]Data for temperatures below 0 °C and above 70 °C are applicable to the SN55ALS194 circuits only. NOTES: 2. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during the testing of the Z outputs. 3. The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs.

[†] Data for temperatures below 0°C and above 70°C are applicable to the SN55ALS194 circuits only. NOTE 3: The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs.

TEXAS V INSTRUMENTS POST OFFICE BOX 855303 · DALLAS. TEXAS 75265

SN55

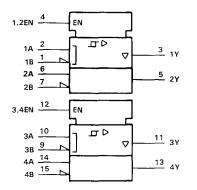

D2928, JUNE 1986-REVISED JUNE 1990

- Meets EIA Standards RS-422-A and RS-423-A
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- -7 V to 7 V Common-Mode Range With 200-mV Sensitivity
- 3-State TTL-Compatible Outputs
- High Input Impedance . . . 12 kΩ Min
- Input Hysteresis . . . 120 mV Typ
- Single 5-V Supply Operation
- Low Supply Current Requirement . . . 35 mA Max
- Improved Speed and Power Consumption Compared to MC3486

description

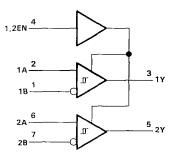
The SN55ALS195 and SN75ALS195 are monolithic quadruple line receivers with 3-state outputs designed using Advanced Low-Power Schottky technology. This technology provides combined improvements in die design, tooling production, and wafer fabrication, which in turn, provide lower power consumption and permit much higher data throughput than other designs. The devices meet the specifications of EIA Standards RS-422-A and RS-423-A. The 3-state outputs permit direct connection to a busorganized system with a fail-safe design that ensures the outputs will always be high if the inputs are open.

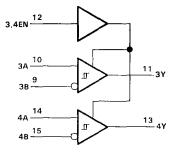
ALS195, SN75ALS195 J PACKAGE (TOP VIEW)
1B 1 16 V _{CC} 1A 2 15 4B 1Y 3 14 4A 1,2EN 4 13 4Y 2Y 5 12 3,4EN 2A 6 11 3Y 2B 7 10 3A GND 8 9 3B
SN55ALS195 FK PACKAGE (TOP VIEW)


NC-No internal connection

The devices are optimized for balanced multipoint bus transmission at rates up to 20M b/s. The input features high input impedance, input hysteresis for increased noise immunity, and an input sensitivity of ± 200 mV over a common-mode input voltage range of ± 7 V. The devices also feature an active-high enable function for each of two receiver pairs. The SN55ALS195 and SN75ALS195 are designed for optimum performance when used with the SN55ALS194 and SN75ALS194 quadruple differential line drivers.

The SN55ALS195 is characterized for operation from -55 °C to 125 °C. The SN75ALS195 is characterized for operation from 0 °C to 70 °C.

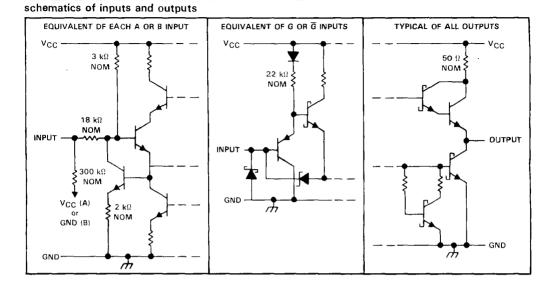

logic symbol[†]



 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the J package.

logic diagram



FUNCTION TABLE (EACH RECEIVER)

DIFFERENTIAL INPUTS	ENABLE	OUTPUT Y
V _{ID} ≥ 0.2 V	Н	н
$-0.2 V < V_{\text{ID}} < 0.2 V$	H	?
$V_{\rm ID} \leq -0.2 V$	Н	L
X	L	Z

H = high level, L = low level, X = irrelevant, ? = indeterminate, and Z = high impedance (off)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, VCC (see Note 1)
Input voltage, A or B inputs, VI
Differential input voltage (see Note 2) ± 15 V
Enable input voltage
Low-level output current
Continuous total dissipation
Operating free-air temperature range: SN55ALS195
SN75ALS195
Storage temperature range
Case temperature for 60 seconds; FK package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditons" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 125°C POWLE RATING
FK	1375 mW	11.0 mW/°C	880 mW	nW
J (SN55ALS195)	1375 mW	11.0 mW/°C	880 mW	275 mW
J (SN75ALS195)	1025 mW	8.2 mW/ °C	656 mW	N/A

DISSIPATION RATING TABLE

recommended operating conditions

	SN	155ALS1	95	SN	SN75ALS195		
	MiN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	v
mon-mode input voltage, VIC			±7			±7	v
rential input voltage, V _{ID}			± 12			±12	V
High-level input voltage, VIH	2	-		2			v
Low-level input voltage, VIL			0.8			0.8	V
High-level output current, IOH			- 400			- 400	μA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	- 55		125	0		70	°C

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST	CONDITIONS	MIN	түр‡	MAX	UNIT
V _{T+}	Positive-going threshold voltage					200	m۷
VT	Negative-going threshold voltage			- 200 [§]			mν
Vhvs	Hysteresis¶				120		m۷
VIK	Enable-input clamp voltage	V _{CC} = MIN,	l _l = -18 mA			-1.5	v
VOH	High-level output voltage	V_{CC} MIN, $I_{OH} = -400 \ \mu A$,	V _{ID} = 200 mV, See Figure 1	2 .5	3.6		v
VOL	Low-level output voltage	$V_{CC} = MIN$ $V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA			0.45	v
•01		See Figure 1	$i_{OL} = 16 \text{ mA}$			0.5	
		$V_{CC} = MAX,$ $V_{ID} = -3 V,$	$V_{IL} = 0.8 V,$ $V_{O} = 2.7 V$			20	
oz	High-impedance state output current	$V_{CC} = MAX,$ $V_{IO} = 3 V,$	$V_{IL} = 0.8 V,$ $V_{O} = 0.5 V$			- 20	μΑ
4	Line input current	Other input at 0 V, See Note 3	$\frac{V_{CC}}{V_{CC}} = \frac{V_{I}}{W_{CA}}, \frac{V_{I}}{V_{I}} = -15 \text{ V}$		0.7	1.2 - 1.7	mA
цн	High-level enable-input current	V _{CC} = MAX	$V_{IH} = 2.7 V$ $V_{IH} = 5.25 V$			20 100	μA
11L	Low-level enable-input current	V _{CC} = MAX,	V _{IL} = 0.4 V			- 100	μA
	Input resistance			12	18		kΩ
los	Short-circuit output current	$V_{CC} = MAX,$ $V_{O} = 0,$	V _{ID} = 3 V, See Note 4	- 15	- 78	- 130	mA
lcc	Supply current	$V_{CC} = MAX,$	Outputs disabled		22	35	mΑ

[†]For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

^SThe algebraic convention, in which the less positive limit is designated minimum, is used in this data sheet for threshold voltage levels only. ^SHysteresis is the difference between the positive-going input threshold voltage, V_T ₊, and the negative-going input threshold voltage, V_T ₋. NOTES: 3. Refer to EIA Standard RS-422-A and RS-423-A for exact conditions.

4. Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25 °C PARAMETER TEST CONDITIONS MIN ТҮР MAX UNIT $V_{ID} = 0 V to 3 V$, ^tPLH Propagation delay time, low- to high-level output $C_1 = 15 \, pF_2$ 15 22 ns Propagation delay time, high- to low-level output See Figure 2 15 ^tPHL 22 ns Output enable time to high level 13 25 ^tPZH $C_{1} = 15 \, pF_{2}$ See Figure 3 ns Output enable time to low level ^tPZL 10 25 ^tPHZ Output disable time from high level 19 25 $C_{I} = 15 \, pF_{z}$ See Figure 3 ns Output disable time from low level ^tPLZ 17 22

PARAMETER MEASUREMENT INFORMATION

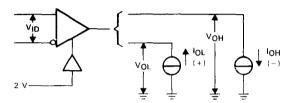
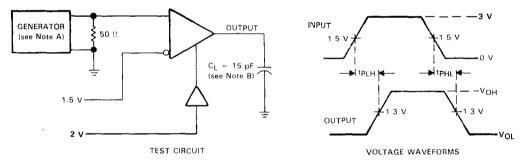
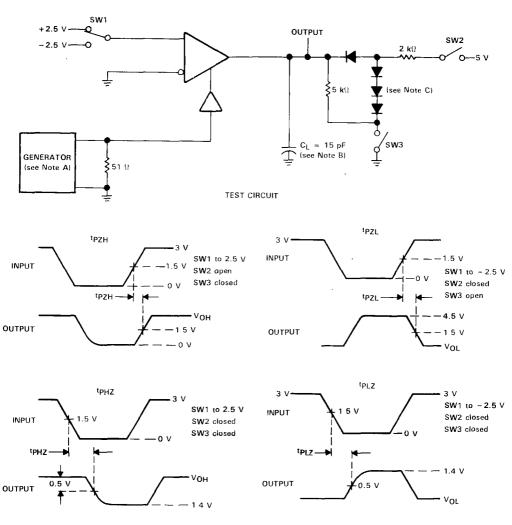



FIGURE 1. VOH, VOL

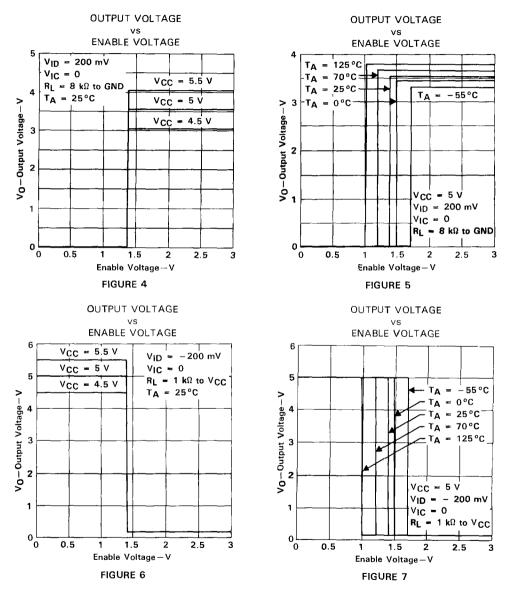


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 Ω , t_f \leq 6 ns. t_f \leq 6 ns.

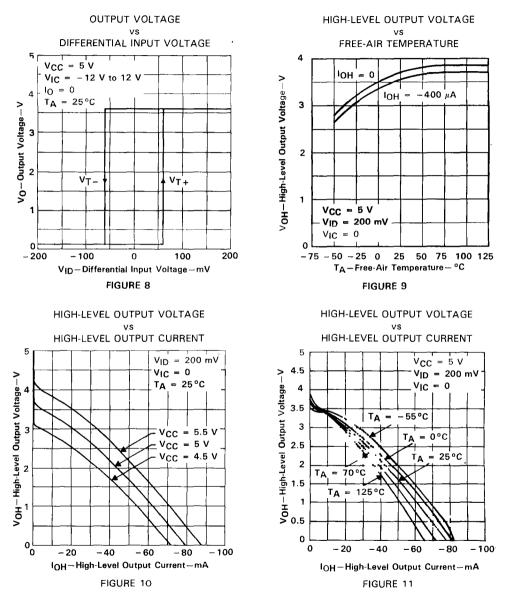
B. CL includes probe and jig capacitance.

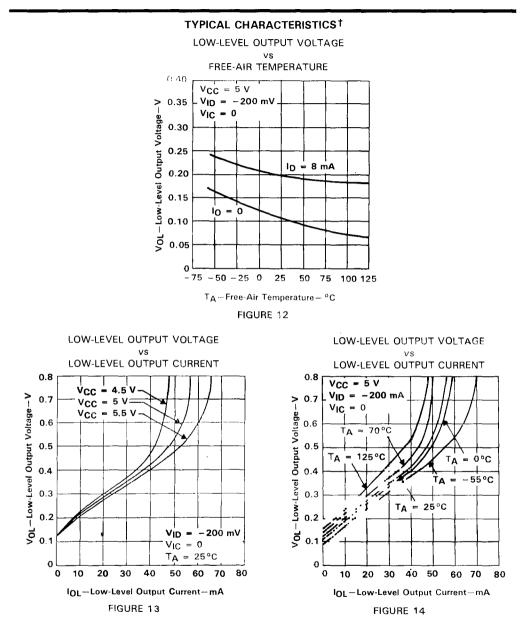
FIGURE 2. PROPAGATION DELAY TIMES

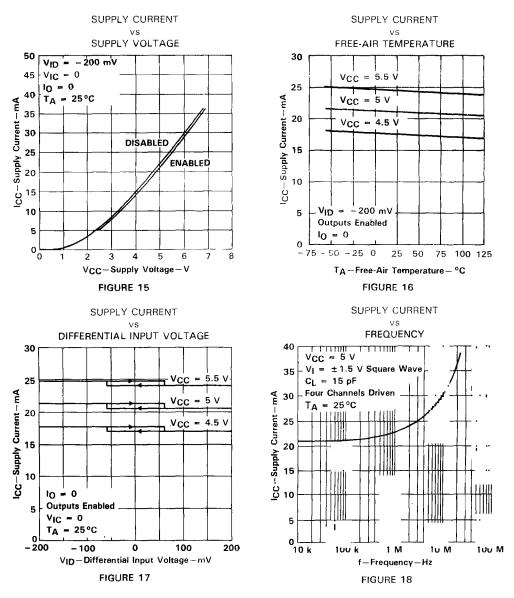
PARAMETER MEASUREMENT INFORMATION


VOLTAGE WAVEFORMS

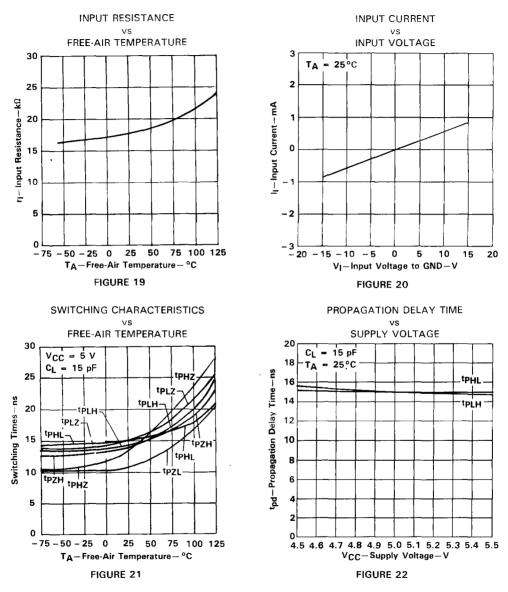
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 Ω , t_f \leq 6 ns, t_f \leq 6 ns.
 - B CL includes probe and lig capacitance
 - C. All diodes are 1N3064 or equivalent.


FIGURE 3. ENABLE AND DISABLE TIMES



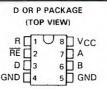


TYPICAL CHARACTERISTICS[†]



TYPICAL CHARACTERISTICS[†]

TYPICAL CHARACTERISTICS[†]


D3407, JANUARY 1990

- Bidirectional Transceiver
- Designed for Multipoint Transmission in Noisy Environments Such as Automotive Applications
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability. . . ± 10 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements

description

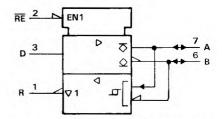
The SN65076B and SN75076B differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for noisy environments, where a low-impedance termination to ground is required.

The SN65076B and SN75076B combine a differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The receiver has an active-low enable. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or V_{CC} = 0. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

FUNCTION TABLE

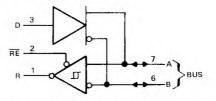
INPUT	INPUT OUTF	
D	A	В
н	н	L
L	LT	H [†]

[†]These levels assume that the open-collector outputs (A) and the open-emitter outputs (B) are connected to a pullup and pulldown resistor, respectively.


FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS A - B	ENABLE RE	OUTPUT R
$V_{ID} \ge 0.2 V$	L	L
$-0.2 V < V_{iD} < 0.2 V$	L	?
$V_{ID} \leq -0.2 V$	L	н
x	н	Z

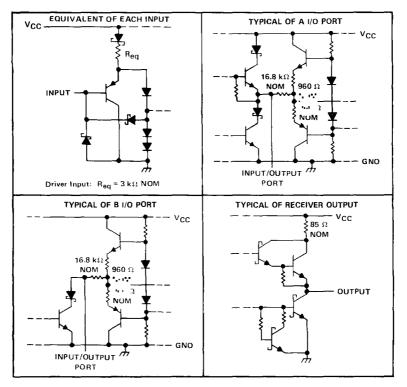
H = high level, L = low level, ? = indeterminate,


X = irrelevant, Z = high impedance (off)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)


Copyright © 1990, Texas Instruments Incorporated

TEXAS TEXAS TEXAS 75285

description (continued)

The driver is designed to handle loads up to 10 mA of sink and source current. The driver features positiveand negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C in the P package and 170 °C in the D package. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The SN65076B is characterized for operation from -40 °C to 105 °C and the SN75076B is characterized for operation from 0 °C to 70 °C.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Voltage at any bus terminal
Enable input voltage
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range: SN65076B
SN75076B
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds 260°C

NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 105°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	261 mW
Р	1100 mW	8.8 mW/ °C	702 mW	396 mW

DISSIPATION RATING TABLE

recommended operating conditions

			MIN	TYP	MAX	UNIT
Supply voltage, VCC			4.75	5	5.25	v
Voltage at any bus terminal (separat			4.75 5 5.26 12 -7 2 0.8 ±12 -10 -400 10	v		
voltage at any bus terminal (separat					-7	
High-level input voltage, VIH		D and RE	2			V
Low-level input voltage, VIL		D and RE			0.8	v
Differential input voltage, VID (see N	lote 2)				±12	V
Differential input voltage, V _{ID} (see Note 2) High-level output current, I _{OH} Receiver	Driver (A)			- 10	mA	
	Receiver			- 400	μA	
		Driver (B)			10	mA
Low-level output current, IOL		Receiver	10 8	IIIA		
Operating free-air temperature, TA	s · ·	6B	-40		105	°C
	s.	6B	0		70	

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal 8.

SN65076B, SN75076B Differential bus transceivers

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CO	VDITIONS	MIN TY	pt MAX	UNIT
ViK	Input clamp voltage	h = - 18 mA		· · · · · · · · · · · · · · · · · · ·	- 1.5	V
٧o	t voltage	V ₁ = 2 V,	$I_0 = 0$	0	6	V
V _{OD1}	rential output voltage	l ₀ = 0	,	1.5	6	V
V _{OD2}	Differential output voltage	See Figure 1		1.5	5	V
1-	Output current	VI = 0.8 V	V ₀ = 12 V		1	
l0			$V_0 = -7 V$		- 0.8	mA
ін	High-level input current	V ₁ = 2.4 V			20	μA
۱ _{IL}	Low-level input current	V _I = 0.4 V				μA
		$V_0 = -7 V$				
1	Short size it sutrat surger	V ₀ = 0			- 150	1
los	Short-circuit output current	Vo = Vcc			·	mA
		V ₀ = 12 V			- · ·	
ⁱ cc	Supply current (total package)	No load			30	mA

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

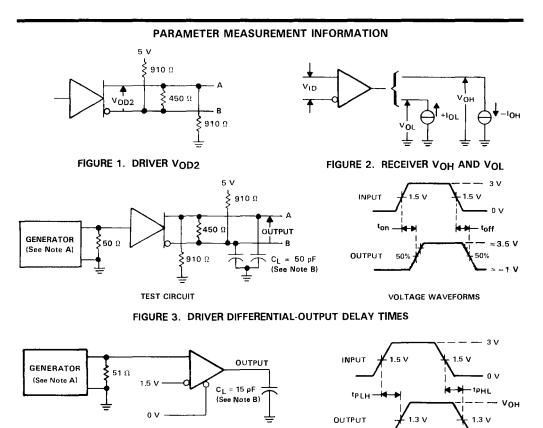
driver switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ton	Differential-output turn-on time	See Figure 3		60	90	ns
toff	Differential-output turn-off time			75	110	ns

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	түр†	MAX	UNIT
Vтн	Differential-input high-threshold voltage	$V_0 = 2.7 V$, $I_0 = -0.4 mA$			0.2	V
VTL	Differential-input low-threshold voltage	$V_0 = 0.5 V$, $i_0 = 8 mA$	-0.2 [‡]			V
Vhys	Hysteresis [§]			50		mν
VIK	Enable-input clamp voltage	$I_{I} = -18 \text{ mA}$			-1.5	V
∨он	High-level output voltage	$V_{ID} = -200 \text{ mV}, I_{OH} = -400 \ \mu\text{A},$ See Figure 2	2.7			ν
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV}, I_{OL} = 8 \text{ mA},$ See Figure 2			0.45	V
loz	High-impedance-state output current	$V_0 = 0.4 V \text{ to } 2.4 V$			± 20	μA
ų	Line input current	Other input $0 V$, $V_{I} = 12 V$ See Note 3 $V_{I} = -7 V$			1 - 0.8	mA
Чн	High-level enable-input current	V _{IH} = 2.7 V			20	μA
ήL	Low-level enable-input current	$V_{1L} = 0.4 V$			- 100	μA
r;	Input resistance		12			kΩ
los	Short-circuit output current		-15		- 85	mA
lcc	Supply current (total package)	No load			30	mΑ


[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for threshold voltage levels only.

 $^{\$}$ Hysteresis is the difference between the positive-going input threshold voltage, VT + , and the negative-going input threshold voltage, VT - . NOTE 3: This applies for both power on and power off.

receiver switching characteristics, VCC = 5 V, TA = 25 °C

PARAMETER		TEST CO	MIN	ТҮР	MAX	UNIT	
t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = 0$ to 3 V,			21	35	ns
^t PHL	Propagation delay time, high-to-low-level output	C _L = 15 pF,	See Figure 4		23	35	ns
tPZH	Output enable time to high level	C _L = 15 pF,	See Figure 5		10	20	ns
tPZL	Output enable time to low level				12	20	ns
tPHZ	Output disable time from high level	0 15 -5	Cas Figure F		20	35	ns
^t PLZ	Output disable time from low level	C _L = 15 pF,	See Figure 5		17	25	ns

TEST CIRCUIT

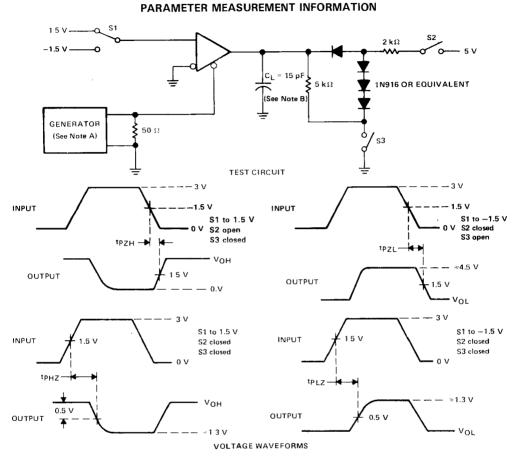
__/ \

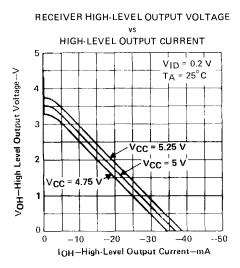
VOLTAGE WAVEFORMS

VOL

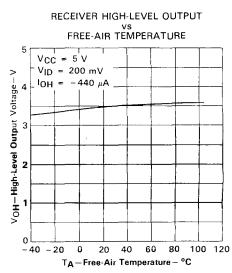
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{OUT} = 50 Ω .
 - B. CL includes probe and jig capacitance.

٠




FIGURE 5. RECEIVER OUTPUT ENABLE AND DISABLE TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.

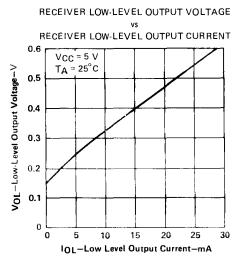
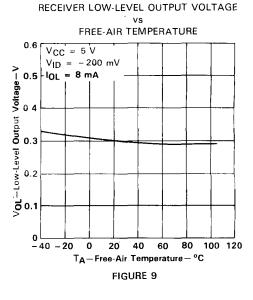
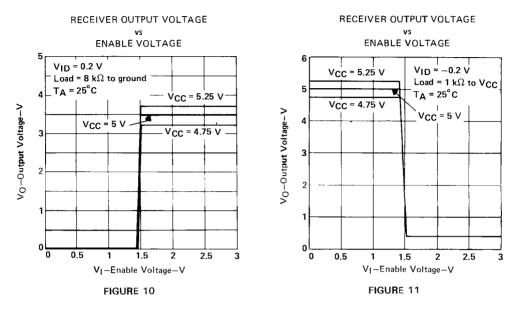

B. CL includes probe and jig capacitance

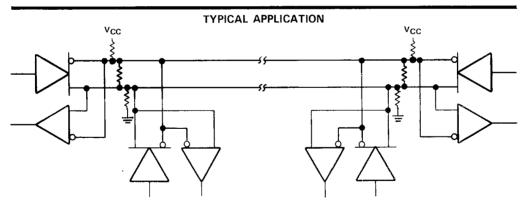
•

TYPICAL CHARACTERISTICS

FIGURE 7

FIGURE 6

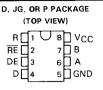





FIGURE 8

TYPICAL CHARACTERISTICS

D2619, JULY 1985-REVISED SEPTEMBER 1989

- Bidirectional Transceiver
- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability. . . ± 60 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements


description

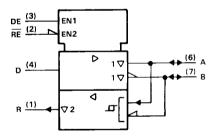
The SN65176B and SN75176B differential bus transceivers are monolithic integrated clrcuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet EIA Standard RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27.

The SN65176B and SN75176B combine a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as a direction control. The driver differential putputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

PRDDUCTION DATA documents centein information current as ef publicatien date. Products conform to specifications par the torms of Texes instruments standard warranty. Preductien processing does net necessarily includo testing of all paramaters.

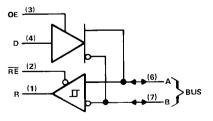
FUNCTION TABLE (DRIVER)

INPUT	ENABLE	ουτι	PUTS
0	ÐE	Α	8
н	н	н	L
L	н	L	н
×	L	z	z


FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A – B	RE	R
V _{!D} ≥ 0.2 V	L	н
$-0.2 \text{ V} < \text{V}_{1\text{D}} < 0.2 \text{ V}$	L	?
V _{ID} ≤0.2 V	L	L
×	н	Z

H = high level, L = low level, ? = indeterminate,

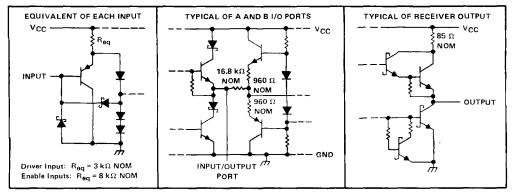

X = irrelevant, Z = high impedance (off)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Copyright © 1989, Texas Instruments Incorporated


SN65176B, SN75176B Differential bus transceivers

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positiveand negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of \pm 200 mV, and a typical input hysteresis of 50 mV.

The SN65176B and SN75176B can be used in transmission line applications employing the SN75172 and SN75174 quadruple differential line drivers and SN75173 and SN75175 quadruple differential line receivers.

The SN65176B is characterized for operation from -40 °C to 105 °C and the SN75176B is characterized for operation from 0 °C to 70 °C.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Voltage at any bus terminal - 10 V to 15 V Enable input voltage 5.5 V
Continuous total power dissipation (see Note 2)
SN75176B 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300 °C

NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal. 2. In the JG package, the chips are glass mounted.

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_{\Delta} = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 105°C PO∴I - RATING
D	725 mW	5.8 mW/°C	464 mW	mW
JG	825 mW	6 6 mW/°C	528 mW	297 mW
Ρ	1100 mW	8.8 mW/°C	702 mW	396 mW

DISSIPATION RATING TABLE

recommended operating conditions

		MIN	ТҮР	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separat	ely or common mode), V _I or V _{IC}		•	12 - 7	v
High-level input voltage, V _{IH}	D, DE, and RE	2			v
· level input voltage, VIL	D, DE, and RE			0.8	v
rential input voltage, VID (see N	ote 3)			±12	V
	Driver			- 60	mA
High-level output current, IOH	Receiver			- 400	μA
tour loud output ourpat lou	Driver			60	mA
Low-level output current, IOL	Receiver			8	
	SN65176B	- 40		105	°C
Operating free-air temperature, T_A	SN75176B	0		70	

NOTE 3: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONST	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	h = -18 mA				- 1.5	V
Vo	Output voltage	I ₀ = 0		0		6	V
VOD1	Differential output voltage	I _O = 0		1.5		6	V
		$R_{\rm I} = 100 \Omega_{\rm c}$	See Figure 1	1/2 VOD	1		
VOD2	Differential output voltage			2			V
		$R_{L} = 54 \Omega,$	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See Note 4	····	1.5		5	V
4 VOD	Change in magnitude of differential output voltage [§]					±0.2	у
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			+3 -1	v
A VOC	Change in magnitude of common-mode output voltage [§]					±0.2	v
10	Output current	Output disabled, See Note 5	$V_0 = 12 V$ $V_0 = -7 V$			1 -0.8	mA
Чн	High-level input current	VI = 2.4 V				20	μA
ηL	Low-level input current	$V_{I} = 0.4 V$				- 400	μA
		$V_0 = -7 V$				- 250	
1	Chart circuit autout aurorat	$V_0 = 0$		1		- 150	mA
los	Short-circuit output current	$V_0 = V_{CC}$				250	
		$V_0 = 12 V$				250]
100	Supply current (total package)	No load	Outputs enabled		42	55	mA
lcc	Supply current (total package)	NU IUdu	Outputs disabled		26	35] """

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at $V_{CC} = 5 V$ and $T_A = 25 \circ$ C.

 $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.

NOTES: 4. See EIA Standard RS-485 Figure 3.5, Test Termination Measurement 2.

5. This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

driver switching characteristics, V_{CC} = 5 V, $T_A = 25 \,^{\circ}C$

	PARAMETER	EST CO	NDITIONS	MIN	TYP	MAX	UNIT
tDD	Differential-output uelay time	$R_i = 54 \Omega$.	See Figure 3		15	22	ns
tTD	Differential-output transition time	$n_{L} = 54 u$,	See Figure 5		20	30	ns
^t PZH	Output enable time to high level	$R_{L} = 110 \Omega_{c}$	See Figure 4		85	120	ns
^t PZL	Output enable time to low level	$R_{L} = 110 \Omega,$	See Figure 5		40	60	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega,$	See Figure 4		150	250	ns
tPLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5		20	30	ns

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
VOD1	Vo	Vo
VOD2	$V_{t} (R_{L} = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
V _{0D3}		V _t (Test Termination Measurement 2)
∆ VOD	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
Δ Voc	$ V_{DS} - \overline{V}_{DS} $	V _{os} − V _{os}
los	Isal, Isb	
10	li _{xa} , li _{xb}	l _{ia} , l _{ib}

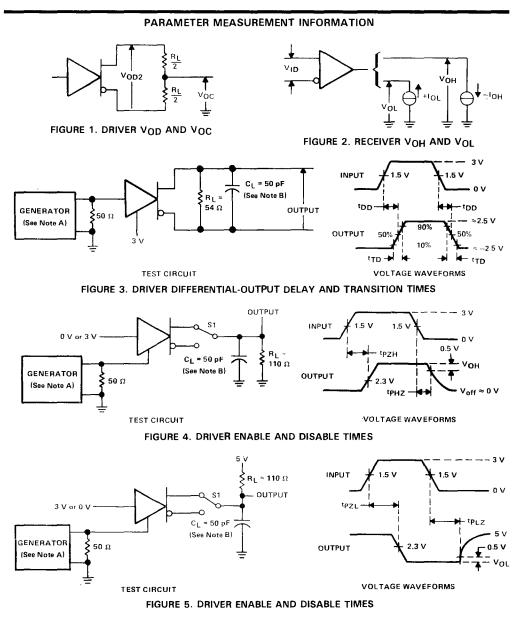
RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	OITIONS	MIN	TYP [†]	MAX	UNIT
∨тн	Differential-input high-threshold voltage	Vo = 2.7 V,	$I_0 = -0.4 \text{ mA}$			0.2	V
VTL	Differential-input low-threshold voltage	$V_0 = 0.5 V_{,}$	lo = 8 mA	0.2 [‡]			V
V _{hys}	Hysteresis §				50		mV
Vik	Enable-input clamp voltage	lj = -18 mA				- 1.5	V
Voн	High-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	$I_{OH} = -400 \ \mu A$,	2.7			v
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	I _{OL} = 8 mA,			0.45	v
loz	High-impedance-state output current	$V_0 = 0.4 \text{ V to } 2.4$	V			± 20	μA
4	Line input current	Other input = 0 V, See Note 6	•			1 -0.8	mA
ін	High-level enable-input current	V _{IH} = 2.7 V				20	μΑ
1L	Low-level enable-input current	$V_{IL} = 0.4 V$				100	μA
ri	Input resistance			12			kΩ
los	Short-circuit output current			15		-85	mA
lcc	Supply current (total package)	No load	Outputs enabled Outputs disabled		42 26	55 35	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

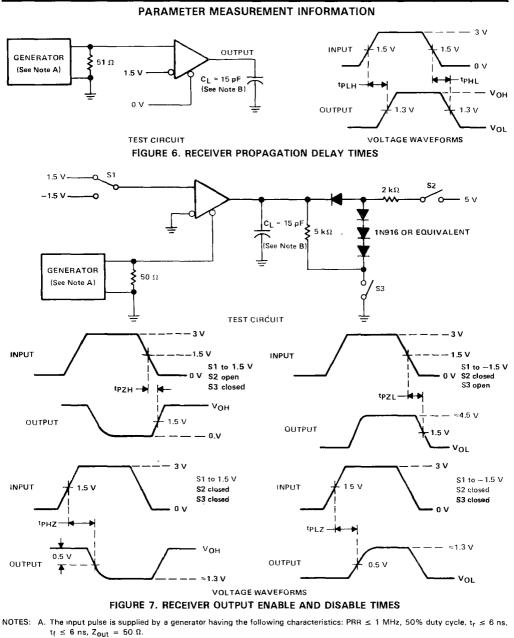
⁺ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.


§ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_T. See Figure 4.

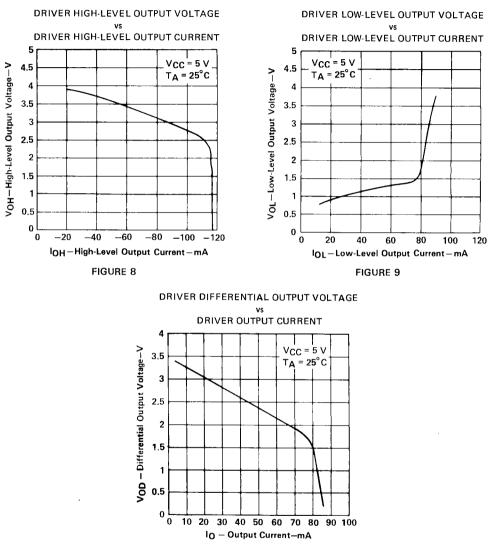
NOTE 6: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

receiver switching characteristics, VCC = 5 V, TA = 25 °C

	PARAMETER	IFAT CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	V _{ID} - v to 3 V,		21	35	ns
^t PHL	Propagation delay time, high-to-low-level output	CL = 15 pF, See Figure 6	-	23	35	ns
tPZH	Output enable time to high level	C _I = 15 pF, See Figure 7		10	20	ns
tPZL	Output enable time to low level	CL = t5 pr, See Figure /		12	20	ns
tPHZ	Output disable time from high level	0 15 -5 0 - 5 Figure 7		20	35	ns
tPLZ	Output disable time from low level	C _L = 15 pF, See Figure 7		17	25	ns



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .


B. CL includes probe and jig capacitance.

B CL includes probe and jig capacitance.

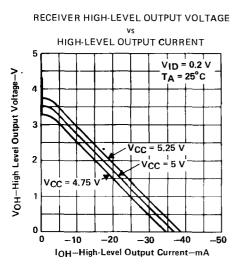

TYPICAL CHARACTERISTICS

FIGURE 10

RECEIVER HIGH-LEVEL OUTPUT vs

FREE-AIR TEMPERATURE

TYPICAL CHARACTERISTICS

5

4

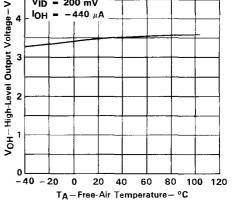
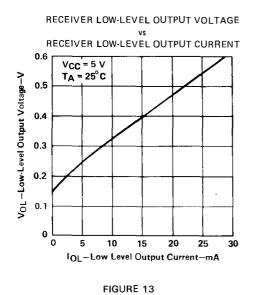
3

2

 $V_{CC} = 5 V$

VID = 200 mV

 $IOH = -440 \ \mu A$

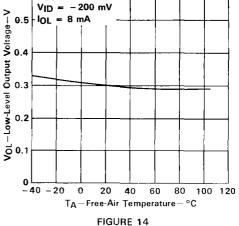
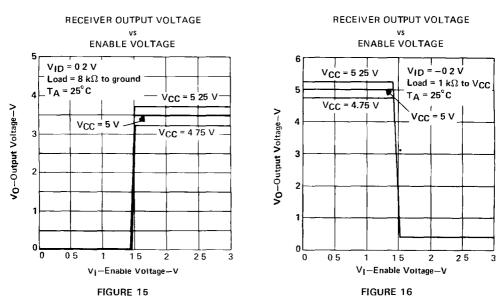

FIGURE 12

FIGURE 11



vs FREE-AIR TEMPERATURE 0.6 Vcc = 5 V

RECEIVER LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS

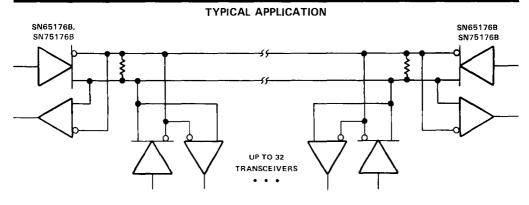
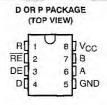


FIGURE 17 TYPICAL APPLICATION CIRCUIT


NOTE The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible

- Meets EIA Standards RS-422A and RS-485, CCITT Recommendations V.11 and X.27, and ISO 8482:1987(E)
- Designed and Tested for Data Rates up to 35 MBaud
- SN65ALS176 Operating Temperature 40°C to 85°C
- Three Skew Limits Available: 'ALS176...10 ns 'ALS176A...7.5 ns 'ALS176B...5 ns
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirements 30 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Hysteresis
- Glitch-Free Power-Up and Power-Down Protection
- Receiver Open-Circuit Fail-Safe Design

description

The SN65ALS176 and SN75ALS176 series Differential Bus Transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet EIA Standards RS-422-A and RS-485, CCITT recommendations V.11 and X.27, and ISO 8482:1987(E).

D3042, AUGUST 1987-REVISED MAY 1990

FUNCTION TABL	E (DRIVER)
---------------	------------

INPUT	ENABLE	OUT	PUTS
D	DE	A	В
Н	Н	Н	L
L	н	L	н
Х	L	Z	Z

FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS	ENABLE RE	OUTPUT R
VID ≥ 0.2 V	L	Н
-0.2 V < VID < 0.2 V	L	?
VID ≤-0.2V	L	L
x	н	Z

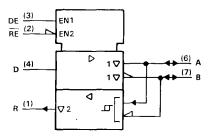
H = high level, L = low level, ? = indeterminate,

X = irrelevant, Z = high impedance (off)

AVAILABLE OPTIONS

т _А	tpmax - tpmln	PACKAGE				
	tsk(1) [‡]	SMALL OUTLINE (D) [†]	PLASTIC DIP (P)			
0°C	10	SN75ALS176D	SN75ALS176P			
to	7.5	SN75ALS176AD	SN75ALS176AP			
70°C	5	SN75ALS176BD	SN75ALS176BP			
-40°C to 85°C	10	SN65ALS176D	SN65ALS176P			

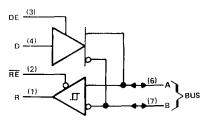
[†] The D package is available taped and reeled. Add the suffix R to the device type, (e.g., SN75ALS176DR). [‡] t_{sk(1)} is the greater of 1) the difference between the maximum and

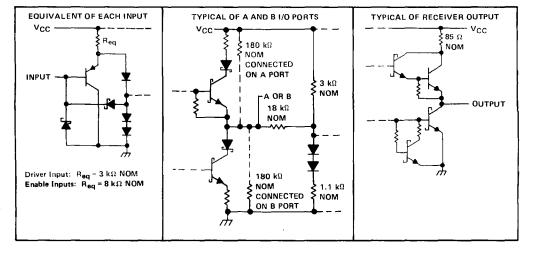

 $t_{sk(1)}$ is the greater of 1) the difference between the maximum and minimum specified values of t_{DLH} of (t_{DDH}) , and 2) the difference between the maximum and minimum specified values of t_{PHL} (or t_{DDL}). This is the maximum range that the driver or receiver delay time will vary over temperature, V_{CC} , and device-to-device.

The SN65ALS176 and SN75ALS176 series combine a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form a differential input/output (I/O bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN65ALS176 is characterized for operation from -40° C to 85° C and the SN75ALS176 series is characterized for operation from 0° C to 70° C.

PRODUCTION DATA documents created information current as of publication date. Products conform sins per the terms of Texas instruments standard warranty is processing does not necessarily include testing of all parts and the second standard st


logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

logic diagram (positive logIc)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Enable input voltage	5.5 V
Continuous total power dissipation	
Operating free-air temperature range, TA: SN65ALS176	– 40°C to 85°C
SN75ALS176 Series	0°C to 70°C
Storage temperature range Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	
	2000

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
(oltage at any hus terminal (senarately or common mode). Vuor Vuo				12	v
voltage at any bus terminal (separately of commo				7	v
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, VIL	D, DE, and RE			0.8	v
Differential input voltage, VID (see Note 2)				±12	V
	Driver			- 60	mA
High-level output current, IOH	Receiver			- 400	μA
gh-level input voltage, VIH w-level input voltage, VIL fferential input voltage, VID (see Note 2) gh-level output current, IOH w-level output current, IOL	Driver			60	
Low-level output current, IOL	Receiver			8	mA
	SN65ALS176	- 40		8 5	
itage at any bus terminal (separately or common mode), V ₁ or V _{1C} igh-level input voltage, V _{1L} D ifferential input voltage, V _{1L} D ifferential input voltage, V _{1D} (see Note 2) igh-level output current, I _{DH} R pw-level output current, I _{OL} R	'. SALS176	0		70	°C

NCTE 2: Differential-input/output bus voltage is measured at the normiverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (unless otherwise noted)

PARAMITER		TEST CON	TEST CONDITIONS [†]		TYP‡	MAX	UNIT
VIK	Input clamp vonage	lj = 18 mA				- 1.5	V
Vo	Output voltage	I <u>O</u> = 0		0		6	V
VOD1	Differential output voltage	l0 = 0		1.5		6	V
		R _L = 100 Ω,	See Figure 1	1/2 VOD1			
VOD2	Differential output voltage	HL = 100 32,	Geerigure	2			V
		R _L = 54 Ω,	See Figure 1	1.5	2.5	5	v
V _{OD3}	Differential output voltage	Vtest = - 7 V to 12 V,	See Figure 2	1.5		5	v
∆IVod∣	Change in magnitude of differential output voltage §					± 0.2	v
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	$R_L = 54 \Omega$ or 100 Ω, See Figure 1			3 1	v
∆ Voc	Change in magnitude of common-mode output voltage§					± 0.2	v
10		Output disabled,	V _O = 12 V			1	
0	Output current	See Note 3	$V_0 = -7V$			- 0.8	mA
Чн	High-level input current	V ₁ = 2.4 V				20	μA
μL	Low-level input current	VI = 0.4 V				- 400	μΑ
		$V_0 = -6V$	SN65ALS176			050	
		V _O = - 7 V	SN75ALS176	1		-250	
1	Short-circuit output current ¶	VO = 0	All			- 150	
los	Shon-circuit output current "	Vo = Vcc	All				mA
		V0 = 8 V	SN65ALS176	7		250	1
		V ₀ = 12 V	SN75ALS176				
1	Supply ourront	No load	Outputs enabled		23	30	
ICC	Supply current	NO IDAU	Outputs disabled		19	26	mA

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at V_{CC} = 5 V and T_A = 25°C.

§ Δ | V_{OD} | and Δ | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level,

[¶] Duration of the short circuit should not exceed one second.

NOTE 3: This applies for both power on and off; refer to EIA standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

driver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

SN65ALS176

	PARAMETER	TEST CONDITIONS	MIN TYPT	MAX	UNIT
tDD	Differential output delay time			15	ns
tsk(p)	Pulse skew (t _{DDL} - t _{DDH}])	RL = 54 Ω, CL = 50 pF, See Figure 3	0	2	ns
t _{TD}	Differential output transition time		8		ns
t _{PZH}	Dutput enable time to high level	$R_L = 110 \Omega$, $C_L = 50 pF$, See Figure 4		80	ns
t _{PZL}	Output enable time to low level	$R_L = 110 \Omega$, $C_L = 50 pF$, See Figure 5		30	ns
t _{PHZ}	Output disable time from high level	$R_L = 110 \Omega$, $C_L = 50 pF$, See Figure 4		50	ns
tPLZ	Output disable time from low level	R _L = 110 Ω, C _L = 50 pF, See Figure 5		30	ns

SN75ALS176, SN75ALS176A, SN75ALS176B

PARAMETER		TEST CONDITIONS		MIN	TYPT	MAX	UNIT	
		'ALS176			3	8	13	
tDD	Differential output delay time	'ALS176A			4	7	11.5	ns
		'ALS176B	$R_L = 54 \Omega$, $C_L = 50 pF$, S	ee Figure 3	5	8	10	
tsk(p)	Pulse skew (tDDL - tDDH)					0	2	ns
tTD	Differential output transition time					8		ns
t PZH	Output enable time to high level		$R_L = 110 \Omega$, $C_L = 50 pF$, §	See Figure 4		23	50	ns
tPZL	Output enable time to low level		$R_{L} = 110 \Omega$, $C_{L} = 50 pF$, S	See Figure 5		14	20	ns
^t PHZ	Output disable time from high leve	3l	$R_{L} = 110 \Omega$, $C_{L} = 50 pF$, S	See Figure 4	<u> </u>	20	35	ns
tPLZ	Output disable time from low leve		$R_{L} = 110 \Omega$, $C_{L} = 50 pF$, S	See Figure 5		8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	Voa, Vob	V _{oa} , V _{ob}
IVOD1	Vo	Vo
VOD2	V _t (R _L = 100 Ω)	$V_t (R_L = 54 \Omega)$
VOD3	- <u>-</u>	V _t (Test Termination Measurement 2)
A VOD I	$ V_t - \overline{V_t} $	Vt - Vt
V _{OC}	Vos	V _{os}
	V _{0S} -V _{0S}	V _{os} – V _{os}
los	Isa I, Isb I	
10	Ixa xb	lia, lib

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYPT	MAX	UNIT
√тн	Differential-input high-threshold voltage	V _O = 2.7 V,	l _O = - 0.4 mA			0.2	V
VTL	Differential-input low-threshold voltage	V _O = 0.5 V,	1 _O = 8 mA	- 0.2			V
Vhys	Hysteresis§			<u> </u>	60		mV
VIK	Enable-input clamp voltage	lj = - 18 mA				- 1.5	V
Vон		V _{ID} = - 200 mV,	ⁱ OH = - 400 μA,	2.7			v
	High-level output voltage	See Figure 6		2.1	2.1		v
V _{OL}	Low-level output voltage	V _{ID} = - 200 mV,	I _{OL} = 8 mA,			0.45	V
		See Figure 6				0.40	v
loz	High-impedance-state output current	Vo = 0.4 V to 2.4 V				±20	μA
		Other input = 0 V,	V _I = 12 V			1	^
4	Line input current	See Note 4	V _I = 7 V			- 0.8	mA
IIH	High-level enable-input current	V _{IH} = 2.7 V				20	μA
ΊL	Low-level enable-input current	VIL = 0.4 V			_	- 100	μĀ
ri	Input resistance			12	20		kΩ
ios	Short-circuit output current	V _{ID} = 200 mV,	V _O = 0	- 15		- 85	mA
100			Outputs enabled		23	30	
lcc	Supply current	No load	Outputs disabled		19	26	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

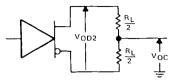
§ Hysteresis is the difference between the positive-going input threshold voltage, VT+, and the negative-going input threshold voltage, VT-... See Figure 4.

NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

SN65ALS176

	PAR/ 🖞 👌 🤅	T	EST CON I. NS	<i></i>	TYP [†]	MAX	[. ::::]
tpd	Propagation time					25	113
tsk(p)	Pulse skew (tPHL - tPLH)		- V _{ID} = - 1.5 V to 1.5 V, C _L = 15 pF, See Figure 7				ns
tPZH	Output enable time to high level				11	18	ns
t _{PZL}	Output enable time to low level	C_ = 15 pF,	See Figure 8		11	18	ns
t _{PHZ}	Output disable time from high level					50	ns
tPLZ.	Output disable time from low level					30	ns


SN75ALS176, SN75ALS176A, SN75ALS176B

PARAMETER		_	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
^t pd		'ALS176		9	14	19	
	Propagation time 'ALS176A 'ALS176B		10.5	14	18	ns	
		VID = - 1.5 V to 1.5 V, CL = 15 pF, See Figure 7	11.5	13	16.5		
tsk(p)	Pulse skew (tPHL - tPLH)			0	2	ns
^t PZH	Output enable time to high l	evel			7	14	ns
^t PZL	Output enable time to low le	vel	Ci = 15 pF, See Figure 8		20	35	ns
tPHZ	Output disable time from hig	h level			20	35	ns
TPLZ	Output disable time from lov	v level			8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DRIVER VOD AND VOC

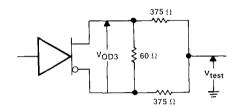
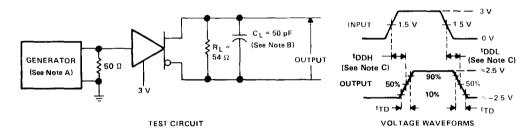
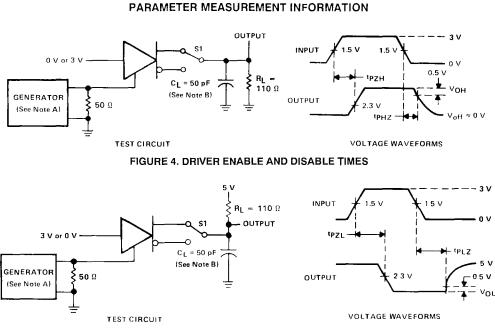



FIGURE 2. DRIVER VOD3


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .

B. CL includes probe and jig capacitance.

C. tDD = tDDH or tDDL

FIGURE 3. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

FIGURE 5. DRIVER ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR < 1 MHz, 50% duty cycle, tr < 6 ns, tf < 6 ns, Z₀ = 50 Ω.
 - B. CL includes probe and jig capacitance.

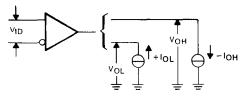
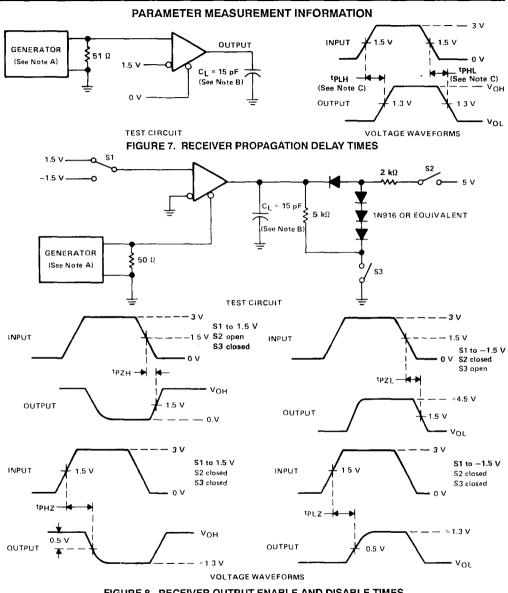
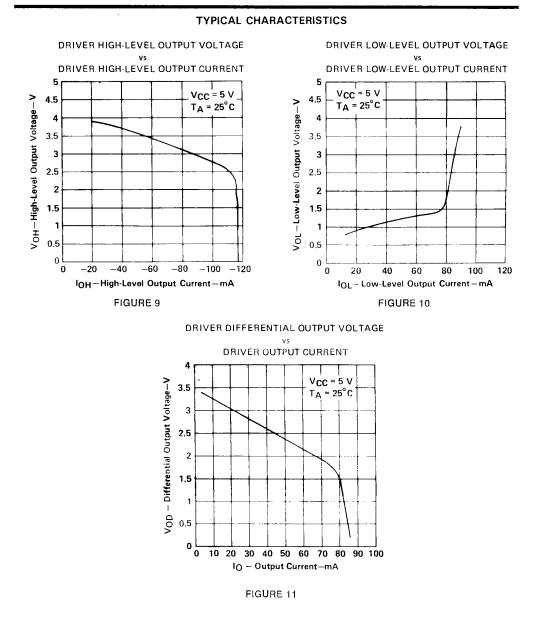
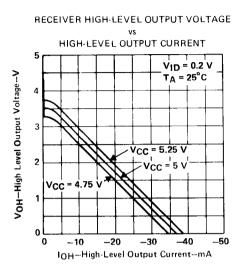



FIGURE 6. RECEIVER VOH AND VOL


FIGURE 8. RECEIVER OUTPUT ENABLE AND DISABLE TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR < 1 MHz, 50% duty cycle, tr < 6 ns, tf < 6 ns, $Z_0 = 50 \ \Omega$


- B. Ci includes probe and jig capacitance.
- C. tpd = tPLH or tPHL

.

TEXAS INSTRUMENTS POST OFFICE BOX 655303 * DALLAS, TEXAS 75285

TYPICAL CHARACTERISTICS

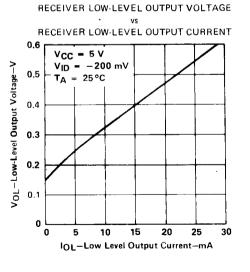
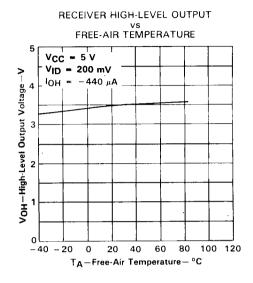
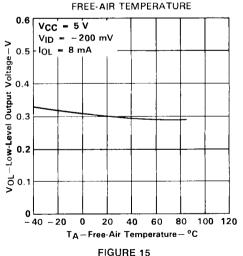




FIGURE 14

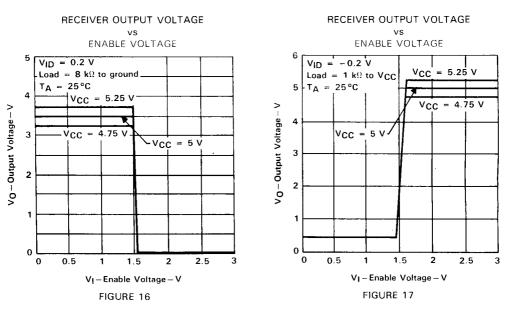
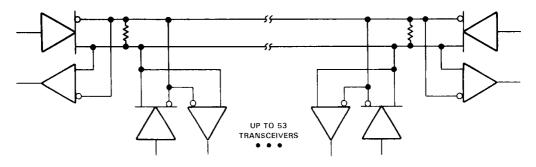


FIGURE 13



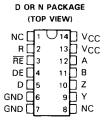
TEXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

FIGURE 18. TYPICAL APPLICATION CIRCUIT

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

D3043, AUGUST 1987 - REVISED DECEMBER 1989


- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- High-Speed Advanced Low-Power Schottky Circuitry
- Designed for 25-MBaud Operation in Both Serial and Parallel Applications
- Low Skew between Devices . . . 6 ns Max
- Low Supply Current Requirements 30 mA Max
- Individual Driver and Receiver I/O pins with Dual VCC and Dual GND
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal Shutdown Protection
- Driver Positive and Negative Current
 Limiting
- Receiver Input Impedances . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
 Max
- Receiver Input Hysteresis . . . 60 mV Typ
- Operates from a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down
 Protection

description

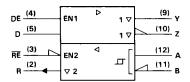
The SN65ALS180 and SN75ALS180 Differential Driver and Receiver Pairs are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet EIA Standards RS-422-A and RS-485 and CCITT recommendations V.11 and X.27.

The SN65ALS180 and SN75ALS180 combine a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate pins for greater flexibility and are designed to offer

NC-No internal connection

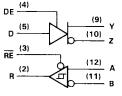
FUNCTION TABLE (DRIVER)

INPUT	ENABLE	OUT	PUTS
D	DE	Y	Z
н	н	н	L
L	н	L	Н
x	L	Z	z


FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A – B	ŔĒ	R
$V_{\text{ID}} \ge 0.2 \text{ V}$	L	н
$-0.2 V < V_{1D} < 0.2 V$	L	?
$V_{ID} \leq -0.2 V$	L	L
X	н	z

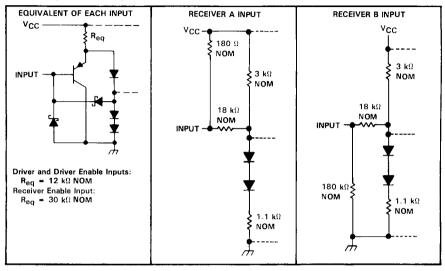
H = high level, L = low level, ? = indeterminate,

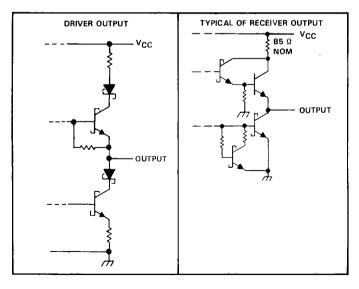

X = irrelevant, Z = high impedance (off)

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)




Copyright © 1989, Texas Instruments Incorporated

minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN65ALS180 is characterized for operation from -40° C to 85°C and the SN75ALS180 is characterized for operation from 0°C to 70°C.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Voltage at any bus terminal
Enable input voltage
Continuous total power dissipation
Operating free-air temperature range, TA: SN65ALS180 – 40°C to 85°C
SN75ALS180
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	TA ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	950 mW	7.6 mW/°C	608 mW	494 mW	
N	1150 mW	9 2 mW/°C	736 mW	598 mW	

recommended operating conditions

			MIN	TYP	MAX	UNIT
Supply voltage, VCC			4.75	5	5.25	·v
Voltage at any bus terminal (separately or common mode), VI or VIC					12 7	v
High-level input voltage, VIH	D, DE, and RE	D, DE, and RE				V
Low-level input voltage, VIL	D, DE, and RE				0.8	V
Differential input voltage, VID (see Note 2)					±12	V
High-level output current, IOH	Driver				-60	mA
High-level output current, IOH	Receiver				-400	μA
Low-level output current, In	Driver				60	mA
Low-level output current, IOL	eiver				8	
Operating free-air temperature, TA		SN65ALS180	-40		85	°C
Operating nee-ar temperature, 1A		SN75ALS180	0		70	

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A/Y with respect to the inverting terminal B/Z.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	lı =18 mA				-1.5	V
Vo	Output voltage	I _O = 0		0		6	V
VOD1	Differential output voltage	I _O = 0		1.5		6	V
	Differential output voltage	$R_{\rm I} = 100 \Omega_{\rm i}$	See Figure 1	1/2 VOD1			
VOD2		HL = 100 12,		2			v
		$R_{L} = 54 \Omega,$	See Figure 1	1.5	2.5	5	v
V _{OD3}	Differential output voltage	$V_{test} = -7 V to 12 V,$	See Figure 2	1.5		5	v
Δ V _{OD}	Change in magnitude of differential output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1		3	+3 -1	v
∆∣Voc∣	Change in magnitude of common-mode output voltage§					±0.2	v
10	Output current	Output disabled,	V _O = 12 V			1	mA
0		See Note 3	V₀ = −7 V			-0.8	
lін	High-level input current	VI = 2.4 V				20	μA
կլ ․	Low-level Input current	$V_{l} = 0.4 V$				-400	μA
		$V_0 = -7 V$	SN75ALS180	-		250	
		$V_{O} = -6 V$	SN65ALS180				
	Short-circuit output current ¹	$V_{O} = 0$	Ali			150	mA
los	Snort-circuit output current.	$V_{O} = V_{CC}$	All				1104
		V _O = 8 V	SN65ALS180	250		25 0	
		V _O = 12 V	SN75ALS180				
	Supply current	No load	Outputs enabled		23	30	mA
ICC	ooppy content		Outputs disabled		19	26	ana

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [§] Δ | V_{OD} | and Δ | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level

to a low level.

[¶] Duration of the short circuit should not exceed one second.

NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

driver switching characteristics over recommended ranges of supply voltage and operating freeair temperature

	PARAMETER		TEST CONDITIONS		TYP [‡]	MAX	UNIT
t _{DD}	Differential-output delay time		A F	3	8	13	ns
	Skew (tDDH-tDDL)	RL = 54 Ω, See Figure 3	$C_{L} = 50 pF$,		1	6	ns
†TD	Differential output transition time	See Figure 3		3	8	13	ns
tpzH	Output enable time to high level	R _L = 110 Ω,	See Figure 4		23	50	ns
t PZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		19	24	ns
^t PHZ	Output disable time from high level	R _L = 110 Ω,	See Figure 4		8	13	ns
t PLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5		8	13	ns

[‡] All typical values are at $\forall_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
IVOD1	vo	Vo
VOD2	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
VOD3		Vt (Test Termination Measurement 2)
Vtest		Vtst
Δ VOD	$ V_t - \overline{V}_t $	Vt - Vt
Voc	Vosl	V _{os}
	Vos - Vos	V _{os} – V _{os}
los	Isa , Isb	
10	Ixa Ixb	lia, lib

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

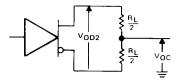
	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VTH	Differential-input high-threshold voltage	V _O = 2.7 V,	$I_0 = -0.4 \text{ mA}$			0.2	V
V _{TL}	Differential-input low-threshold voltage	$V_{O} = 0.5 V,$	lo = 8 mA	-0.2			v
Vhys	Hysteresis [§]				60		mV
VIK	Enable-input clamp voltage	lį = −18 mA				-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 6	i _{OH} =400 μA,	2.7			v
V _{OL}	Low-level output voltage	V _{ID} = -200 mV, See Figure 6	l _{OL} = 8 mA,			0.45	v
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μA
1.		Other input = 0 V,	Vj = 12 V			1	4
4	Line input current	See Note 4	$V_{ } = -7 V$			-0.8	mA
ĺΗ	High-level enable-input current	V _{IH} = 2.7 V				20	μA
կլ	Low-level enable-input current	V _{IL} = 0.4 V				-100	μA
ri	Input resistance			12			kΩ
los	Short-circuit output current	$V_{ D} = 200 \text{ mV},$	$V_{O} = 0$	-15		-85	mA
100	Supply current	No load	Outputs enabled		23	30	mA
lcc	Supply current	No loau	Outputs disabled		19	26	

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

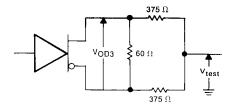
[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

§ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. See Figure 4.

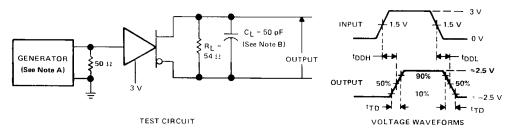
NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

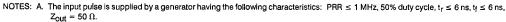


receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature


PARAMETER		TEST CONDIT	TEST CONDITIONS		TYP	MAX	UNIT	
t PLH	Propagation delay time, iow-to-high-level output			. 9	14	19	ns	
^t PHL	Propagation delay time, high-to-low-level output	$Y_{iD} = -1.5 \text{ V to } 1.5 \text{ V},$ 	See Figure 7,	9	14	19	ns	
	•• (tplн - tpнL)				2	6	ns	
^t PZH	Juppet enable time to high level	C _L = 15 pF,			7	14	пş	
tPZL.	Output enable time to low level				7	14	ns	
^t PHZ	Output disable time from high level		$C_{L} = 15 \text{pr},$	See Figure 8		20	35	ns
t _{PLZ}	Output disable time from low level			•	8	17	ns	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.


PARAMETER MEASUREMENT INFORMATION


FIGURE 1. DRIVER VOD AND VOC

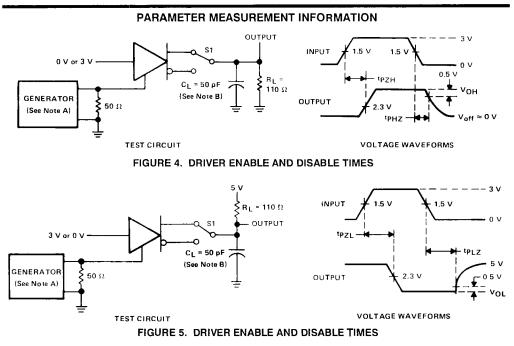

FIGURE 2. DRIVER VOD3

FIGURE 3. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

B. CL includes probe and jig capacitance.

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.

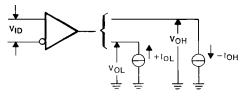
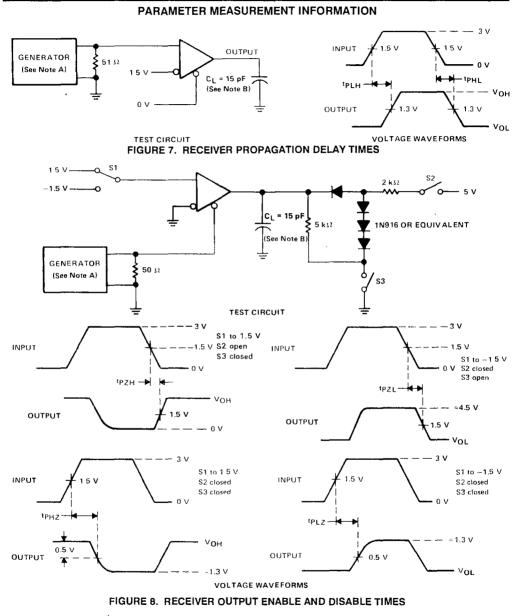
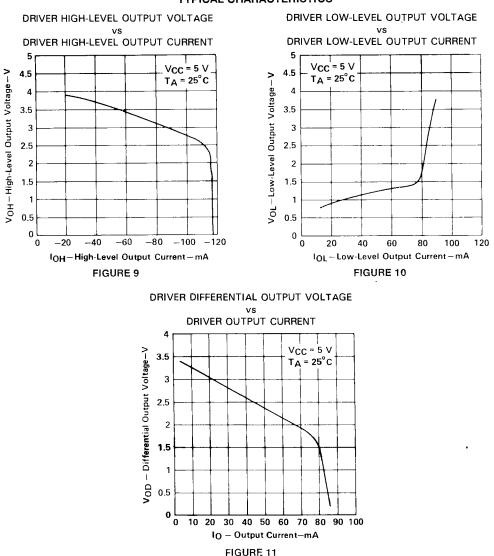
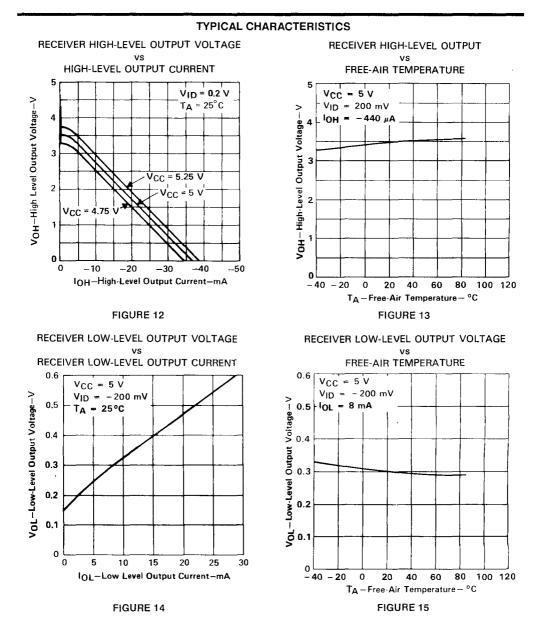
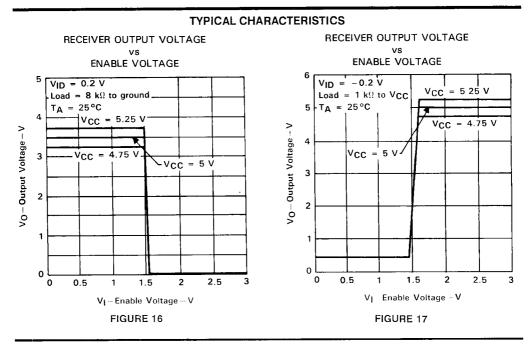



FIGURE 6. RECEIVER VOH AND VOL

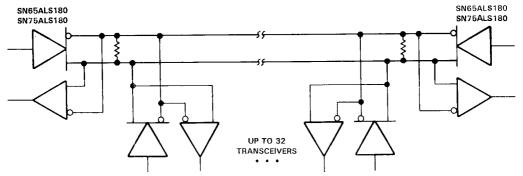


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, t_f ≤ 6 ns, Z_{OUT} = 5 Ω.


B. CL includes probe and jig capacitance.



TYPICAL CHARACTERISTICS



APPLICATION INFORMATION

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 18. TYPICAL APPLICATION CIRCUIT

- Meets Standard EIA-232-D (Revision of RS-232-C)
- Single Chip With Easy Interface Between **UART and Serial Port Connector**
- Less than 8-mW Power Consumption
- Wide Driver Supply Voltage ..., 4.5 V to 13.2 V
- **Driver Output Slew Rate Limited to** 30 V/us Max
- Receiver Input Hysteresis ... 800 mV Typ
- **Push-Pull Receiver Outputs**
- On-Chip Receiver 1-us Noise Filter
- ESD Protection Exceeds 1000 V Per MIL-STD-883C, Method 3015

description

The SN65C185 and SN75C185 are low-power BIMOS devices containing three independent drivers and five receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). The SN65C185 and SN75C185 will typically replace one SN75188 and two SN75189 devices. These devices have been designed to conform to Standards ANSI/EIA-232-D-1986, which supersedes RS-232-C. The three drivers and five receivers of the SN65C185 and SN75C185 are similar to those of the SN75C188 guadruple drivers and SN75C189A quadruple receivers, respectively. The drivers have a controlled output slew rate that is limited to a maximum of 30 V/us and the receivers have filters that reject input noise pulses that are shorter than 1 us. Both these features eliminate the need for external components.

The SN65C185 and SN75C185 have been designed using low-power techniques in a BI-MOS technology. In most applications the receivers contained in these devices will interface to single inputs of peripheral devices such as ACEs, UARTs, or microprocessors. By using sampling, such peripheral devices are usually insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN65C185 and SN75C185 receiver outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.

A HATA documen · · · · blication date. · · · · · 11.1 per the lerms Signature warranty. Production processing uses not necessarily include testing of all parameters.

4

19

18

17

RY1

RY2

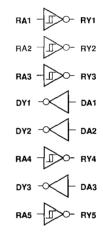
BY3

5 16 DY1 < DA1 6 15 DY2 < DA2 7 14 П RA4 RY4 8 13 DY3 \triangleleft DA3 9 12 RA5 Ъ RY5

П

П

П


[†]This symbol in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-122.

Copyright © 1990, Texas Instruments Incorporated

VDD 1 20 VCC RA1 2 19 RY1 RA2 3 18 RY2 RA3 4 17 RY3 DY1 5 16 DA1 DY2 6 15 DA2 RA4 7 14 RY4 DY3 8 13 DA3 RA5 9 12 RY5 VSS 10 11 GND	DW OR N PACKAGE (TOP VIEW)						
~~ <u></u>	RA1 2 19 RY1 RA2 3 18 RY2 RA3 4 17 RY3 DY1 5 16 DA1 DY2 6 15 DA2 RA4 7 14 RY4 DY3 8 13 DA3 RA5 9 12 RY5						

D3325, AUGUST 1989 - REVISED JULY 1990

logic diagram (positive logic)

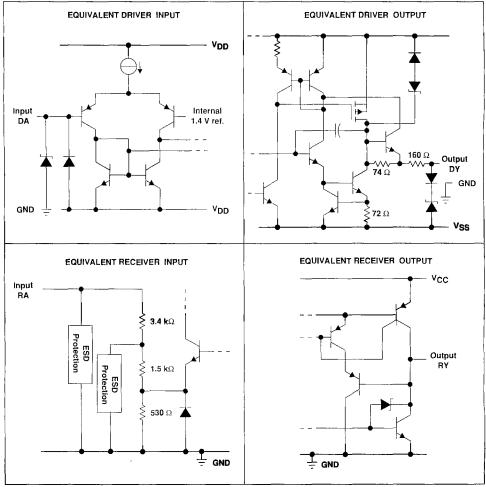
logic symbol[†]

RA1

RA2

RA3

2


3

4

description (continued)

The SN65C185 is characterized for operation from -40° C to 85° C. The SN75C185 is characterized for operation from 0° C to 70° C.

equivalent schematics of inputs and outputs

All resistor values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Storage temperature range	-13.5 V 7 V VSS to VDD -30 V to 30 V -30 V to 30 V -0.3 V to VDD + 6 V -0.3 V to V _{CC} + 0.3 V See Dissipation Rating Table -40°C to 85°C -0°C to 70°C -65°C to 150°C
Storage temperature range Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A ≂ 85°C POWER RATING
DW	1125 mW	9.0 mW/°C	585 mW
N	1150 mW	9.2 mW- C	598 mW

recommended operating conditions

		MIN	NOM	MAX	1141
Supply voltage, VDD	· · · · · · · · · · · · · · · · · · ·	4.5	12	13.2	v
Supply voltage, VSS		- 4.5	- 12	- 13.2	۷
Supply voltage, VCC		4.5	5	6	V
input voltage, V _I (see Note 2)	Driver	V _{SS} + 2		VDD	v
	Receiver	- 25		25	
High-level input voltage, VIH	– Driver	2		-	v
Low-level input voltage, VIL				0.8	
High-level output current, IOH	Receiver			- 1	mA
Low-level output current, IOL	neceiver			3.2	mA
Operating free-air temperature, T _A	•. ;185	- 40		85	°C
	:. ງບັ185	0		70	

NOTE 2: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if -10 V is a maximum, the typical value is a more negative voltage.

SUPPLY CURRENTS

	PARAN"	TEST	TEST CONDITIONS		TYP	MA 1	UNIT
100	Supply current from V	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$		115		
IDD Supply current from VDD	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		115	200 .	μΑ	
	Supply ourrent from V	No load,	$V_{DD} = 5V$, $V_{SS} = -5V$		- 115	- 200	
ISS Supply current from VSS	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		- 115	- 200	μA	
ICC Supply current from VCC	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$			750		
	All inputs at 0 or 5 V	$V_{DD} = 12 V, V_{SS} = -12 V$			750	μA	

DRIVER SECTION

driver electrical characteristics over operating free-air temperature range, V_{DD} = 12 V, V_{SS} = -12 V, V_{CC} = 5 V ± 10% (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$V_{ L } = 0.8 V, R_{ L } = 3 k\Omega,$	$V_{DD} = 5 V, V_{SS} = -5 V$	4	4.5		v
∙он	High-level output voltage	See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$	10	10.8		1 °
VOL	Low-level output voltage	$V_{\rm IH} = 0.8 \rm V, R_{\rm L} = 3 \rm k \Omega,$	$V_{DD} = 5V$, $V_{SS} = -5V$		- 4.4	- 4	v
VOL	(see Note 2)	See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$		-10.7	- 10	v
Ίн	High-level input current	V _I = 5 V, See Figure	2			1	μA
ηL	Low-level input current	V _I = 0, See Figure	2			- 1	μΑ
lOS(H)	High-level short circuit output current (see Note 3)	V _I = 0.8 V, V _O ≠ 0 or See Figure 1	$V_{O} = V_{SS},$	4.5	- 12	- 19.5	mA
IOS(L)	Low-level short circuit output current (see Note 3)	$V_1 = 2V$, $V_0 = 0$ or See Figure 1	$V_{O} = V_{DD}$	4.5	12	19.5	mA
ro	Output resistance	$V_{DD} = V_{SS} = V_{CC} = 0$ See Note 4	$V_{O} = -2 V \text{ to } 2 V,$	300	400		Ω

[†]All typical values are at $T_A = 25^{\circ}C$.

NOTES: 2. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if -10 V is a maximum, the typical value is a more negative voltage.

3. Not more than one output should be shorted at one time.

4. Test conditions are those specified by EIA-232-D.

driver switching characteristics, V_{DD} = 12 V, V_{SS} = -12 V, V_{CC} = 5 V ± 10%, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	∏ เหเบ
	Propagation delay time,		•	1.2	3	Τ
^t PLH low-t	low-to-high-level output (see Note 5)			1.2	3	μs
	Propagation delay time,	RL = 3 kΩ to 7 kΩ, CL = 15 pF,		2.5	3.5	
^t PHL	high-to-low-level output (see Note 5)	See Figure 3		2.5	3.5	μs
t TLH	Transition time, low-to-high-level output	-	0.53	2	3.2	μs
^t THL	Transition time, high-to-low-level output	Ī	0.53	2	3.2	μs
^t TLH	Transition time, low-to-high-level output (see Note 6)	$R_{L} = 3 k\Omega$ to 7 k Ω , $C_{L} = 2500 pF$,		1.0	3	μs
THL	Transition time, high-to-low-level output (see Note 6)	See Figure 3		1.0	3	μs
SR	Output slew rate (see Note 6)	$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 15 pF$,	4	10	30	V/µs
on (See Figure 3	-	10	00	*/µ5

NOTES: 5. tpHL and tpLH include the additional time due to on-chip slew rate and is measured at the 50% points.

6. Measured between 3-V and -3-V points of output waveform (EIA-232-D conditions), all unused inputs tied either high or low.

RECEIVER SECTION

receiver electrical characteristics over operating free-air temperature range, V_{DD} = 12 V, V_{SS} = -12V, V_{CC} = 5 V ± 10% (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T+}	Positive imeshold voltage	See Figure 5	· · · · ·	1.6	2.1	2.55	v
V _{T-}	Negative-going threshold voltage	See Figure 5		0.65	1	1.25	v
Vhys	Input hysteresis (see Note 7)		······································	600	1000		mV
	V ₁ = 0.75 V, I _{OH} = -20 μA, See Figure 5 and Note 8						
V _{OH}	High-level output voltage	V _I = 0.75 V,	V _{CC} = 4.5 V	2.8	4.4		l v
∙он		l _{OH} = −1 mA,	$V_{CC} = 5 V$	3.8	4.9	-	v
		See Figure 5	V _{CC} = 5.5 V ·	4.3	5.4		
VOL	Low-level output voltage	$V_1 = 3V$, $I_{OL} = 3.2 m$	A, See Figure 5		0.17	0.4	V
t	High-level input current	V ₁ = 3 V		0.43	0.55	1	
ін	Figh-level liput current	V ₁ = 25 V		3.6	4.6	8.3	mA
1		V ₁ = - 3 V		- 0.43	- 0.55	-1	
μL	Low-level input current	Vj = ~ 25 V		- 3.6	- 5.0	- 8.3	mA
lOS(H)	Short-circuit output current at high-level	$V_{\rm I} = 0.75, V_{\rm O} = 0,$	See Figure 4		- 8	- 15	mA
lOS(L)	Short-circuit output current at low-level	$V_{I} = V_{CC}, V_{O} = V_{CC},$	See Figure 4	_	13	25	μA

[†]All typical values are at $T_A = 25^{\circ}C$.

NOTES: 7. Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}.

8. If the inputs are left unconnected, the receiver interprets this as an input low, and the receiver outputs will remain in the high state.

receiver switching characteristics, V_DD = 12 V, V_SS = -12 V, V_{CC} = 5 V ± 10%, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
^t PLH	Propagation delay time, yow-to-high-level output				3	4	μs
^t PHL	Propagation delay time, high-to-low-level output	$R_{L} = 5 k\Omega$,	C _L = 50 pF,		3	4	μs
t _{TLH}	Transition time, low-to-high-level output	See Figure 6			300	450	ns
^t THL	Transition time, high-to-low-level output				100	300	ns
	Pulse duration of longest pulse rejected as noise	$R_L = 5 k\Omega$,	CL = 50 pF,				
^t w(N)	(see Note 9)	See Figure 6	_	, I		4	μs

NOTE 9: The intent of this specification is that any input pulse of less than 1 µs will have no effect on the output, and any pulse duration of greater than 4 µs will cause the output to change state twice. Reaction to a pulse duration between 1 µs and 4 µs is uncertain.

PARAMETER MEASUREMENT INFORMATION

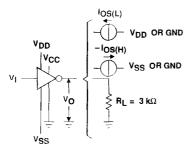
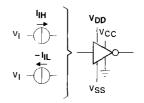
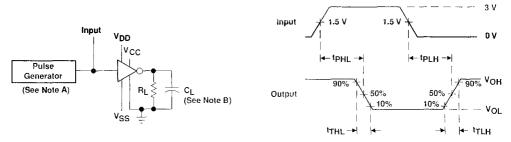
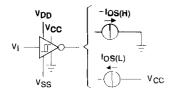
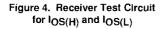




Figure 1. Driver Test Circuit for V_{OH} , V_{OL} , $I_{OS(H)}$, and $I_{OS(L)}$

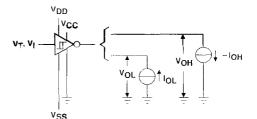
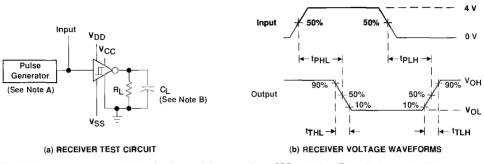


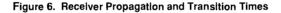

(a) DRIVER TEST CIRCUIT

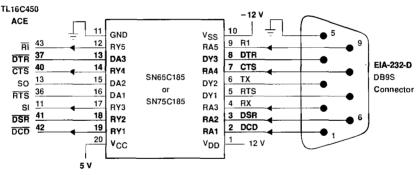
(b) DRIVER VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu s$, PRR = 20 kHz, $Z_0 = 50 \ \Omega$, $t_r = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

Figure 3. Driver Propagation and Transition Times


Figure 5. Receiver Test Circuit for V_T, V_{OH}, and V_{OL}



PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu$ s, PRR = 20 kHz, $Z_0 = 50 \ \Omega$, $t_r = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

APPLICATION INFORMATION

Figure 7. Typical Connection

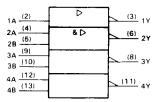
D3075, JANUARY 1988-REVISED MAY 1990

- BiMOS Technology With TTL and CMOS Compatibility
- Meets Standard EIA-232-D (Revision of RS-232-C)
- Very Low Quiescent Current: 95 μA Typ
 V_{CC±} = ±12 V
- Current-Limited Output: 10 mA Typ
- CMOS- and TTL-Compatible Inputs
- On-Chip Slew Rate Limited to 30 V/µs max
- Flexible Supply Voltage Range
- Characterized at V_{CC} ± of ± 4.5 V and ± 15 V
- Functionally Interchangeable With Texas Instruments SN75188, Motorola MC1488, and National Semiconductor DS14C88
- ESD Protection Exceeds 2000 V Per MIL-Std-883C Method 3015

D, DB, OR N PACKAGE (TOP VIEW)						
	U14	DVcc+				
1A 🗌 2	13	<u> </u> 4₿				
1 Y 🖸 3	12	14A				
2A 🗖 4	11	14Y				
2B 🗍 5	10	<u>∃</u> 38				
2Y 🗍 6	9	3A				
GND 7	8	<u> </u> 3Y				

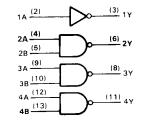
		FUNCTION "	TABLI	ES		
DRIV	/ER 1	C	DRIVE	RS 2	THRU	4
A	Y	7	A	в	Y	
н	L	7	н	н	L	
L	н		ι	х	н	
		-	x	L	н	

H = High Level L = Low Level X = Don't Care


description

The SN65C188 and SN75C188 are monolithic, low-power, quadruple line drivers that interface data terminal equipment with data communications equipment. These devices are designed to conform to Standard ANSI/EIA-232-D-1986, which supercedes RS-232-C.

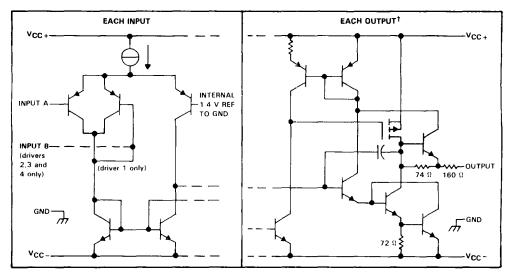
An external diode in series with each supply-voltage terminal is needed to protect the SN65C188 and SN75C188 under certain fault conditions to comply with EIA-232-D (refer to Application Information).


The SN65C188 is characterized for operation from -40 °C to 85 °C. The SN75C188 is characterized for operation from 0 °C to 70 °C.

logic symbol[†]

¹This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)


positive logic Y \overline{A} (driver 1) Y \overline{AB} or $\overline{A} + \overline{B}$ (drivers 2 thru 4)

PRODUCTION OATA documents contain informatien current as of publication date. Preducts conform to specifications per the terms of Texas instruments standard warranty. Production processing dees not necessarily include testing of all parametars.

Copyright © 1990, Texas Instruments Incorporated

schematics of inputs and outputs

[†]All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 15 V
Supply voltage, V _{CC} (see Note 1)
Input voltage range, V ₁
Output voltage range, VO VCC – -6 V to VCC + $+6$ V
Continuous total power dissipation
Operating free-air temperature range, TA: SN65C18840 °C to 85 °C
SN75C188
Storage temperature range
Lead temperature 1, 6 mm (1/16 in.) from case for 10 seconds

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	TA = 85°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW
DB	525 mW	4.2 mW/°C	27 3 mW
N	1150 mW	9.2 mW/°C	598 mW

recommended operating conditions

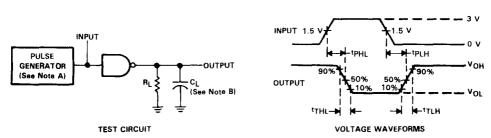
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}		4.5	12	15	V
Supply voltage, VCC		- 4.5	-12	- 15	V
Input voltage, Vj		V _{CC} -	- 2	V _{CC+}	V
High-level input voltage, VIH	<u> </u>	2			V
Low-level input voltage, VIL				0.8	V
	SN65C188	-40		85	°C
Operating free-air temperature, T _A	SN75C188	0		70	

electrical characteristics over operating free-air temperature range, VCC+ = 12 V, VCC- = -12 V (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage	V _{IL} = 0.8 V, R _L = 3 kΩ	$V_{CC+} = 5 V,$ $V_{CC-} = -5 V$	4			v
∙он		VIL - 0.0 V, NL - 3 KM	$V_{CC+} = 12 V,$ $V_{CC-} = -12 V$	10			v
Va	Low-level output voltage	V _{IH} = 2 V, R _I = 3 kΩ	$V_{CC+} = 5 V,$ $V_{CC-} = -5 V$			4	v
VOL	(see Note 2)		$V_{CC+} = 12 V,$ $V_{CC-} = -12 V$			- 10	v
ЦΗ	High-level input current	VI = 5 V				10	μA
hL	Low-level input current	$V_1 = 0$				- 10	μA
[!] OS(H)	Short-circuit output current at high level [‡]	$V_{I} = 0.8 V$, $V_{O} = 0 \text{ or } V_{CC}$ –		5.5	- 10	-19.5	mA
IOS(L)	Short-circuit output current at low level [‡]	$V_1 = 2 V, V_0 = 0 \text{ or } V_{CC+}$		5.5	10	19.5	mA
ro	Output resistance, power off	$V_{CC+} = 0, V_{CC-} = 0, V_0 =$	~ 2 V to 2 V	300			Ω
		$V_{CC+} = 5 V, V_{CC-} = -5 V,$ No load	All inputs at 2 V or 0.8 V		90	160	
ICC+	Supply current from V _{CC+}	$V_{CC+} = 12 V, V_{CC-} = -12 V$ No load	All inputs at 2 V or 0.8 V		95	160	μΑ
	Supply current from V _{CC} -	$V_{CC+} = 5 V, V_{CC-} = -5V,$ No load	All inputs at 2 V or 0.8 V		- 90	- 160	μА
ICC -	Subbly content from ACC-	$V_{CC+} = 12 V, V_{CC-} = -12 V$ No load	All inputs at 2 V or 0.8 V		95	- 160	μΑ

 $^{\dagger}Ali$ typical values are at T_{A} = 25 °C. $^{\ddagger}Not$ more than one output should be shorted at one time.

NOTE 2: The algebraic convention, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if a - 4 V is a maximum, the typical value is a more negative voltage.

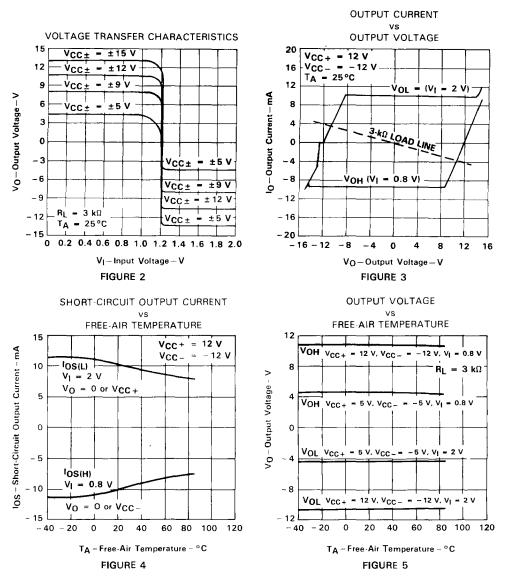

switching characteristics, $V_{CC+} = 12 V$, $V_{CC-} = -12 V$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tp <u>LH</u>	Propagation delay time, low-to-high level output [†]	$R_{L} = 3 k\Omega, C_{L} = 15 pF,$			3	μs
tPHL	Propagation delay time, high-to-low level output [†]	See Figure 1			3.5	μS
^t TLH	Transition time, low-to-high-level output [‡]		0.53		3.2	μs
τHL	Transition time, high-to-low-level output [‡]		0.53		3.2	μs
t TLH	Transition time, low-to-high-level output§	$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 2500 pF$,		1.5	3	μs
t <u>THL</u>	Transition time, high-to-low-level output [§]	See Figure 1		1.5	3	μS
SR	Output slew rate [§]	$R_L = 3 k\Omega$ to $7 k\Omega$, $C_L = 15 pF$	6	15	30	V/µs

[†]Measured at the 50% level.

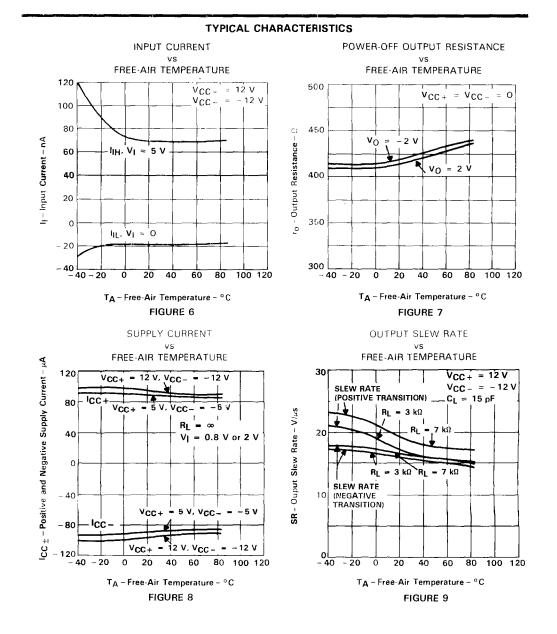
[‡]Measured between the 10% and 90% points on the output waveform.

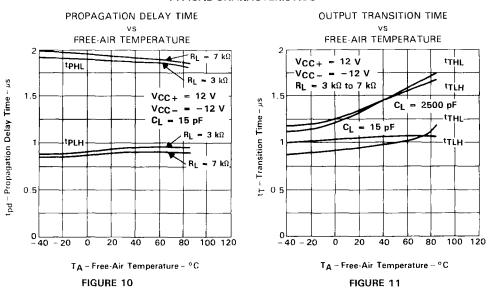
[§]Measured between the 3 V and -3 V points on the output waveform (EIA-232-D conditions), all unused inputs tied either high or low.



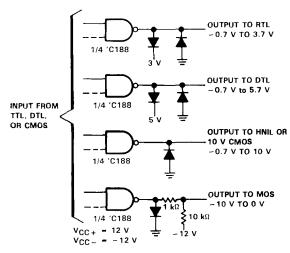
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_w = 25 \ \mu$ s, PRR = 20 kHz, $Z_o = 50 \ \Omega$, $t_r = t_f \le 50 \ ns$. B. CL includes probe and jig capacitance.

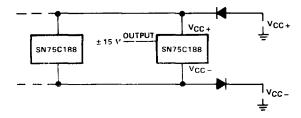

FIGURE 1. PROPAGATION AND TRANSITION TIMES



TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS



APPLICATION INFORMATION

APPLICATION INFORMATION

NOTE: External diodes placed in series with the V_{CC} + and V_{CC} - leads will protect the SN75C188 in the fault condition where the device outputs are shorted to ±15 V and the power supplies are at low voltage and provide low-impedance paths to ground

FIGURE 13. POWER SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS OF STANDARD EIA-232-D

D3230, DECEMBER 1988- REVISED MAY 1990

- Meets Standard EIA-232-D (Revision of RS-232-C)
- Very Low Power Consumption . . . 5 mW Typ
- Wide Driver Supply Voltage . . . ± 4.5 V to ± 15 V
- Driver Output Slew Rate Limited to 30 V/µs Max
- Receiver Input Hysteresis . . . 1000 mV Typ
- Push-Pull Receiver Outputs
- On-Chip Receiver 1-µs Noise Filter
- ESD Protection Exceeds 2000 V Per MIL-Std-833C Method 3015

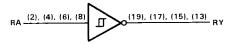
description

The SN65C1154 and SN75C1154 are lowpower BI-MOS devices containing 4 independent drivers and receivers that are used to interface data terminal equipment (DTE) with data circuitterminating equipment (DCE). This device has been designed to conform to Standards ANSI/EIA-232-D-1986 (which supersedes RS-232-C). The drivers and receivers of the SN65C1154 and SN75C1154 are similar to those of the SN75C188 guadruple driver and SN75C189A quadruple receiver, respectively. The drivers have a controlled output slew rate that is limited to a maximum of 30 V/ μ s and the receivers have filters that reject input noise pulses of shorter than 1 μ s. Both these features eliminate the need for external components.

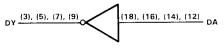
The SN65C1154 and SN75C1154 have been designed using low-power techniques in a Bl-MOS technology. In most applications, the receivers contained in these devices interface to single inputs of peripheral devices such as ACEs, UARTs, or microprocessors. By using sampling, such peripheral devices are usually insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN65C1154 and SN75C1154 receiver outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.

The SN65C1154 is characterized for operation from -40 °C to 85 °C. The SN75C1154 is characterized for operation from 0 °C to 70 °C.

DW C	R	N PACI	KΑ	GE
C	тө	p View	()	
VDD [Γī	U20	1	Vcc
1RA	2	19	5	1RY
1DY [3	18		1DA
2RA	4	17	D	2RY
2DY [5	16	D	2DA
3RA 🗌	6	15		3RY
3DY [7	14		3DA
4RA [8	13		4RY
4DY [9	12		4DA
v _{ss} [10	11	Þ	GND

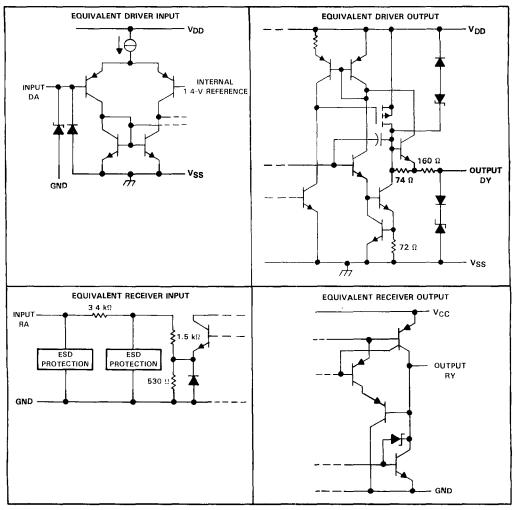

logic symbol[†]

18A (2)	п	(19) 1RY
2RA (4)		(17) 2RY
3RA (6)		(15) 3RY
4RA (8)		(13) (18) 4RY
1DY (3)	4	(18) (16) 1DA
2DY (5)		(16) 2DA (14) 3DA
3DY (7)		(12) 3DA (12) 4DA
4DY (9)		4DA


[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

typical of each receiver



typical of each driver

schematics of inputs and outputs

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VDD (see Note 1) 15 V
Supply voltage, VSS
Supply voltage, VCC
Input voltage range: Driver VSS to VDD
Receiver
Output voltage range: Driver $(V_{DD} + 6V)$ to $(V_{DD} + 6V)$
Receiver
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range: SN65C115440 °C to 85 °C
SN75C1154
Storage temperature range
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 85°C POWER RATING
DW	1125 mW	9.0 mW/°C	585 mW
N	1150 mW	9.2 mW/ °C	598 mW

recommended operating conditions

	- ··· ··· ··· ··· ··· ···	MIN	NOM	MAX	UNIT
Supply voltage, VDD		4.5	12	15	V
Supply voltage, VSS		-4.5	- 12	-15	v
Supply voltage, VCC		4.5	5	6	V
	Driver	V _{SS} +2		V _{DD}	v
Input voltage, Vj	Receiver			±25	Ľ
High-level input voltage, VIH	Driver	2			v
Low-level input voltage, VIL	Dilver			0.8	Ľ.
High-level output current, IOH	P			- 1	mA
Low-level output current, IOL	Receiver			3.2	mA
	··· [·] 154	- 40		85	°C
perating free-air temperature, TA	54	0		70	

driver section

electrical characteristics over operating free-air temperature range, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)

	PARAMETER	TEST CO	INDITIONS	MIN	TYPT	MAX	UNIT
∨он	High-level output voltage	$V_{IL} = 0.8 V, R_L = 3 k\Omega$	$V_{DD} = 5 V$, $V_{SS} = -5 V$	4	4.5		v
		See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$	10	10.8		
VOL	Low-level output voltage	$V_{IH} = 2 V, R_{L} = 3 k\Omega,$	$V_{DD} = 5 V$, $V_{SS} = -5 V$		-4.4	-4	v
TOL	(See Note 2)	See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$		- 10.7	- 10	v
ЧH	High-level input current	VI = 5 V, See Figure 2				1	μA
կլ	Low-level input current	V _I = 0, See Figure 2				- 1	μA
I _{OSH}	High-level short circuit output current [‡]	$V_{I} = 0.8 V, V_{O} = 0 \text{ or } V_{SS},$	$V_{\rm I}$ = 0.8 V, $V_{\rm O}$ = 0 or V _{SS} , See Figure 1			- 19.5	mA
IOSL	Low-level short circuit output current [‡]	$V_{ } = 2 V, V_{0} = 0 \text{ or } V_{DD}, S$	$V_{ } = 2 V, V_{0} = 0 \text{ or } V_{DD}$, See Figure 1		. 12	19.5	mA
laa	Supply current from VDD	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$		115		
¹ DD	Supply current from VDD	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		115		μA
ISS	Supply current from VSS	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$		-115	1	•
'55	Supply conent none VSS	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		- 115	- 250	μA
ro	Output resistance	$V_{DD} = V_{SS} = V_{CC} = 0, V_{CC}$	= -2 V to 2 V, See Note 3	300	400		Ω

[†]All typical values are at $T_A = 25$ °C.

[‡]Not more than one output should be shorted at one time.

NOTES: 2. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only.

3. Test conditions are those specified by EIA-232-D.

switching characteristics at TA = 25 °C, VDD = 12 V, VSS = -12 V, VCC = 5 V $\pm 10\%$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high level output [§]	D. 24-740		1.2	3	μs
^t PHL	Propagation delay time, high-to-low level output [§]	$R_{\rm L} = 3 \text{ to } 7 \text{ k}\Omega,$		2.5	3.5	μs
LTLH	Transition time, low-to-high level output	C _L ≕ 15 pF, See Figure 3	0.53	2	3.2	μs
^t THL	Transition time, high-to-low level output	See Figure 3	0.53	2	3.2	μs
^t TLH	Transition time, low-to-high level output#	$R_L = 3 \text{ to } 7 \text{ k}\Omega$		1	2	μs
tthl	Transition time, high-to-low level output#	C _L = 2500 pF, See Figure 3		1	2	μS
		$R_L = 3 \text{ to } 7 \text{ k}\Omega,$				
SR	Output slew rate	C _L = 150 pF,	4	10	30	V/µs
		See Figure 3				

StpHL and tpLH include the additional time due to on-chip slew rate and are measured at the 50% points.

Measured between 10% and 90% points of output waveform.

#Measured between 3 V and ~3 V points of output waveform (EIA-232-D conditions) with all unused inputs tied either high or low.

receiver section

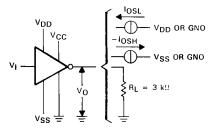
electrical characteristics over operating free-air temperature range, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)

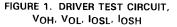
		TEAT OF	NDITIONS	MIN	TYPT	MAX	UNIT	
	PARAMETER	IESI CC	ONDITIONS		115			
V _{T+}	Positive-going threshold voltage	See Figure 5		1.7	2.1	2.55	v	
V _T –	Negative-going threshold voltage	See Figure 5		0.65	1	1.25	v	
Vhys	Input hysteresis [‡]			600	1000		mV	
		$V_{\rm I} = 0.75 V, I_{\rm OH} = -20 \mu A$, See Figure 5 and Note 4	3.5				
	10.1.2		V _{CC} = 4.5 V	2.8	4.4		l v	
Vон	High-level output voltage	$V_1 = 0.75 V, V_{OH} = -1 mA$	$V_{\rm CC} = 5 V$	3.8	4.9		Ť	
		See Figure 5	$V_{CC} = 5.5 V$	4.3	5.4			
VOL	Low-level output voltage	VI = 3 V, IOL = 3.2 mA, Se	e Figure 5		0.17	0.4	V	
		V1 = 25 V	$V_1 = 25 V$		4.6	8.3		
ήн	High-level input current	V ₁ = 3 V		0.43	0.55	1	mA	
		$V_1 = -25 V$		-3.6	- 5	-8.3		
μL	Low-level input current	$V_1 = -3 V$		-0.43	-0.55	- 1		
IOSH	Short-circuit output at high level	$V_{1} = 0.75 V, V_{0} = 0$, See Figure 4			- 8	- 15	mA	
OSL	Short-circuit output current at low level	$V_1 = V_{CC}, V_0 = V_{CC}$, See Figure 4			13	25	mA	
	0	No load,	$V_{OD} = 5 V, V_{SS} = -5 V$		400	600		
lcc	Supply current from VCC	All inputs at 0 or 5 V	$V_{DD} = 12 V, V_{SS} = -12 V$		400	600	μΑ	

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

*Hysteresis is the difference between the positive-going input threshold voltage, V_T, and the negative-going input threshold voltage, V_T. NOTE 4: If the inputs are left unconnected, the receiver interprets this as an input low and the receiver outputs will remain in the high state.

switching characteristics at $T_A = 25 \,^{\circ}C$, $V_{DD} = 12 \,V$, $V_{SS} = -12 \,V$, $V_{CC} = 5 \,V \pm 10\%$ (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output			3	4	μS
^t PHL	Propagation delay time, high-to-low level output	$C_L = 50 \text{ pF}, \text{ R}_L = 5 \text{ k}\Omega,$		3	4	μS
TLH	Transition time, low-to-high level output [§]	See Figure 6		300	450	ns
^t THL	Transition time, high-to-low level output [§]			100	300	ns
tw(N)	Duration of longest pulse rejected as noise	$C_L = 50 \text{ pF}, R_L = 5 \text{ k}\Omega$	1		4	μS


[§]Measured between 10% and 90% points of output waveforms.

The receiver ignores any positive- or negative-going pulse that is less than the minimum value of $t_{w(N)}$ and accepts any positive- or negativegoing pulse greater than the maximum of $t_{w(N)}$.

PARAMETER MEASUREMENT INFORMATION

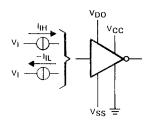
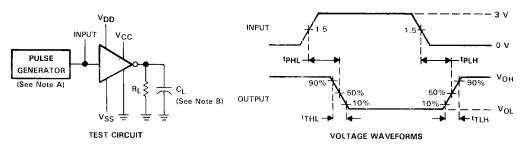



FIGURE 2. DRIVER TEST CIRCUIT, IL, IH

FIGURE 3. DRIVER PROPAGATION AND TRANSITION TIMES

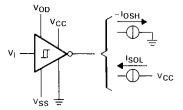


FIGURE 4. RECEIVER TEST CIRCUIT, IOSH, IOSL

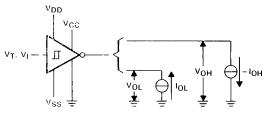
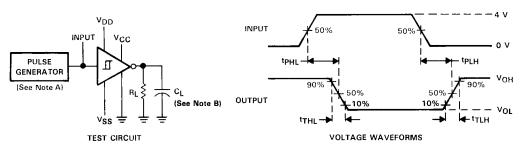



FIGURE 5. RECEIVER TEST CIRCUIT, VT, VOL, VOH

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_w = 25 \ \mu$ s, PRR = 20 kHz, $Z_o = 50 \ \Omega$, $t_r = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

FIGURE 6. RECEIVER PROPAGATION AND TRANSITION TIMES

D3425, MAY 1990

- Meets Standard EIA-232-D (Revision of RS-232-C)
- Very Low Power Consumption . . . 5 mW Typ
- Wide Driver Supply Voltage . . . ±4.5 V to ±15 V
- Driver Output Slew Rate Limited to 30 V/µs Max
- Receiver Input Hysteresis . . . 1000 mV Typ
- Push-Pull Receiver Outputs
- On-Chip Receiver 1-µs Noise Filter
- Functionally Interchangeable with Motorola MC145406
- ESD Protection Exceeds 2000 V Per MIL-Std-883C Method 3015

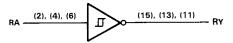
description

The SN65C1406 and SN75C1406 are lowpower BI-MOS devices containing three independent drivers and receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). This device is designed to conform to Standards ANSI/EIA-232-D-1986 (which supersedes RS-232-C). The drivers and receivers of the SN65C1406 and SN75C1406 are similar to those of the SN75C188 guadruple driver and SN75C189A guadruple receiver, respectively. The drivers have a controlled output slew rate that is limited to a maximum of 30 V/ μ s and the receivers have filters that reject input noise pulses of shorter than 1 µs. Both these features eliminate the need for external components.

The SN65C1406 and SN75C1406 have been designed using low-power techniques in a Bl-MOS technology. In most applications, the receivers contained in these devices interface to single inputs of peripheral devices such as ACEs, UARTs, or microprocessors. By using sampling, such peripheral devices are usually insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN65C1406 and SN75C1406 and SN75C1406 receiver outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS, or 74F logic families.

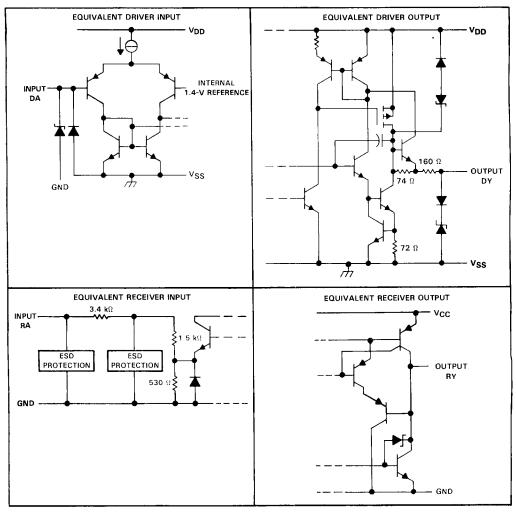
The SN65C1406 is characterized for operation from -40 °C to 85 °C. The SN75C1406 is characterized for operation from 0 °C to 70 °C.

D OR N PACKAGE (TOP VIEW)					
VDD 1RA 1DY 2RA 2DY 3RA 3DY		16 15 14 13 12 11	VCC 1RY 1DA 2RY 2DA 3RY 3DA		
∨ss	Ē	9	GND		


logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$

logic diagram (positive logic)


typical of each receiver

typical of each driver

schematics of inputs and outputs

All resistor values shown are nominal

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VDD (see Note 1) 15 V
Supply voltage, VSS
Supply voltage, VCC
Input voltage range: Driver
Receiver
Output voltage range: Driver $\dots \dots (V_{SS} - 6 V)$ to $(V_{DD} + 6 V)$
Receiver
Continuous total power dissipation
Operating free-air temperature range: SN65C1406
SN75C1406
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW
N	1150 mW	9.2 mW/°C	598 mW

recommended operating conditions

		MIN NOM	MAX	UNIT
Supply voltage, VDD		4.5 12	15	v
Supply voltage, VSS		-4.5 -12	- 15	v
Supply voltage, V _{CC}		4.5 5	6	V
	Driver	V _{SS} +2	VDD	v
Input voltage, V _I	Receiver		± 25	
High-level input voltage, VIH	Driver	2		v
Low-level input voltage, VIL			0.8	, v
High-level output current, IOH	Receiver		- 1	mA
Low-level output current, IOL			3.2	mA
Question from all terrestricts. The	SN65C1	- 40	85	°C
Operating free-air temperature, T_A	SN75C1 *	0	70	

driver section

electrical characteristics over operating free-air temperature range, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT	
Vон	High-level output voltage	$V_{ L} = 0.8 V, R_{L} = 3 k\Omega,$	$V_{DD} = 5 V$, $V_{SS} = -5 V$	4	4.5		v	
		See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$	10	10.8		-	
VOL	Low-level output voltage	$V_{IH} = 2 V, R_L = 3 k\Omega,$	$V_{DD} = 5 V$, $V_{SS} = -5 V$		-4.4	-4	v	
FOL	(See Note 2)	See Figure 1	$V_{DD} = 12 V, V_{SS} = -12 V$		- 10.7	- 10	v	
Чн	High-level input current	V _I = 5 V, See Figure 2				1	μA	
<u>t</u> iL	Low-level input current	VI = 0, See Figure 2	VI = 0, See Figure 2			- 1	μA	
IOSH	High-level short circuit output current [‡]	$V_{I} = 0.8 V, V_{D} = 0 \text{ or } V_{SS},$	V_I = 0.8 V, V_D = 0 or V_{SS} , See Figure 1		- 12	- 19.5	mA	
IOSL	Low-level short circuit output current [‡]	$V_{I} = 2 V, V_{O} = 0 \text{ or } V_{DD}, S$	$V_{I} = 2 V, V_{O} = 0 \text{ or } V_{DD}$, See Figure 1		12	19.5	mA	
Inn	Supply current from VDD	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$		115	1		
IDD	Supply current nom VDD	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		115	1	μA	
Iss	Supply current from VSS	No load,	$V_{DD} = 5 V$, $V_{SS} = -5 V$		-115	- 250		
'55	Supply current nom vSS	All inputs at 2 V or 0.8 V	$V_{DD} = 12 V, V_{SS} = -12 V$		115	- 250	μA	
ro	Output resistance	$V_{DD} = V_{SS} = V_{CC} = 0, V_{C}$) = -2 V to 2 V, See Note 3	300	400		Ω	

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

[‡]Not more than one output should be shorted at one time.

NOTES: 2. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only.

3. Test conditions are those specified by EIA-232-D.

switching characteristics at TA = 25 °C, V_{DD} = 12 V, V_{SS} = -12 V, V_{CC} = 5 V ± 10%

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t PLH	Propagation delay time, low-to-high level output [§]	P: - 2 to 7 to	•	1.2	3	μS
^t PHL	Propagation delay time, high-to-low level output [§]	RL = 3 to 7 kΩ, Cl = 15 pF,		2.5	3.5	μs
^t TLH	Transition time, low-to-high level output	See Figure 3	0.53	2	3.2	μs
^t THL	Transition time, high-to-low level output	See Figure S	0.53	2	3.2	μS
t⊤LH	Transition time, low-to-high level output#	$R_L = 3 \text{ to } 7 \text{ k}\Omega,$		1	2	μS
tthl	Transition time, high-to-low level output#	$C_L = 2500 \text{ pF},$ See Figure 3		1	2	μs
SR	Dutput slew rate	$R_{L} = 3 \text{ to } 7 \text{ k}\Omega,$ $C_{L} = 150 \text{ pF},$ See Figure 3	4	10	30	V/µs

StpHL and tpLH include the additional time due to on-chip slew rate and are measured at the 50% points.

Measured between 10% and 90% points of output waveform.

[#]Measured between 3 V and −3 V points of output waveform (EIA-232-D conditions) with all unused inputs tied either high or low.

receiver section

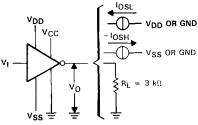
electrical characteristics over operating free-air temperature range, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $V_{CC} = 5 \text{ V} \pm 10\%$ (unless otherwise noted)

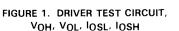
	PARAMETER	TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T+}	Positive-going threshold voltage	See Figure 5		1.7	2.1	2.55	v
V _T	Negative-going threshold voltage	See Figure 5		0.65	1	1.25	v
V _{hys}	Input hysteresis [‡]			60 0	1000		mV
		$V_1 = 0.75 V, I_{OH} = -20 \mu A$, See Figure 5 and Note 4	3.5			
			$V_{CC} = 4.5 V$	2.8	4.4		v
Vон	High-level output voltage	V _I = 0.75 V, I _{OH} =1 mA, See Figure 5	$V_{CC} = 5 V$	3.8	4.9		
			$V_{CC} = 5.5 V$	4.3	5.4		
Vol	Low-level output voltage	VI = 3 V, IOL = 3.2 mA, See	e Figure 5		0.17	0.4	V
		$V_1 = 25 V$			4.6	8.3	
ЧΗ	High-level input current	Vi = 3 V		0.43	0.55	1	
		$V_1 = -25 V$		3.6	-5	-8.3	mA
կլ	Low-level input current	V ₁ = -3 V		-0.43	-0.55	- 1	
losh	Short-circuit output at high level	$V_1 = 0.75 V, V_0 = 0$, See Figure 4			8	-15	mA
IOSL	Short-circuit output current at low level	$V_1 = V_{CC}, V_0 = V_{CC}$, See Figure 4			13	25	mA
	0 1 1 1 1 1 1	No load,	$V_{DD} = 5 V, V_{SS} = -5 V$		· ·	450	μA
lcc	Supply current from V _{CC}	M V _{CC} All inputs at 0 or 5 V $V_{DD} = 12 V, V_{SS} = -12 V$			•	450	<u>~</u> ا

[†]All typical values are at $T_A = 25$ °C.

⁺Hysteresis is the difference between the positive-going input threshold voltage, V_T + , and the negative-going input threshold voltage, V_T - . NOTE 4: If the inputs are left unconnected, the receiver interprets this as an input low and the receiver outputs will remain in the high state.

switching characteristics at T_A = 25 °C, V_{DD} = 12 V, V_{SS} = -12 V, V_{CC} = 5 V ±10% (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output			3	4	μs
^t PHL	Propagation delay time, high-to-low level output	$C_{L} = 50 \text{ pF}, R_{L} = 5 \text{ k}\Omega,$		3	4	μS
^t TLH	Transition time, low-to-high level output§	See Figure 6		300	450	ns
^t THL	Transition time, high-to-low level output§			100	300	ns
tw(N)	Duration of longest pulse rejected as noise	$C_{L} = 50 \text{ pF}, \text{R}_{L} = 5 \text{ k}\Omega$	1		4	μs


§Measured between 10% and 90% points of output waveforms.

The receiver ignores any positive- or negative-going pulse that is less than the minimum value of $t_{w(N)}$ and accepts any positive- or negativegoing pulse greater than the maximum of $t_{w(N)}$.

PARAMETER MEASUREMENT INFORMATION

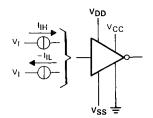
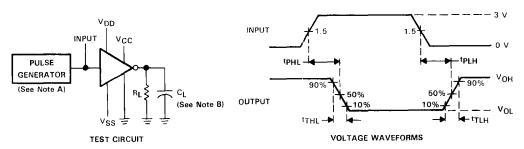



FIGURE 2. DRIVER TEST CIRCUIT, IIL, IIH

NOTES: A. The pulse generator has the following characteristics: $t_w = 25 \ \mu$ s, PRR = 20 kHz, $Z_o = 50 \ \Omega$, $t_r = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

FIGURE 3. DRIVER PROPAGATION AND TRANSITION TIMES

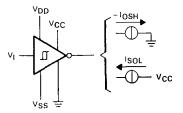


FIGURE 4. RECEIVER TEST CIRCUIT, IOSH, IOSL

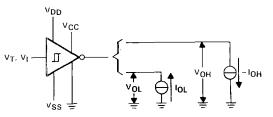
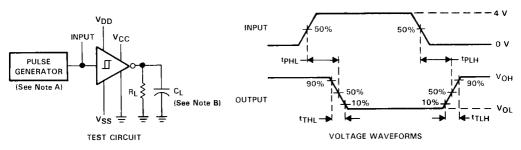



FIGURE 5. RECEIVER TEST CIRCUIT, VT, VOL, VOH

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_w = 25 \ \mu$ s, PRR = 20 kHz, $Z_o = 50 \ \Omega$, $t_r = t_f < 50 \ ns$. B. CL includes probe and jig capacitance.

FIGURE 6. RECEIVER PROPAGATION AND TRANSITION TIMES

D2959, JANUARY 1987 - REVISED JULY 1990

IEEE 802.3 1BASE5 Driver and Receiver	N PACKAGE
 On-Chip Receiver Squelch with Adjustable Threshold 	
Adjustable Squelch Delay	DRO + 2 15 DATEN DRO - 3 14 DRI
Direct TTL-Level Squelch Output	SODLAJ 4 13 DLEN
• Squelch Circuit Allows for External Noise Filtering	RXI + []5 12] RXO RXI - []6 11] SQO SQTHAJ []7 10] SQDLI
Two Driver-Enable Options	

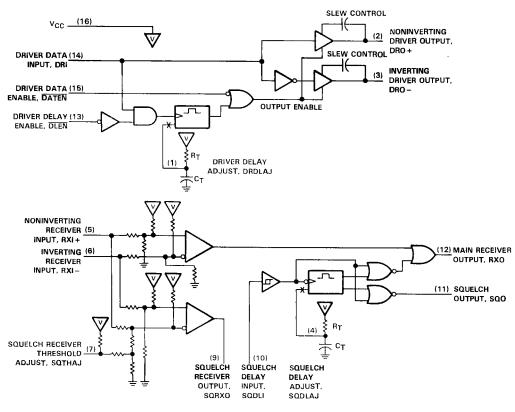
- On-Chip Start-of-Idle Detection and Disable
- Driver Provides 2 V Minimum into a 50-Ω Differential Load to Allow for Use with Doubly-Terminated Lines and Multipoint Architectures
- On-Chip Driver Slew-Rate Control for Very Closely Matched Output Rise and Fall Times

NAML	PIN NUMBER	DESCRIPTION
₽ .	15	Driver Data Enable. When low, places driver outputs in an active state. When high, the driver outputs are in a high-impedance state if DLEN is also high.
DLEN	13	Driver Delay Enable. When this signal is low and DATEN is high, the driver outputs are active for a period of time set by DRDLAJ after a positive-going transition on DRI. If there is no active data on DRI, the outputs are in a high-impedance state.
DRDLAJ	1	Driver Delay Adjust is a connection for the external R-C combination that determines the duration of the driver output active state after a positive transition on DRI when DLEN is low and DATEN is high.
and the second	14	Driver Data Input
• +	2	Noninverting Driver Output
DRO -	3	Inverting Driver Output
GND	8	Ground. Common for all voltages
RXI+	5	Noninverting Receiver Input
RXI –	6	Inverting Receiver Input
RXO	12	Main Receiver Output
SQDLAJ	4	Squelch Delay Adjust is a connection for an external R-C combination that determines the duration of the receiver unsquelch after a negative-going transition on SQDLI.
SQDLI	10	Squelch Delay Input is the input to the one-shot that controls the duration of the receiver unsquelch period. The main receiver output remains unsquelched as long as SQDLI is held high. Timing of the unsquelch period begins on the high-to-low transition of SQDLI.
SQ0	11	Squelch Output is high while the receiver is squelched.
SQRXO	9	Squelch Receiver Output is high only when the differential receiver input exceeds the threshold set by SQTHAJ.
SQTHAJ	7	Squelch Receiver Threshold Adjust. The voltage at this input determines the threshold of the squelch receiver in a ratio of -2 , SQTHAJ to threshold. If left open, the squelch receiver threshold defaults to -600 mV.
Vcc	16	Supply voltage input

SN75061 DRIVER/RECEIVER PAIR WITH SQUELCH

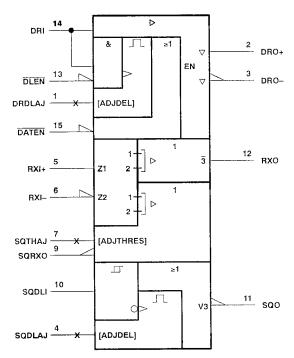
DRIVER							
INPUTS			OUTPUTS				
DRI	DATEN	DLEN	DRO+	DRO			
L	L	х	L	н			
н	L	х	н	L			
х	н.	н	z	z			
н	н	L	н†	L†			
L	н	L	L‡	н‡			

FUNCTION	TABLES
----------	--------


RECLIVER§								
CONDITION	TS TI I		OUTPUTS					
CONDITION	RXI+	RXI –	RXO	SOO				
No active signal	х	x	н	н				
Active signal	L	н	L	L				
Active signari	н	L	н	L				

[†] This condition is valid during the time period set by Driver Delay Adjust following a rising transition on Driver In. Following this, if no subsequent positive transition occurs on Driver In, the outputs will go to the high impedance state.
 [‡] This condition is valid if it occurs within the enable time set by Driver Delay Adjust after a rising transition on Driver In. Otherwise the outputs will be in the high-impedance state.

§Pins 9 and 10 are tied together.


An active signal is one that has an amplitude greater than the threshold level set by Squeich Threshold Adjust.

logic diagram (positive logic)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

description

The SN75061 is a single-channel driver/receiver pair designed for use in IEEE 802.3, 1BASE5 applications as well as other general data communications circuits. The SN75061 offers the system designer both a driver and a receiver that are easily configured for use with a variety of controllers and data encoder/decoders.

The receiver features a full analog squelch circuit with an adjustable threshold and a programmable squelch delay. Internal nodes of the squelch circuitry are brought out to external connections to allow for the insertion of noise filtering circuitry of the designer's choice.

As with the receiver, the driver offers the user a variety of implementation options. Driver enabling may be controlled directly by an external logic input, or by use of an on-chip one-shot that is retriggered as long as data is being sent to the driver. The driver will then automatically go to the high-impedance state when end-of-packet occurs. The driver features internal slew-rate control for optimal matching of rise and fall times allowing for reduction of driver-induced jitter.

receiver

The SN75061 receiver implements full analog squelch functions by integrating both a separate, parallel squelch receiver with an externally programmable threshold, and a programmable one-shot. The output of the squelch receiver and the input to the high-level dc-triggered one-shot are brought out to external connections. These pins can be shorted for direct implementation, or used for the insertion of noise-filtering

circuitry of the implementer's design. The receiver one-shot can be effectively bypassed by applying a high logic level to Squelch Delay In. The squelch threshold may be set externally by applying an external voltage set to a level that is -2 times the desired threshold voltage. If Squelch Threshold Adjust is left open, the squelch receiver will default to its internal preset value of -600 mV. The receiver also outputs a high logic "squelch" signal when there is no active data present at the receiver inputs. When no data is present on the transmission line, the receiver output assumes a high level. The "unsquelch" duration is set externally with an R-C combination at Squelch Delay Adjust.

driver

The driver offers the user a variety of implementation options. Driver enabling may be controlled directly by an active-low external logic input on Data Enable, or by use of another on-chip one-shot that retriggers with positive-going transitions on the driver input line. If no positive transition occurs within the pulse duration set by an external R-C combination, the one-shot times out and the driver is automatically put into a high-impedance state. When operating in the delay-enable mode, the 2-bit-time high-level start-of-idle pulse prescribed by IEEE 802.3 1BASE5 causes the one-shot to time out and automatically place the driver outputs in the high-impedance state. This delay time is also adjustable for use in other applications. The driver implements an output slew-rate control that is internally set for nominally 40 mV/ns. (This is roughly a 100-ns peak-to-peak differential transition time.) The driver outputs are capable of driving a 50- Ω differential load with a minimum output level of 2 V. Short-circuit output current is greater than 100 mA.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}
Receiver differential input voltage
Receiver input voltage ±15 V
Driver output voltage
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 1) 1150 mW
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: For operation above 25 °C free-air temperature, derate to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.2 5	v
Driver high-level input voltage, VIH	2			v
Driver low-level input voltage, VIL			0.8	v
Driver high-level output current, IOH			- 150	mA
Driver low-level output current, ID1			150	mA
Receiver common-mode input voltage, VIC (see Note 2)	- 2.5		5	v
External timing resistance, Rext	5		260	kΩ
External timing capacitance, Cext	No	No restriction		
Operating free-air temperature, TA	0		70	°C

NOTE 2: The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode input voltage V_{IC} and threshold levels V_{TL} and V_{TL}.

electrical characteristics over recommended operating free-air and supply voltage range (unless otherwise noted)

driver

	PARAMETER	TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	input clamp voltage	lj = −18 mA			••••	-1.5	V
V _{OD}		$R_L = 50 \Omega$		2	2.4	3.3	v
	Differential-output voltage	R _L = 115 Ω				3.65	v
	Change in differential-output voltage					50	mV
∆Vod	for a change in logic input state					50	mv
цн	High-level input current	V _I = 2.4 V				20	μA
41	Low-level input current	$V_{\rm I} = 0.5 V$				-35	μA
los	Short-circuit output current	V0 = 0 or 6 V,	V ₁ = 0.8 V or 2.5 V	±100		± 300	mA
loz			V _{OC} = 10 V			100	
	High-impedance output current	VCC = 5.25 V	$V_{OC} = 0$			_ 100	μΑ

receiver

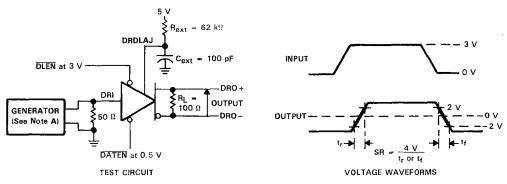
	PARAMETER		TEST CO	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage, squeich	delay	lj = -18 mA				- 1.5	V
Vтн	rential-input high-thresh	old voltage	$V_0 = 2.7 V_{,}$	$l_0 = -0.4 \text{ mA}$			50	mV
VTL	rential-input low-thresho voltage (see Note 2)	ld	V ₀ = 0.5 V,	lo = 16 mA	- 50			mV
Vhys	Hysteresis (VTH - VTL)					50		mV
VIC	Common-mode input voltage						5	v
		RXO	$V_{CC} = 4.75 V_{,}$	^I OH = -400 μA,	2.7			
.,	Lifetal et aven a dan	SQO	SQDLAJ at 0.8 V		2.7	3.5		v
Vон	High-level output voltage	SORXO	$V_{CC} = 4.75 V,$ $V_{ID(RXI)} = -0.7 V,$		2.7	4.65		v
	Low-level output voltage	$RXO \qquad V_{CC} = 4.75 V, \qquad I_{OL} = 8 mA$				0.45		
VOL		SQO	SQDLAJ at 2 V	$I_{OL} = 16 \text{ mA}$ $I_{Ol} = 8 \text{ mA}$		0.35	0.5	v
.05		SORXO	V _{CC} = 4.75 V, V _{ID(RXI)} = 50 mV	$I_{OL} = 8 \text{ mA}$ $I_{OL} = 16 \text{ mA}$			0.45	
Чн	High-level input current		$V_1 = 2.4 V$				20	μA
<u>ч</u> г	Low-level input current	SQDLI	VI = 0.5 V				- 35	μA
los	Short-circuit output current	RX0	V _{CC} = 5.25 V,		- 15 - 15		- 85 - 100	mA
		.0	$V_{CC} = 5 V,$	V0 = 0	-0.8	- 1	- 1.2	
rj	Input resistance					10		kΩ
	Squeich preset		Vcc = 5 V,	$V_{IC} = 1.5 V \text{ to } 3.5 V$	- 525	- 600	-675	mV
VTL(sq)	threshold voltage		SQTHAJ OPEN,	$V_{IC} = -2.5 V \text{ to } 1.5 V$ or 3.5 V to 5 V	- 500		- 700	mV
	Ratio of Squelch Threshold A input voltage to actual squel threshold voltage	-	SQTHAJ at 200 mV	to 4 V	- 1.9		- 2.1	

driver and receiver

ICC Supply current	V _{CC} = 5.25 V, No loads	Driver outputs disabled,	70	mA	
--------------------	---------------------------------------	--------------------------	----	----	--

[†] All typical values are at V_{CC} = 5 V, $T_A = 25$ °C. NOTE 2: The algebraic convention, in which the less-positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode input voltage VIC and threshold levels VTH and VTL.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$


driver

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Differential-output slew rate	$V_0 = -2 V$ to 2 V, $R_L = 100 \Omega$ (differential), See Figure 1	28	40	52	mV/ns
tDD	Differential-output delay time + and tDD -)	$C_1 = 15 \text{ pF},$ $R_L = 100 \Omega \text{ (differential)}, \text{ See Figure 2}$			160	ns
t _{DD} + ~t _{DD} -	rential-output delay time difference	$R_L = 100 \Omega$ (differential), See Figure 2		_	5	ns
tPHZ tPLZ	Disable time from DATEN				-:	ns ns
	Enable time from DATEN	See Figures 3, 4, and 5			 _ 290	ns ns
tPZH	Enable time from DLEN				250	ns
^t w(en)	Enable duration time (with DLEN low)	$C_{ext} = 100 \text{ pF}, R_{ext} = 62 \text{ k}\Omega, \text{ See Figure 6}$	2	2.5	3	μs

receiver

	PARAMETER	RAMETER TEST CONDITION			ТҮР	MAX	UNIT
^t en(RX)	Receiver enable time	Squelch off,	Sée rigure 7		117		ns
^t PLH	Propagation delay time, low-to-high-level output	Squelch off,	See Figure 8		20	35	ns
^t PHL	Propagation delay time, high-to-low-level output	Squeich off,	See Figure 8		22	35	ns
		C _{ext} = 50 pF, See Figure 9	$R_{ext} = 51 k\Omega,$	1	1.2	1.45	μs
^t unsq	Unsquelch duration time	C _{ext} = 15 pF, See Figure 9	$R_{ext} = 6.8 k\Omega,$			180	ns

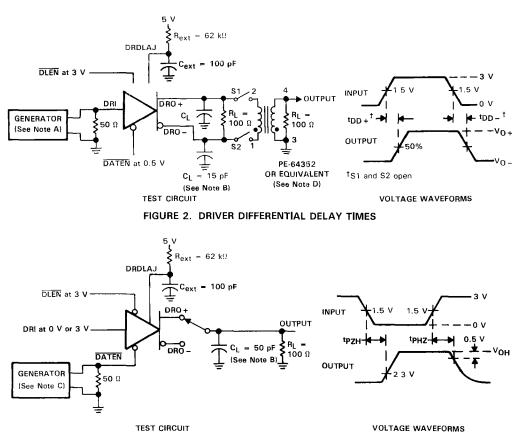
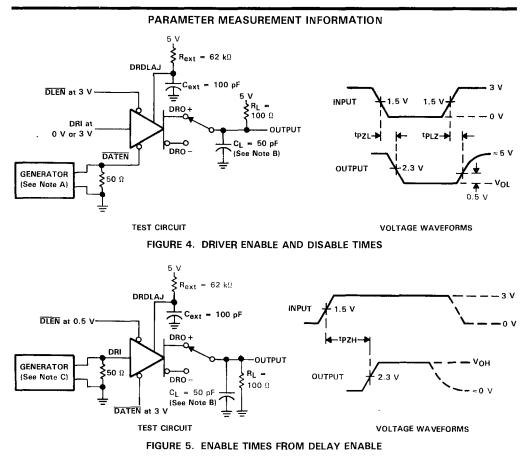
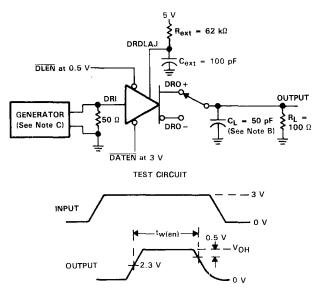

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DRIVER SLEW RATE MEASUREMENTS

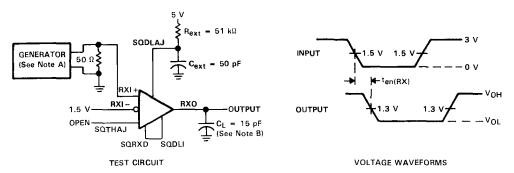
NOTE A: The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, Duty Cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .



PARAMETER MEASUREMENT INFORMATION


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, Duty Cycle \leq 50%, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, Duty Cycle \leq 50%, $t_f \leq 6$ ns, $t_f \leq 6$ ns, $t_f \leq 6$ ns, $t_f \leq 6$ ns, $t_f \leq 10$ m s.
 - When measuring differential-output delay time difference, switches S1 and S2 are closed. (Isolation transformer from Pulse Engineering P/N PE-64352).

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 200 kHz, Duty Cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, Duty Cycle \leq 50%, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .



PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

FIGURE 7. RECEIVER ENABLE (UNSQUELCH) TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 500 kHz, Duty Cycle \leq 50%, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. The input pulse is supplied by a generator having the following characteristics: PRR \leq 200 kHz, Duty Cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .

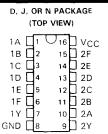
5 V SODLAJ $R_{ext} = 51 k\Omega$ - 3 V INPUT v 1.5 V GENERATOR 5 **50** Ω (See Note A) 50 pF Cext = 0 V tPLHtPHL-RXI+ -v_o RXI-RXO 1.3 V 1.3 V OUTPUT 1.5 V OUTPUT VOL OPEN = 15 pF SOTHAJ SODLI (See Note B) з'v TEST CIRCUIT VOLTAGE WAVEFORMS FIGURE 8. RECEIVER PROPAGATION DELAY TIMES 5 V Rext = 51 k !! SODLAJ 3 V GENERATOR INPUT 1.5 V 1.5 **50** Ω 50 pF (See Note C) Cext nν ^tunsq – RXI -۷он RXI-RXO 1.5 V OUTPUT .3 ٧ 1.3 OPEN VOL SQTHAJ sao OUTPUT SODLI SORXOL TEST CIRCUIT VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

FIGURE 9. UNSQUELCH DURATION TIME

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, Duty Cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. The input pulse is supplied by a generator having the following characteristics: PRR \leq 100 kHz, Duty Cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω

D1322, SEPTEMBER 1973-REVISED SEPTEMBER 1986

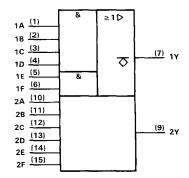

- Meets IBM System 360 Input/Output Interface Specifications
- Operates from Single 5-V Supply
- TTL Compatible
- 3.11-V Output at IOH = -59.3 mA
- Uncommitted Emitter-Follower Output Structure for Party-Line Operation
- Short-Circuit Protection
- AND-OR Logic Configuration
- Designed for Use With Triple Line Receiver SN75124
- Designed to Be Interchangeable With Signetics N8T23

description

The SN75123 dual line driver is specifically designed to meet the input/output interface specifications for IBM System 360. It is also compatible with standard TTL logic and supply voltage levels.

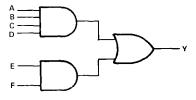
The low-impedance emitter-follower outputs of the SN75123 will drive terminated lines such as coaxial cable or twisted pair. Having the outputs uncommitted allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 1.5 V. All the inputs are in conventional TTL configuration and the gating can be used during power-up and power-down sequences to ensure that no noise is introduced to the line.

The SN75123 is characterized for operation from 0° C to 70°C.

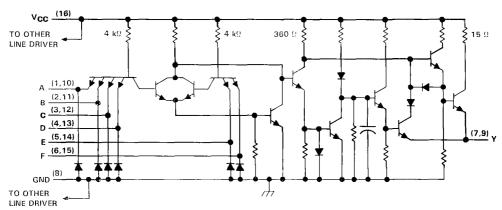

FUNCTION TABLE

INPUTS					OUTPUT	
A	В	С	D	Е	F	Y
н	н	н	Н	X	х	н
X	х	х	х	н	н	н
			er in natio			L

H = high level


- L = low level
- X = irrelevant

logic symbol[†]


[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram, each driver (positive logic)

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V Output voltage 7 V Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2): 7 V
D package
Operating free-air temperature range 0°C to 70°C Storage temperature range -65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

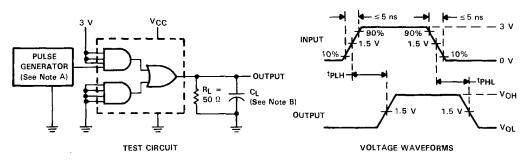
2. For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C. In the J package, SN75123 chips are glass mounted.

recommended operating conditions

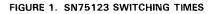
· · · · · · · · · · · · · · · · · · ·	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level input voltage, V _{IH}	2			V V
Low-level input voltage, VIL			0.8	v
High-level output current, IOH			- 100	mA
Operating free-air temperature, TA	0		70	°C

	A AMETER		TEST C .:: I .I TION	IS	mr.		[rai
VIK	Input usinp voltage	$V_{\rm CC} = 5 V$,	11 = - 12 mA		T	- 1.5	T • 1
V(BR)I	Input breakdown voltage	$V_{\rm CC} = 5 V$,	lj = 10 mA		5.5		V
Val		$V_{\rm CC} = 5 V$,	$V_{ H} = 2 V_{,}$	$T_A = 25 ^{\circ}C$	3.11		
∨он	High-level output voltage	I <mark>O</mark> H = -59.3 mA,	See Note 3,	$T_A = 0^{\circ}C$ to 70 °C	2.9		ľ
юн	High-level output current	$V_{CC} = 5 V,$	$V_{IH} = 4.5 V$,	V _{OH} = 2 V,	- 100	- 250	mA
		$T_A \approx 25 ^{\circ}C$,	See Note 3		- 100	- 250	mA
VOL	Low-level output voltage	$V_{1L} = 0.8 V$,	$10L \approx -240 \ \mu A$, See Note 3		0.15	V
IO(off)	Off-state output current	$V_{CC} = 0,$	Vo ≈ 3 V			40	μA
Чн	High-level input current	$V_{i} = 4.5 V$				40	μA
μ <u></u>	Low-level input current	$V_{j} = 0.4 V$			-0.1	- 1.6	mA
10s	Short-circuit output current [†]	$V_{\rm CC} = 5 V$,	$T_A \approx 25 ^{\circ}C$			- 30	mA
10.000	Supply current, outputs high	$V_{\rm CC} = 5.25 \rm V,$	All inputs at 2 V	,		28	mA
ССН	Supply current, outputs high	Outputs open				20	
	Supply oursent outputs low	$V_{CC} = 5.25 V_{c}$	All inputs at 0.8	ν,		60	mA
CCL	Supply current, outputs low	Outputs open				60	^{ma}

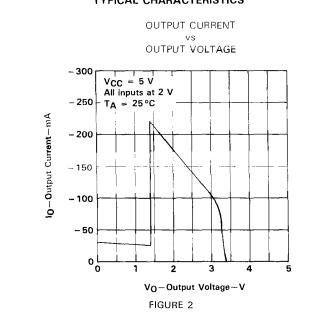
electrical characteristics, $V_{CC} = 4.75 \text{ V}$ to 5.25 V, $T_A \approx 0 \,^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$ (unless otherwise noted)

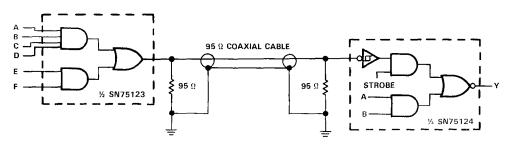

[†]Not more than one output should be shorted at a time.

NOTE 3: The output voltage and current limits are valid for any appropriate combination of high and low inputs specified by the function table for the desired output.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	TEST CONDITIONS	MIN	TYP		[]
tpLH Propagation delay time, low-to-high-level output	$R_L \approx 50 \ \Omega$, $C_L = 15 \ pF$,		12		Γ]
tpHL Propagation delay time, high-to-low-level output	See Figure 1		12	20	ns
tpLH Propagation delay time, low-to-high-level output	$R_{L} = 50 \Omega, C_{L} = 100 \text{ pF},$		20	35	
tpHL Propagation delay time, high-to-low-level output	See Figure 1		15	25	ns


PARAMETER MEASUREMENT INFORMATION



TYPICAL CHARACTERISTICS


```
FIGURE 3. UNBALANCED LINE COMMUNICATION USING '123 AND '124
```


D1322, SEPTEMBER 1973-REVISED SEPTEMBER 1989

- Meets IBM System 360 Input/Output Interface Specifications
- Operates from Single 5-V Supply
- TTL Compatible
- Built-In Input Threshold Hysteresis
- High Speed . . . Typical Propagation Delay Time = 20 ns
- Independent Channel Strobes
- Input Gating Increases Application Flexibility
- Designed for Use with Dual Line Driver SN75123
- Designed to Be Interchangeable with Signetics N8T24

description


The SN75124 triple line receiver is specifically designed to meet the input/output interface specifications for IBM System 360. It is also compatible with standard TTL logic and supply voltage levels.

The SN75124 has receiver inputs with built-in hysteresis to provide increased noise margin for single-ended systems. An open line will affect the receiver input as would a low-level input voltage and the receiver input can withstand a level of -0.15 V with power on or off. The other inputs are in TTL configuration. The S input must be high to enable the receiver input. Two of the line receivers have A and B inputs that, if both are high, will hold the output low. The third receiver has only an A input that, if high, will hold the output low.

The SN75124 is characterized for operation from 0° C to 70°C.

D, J, OR N PACKAGE (TOP ∨IEW)						
1A [1	O_{16}				
1B [2	15	<u>1</u> 15			
2R [3	14	1R			
2S []4	13	[] 1Y			
2A [5	12	🗍 3A			
2B [6	11	3 S			
2Y [17	10] 3R			
GND [8	9] 3Y			

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

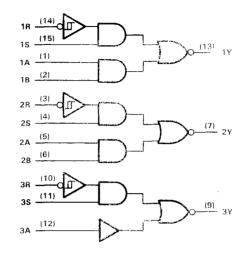
FUNCTION TABLE

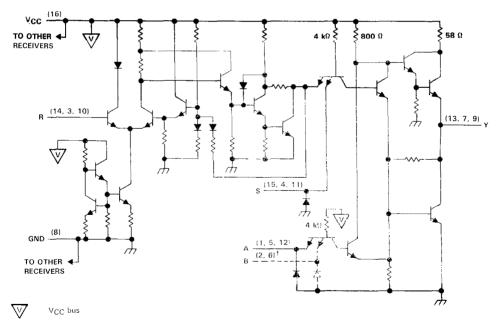
	INP	UTS		OUTPUT
Α	в‡	R	s	Y Y
н	Н	x	х	L
х	х	L	н	L
L	х	н	х	н
L	х	х	L	н
х	L	н	х	н
х	L	Х	L	(н

[‡]B input and last two lines of the function table are applicable to receivers 1 and 2 only.

AVAILABLE OPTIONS

		PACKAGE	
TA	SMALL OUTLINE	CERAMIC DIP	PLASTIC DIP
	(D)	(J)	(N)
0°C			
to	SN75124D	SN75124J	SN75124N
70°C			1


The D package is available taped and reeled. Add the suffix R to the device type (i.e., SN75124DR).


Copyright © 1989, Texas Instruments Incorporated

SN75124 TRIPLE LINE RECEIVER

logic diagram (positive logic)

schematic (each receiver)

[†]B input is provided on receivers 1 and 2 only. Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage: R input with VCC applied
R input with VCC not applied \ldots 6 V
A, B, or S input
Output voltage
Output current
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/ °C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

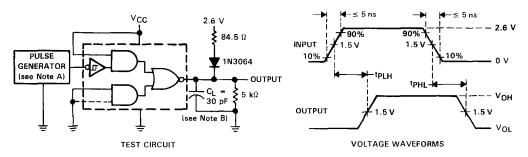
		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
	A, B, or S	2			
High-level input voltage, VIH	R	1.7			v
······································	A, B, or S			0.8	
Low-level input voltage, VIL	R		-	0.7	v v
High-level output current, IOH				- 800	μA
Low-level output current, IOL				16	mA
Operating free-air temperature, 1	Â	0		70	°C

4

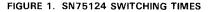
SN75124 **TRIPLE LINE RECEIVER**

electrical characteristics, VCC	C = 4.75 V to 5.25 V, T	$\Delta = 0^{\circ}C$ to	o 70 °C (unless otherwise noted)
---------------------------------	-------------------------	--------------------------	----------------------------------

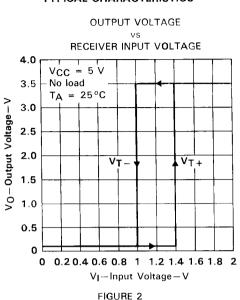
	PARAMETER		TEST C	ONDITIONS	MIN	ΤΥΡ ΜΑΧ	UNIT
Vhys	Hysteresis (VT + - VT -)	R	V _{CC} = 5 V,	$T_A = 25 ^{\circ}C$	0.2	0.5	V
VIK	Input clamp voltage	A,B, or S	$V_{CC} = 5 V,$	Ij = -12 mA '		- 1.5	V
V(BR)I	Input breakdown voltage	A,B, or S	V _{CC} = 5 V,	lj = 10 mA	5.5		v
VOH	High-level output voltage		$V_{IH} \approx V_{IH} \min,$ $I_{OH} = -800 \ \mu A$	VIL = VIL max, , See Note 2	2.6	<u></u>	v
VOL	Low-level output voltage		$V_{IH} = V_{IH} min,$ $I_{OL} = 16 mA,$	V _{IL} = V _{IL} max, See Note 2		0.4	v
łı	Input current at maximum input voltage	R	$\frac{V_{i} = 7 V}{V_{i} = 6 V}$	$V_{CC} = 0$		5	mA
,	Attack lawst tax a summer	A,B, or S	VI = 4.5 V			40	1.
ųн	High-level input current	R	V ₁ = 3.11 V			170	- μΑ
41	Low-level input current	A,B, or S	$V_{1} = 0.4 V_{2}$	VIR = ORV	- 0.1	- 1.6	mA
los	Short-circuit output curren	nt [†]	V _{CC} = 5 V,	T _A = ;	- 50	- 100	mA
lcc	Supply current	_	All inputs = 0.8 All inputs = 2 V			72	mA


[†]Typical value is at V_{CC} = 5 V, T_A = 25 °C. [‡]Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

NOTE 2: The output voltage and current limits are characterized for any appropriate combination of high and low inputs specified by the function table for the desired output.


switching characteristics, VCC = 5 V, TA = $25 \,^{\circ}$ C

PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output from R input	Can Evenue 1		20	30	
tPHL Propagation delay time, high-to-low-level output from R input	See Figure 1		20	30	ns


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $Z_{out} \approx 50 \Omega$, PRR ≤ 5 MHz, duty cycle = 50%. B. CL includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

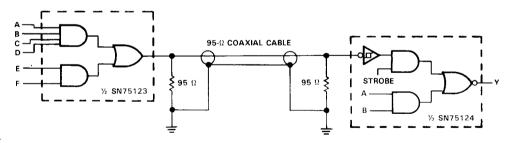
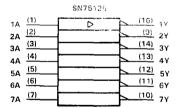


FIGURE 3. UNBALANCED LINE COMMUNICATION USING SN75123 AND SN75124

.

SN75125, SN75127 SEVEN-CHANNEL LINE RECEIVERS

D2239, JANUARY 1977-REVISED SEPTEMBER 1986


- Meets IBM 360/370 I/O Specification
- Input Resistance . . . 7 k Ω to 20 k Ω
- Output Compatible with TTL
- Schottky-Clamped Transistors
- Operates from Single 5-V Supply
- High Speed . . . Low Propagation Delay
- Ratio Specification for Propagation Delay Time, Low-to-High/High-to-Low
- Seven Channels in One 16-Pin Package
- Standard V_{CC} and Ground Positioning on SN75127

description

The SN75125 and SN75127 are monolithic seven-channel line receivers designed to satisfy the requirements of the IBM System 360/370 input/output interface specifications. Special low-power design and Schottky-clamped transistors allow for low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs.

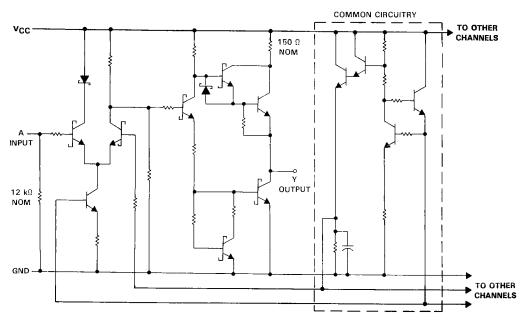
The SN75125 and SN75127 are characterized for operation from 0°C to 70°C.

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN75125	D	, J, OR N	PACKAGE					
(1	(TOP VIEW)							
1A [1		1Y					
2A 🗌	2	15	Vcc					
3A 🗌	3	14 🗌	3 Y					
4A [4	13	4Y					
5A 🗌	5	12	5Y					
6A 🗌	6	пþ	6Y					
7A 🗌	7	10	7Y					
GND	8	9]	2 Y					

SN75127 . . . D, J, OR N PACKAGE


(T	0	P VIEW)	
1 A 🖸	1	U_{16}	Vcc
2A [2	15	1Y
ЗА 🗌	3	14	2Y
4A 🗌	4	13 🗋	ЗY
5A 🗍	5	12	4Y
6A 🗌	6	11	5Y
7 A 🗋	7	10	6Y
GND 🗍	8	9	7Y

	SN75127	
$\begin{array}{c} 1A & (1) \\ 2A & (2) \\ 3A & (3) \\ 4A & (4) \\ 5A & (5) \\ 6A & (6) \\ \hline \end{array}$		(15) (14) (27) (14) (27) (14) (27) (27) (27) (27) (27) (27) (27) (27
7A		<u>, (51</u> 7Y

PRDDUCTION DATA documents contain information current as of publication data. Products conform to specifications per the tarms of Texas Instruments standard warranty. Production processing does not necessarily include testing of ell parameters.

SN75125, SN75127 SEVEN-CHANNEL LINE RECEIVERS

schematic (each receiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage range: SN75125
SN75127 –2 V to 7 V
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. In the J package, SN75125 and SN75127 chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/°C	6 56 mW
N	1150 mW	9.2 mW/°C	736 mW

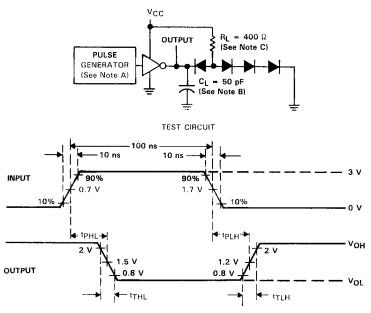
SN75125, SN75127 SEVEN CHANNEL LINE RECEIVERS

recommended operating conditions

	MIN NO	M MAX	UNIT
Supply voltage, V _{CC}	4.5	5 5.5	V
High-level input voltage, VIH	1.7		V
Low-level input voltage, VIL		0.7	V
High-level output current, IOH		-0.4	mA
Low-level output current, IOL		16	mA
Operating free-air temperature, TA	0	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

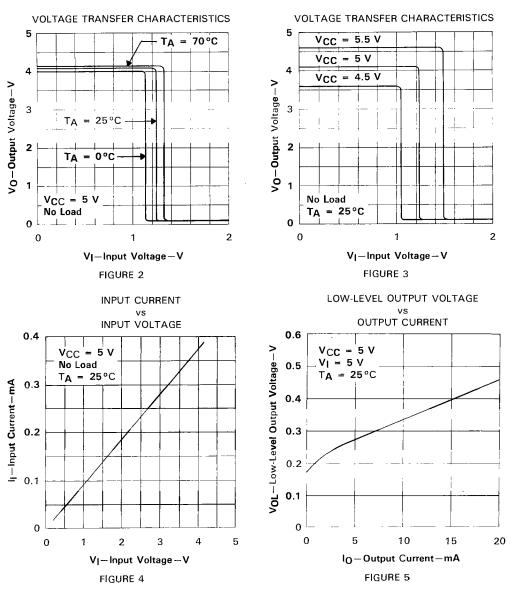
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
∨он	High-level output voltage	$V_{CC} = 4.5 \text{ V}, V_{IL} = 0.7 \text{ V}, i_{OH} = -0.4 \text{ mA}$	2.4	3.1		V
VOL	Low-level output voltage	$V_{CC} = 4.5 V$, $V_{IH} = 1.7 V$, $I_{OL} = 16 mA$		0.4	0.5	V
Чн	High-level input current	$V_{CC} = 5.5 V, V_{I} = 3.11 V$		0.3	0.42	mA
կլ	Low-level input current	$V_{CC} = 5.5 V, V_{I} = 0.15 V$			30	μA
los	Short-circuit output current [‡]	$V_{CC} = 5.5 V, V_{O} = 0$	- 18		60	mA
ſ	Input resistance	$V_{CC} = 4.5 V, 0 V, \text{ or open},$ $\Delta V_{ } = 0.15 V \text{ to } 4.15 V$	7		20	kΩ
	Supply succest	$V_{CC} = 5.5 \text{ V}, I_{OH} = -0.4 \text{ mA},$ All inputs at 0.7 V		15	25	mA
ICC	Supply current	$V_{CC} = 5.5 V$, $I_{OL} = 16 mA$, All inputs at 4 V		28	47	mA


[†]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$. [‡]Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output		7	14	25	ns
tPHL Propagation delay time, high-to-low-level output		10	18	30	ns
tpLH Ratio of propagation delay times tpHL	$R_L = 400 \Omega$, $C_L = 50 pF$, See Figure 1	0.5	0.8	1.3	
tTLH Transition time, low-to-high-level output		1	7	12	ns
tTHL Transition time, high-to-low-level output		1	3	12	ns

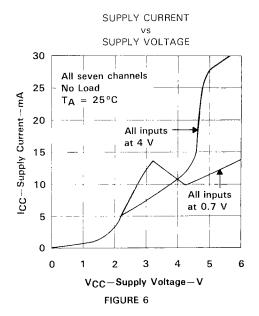
SN75125, SN75127 SEVEN-CHANNEL LINE RECEIVERS


PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: $Z_0 \approx 50 \ \Omega$, PRR $\leq 5 \ MHz$. B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

FIGURE 1



TYPICAL CHARACTERISTICS

SN75125, SN75127 SEVEN-CHANNEL LINE RECEIVERS

TYPICAL CHARACTERISTICS

SN75126 QUADRUPLE LINE DRIVER

D3405, FEBRUARY 1990

- Meets IBM 360/370 I/O Interface Specification GA22-6974-3 (Also See SN55ALS126 and SN75ALS126)
- Minimum Output Voltage of 3.11 V at IOH = -60 mA
- Fault-Flag Circuit Output Signals Driver Output Fault
- Fault-Detection Current-Limit Circuit Minimizes Power Dissipation During a Fault Condition
- Dual Common Enable
- Individual Fault Flags
- Designed to Replace the MC3481

description

The SN75126 quadruple line driver is designed to meet the IBM 360/370 I/O specification GA22-6974-3. The output voltage is 3.11 V minimum (at $I_{OH} = -59.3$ mA) over the recommended ranges of supply voltage (4.5 V to 5.95 V) and temperature. Driver outputs use a fault-detection current-limit circuit to allow high drive current but still minimize power dissipation when the output is shorted to ground. The SN75126 is compatible with standard TTL logic and supply voltages.

Fault-flag circuitry is designed to sense and signal a line short on any Y line. Upon detecting an output fault condition, the fault-flag circuit forces the driver output into a low state and signals a fault condition by causing the fault-flag output to go low.

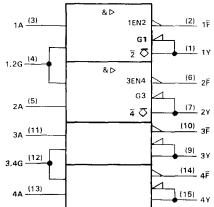
The SN75126 can drive a 50- Ω load as required in the IBM GA22-6974-3 specification or a 90- Ω load as used in many I/O systems. Optimum performance can be achieved when the device is used with either the SN75125, SN75127, SN75128, or SN75129 line receivers.

The SN75126 is characterized for operation from 0°C to 70°C.

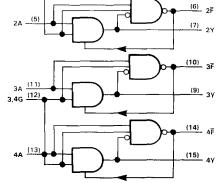
	D, J, OR N PACKAGE (TOP VIEW)						
1Y [1	U 16	□vcc				
1 F 🗌	2	15] 4Y				
1 A 🗌	3	14]4Ē				
1,2G 🗌	4	13	4 A				
2A 🗌	5	12] 3,4G				
2F 🗌	6	11] 3A				
2Y 🗌	7	10] 3F				
GND	8	9	🗌 3Y				

FUNCTION TABLE

INP	UTS	OUTPUTS			
G	Α	Y	F		
L	Х	L	н		
н	н	н	н		
н	н	S	L		


H = high level, L = low level, X = irrelevant, S = shorted

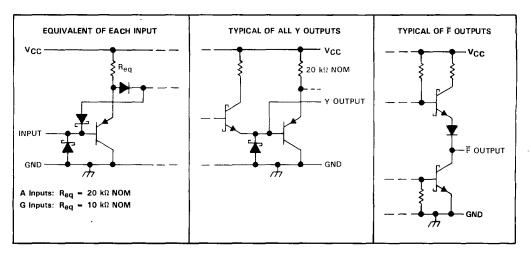
to ground


SN75126 QUADRUPLE LINE DRIVER

logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

(6) 2F 2A (5)


(2) 1Ē

<u>(1)</u> 1Y

logic diagram (positive logic)

1A (3)

1,2G (4)

schematics of inputs and outputs

2-422

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Continuous total power dissipation	
Operating free-air temperature range, TA	0°C to 70°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N	package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J pack	age 300°C

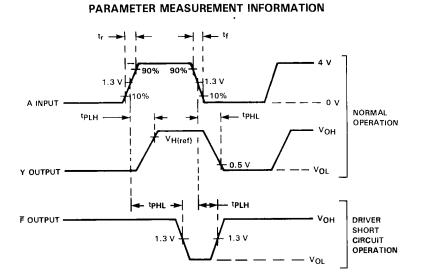
DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/°C	656 mW
Ν	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

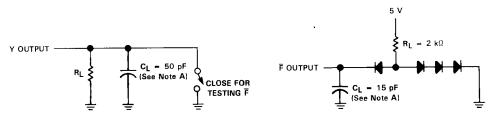
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.95	v
High-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	v
High-level output current, IOH			- 59.3	mA
Operating free-air temperature, TA	0		70	°C

_	PARAMETER			TEST CONDITIONS		MIN	MAX	UNIT
VIK	Input clamp voltage	A,G	$V_{CC} = 4.5 V_{,}$	l _l = -18 mA			- 1.5	v
	High-level output	Y	$V_{CC} = 4.5 V,$	$I_{OH} = -59.3 \text{ mA},$	VIH = 2 V	3.11		
Vон	voltage	Y	$V_{CC} = 5.25 V,$	$I_{OH} = -41 \text{ mA},$	VIH = 2 V	3.9		v
	voltage	F	$V_{CC} = 4.5 V,$	$I_{OH} = -400 \ \mu A$,	$V_{IH} = 2 V$	2.5		
		Y	$V_{CC} = 5.5 V,$	$I_{OL} = -240 \ \mu A$,	$V_{1L} = 0.8 V$		0.15	
Voi	Low-level output	Y	$V_{CC} = 5.95 V_{c}$	$I_{OL} = -1 \text{ mA},$	V _{IL} = 0.8 V		0.15	v
VOL	voltage	F	$V_{CC} = 4.5 V,$ $V_{IH} = 2 V$	l _{OL} = 8 mA,	Yat 0V,		0.5	v
1	Off-state output	Y	$V_{CC} = 4.5 V_{,}$	VI = 0,	$V_0 = 3.11 V$			
^I O(off)	current	Y	$V_{CC} = 0,$	V ₁ = 0,	$V_0 = 3.11 V$			μA
ı.	Input current	A	$V_{CC} = 4.5 V_{c}$				100	
η	input current	G	$v_{\rm CC} = 4.5 V,$	$V_{1} = 5.5 V$		200	200	μA
чн	High-level input	A	$V_{CC} = 45 V_{c}$				20	
чн	current	G	VCC = 4 5 V,	\mathbf{v} = 27 \mathbf{v}			40	μA
կլ	Low-level input	А	V _{CC} = 5.95 V,	$\lambda = 0.4 \lambda$			- 250	•
'IL	current	G	VCC - 0.35 V,	V] - 0,4 V			~ 500	μA
		Y	$V_{CC} = 5.5 V_{,}$	$V_0 = 0,$	V _{IH} = 2,7 V		~ 5	
los	Short-circuit output	F	$V_{CC} = 5.5 V_{,}$	$V_0 = 0$		- 15	- 100	
05	current	Y	$V_{CC} = 5.95 V,$	$V_0 = 0,$	V _{IH} = 2.7 V		- 5	mA
		F	V _{CC} = 5.95 V,	$V_0 = 0$		- 15	- 110	
Іссн	Supply current,		$V_{CC} = 5.5 V,$	No load,	$V_{IH} = 2 V$		70	mA
·	all outputs high		$V_{CC} = 5.95 V,$	No load,	∨IH = 2 V		80	mA
CCL	Supply current,		$V_{CC} = 5.5 V_{,}$	No load,	$V_{IL} = 0.8 V$		55	mA
UUL	Y outputs low		V _{CC} = 5.95 V,	No load,	$V_{1L} = 0.8 V$		70	mA


electrical characteristics over recommended operating free-air temperature range

switching characteristics at TA = $25 \,^{\circ}C$

PARAMETER		FROM	то	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			V _{CC} = 4.5 V to 5.5 ∨,		40	ns
tPHL	Propagation delay time, high-to-low-level output	A	Y	$R_{L} = 50 \Omega,$ $C_{L} = 50$ $V_{H(ref)} = 3.11 V,$	pF,	37	ns
^t PLH ^t PHL	Ratio of propagation delay times			See Figures 1 and 2	0.3	3	
tPLH	Propagation delay time, low-to-high-level output		v	$V_{CC} = 5.25 V \text{ to } 5.95 V,$ $R_{L} = 90 \Omega,$ $C_{L} = 50$	pF,	45	ns
^t PHL	Propagation delay time, high-to-low-level output		Ŷ	V _{H(ref)} = 3.9 V See Figures 1 and 2		45	ns
^t PLH	Propagation delay time, low-to-high-level output		Ē	$V_{CC} = 5 V, \qquad R_L = 2 V$	<Ω,	60	ns
^t PHL	Propagation delay time, high-to-low-level output] ^	, r	CL ≕ 15 pF, See Figures 1 and 2		100	ns



SN75126 QUADRUPLE LINE DRIVER

NOTE: The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} \approx 50 Ω .

FIGURE 1. INPUT AND OUTPUT VOLTAGE WAVEFORMS

NOTE A: CL includes probe and stray capacitance.

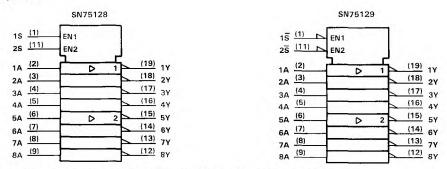
FIGURE 2. SWITCHING CHARACTERISTICS LOAD CIRCUITS

SN75128, SN75129 **EIGHT-CHANNEL LINE RECEIVERS**

D2305, JANUARY 1977-REVISED SEPTEMBER 1986

Meets IBM 360/370 I/O Specification	DW, J, OR N PACKAGE
• Input Resistance 7 k Ω to 20 k Ω	(TOP VIEW)
Output Compatible With TTL	$1S/1\overline{S}^* \square 1 \bigcirc 20 \square V_{CC}$ $1A \square 2 \qquad 19 \square 1Y$
 Schottky-Clamped Transistors 	2A 3 18 2Y
Operates From a Single 5-Volt Supply	3A []4 17]] 3Y 4A []5 16]] 4Y
High Speed Low Propagation Delay	5A 6 15 5Y
Ratio Specification tPLH/tTHL	6A []7 14]] 6Y 7A []8 13 □ 7Y
 Common Strobe for Each Group of Four Receivers 	8A 9 12 8Y GND 10 11 2S/2S*
SN75128 Active-High Strobes	*S and S for SN75128 and SN75129, respectively

SN75129 . . . Active-Low Strobes

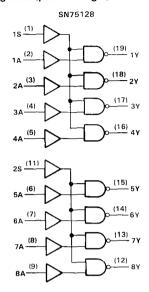

5 and 5 for SN/5128 and SN/5129, respectively

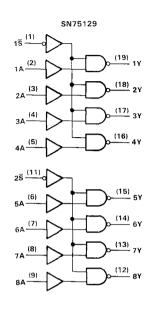
description

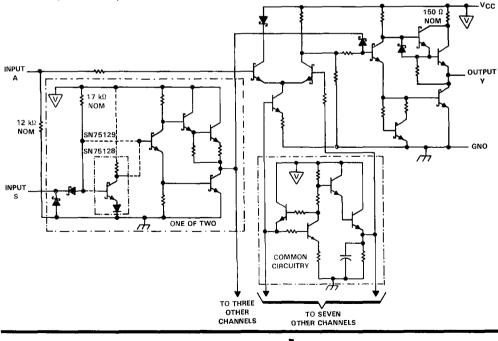
The SN75128 and SN75129 are eight-channel line receivers designed to satisfy the requirements of the input-output interface specification for IBM 360/370. Both devices feature common strobes for each group of four devices. The SN75128 has active-high strobes; the SN75129 has active-low strobes. Special lowpower design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs.

The SN75128 and SN75129 are characterized for operation from 0°C to 70°C.

logic symbols[†]


[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


+ :: 'I'm FION IL' ' + ocuments contain information 1. 's of I 'to have a compared of the second and the products conform to transmittant products conform to transmittant that the standard warranty. Production processing does not necessarily include testing of all parameters.


SN75128, SN75129 EIGHT-CHANNEL LINE RECEIVERS

logic diagrams (positive logic)

schematic (each driver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Strobe input voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package

NOTE 1: All voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

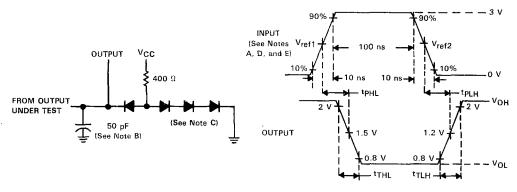
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A ≕ 70°C POWER RATING
'DW	1125 mW	9.0 mW/°C	720 mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/ °C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC	· · · · · ·	4.5	5	5.5	v
High-level input voltage, VIH	A	1.7			v
	S	2			v
Low-level input voltage, VIL	A			0.7	v
	S			0.7	v
High-level output current, IOH				-0.4	mA
Low-level output current, IOL				16	mA
Operating free-air temperature, 1	4	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Vон	High-level output voltage			$V_{CC} = 4.5 \text{ V}, \text{ V}_{IL} = 0.7 \text{ V}, \text{ I}_{OH} = -0.4 \text{ mA}$	2.4	3.1		v
VoL Low-level output voltage			$V_{CC} = 4.5 V$, $V_{IH} = 1.7 V$, $I_{OL} = 16 mA$		0.4	0.5	V	
VIK	Input clamp voltage		s	$V_{CC} = 4.5 V, I_{I} = -18 mA$			- 1.5	v
IH High-level input cur		Α	$V_{CC} = 5.5 \text{ V}, \text{ V}_{I} = 3.11 \text{ V}$		0.3	0.42	mΑ	
	High-level input cur	nput current		$V_{CC} = 5.5 V, V_1 = 2.7 V$			20	μA
IL Low-level input curren		Α	$V_{CC} = 5.5 V, V_{I} = 0.15 V$			30	μA	
	rent	s	$V_{CC} = 5.5 V, V_{I} = 0.4 V$			-0.4	mΑ	
los	S Short-circuit output current [‡]			$V_{CC} = 5.5 V, V_{O} = 0$.	- 18		-60	mA
ri	Input resistance			$V_{CC} = 4.5 \text{ V}, \text{ 0, or open};$ $\Delta V_{I} = 0.15 \text{ V to } 4.15 \text{ V}$	7		20	kΩ
ICC	Supply current	SN751	28	V _{CC} = 5.5 V, Strobe at 2.4 V, All A inputs at 0.7 V		19	31	
		SN751	29	V _{CC} = 5.5 V, Strobe at 0.4 V, All A inputs at 0.7 V		19	31	mA
		SN751	28	V _{CC} = 5.5 V, Strobe at 2.4 V, All A inputs at 4 V		32	53	
		SN751	29	V _{CC} = 5.5 V, Strobe at 0.4 V, All A inputs at 4 V		32	53	


[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$. [‡]Not more than one output should be shorted at a time.

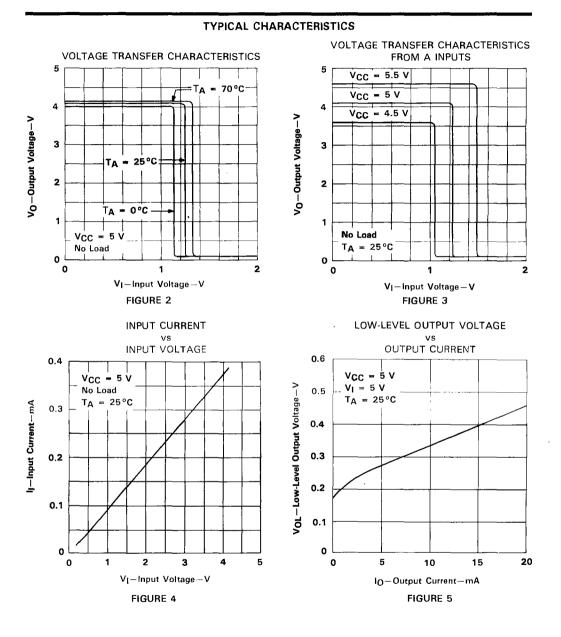
SN75128, SN75129 EIGHT-CHANNEL LINE RECEIVERS

switching characteristics, V_{CC} = 5 V, TA = 25 °C

PARAMETER		TERT CONDITIONS							LINUT
PARAMETER	FROM	TEST CONDITIONS	MIN	1 TP	MAX	MIN	111	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output	A		7	14	25	7	14	25	ņs
tPHL Propagation delay time, high-to-low-level output	~		10	18	30	10	18	30	ns
tPLH Propagation delay time, low-to-high-level output	s	$R_{L} = 400 \Omega,$ $C_{I} = 50 \text{ pF},$		26	40		20	35	ns
tPHL Propagation delay time, high-to-low-level output	3			22	35		16	30	ns
tPLH tPHL Ratio of propagation delay times		See Figure 1	0.5	0.8	1.3	0.5	0.8	1.3	
tTLH Transition time, low-to-high-level output	1		7	12	1	7	12	ns	
tTHL Transition time, high-to-low-level output		1	3	12	1	3	12	ns	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT


VOLTAGE WAVEFORMS

- NOTES: A. Input pulses are supplied by a generator having the following characteristics: $Z_0 = 50 \Omega$, PRR ≤ 5 MHz.
 - B. Includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.
 - D. The strobe inputs of SN75129 are in-phase with the output.
 - E. $V_{ref1} = 0.7 V$ and $V_{ref2} = 1.7 V$ for testing data (A) inputs, $V_{ref1} = V_{ref2} = 1.3 V$ for strobe inputs.

FIGURE 1

SN75128, SN75129 EIGHT-CHANNEL LINE RECEIVERS

D3406, FEBRUARY 1990

- Meets IBM 360/370 I/O Interface Specification GA22-6974-3 (Also see SN75ALS130)
- Minimum Output Voltage of 3.11 V at I_{OH} = -60 mA
- Fault-Flag Circuit Output Signals Driver Output Fault
- Fault-Detection Current-Limit Circuit Minimizes Power Dissipation During a Fault Condition
- Common Enable and Common Fault Flag
- Designed to Be an Improved Replacement for the MC3485

description

The SN75130 quadruple line driver is designed to meet the IBM 360/370 I/O specification GA22-6974-3. The output voltage is 3.11 V minimum (at $I_{OH} = -59.3$ mA) over the recommended ranges of supply voltage (4.5 V to 5.5 V) and temperature (0 °C to 70 °C). Driver outputs use a fault-detection current-limit circuit to allow high drive current but still minimize power dissipation when the output is shorted to ground. The SN75130 is compatible with standard TTL logic and supply voltages.

D, J, OR N PACKAGE (TOP VIEW)						
1Y [T	U16	Vcc			
1w [2	15	_ 4Y			
1 A [3	14] 4W			
G []4	13] 4A			
2A [] 5	12	ĪF			
2w []6	11] 3A			
2Y [17	10	🗋 зw			
gnd (38	9] 3Y			

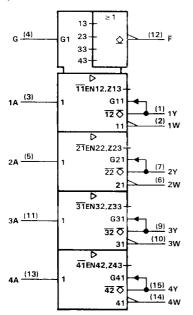
FUNCTION TABLE

INP	JTS	OUTPUTS			
G†	A	Y	F	W	
L	X	Ł	н	н	
X	L	L	н	н	
н	н	н	н	L	
н	н	s	L	н	

H = high level, L = low level,X = irrelevant, S = shorted toground

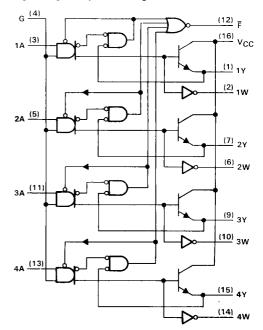
[†]G and F are common to the four drivers. If any of the four Y outputs is shorted, the Fault-Flag will respond.

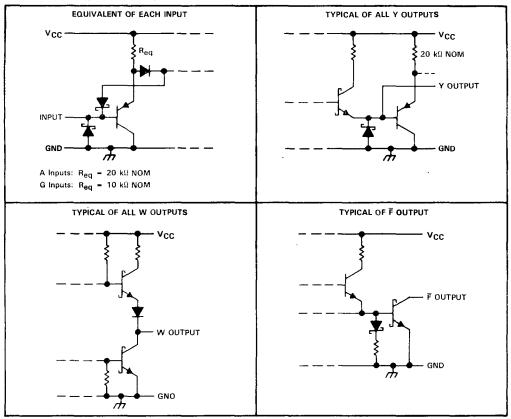
Fault-flag circuitry is designed to sense and signal a line short on any Y line. Upon detecting an output fault condition, the fault-flag circuit forces the driver output into the off (low) state and signals a fault condition by causing the fault-flag output to go low.


The SN75130 can drive a 50- Ω load as required in the IBM GA22-6974-3 specification or a 90- Ω load as used in many I/O systems. Optimum performance can be achieved when the device is used with either the SN75125, SN75127, SN75128, or SN75129 line receivers.

The SN75130 is characterized for operation from 0 °C to 70 °C.

IMPACT is a trademark of Texas Instruments Incorporated




logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

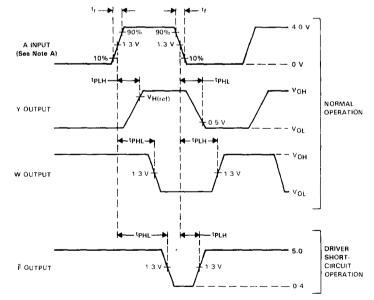
Supply voltage, V _{CC}	
Continuous total dissipation at (or below): D package	950 mW
J package	1025 mW
N package	1150 mW
Operating free-air temperature range, TA	to 70°C
Storage temperature range65°C	to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	. 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	. 300°C

NOTE 1: For operation above 15 °C free-air temperature, derate D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

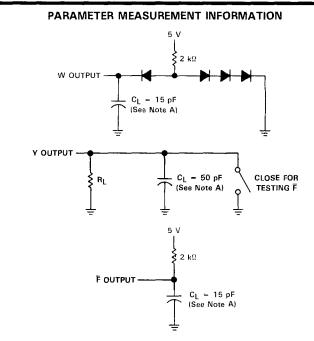
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.95	V
High-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	V
High-level output current, IOH			-	mA
Operating free-air temperature, TA	0		_ <i>i</i> .,	°C

electrical characteristics over recommended operating free-air temperature range


	PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
VIK	Input clamp voltage	A,G	$I_{\rm I} = -18 {\rm mA}$			-1.5	V
		Y	$V_{CC} = 4.5 V$, $I_{OH} = -59.3 mA$,	V _{IH} = 2 V	3.11		
∨он	High-level output voltage	Y	$V_{CC} = 5.25 \text{ V}, I_{OH} = -41 \text{ mA},$	V _{IH} = 2 V	3.9		v
		W	$V_{CC} = 4.5 V$, $I_{OH} = -400 \mu A$,	VIH = 2 V	2.5		
	······································	Y	$V_{CC} = 5.5 V$, $i_{OL} = -240 \mu A$,	$V_{1L} = 0.8 V$		0.15	
14-	VOI Low-level output voltage	Y	$V_{CC} = 5.95 \text{ V}, \text{ I}_{OL} = -1 \text{ mA},$	$V_{1L} = 0.8 V$		0.15	l v
VOL Low-level output voltage	F	$V_{CC} = 4.5 V$, $I_{OL} = 8 mA$,	Y at 0 V		0.5	v	
	W	$V_{CC} = 4.5 V$, $I_{OL} = 8 mA$			0.5		
	04	Y	$V_{CC} = 4.5 V, V_{1L} = 0,$	$V_0 = 3.11 V$		100	
O(off)	Off-state output current	Y	$V_{CC} = 0, V_{IL} = 0,$	$V_0 = 3.11 V$			μA
юн	High-level output current	Ē	$V_{CC} = 5.95 V, V_{OH} = 5.95 V$			100	μA
I Input current	A	$V_{CC} = 4.5 V, V_{IH} = 5.5 V$			100		
	input current	G	$V_{\rm CC} = 4.5 V, V_{\rm H} = 5.5 V$			400	μA
	High-level input current	Α	$V_{CC} = 4.5 V, V_{IH} = 2.7 V$			20	μA
ЧН	nign-level input current	G	$V_{CC} = 4.5 V, V_{IH} = 2.7 V$			80	μΑ
h.	Low-level input current	A	$V_{CC} = 5.95 V, V_{IL} = 0.4 V$		-]	μA
կլ		G				- 1000	μ
		Y	$V_{CC} = 5.5 V, V_0 = 0$			5	
100	Short-circuit output	W	V() = 5:5 V, V() = 0		- 15	-100	mA
los	and t-circuit output	Y	$V_{CC} = 5.95 V, V_{O} = 0V$			- 5	
		W	$V_{\rm CC} = 5.95$ V, $V_{\rm C} = 0$		- 15	-110	
1	Supply current, all		$V_{CC} = 5.5 V, V_{I} = 2 V$			75	mA
іссн	outputs, high		$V_{CC} = 5.95 V, V_{I} = 2 V$			85	
1	Supply current,		$V_{CC} = 5.5 V, V_{I} = 0.8 V$			55	mA
ICCL	Y outputs low		V _{CC} = 5.95 V, V _I = 0.8 V			70	mA

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output			$V_{CC} = 4.5 V \text{ to } 5.5 V,$		40	ns
tphl	Propagation delay time, high-to-low-level output	A	Y	R _L = 50 Ω, C _L = 50 pF, V _{H(ref)} = 3.11 V, Input f = 1 MHz,		37	ns
tplh tphl	Ratio of propagation delay times			See Figures 1 and 2	0.3	3	
t _{PLH}	Propagation delay time, low-to-high-level output	<u> </u>	Y	$V_{CC} = 5.25 V \text{ to } 5.95 V,$ $R_{L} = 90 \Omega, \qquad C_{L} = 50 \text{ pF},$		45	ns
^t PHL	Propagation delay time, high-to-low-level output			$V_{H(ref)} = 3.9 V$, input f = 5 MHz, See Figures 1 and 2		45	ns
^t PLH	Propagation delay time, low-to-high-level output	A	w	$V_{CC} = 5 V, \qquad R_{L} = 2 k\Omega,$ $C_{I} = 15 pF,$		45	ns
^t PHL	Propagation delay time, high-to-low-level output		~~~	See Figures 1 and 2		28	ns
^t PLH	Propagation delay time, low-to-high-level output		Ē	$V_{CC} = 5 V$, $R_L = 2 k\Omega$, $C_l = 15 pF$,		60	nS
^t PHL	Propagation delay time, high-to-low-level output			See Figures 1 and 2		100	ns

switching characteristics over recommended operating free-air temperature range


PARAMETER MEASUREMENT INFORMATION

NOTE A: The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_{out} = 50$ Ω.

NOTE A: CL includes probe and stray capacitance.

FIGURE 2. SWITCHING CHARACTERISTICS LOAD CIRCUITS

D2291, JANUARY 1977-REVISED SEPTEMBER 1986

- P-N-P Inputs for Minimal Input Loading (200 μA Maximum)
- High-Speed Schottky Circuitry
- 3-State Outputs for Driver and Receiver
- Party-Line (Data-Bus) Operation
- Single 5-V Supply
- Driver Has 40-mA Current Sink Capability
- Designed to Be Functionally Interchangeable with Signetics N8T26, also Called 8T26

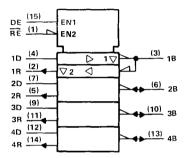
description

The SN75136 is a quadruple transceiver utilizing Schottky-diode-clamped transistors. Both the driver and receiver have 3-state outputs. With p-n-p inputs, the input loading is reduced to a maximum input current of 200 μ A.

The SN75136 is characterized for operation from 0°C to 70°C.

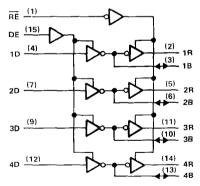
FUNCTION TABLE (DRIVER)

Γ	INPUTS		OUTPUT
	D DE		B
	L	н	н
	н	н	L
L	Х	L	<u>z</u>


FUNCTION TABLE (RECEIVER)

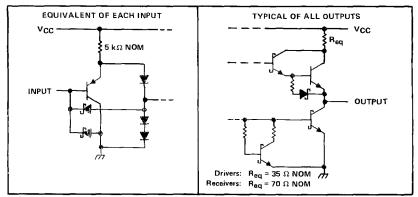
IN	PUTS	DUTPUT
В	RE	R
L	L	н
н	L	L
x	н	z

- H = high level
- L = low level
- X = irrelevantZ = high impedance


D, J, (D, J, OR N PACKAGE					
C	(TOP VIEW)					
RE [ſ	U16	D vcc			
1 R 🗋	2	15] DE			
1в [3	14] 4R			
1 D 🗌]4	13] 4B			
2 R [5	12	4D			
2B 🗌	6	11]] 3R			
2D 🗌	7	10] 3B			
gnd [8	9]] 3D			

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

PRUDUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production pracessing does not necessarily include testing of all parameters.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package
Lead temperature 1,0 mm (1/10 men) non case for 10 seconds. D of a package

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	~
D	950 mW	7.6 mW/°C	mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/ °C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level input voltage, VIH	β, D, DE, RE	2			v
Low-level input voltage, VIL	β, D, DE, RE			0.85	V
	Driver, B			- 10	
High-level output current, IOH	Receiver, R			- 2	mA
Low-level output current, IOL	Driver, B			40	
	Receiver, R			16	mA
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended operating free-air temperature and supply voltage range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			TYPT	MAX	UNIT	
VIK	Input clamp voltage	B,D,DE,RE	lj = -5 mA				- 1	V	
	High lovel eutput veltage	В	$V_{IH} = 2 V$	$V_{IL} = 0.85 V, I_{OH} = -10 mA$	2.6	3.1		v	
⊻он	High-level output voltage	R	$V_{\rm JL} = 0.85 V$,	$I_{OH} = -2 \text{ mA}$	2.6	3,1		v	
	Low-level output voltage	В	$V_{\rm H} = 2 V,$	1 _{OL} = 40 mA			0.5	v	
VOL	Low-level output voltage	R	$V_{\rm H} = 2 V_{\rm c}$	$V_{IL} = 0.85 V$, $I_{OL} = 16 mA$			0.5	v	
1	Off-state (high-impedance	B,R	DE at 0.85 V,	RE at 2 V, V ₀ = 2.6 V			- 1	μA	
loz	state) output current	R	RE at 2 V,	$V_0 = 0.5 V$			- 1	μΑ	
ήн	High-level input current	D,DE,RE	$V_{I} = 5.25 V$				25	μA	
JIL J	Low-level input current	B,D,DE,RE	Vj = 0.4 V			_	- 200	μA	
1- 4	Short-circuit output current [‡]	В			- 50		- 150		
los	anone-circuit output current*	R	$V_{CC} = 5.25 V$		- 30		-75	mA	
Icc_	Supply current		$V_{CC} = 5.25 V_{,}$	No load			87	mA	

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARA	METER	FROM	то	TEST CONDITIONS	MIN	түр	MAX	UNIT
tPLH Propagation delay	time, low-to-high-level output		R	C ₁ = 30 pF, See Figure 1		8	18	ns
tphL Propagation delay	time, high-to-low-level output	В	–	CL = 30 pF, See Figure 1		7	14	115
tPLH Propagation delay	time, low-to-high-level output		в	C ₁ = 300 pF, See Figure 2		11	20	ns
tphL Propagation delay	time, high-to-low-level output	U		CL = 500 pr, see righte z	<u> </u>	16	24] ''`
tpLZ Dutput disable tim	ne from low level	RE	в	C ₁ = 30 pF, See Figure 3		16	24	
tpzL Output enable tim	e to low level	NC.		CL = 30 pr, see Figure s		15	30	ns
tpLZ Output disable tin	ne from low level	DE	в	CL = 300 pF,See Figure 4		9	24	ns
tpzt Output enable tim	e to low level					31	38	

[†]All typical values are at $T_A = 25$ °C and $V_{CC} = 5$ V. [‡]Only one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

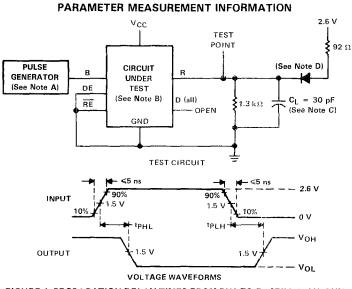
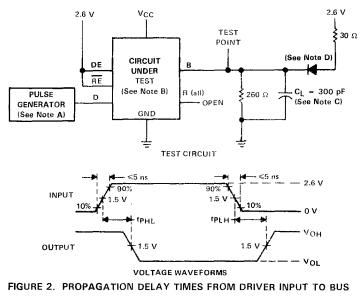



FIGURE 1. PROPAGATION DELAY TIMES FROM BUS TO RECEIVER OUTPUT

NOTES: A. The pulse generator in Figures 1 and 2 has the following characteristics: PRR \leq 10 MHz, duty cycle = 50%, Z₀ \approx 50 Ω . B. All inputs and outputs not shown are open.

- C. C₁ includes probe and jig capacitance
- D. All diodes are 1N916 or 1N3064.

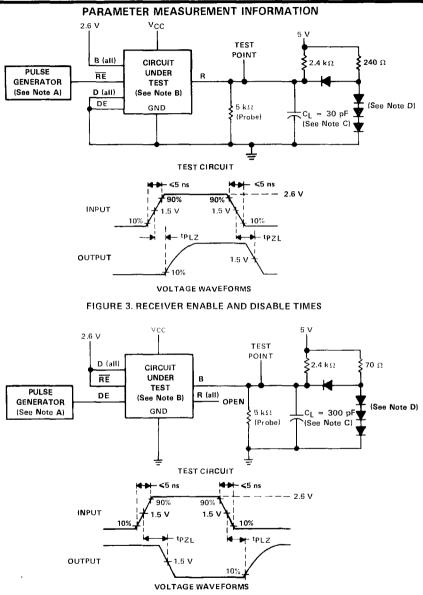
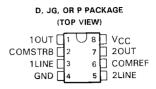


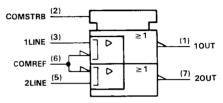
FIGURE 4. DRIVER ENABLE AND DISABLE TIMES

- NOTES: A. The pulse generator in Figures 3 and 4 has the following characteristics: PRR \leq 5 MHz, duty cycle = 50%, Z₀ \approx 50 Ω . B. All inputs and outputs now shown are open.
 - C. CL includes probe and jig capacitance.
 - D. All diodes are 1N916 or 1N3064.

D2155, JANUARY 1977-REVISED OCTOBER 1986

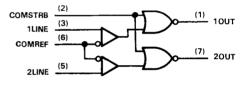

- Single 5-V Supply
- ±100 mV Sensitivity
- For Application As: Single-Ended Line Receiver Gated Oscillator Level Comparator
- Adjustable Reference Voltage
- TTL Outputs
- TTL-Compatible Strobe
- Designed for Party-Line (Data-Bus) Applications
- Common Reference Pin
- Common Strobe
- '141 Has Diode-Protected Input Stage for Power-Off Condition

description


Each of these devices consists of a dual single-ended line receiver with TTL-compatible strobes and outputs. The reference voltage (switching threshold) is applied externally and can be adjusted from 1.5 V to 3.5 V, making it possible to optimize noise immunity for a given system design. Due to their low input current (less than 100 μ A), they are ideally suited for party-line (bus-organized) systems.

The '140 has a common reference voltage pin and a common strobe. The '141 is the same as the '140 except that the input stage is diode protected.

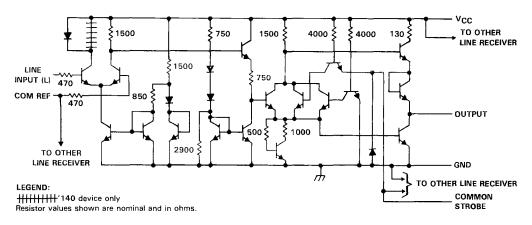
The SN75140 and SN75141 are characterized for operation from 0°C to 70°C.



logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



1.5+ H.R+++1,ER)								
LINE INT	THE BE	OUTPU T						
\leq V _{ref} - 100 mV	L	Н						
≥ V _{ref} + 100 mV	х	L						
x	н	L						

H = high level, L = low level, X = irrelevant

schematic (each receiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Reference input voltage, V _{ref}
Line input voltage range with respect to ground $\dots \dots \dots$
Line input voltage with respect to V_{ref} $\pm 5 V$
Strobe input voltage
Continuous total power dissipation
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package

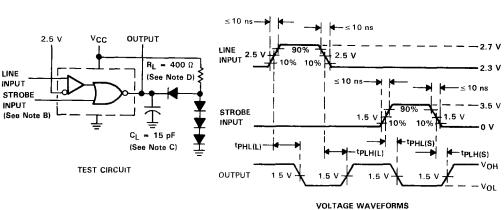
NOTE 1: Unless otherwise specified, voltage values are with respect to network terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C Power Rating
D	725 mW	5.8 mW/°C	464 mW
JG	1050 mW	8 4 mW/°C	672 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN M	NOM MAX	UNIT
Supply voltage, VCC	4.5	5 5.5	V
Reference input voltage, Vref	1.5	3.5	V
High-level line input voltage, VIH(L)	V _{ref} +0.1	V _{CC} -1	V
Low-level line input voltage, VIL(L)	0	V _{ref} -0.1	V
High-level strobe input voltage, VIH(S)	2	5.5	v
Low-level strobe input voltage, VIL(S)	0	0.8	V


electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 5 V \pm 10\%$,
$V_{ref} = 1.5 V$ to 3.5 V (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
VIK(S)	Strobe input clamp vo	ltage	III(S) = - 12 mA		-	- 1.5	V	
VOH	High-level output volta	age	$V_{IL(L)} = V_{ref} - 100 \text{ mV}, V_{IL(S)} \approx 0.8 \text{ V},$ $I_{OH} = -400 \mu \text{A}$	2.4			V	
	Low-level output voltage		$V_{IH(L)} = V_{ref} + 100 \text{ mV}, V_{IL(S)} = 0.8 \text{ V},$ $I_{OL} = 16 \text{ mA}$			0.4	₽ V	
VOL			$V_{IL(L)} = V_{ref} - 100 \text{ mV}, V_{IH(S)} = 2 \text{ V},$ $I_{OL} = 16 \text{ mA}$	1		0.4		
	Strobe input current	Strobe				1		
li(S)	at maximum input voltage	Com strb	$V_{I(S)} = 5.5 V$			2	mA	
	High-level input current	Strobe	$\frac{1}{\text{rb}}$ VI(S) = 2.4 V			40		
		Com strb				80		
١н		Line input	V _{I(L)} = 3.5 V, V _{ref} = 1.5 V		35	100	μΑ	
ŀн		Reference	$V_{I(L)} = 0, V_{ref} = 3.5 V$		35	100		
		Com ref			70	200		
		Strobe	− V _{I(S)} = 0.4 V			- 1.6	mA	
	Low-level	Com strb				- 3.2		
hL		Line input	$V_{i(L)} = 0, V_{ref} = 1.5 V$	-		- 10	-	
	input current	Reference	$V_{i(L)} = 1.5 V, V_{ref} = 0$			- 10	μA	
		Com ref				- 20	1	
los	Short-circuit output ci	Com ref V _{I(L)} = 1.5 V, V _{ref} = 0 -2 current [‡] V _{CC} = 5.5 V ~18 -8		- 55	mA			
ICCH	Supply current, output	t high	$V_{I(S)} = 0, V_{I(L)} = V_{ref} - 100 \text{ mV}$		18	30	mA	
ICCL	Supply current, output	t low	$V_{i(S)} = 0, V_{i(L)} = V_{ref} + 100 \text{ mV}$		20	35	mA	

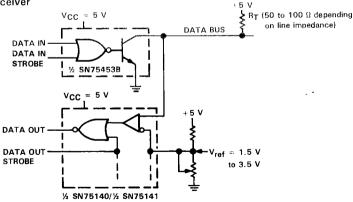
 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ Only one output should be shorted at a time.

switching characteristics, VCC = 5 V, V_{ref} = 2.5 V, T_A = $25 \,^{\circ}$ C

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	Propagation delay time, low-to-			22	35	
^t PLH(L)	high-level output from line input					
	Propagation delay time, high-to-					ns
^t PHL(L)	low-level output from line input	0 15 -5 B 400 0 S- 5		22 30	30	
	Propagation delay time, low-to-	$ C_L = 15 \text{ pF}, \text{ R}_L = 400 \Omega, \text{ See Figure 1}$		10		-
^t PLH(S)	high-level output from strobe input			12	35 30 22	
	Propagation delay time, high-to-				15	ns
tPHL(S)	low-level output from strobe input		1	8	15	

PARAMETER MEASUREMENT INFORMATION

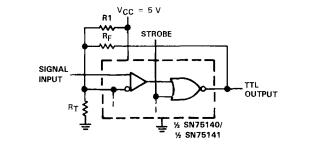
- NOTES: A. Input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z₀ = 50 Ω . B. Unused strobes are to be grounded.
 - C. CL includes probe and jig capacitance.
 - D. All diodes are 1N3064.


FIGURE 1

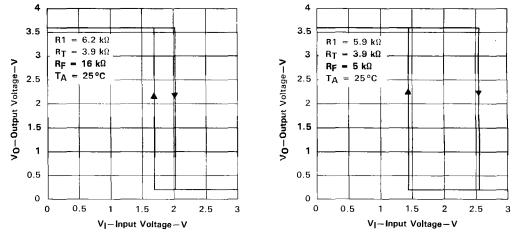
APPLICATION INFORMATION line receiver 5 V STROBE TWISTED PAIR LINE DATA INPUT OUTPUT Ť STROBE R Vref ζ 1/2 SN75361A SN75140/1/2 SN75141 1/2 high fan-out from standard TTL gate STROBE ANY N SERIES 54/74 LOGIC SN75140/SN75141 1.5 V I N = 2STROBE N - 74SN75140/SN75141 1.5 V $N = 75^{+}$

¹Although most Series 54/74 circuits have a 2.4-V output at 400 μ A, they are typically capable of maintaining a 2.4-V output level under a load of 7.5 mA.

dual bus transceiver



Using this arrangement, as many as 100 transceivers can be connected to a single data bus. The adjustable reference voltage feature allows the noise margin to be optimized for a given system. The complete dual bus transceiver (SN15453B driver and SN75140 receiver) can be assembled in approximately the same space required by a single 16-pin package and only one power supply is required (+5 V). Data in and Data Out terminals are TTL compatible.

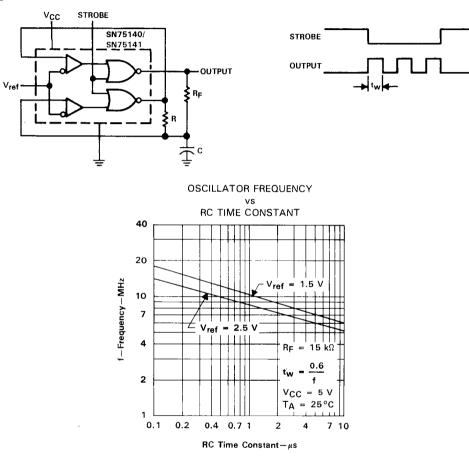


APPLICATION INFORMATION

schmitt trigger

EXAMPLES OF TRANSFER CHARACTERISTICS

Slowly changing input levels from data lines, optical detectors, and other types of transducers may be converted to standard TTL signals with this Schmitt trigger circuit. R1, R_F , and R_T may be adjusted for the desired hysteresis and trigger levels.



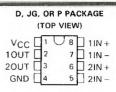
rsf }

6

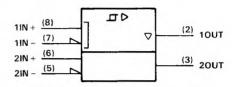
APPLICATION INFORMATION

gated oscillator

SN75146 DUAL DIFFERENTIAL LINE RECEIVER

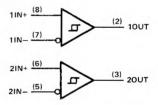

D2609, FEBRUARY 1986

- Meets EIA Standards RS-422-A and RS-423-A
- Meets EIA Standards RS-232 and CCITT V.28 with External Components
- Meets Federal Standards 1020 and 1030
- Built-in 5-MHz Low-Pass Filter
- Operates from Single 5-V Power Supply
- Wide Common-Mode Voltage Range
- High Input Impedance
- TTL-Compatible Outputs
- 8-Pin Dual-In-Line Package
- Pinout Compatible with the μA9637 and μA9639


description

The SN75146 is a dual differential line receiver designed to meet EIA standards RS-422-A and RS-423-A. The receiver is designed to have a constant impedance with input voltages of ± 3 volts to ± 25 volts allowing it to meet the requirements of EIA standard RS-232-C and CCITT recommendation V.28 with the addition of an external bias resistor. This receiver is designed for low-speed operation below 355 kilohertz, and has a built-in 5-megahertz low-pass filter to attenuate high-frequency noise. The inputs are compatible with either a single-ended or a differential line system and the outputs are TTL compatible. This device operates from a single 5-volt power supply and is supplied in both the 8-pin dual-in-line and small outline packages.

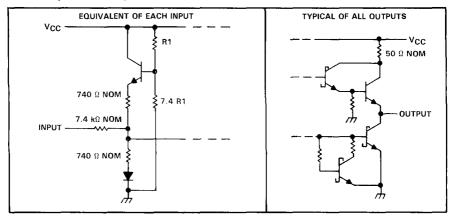
The SN75146 is characterized for operation from 0 °C to 70 °C.



logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram



PROBINCTION DATA documents contain information as of publication date. Products conform to standard warranty. Production processing does not necessarily include testing of all parameters.

SN75146 DUAL DIFFERENTIAL LINE RECEIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) -0.5 V to 7 V Input voltage ±25 V Differential input voltage (see Note 2) ±25 V Output voltage (see Note 2) ±25 V Dupply voltage (see Note 2) ±25 V Output voltage (see Note 1) -0.5 V to 5.5 V Low-level output current 50 mA	V V V
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3):	
D package	v v c c c

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

3. For operation above 25 °C free-air temperature, derate the JG package to 528 mW at 70 °C at the rate of 6.6 mW/°C, the D package to 464 mW at 70 °C at the rate of 5.8 mW/°C, and the P package to 640 mW at 70 °C at the rate of 8 mW/°C. The SN75146 chips are glass mounted in the JG package.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
Common-mode input voltage, VIC			± 7	V
Operating free-air temperature, TA	0	25	70	°C

electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

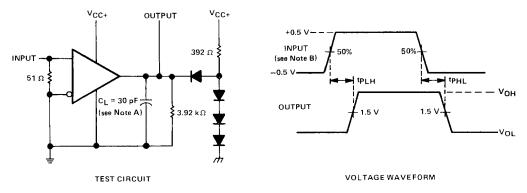
	PARAMETER	TEST CONDI	TIONS	MIN	TYPT	MAX	UNIT
				-0.2‡		0.2	- v
VT	Threshold voltage $(V_{T+} \text{ and } V_{T-})$	See Note 4		-0.4 [‡]		0.4	7 °
Vhvs	Hysteresis (V _{T+} - V _{T-})			70			mV
VIB	Input bias voltage	lj = 0		2		2.4	V
Vон	High-level output voltage	$V_{1D} = 0.2 V$,	$l_0 = -1 \text{ mA}$	2.5	3.5		V
VoL	Low-level output voltage	$V_{ D} = -0.2 V_{,}$	$I_0 = 20 \text{ mA}$		0.35	0.5	V
ri	Input resistance	See Note 5,	$V_1 = 3 V \text{ to } 25 V \text{ or}$ $V_1 = -3 V \text{ to } -25 V$	6	7.8	9.5	kΩ
η	Input current	$V_{CC} = 0$ to 5.5 V, See Note 6	$V_{1} = 10 V$ $V_{1} = -10 V$		1.1	3.25	- mA
los	Short-circuit output current [§]	$V_0 = 0,$	$V_{ID} = 0.2 V$	-40		- 100	mA
ICC	Supply current	$V_{ID} = -0.5 V,$	No load		35	50	mA

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

⁺ The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.

[§] Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTES: 4. The expanded threshold parameter is tested with a 500-Ω resistor in series with each input.


5. r_j is defined by $\Delta V_I / \Delta I_j$.

6. The input not under test is grounded.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST CONTINUE	MIN	TYP	MAX	<u>trai</u>
t PLH	Propagation delay time, low-to-high-level output	$C_1 = 30 \text{ pF}$, See Figure 1	100	150		115
^t PHL	Propagation delay time, high-to-low-level output		100	150		ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

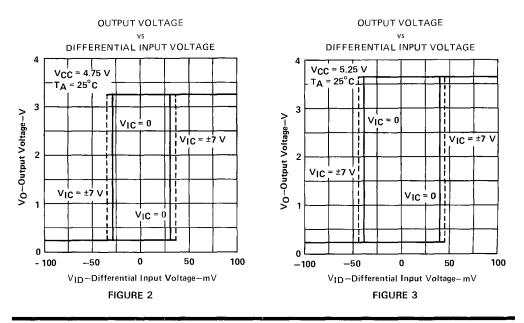
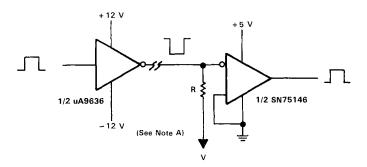

B. The input pulse is supplied by a generator having the following cheracteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 300 kHz, duty cycle = 50%.

FIGURE 1. TRANSITION TIMES



SN75146 DUAL DIFFERENTIAL LINE RECEIVER

TYPICAL CHARACTERISTICS

TYPICAL APPLICATION DATA

NOTE A: In order to meet the input-impedance and open-circuit-input voltage requirements of RS-232-C and CCITT V.28 and guarantee open-circuit-input failsafe operation, R and V are selected to satisfy the following equations:

$$V = -1.1 - 3.3 \frac{R}{r_i} \text{ volts}$$
$$3 k\Omega \le \frac{R(r_i)}{R + r_i} \le 7 k\Omega$$

FIGURE 4. RS-232-C SYSTEM APPLICATIONS

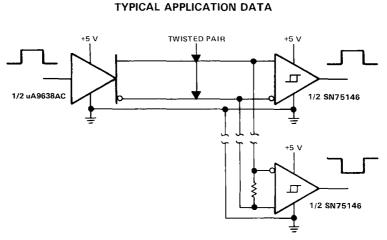
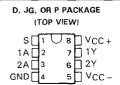
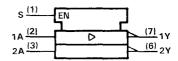


FIGURE 5. RS-422-A SYSTEM APPLICATIONS

SN75150 DUAL LINE DRIVER

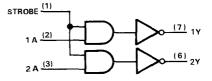

D951, JANUARY 1971-REVISED MAY 1990

- Satisfies Requirement of EIA Standard RS-232-C
- Withstands Sustained Output Short-Circuit to any Low-Impedance Voltage Between - 25 V and 25 V
- 2-μs Max Transition Time Through the 3 V to -3 V Transition Region Under Full 2500-pF Load
- Inputs Compatible With Most TTL Families
- Common Strobe Input
- Inverting Output
- Slew Rate Can Be Controlled With an External Capacitor at the Output
- Standard Supply Voltages . . . ± 12 V


description

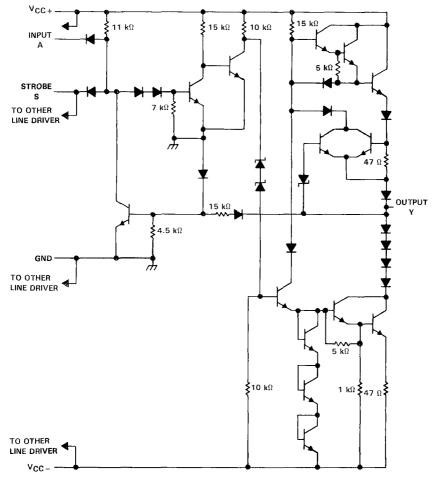
The SN75150 is a monolithic dual line driver designed to satisify the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500-pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL families. Operation is from 12-V and – 12-V power supplies.

The SN75150 is characterized for operation from 0 °C to 70 °C.



logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.


logic diagram (positive logic)

SN75150 DUAL LINE DRIVER

schematic (each line driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 15 V
Supply voltage, VCC
Input voltage
Applied output voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

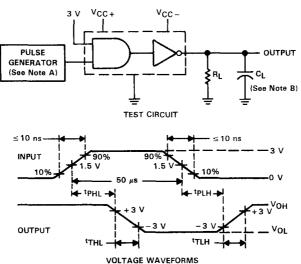
PACKAGE	T _A ≤ 25 °C POWER RATING	DERATING FACTOR ABOVE $T_A = 25 ^{\circ}C$	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
JG	825 mW	6.6 mW/°C	528 mW
P	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	10.8	12	13.2	V
Supply voltage, V _{CC} -	- 10.8	- 12	- 13.2	V
High-level input voltage, VIH	2		5.5	V
Low-level input voltage, VIL	0		0.8	V
Applied output voltage, VO			±15	V
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

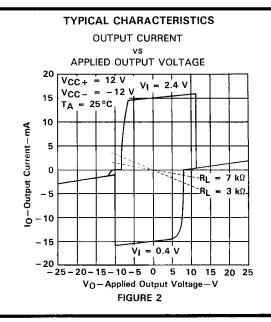
	PARAMETER	TEST CO	NDITI	ONS	MIN	TYP [†]	MAX	UNIT
∨он	High-level output voltage	$V_{CC+} = 10.8 V,$ $V_{IL} = 0.8 V,$			5	8		v
VOL	Low-level output voltage (see Note 2)	V _{CC+} = 10.8 ∨, V _{IH} = 2 ∨,	Vcc	$_{-} = -10.8 V,$		- 8	- 5	v
1	tillet level level average	$V_{CC+} = 13.2 V,$		Data input		1	10	
ΙH	High-level input current	V _{CC} = = 13 2 V, V _I = 2.4 V	V _{CC} = - 13 2 V, V _I = 2.4 V Strobe input			2	20	μΑ
1		$V_{CC+} = 13.2 V,$		Data input		- 1	- 1.6	0
μL	Low-level input current	$V_{CC-} = -13.2 V,$ $V_1 = 0.4 V$, Strobe input			- 2	- 3.2	mA
			Vo	= 25 V		2	8	
100	Short-circuit output current [‡]	$V_{CC+} = 13.2 V,$		= -25 V		- 3	- 8	mA
los	Short-circuit output current?	$V_{CC-} = -13.2 V$	Vo	= 0, V ₁ = 3 V	10	15	30	
			Vo	= 0, V _I = 0	- 10	- 15	- 30	
ICCH+	Supply current from V _{CC+} , high-level output	$V_{CC+} = 13.2 V,$				10	22	0
ICCH –	Supply current from V _{CC-} , high-level output	$V_{I} = 0,$ $R_{L} = 3 k\Omega,$ $T_{A} = 25 °C$			- 1	- 10	mA	
I _{CCL +}	Supply current from V _{CC +} , low-level output	V _{CC+} = 13.2 V,				8	17	
ICCL-	Supply current from V _{CC} - , low-level output	$V_{I} = 3 V,$ $T_{A} = 25 ^{\circ} C$	RL≖	= 3 kΩ,		- 9	- 20	mA


 † All typical values are at V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25 °C. ‡ Not more than one output should be shorted at a time.

NOTE 2: The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic levels only, e.g., when ~5 V is the maximum, the typical value is a more negative voltage.

switching characteristics, V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = $25 \degree$ C (see Figure 1)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tтlн	Transition time, low-to-high-level output	CL = 2500 pF,	0.2	1.4	2	μs
THL	Transition time, high-to-low-level output	$R_{L} = 3 k\Omega \text{ to } 7 k\Omega$	0.2	1.5	2	μS
t TLH	Transition time, low-to-high-level output	$C_L = 15 \text{ pF},$		40		ns
t THL	Transition time, high-to-low-level output	$R_{L} = 7 k\Omega$		20		ns
tPLH	Propagation delay time, low-to-high-level output	C _L = 15 pF,		60		ns
^t PHL	Propagation delay time, high-to-low-level output	$R_L = 7 k\Omega$		45		ns


PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: duty cycle \leq 50%, Z₀ \approx 50 Ω. B. C₁ includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

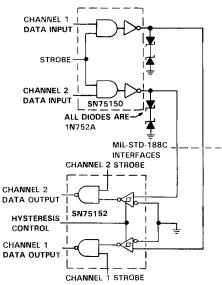


FIGURE 3. DUAL-CHANNEL SINGLE-ENDED INTERFACE CIRCUIT MEETING MIL-STD-188C, PARAGRAPH 7.2.

D2453, DECEMBER 1978-REVISED OCTOBER 1986

- Meets EIA Standard RS-422-A
- High-Impedance Output State for Party-Line Operation
- High Output Impedance in Power-Off Condition
- Low Input Current to Minimize Loading
- Single 5-V Supply
- 40-mA Sink- and Source-Current Capability
- High-Speed Schottky Circuitry
- Low Power Requirements

description

These line drivers are designed to provide differential signals with high current capability on balanced lines. These circuits provide strobe and enable inputs to control all four drivers, and the SN75151 provides an additional enable input for each driver. The output circuits have active pull-up and pull-down and are capable of sinking or sourcing 40 milliamperes.

The SN75151 and SN75153 meet all requirements of EIA Standard RS-422-A and Federal Standard 1020. They are characterized for operation from 0°C to 70°C.

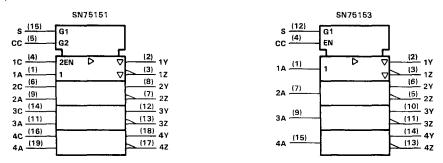
DW, J, OR N PACKAGE (TOP VIEW)			
1A 1 1	20 VCC		
1Y 2	19 4A		
1Z 3	18 4Y		
1C 4	17 4Z		
CC 5	16 4C		
2C 6	15 S		
2Z 7	14 3C		
2Y 8	13 3Z		
2A 9	12 3Y		
GND 10	11 3A		

SN75151

SN75153 J OR N DUAL-IN-LINE PACKAGE (TOP VIEW)

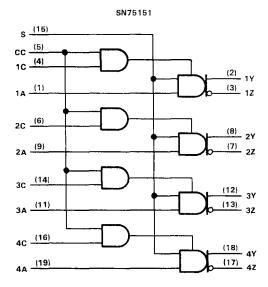
1A 1Y 1Z CC 2Z 2Y 2A	1 2 3 4 5 6 7	U16 15 14 13 12 11		V _{CC} 4A 4Y 4Z S 3Z 3Y
2A []	7	10	B	3Y
GND []	8	9		3A

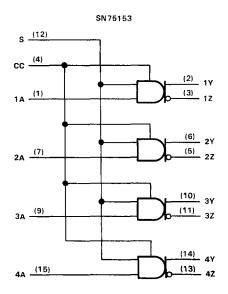
FUNCTION TABLES


	in	IPUTS		OUTI	PUTS
ENABLE CC	ENABLE C	STROBE S	DATA A	Y	z
L	x	X	X	Z	Z
х	L	х	х	z	Z
н	н	L	х	L	н
н	н	х	L	L	н
н	н	н	н	н	L

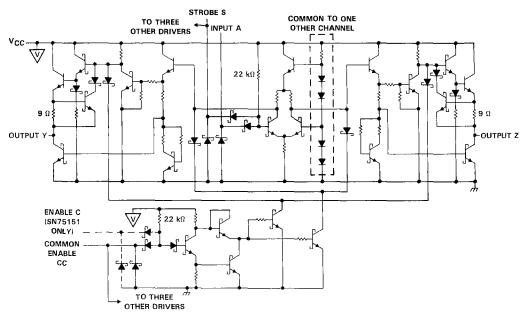
SN75151

SN75153


INPUTS			ουτι	PUTS
ENABLE CC	STROBE S	DATA A	Y	z
Ļ	X	Х	Z	Ż
н	L	х	L	н
н	х	L	L	н
н	н	н	н	L


logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagrams (positive logic)

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2):
DW package
J package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C

NOTES: 1. All voltage values, except differential output voltage VOD, are with respect to network ground terminal.

For operation above 25 °C free-air temperature, derate the DW package at the rate of 9 mW/°C, the J package at the rate of 8.2 mW/°C, and the N package at the rate of 9.2 mW/°C. In the J package, the chips are glass mounted.

recommended operating conditions

	R	4IN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4	75	5	5.25	V
High-level input voltage, VIH		2			V
Low-level input voltage, VIL				0.8	V
Common-mode output voltage, VOC	-0	25		6	V
High-level output current, IOH				- 40	mA
Low-level output current, IOL				40	mA
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP [‡]	MAX	UNIT	
VIK Input clamp voltage		$V_{CC} = MIN,$	CC, S			~ 2	v	
	input clamp voltage	$I_{I} = -12 \text{ mA}$	All others		-0.9	-1.5		
VOH High-le		$V_{CC} = MIN,$	IOH = -20 mA	2.5				
	High-level output voltage	$V_{1L} = MAX,$	$I_{OH} = -40 \text{ mA}$	2.4			V	
		V _{IH} = 2 V		2.4				
VOL		$V_{CC} = MIN,$	$V_{IL} = MAX,$		0.5	l v		
		$V_{\rm H} = 2 V_{\rm A}$	1 _{OL} = 40 mA	L				
VOD1	Differential output voltage	V _{CC} = MAX,	1 <mark>0 = 0</mark>	<u> </u>	3.4	2V0D2	V	
VOD2	Differential output voltage			2	2.8		V	
∆ V _{OD}	Change in magnitude of	V _{CC} = MIN	$R_{\rm L} = 100 \Omega.$		±0.01	±0.4	v	
	differential output voltage [§]					<u> </u>		
voc	Common-mode output voltage¶ -	$V_{CC} = MAX$	See Figure 1		1.8	3	v	
		V _{CC} = MIN	See Figure 1	<u> </u>	1.6	3		
∆ Voc	Change in magnitude of common-mode output voltage [§]	V _{CC} = MIN or MAX			±0.02	±0.4	v	
Off-state (high-imped IOZ state) output current			$V_0 = 0.5 V$			- 20		
		V _{CC} = MAX, Enable at 0.8 V	Vo = 2.5 V	T		20	μA	
	state) output current	Enable at 0.8 V	$V_0 = V_{CC}$	1		20	1	
lO Output		V _{CC} = 0	V ₀ = 6 V		0.1	100	μΑ	
	Output current with power off		$V_0 = -0.25 V$		-0.1			
			$V_0 = -0.25 \text{ V to 6 V}$			±		
4	Input current at maximum input voltage	$V_{CC} = MAX,$	V ₁ = 5.5 V			0.1	mA	
hн	High-level input current	V _{CC} = MAX,	C('151), A			20	- μΑ	
		$V_1 = 2.4 V$	CC, S			80		
	IL Low-level input current	$V_{CC} = MAX,$	C ('151), A			-0.36		
יונ		$V_1 = 0.4 V$	CC,S			-1.6		
los	Short-circuit output current#	$V_{CC} = MAX$		- 50	- 90	- 150	mA	
lcc	Supply current (both drivers)	$V_{CC} = MAX,$	Outputs disabled		30	60	mA	
		No load	Outputs enabled		60	80		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

⁴ All typical values are at T_A = 25°C and V_{CC} = 5 V except for V_{DC}, for which V_{CC} is as stated under test conditions. [§] Δ |V_{OD}| and Δ |V_{OC}| are the changes in magnitudes of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. [#]Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
tplh	Propagation delay time, low-to-high-level output	$C_L = 30 \text{ pF}, R_L = 100 \Omega$, See Figure 2,		15	30	ns
^t PHL	Propagation delay time, high-to-low-level output	Termination A		15	30	ns
tPLH	Propagation delay time, low-to-high-level output	C - 20 - E Cas Figure 2 Termination R		13	25	ns
^t PHL	Propagation delay time, high-to-low-level output	$C_L = 30 \text{ pF}$, See Figure 2, Termination B		13	25	ns
ttlH	Transition time, low-to-high-level output	$C_L = 30 \text{ pF}, R_L = 100 \Omega$, See Figure 2,		12	20	ns
^t THL	Transition time, high-to-low-level output	Termination A		12	20	ns
tpzh	Outut enable time to high level	$C_L = 30 \text{ pF}, R_L = 60 \Omega, \text{ See Figure 3}$		18	35	ns
tpZL	Output enable time to low level	$C_L = 30 \text{ pF}, R_L = 111 \Omega, \text{ See Figure 4}$		20	35	ns
tPHZ	Output disable time from high level	$C_L = 30 \text{ pF}, R_L = 60 \Omega, \text{ See Figure 3}$		19	30	ns
^t PLZ	Output disable time from low level	$C_L = 30 \text{ pF}, \text{R}_L = 111 \Omega, \text{ See Figure 4}$		13	30	ns
	Overshoot factor	$R_L = 100 \Omega$, See Figure 2, Termination C			10	%

switching characteristics, V_{CC} = 5 V, T_A \approx 0 °C to 70 °C (unless otherwise noted)

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

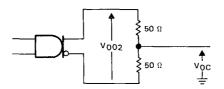
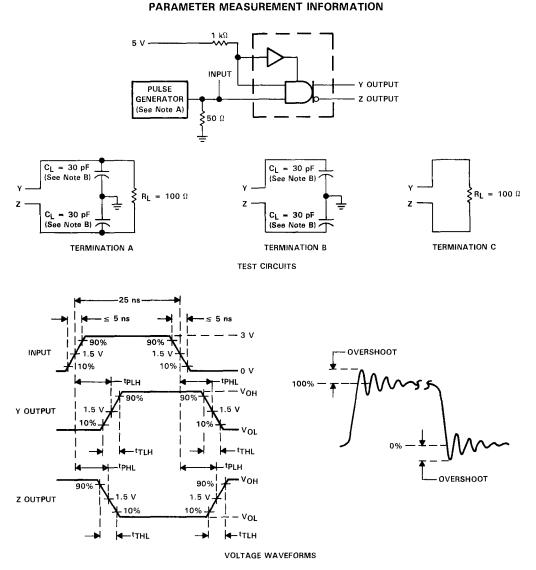
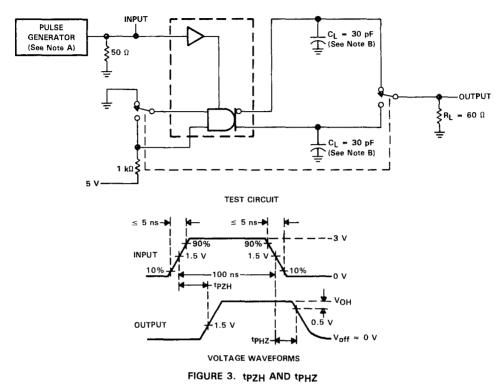
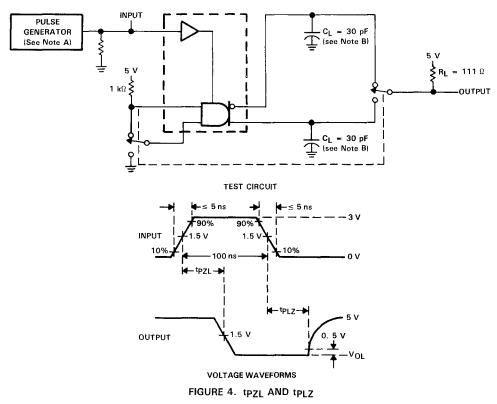



FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES

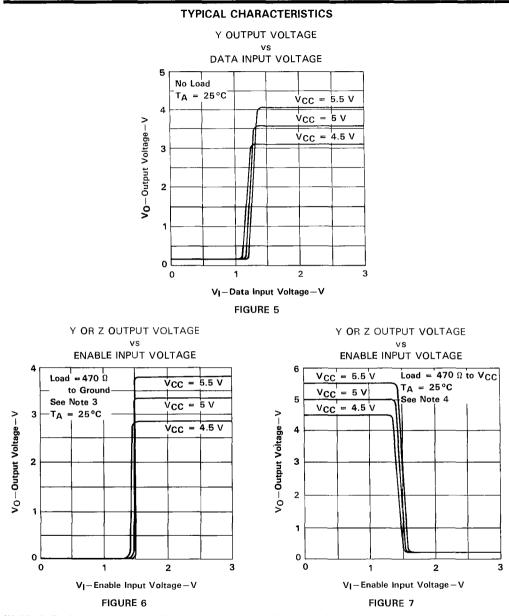


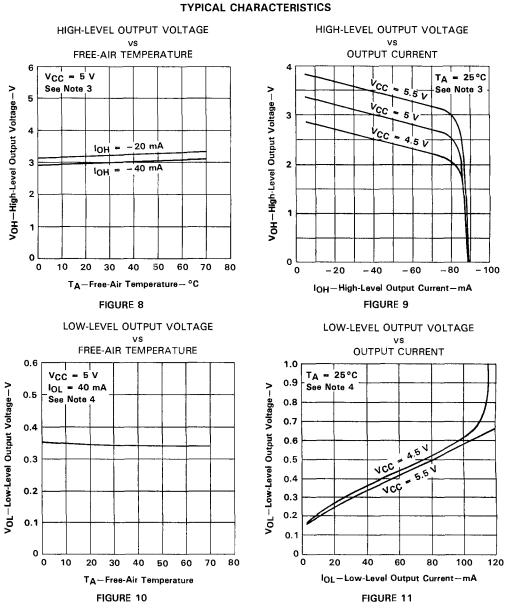
NOTES: A. The pulse generator has the following characteristics: $\rm Z_{out}$ = 50 $\Omega,$ PRR \leq 10 MHz. B. CL includes probe and jig capacitance.



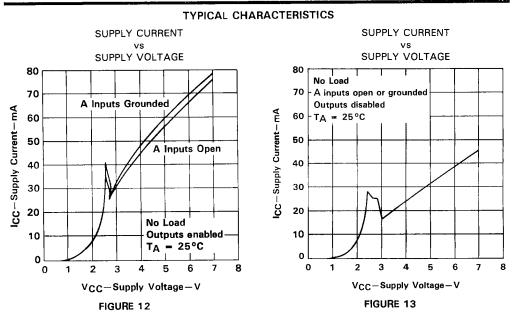
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: $Z_{out} = 50 \ \Omega$, PRR $\leq 500 \ kHz$. B. CL includes probe and jig capacitance.




PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generators have the following characteristics: Z_{OUT} = 50 Ω , PRR \leq 500 kHz. B. C_L includes probe and jig capacitance.



NOTES: 3. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during testing of the Z outputs.
4. The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z outputs.

NOTES: 3. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during testing of the Z outputs.
 4. The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z inputs.

NOTES: 3. The A input is connected to V_{CC} during the testing of the Y outputs and to ground during testing of the Z outputs. 4. The A input is connected to ground during the testing of the Y outputs and to V_{CC} during the testing of the Z inputs.

SN75154 QUADRUPLE LINE RECEIVER

D899, NOVEMBER 1970-REVISED MAY 1990

- Satisfies Requirements of EIA Standard RS-232-C
- Input Resistance . . . 3 kΩ to 7 kΩ over Full RS-232-C Voltage Range
- Input Threshold Adjustable to Meet "Fail-Safe" Requirements Without Using External Components
- Built-In Hysteresis for Increased Noise Immunity
- Inverting Output Compatible With TTL
- Output With Active Pull-Up for Symmetrical Switching Speeds
- Standard Supply Voltages . . . 5 V or 12 V

description

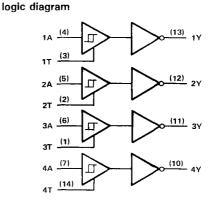
The SN75154 is a monolithic Low-Power Schottky line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA standard RS-232-C. Other applications are for relatively short, single-line, point-to-point data transmission and for level translators. Operation is normally from a single 5-V supply; however, a built-in option allows operation from a 12-V supply without the use of additional components. The output is compatible with most TTL circuits when either supply voltage is used.

In normal operation, the threshold-control terminals are connected to the V_{CC1} terminal, even if power is being supplied via the alternate V_{CC2} terminal. This provides a wide hysteresis loop, which is the difference between the positive-going and negative-going threshold voltages. See typical characteristics. In this mode of operation, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

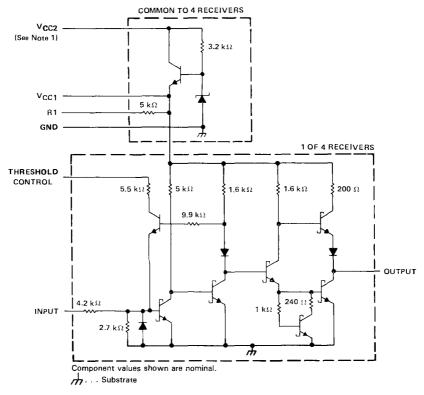
For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

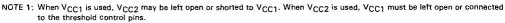
The SN75154 is characterized for operation from 0°C to 70°C.

D, J, OR N PACKAGE (TOP VIEW)							
3T ☐ 1 2T ☐ 2 1T ☐ 3 1A ☐ 4 2A ☐ 5 3A ☐ 6 4A ☐ 7 GND ☐ 8	16 VCC2 15 VCC1 14 4T 13 1Y 12 2Y 11 3Y 10 4Y 9 R1 [†]						


[†]For function of R1, see schematic

SN75154 QUADRUPLE LINE RECEIVER


logic symbol[†]


1A <u>(4)</u> 1T <u>(3) X</u>	.⊡ D THRS ADJ	(<u>13)</u> 1Y
2A (5) 2T (2) X	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(12) 2Y
3A (6) 3T (1) X		(11) 3Y
4A (7) 4T (14) X		(10) 4Y

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Normal supply voltage, V _{CC1} (see Note 2) 7 V
Alternate supply voltage, VCC2
Input voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	OERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Normal supply voltage, V _{CC1}	4.5	5	5.5	v
Alternate supply voltage, VCC2	10.8	12	13.2	v
High-level input voltage, VIH (see Note 3)	3		15	v
Low-level input voltage, VIL (see Note 3)	- 15		-3	v
High-level output current, IOH			- 400	μA
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	0		70	°C

NOTES: 2. Voltage values are with respect to network ground terminal.

3. The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic and threshold levels only, e.g., when O V is the maximum, the minimum limit is a more negative voltage.

SN75154 QUADRUPLE LINE RECEIVER

	PARAMETE	R	TEST FIGURE	TEST CONDITIONS	MIN	TYP [‡]	мах	UNIT
~	Positive-going	Normal operation			0.8	2.2	3	v
V _{T+}	threshold voltage	Fail-safe operation			0.8	2.2	3]
VT -	Negative-going	Normal operation			-3	- 1.1	0	
VT-	threshold voitage	Fail-safe operation			0.8	1.4	3	1 °
		Normal operation			0.8	3.3	6	v
V _{hys}	Hysteresis (V _{T +} −V _{T −})	Fail-safe operation			0	0.8	2.2	1 °
Voн	High-level output voltage		1	$I_{OH} = -400 \ \mu A$	2.4	3.5		V
VOL	Low-level output voltage		1	¹ OL = 16 mA		0.29	0.4	V
				$\Delta V_{\rm I} = -25 \text{ V to } -14 \text{ V}$	3	5	7	

2

3

4

5

 $\Delta V_{\parallel} = -14 V$ to -3 V

 $\Delta V_{i} = -3 V \text{ to } 3 V$

 $\Delta V_{\rm I} = 3 \ V \ to \ 14 \ V$

 $i_{1} = 0$

 $\Delta V_{l} = 14 \text{ V to } 25 \text{ V}$

 $V_{CC1} = 5.5 \lor, \lor_{I} = -5 \lor$

 $V_{CC1} = 5.5 V, T_A = 25 °C$

 $V_{CC2} = 13.2 \ V, T_A = 25 \ ^{\circ}C$

3

3

3

3

0 0.2

-10 -20

5

6

5

5

20

23

7

7

7

2 V

-40 mA

35

40

kΩ

mΑ

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

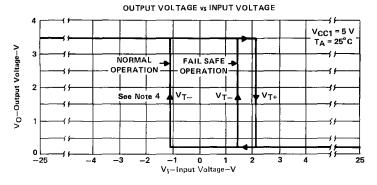
[†]Not more than one output should be shorted at a time.

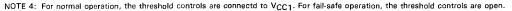
[‡]All typical values are at V_{CC1} = 5 V, T_A = 25 °C.

Short-circuit output current[†]

Supply current from VCC1

Supply current from VCC2


Input resistance


VI(open) Open-circuit input voltage

switching characteristics, $V_{CC1} = 5 V$, $T_A = 25 °C$, N = 10

	PARAMETER	TEST FIGURE	TEST CONDITIONS	MIN	TYP I	мах	UNIT
tPLH	Propagation delay time, low-to-high-level output				11		nŝ
tPHL Propagation delay time, high-to-low-level output		6	$C_{i} = 50 pF$, $R_{i} = 390 \Omega$		8		ns
^t TLH	tTLH Transition time, low-to-high-level output		$C_{L} = 50 \text{ pr}, $		7		ns
tTHL	Transition time, high-to-low-level output				2.2		ns

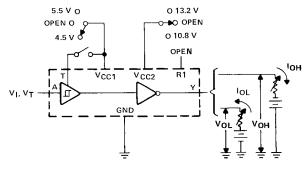
TYPICAL CHARACTERISTICS

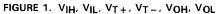
r;

los

ICC1

ICC2

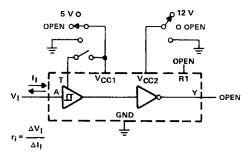

PARAMETER MEASUREMENT INFORMATION


d-c test circuits[†]

TEST	MEASURE	A	т	Y	V _{CC1} (PIN 15)	V _{CC2} (PIN 16)
Open-circuit input	VOH	Open	Open	ЮН	4.5 V	Open
(fail safe)	Voн	Open	Open	ЮН	Open	10.8 V
V _{T+} min,	∨он	0.8 V	Open	юн	5.5 V	Open
V _T min (fail safe)	∨он	0.8 V	Open	юн	Open	13.2 V
VT + min (normal)	Voн	Note A	Pin 15	іон	5.5 V and T	Open
v1+ min (normal)	Voн	Note A	Pin 15	іон	T	13.2 V
V _{IL} max,	VOH	- 3 V	Pin 15	юн	5.5 V and T	Open
V _T _ min (normal)	VoH	- 3 V	Pin 15	юн	Т	13.2 V
V _{IH} min, V _{T+} max,	VOL	3 V	Open	IOL	4.5 V	Open
VT _ max (fail safe)	Vol	3 V	Open	IOL	Open	10.8 V
V _{IH} min, V _{T+} max	VOL	3 V	Pin 15	IOL	4.5 V and T	Open
(normal)	VOL	3 V	Pin 15	10L	Т	10.8 V
VT _ max (normal)	VOL	Note B	Pin 15	IOL	5.5 V and T	Open
v I – max (normal)	VOL	Note B	Pin 15	IOL	Т	13.2 V

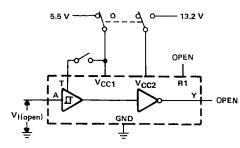
TEST TABLE

NOTES: A. Momentarily apply -5 V, then 0.8 V. B. Momentarily apply 5 V, then ground.



[†]Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

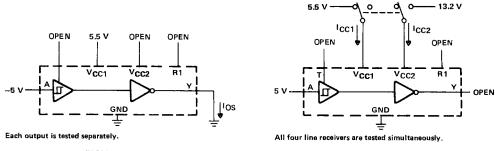

d-c test circuits[†] (continued)

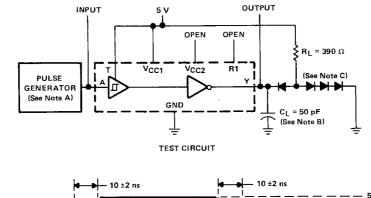
TEST TABLE

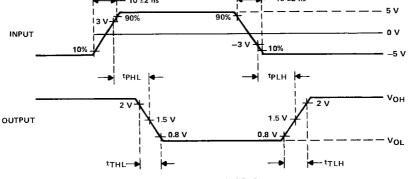
т	V _{CC1} (PIN 15)	VCC2 (PIN 16)
Open	5 V	Open
Open	· ·	Open
Open	0001	Open
Pin 15	T and 5 V	Open
GND	GND	Open
Open	Open	12 V
Open	Open	GND
Pin 15	Т	12 1/
Pin 15	Т	
Pin 15	T	Open

TEST TABLE

т	Vcc1 (PIN 15)	VCC2 (PIN 16)
Open	5.5 V	Open
Pin 15	5.5 V	Open
Open	Open	13.2 V
Pin 15	т	13.2 V




FIGURE 4. IOS


FIGURE 5. ICC

[†]Arrows indicate ectual direction of current flow. Current into a terminal is a positive value.

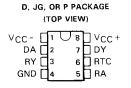
PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

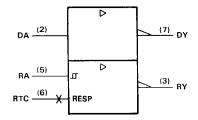
- NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, $t_W \le 200 \ ns$, duty cycle $\le 20\%$. B. CL includes probe and jig capacitance.C. All diodes are 1N3064.

FIGURE 6. SWITCHING TIMES

SN75155 LINE DRIVER AND RECEIVER

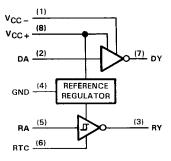

D2951, JULY 1986-REVISED AUGUST 1989

- Meets EIA Standard RS-232-C
- 10-mA Current Limited Output
- Wide Range of Supply Voltage . . . VCC = 4.5 V to 15 V
- Low Power . . . 130 mW
- Built-In 5-V Regulator
- Response Control Provides: Input Threshold Shifting Input Noise Filtering
- Power-Off Output Resistance . . . 300 Ω Typ
- Driver Input TTL Compatible

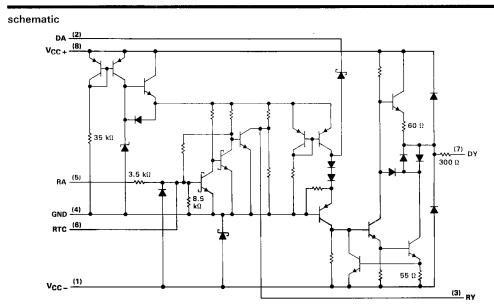

description

The SN75155 is a monolithic line driver and receiver that is designed to satisfy the requirements of the standard interface between terminal equipment and data data communication equipment as defined by EIA standard RS-232-C. A Response Control input is provided for the receiver. A resistor or a resistor and a bias voltage can be connected between the response control input and ground to provide noise filtering. The driver used is similar to the SN75188. The receiver used is similar to the SN75189A.

The SN75155 is characterized for operation from 0°C to 70°C.



logic symbol[†]


 $^{\dagger}\mbox{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12$

logic diagram

SN75155 LINE DRIVER AND RECEIVER

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1) 15 V
Supply voltage, V _{CC} – (see Note 1)
Input voltage range: Driver
Receiver
Output voltage range (Driver)
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C

OTE: 1. All voltage values are with respect to network ground terminal.

1		Τ _Δ ≤ 25°C	DERATING FACTOR	ΤΔ = 70°C
	PACKAGE [†]	POWER RATING	ABOVE $T_{\Delta} = 25^{\circ}C$	POWER RATING
	D	725 mW	5.8 mW/°C	464 mW
	JG	825 mW	6.6 mW/°C	528 mW
	Р	1000 mW	8.0 mW/°C	640 mW

[†]In the JG package, SN75155 chips are glass mounted.

recommended operating conditions

MIN	NOM	MAX	UNIT
4.5	12	15	V
-4.5	-12	- 15	V
		±15	V
- 25		25	V
2			V
		0.8	V
		±5.5	mA
		24	mA
0		70	°C
	4.5 -4.5 -25 2	4.5 12 -4.5 -12 -25 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

total device

	PARAMETERS		TEST CONDITIONS		MIN	түр†	MAX	UNIT
		$V_{CC+} = 5 V,$	$V_{CC-} = -5 V$,	$V_{i(D)} = 2 V,$		6.3	8.1	
ICCH+	High-level supply current	$V_{CC+} = 9 V,$	$V_{\rm CC-} = -9 V,$	VI(R) = 2.3 V,		9.1	11.9	mA
		$V_{CC+} = 12 V,$	$V_{CC-} = -12 V_{,}$	Output open		10.4	14	
· · · · ·		$V_{CC+} = 5 V,$	$V_{\rm CC-} = -5 V,$	$V_{I(D)} = 0.8 V,$		2.5	3.4	
ICCL+	Low-level supply current	$V_{CC+} = 9 V,$	$V_{CC-} = -9 V$,	$V_{I(R)} = 0.6 V_{,}$		3.7	5.1	mA
		$V_{CC+} = 12 V_{,}$	$V_{CC} = -12 V_{,}$	Output open		4.1	5.6	
	<u> </u>	VCC+ = 5 V,	$V_{CC-} = 0,$	$V_{I(R)} = 2.3 V_{,}$		4.8	6.4	mA
ICC+	Supply current	$V_{CC+} = 9 V,$	$V_{CC-} = 0,$	$V_{I(D)} = 0$		6.7	9.1	
		$V_{CC+} = 5 V,$	$V_{CC-} = -5 V_{,}$	$V_{1(D)} = 2 V$		- 2.4	- 3.1	
ICCH-	High-level supply current	V _{CC+} = 9 V,	VCC- = -9 V,	$V_{I(R)} = 2.3 V,$		-3.9	-4.9	mA
		$V_{CC+} = 12 V_{,}$	$V_{CC-} = -12 V_{,}$	Dutput open		4.8	-6.1]
		$V_{CC+} = 5 V_{,}$	$V_{CC-} = -5 V_{,}$	$V_{I(D)} = 0.8 V,$		-0.2	-0.35	
ICCL-	Low-level supply current	$V_{CC+} = 9 V_i$	$V_{CC-} = -9 V,$	$V_{I(R)} = 0.6 V,$		-0.25	-0.4] mA
		V _{CC+} = 12 V,	$V_{CC-} = -12 V_{,}$	Output open		-0.27	-0.45	

[†]All typical values are at T_A = $25 \,^{\circ}$ C.

SN75155 LINE DRIVER AND RECEIVER

electrical characteristics over recommended operating free-air temperature range, $V_{CC+} = 12 V$, $V_{CC-} = -12 V$ (unless otherwise noted)

driver section

	PARAMETER		····	CONDITIONS	MIN	TYPT	MAX	UNIT
				$V_{CC+} = 5 V, V_{CC-} = -5 V$	3.2	3.7		
۷он	High-level output voltage	VIL = 0.8 V,	R _L = 3 kΩ	$V_{CC+} = 9 V, V_{CC-} = -9 V$	6.5	7.2		v
				$V_{CC+} = 12 V, V_{CC-} = -12 V$	8.9	9.8		
				$V_{CC+} = 5 V, V_{CC-} = -5 V$		- 3.6	-3.2	
Vol	Low-Level output voltage (see Note 2)	V _{IH} ≈ 2 V,	R _L = 3 kΩ	$V_{CC+} = 9 V, V_{CC-} = -9 V$		- 7. 1	-6.4] v
	(see Note 2)			$V_{CC+} = 12 V, V_{CC-} = -12 V$		- 9.7	- 8.8]
ЧΗ	High-level input current	$V_{ } = 7 V$					5	μA
μL	Low-level input current	V ₁ = 0				-0.73	- 1.2	mA
IOSH	High-level short-circuit output current	$V_{I} \approx 0.8 V,$	V0 = 0		- 7	- 12	- 14.5	mA
IOSL	Low-level short-circuit output current	$V_1 = 2 V$,	V ₀ = 0		6.5	11.5	15	mA
RO	Output resistance with power off	$V_0 = -2 V_1$	o 2 V			300		Ω

receiver section (see Figure 1)

	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T+}	Positive-going threshold voltage			1.2	1.9	2.3	v
∨ ⊤ -	Negative-going threshold voltage			0.6	0.95	1.2	v
Vhys	Hysteresis			0.6			V
	High-level output voltage	$V_{1} = 0.6 V_{2}$	$V_{CC+} = 5 V, V_{CC-} = -5 V$	3.7	4.1	4.5	
		I _{OH} = 10 μA	$V_{CC+} = 12 V$, $V_{CC-} = -12 V$	4.4	4.7	5.2	
۷ОН		$V_{1} = 0.6 V_{2}$	$V_{CC+} = 5 V, V_{CC-} = -5 V$	3.1	3.4	3.8	1 *
		I _{OH} = 0.4 mA	$V_{CC+} = 12 V$, $V_{CC-} = -12 V$	/ 3.6	4	4.5	1
VOL	Low-level output voltage	VI = 2.3 V, I	DL = 24 mA		0.2	0.3	V
•	I Pate based from the same set	V ₁ = 25 V		3.6	67	10	mA
ΫН	High-level input current	VI = 3 V		0.43	·	1	mA
		Vi = -25 V		-3.6	- u.;	- 10	mA
ΙL	Low-level input current	VI = -3 V		0.43	~0.67	- 1	mA
los	Short-circuit output current	$V_{1} = 0.6 V$	······		- 2.8	- 3.7	mA

[†]All typical values are at $T_A = 25$ °C.

NOTE 2: The algebraic limit system, in which the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic voltage levels only, e.g., if -8.8 V is the maximum, the typical value is a more negative value.

switching characteristics over recommended operating free-air temperature range, $V_{CC+} = 5 V$, $V_{CC-} = -5 V$, $C_{L} = 50 pF$ (unless otherwise noted)

driver section (see Figure 2)

PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output		P 240	1	250	480	ns
	Propagation delay time high-to-low-level output	$R_{L} = 3 k\Omega$		80	150	115
	Output rise time	$R_L = 3 k\Omega$		67	180	ns
tr		$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 2500 pF$		2.4	3	μs
•	Output fall time	$R_{L} = 3 k\Omega$		48	160	ns
tf		$R_L = 3 k\Omega$ to $7 k\Omega$, $C_L = 2500 pF$		1.9	3	μs

receiver section (see Figure 3)

PARAMETER	TEST CONDITIONS	MIN TYPT	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$R_{I} = 400 \Omega$	175	245	ns
tPHL Propagation delay time, high-to-low-level output	$H_{L} = 400 \ u$	37	100	115
tr Output rise time	$R_L = 400 \Omega$	255	360	ns
tf Output fall time	$R_L = 400 \Omega$	£	50	ns

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

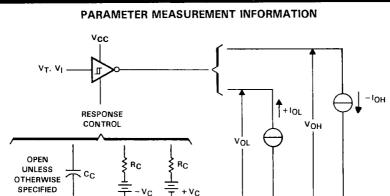
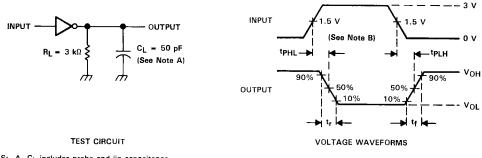
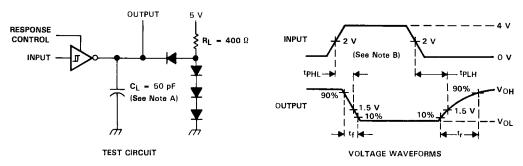



FIGURE 1. RECEIVER SECTION TEST CIRCUIT (VT+, VT-, VOH, VOL)

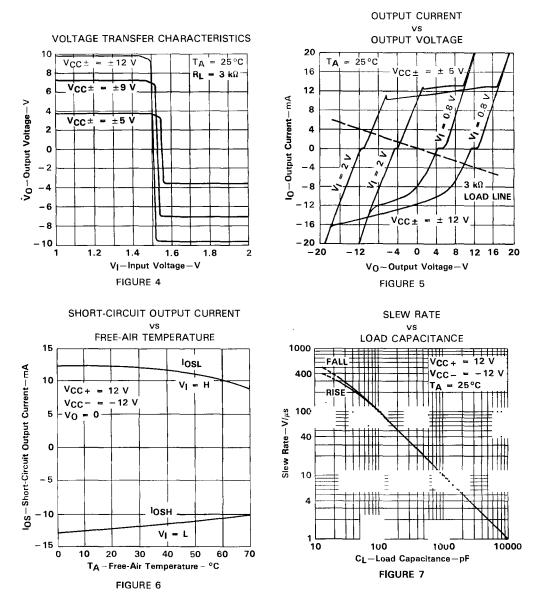
SN75155 LINE DRIVER AND RECEIVER


PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

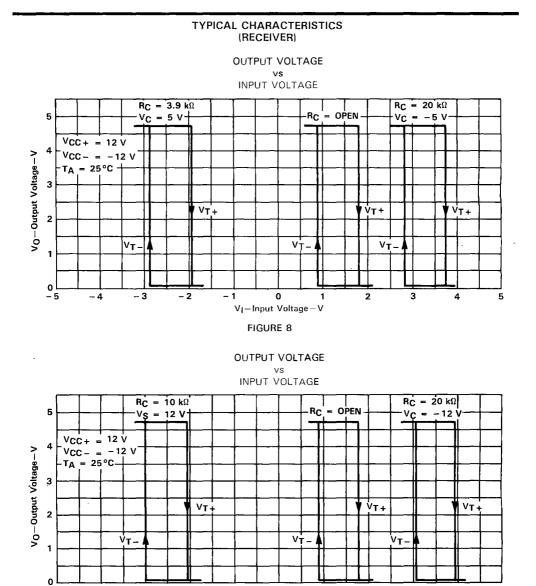
B. The input waveform is supplied by a generator with the following characteristics: $Z_{out} \approx 50 \Omega$, $t_w = 1 \mu s$, $t_f \le 10 ns$, $t_f \le 10 ns$,

FIGURE 2. DRIVER SECTION SWITCHING TEST CIRCUIT AND VOLTAGE WAVEFORMS


NOTES: A. CL includes probe and jig capacitance.

B. The input waveform is supplied by a generator with the following characteristics: $Z_{OUT} \approx 50 \Omega$, $t_W = 1 \mu s$, $t_f \le 10 ns$, $t_f \le 10 ns$.

FIGURE 3. RECEIVER SECTION SWITCHING TEST CIRCUIT AND VOLTAGE WAVEFORMS



SN75155 LINE DRIVER AND RECEIVER

TYPICAL CHARACTERISTICS (DRIVER)

TEXAS INSTRUMENTS POST OFFICE BOX 655303 · DALLAS, TEXAS 75265

0 V_I-Input Voltage-V FIGURE 9

3

4

5

2

1

-4

- 5

- 3

- 2

- 1

SN75155 LINE DRIVER AND RECEIVER

TYPICAL CHARACTERISTICS

2-495

SN75159 DUAL DIFFERENTIAL LINE DRIVER WITH 3-STATE OUTPUTS

13 2Z 12 1 2Y

11 D 2B

10 2A

9 2EN

8 NC

NC-No internal connection

D, J, OR N PACKAGE

(TOP VIEW)

NC 11

1Z 🚺 2

1Y 🗍 3

 $1A \prod 4$

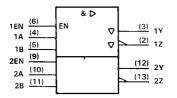
5

1B 🗌

1EN 6

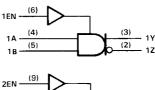
GND [

D2325, JANUARY 1977-REVISED SEPTEMBER 1986

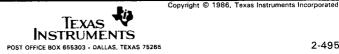

- Meets EIA Standard RS-422-A
- Single 5-V Supply
- **Balanced Line Operation**
- TTL-Compatible
- High-Impedance Output State for Party-Line . Applications
- High-Current Active-Pull-Up Outputs
- Short-Circuit Protection
- **Dual Channels**
- **Clamp Diodes at Inputs**

description

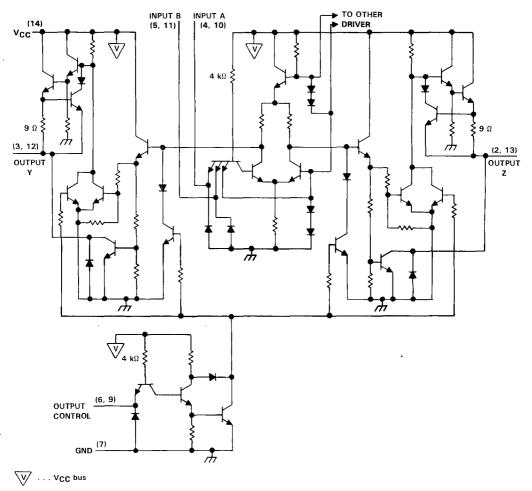
The SN75159 dual differential line driver with three-state outputs is designed to provide all the features of the SN75158 line driver with the added feature of driver output controls. There is an individual control for each driver. When the output control is low, the associated outputs are in a high-impedance state and the outputs can neither drive nor load the bus. This permits many devices to be connected together on the same transmission line for party-line applications.


The SN75159 is characterized for operation from 0°C to 70°C.

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V Off-state voltage applied to open-collector outputs 12 V Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2):
D package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

NOTES: 1. All voltage values except differential output voltage V_{OD} are with respect to the network ground terminal. V_{OD} is at the Y output with respect to the Z output.

2. For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C. In the J package, SN75159 chips are glass mounted.

recommended operating conditions

	*/0N	NOM	MAX	UNIT
Supply voltage, V _{CC}	÷., J	5	5.25	v
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output voltage, IOH			- 40	mA
Low-level output current, IOL	1		40	mA
Operating free-air temperature, TA	0		70	°C

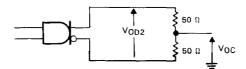
	PARAMETER		TEST CONDITIONS	;	MIN	TYP	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 V_{,}$	$l_{1} = -12 \text{ mA}$			-0.9	-1.5	V
Voн	High-level output voltage	V _{CC} = 4.75 V, V _{IH} = 2 V,	$V_{IL} = 0.8 V,$ $I_{OH} = -40 mA$		2.4	3.0		v
VOL	Low-level output voltage	V _{CC} = 4.75 V, V _{IH} = 2 V,				0.25	0.4	v
Vok	Output clamp voltage	$V_{CC} = 5.25 V_{,}$	$l_0 = -40 \text{ mA}$			- 1.1	- 1.5	V
Vo	Output voltage	$V_{CC} = 4.75 V to$	5.25 V, IO = 0		0		6	V
VOD1	Differential output voltage	$V_{CC} = 5.25 V_{c}$	l ₀ = 0			3.5	2VOD2	V
VOD2	Differential output voltage	V _{CC} = 4.75 V			2	3.0		v
∆ V _{OD}	Change in magnitude of differential output voltage [‡]	V _{CC} = 4.75 V				±0.02	±0.4	v
Voc	Common-mode output voltage§	$V_{CC} = 5.25 V$ $V_{CC} = 4.75 V$	$R_{L} = 100 \Omega,$	See Figure 1		1.8 1.5	3	v
∆IVocI	Change in magnitude of common-mode output voltage [‡]	V _{CC} = 4.75 V to 5.25 V				±0.01	±0.4	v
¹ 0	Output current with power off	V _{CC} = 0	$V_0 = 6 V$ $V_0 = -0.25 V$ $V_0 = -0.25 V to 6 V$			0.1	100 - 100 ± 100	μA
loz	Off-state (high impedance- state) output current	V _{CC} = 5.25 V, Output controls at 0.8 V	$T_{A} = 25 ^{\circ}C,$ $T_{A} = 70 ^{\circ}C$	$V_0 = 0 \text{ to } V_{CC}$ $V_0 = 0$ $V_0 = 0.4 \text{ V}$ $V_0 = 2.4 \text{ V}$ $V_0 = V_{CC}$			$ \pm 10 -20 \pm 20 \pm 20 20 20 $	μΑ
4	Input current at maximum input voltage	$V_{CC} = 5.25 V,$	$V_{1} = 5.5 V$				1	mA
Чн	High-level input current	$V_{CC} = 5.25 V,$	$V_{i} = 2.4 V$		-		40	μA
hL	Low-level input current	$V_{CC} = 5.25 V_{,}$	$V_{ } = 0.4 V$			- 1	- 1.6	mA
los	Short-circuit output current	V _{CC} = 5.25 V			-40	- 90	- 150	mA
lcc	Supply current (both drivers)	VCC = 5.25 V, $T_A = 25 °C$	Inputs grounded,	No load,		47	65	mA

electrical characteristics over operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 5 V and T_A = 25 °C except for V_{OC}, for which V_{CC} is as stated under test conditions. [‡] Δ |V_{OD}| and Δ |V_{OC}| are the changes in magnitudes of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

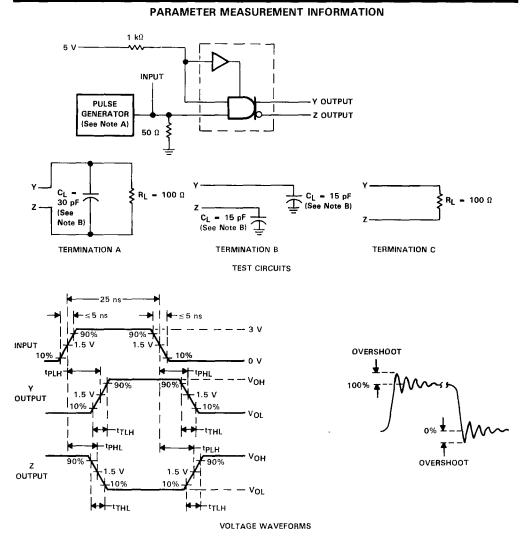
[§] In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. ⁴ Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics over operating free-air temperature range, VCC = 5 V (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
tpLH Propagation delay time, low-to-high-level output	t $C_L = 30 \text{ pF}$, $R_L = 100 \Omega$, See Figure 2,		16	25	ns
tPHL Propagation delay time, high-to-low-level output	t Termination A		11	20	ns
tPLH Propagation delay time, low-to-high-level output			13	20	ns
tPHL Propagation delay time, high-to-low-level output	$C_{L} \approx 15 \text{ pF}$, See Figure 2, Termination B		9	15	ns
tTLH Transition time, low-to-high-level output	$C_L = 30 \text{ pF}, R_L = 100 \Omega, \text{ See Figure 2},$		4	20	ns
tTHL Transition time, high-to-low-level output	Termination A		4	20	ns
tPZH Output enable time to high level	$C_L = 30 \text{ pF}, R_L = \Omega, \text{ See Figure 3}$		7	20	ns
tpzi Output enable time to low level	$C_L = 30 \text{ pF}, R_L = \Omega$, See Figure 4		14	40	ns
tpHZ Output disable time from high level	$C_L = 30 \text{ pF}, R_L = 180 \Omega, \text{ See Figure 3}$		10	30	ns
tpLZ Output disable time from low level	$C_L = 30 \text{ pF}, R_L = 250 \Omega, \text{ See Figure 4}$		17	35	ns
Overshoot factor	$R_L = 100 \Omega$, See Figure 2, Termination C			10	%

[†] All typical values are at $T_A = 25 \,^{\circ}$ C.

SYMBOL EQUIVALENTS

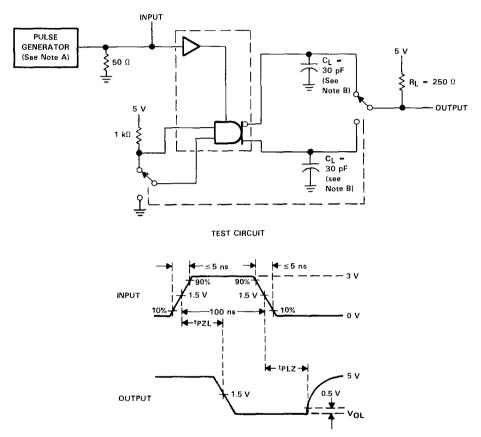

DATA SHEET PARAMETER	RS-422-A			
Vo	Voa, Vob			
IVOD1	Vo			
	Vt			
ΔIVOD	$ V_t - V_t $			
Voc	Vos			
∆ V _{OC}	V _{os} - V _{os}			
los	Isal, Isb			
IO	Ixal, Ixb			

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES



NOTES: A. The pulse generator has the following characteristics: $\rm Z_{out}$ = 50 $\Omega,$ PRR \leq 10 MHz. B. CL includes probe and jig capacitance.

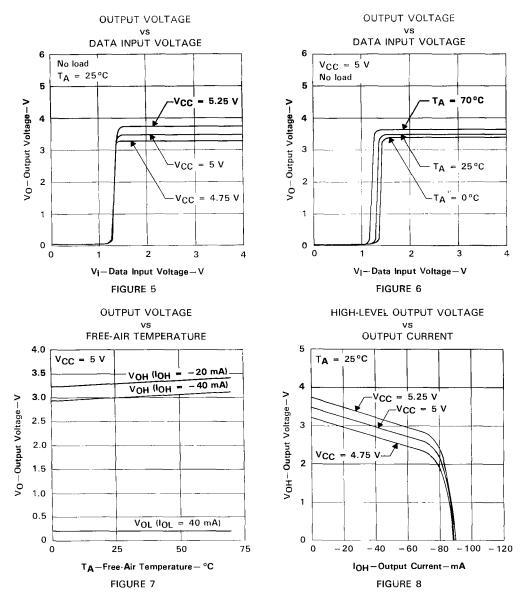

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: Z_{out} = 50 Ω , PRR \leq 500 kHz. B. CL includes probe and jig capacitance.

FIGURE 3. tPZH AND tPHZ

PARAMETER MEASUREMENT INFORMATION



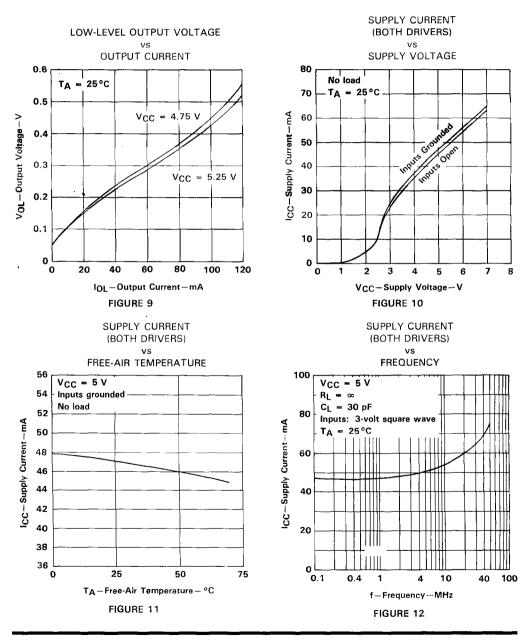
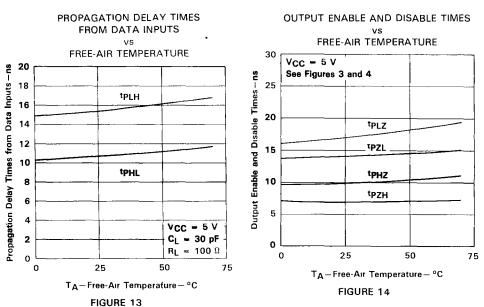

- NOTES: A. The pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$, PRR $\leq 500 \text{ kHz}$.
 - C. CL includes probe and jig capacitance.

FIGURE 4. tpzL AND tpLZ

TYPICAL CHARACTERISTICS



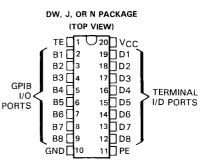
TYPICAL CHARACTERISTICS

SN75159 DUAL DIFFERENTIAL LINE DRIVER WITH 3-STATE OUTPUTS

TYPICAL CHARACTERISTICS

D2525, OC

MEETS IEEE STANDARD 488-1978 (GPIB)


- 8-Channel Bidirectional Transceiver
- Power-Up/Power-Down Protection (Glitch-Free)
- High-Speed, Low-Power Schottky Circuitry
- Low-Power Dissipation . . . 72 mW Max Per Channel
- Fast Propagation Times . . . 22 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- **Open-Collector Driver Output Option**
- No Loading of Bus When Device Is Powered Down (VCC = 0)

description

The SN75160B 8-channel general-purpose interface bus transceiver is a monolithic, highspeed, low-power Schottky device designed for two-way data communications over singleended transmission lines. It is designed to meet the requirements of IEEE Standard 488-1978. The transceiver features driver outputs that can be operated in either the passive-pullup or 3-state mode. If Talk Enable (TE) is high, these ports have the characteristics of passive-pullup outputs when Pullup Enable (PE) is low, and of 3-state outputs when PE is high. Taking TE low places these ports in the high-impedance state. The driver outputs are designed to handle loads up to 48 mA of sink current.

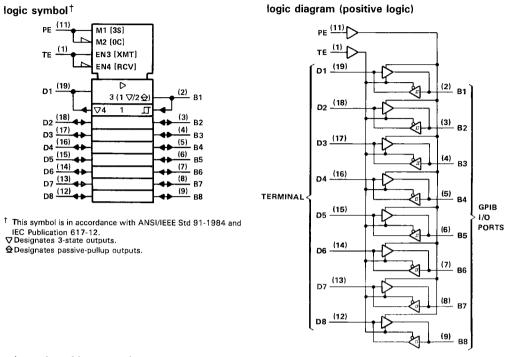
Output glitches during power-up and powerdown are eliminated by an internal circuit that disables both the bus and receiver outputs. The outputs do not load the bus when $V_{CC} = 0$. When combined with the SN75161B or SN75162B management bus transceivers, the pair provides the complete 16-wire interface for the IEEE 488 bus.

The SN75160B is characterized for operation from 0°C to 70°C.

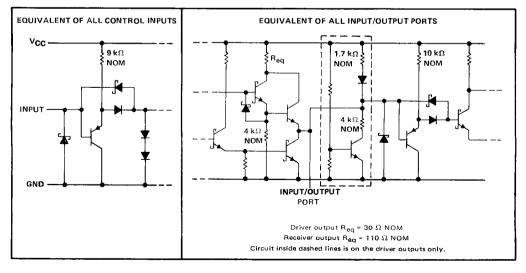
FUNCTION TABLES

EACH DRIVER

EACH RECEIVER


	INPUT	S	OUTPUT			OUTPUT	
D	TE	PE	В	BIŁ		FE	D
ГН	н	H	н	L	L	X	L
L	н	х	L	н	L	х	н
H	х	L	z†	хнх		х	Z
X	L	х	z†				

H = high level, L = low level, X = irrelevant, Z = High-impedance state.


[†]This is the high-impedance state of a normal 3-state output modified by the internal resistors to V_{CC} and ground.

2-507

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	5 V
Low-level driver output current	
Operating free-air temperature range	0°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds: DW or N package 260	

NOTES: 1. All voltage values are with respect to network ground terminal.

In the J package, SN75160B chips are alloy mounted.

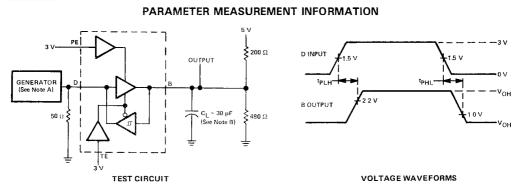
DISSIPATION RATING TABLE

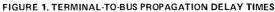
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW
J	1375 mW	11 0 mW/°C	880 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level input voltage, VIH		2			v
Low-level input voltage, VIL				0.8	v
	Bus ports with pull-ups active			-5.2	mA
High-level output current, IOH	Terminal ports			- · ·	μA
	Bus ports			÷.,	mA
Low-level output current, IDL	Terminal ports			16	ma
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


	PARAMETER		TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT	
VIK	Input clamp voltage		lj ≕ −18 mA			-0.8	-1.5	v	
V _{hys}	Hysteresis (V _{T +} - V _{T -})	Bus			0.4	0.65		V	
M	High-level	Terminal	$I_{OH} = -800 \ \mu A$,	TE at 0.8 V	2.7	3.5		v	
∨он	output voltage	Bus	$I_{OH} = -5.2 \text{ mA},$	PE and TE at 2 V	2.5	3.3		v	
N	Low-level	Terminal	I _{OL} = 16 mA,	TE at 0.8 V		0.3	0.5	v	
VOL	output voltage	Bus	I _{OL} = 48 mA,	TE at 2 V		0,35	0.5	v	
կ	Input current at maximum input voltage	Terminal	V ₁ = 5.5 V			0.2	100	μA	
Ίн	High-level input current	Terminal	VI = 2.7 V			0.1	20	μA	
^I 1L	Low-level input current	Terminal	V ₁ = 0.5 V			- 10	- 100	μA	
	s) Voltage at bus port		Driver disabled	$I_{I(bus)} = 0$	2.5	3.0	3.7	v	
VI/O(bus)	voltage at bus port		Driver disabled	$I_{I(bus)} = -12 \text{ mA}$			- 1.5	, 	
			·	VI(bus) = -1.5 V to 0.4 V	- 1.3				
				VI(bus) = 0.4 V to 2.5 V	0		-3.2		
I/O(bus)	Current into bus port	Power on	Driver disabled	$V_{i(bus)} = 2.5 \vee to 3.7 \vee$			+2.5 -3.2	mA	
				VI(bus) = 3.7 V to 5 V	0		2.5		
				Vi(bus) = 5 V to 5.5 V	0.7		2.5		
		Power off	V _{CC} =0,	VI(bus) = 0 to 2.5 V			-40	μA	
1 -	Short-circuit	Terminal			- 15	- 35	- 75		
los	output current	Bus			- 25	- 50	- 125	mA	
			No load	Receivers low and enabled		70	90	mA	
lcc	Supply current			Drivers low and enabled		85	110	ma	
C _{i/o(bus)}	Bus-port capacitance		$V_{CC} = 5 \vee to 0,$ f = 1 MHz	$V_{\rm I/O} = 0$ to 2 V,		30		pF	


[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

switching characteristics, $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = 25 °C$ (unless otherwise noted)

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,		14	20	
^t PHL	Propagation delay time, high-to-low-level output	remina	bus	See Figure 1		14	20	ns
^t PLH	Propagation delay time, low-to-high-level output	8us	Terminal	CL = 30 pF,		10	20	
tPHL	Propagation delay time, high-to-low-level output	ous	rennina	See Figure 2		15		ns
^t PZH	Output enable time to high level					25	35	
^t PHZ	Output disable time from high level	TE	Bus	See Figure 3		13	22] _{ns}
τΡΖL	Output enable time to low level	10	Dus	occ rigate o		22	35] 115
t PLZ	Output disable time from low level					22	32	1
tPZH	Output enable time to high level			-		20	30	
t PHZ	Output disable time from high level	TE	Terminal	See Firmer A		12	20	ns
tPZL.	Output enable time to low level	10	terminal	See Figure 4		23	32	ns i
^t PLZ	Output disable time from low level					19	30	
t _{en}	Output pull-up enable time	PE	Bus	See Figure 5		15	22	
t _{dis}	Output pull-up disable time	rt.	Bus	See rigure 5		13	20	ns

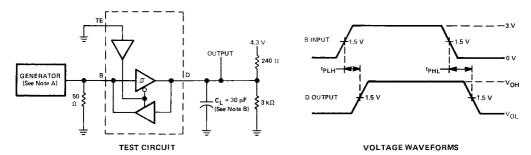
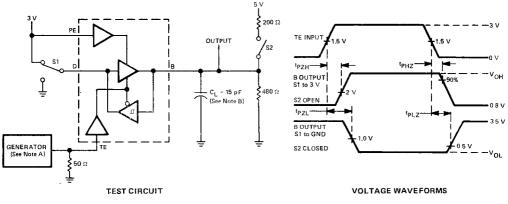
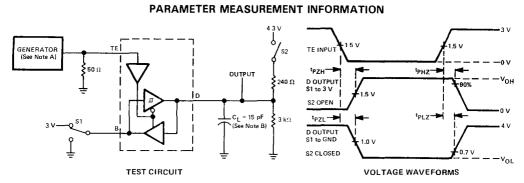
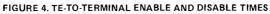
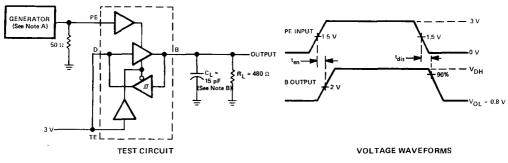



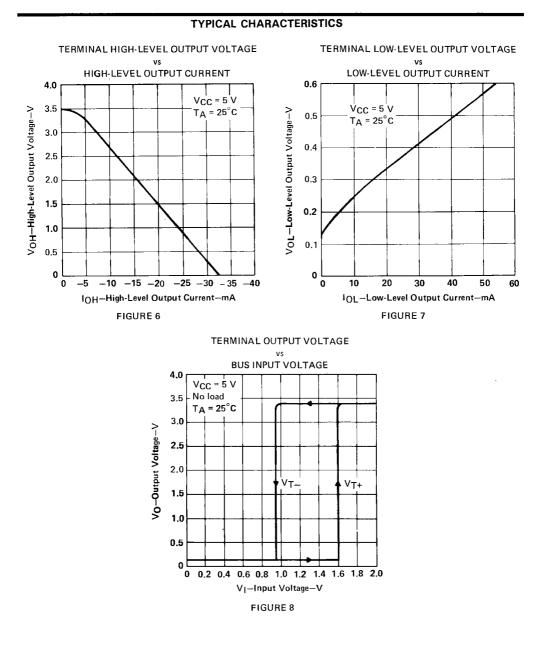
FIGURE 2. BUS-TO-TERMINAL PROPAGATION DELAY TIMES

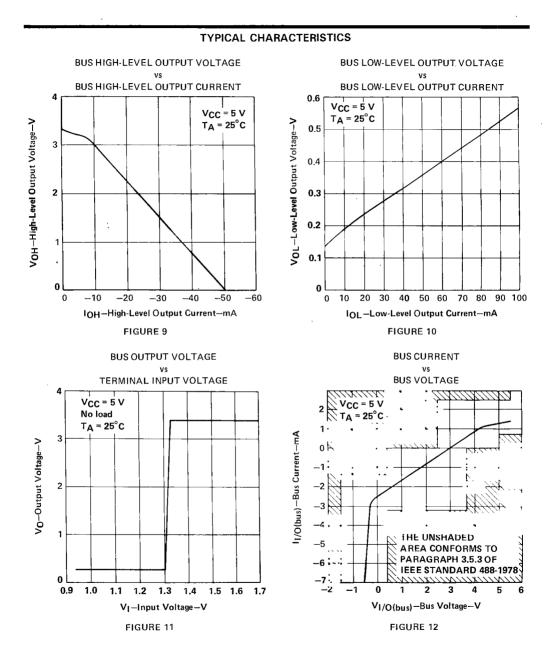



FIGURE 3. TE-TO-BUS ENABLE AND DISABLE TIMES


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq ns, Z₀ = 50 Ω .

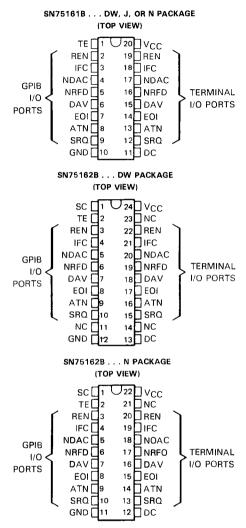
B. CL includes probe and jig capacitance.




FIGURE 5. PE-TO-BUS PULLUP ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq ns, Z₀ = 50 Ω .
 - B. CL includes probe and jig capacitance.

D2618, OCTOBER 1980-REVISED DCTOBER 1985


MEETS IEEE STANDARD 488-1978 (GPIB)

- 8-Channel Bidirectional Transceiver
- Power-Up/Power-Down Protection (Glitch-Free)
- Designed to Implement Control Bus Interface
- SN75161B Designed for Single Controller
- SN75162B Designed for Multi-Controllers
- High-Speed, Low-Power Schottky Circuitry
- Low-Power Dissipation . . . 72 mW Max Per Channel
- Fast Propagation Times . . . 22 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)

description

The SN75161B and SN75162B eight-channel general-purpose interface bus transceivers are monolithic, high-speed, low-power Schottky devices designed to meet the requirements of IEEE Standard 488-1978. Each transceiver is designed to provide the bus-management and data-transfer signals between operating units of a single- or multiple-controller instrumentation system. When combined with the SN75160B octal bus transceiver, the SN75161B or SN75162B provides the complete 16-wire interface for the IEEE 488 bus.

The SN75161B and SN75162B each features eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. A power up/down disable circuit is included on all bus and receiver outputs. This provides glitch-free operation during V_{CC} power-up and power-down. The direction of data through these driver-receiver pairs is determined by the DC, TE, and SC (on SN75162B) enable signals. The SC input on the SN75162B allows the REN and IFC transceivers to be controlled independently.

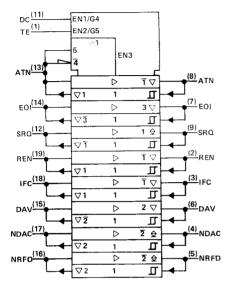
NC-No internal connection

to the link information of the second second

Copyright © 1985, Texas Instruments Incorporated

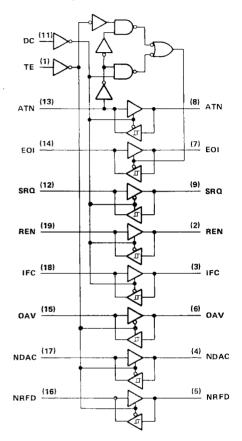
description (continued)

The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when supply voltage V_{CC} is 0. The drivers are designed to handle loads up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and hysteresis of 400 mV for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.

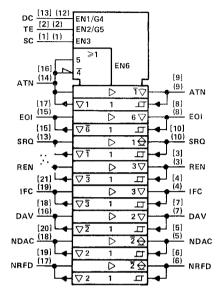

The SN75161B and SN75162B are characterized for operation from 0°C to 70°C.

NAME	IDENTITY	CLASS
DC	Direction Control	
ΤE	Talk Enable	Control
SC	System Control (SN75162B only)	
ATN	Attention	
SRQ	Service Request	Bus
REN	Remote Enable	
IFC	Interface Clear	Management
EOI	End or Identify	
DAV	Data Valid	Data
NDAC	Not Data Accepted	Transfer
NRFD	Not Ready for Data	Tansiel

CHANNEL IDENTIFICATION TABLE

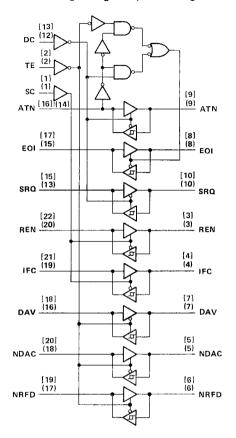


SN75161B logic symbol[†]



[†] This symbol is in accordance with IEEE Std 91-1984 and IEC publication 617-12.

SN75161B logic diagram (positive logic)



SN75162B logic symbol[†]

[†] This symbol is in accordance with IEEE Std 91-1984 and IEC publication 617-12.

SN75162B logic diagram (positive logic)

[] Denotes pin numbers for DW package.

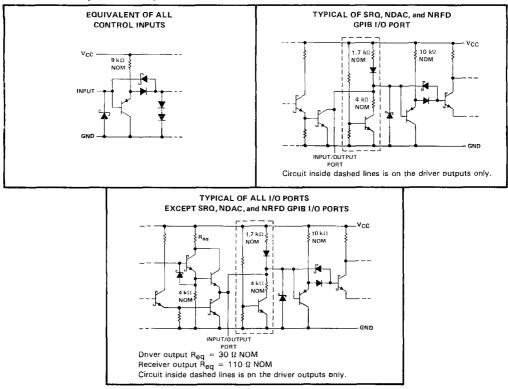
() Denotes pin numbers for N package.

			THE OLI I	-/ • • • • •						
	05,110-1	•	:**	. MANA	GEMENT	CHAMILI	•;	DATA-TR	ANSFER	CHANNELS
DC	ĨĿ	ATN [†]	ATN:	SRQ (Controll	REN ed by DC)	IFu	EOI	DAV (Co	NDAC Introlled	
н	н	н	B	т.	R	B	Т	т	B	R
н	н	L	n	RI			R			
L	L	н	т	R	т	т	R	R	т	т
L	L	L		"			Т			
н	L	х	R	Т	R	R	R	Ŕ	Т	Т
Ł	н	x	Т	R	Т	Т	Т	Т	R	R

SN75161B RECEIVE/TRANSMIT FUNCTION TABLE

SN75162B RECEIVE/TRANSMIT FUNCTION TABLE

1	CONT	ROLS	110	BI	US-MANA	GEMENT	CHANNELS	5	DATA-TR.	ANSFER C	HANNELS
SC	DC	TE	ATN	ATN [†] (Controlle	SRQ d by DC)	REN (Controlle	IFC id by SC)	EOI	DAV (Co	NDAC ntrolled by	NRFD (TE)
	н	н	н		*			т	т	в	в
	Н	н	L	Пн				R		п	п
	L	L	н	Ŧ	n			R	R	т	т
	L	L	L		. 11			Т			
	н	L.	х	R	Т			R	R	T	T
	L	н	×	Т	R			т	т	R	R
Н						T	T		· · · · ·		


H = high level, L = low level, R = receive, T = transmit, X = irrelevant

Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.

[†]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Low-level driver output current
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16) inch from the case for 60 seconds: J package
Lead temperature 1,6 mm (1/16) inch from the case for 10 seconds: DW or N package 260 °C

NOTES 1. All voltage values are with respect to network ground terminal.

2. In the J package, SN75161B chips are alloy mounted.

	DISSIPATIO	ON RATING TABLE	
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C POWER RATING
DW (20 Pin)	1125 mW	9.0 mW/ °C	720 mW
DW (24 Pin)	1350 mW	10.8 mW/°C	864 mW
J	13 7 5 mW	11.0 mW/"C	880 mW
N (20 Pin)	1150 mW	9.2 mW/°C	736 mW
N (22 Pin)	1700 mW	13.6 mW/ °C	1088 mW

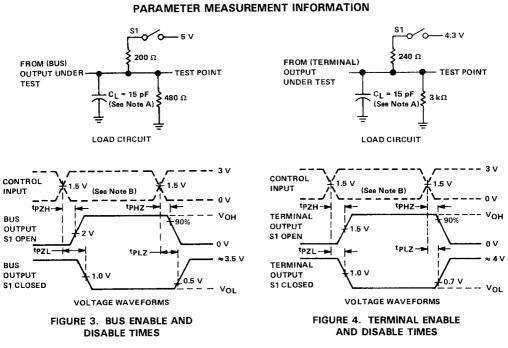
recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	· · · · · · · · · · · · · · · · · · ·	2			V.
Low-level input voltage, VIL				0.8	V
	Bus ports with 3-state outputs			- 5 ?	mA
High-level output current, IOH	Terminal ports				μA
	Bus ports			48	mA
Low-level output current, IOL	Terminal ports			16	
Operating free-air temperature, TA		. 0		70	°C

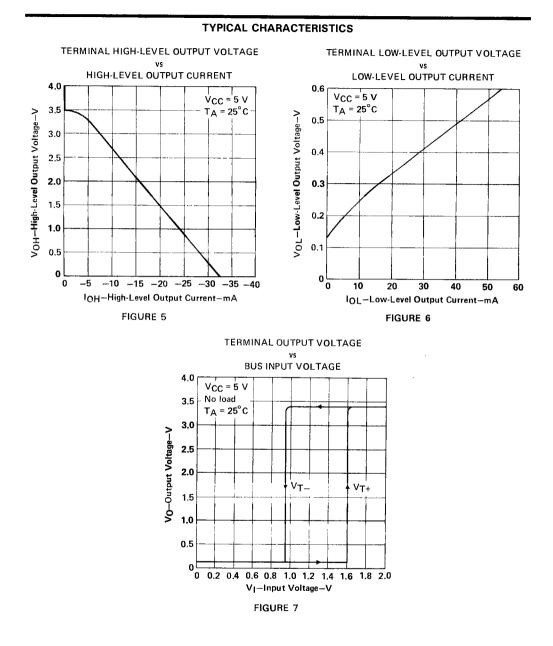

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

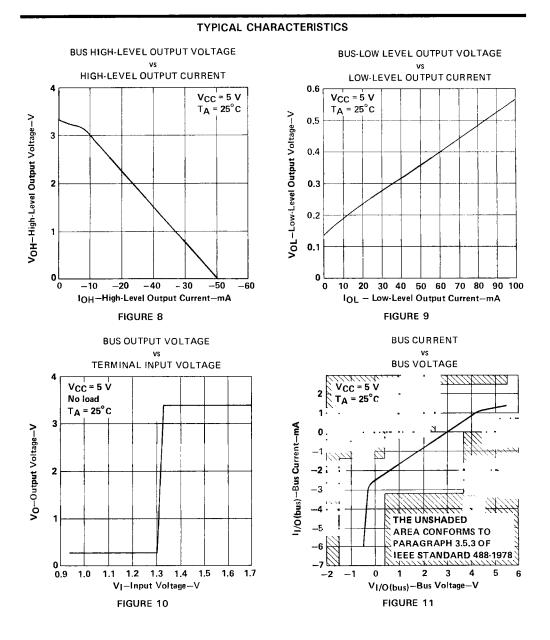
PARAMETER			TEST CONDITIONS		MIN	TYPT	MAX	UNIT
ViK	Input clamp voltage		lj = -18 mA			-0.8	-1.5	v
Vhys	Hysteresis (V _{T+} - V _{T-})	Bus			0.4	0.65		v
	High-level	Terminal	IOH = -800 μ	A	2.7	3.5		v
∨он‡	output voltage	Bus	IOH = -5.2 m	A	2.5	3.3		v
	Low-level	Terminal	iol = 16 mA			0.3	0.5	v
VOL	output voltage	Bus	1 _{OL} = 48 mA			0.35	0.5	
4	Input current at maximum input voltage	Terminal	V ₁ = 5.5 V			0.2	100	μA
нн	High-level input current	Terminal and	Vj = 2.7 V			0.1	20	μΑ
۱L	Low-level input current	control inputs	V _I = 0.5 V			- 10	- 100	μΑ
VI/O(bus)	Voltage at bus port		Driver disabled	$I_{i(bus)} = 0$	2.5	3.0	3.7	v
., 0 (020)				$i_{i(bus)} = -12 \text{ mA}$	1.3		- 1.5	
				$V_{i(bus)} = -1.5 V \text{ to } 0.4 V$				
	Current into bus port			Vi(bus) = 0.4 V to 2.5 V	0		- 3.2	
l/O(bus)		Power on	Driver disabled	$V_{i(bus)} = 2.5 V \text{ to } 3.7 V$			+2.5 -3.2	mA
				$V_{I(bus)} = 3.7 V to 5 V$	0		2.5	l I
				$V_{1(bus)} = 5 V \text{ to } 5.5 V$	0.7		2.5	•
		Power off	$V_{CC} = 0,$	$V_{i(bus)} = 0$ to 2.5 V			-40	μA
	Short-circuit	Terminal			- 15	- 35	- 75	mA
los	output current	Bus			- 25	- 50	- 125	
ICC	Supply current	·	No load,	TE, DC, and SC low			110	mA
Ci/o(bus)	Bus-port capacitance		$V_{CC} = 5 V \text{ to}$ $V_{I/O} = 0 \text{ to } 2$			30		pF

 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. † V_OH applies for 3-state outputs only.



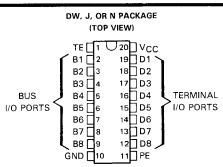
	PARAMETER	FROM	то	TEST CONDITIONS	MIN TYP	MAX	
^t PLH	Propagation delay time, Iow-to-high-level output	Torminal	Pue	C _L = 30 pF,	14	20	ns
^t PHL	Propagation delay time, high-to-low-level output		Terminal Bus		14	20	1
tplH	Propagation delay time, low-to-high-level output	Terminal	Bus (SRQ, NDAC NRFD)	C _L = 30 pF, See Figure 1	29	35	ns
^t PLH	Propagation delay time, low-to-high-level output			CL = 30 pF,	10	20	
^t PHL	Propagation delay time, high-to-low-level output	Bus	Terminal	See Figure 2	15	22	ns
tPZH tPHZ tPZL tPLZ	Output enable time to high level Output disable time from high level Output enable time to low level Output disable time from low level	TE, DC, or SC	BUS (ATTN, EOI, REN, IFC, and DAV)	See Figure 3		60 45 60 55	- ns
^t PZH ^t PHZ ^t PZL ^t PLZ	Output enable time to high level Output disable time from high level Output enable time to low level Output disable time from low level	TE, DC, or SC	Terminal	See Figure 4		55 50 45 55	ns


B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, $t_f \leq 6 \text{ ns}, Z_0 = 50 \Omega.$



- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω .

D2611, DCTOBER 1985

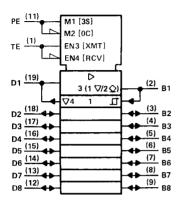

- 8-Channel Bidirectional Transceivers
- Power-Up/Power-Down Protection (Glitch-Free)
- High-Speed Low-Power Schottky Circuitry
- Low Power Dissipation . . . 66 mW Max Per Channel
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Open-Collector Driver Output Option
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)

description

The SN75163B octal general-purpose interface bus transceiver is a monolithic, high-speed, low-power Schottky device. It is designed for two-way data communications over single-ended transmission lines. The transceiver features driver outputs that can be operated in either the open-collector or 3-state modes. If Talk Enable (TE) is high, these outputs have the characteristics of open-collector outputs when Pullup Enable (PE) is low and of 3-state outputs when PE is high. Taking TE low places the outputs in the high-impedance state. The driver outputs are designed to handle loads of up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and 400 mV of hysteresis for increased noise immunity.

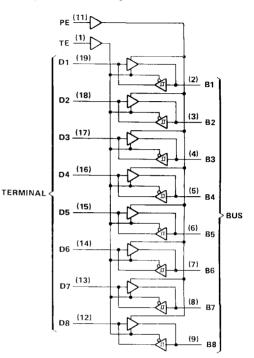
Output glitches during power-up and powerdown are eliminated by an internal circuit that disables both the bus and receiver outputs. The outputs do not load the bus when $V_{CC} = 0$.

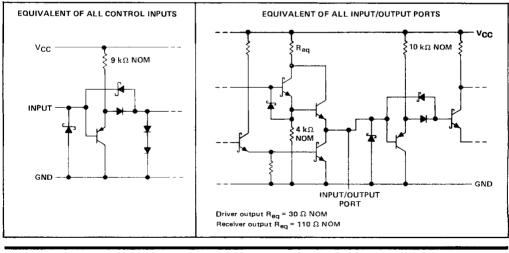
The SN75163B is characterized for operation from 0°C to 70°C.


FUNCTION TABLES

	EAC	H DRI	VER		EAC	I RECE	IVER
	INPUTS	;	OUTPUT		INPUTS	OUTPUT	
D	TE	PE	в	В	ΤE	PE] D
н	н	н	н	L	L	X	L
L	н	н	L	н	L	х	н
н	х	L	z	X	н	х	Ζ
L	н	L	L				
X	L	х	z				

H = high |evel, L = low |evel, X = irrelevant, Z = high-impedance state.


logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

♥ Designates 3-state outputs.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V Low-level driver output current 100 mA Continuous total power dissipation (see Note 2) See Dissipation Rating Table Operating free-air temperature range 0°C to 70°C Storage temperature range -65°C to 150°C
Storage temperature range
Lead temperature 1,6 mm (1/16) inch from the case for 60 seconds: J package

NOTES: 1. All voltage values are with respect to network ground terminal. 2. In the J package, SN75163B chips are alloy mounted.

DISSIPATION RATING TABLE

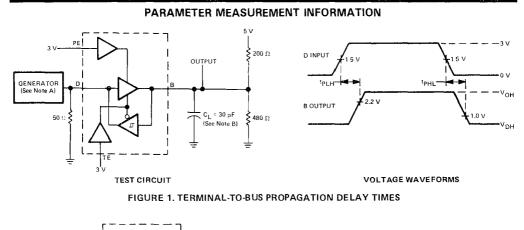
PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/ °C	720 mW
J	1375 mW	11.0 mW/°C	880 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level input voltage, VIH		2			V
Low-level input voltage, VIL				0.8	V
	Bus ports with pullups active			- 10	mA
High-level output current, IOH	Terminal ports			-	μA
	Bus ports			- +0	mA
Low-level output current, IOL	Terminal ports			16	mA
Operating free-air temperature range, TA	0		70	°C	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage		$l_{\rm I} = -18 {\rm mA}$			-0.8	- 1.5	v
V _{hys}	Hysteresis (VT + - VT -) [‡]	Bus			0.4	0.65		V
Voн	High level	Terminal	$I_{OH} = -800 \ \mu A$,	TE at 0.8 V	2.7	3.5		v
∙он	output voltage	Bus	ioн = -10 mA,	PE and TE at 2 V	2.5	3.3		
Var	Low-level	Terminal	$I_{OL} = 16 \text{ mA},$	TE at 0.8 V		0.3	0.5	v
VOL	output voltage	Bus	$I_{OL} = 48 \text{ mA},$	PE and TE at 2 V		0.4	0.5	Ť
lau	High-level output current	Bus	$V_0 = 5.5 V_i$	PE at 0.8 V,			100	μA
юн	(open-collector mode)	DUS	D and TE at 2 V				100	μΑ
1	Off-state output current	Bus	PE at 2 V,	V ₀ = 2.7 V			20	μA
loz	(3-state mode)	Bus	TE at 0.8 V	V ₀ = 0.4 V			- 20	μΑ
. I.	input current at	Terminal	VI = 5.5 V			0.2	100	μA
łj	maximum input voltage	rennana	vi = 5.5 v			0.2	100	μ~
	High-level	Terminal	$V_{I} = 2.7 V$			0.1		
Чн	input current	rennariar				0.1	20	μA
i	Low-level	Terminal	Vi = 0.5 V			- 10	- 100	μA
հե	input current	rerminal	vi = 0.5 v			-10	- 100	
	Short-circuit	Terminal			- 15	- 35	-75	mA
los	output current	Bus			- 25	- 50	- 125	
1	Supply surrant		No load	Receivers low and enabled			80	mA
'cc	Supply current	ppiy current		Drivers low and enabled			100	
Ci/o(bus)	Bus-port capacitance		V _{CC} = 5 ∨ or 0, f = 1 MHz	$V_{I/O} = 0$ to 2 V,		30		pF


[†]All typical values are at V_{CC} = 5, T_A = 25 °C.

⁺Hysteresis is the difference between the positive-going input threshold voltage, V_T + , and the negative-going input threshold voltage, V_T - .

switching characteristics, VCC = 5 V, CL = 15 pF, TA = 25 °C (unless otherwise noted)

	PARAMETER	FROM	то	TEST (ONDITIONS	MIN	TYP	MAX	UNIT
tplh	Propagation delay time, low-to-high-level output	Terminal	Pue	C _L = 30 pF,		14	20	ns
tphl	Propagation delay time, high-to-low-level output	reminal	minal Bus See Figure 1			14	20	115
tplh	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF,		10	20	ns
tphl	Propagation delay time, high-to-low-level output	003	renningi	See Figure 2		15	22	113
^t PZH	Output enable time to high level					25	35	
^t PHZ	Output disable time from high level	ТЕ	Bus	See Figure 3		13	22	ns
^t PZL	Output enable time to low level	1.5	Dus	See rigule 5		22	35	113
tPLZ	Output disable time from low level]				22	32]
tPZH	Output enable time to high level	[20	30	
^t PHZ	Output disable time from high level	TE	Turning	Our Figure 4	1	12	20	
^t PZL	Output enable time to low level	1 'E	Terminal	See Figure 4		23	32	ns
tPLZ	Output disable time from low level	1				19	30	
t _{еп}	Output pull-up enable time	PE	Transinal	Cas Figure F		15	22	
tdis	Output pull-up disable time	PE	Terminal	See Figure 5	1	13	20	ns

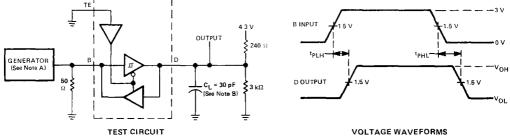
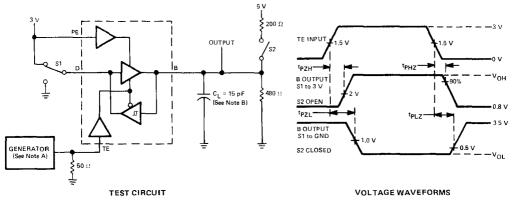
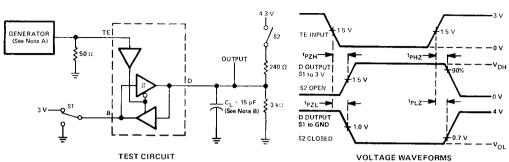
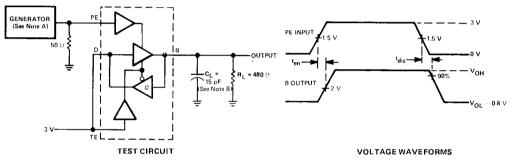



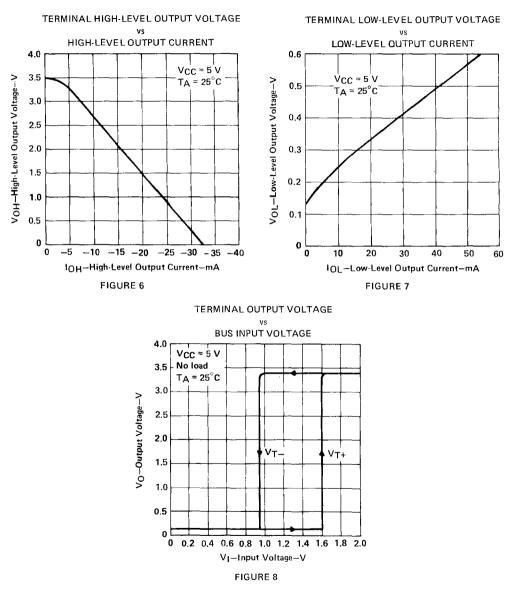
FIGURE 2. BUS-TO-TERMINAL PROPAGATION DELAY TIMES

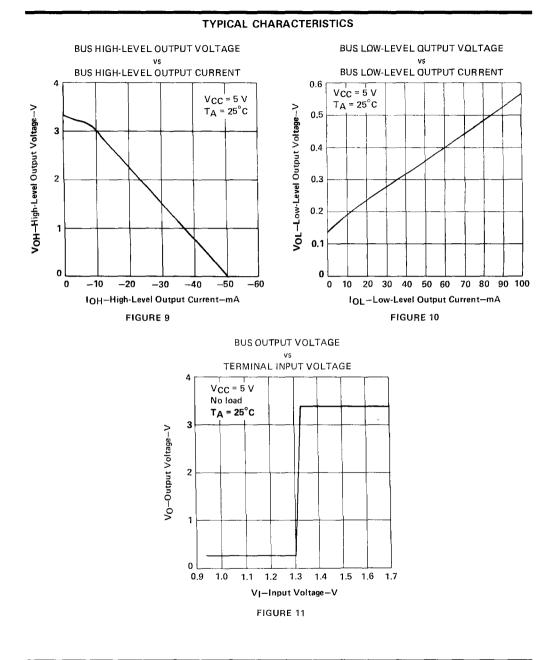
FIGURE 3. TE-TO-BUS ENABLE AND DISABLE TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq ns, Z₀ = 50 Ω .

B. C_L includes probe and jig capacitance.

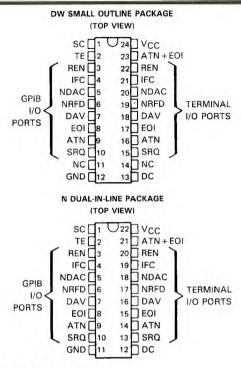




FIGURE 4. TE-TO-TERMINAL ENABLE AND DISABLE TIMES


FIGURE 5. PE-TO-BUS PULLUP ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq ns, Z₀ = 50 Ω.
 - B. CL includes probe and jig capacitance.

TYPICAL CHARACTERISTICS


D2908, OCTOBER 1985

- 8-Channel Bidirectional Transceiver
- Power-Up/Power-Down Protection (Glitch-Free)
- ATN + EOI (OR Function) Output to Simplify Board Layout
- Designed to Implement Control Bus
 Interface for Multi-Controllers
- Low-Power Dissipation . . . 72 mW Max Per Channel
- Fast Propagation Times . . . 22 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device is Powered Down (VCC = 0)

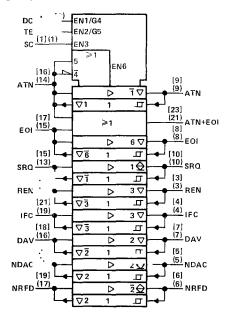
description

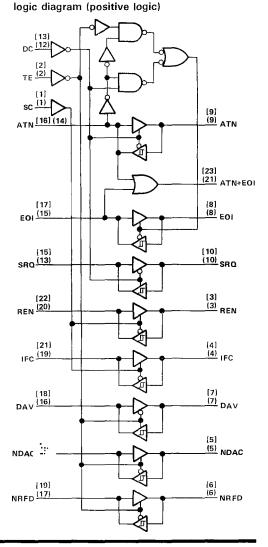
The SN75164B eight-channel general-purpose interface bus transceiver is a monolithic, highspeed, low-power Schottky device designed to meet the requirements of IEEE Standard 488-1978. Each transceiver is designed to provide the bus-management and data-transfer signals between operating units of a multiplecontroller instrumentation system. When combined with the SN75160B octal bus transceiver, the SN75164B provides the complete 16-wire interface for the IEEE 488 bus.

The SN75164B features eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. All outputs are disabled (at a high-impedance state) during V_{CC} power-up and power-down transitions for glitch-free operation. The direction of data flow through these driver-receiver pairs is determined by the DC, TE, and SC enable signals. The SN75164B is identical to the SN75162B with the addition of an OR gate to help simplify board layouts in several popular applications. The ATN and EOI signals are ORed to pin 21, which is a standard totem-pole output.

NC-No internal connection.

CHANNEL IDENTIFICATION TABLE


NAME	IDENTITY	CLASS
DC TE	Direction Control Talk Enable	Control
SC	System Control	
ATN	Attention	
SRQ	Service Request	Bus
REN	Remote Enable	Management
IFC	Interface Clear	and a second
EOI	End or Identify	
ATN + EOI	ATN logical OR EOI	Logic
DAV	Data Valid	Data
NDAC NRFD	Not Data Accepted Not Ready for Data	Transfer


The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when supply voltage V_{CC} is 0. The drivers are designed to handle loads up to 48 milliamperes of sink current. Each receiver features p-n-p transistor inputs for high input impedance and a guaranteed hysteresis of 400 millivolts for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.

The SN75164B is manufactured in a 22-pin dual-in-line and 24-pin Small Outline package. The SN75164B is characterized for operation from 0° C to 70° C.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[] Denotes pin numbers for DW package. () Denotes pin numbers for N package.

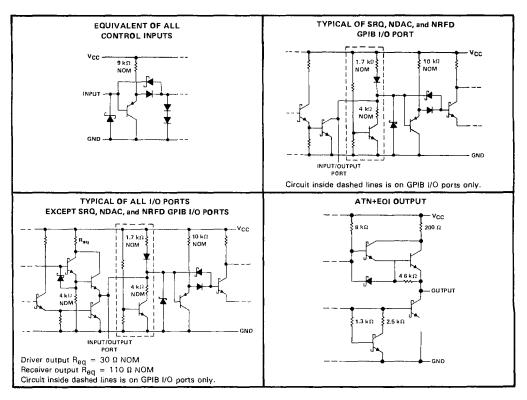
1	CONTROLS				BUS-MANAGEMENT CHANNELS				DATA-TRANSFER CHANNEL			
SC	DC	TE	ATN	ATN [‡] (Controlle	ATN [‡] SRQ REN IFC EOI Controlled by DC) (Controlled by SC)				DAV (Co	NDAC ntrolled b	NRFD y TE)	
Constant of	H.	н	н					т			R	
	н	н	4	R				R			n	
	L	L	н			T 0			R	0	т	т
	L	L	L	1 '	n			Т				
	н	L	X	R	Т			R	R	Т	T	
	L	н	X	T	R			T	т	R	R	
н				I		T	Т	i and				
L						R	R	1.1.1.1				

RECEIVE/TRANSMIT FUNCTION TABLE

H = high level, L - low level, R = receive, T = transmit, X = irrelevant

Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.

[†] ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.


ATN + EOI FUNCTION TABLE

INPL	JTS	OUTPUT
ATN	EOI	ATN + EOI
н	×	н
х	н	н
L	L	L

SN75164B Octal General-Purpose Interface Bus Transceiver

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V Low-level driver output current 100 mA
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
DW package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16) inch from the case for 10 seconds: DW or N package 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

 For operation above 25°C free-eir temperature, derate the DW package at the rate of 10.8 mW/°C, the N package at the rate of 13.6 mW/°C.

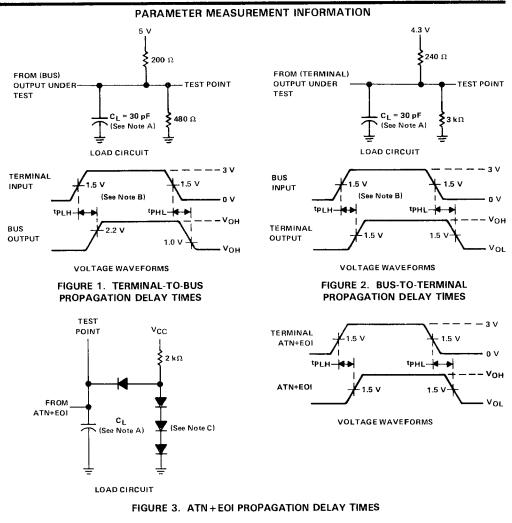
recommended operating conditions

		Miri	707	MAX	UNIT	
Supply voltage, V _{CC1}		4.70	0	5.25	V	
High-level input voltage, VIH		2			V	
Low-level input voltage, VIL				0.8	V	
High-level output current, IOH	Bus ports with 3-state outputs		_	- 5.2	mA	
	Terminal ports			- 800		
	ATN + EOI			-400	μA	
Low-level output current, IOL	Bus ports			48	T	
	Terminal ports	1	1			
	ATN + EOI			4	1	
Operating free-air temperature, TA		0		70	°C	

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

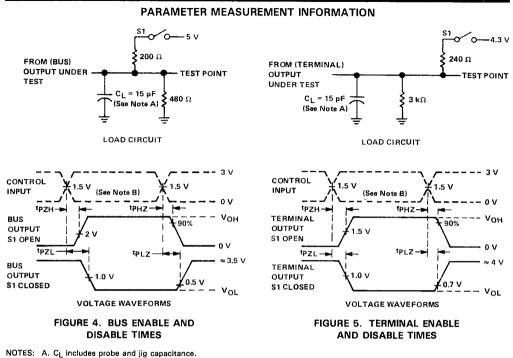
PARAMETER			TEST CONDITIONS		MIN	TYPT	MAX	UNIT	
VIK	Input clamp voltage	ge ij = -18 mA				- 1.5	V		
V _{hys}	Hysteresis (VT+ - VT-)	Bus			0.4			V	
		Terminal	$I_{OH} = -800 \mu$	λ	2.7				
VOH [‡] High-level output voltage	High-level output voltage	Bus	$I_{OH} = -5.2 \text{ mA}$					1 v	
	ATN + EOI	$I_{OH} = -400 \mu A$					1		
V _{OL} Low-level output voltage	······································	Terminal	IOL = 16 mA	······	1		0.5		
		I _{OL} = 48 mA				0.5	V		
	A + EOI					0.4			
Input current at II maximum input voltage	Terminal [§]	V _I = 5.5 V		1		100			
	ATN, EOI	VI = 5.5 V				200	μA		
III High-level input cu	······	Terminal,	N 0.7.V				20	μΑ	
	High-level input current	control	Vi = 2.7 V						
		ATN, EOI	V ₁ = 2.7 V				40]	
	Low-level input current	Terminai,	V1 = 0.5 V				- 100	μA	
IIL Low-level input		lc	$v_1 = 0.5 v$						
		EOI	$V_{1} = 0.5 V$				- 500]	
Vuon		·····	Deiver dieskied	$I_{l(bus)} = 0$	2.5		3.7	V	
VI/O(bus) Voltage at bus port			Driver disabled	$I_{ (bus)} = -12 \text{ mA}$			1.5	1 °	
				VI(bus) = -1.5 V to 0.4 V	- 1.3			1	
				V _{1(bus)} = 0.4 V to 2.5 V	0		- 3.2	1	
to a construction of the second se	Company into hum nort	Power on	Driver disabled				+ 2.5	mA	
II/O(bus) Current into bus p	Current into bus port			$V_{I(bus)} = 2.5 V \text{ to } 3.7 V$			- 3.2		
				$V_{1(bus)} = 3.7 V \text{ to } 5 V$	0		2.5]	
				Vi(bus) = 5 V to 5.5 V	0.7		2.5	1	
		Power off	$V_{CC} = 0,$	VI(bus) = 0 V to 2.5 V			- 40	μA	
los	Short-circuit output current	Terminal			- 15		- 75	}	
		Bus			- 25		-125	mA	
		ATN + EOI			- 10		-100	<u> </u>	
lcc	Supply current		No load,	TE, DC, and SC low			120	mA	
<u> </u>	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0 V,$		30		pF		
Ci/o(bus)	ous-port capacitance		$V_{I/O} = 0$ to 2 V, f = 1 MHz		30				

 † All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ V_{OH} applies for three-state outputs only. $^{\$}$ Except ATN and EOI terminal pins.

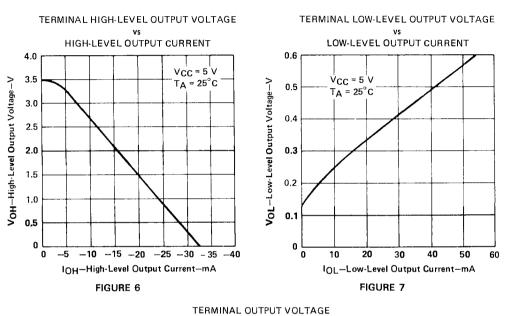

SN75164B Octal General-Purpose Interface Bus Transceiver

switching characteristics, $V_{CC} = 5 V$, $C_L = 15 pF$, $T_A = 25 °C$ (unless otherwise noted)

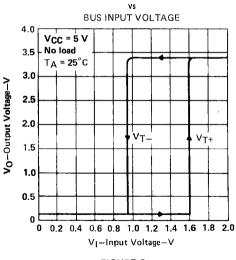
	PARAMETER	FROM	то	TEST CONDITIONS	MIN	түр	МАХ	UNIT
tPLH	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF, See Figure 1		14	20	ns
^t PHL	Propagation delay time, high-to-low-level output	rennina				14	20	
^t PLH	Propagation delay time, low-to-high-level output	Terminal	Bus (SRQ, NDAC NRFD)	$C_L = 30 \text{ pF},$ See Figure 1		29	35	ns
^t PLH	Propagation delay time low-to-high-level output	Bus	Terminal	C _L = 30 pF, See Figure 2		10	20	- ns
^t PHL	Propagation delay time, high-to-low-level output					15	22	
^t PLH	Propagation delay time, low-to-high-level output	Terminal ATN or Terminal	ATN + EOI	See Figure 3		14		ns
tphl	Propagation delay time, high-to-low-level output	Terminal ' '. or Terminal EOI	ATN + EOI	See Figure 3		14		ns
^t PZH	Output enable time to high level	TE, DC,	BUS	See Figure 4			60	ns
^t PHZ	Output disable time from high level	or SC	(ATTN, EOI,				45	
^t PZL	Output enable time to low level		REN, IFC,				60	
^t PLZ	Output disable time from low level		and DAV)				55	
^t PZH	Output enable time to high level	TE, DC, or SC	Terminal	See Figure 5	-		55	1
^t PHZ	Output disable time from high level						50	ns
^t PZL ^t PLZ	Output enable time to low level Output disable time from low level						45	


SN75164B OCTAL GENERAL-PURPOSE INTERFACE BUS TRANSCEIVER

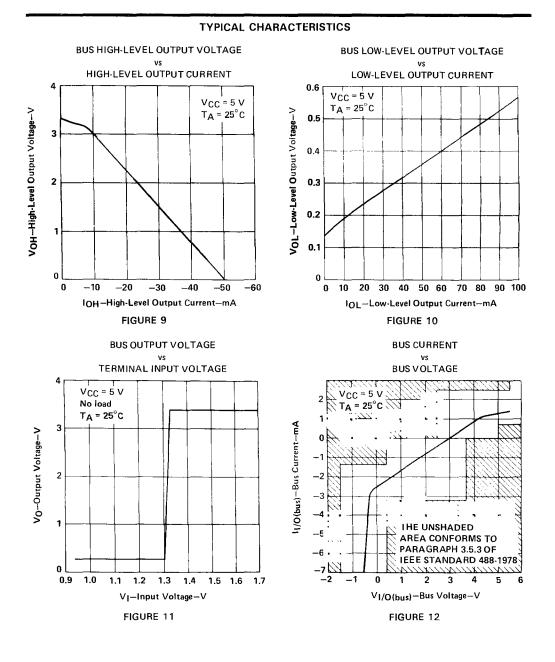
- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.
 - C. All diodes are 1N916 or 1N3064.



SN75164B Octal general-purpose interface bus transceiver



B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.



TYPICAL CHARACTERISTICS

OUADRUPLE DIFFERENTIAL LINE DRIVER

J OR N PACKAGE

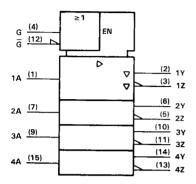
D2596, OCTOBER 1980-REVISED APRIL 1988

- Meets EIA Standards RS-422-A and RS-485
- Meets CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Output Voltage Range of -7 V to 12 V
- Active-High and Active-Low Enables
- Thermal Shutdown Protection
- Positive- and Negative-Current Limiting
- Operates from Single 5-V Supply
- Low Power Requirements
- Functionally Interchangeable with AM26LS31

description

The SN75172 is a monolithic quadruple differential line driver with three-state outputs. It is designed to meet the requirements of EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27. The device is optimized for balanced multipoint bus transmission at rates of up to 4 megabaud. Each driver features wide positive and negative common-mode output voltage ranges making it suitable for party-line applications in noisy environments.

The SN75172 provides positive- and negative-current limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150 °C. This device offers optimum performance when used with the SN75173 or SN75175 quadruple differential line receivers.


The SN75172 is characterized for operation from 0°C to 70°C.

5 01	I II I AOI	AGC
(1	FOP VIEW	/)
1A [1Y] 1Z] ENABLE G [2Z] 2Y] 2A [GND]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	☐ VCC ☐ 4A ☐ 4Y ☐ 4Z ☐ ENABLE G ☐ 3Z ☐ 3Y ☐ 3A
_	V PACKA TOP V(EV	
1A [1Y] NC] ENABLE G [2Z] 2Y] 2A [GND]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4A 4Y NC 4Z ENABLE G 3Z NC 3Y

NC-No internal connection

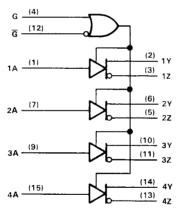
logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$

Pin numbers shown are for J and N packages.

logic diagram (positive logic)

FUNCTION TABLE (EACH DRIVER)


INPUT	ENABLES		OUT	PUTS
A	G	Ĝ	Y	Z
н	н	X	н	L
L	н	X	L	н
н	х	L	н	L
L	х	L	L	н
×	L	н	Z	Z

H = high level

L = low level

X = irrelevant

Z = high impedance (off)

EQUIVALENT OF EACH INPUT V_{CC} R_{eq} N_{PUT} $R_{eq} = 3 k\Omega NOM$ Enable inputs: $R_{eq} = 8 k\Omega NOM$ $R_{eq} = 8 k\Omega NOM$

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, VCC
Input voltage
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	ν
Common-mode output voltage, VOC			-7 to 12	V
High-level output current, IOH			- 60	mA
Low-level output current, IOL			60	mA
Operating free-air temperature, TA	0		70	°C

schematics of inputs and outputs

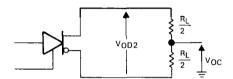
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage	lj = −18 mA				- 1.5	V
٧o	.'. ut voltage	l ₀ = 0		0	•	6	v
VOD1	··· -ential output voltage	l0 = 0		1.5		6	v
		$R_{l} = 100 \Omega$	Con Figure 1	½ VOD1			
VOD2	Differential output voltage	Π _μ = 100 Ω,	See Figure 1	2			v
		$R_{L} = 54 \Omega,$	See Figure 1	1.5	2.5	5	v
V _{OD3}	ential output voltage	See Note 2		1.5		5	V
∆ Vod	differential output voltage [‡]		· · · · · · · · · · · · · · · · · · ·			±0.2	v
voc	Common-mode output voltage [§]	$R_L = 54 \Omega$ or 100 Ω , See Figure 1				+3 -1	v
∆lvocl	Change in magnitude of common-mode output voltage [‡]					±0.2	v
10	Output current with power off	$V_{CC} = 0,$	$V_0 = -7 V \text{ to } 12 V$		_	± 100	μA
loz	High-impedance-state output current	$V_0 = -7 V \text{ to } 12$	v			±100	μA
ЧΗ	High-level input current	VI = 2.7 V				20	μA
۱ _{IL}	Low-level input current	V _I = 0.5 V					μA
		$V_0 = -7 V$				<u> </u>	
los	Short-circuit output current	$V_0 = V_{CC}$				100	mA
		V ₀ = 12 V				500	
loo	Supply current (all drivers)	No load	Outputs enabled		38	60	•
'c c	Supply current (an drivers)		Outputs disabled		18	40	mA

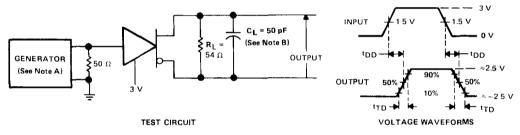
[†]All typical values are at $V_{CC} = 5$ V and $T_A = 25$ °C.

 $^{+}\Delta|V_{OD}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

[§] In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. NOTE 2: See EIA Standard RS-485 Figure 3-5, Test Termination Measurement 2.

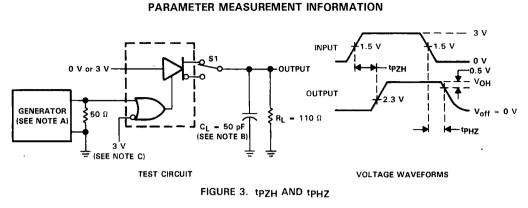

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
	Vo	V _o
VOD2	$V_t (R_L = 100 \Omega)$	$V_{t} (R_{L} = 54 \Omega)$
Wenel		V _t (Test Termination)
VOD3		Measurement 2)
	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
∆ Voc	V _{os} -V _{os}	V _{os} -V _{os}
los	Isal, Isb	
lo	I _{xa} , I _{xb}	l _{ia} , lib


switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tDD	Differential-output delay time	al-output delay time			45	65	ns
^t TD	Differential-output transition time	$ R_{L} = 54 \Omega,$	See Figure 2		80	120	ns
^t PZH	Output enable time to high level	$R_{L} = 110 \Omega,$	See Figure 3		80	120	ns
tPZL	Dutput enable time to low level	$R_{L} = 110 \Omega,$	See Figure 4		45	80	ns
tPHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 3		78	115	ns
tPLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 4		18	30	ns

PARAMETER MEASUREMENT INFORMATION


FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES

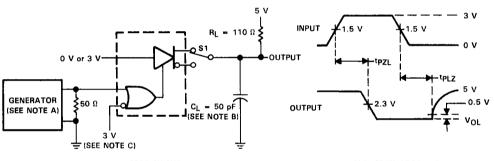


FIGURE 2. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_0 = 50$ Ω.
 - B. Cl includes probe and stray capacitance.

TEST CIRCUIT

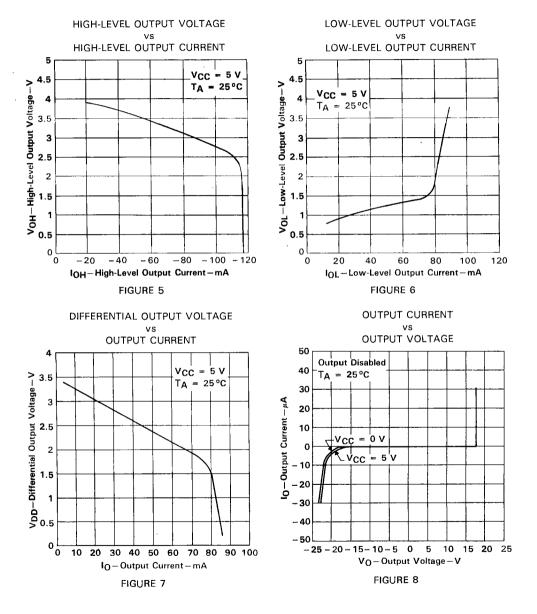
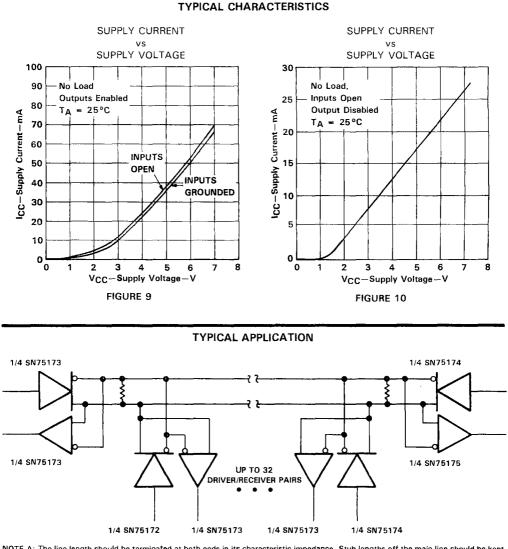

VOLTAGE WAVEFORMS

FIGURE 4. tpzL AND tpLZ


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_{out} \ne 50$ Ω.
 - B. CL include probe and jig capacitance.
 - C. To test the active-low enable $\overline{G},$ ground G and apply an inverted waveform to $\overline{G}.$

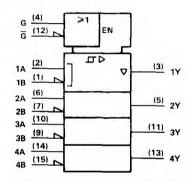
TYPICAL CHARACTERISTICS

NOTE A: The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 11

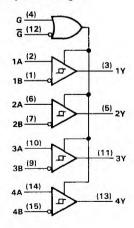
D2600, OCTOBER 1980-REVISED JULY 1990

- Meets EIA Standards RS-422-A, RS-423-A, and RS-485
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range . . . – 12 to 12 V
- Input Sensitivity . . . ± 200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5-V Supply
- Low Power Requirements
- Plug-In Replacement for AM26LS32


description

The SN75173 is a monolithic quadruple differential line receiver with 3-state outputs. It is designed to meet the requirements of EIA Standards RS-422-A, RS-423-A, and RS-485 and several CCITT recommendations. The device is optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. The four receivers share two ORed enable inputs, one active when high, the other active when low. The device features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ±200 mV over a common-mode input voltage range of - 12 to 12 V. Fail safe design ensures that if the inputs are open circuited, the outputs will always be high. The SN75173 is designed for optimum performance when used with the SN75172 or SN75174 quadruple differential line drivers.

The SN75173 is characterized for operation from 0° C to 70°C.


D, J,		N PAG	
1B [T	U16	Dvcc
1A	2	15	□ 48
1Y [3	14	14A
G	4	13	14Y
2Y [5	12	G
2A	6	11] 3Y
28	7	10	3A
GND [8	9	3B

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

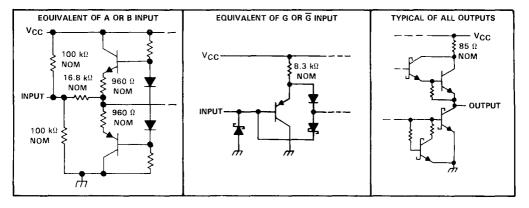
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werenty. Production processing does not necessarily include testing of ell parameters.

Copyright © 1990, Texas Instruments Incorporated

DIFFERENTIAL	ENA	BLES	OUTPUT
АВ	G	Ğ	Y
V _{ID} ≥ 0.2 V	н	X	н
V D ≥ 0.2 V	X	_L	н
-0.2 V < V _{ID} < 0.2 V	н	X	?
~0.2 V < V[D < 0.2 V	X	L	7
N= < -0.2 V	н	Х	L
$V_{ID} \leq -0.2 V$	X	L	L
X	L	н	Z

FUNCTION TABLE (EACH RECEIVER)

H = high level


L = low level

X = irrelevant

? = indeterminate

Z = high impedance (off)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VC	C (see Note 1))					. 7
input voltage, A or	B inputs						±25
Differential input v	oltage (see Not	te 2)					± 25
Enable input voltag							. 7
Low-level output c	urrent						50 m
Continuous total di	ssipation at (or	r below) 2	5°C free	-air temperat	ture (see Note	3):	
D package							50 m ¹
Jpackage							25 m'
							50 m'
N package	emperature rar	nge	•••••		· · · · · · · · · · · · ·		50 m [°] 5 70 °
N package Operating free-air t	emperatur e rar re range	nge	•••••	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	11 0°C to	50 m ¹ 5 70° 15 0 °

NOTES: 1. All voltage values, except differential input voltage, ere with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

3. For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/°C, the J package to 656 mW at 70 °C et the rate of 8.2 mW/°C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/°C. In the J package, SN75173 chips are glass mounted.

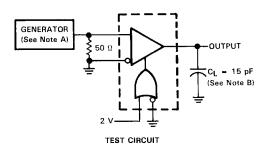
recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
Common-mode input voltage, VIC	1		±12	V
Differential input voltage, VID			±12	V
High-level input voltege, VIH	2			V.
Low-leval input voltege, VIL			0.8	V
High-level output current, IOH			-400	μA
Low-level output current, IOL	T		16	mA
Oparating frae-air temperature, TA	0		70	°C

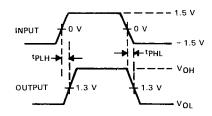
electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
VTH	Differential-input high-threshold voltage	$V_0 = 2.7 V_{,}$	$l_0 = -0.4 \text{ mA}$			0.2	V
V _{TL}	Differential-input low-threshold voltage	$V_0 = 0.5 V_{,}$	l ₀ = 16 mA	-0.2‡			V
Vhys	Hysteresis§				50		mV
VIK	Enable-input clamp voltage	l _l = -18 mA				- 1.5	V
VOH	High-level output voltage	$V_{ID} = 200 \text{ mV},$	$I_{OH} = -400 \ \mu A$	2.7			V
VOL	Low-level output voltage	$V_{ID} \approx -200 \text{ mV},$	I _{OL} = 8 mA			0.45	v
VOL	Low-level output voltage	viD = -200 mv,	I _{OL} = 16 mA			0.5	1 Č
loz	High-impedance-state output current	$V_0 = 0.4 V \text{ to } 2.4 V$	V			± 20	μA
ь.	Line input current	Other input at 0 V,	VI = 12 V			1	mA
lj –	Ene inpot current	See Note 4	$V_{\rm I} = -7 V$			- 0.8	
ЧΗ	High-level enable-input current	V _{IH} = 2.7 V				20	μA
կլ	Low-level enable-input current	$V_{1L} = 0.4 V$				- 100	μA
ri	Input resistance			12			kΩ
los	Short-circuit output current¶			- 15		- 85	mA
lcc	Supply current	Outputs disabled				70	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.


⁺The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for threshold voltage levels only.

 $^{\$}$ Hysteresis is the difference between the positive-going input threshold voltage, V_T +, and the negative-going input threshold voltage, V_T -. See Figure 4.


Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. NOTE 4: Refer to EIA Standard RS-422-A and RS-423-A for exact conditions.

switching characteristics, VCC = 5 V, TA = 25 °C

	PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 V \text{ to } 1$.5 V, CL = 15 pF,		20	35	ns
^t PHL	Propagation delay time, high-to-low-level output	See Figure 1			22	35	ns
^t PZH	Output enable time to high level	C _L = 15 pF,	See Figure 2		17	22	ns
^t PZL	Output enable time to low level	C _L = 15 pF,	See Figure 3		20	25	ns
^t PHZ	Output disable time from high level	C _L = 5 pF,	See Figure 2		21	30	ns
tPLZ	Output disable time from low level	CL = 5 pF,	See Figure 3	1.	30	40	ns

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

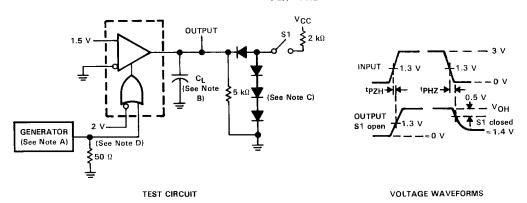


FIGURE 1. tPLH, tPHL

FIGURE 2. tPHZ, tPZH

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, duty cycle = 50%,

- $t_r \leq 6 \text{ ns}, t_f \leq 6 \text{ ns}, Z_{out} = 50 \Omega.$
- B. CL includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.
- D. To test the active-low enable \overline{G} , ground G and apply an inverted input waveform to \overline{G} .

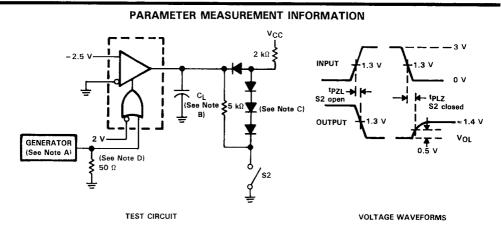
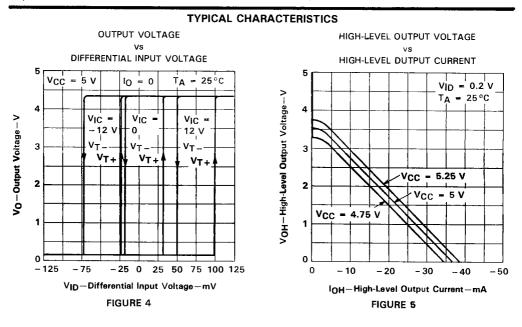
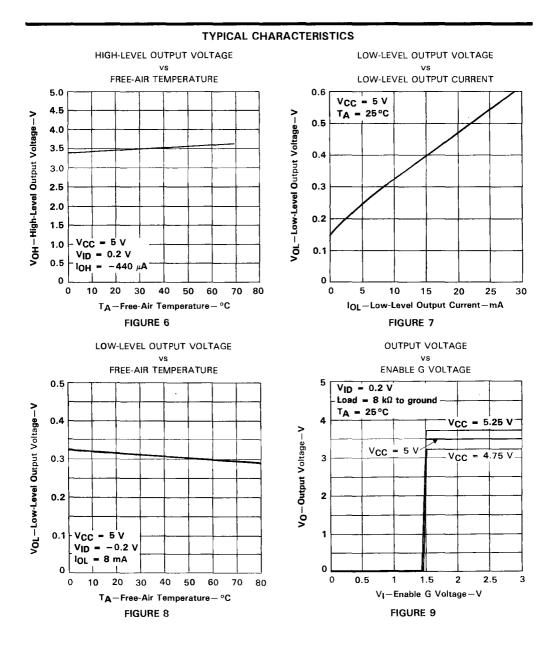
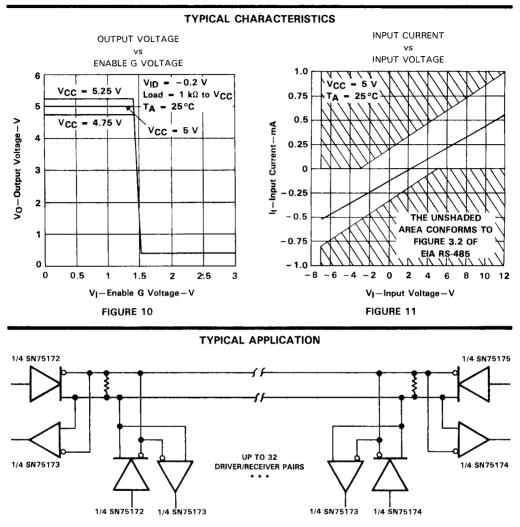




FIGURE 3. tpzL, tpLZ


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, tr \leq 6 ns, tr \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N916 or equivalent.
 - D. To test the active-low enable $\overline{G},$ ground G and apply an inverted input waveform to $\overline{G}.$

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

D2601, OCTOBER 1980-REVISED MAY 1988

- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long 8us Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Output Voltage Range of -7 V to 12 V
- Active-High Enable
- Thermal Shutdown Protection
- Positive- and Negative-Current Limiting
- Operates from Single 5-V Supply
- Low Power Requirements
- Functionally Interchangeable with MC3487

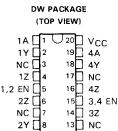
description

The SN75174 is a monolithic quadruple differential line driver with three-state outputs. It is designed to meet the requirements of EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27. The device is optimized for balanced multipoint bus transmission at rates up to 4 megabaud. Each driver features wide positive and negative common-mode output voltage ranges making it suitable for party-line applications in noisy environments.

The SN75174 provides positive- and negativecurrent limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150°C. This device offers optimum performance when used with the SN75173 or SN75175 quadruple differential line receivers.

The SN75174 is characterized for operation from 0° C to 70°C.

FUNCTION TABLE (EACH DRIVER)

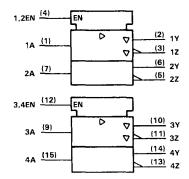

INPUT	ENABLE	OUT	UTS
INPUT	ENABLE	Y	Z
н	н	н	L
L	н	L	н
х	L	z	Z

H = TTL high level, X = irrelevant, L = TTL low level, Z = High impedance (off)

PRODUCTION DATA documents contain information current as of publication date. Products conferm to specifications per the terms of Taxas instruments stendard warranty. Production processing doos not necessarily include testing of ell peramoters.

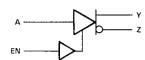
ſ	 PACK. P VIEW	
1A	16	☐ VCC
1Y	15	☐ 4A
1Z	14] 4Y
1,2EN	13] 4Z
2Z	12] 3,4EN
2Y	11] 3Z
2A	10] 3Y
GND	9] 3A

12 3Y

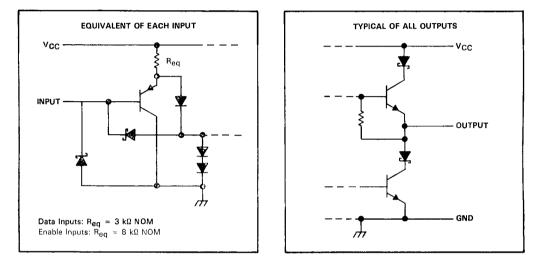

11 3A

NC-No internal connection

2A 🗍 9


GND 10

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram, each driver (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 70°C PO₩FR RATING
DW	1125 mW	9.0 mW/°C	. mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

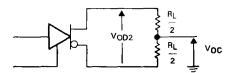
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-Level input voltage, VIL			0.8	V
Common-mode output voltage, VOC			-7 to 12	v
High-level output curent, IOH			- 60	mA
Low-level output current, IOL			60	mΑ
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

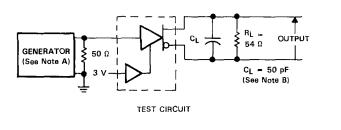
_	PARAMETER	TEST CON	DITIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage	li = -18 mA				- 1.5	V
Voн	High-level output voltage	V _{IH} = 2 V, I _{OH} = ~33 mA	$V_{jjL} = 0.8 V,$		3.7		v
VOL	Low-level output voltage	$V_{\rm H} = 2 V,$ $I_{\rm OL} = 33 \rm mA$	$V_{1L} = 0.8 V_{,}$		1.1		v
Vo	Output voltage	i ₀ = 0		0		5	V
VOD1	Differential output voltage	$I_0 = 0$		1.5		6	V
	Differential output voltage	R _L = 100 Ω,	See Figure 1	½ ∨ ₀ 2	D1		v
		$R_{L} = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
VOD3	Differential output voltage	See Note 2		1.5		5	V
∆ V _{OD}	Change in magnitude of differential output voltage [‡]					±0.2	v
Voc	Common mode output voltage	R _L = 54 Ω or 100 Ω,	See Figure 1			+3 -1	v
∆¦Voc	Change in magnitude of common mode output voltage [‡]					±0.2	v
10	Output current with power off	Vcc = 0,	$V_0 = -7 V \text{ to } 12 V$	'	··	±100	μΑ
loz	High-impedance-state output current	$V_0 = -7 V \text{ to } 12 V$				± 100	μA
Ίн	High-level input current	V _I = 2.7 V	·····			20	μA
41	Low-level input current	V ₁ = 0.5 V				- 360	μA
		$V_0 = -7 V$				-250	
los	Short-circuit output current	$V_0 = V_{CC}$				180	mA
		V ₀ = 12 V				500	1
	Supply current (all drivers)	No load	Outputs enabled	_	38	60	-
lcc	Suppry correct (an drivers)		Oututs dis :		18	40	MA

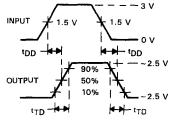
[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. [‡] Δ |V_{OD}| and Δ |V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

NOTE 2: See EIA Standard RS-485 Figure 3.5, Test Termination Measurement 2.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER ,	TEST CO	ONDITIONS	MIN	түр	MAX	UNIT
tDD	Differential-output delay time	$R_1 = 54 \Omega_c$	See Figure 2	_	45	65	ns
tTD	Differential-output transition time	n_= 54 <i>u</i> , 3	See Figure 2		80	120	ns
tPZH	Output enable time to high level	$R_{L} = 110 \Omega, S$	See Figure 3		80	120	пѕ
tPZL	Output enable time to low level	$R_{L} = 110 \Omega, 1$	See Figure 4		55	80	ns
tPHZ	Outut disable time from high level	$R_{L} = 110 \Omega, 3$	See Figure 3		75	115	ns
TPLZ	Output disable time from low level	$R_{L} = 110 \Omega$,	See Figure 4		18	30	ns


SYMBOL EQUIVALENTS


DATA SHEET PARAMETER	RS-422-A	RS-485
vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
VOD1	Vo	V _o
VOD2	$V_t (R_L = 100 \Omega)$	$V_{t} (R_{L} = 54 \Omega)$
V003		V _t (Test Termination Measurement 2)
	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
V _{OC}	Vos	Vos
Δ V _{OC}	Vos - Vos	Vos - Vos
los	Isal, Isb	
lo	li _{xa} , li _{xb}	lia, lib

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. DIFFERENTIAL AND COMMON-MODE OUTPUT VOLTAGES

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 1 MHz, duty cycle = 50%, $Z_{\sigma} = 50$ Ω.

B. CL includes probe and stray capacitance.

FIGURE 2. DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

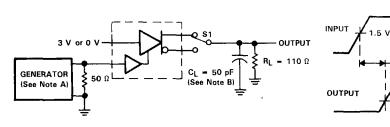
• tPZH

23 V

tPHZ-4 VOLTAGE WAVEFORMS

— 3 V

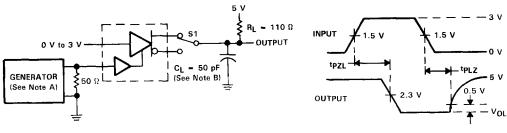
0 V


Voн

V_{off} ≈ 0 V

1.5 V

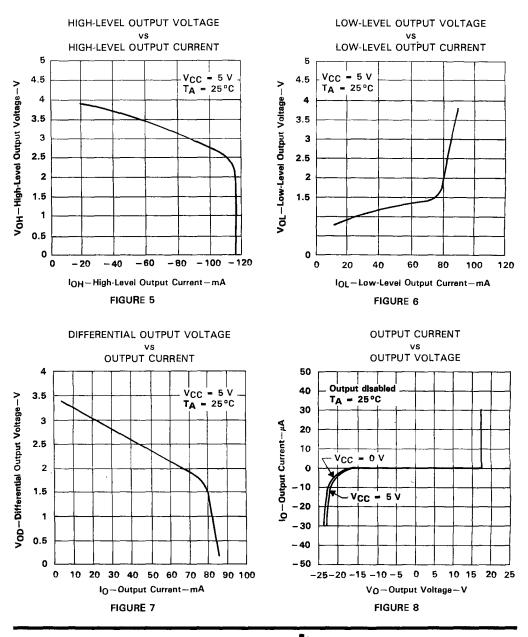
0.5 V


¥

PARAMETER MEASUREMENT INFORMATION

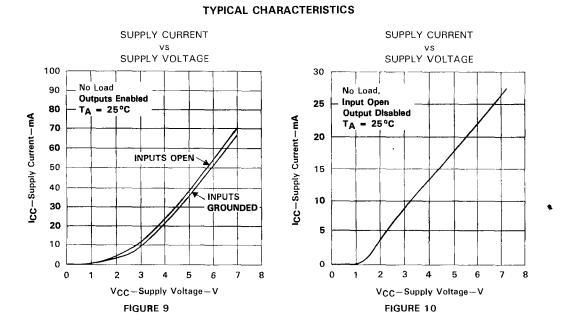
TEST CIRCUIT

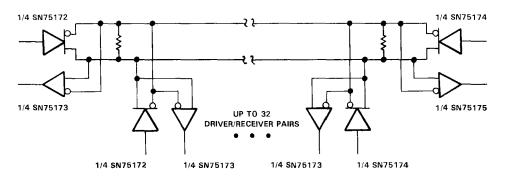
FIGURE 3. tPZH AND tPHZ


TEST CIRCUIT

VOLTAGE WAVEFORMS

FIGURE 4. tpzL AND tpLZ


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r \leq 5 ns, $t_f \le 5 \text{ ns}, Z_0 = 50 \Omega.$ B. CL includes probe and stray capacitance.



TYPICAL CHARACTERISTICS

TEXAS

TYPICAL APPLICATION

NOTE: The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 11

D2602, OCTOBER 1980-REVISED SEPTEMBER 1989

- Meets EIA Standards RS-422-A, RS-423-A, and RS-485
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range - 12 V to 12 V
- Input Sensitivity . . . ± 200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5-V Supply
- Low Power Requirements
- Plug-in Replacement for MC3486

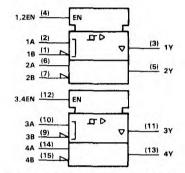
description

The SN75175 is a monolithic quadruple differential line receiver with 3-state outputs. It is designed to meet the requirements of EIA Standards RS-422-A, RS-423-A, and RS-485 and several CCITT recommendations. The device is optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. Each of the two pairs of receivers has a common active-high enable.

The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of ± 12 V. The SN75175 is designed for optimum performance when used with the SN75172 or SN75174 quadruple differential line drivers.

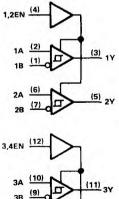
The SN75175 is characterized for operation from 0° C to 70°C.

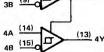
FUNCTION	TABLE	(EACH	RECEIVER)	


DIFFERENTIAL INPUTS A - B	ENABLE	OUTPUT Y
V _{ID} ≥ 0.2 V	н	н
$-0.2 V < V_{ID} < 0.2 V$	н	7
V _{ID} ≥ -0.2 V	н	L
x	L	Z

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

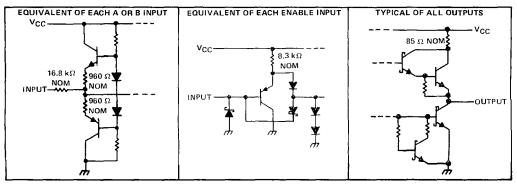
PRODUCTION DATA documents contain information current as of publication data Products conform to specifications per the rarms of Taxes Instruments standard werrenty, Pre-in-its - processing does not necessarily include testing of all perameters.


		N PAC	
1B [1A [1Y [1,2EN [2Y [1 2 3 4 5	U 16 15 14 13	VCC 4B 4A 4Y 3,4EN
2A [2B [GND [6 7 8	11 10 9] 3Y] 3A] 3B


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



Copyright © 1989, Texas Instruments Incorporated

TEXAS VI INSTRUMENTS POST OFFICE BOX 855303 · DALLAS, TEXAS 75285

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage, A or B inputs ± 25 V
Differential input voltage (see Note 2) $\pm 25 \text{ V}$
Enable input voltage
Low-level output current
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 3):
D package
J package
N Package
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package $\dots - 260$ °C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

- 2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. For operation above 25°C free-air temperature, derate the D package to 608 mW at 70°C at the rate of 7.6 mW/°C, the J package to 656 mW at 70°C at the rate of 8.2 mW/°C, and the N package to 736 mW at 70°C at the rate of 9.2 mW/°C. In the J package, SN75175 chips are glass mounted.

recommended operating conditions

	MIN	NOM MAX	UNIT
Supply voltage, VCC	4.75	5 5.25	V
Common-mode input voltage, VIC		±12	V
Differential input voltage, VID		±12	V
High-level enable input voltage, VIH	2		V
Low-level enable input voltage, VIL		0.8	V
High-level output current, IOH		- 400	μA
Low-level output current, IOL		16	mA
Operating free-air temperature, TA	0	70	°C

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

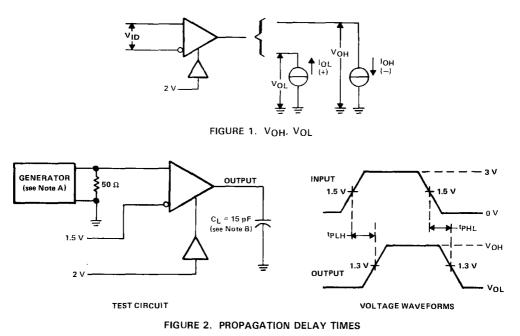
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{TH}	Differential-input high-threshold voltage	$V_0 = 2.7 V$, $l_0 = -0.4 mA$				0.2	v
V _{TL}	Differential-input low-threshold voltage	$V_0 = 0.5 V$, $I_0 = 16 m$	A	-0.2‡			v
Vhys	Hysteresis §	······································		1	50		mV
VIK	Enable-input clamp voltage	l _l = -18 mA				- 1.5	T V
Voн	High-level output voltage	$V_{iD} = 200 \text{ mV}$, $I_{OH} = -400 \mu A$, See Figure 1		2.7			V
VOL	Low-level output voltage	V _{ID} = -200 mV, See Figure	1 · IOL = 8 mA IOL = 16 mA			0.45	v
loz	High-impedance-state output current	$V_0 = 0.4 V \text{ to } 2.4 V$				±20	μA
ł	Line input current	Other input at 0 V, See Note 4	$V_{1} = 12 V$ $V_{1} = -7 V$			1 -0.8	mA
ΊΗ	High-level enable-input current	V _{IH} = 2.7 V				20	μA
٦ _{IL}	Low-level enable-input current	$V_{IL} = 0.4 V$			··· ·	- 100	μA
ri	Input resistance		·····	12			kΩ
los	Short-circuit output current			- 15		- 85	mA
1cc	Supply current	Outputs disabled		1		70	mA

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

* The algebraic convention, in which the less postitive (more negative) limit is designated as minimum, is used in this data sheet for threshold voltage levels only.

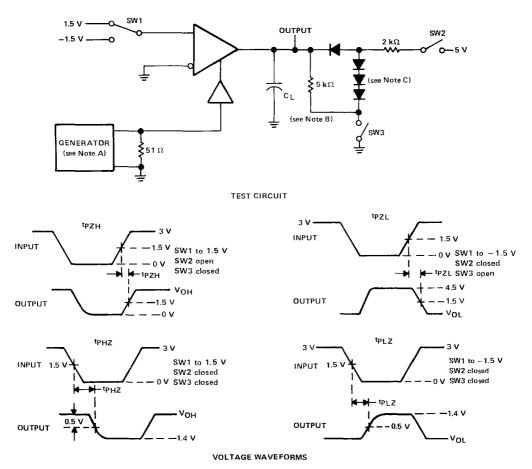
[§] Hysteresis is the difference between the positive-going input threshold voltage, V_{T+} , and the negative-going input threshold voltage, V_{T-} . See Figure 4.

Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second.


NOTE 4: Refer to EIA standards RS-422-A, RS-423-A, and RS-485 for exact conditions.

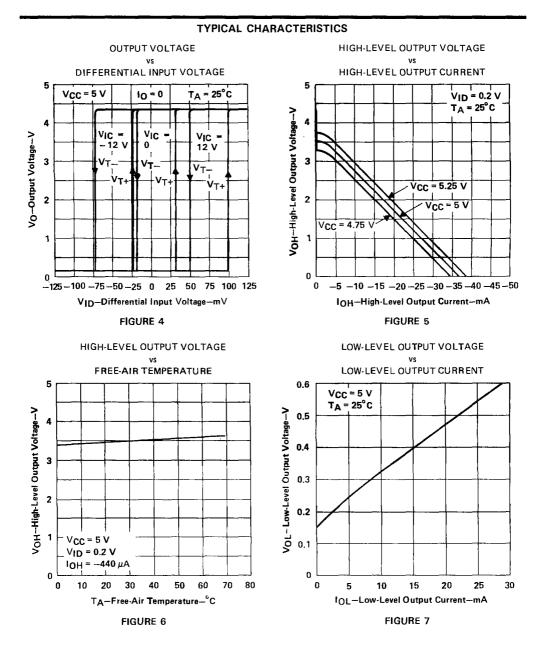
switching characteristics, VCC = 5 V, TA = 25 °C

	P/6AMLLER	11:11:00	N PTLONS	MIP.	TYP	WAN	UNIT
^t PLH	Propagation delay anno, ow-to-high-level output	C _L = 15 pF,	See Figure 2	T	22	35	110
^t PHL	Propagation delay time, high-to-low-level output				25	35	ns
^t PZH	Output enable time to high level	C _L = 15 pF,	See Figure 3		13	30	ns
^t PZL	Output enable time to low level				19	30	ns
^t PHZ	Output disable time from high level	C _L = 15 pF,	See Figure 3	-	26	35	ns
^t PLZ	Output disable time from low level				25	35	ns

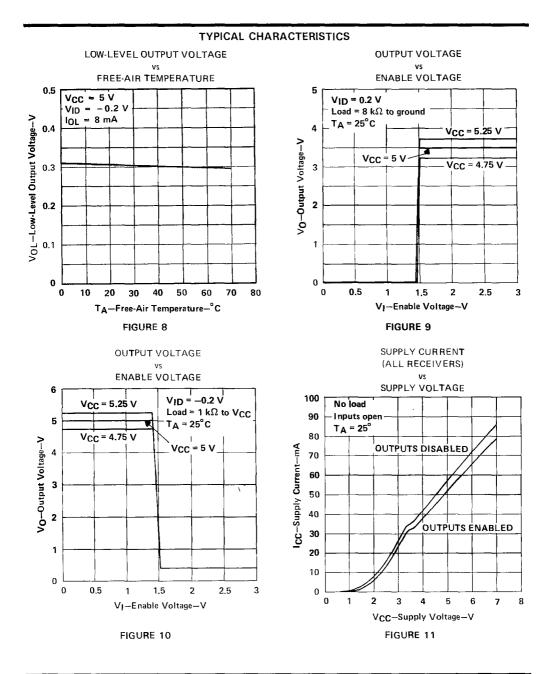


PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_r \leq 6 ns, $\begin{array}{l} t_f \leq 6 \; ns, \; Z_{out} \; = \; 50 \; \Omega \\ B, \; C_L \; includes \; probe \; and \; stray \; capacitance \end{array}$



PARAMETER MEASUREMENT INFORMATION


FIGURE 3. ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle = 50%, t_f \leq 6 ns, t_f \leq 6 ns, t_f \leq 6 ns, 2_{out} = 50 Ω .
 - B. CL includes probe and stray capacitance.
 - C. All diodes are 1N916 or equivalent.

TEXAS

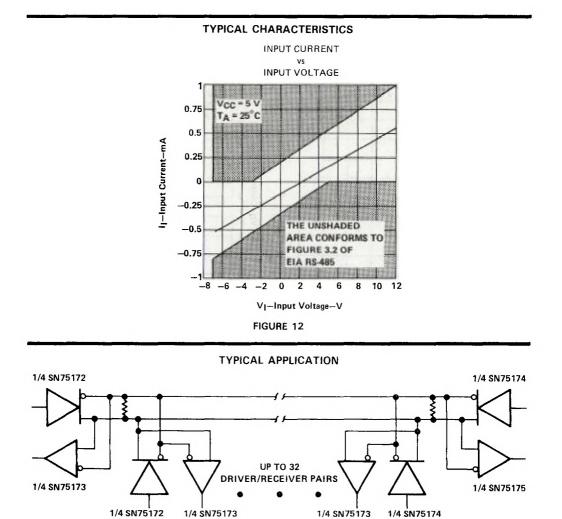


FIGURE 13
NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short
as possible.

D2619, JUNE 1984-REVISED AUGUST 1989

- Bidirectional Transceiver
- Meets EIA Standards RS-422A and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability. . . ± 60 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements

description

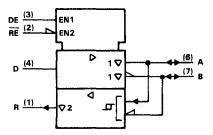
The SN75176A differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and meets EIA Standard RS-422A and CCITT Recommendations V.11 and X.27.

The SN75176A combines a 3-state differential line driver and a differential-input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or V_{CC} \approx 0. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

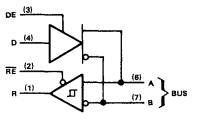
D OR P

FUNCTION TABLE (DRIVER)

INPUT	ENABLE	OUTI	PUTS
D	DE	A	B
н	н	н	L
L L	н	ι	н
x	L	z	z


FUNCTION TABLE (RECEIVER)

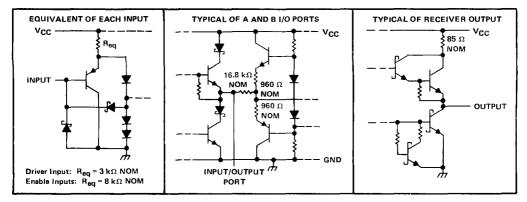
DIFFERENTIAL INPUTS A - B	ENABLE RE	OUTPUT R
V _{ID} > 0.2 V	L	н
-0.2 V < V∤D < 0.2 V	L	7
V1D < −0.2 V	L	L
×	н	z


H = high level, L = low level, ? = indeterminate,

X = irrelevant, Z = high impedance (off)

logic symbol

logic diagram (positive logic)



description (continued)

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positiveand negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C. The receiver features a minimum input impedance of 12 k Ω , input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The SN75176A can be used in transmission line applications employing the SN75172 and SN75174 quadruple differential line drivers and the SN75173 and SN75175 quadruple differential line receivers.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note_1)
Voltage at any bus terminal
Enable input voltage
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
D package
P package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate the D package to 464 mW at 70 °C at the rate of 5.8 mW/ °C and derate the P package to 640 mW at 70 °C at the rate of 8.0 mW/ °C.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	v
Voltage at any bus terminal (separately or commo	on-mode), VI or VIC	-7		12	V
High-level input voltage, VIH	D, DE, and RE	2			v
I ow-level input voltage, VIL	D, DE, and RE			0.8	V
• ential input voltage, VID (see Note 3)				±12	V
	Driver			- 60	mA
High-level output current, IOH	Receiver			-400	μA
L'au fauet autorit au ant de	Driver		5 5 7 2	60	
Low-lavel output current, IOL	Receiver			8	mA
Operating free-air temperature, TA		0		70	°C

NOTE 3: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

:

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted).

	PARAMETER	TEST CON	DITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	$l_{\rm I} = -18 {\rm mA}$				- 1.5	V
Voн	High-level output voltage	$V_{IH} = 2 V,$ $V_{OH} = -33 mA$	V _{IL} = 0.8 V,		3.7		v
VOL	Low-level output voltage	V _{IH} = 2 V, I _{OL} = 33 mA	V _{IL} = 0.8 V,		1.1		V
VOD1	Differential output voltage	$i_0 = 0$				2 V _{OD2}	V
VOD2	Differential output voltage	$R_{\rm L} = 100 \ \Omega,$ $R_{\rm L} = 54 \ \Omega,$	See Figure 1 See Figure 1	2	2.7		- v
∆ V _{OD}	Change in magnitude of differential output voltage [‡]	<u>* </u>				±0.2	v
Voc	Common-mode output voltages	R _L = 54 Ω or 100 Ω,	See Figure 1			3	v
∆∣Vocl	Change in magnitude of common-mode output voltage [‡]	-	· ···			±0.2	v
1 ₀	Output current	Output disabled, See Note 4	$V_0 = 12 V$ $V_0 = -7 V$			1	mA
ЧΗ	High-level input current	$V_1 = 2.4 V$		-			μA
ΙL	Low-level input current	V ₁ = 0.4 V				- 400	μA
las	Chart eizevit a viewit a verat	$V_0 = -7 V$				- 250	
los	Short-circuit output current	$V_0 = V_{CC}$ $V_0 = 12 V$		_		700	mA
100	Supply current (total package)	Noload	Outputs enabled		35		1
lcc	Supply current (total package)	NO IDAO	Outputs disabled	26 40			mA

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

 $^{+\Delta}|V_{OD}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.

[§]In EIA Standard RS-422A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-422A for exact conditions.

driver switching characteristics, VCC = 5 V, TA = 25 °C

	PARAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
tDD	rential-output delay time	P. 60.0	Sae Figure 3		40	60	ns
tτp	rential-output transition time	$R_{L} = 60 \Omega,$	Sae Figure 3		65	95	ns
tPZH	Output enable time to high level	$R_L = 110 \Omega,$	See Figure 4		55	90	ns
^t PZL	Output enable time to low level	R _L = 110 Ω,	See Figure 5		30	50	ns
^t PHZ	Output disable time from high level	R _L = 110 Ω,	See Figure 4		85	130	ns
^t PLZ	Output disable time from low level	$R_{L} = 110 \Omega,$	See Figure 5		20	40	ns

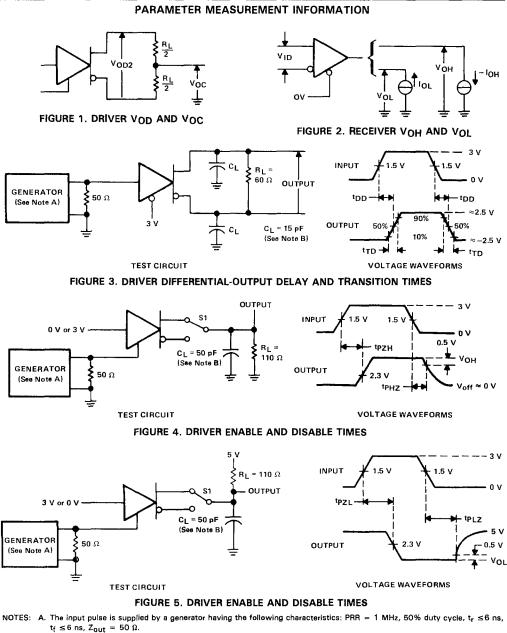
RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	MIN	TYPT	MAX	UNIT
∨тн	Differential-input high-threshold voltage	V ₀ = 2.7 V,	$i_0 = -0.4 \text{ mA}$			0.2	V
VTL	rential-input low-threshold voltage	$V_0 = 0.5 V_r$	$I_0 = 8 \text{ mA}$	-0.2‡			V
	T_ ityataresis [§]				50		mV
VIK	Enable-input clamp voltage	lj = −18 mA		T		1.5	
VOH	High-level output voltage	$V_{1D} = -200 \text{ mV},$ See Figure 2	$I_{OH} = -400 \ \mu A$,	2.7			v
V _{OL}	Low-level output voltage	V _{ID} = -200 mV, See Figure 2	IOL = 8 mA,			0.45	v
loz	High-impedance-state output current	$V_0 = 0.4 V$ to 2.4	V			± 20	μA
1		Other input = 0 V,	V _I = 12 V	1		1	
t _l	Line input current	See Note 4	$V_{ } = -7 V$			-0.8	mA
Чн	High-level enable-input current	V _{IH} = 2.7 V				20	μA
ηL	Low-level enable-input current	V _{IL} = 0.4 V				- 100	μA
ri	Input resistance			12			kΩ
los	Short-circuit output current			- 15		-85	mA
		A1 - 1	Outputs enabled	35		50	
lcc	Supply current (total package)	No load	Outputs disabled		26	40	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

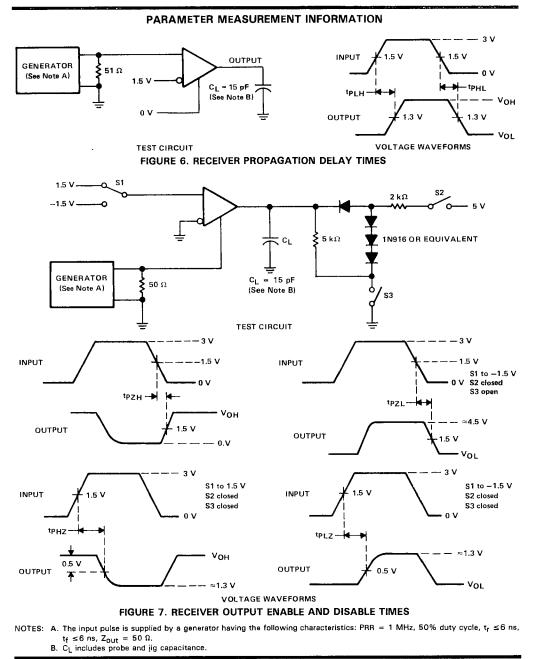
*The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.

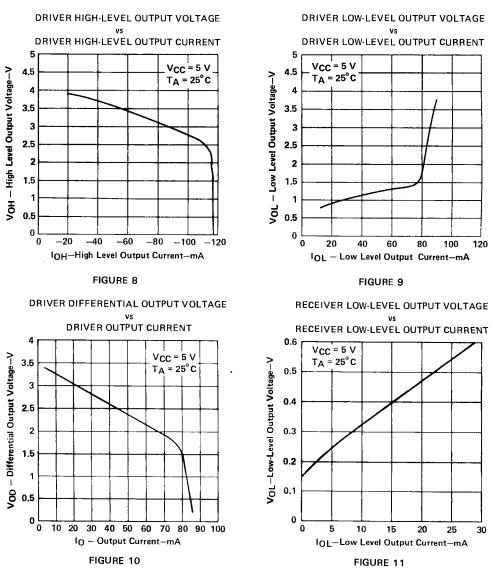

[§]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+} , and the negative-going input threshold voltage, V_{T-} . See Figure 4.

NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-422A for exact conditions.

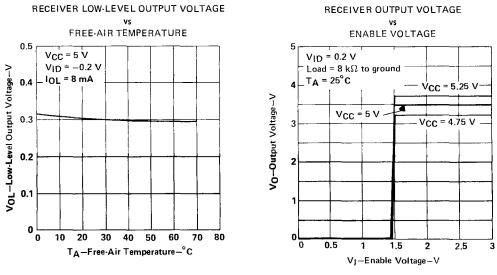
receiver switching characteristics, VCC = 5 V, TA = 25°C

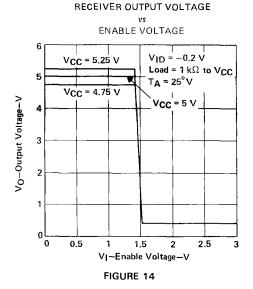
[PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 V \text{ to } 1.5 V$,			21	35	ns
TPHL	Propagation delay time, high-to-low-level output	$C_{L} = 15 pF$,	See Figure 6		23	35	ns
tPZH	Output enable time to high level	0 1EE	See Figure 7		10	30	ns
†PZL	Output enable time to low level	CL = 15 pF, See Figure 7			12	30	ns
^t PHZ	Output disable time from high level	$C_{1} = 15 \text{pF},$	See Figure 7		20	35	ns
^t PLZ	Output disable time from low level	с <u>г</u> – торя,	ace rigule 7		17	35	ns





B. CL includes probe and jig capacitance.


 \mathbb{C}^{2}



TYPICAL CHARACTERISTICS

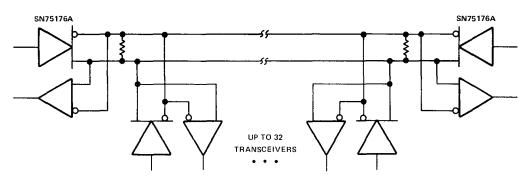

FIGURE 12

FIGURE 13

TYPICAL APPLICATION

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

D2606, JULY 1985-REVISED JANUARY 1990

- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Bus Voltage Range . . . 7 V to 12 V
- Positive and Negative Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements

description

The SN75177B and SN75178B differential bus repeaters are monolithic integrated devices each designed for one-way data communication on multipoint bus transmission lines. These devices are designed for balanced transmission bus line applications and meet EIA Standard RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27. Each device is designed to improve the performance of the data communication over long bus lines. The SN75177B and SN75177B are identical except for the complementary enable inputs, which allow the devices to be used in pairs for bidirectional communication.

SN75177B .	D, JG,	OR	P PACKAGE
	(TOP VIE	W)	

SN75178B . . . JG OR P PACKAGE (TOP VIEW)

Vcc[_⊥□	1 2	U 8 7] А] В
EN 🗌	3	6	🗌 Z
GND 🗍	4	5	þγ

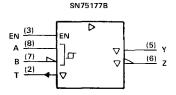
SN75177B FUNCTION TABLE

DIFFERENTIAL INPUTS	ENABLE	OUTPUTS			
<u>A-B</u>	EN	Т	Y	z	
$V_{ID} \ge 0.2 V$	н	н	н	L	
$-0.2 V < V_{ID} < 0.2 V$	н	?	?	?	
$V_{\rm ID} \leq 0.2 V$	н	L	L	н	
x	L	Z	z	Z	

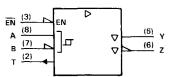
SN75178B FUNCTION TABLE

DIFFERENTIAL INPUTS	ENABLE	OUTPUTS			
AB	EN_	T	Y	z	
$V_{ID} \ge 0.2 V$	L	н	н	L	
$-0.2 V < V_{1D} < 0.2 V$	L	?	?	?	
$V_{\text{ID}} \leq 0.2 \text{ V}$	L	L	L	н	
×	н	z	z	Z	

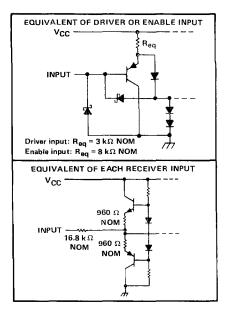
H = high level, L = low level, ? = indeterminate,

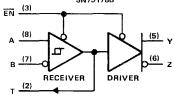

X = irrelevant, Z = impedance (off)

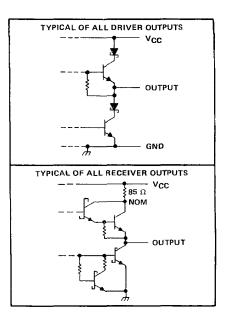
The SN75177B and SN75178B feature positive- and negative-current limiting 3-state outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -7 V to 12 V. The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C. The driver is designed to drive current loads up to 60 mA maximum.


The SN75177B and SN75178B are designed for optimum performance when used on transmission buses employing the SN75172 and SN75174 differential line drivers, SN75173 and SN75175 differential line receivers, or SN75176B bus transceiver.

logic symbols[†]




[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


scnematics of inputs and outputs

logic diagrams (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Voltage range at any bus terminal
Enable input voltage
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3):
D package
JG package
P package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
 For operation above 25°C free-air temperature, derate the D package to 464 mW at 70°C at the rate of 5.8 mW/°C, the JG package to 528 mW at 70°C at the rate of 6.6 mW/°C and the P package to 640 mW at 70°C at the rate of 8.0 mW/°C. In the JG package, SN75177B and SN75178B chips are glass mounted.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	EN or EN	2			V
Low-level linput voltage, VIL	EN or EN			0.8	V
Common-mode input voltage, VIC		-7†		12	V
• • • • • • • • • • • • • • • • • • •				±12	V
	Driver			- 60	mA
gh-level output current, IOH	Receiver			- 40 0	μA
	Driver			60	
ow-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA		0		70	°C

[†]The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	l ₁ = -18	mA			-1.5	v
Vo	Output voltage	0 = 0		0		6	V
	Differential output voltage	10 = 0		1.5		6	V
	Differential output voltage	R _L = 100	Ω, See Figure 1	½V _{0D1}			v
		RL = 54 Ω	I, See Figure 1	1.5	2.5	5	V
VOD3	Differential output voltage	See Note 4		1.5		5	v
∆ V _{OD}	Change in magnitude of differential output voltage [‡]	RL = 54 0	t or 100 Ω,			±0.2	v
Voc	Common-mode output voltage	See Figure 1				3 -1	v
∆ V _{OC}	Change in magnitude of common-mode output voltage [‡]					±0.2	v
10	Output current	V _{CC} = 0,	$V_0 = -7 V$ to 12 V			±100	μA
loz	High-impedance-stage output current	V ₀ = -7				±100	μΑ
Чн	High-level input current	$V_{ } = 2.4$ V	/			20	μA
μ	Low-level input current	$V_1 = 0.4$	/			-400	μA
		$V_0 = -7$	V			- 250	
los	Short-circuit output current	$V_0 = V_{CO}$	2				mA
		V _O = 12	V				
1		No load	Outputs enabled		57	70	mA
lcc	Supply current (total package)	No load	Outputs disabled		26	35	ma

[†]All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25 \text{ °C}$.

 $^{+}\Delta|V_{OD}|$ and $\Delta|V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low leval.

NOTE 4: See EIA Standard RS-485 from Figure 3.5, Test Termination Measurement 2.

driver switching characteristics, VCC = 5 V, TA = $25 \,^{\circ}$ C

	PARAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
tDD	Differential-output delay time	D: 54.0	Cas Figure 3		15	22	ns
^t TD	Differential-output transition time	$R_L = 54 \Omega$,	See Figure 3		20	30	ns
tPZH	Output enable time to high level	$R_{L} = 110 \Omega,$	See Figure 4		85	120	ns
^t PZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		40	60	ns
tPHZ	Output disable time from high level	$R_{L} = 110 \Omega,$	See Figure 4		150	250	ns
tPLZ	Output disable time from low level	$R_{L} = 110 \Omega,$	See Figure 5		20	30	ns

RS-485 DATA SHEET PARAMETER RS-422-A Voa, Vob V_{oa}, V_{ob} ٧o VOD1 ٧o ٧o $V_{1} (R_{1} = 100 \Omega)$ $V_t (R_L = 54 \Omega)$ VOD2 Vt (Test termination VOD3 Measurement 2) $| |V_t| - |\overline{V}_t| |$ ∆!Vod| $|V_t| - |\overline{V}_t|$ |V_{os}| ∣Vos∣ Voc ∆[Voc] V_{os} - ∇_{os} | Vos - Vos Isal, Isb los ю I'xal · I'xbl lia, lib

SYMBOL EQUIVALENTS

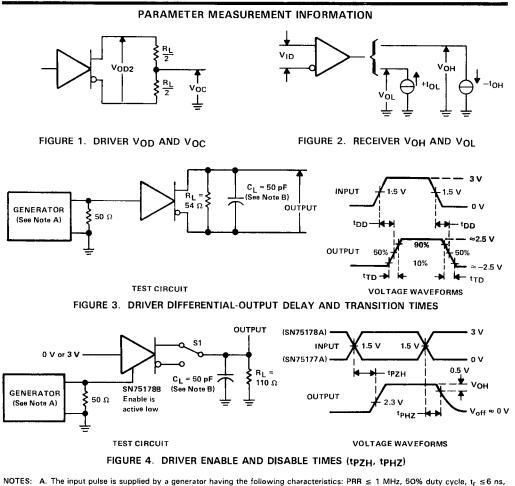
RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYPT	MAX	UNIT
∨тн	• rential-input high-threshold voltage	$V_0 = 2.7 V_i$	$l_0 = -0.4 \text{ mA}$			0.2	V
VTL	ential-input low-threshold voltage	$V_0 = 0.5 V_0$	i ₀ = 8 mA	-0.2*			v
Vhvs	Hysteresis [§]				50		m∨
Vik	Enable-input clamp voltage	lj ≕ −18 mA				- 1.5	v
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \ \mu A$,	2.7			v
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	$1_{OL} = 8 \text{ mA},$			0.45	v
loz	High-impedance-state output current	$V_0 = 0.4 \text{ V to } 2.4$	V			20 - 400	μΑ
		Other input at 0 V,	$V_{ } = 12 V$			1	
lį	Line input current	See Note 5	$V_{1} = -7 V$			-0.8	mA
ίн	High-level enable-input current	VIH = 2.7 V	· · · · · · · · · · · · · · · · · · ·			20	μA
4L	Low-level enable-input current	VIL = 0.4 V					μA
ri	Input resistance			12			kΩ
los	Short-circuit output current			- 15		-85	mA
1		Ne les d	Outputs enabled		57	70	4
ICC	Supply current (total package)	No load	Outputs disabled		26	35	mA

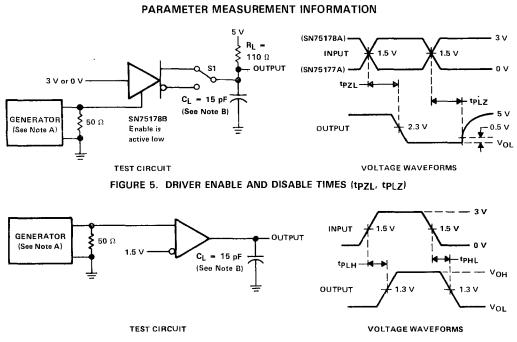
[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[‡]The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.

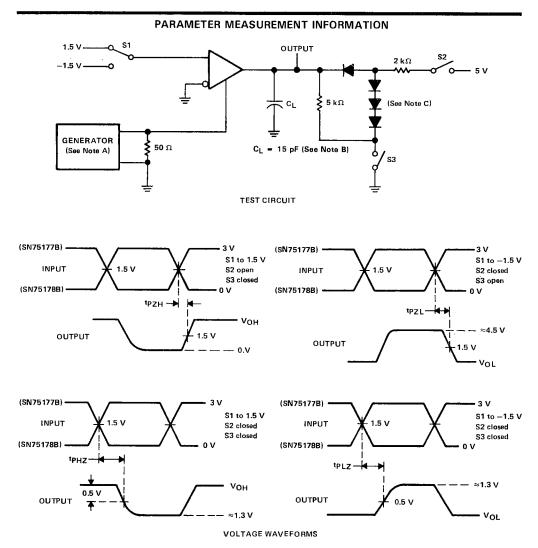

 $^{\$}$ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. See Figure 12.

NOTE 5: Refer to EIA Standard RS-422 for exact conditions.

receiver switching characteristics, V_{CC} = 5 V, T_A = $25^{\circ}C$


	PARAMETER	TEST CO	NDITIONS	MIN	түр	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 V$	to 1.5 V,		19	35	ns
tPHL	Propagation delay time, high-to-low-level output	$C_L = 15 \text{ pF},$	See Figure 6		30	40	ns
tpzh	Output enable time to high level	C _L = 15 pF,	See Figure 7		10	20	ns
^t PZL	Output enable time to low level				12	20	'ns
tPHZ	Output disable time from high level	0 15 -5	C		25	35	ns
^t PLZ	Output disable time from low level	$C_L = 15 \text{ pF},$	See Figure 8		17	25	กร

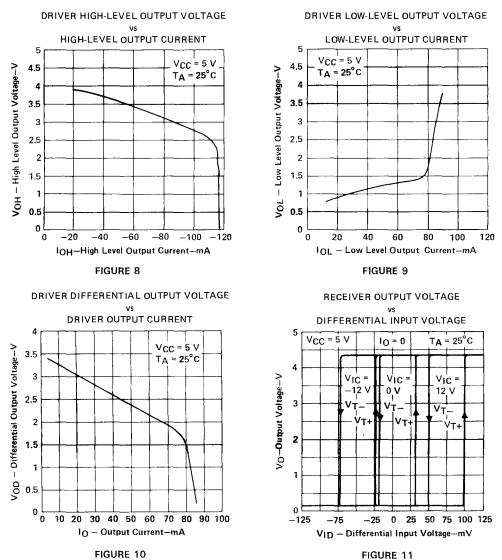
- $t_f \leq 6 \text{ ns}, Z_{out} = 50 \Omega.$
- B. CL includes probe and jig capacitance.



.

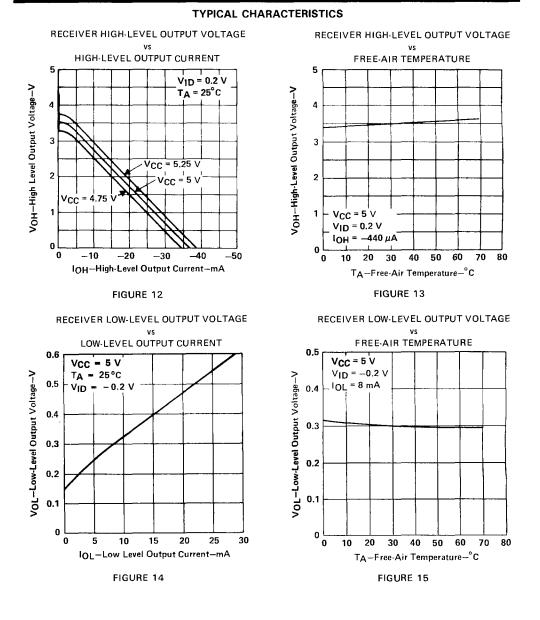
FIGURE 6. RECEIVER PROPAGATION DELAY TIMES

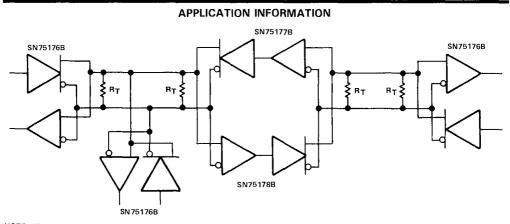
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.
 - B. CL includes probe and jig capacitance.


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \approx 50%, t_r = t_f = 6 ns, Z₀ = 50 Ω .

B. CL includes probe and jig capacitance.

C. All diodes are 1N916 or equivalent.





TYPICAL CHARACTERISTICS

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 16. TYPICAL APPLICATION CIRCUIT

D2845, OCTOBER 1985-REVISED AUGUST 1989

- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- Bus Voltage Range . . . 7 V to 12 V
- Positive and Negative Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements

description

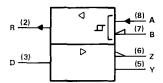
The SN75179B driver and bus receiver circuit is a monolithic integrated device designed for balanced transmission line applications and meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27. It is designed to improve the performance of fullduplex data communications over long bus lines.

The SN75179B driver outputs provide limiting for both positive and negative currents. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a commonmode input voltage range of -12 V to 12 V. The driver provides thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C. The device is designed to drive current loads of up to 60 mA maximum.

The SN75179B is characterized for operation from 0° C to 70°C.

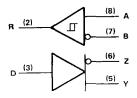
(TOP VIEW)								
Vcc []								
R 🚺 2	7 🗋 В							
D 🗌 3	6 🗋 Z							
GND 🗍 🛓	5] Y							

FUNCTION TABLE (DRIVER)


INPUT	OUTPUTS		
D	Y Z		
н	ΗL		
Ĺ	ĿН		

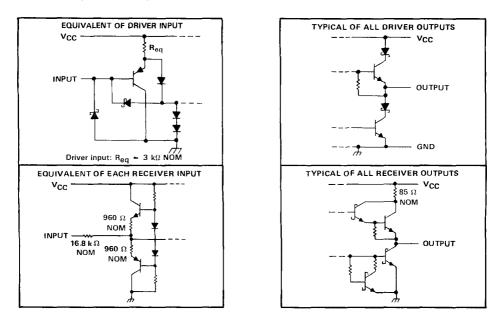
FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS	OUTPUT
A – B	R
V _{ID} ≥ 0.2 V	н
$-0.2 \lor < V_{ID} < 0.2 \lor$?
V _{ID} ≤ -0.2 ∨	L


H = high level, L \approx low level, ? = indeterminate

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


logic diagram

1: IOA: *** souments contain information ...sof I: on date. Products conform to ...ec....tion. pc. the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all paremeters.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Voltage at any bus terminal
Differential input voltage (see Note 2) ±25 V
Continuous total dissipation at (or below 25 °C free-air temperature (see Note 3):
D package
JG package
P package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.
 For operation above 25 °C free-air temperature, derate the D package to 464 mW at 70 °C at the rate of 5.8 mW/°C, the JG package to 528 mW at 70 °C at the rate of 6.6 mW/°C and the P package to 640 mW at 70 °C at the rate of 8.0 mW/°C.

In the JG package SN75179B, chips are glass mounted.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level input voltage, VIH	Driver	2			V
Low-level input voltage, VIL	Driver			0.8	V
Common-mode input voltage, VIC		-7†		12	V
Differential input voltage, VID				±12	V
High level output output	Driver			- 60	mA
common-mode input voltage, VIC	Receiver			- 400	μA
	Driver			60	
	Receiver			8	mA
Operating free-air temperature, TA		0		70	°C

[†] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMEN R	(6.) · é.	SATIONS.	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp vonage	lj = - 18 mA	- <u></u>			- 1.5	V
Vo	Output voltage	$I_0 = 0$		0		6	V V
VOD1	Differential output voltage	I _O = 0		1.5		6	V
	Differential output voltage	R _L = 100 Ω,	See Figure 1	^{1/2} V0D1		•	v
0021	-	$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	
V003	Differential output voltage	See Note 4		1.5		5	V
∆ VOD	Change in magnitude of differential output voltage [§]			<u> </u>		±0.2	v
Voc	Common-mode output voltage	$R_{L} = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1	·		+3 -1	v
∆lVocl	Change in magnitude of common-mode output voltage §	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				±0.2	v
10	Output current	V _{CC} = 0,	$V_0 = -7 V \text{ to } 12 V$			±100	μA
Чн	High-level input current	$V_{i} = 2.4 V$		[20	μΑ
IL.	Low-level input current	VI = 0.4 V				-200	μA
100	Short girouit output ourrent	V ₀ = -7 V		1		- 250	
OS	Short-circuit output current	V ₀ = V _{CC} or 12 V				250	- mA
lcc	Supply current (total package)	No load			57	70	mA

[‡]All typical values are at $V_{CC} = 5 V$ and $T_A = 25 °C$.

 $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

NOTE 4: See EIA Standard RS-485, Figure 3.5, Test Termination Measurement 2.

driver switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tDD	Differential-output delay time	$R_1 = 54 \Omega_c$	See Figure 3		15	22	ns
ttd.	Differential-output transition time	n[= 54 11,	See Figure 3		20	30	ns

SYMBOL EQUIVALENTS	SY	MBOL	EQUI	ALEN	ITS
--------------------	----	------	------	------	-----

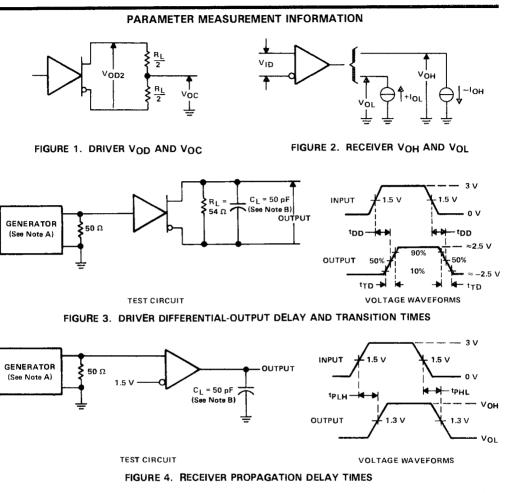
DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
	Vo	Vo
VOD2	$V_t (R_L \approx 100 \Omega)$	$V_t (R_L = 54 \Omega)$
Ινορ3Ι		Vt (Test termination Measurement 2)
∆∣Vod	$ V_t - \overline{V}_t $	$ \nabla_t - \overline{\nabla}_t $
Voc	Vos	V _{os}
	Vos - Vos	$ V_{os} - \overline{V}_{os} $
los	Isal, Isb	
lo	li _{xa} , li _{xb}	l _{ia} , l _{ib}

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

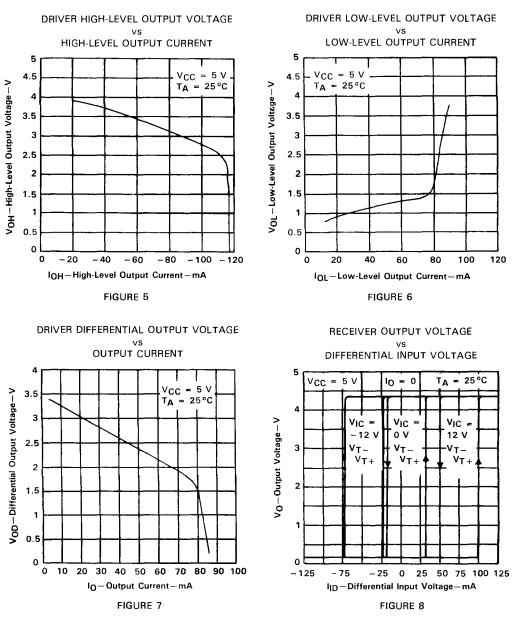
	PARAMETER	TEST CON	DITIONS	MIN	TYPT	MAX	UNIT
∨тн	rential-input high-threshold voltage	V _O = 2.7 V,	-0.4 mA			0.2	V
VTL	· rential-input low-threshold voltage	V _O = 0.5 V,	l _O ≈ 8 mA	-0.2‡			V
Vhys	Hysteresis [§]				50		mV
VOH	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \ \mu A$,	2.7			v
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	l _{OL} = 8 mA,			0.45	v
ų	Line input current	Other input at 0 V, See Note 5	V ₁ = 12 V V ₁ = -7 V			1 -0.8	mA
ri	Input resistance			12			kΩ
los	Short-circuit output current			- 15		- 85	mA
ICC .	Supply current (total package)	No load		1	57	70	mA

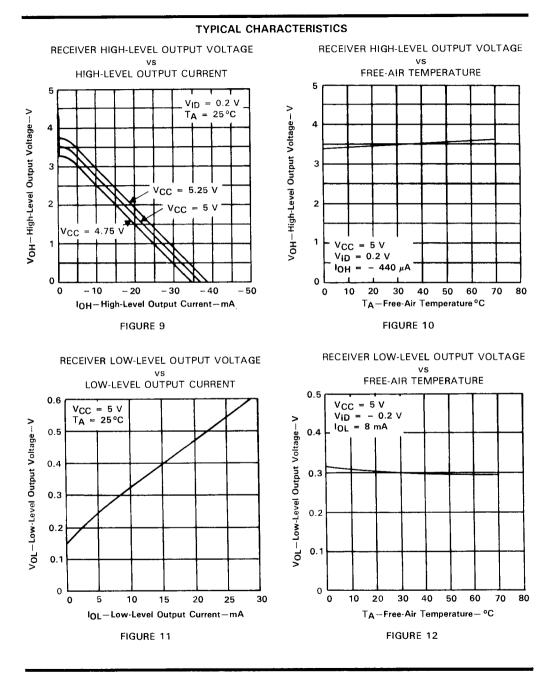
[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.


⁺The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.

[§]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. NOTE 5: Refer to EIA Standard RS-422-A for exact conditions.

receiver switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$


	PARAMETER TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		19	35	ns
tPHL	Propagation delay time, high-to-low-level output	C _L = 15 pF, See Figu	re 4	30	40	ns

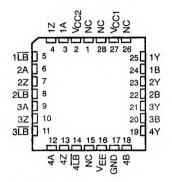


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
 - B. CL includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

D3389. FEBRUARY 1990

- Meets Standards RS-232-C, EIA-232-D, and CCITT V.28
- Four Independent Drivers and Receivers
- Loopback Mode Functionally Self-Tests Drivers and Receivers Without Disconnection From Line
- Driver Slew Rate Limited to 30 V/µs Max
- Built-in Receiver 1-µs Noise Filter
- Internal Thermal Overload Protection
- EIA-232-D Inputs and Outputs Withstand ± 30V
- Low Supply Current . . . 2.5 mA Typ
- ESD Protection Exceeds 2000 V Per MIL-STD-833C Method 3015


description

The SN75186 is a low-power bipolar device containing four driver/receiver pairs designed to interface data terminal equipment (DCE). Additionally, the SN75186 has a loopback mode that may be used by a data communication system to perform a functional self test on each driver/receiver pair, removing the need to locally disconnect cables and install a loopback connector. Flexibility of control is ensured by each driver/receiver pair having its own loopback control input. The SN75186 is designed to conform to standards RS-232-C, its revision ANSI/EIA-232-D-1986, and CCITT V.28.

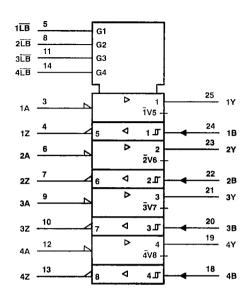
The maximum slew rate is limited to 30 V/µs at the driver outputs and drives a capacitive load of 2500 pF at 20 kBaud. The receivers have input filters that disregard input noise pulses shorter than 1 µs. The SN75186 is a robust device capable of withstanding \pm 30 V at driver outputs and at receiver inputs whether powered or unpowered. This device has an internal ESD protection rated at 2 kV to prevent functional failures.

The SN75186 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE (EACH RECEIVER)

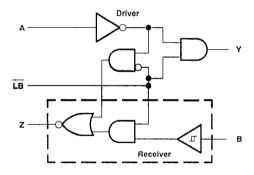
LOOPBACK	INF.	uts	OUTPUT	
LB	A	B	z	
н	x	Н	L	
н	x	L	н	
L	L	х	L	
L	н	х	н	

FUNCTION TABLE (EACH DRIVER)

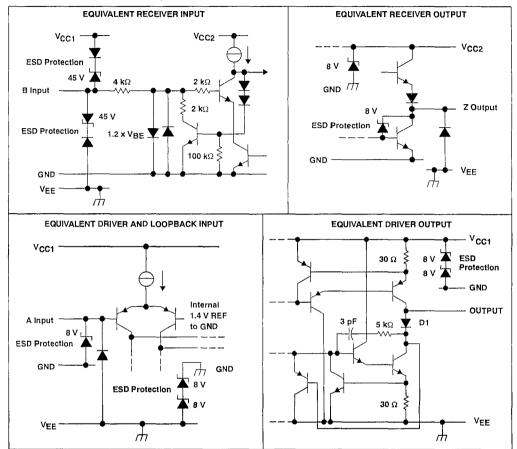

LOOPBACK	INPUT A	OUTPUT Yt
н	н	L
н	L	н
L	x	L

[†] Voltages are RS-232-C, EIA-232-D, and V.28 levels

H = high level, L = low level, X = irrelevant



logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.

logic diagram, each driver/receiver pair (positive logic)

schematics of inputs and outputs

All component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC1} (see Note 1)	15 V
Supply voltage, V _{CC2}	
Supply voltage, V _{FF}	
Receiver input voltage range	
Driver input voltage range	(VFF + 2 V) to VCC1 V
Loopback input voltage range	0 V to 7 V
Driver output voltage range	
Continuous total power dissipation at (or below) 25°C free-air	
temperature (see Note 2)	1400 mW
Operating free-air temperature range, TA	0°C to 70°C
Storage temperature range	
Case temperature for 10 seconds	

NOTES: 1. All voltages are with respect to the network ground terminal.

For operation above 25°C free-air temperature, derate linearly to 896 mW at 70°C at the rate of 11.2 mW/°C.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC1		10.8	12	13.2	v
Supply voltage, VCC2		4.5	5	5.5	V
Supply voltage, VEE		-10.8	-12	-13.2	V
input voitage, Vį	Driver and loopback	0		VCC2	v
Input voltage, VI (see Note 3)	Receiver			± 30	V
High-level input voltage, VIH	Driver and ioopback	2			٧
Low-level input voltage, VIL	Driver and icopback			0.8	V
Output voltage, VO, powered on or off	Driver			± 30	V
High-ievel output current, iOH	Receiver			- 4	mA
Low-level output current, iOL	Receiver			4	mA
Operating free-air temperature, TA		0		70	°C

NOTE 3: If all receiver inputs are held at ± 30V, the thermal dissipation limit of the package may be exceeded. The thermal shutdown may not protect the device, as this dissipation occurs in the receiver input resistors.

DRIVER SECTION

driver electrical characteristics over full recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	Т	EST CONDITIO	NS	MIN	TYP [†]	M4.5	UNIT
VOH	High-level output voltage	RL = 3 kΩ,	VIL = 0.8 V,	See Figure 1	7		-	V
VOL	Low-level output voltage‡	RL = 3 kΩ,	V _{IH} = 2 V,	See Figure 1			-7	v
VOH(LB)	High-level output voltage in loopback mode \$1	RL = 3 kΩ,	LB at 0.8 V,	V _{IL} = 0.8 V			7	V
Iн	High-level input current (driver and loopback inputs)#	VI = 5 V,	See Figure 2				100	μΑ
կլ	Low-level input current (driver and loopback inputs)#	Vj = 0,	See Figure 2				- 100	μA
IOS(H)	High-level short-circuit output current	V∣ ≕ 0.8 V, See Note 4 a	V _O = 0, nd Figure 1		- 10	- 20	- 35	mA
OS(L)	Low-level short-circuit output current	V ₁ = 2 V, See Note 4 a	V _O = 0, nd Figure 1		10	20	35	mA
ICC1	Supply current from V _{CC1}	No load				2.5	4	mΑ
CC1(LB)	Supply current from VCC1 with loopback on	No load,	LB at 0.8 V				10	mA
IEE	Supply current from VEE	No load				-2.5	4	mA
EE(LB)	Supply current from VEE with loopback on	No load,	LB at 0.8 V				-10	mA
ICC2	Supply current from VCC2	No load,	Vi = 0,	See Note 6		-10	100	μΑ
ICC2(LB)	Supply current from V_{CC2} with loopback on	No load, See Note 6	LB at 0.8 V,	VI ≖ 0,		- 10	- 100	μA
ro	Output resistance	$V_{CC1} = V_{EE}$ $V_0 = -2 V_{to}$		See Note 5	0.3	5		kΩ

[†] All typical values are at T_A = 25°C.

+ The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only.

§ This is the most positive level that the driver output will rise to when the device is in the loopback mode and the driver input is at a low level.

[¶] The loopback mode should be entered only when the driver output is in the low (marking) state.

Unused driver inputs should be tied to 0 V or VCC2; unused loopback inputs should be tied to VCC2.

NOTES: 4. Minimum IOS(H) and IOS(L) are specified at VO = 0 as this more accurately describes the output current naeded to dynamically drive capacitive lines. A minimum of ±10 mA is sufficient to drive 2500 pF in parallel with 3 kΩ at a slew rate of 4 V/µs (in accordance with EIA-232-D and V.28).

5. Test conditions are those specified by EIA-232-D.

 Without a load and V_I = 0, the worst case conditions, V_{CC2} pin sources a small current originating from V_{CC1} giving I_{CC2} supply current a negative sign. When a receiver has an output load, V_{CC2} sinks static and dynamic supply currents to meet load requirements.

driver switching characteristics over full recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

	PARAMETER	PARAMETER TEST CONDITIONS		MIN	TYPT	MAX	UNIT
^t PLH	Propagation delay time, low-to-high level output	$R_L = 3 k\Omega to 7 k\Omega$,	CL = 15 pF,		0.6		μs
^t PHL	Propagation delay time, high-to-low-level output	See Figure 3			0.8	5	μs
^t skew	tplH - tpHL	$R_L = 3 k\Omega$ to 7 kΩ, $C_L = 15 pF$ to 2500 pF			0.2	1	μs
SR	Output slew rate	$R_L = 3 k\Omega \text{ to } 7 k\Omega$, $C_L = 15 \text{ pF to } 2500 \text{ pF}$		4		30	V/µs
tpd(ILB)	Propagation delay time going into loopback mode‡	$R_{L} = 3 k\Omega$ to 7 kΩ, See Figure 7	See Note 7,		3	50	μs
tpd(OLB)	Propagation delay time going out of loopback mode§	RL = 3 kΩ to 7 kΩ, See Figure 7	See Note 7,		3	50	μs
^t pd(LB)	Propagation delay time in loopback mode [¶]	R _L = 3 kΩ to 7 kΩ, See Figure 8	See Note 7,		3	15	μs
tskew	Skew time in loopback mode	$R_L = 3 k\Omega$ to 7 kΩ,	See Note 7	1	4	10	μs

[†] All typical values are at T_A = 25°C.

[‡] This is the delay between entering the loopback mode and when the data on the receiver output becomes valid.

§ This is the worst-case (rising or falling edges) total propagation delay between driver input and receiver output when in the loopback mode.

[¶] This is the magnitude of the difference between the propagation delay tima of the rising and falling edges of tpd(LB).

NOTE 7: Skew time is the magnitude of the difference between tPHL and tPLH and is measured with a 0 to 3-V input pulse.

RECEIVER SECTION

receiver electrical characteristics over full recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
V _{T+}	Positive-going threshold voltage	See Figure 5		1.3	2	2.5	V
V _T	Negative-going threshold voltage	See Figure 5		0.5	1	1.7	V
V _{hys}	Input hysteresis (VT+ – VT-)			0.5	1	1.5	V
		V _I = - 3 V or inputs open,	loн =20 μA	3.5			
Vон	High-level output voltage	See Note 8 and Figure 5,	IOH = - 4 mA	2.4			V
VOL	Low-level output voltage	I _{OL} = 4 mA, See Figure 5	VI = 3 V,			0.4	v
IOS(H)	Short-circuit output current at high-level	V _{OH} = 0,	See Figure 4		20	-60	mA
IOS(L)	Short-circuit output current at low-level	VOL = VCC2,	See Figure 4		20	60	mA
rin	Input resistance	V ₁ ≤ 25 V		3			kΩ
1.11		V ₁ = 3 V to 25 V				7	

NOTE 8: If the inputs are left unconnected, the receiver interprets this as a low input and the receiver outputs will remain in the high state.

receiver switching characteristics over full recommended ranges of supply voltages and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output			2	6	μs	
t PHL	Propagation delay time, high-to-low-level output	See Figure 6			2	6	μs
^t TLH	Transition time, low-to-high level output [‡]	CL = 50 pF,	See Figure 6		200	300	ns
^t THL	Transition time, high-to-low level output‡				50	300	ns
tskew	tPLH-tPHL				0.1	1	μs
twN	Maximum pulse duration assumed to be noise§	Pulse amplitude	= 5 V	1	2	4	μs

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] Transition times are measured between 10% and 90% points on output waveform.

§ The receiver will ignore any positive- or negative-going pulse whose duration is less than the minimum value of tw and accept any positive- or negative-going pulse whose duration is greater than the maximum value of tw.

SN75186 QUADRUPLE DRIVER/RECEIVER WITH LOOPBACK

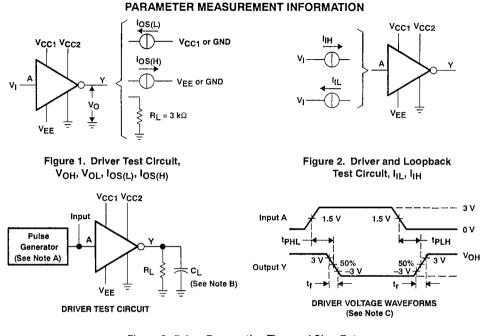


Figure 3. Driver Propagation Time and Siew Rate

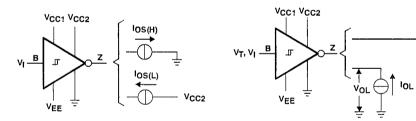
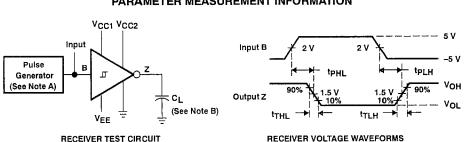
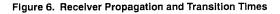
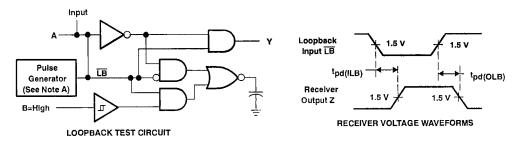


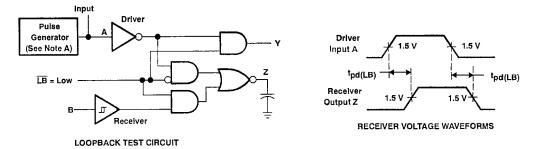
Figure 4. Receiver Test Circuit, IOS(H), IOS(L)


- юн

VOH (


NOTES: A. The pulse generator has the following characteristics: t_W = 25 µs, PRR = 20 kHz, Z_0 = 50 Ω . B. C_L includes probe and jig capacitance.


C. Slew rate =
$$\frac{6 \text{ V}}{t_r \text{ or } t_f}$$



PARAMETER MEASUREMENT INFORMATION

Figure 7. Loopback Entry and Exit Propagation Times

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu s$, PRR = 20 kHz, $Z_0 = 50 \ \Omega$. B. CL includes probe and jig capacitance.

SN75186 QUADRUPLE DRIVER/RECEIVER WITH LOOPBACK

PRINCIPLES OF OPERATION

In normal operation, the SN75186 acts as four independent drivers and receivers; the loopback mode is held off by keeping logic inputs \overrightarrow{LB} high. Taking a particular \overrightarrow{LB} input low activates the loopback mode in the corresponding driver/receiver pair. This causes the output from that driver to be fed back to the input of its receiver through dedicated internal loopback circuitry. Data from the receiver output can then be compared, by a communication system, with the data transmitted to the driver to determine if the functional operation of the driver and receiver together is correct.

In the loopback mode, external data at the input of the receiver is ignored and the driver does not transmit data onto the line. Extraneous data is prevented internally from being sent by the driver in the loopback mode by clamping its output to a level below the maximum interface voltage, -5 V, of the EIA-232-D marking state. Below this marking level, a reduced 1.5-V output amplitude is used at the driver output. This signal is detected by an on-chip loopback comparator and fed to the input stage of the receiver to complete the loop.

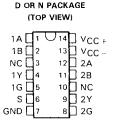
Line faults external to the SN75186 are detected in addition to device failures. These line faults include short circuits to ground and to external supply voltages that are greater than ($V_{EE} + 7 V$) and less than V_{EE} typically. For example, with $V_{EE} = -12 V$, line short circuits to voltages greater than -5 V and less than -12 V will be detected. The loopback mode should be entered only when the driver output is low, that Is, the marking condition of EIA-232-D. It is recommended that loopback not be entered when the driver output is in a high state as this may cause a low-level, nondamaging oscillation at the driver output.

When in the loopback mode, approximately 95% of the SN75186 circuit is functionally checked. There exists some low probability of fault mechanisms in circuitry not checked in the loopback mode. To reduce the chances of undetected failure, the unchecked circuitry has been designed to be more robust than that within the loopback test loop. The areas where special attention has been paid are the receiver input potential divider and resistors, the driver output blocking diode (D1), and parts of the driver clamp circuit.

Protection of the SN75186 is achieved by means of driver output current limits and a thermal trip. Although this device will withstand ± 30 V at its receiver input, package thermal dissipation limitations have to be taken into consideration if more than one receiver is connected simultaneously. This is due to the possible dissipation in the 3-k Ω minimum input resistors, which is not under the control of the thermal trip. Although the supply current is higher in the loopback mode than in normal operation, the total power dissipation is not sufficient under normal worst-case conditions (of receiver input V_I = 15 V + 10%, receiver output voltage = 2.4 V at 4 mA, driver load of 3 k Ω) to cause the thermal limiting circuitry to trip.

If the SN75186 goes into thermal trip, the output of the driver goes to a high-impedance state and the receiver output is held in a logic-high marking state. Both driver and receiver outputs maintain a marking state for the following circuit and do not allow indeterminate conditions to exist.

The standards specify a minimum driver output resistance to ground of 300 Ω when the device is powered off. To fully comply with EIA-232-D power-off fault conditions, many drivers need diodes in series with each supply voltage to prevent reverse current flow and driver damage. The SN75186 overcomes this need by providing a high-impedance driver output of typically 5 k Ω under power-off conditions through the use of the equivalent of these series diodes in the driver output circuit.



D1314, JULY 1973-REVISED SEPTEMBER 1989

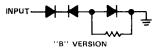
- Plug-in Replacement for SN75107A and SN75107B with Improved Characteristics
- ±10 mV Input Sensitivity
- TTL Compatible
- Standard Supply Voltages . . . ±5 V
- Differential Input Common-Mode Voltage Range of ±3 V
- Strobe Inputs for Channel Selection
- '207 and '207B Have Totem-Pole Outputs
- "'B' Version Has Diode-Protected Input Stage for Power-Off Condition
- Sense Amplifier for MOS Memories
- **Dual Comparator**
- High-Sensitivity Line Receiver

description

The SN75207 and SN75207B are pin-for-pin replacements for the SN75107A and SN75107B respectively. The improved input sensitivity makes them more suitable for MOS memory sense amplifiers and can result in faster memory cycles. Improved sensitivity also makes them more useful in line receiver applications by allowing use of longer transmission line lengths. The '207 and '207B each features a TTLcompatible active-pull-up output.

NC-No internal connection

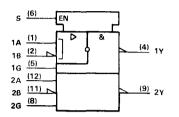
FUNCTION TABLE


DIFFERENTIAL INPUTS	STRO	DBES	OUTPUT
A-B	G	S	T T
V _{ID} ≥ 10 mV	х	х	н
– 10 mV < V _{ID} < 10 mV	х	L	н
	L	x	н
	н	н	Indeterminate
	×	L	н
V _{ID} ≤ −10 mV	L	x	н
	н	н	L

H = high level, L = low level, X = irrelevant

The essential difference between the unsuffixed and "B" version can be seen in the schematics. Inputprotection diodes are in series with the collectors of the differential-input transistors of the "B" version. These diodes are useful in certain ''party-line'' systems that may have multiple V_{CC+} power supplies and may be operated with some of the V_{CC \pm} supplies turned off. In such a system, if a supply is turned off and allowed to go to ground, the equivalent input circuit connected to that supply would be as follows:

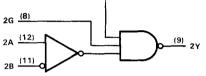
UNSUFFIXED VERSION

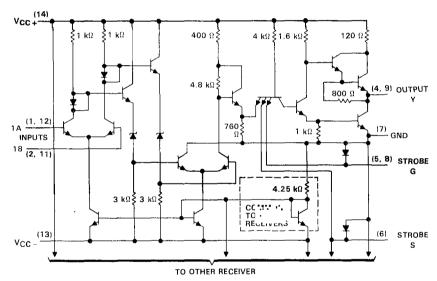


This would be a problem in specific systems that might possibly have the transmission lines biased to some potential greater than 1.4 V.

These devices are characterized for operation from 0 °C to 70 °C and are available in plastic small outline (D) package or plastic dual-in-line (N) package.

logic symbol[†]




[†]This symbol is in accordance with ANSI/EEE Std 91-1984 and IEC Publication 617-12.

schematic (each receiver)

S (6) 1A (1) 1B (2) 1G (5)

logic diagram (positive logic)

NOTE: Resistor values shown are nominal.

design characteristics

The '207 and '207B line receivers/sense amplifiers are TTL-compatible dual circuits intended for use in high-speed data-transmission systems or MOS memory systems. They are designed to detect low-level differential signals in the presence of common-mode noise and variations of temperature and supplies. The dc specifications reflect worst case conditions of temperature, supply voltages, and input voltages.

The input common-mode voltage range is ± 3 V. This is adequate for application in most systems. In systems with requirements for greater common-mode voltage range, input attenuators may be used to decrease the noise to an acceptable level at the receiver-input terminals.

The circuits feature individual strobe inputs for each channel and a strobe input common to both channels for logic versatility. The strobe inputs are tested to assure 400 mV of dc noise margin when interfaced with Series 54/74 TTL.

The circuits feature high input impedance and low input currents, which induce very little loading on the transmission line. This makes these devices especially useful in party-line systems. The excellent input sensitivity (3 mV typical) is particularly important when data is to be detected at the end of a long transmission line and the amplitude of the data has deteriorated due to cable losses. The circuits are designed to detect input signals of 10 mV (or greater) amplitude and convert the polarity of the signal into appropriate TTL-compatible output logic levels.

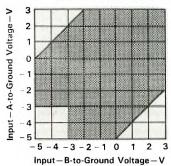
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)
Supply voltage, V _{CC}
Differential input voltage (see Note 2) $\dots \pm 6$ V
Common-mode input voltage (see Note 3) ±5 V
Strobe input voltage
Continuous total dissipation at (or below) 25°C free-air temperature: (see Note 4)
D package
N package
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values, except differential voltages, are with respect to ground terminal.

- 2. Differential input voltage values are at the noninverting (A) terminal with respect to the inverting (B) terminal.
- 3. Common-mode input voltage is the average of the voltages at the A and B inputs.
- 4. For operation above 25 °C free-air temperature, derate linearly to 608 mW at 70 °C at the rate of 7.6 mW/ °C for tha D package and 736 mW at 70 °C at the rate of 9.2 mW/ °C for the N package.

recommended operating conditions (see Note 5)


	MIN	NOM MAX	UNIT
Supply voltage, V _{CC+}	4.75	5 5.25	V
Supply voltage, V _{CC} -	-4.75	-5 -5.25	V
High-level differential input voltage VIDH (see Note 6)	0.01	5	v
Low-level differential input voltage, VIDL	-5†	-0.01	V
Common-mode input voltage, VIC (see Notes 6 and 7)	-31	3	V
Input voltage, any differential input to ground (see Note 6)	-5†	3	V
High-level input voltage at strobe inputs, VIH(S)	2	5.5	V
Low-level input voltage at strobe inputs, VIL(S)	0	0.8	V
Low-level output current, IOL		- 16	mA
Operating free-air temperature, TA	0	70	°C

[†] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

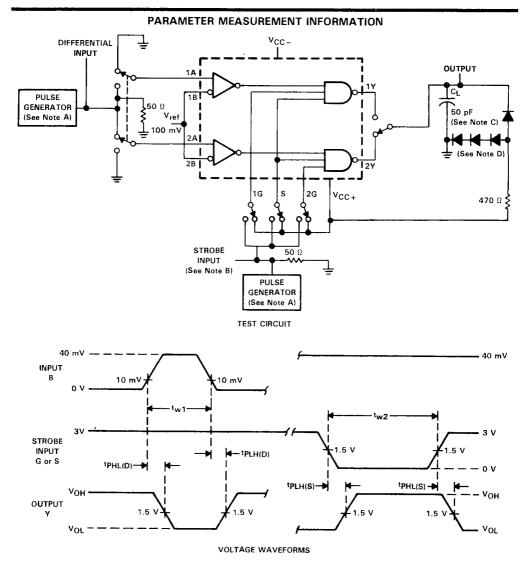
NOTES: 5. When using only one channel of the line receiver, the strobe G of the unused channel should be grounded and at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3 V and 3 V.

6. The recommended combinations of input voltages fall within the shaded area of the figure shown.

7. The common-mode voltage may be as low as -4 V provided that the more positive of the two inputs is not more negative than -3 V.

RECOMMENDED COMBINATIONS OF INPUT VOLTAGES

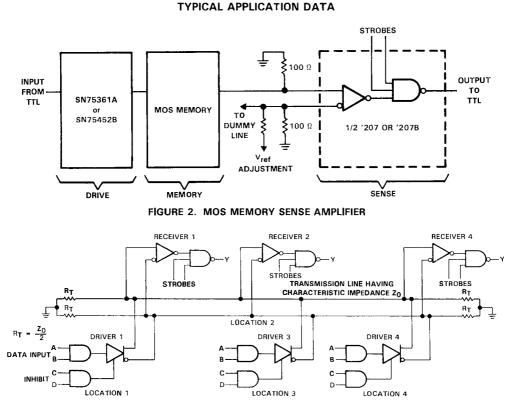
	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	High-level '207		V _{ID} = 5 V		30	75	
ЧН	input current 207B	$V_{CC\pm} = \pm 5.25 V$	$V_{ID} = -5 V$		30	75	μA
	Low-level '207		$V_{ID} = -5 V$			- 10	
۹L	input current '207B	$V_{CC\pm} = \pm 5.25 \vee$	$V_{ID} = 5 V$			- 10	μA
	High-level input current	$V_{CC\pm} = \pm 5.25 \text{ V}, \text{ V}_{IH(S)} = 2.4 \text{ V}$				40	μA
IH	into 1G or 2G	$V_{CC \pm} = \pm 5.25 \text{ V}, \text{ V}_{H(S)} = \pm 5.25 \text{ V}$				1	mA
μL	Low-level input current into 1G or 2G	$V_{CC \pm} = \pm 5.25 \text{ V}, \text{ V}_{IL(S)} = 0.4 \text{ V}$				-1.6	mA
,	High-level input	$V_{CC \pm} = \pm 5.25 \text{ V}, \text{ V}_{IH(S)} = 2.4 \text{ V}$				80	μA
ЧH	current into S	$V_{CC\pm} = \pm 5.25 \text{ V}, \text{ V}_{H(S)} = \pm 5.25 \text{ V}$				2	mA
ίąς.	Low-level input current into S	$V_{CC \pm} = \pm 5.25 \text{ V}, \text{ V}_{IL(S)} = 0.4 \text{ V}$				- 3.2	mA
Voн	High-level output voltage	$V_{CC \pm} = \pm 4.75 \text{ V}, \text{ V}_{IL(S)} = 0.8 \text{ V},$ $I_{OH} = -400 \ \mu\text{A}, \text{ V}_{IC} = -3 \text{ V} \text{ to } 3 \text{ V}$	$V_{IDH} = 10 \text{ mV},$	2.4			v
VOL	Low-level output voltage	$V_{CC \pm} = \pm 4.75 \text{ V}, \text{ V}_{H(S)} = 2 \text{ V},$ $I_{OL} = 16 \text{ mA}, \text{ V}_{IC} = -3 \text{ V} \text{ to } 3 \text{ V}$	$V_{IDL} = -10 \text{ mV},$			0.4	v
юн	High-level output current	$V_{CC\pm} = \pm 4.75 \vee, V_{OH} = \pm 5.25 \vee$					μA
tos	Short-circuit output current [‡]	V _{CC± = ±5.25 V}		- 18		- 70	mA
ICCH+	Supply current from V _{CC+} , outputs high	$V_{CC\pm} = \pm 5.25 V, T_A = 25 °C$			18	30	mA
Іссн-	Supply current from V _{CC} , outputs high	$V_{CC\pm} = \pm 5.25 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$			-8.4	- 15	mA


electrical characteristics over recommended free-air temperature range (unless otherwise noted)

[†]All typical values are at V_{CC+} = 5 V, V_{CC-} = -5 V, T_A = 25 °C. [‡]Not more than one output should be shorted at a time.

switching characteristics, $V_{CC+} = 5 V$, $V_{CC-} = -5 V$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
tPLH(D)	Propagation deley time, low-to-high-level output, from differential inputs A and B	R _L = 470 Ω,		35	ns
tPHL(D)	Propagation delay time, high-to-low-level		•	20	ns
tPLH(S)	Propagation delay time, low-to-high-level output, from strobe input G or S	CL = 50 pF, See Figure 1		17	ns
tPHL(S)	Propagation delay time, high-to-low-level output, from strobe input G or S			17	ns



- NOTES: A. The pulse generators have the following characteristics: $Z_{out} = 50 \Omega$, $t_r \le 5 ns$, $t_{w1} = 500 ns$ with PRR = 1 MHz, $t_{w2} = 1 \mu s$ with PRR = 500 kHz.
 - B. Strobe input pulse is applied to Strobe 1G when inputs 1A-1B are being tested, to Strobe S when inputs 1A-1B or 2A-2B are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
 - C. CL includes proba and jig capacitance.
 - D. All diodes are 1N916.

Receivers are '207 or '207B; drivers are SN55109A, SN75109A, SN55110A, SN75110A, or SN75112.

FIGURE 3. DATA-BUS OR PARTY-LINE SYSTEM

PRECAUTIONS: When only one receiver in a package is being used, at least one of the differential inputs of the unused receiver should be terminated at some voltage between -3 V and 3 V, preferably at ground. Failure to do so will cause improper operation of the unit being used because of common bias circuitry for the current sources of the two receivers. Strobe G of the unused channel should be grounded.

D3381, MARCH 1990

Meets EIA Standards RS-422-A, RS485	SN751177 N PACKAGE
 Meets CCITT Recommendations V.10, V.11, X.26, X.27 	(TOP VIEW)
 Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments 	18 1 16 V _{CC} 1A 2 15 1D 18 3 14 1Y
 Driver Common-Mode Output Voltage Range of -7 V to 12 V 	RE 4 13 1Z 2R 5 12 DE
 Driver Positive- and Negative-Current Limiting 	2A 6 11 2Z 2B 7 10 2Y GND 8 9 2D
Thermal Shutdown Protection	
Driver 3-State Outputs Active-High Enable	SN751178
 Receiver Common-Mode input Voltage Range of - 12 V to 12 V 	N PACKAGE (TOP VIEW)
Receiver Input Sensitivity ± 200 mV	18 1 16 V _{CC} 1A 2 15 1D
 Receiver Hysteresis 50 mV Typ 	1R 🗍 3 14 🗍 1Y
 Receiver High-Input-Impedance 12 kΩ Min 	1DE 4 13 1Z 2R 5 12 2DE 2A 6 11 2Z
 Receiver 3-State Outputs Active-Low Enable for SN751177 Only 	28 7 10 2Y GND 8 9 2D

Enable for SN751177 Only

Operates from Single 5-V Supply

description

The SN751177 and SN751178 dual differential drivers and receivers are monolithic integrated circuits that are designed for balanced multipoint bus transmission at rates up to 10 M bits per They are designed to improve the second. performance of full-duplex data communications over long bus lines and meet EIA standards RS-422-A, RS-485 and several CCITT recommendations.

The SN751177 and SN751178 driver outputs provide limiting for both positive and negative currents and thermal shutdown protection from line fault conditions on the transmission bus line.

The receiver features high input impedance of 12 kΩ, an input sensitivity of ±200 mV over a common-mode input voltage range of -12 V to 12 V and typical input hysteresis of 50 mV. Failsafe design ensures that if the receiver inputs are open, the receiver outputs will always be high.

The SN751177 and SN751178 are characterized for operation from -20°C to 85°C.

INPUT ENABLE OUTPUT DE Y D Z н н н L. н н L L х L z z

SN751177, SN751178

FUNCTION TABLE OF EACH DRIVER

SN751177 FUNCTION TABLE OF EACH RECEIVER

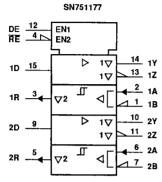
DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A - B	RE	R
V _{ID} ≥ 0.2 V	L	н
-0.2 V < VID < 0.2 V	L	?
V _{ID} ≤ -0.2 V	L	L
x	н	z

SN751178 FUNCTION TABLE OF EACH RECEIVER

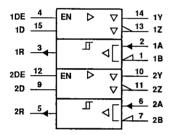
DIFFERENTIAL INPUTS	OUTPUT
A B	R
V _{ID} ≥ 0.2 V	н
– 0.2 V < V _{ID} < 0.2 V	?
$V_{ID} \leq -0.2 V$	L

H = high level, L = low level, ? = indeterminate,

Copyright © 1990, Texas Instruments Incorporated

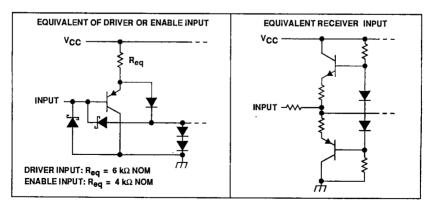

X = irrelevant, Z = high impedance (off)

PRODUCTION I 114 C suments contain information standard warranty. Processing ... necessarily include testing of all parameters.



2-625

logic symbols[†]

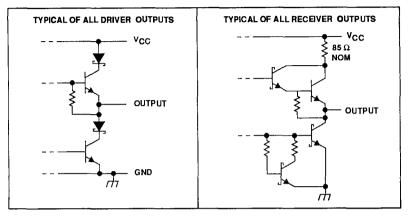


SN751178

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12

schematics of inputs

All resistor values are nominal.



DE 12 RE -14 1Y <u>1</u>5 1D 1<u>3</u> 1Z 2_ 1A 3 1R 1 1B 10_2Y 9 11 2Z 2D 6_ 2A 5 2R 7 2B SN751178 1DE _4 <u>14</u> 1Y 1D 15 13 1Z 2 1A 1R _3 1 1B 2DE 12 10 2Y 9 2D 11 2Z <u>6</u> 2A 5 7 2B 2R

SN751177

logic diagrams (positive logic)

schematics of outputs

All resistor values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage range, receiver A or B inputs	
Receiver differential input voltage range (see Note 2)	25 V to 25 V
Output voltage range, Driver	. –10 V to 15 V
Receiver low-level output current	50 mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 3)	1150 mW
Operating free-air temperature range, TA	20°C to 85°C
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

- 2. Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.
- 3. For operation above 25°C free-air temperature, derate to 736 mW at 70°C at the rate of 9.2 mW/°C.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply :: je, V _{CC}		4.75	5	5.25	Γ v
tigh-lever input voltage, VIH DE, RE, and D inputs		2			V
Low-level input v · · · · · Vu	DE, RE, and D inputs			0.8	V
Common-mode VOC (see Note 4)		-7		12	V
High-level output current, ium	Driver			- 60	mA
Low-level: current, IOL				60	mA
Common-Inicide Input voltage, VIC				± 12	V
Differential input voltage, VID	Beceiver			± 12	V
High-level output current, IOH	Heceiver			- 400	μA
Low-level output current, IOL				16	mA
Operating free-air temperature, TA		- 20		85	°C

NOTE 4: The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.

DRIVER SECTIONS

driver electrical characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

	PAKAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
VIK	Input clamp voitage	lj = - 18 mA				.5	۰.	
VOH	High-level output voltage	$V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = -$	33 mA		3.7	_	v	
VOL	Low-level output voltage	$V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = 3$	3 mA		1.1		V	
IVOD1	Differential output voltage	lo = 0		1.5		6	v	
VOD2 Differential output voltage		$R_{L} = 100 \Omega$, See Figure 1		2 1/2 V _{OD1}			v	
		$R_L = 54 \Omega$, See Figure 1		1.5		5		
VOD3	l' #'- rential output voltage	See Note 5		1.5		5	v	
∆IV _{OD} I	Unange in magnitude of differential output voltage (see Note 6)					±0.2	v	
Voc	Common-mode output voltage (see Note 4)	$R_{L} = 54 \Omega \text{ or } 100 \Omega$, See Figu	- 1		3	v		
∆ V _{OC}	Change in magnitude of common-mode output voltage (see Note 6)				±0.2	v		
10	Output current with power off	$V_{CC} = 0$, $V_{O} = -7 V \text{ to } 12 V$				± 100	μA	
loz	High-impedance-state output current	$V_{O} = -7 V \text{ to } 12 V$				± 100	μA	
ЧΗ	High-level input current	VIH = 2.7 V				20	μA	
ΊL	Low-level input current	V _{IL} = 0.4 V				- 100		
		$V_0 = -7V$				- 250	mA	
los	Short-circuit output current (see Note 7)	Vo = Vcc			_	250		
_		V _O = 12 V				250		
	Supply surrout	No load outputs e	nabled		80	110		
ICC	Supply current	No load outputs disabled			50	80	μΑ	

- TAI typical values are at $V_{CC} = 5 V$ and $T_A = 25^{\circ}C$ NOTES: 4. The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.
 - 5. See EIA Standard RS-485 Figure 3.5, Test Termination Measurement 2.
 - 6. Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.
 - 7. Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

driver switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TER TEST CONDITIONS		MIN	ТҮР	тімах Т	∫ี บุญเ⊤ิ
tDD	Factorential output velay time	$R_L = 54 si,$	 ວ ≖ ວິບ pF,		20	_ <u>د</u> ې	115
tτD	rential output transition time	See Figure 3	-		27	35	ns
^t PLH	-ropagation delay time, low-to-high-level output	$R_L = 27 \Omega$,	CL = 50 pF,		20	25	n6
^t PHL	Propagation delay time, high-to-low-level output	See Figure 4	_		20	25	ns
^t PZH	Output enable time to high level	$R_{L} = 110 \Omega$, See Figure 5	C _L = 50 pF,		80	120	ns
tPZL	Output enable time to low level	$R_L = 110 \Omega$, See Figure 6	C _L = 50 pF,		40	60	ns
ţьнх	Output disable time from high level	$R_L = 110 \Omega$, See Figure 5	$C_{L} = 50 \text{ pF},$		90	120	ns
tΡLZ	Output disable time from low level	R _L = 110 Ω, See Figure 6	$C_L \simeq 50 pF$,		30	45	n5

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422A	RS-485
IV _{OD1}	V _O	Vo
IV _{OD2} I	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IV _{OD3} i		Vt (Test termination measurement 2)
	$ \nabla_t - \nabla_t $	
V _{OC}	IVosl	IV _{OS}
	IVos - Vosl	IVOS - VOSI
los	Isal, Isb	
10	Ixal, Ixbl	lia, lib

RECEIVER SECTIONS

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO		MIN	TYPT	MAX	דיאט 🗌	
VTH	TH Differential input high threshold voltage		$V_0 = 2.7 V_1$	0 = -0.1 mA			0.2	⊢ ∵ -
VTL	VTL Differential input low threshold voltage (see Note 4)		$V_{O} = 0.5 V_{,}$	lo = 16 mA	- 0.2			V
Vhys	Input hysteresis (see Note 8)			- -		50		mV
VIK	Enable clamp voltage	SN751177	lı = - 18 mA				- 1.5	V
VOH			$V_{\rm ID} = 200 {\rm mV},$	IOH = - 400 µA	2.7			V
V	M 1 7 7 1 1 1		N 000 mV	IOL = 8 mA			0.45	v
VOL	Low-level output voltage		$V_{\rm ID} = -200 \rm mV$	$1_{OL} = 16 \text{mA}$			0.5	v
loz	High-impedance-state output current	SN751177					± 20	μA
1.			Other input	V _I = 12 V			1	
ij –	Line input current (see Note 9)		at0V	$V_1 = -7V$			- 0.8	mA
IIH	High-level enable input current	SN751177	VIH = 2.7 V	· · · · · · · · · · · · · · · · · · ·			20	μA
Ϊ <u>Ι</u> L	Low-level enable input current		$V_{11} = 0.4 V$				- 100	μA
los	Short-circuit output current (see Note 7)				- 15		- 85	mA
lcc	Supply current		No load,	outputs enabled		80	110	mA
ri	Input resistance				12			kΩ

TAll typical values are at V_{CC} = 5 V and T_A = 25°C

- NOTES: 4. The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for common-mode output and threshold voltage levels only.
 - 7. Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.
 - Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}.
 - 9. Refer to EIA standards RS-422-A, RS-423-A, RS-485-A for exact conditions.

receiver switching characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIO	NS MIN	ТҮР	MAX	[แหม]
tpLH Propagation del., high-level output	V _{ID} = -1.5 . 10		20		- II.
tpHL Propagation delay time, high-to-low-level output	CL = 15 pF, See	Figure 7	22	35	ns
tpzH Output enable time to high level			17	25	ns
tpzL Output enable time to low level			20	27	ns
tpHZ Output disable time from high level SN751177	C _L = 15 pF, See	Figure 8	25	40	ns
tpLz Output disable time from low level			30	40	ns

PARAMETER MEASUREMENT INFORMATION

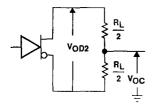


FIGURE 1. DRIVER TEST CIRCUIT, VOD AND VOC

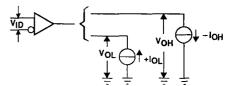
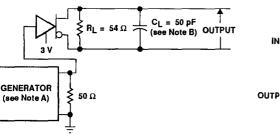
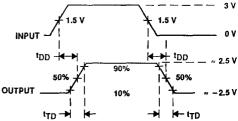




FIGURE 2. RECEIVER TEST CIRCUIT, VOH AND

-(a) DRIVER TEST CIRCUIT

(b) DRIVER VOLTAGE WAVEFORMS

FIGURE 3. DRIVER DIFFERENTIAL OUTPUT DELAY AND TRANSITION TIMES

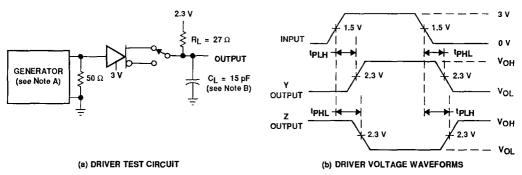
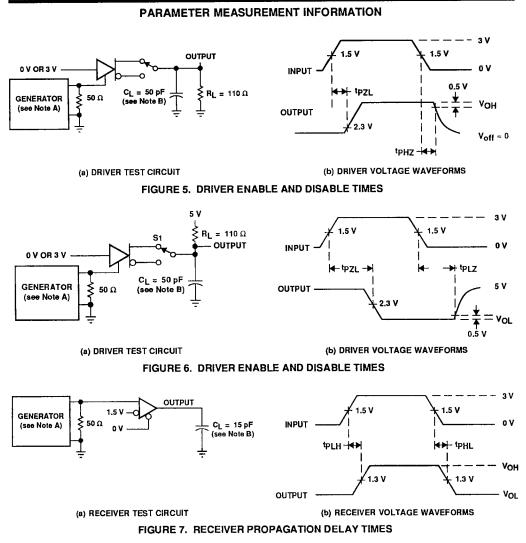
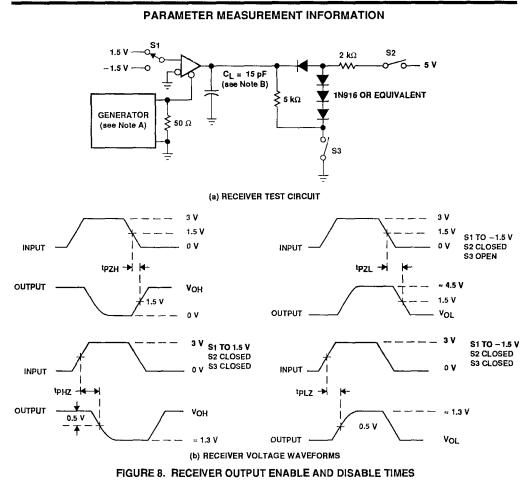



FIGURE 4. DRIVER PROPAGATION DELAY TIMES


NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, Z₀ = 50 Ω , t_f \leq 6 ns, t_f \leq 6 ns.. B. CL includes probe and jig capacitance.

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, Z₀ = 50 Ω , t_f \leq 6 ns. t_f \leq 6 ns.. B. C_L includes probe and jig capacitance.

NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, 50% duty cycle, Z₀ = 50 Ω , t_f \leq 6 ns. t_f \leq 6 ns.. B. C_L includes probe and jig capacitance.

SN751730 TRIPLE LINE DRIVERS/RECEIVERS

D3494, MAY 1990

- Meets IBM 360/370 Input/Output Interface Specification for 4.5 Mb/s Operation
- Single 5-V Supply
- Uncommitted Emitter-Follower Output Structure for Party-Line Operation
- Driver Output Short-Circuit Protection
- Driver input/Receiver Output Compatible with TTL
- Receiver input Resistance ... 7.4 kΩ to 20 kΩ
- Ratio Specification for Propagation Delay Time, Low-to-High/High-to-Low

description

The SN751730 triple line driver/receiver is specifically designed to meet the input/output interface specifications for IBM System 360/370. It is also compatible with standard TTL logic and supply voltage levels.

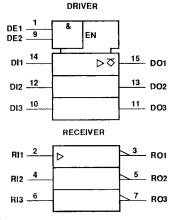
The low-impedance emitter-follower driver outputs of the SN751730 will drive terminated lines such as coaxial cable or twisted pair. Having the outputs uncommitted allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 2.5 V.

An open line will affect the receiver input as would a low-level input voltage.

All the driver inputs and receiver outputs are in conventional TTL configuration and the gating can be used during power-up and power-down sequences to ensure that no noise is introduced to the line, by pulling either DE1 or DE2 to a low level.

	D OR N PACKAGE (TOP VIEW)						
DE1 [1)16	V _{CC}					
RI1] 2	15	DO1					
RO1 [3	14	DI1					
RI2] 4	13	DO2					
RO2 [5	12	DI2					
RI3] 6	11	DO3					
RO3 [7	10	DI3					
GND] 8	9	DE2					

FUNCTION TABLE OF EACH DRIVER


	INPUT	OUTPUT	
DI	DE1	DE2	DO
L	Х	х	L
Х	L	х	L
х	х	L	L
н	н	н	н

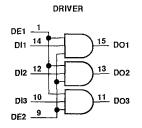
FUNCTION TABLE OF EACH RECEIVER

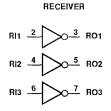
INPUT	OUTPUT
RI	RO
L	н
н	L
OPEN	н

H = high level, L = low level, X = irrelevant

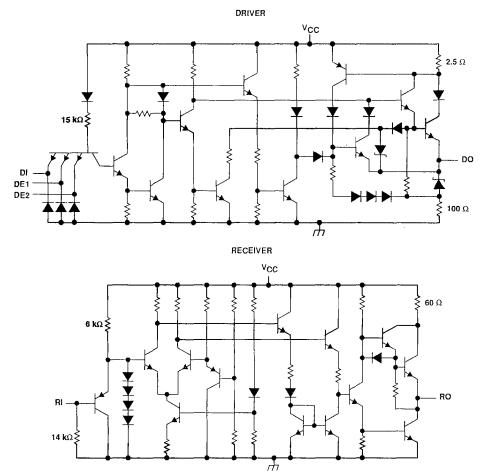
logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.


f (1) D. U. (H) SATA systements that an information server that for the two date. Proved is conform to server the server the terms of the transmission astroments systement errority. Production processing dates not reconstantly include testing of all parameters.



Copyright @ 1990, Texas Instruments Incorporated


SN751730 TRIPLE LINE DRIVERS/RECEIVERS

logic diagrams (positive logic)

equivalent schematics of driver and receiver

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage range, VI: Driver	
Receiver	
Output voltage range, VO Driver	
Enable input voltage range	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots -0.5$ V to 7 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA	
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTE 1: All voltage values are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/ºC	608 mW
N	1150 mW	9 2 mW/°C	736 mW

recommended operating conditions

		MIN	NOM	MAX	דואט 🗍
Supply voltage, VCC		4.75	;	1.2	•
High-level input voltage, VIH	Driver, Enable	2			v
High-level input voltage, VIH	Receiver	1.55			
Law brock and the set of	Driver, Enable			0.8	v
Low-level input voltage, VIL	Receiver			1.15	
Operating free-air temperature, TA		0		70	°C

SN751730 TRIPLE LINE DRIVERS/RECEIVERS

	PARAMETER		TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
VIK	Input clamp voltage		$V_{CC} = 4.75 V_{i}$	I _{IL} = 18 mA			1.5	V
			$V_{CC} = 4.75 V,$ $I_{OH} = 59.3 mA,$		3.11			
V			$V_{CC} = 525 V,$ $I_{OH} = 78.1 mA$	$V_{IH} \approx 2 V_{i}$		The Core	4.10	
V _{OH} High-level output voltage	$V_{CC} = 4.75 V,$ $R_{L} = 51.4 \Omega$	V _{IH} = 2 V,	3.05					
			$V_{CC} = 5.25 V_1$ R ₁ = 56.9 Ω	$V_{IH} = 2 V,$,		4,20	
VODH	Differential high-level output voltage		R _L = 46 3 Ω or 56	.9 Ω			0.50	V
VOL	Low-level output voltage		$V_{CC} = 5.25 V,$ $V_{II} = 0.8 V,$	l _{OL} = ~ 0.24 mA			0.15	v
-OL			VIH = 4.5 V	$R_L = 569 \Omega$			0.5	
1	Minh level in	DI					20	
ЧH	High-level input current	DE	$V_{\rm CC} = 5.25 \rm V_{c}$	V _{IH} = 2.7 V	_		60	μA
ηL	Low-level input current	DI	V _{CC} = 5.25 V,	V _{IL} = 0.4 V			- 400	μА
			$V_{CC} = 4.75 V,$	V _{II} = 0			_ (<u>1</u> 00	
юн	High-level output current		$V_{OH} = 5 V$	$V_{\text{IH}} = 4.5 \text{ V}$			100	μA
los	Short-circuit output current		$V_{CC} = 5.25 V_{,}$	$V_{\rm H} = 45 V$	- 30			mA
ССН	.			$V_{I(D)} = 45V,$ $V_{I(R)} = 0$	_		47	
CCL	Supply current (total package)		v current (total package) $\begin{array}{c} V_{CC} = 5.25 \text{ V}, \\ No \mid oad \end{array} \begin{array}{c} V_{I(D)} = 0, \\ V_{I(D)} = 4.5 \text{ V}, \\ V_{I(D)} = 4.5 \text{ V}, \end{array}$				80	mA

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

driver switching characteristics, $V_{CC} = 5 V \pm 5\%$, $T_A = 25^{\circ}C$

	PARAM: IER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
t PLH	Propagation delay low to high level output			6.5	12	18.5	ns
^t PHL	Propagation delay time, high to low level output	$R_{L} = 47.5 \Omega$,	See Figure 1	6,5	12		ns
ΔtpD	Differential propagation delay time [†]					10	ns
t _r	Output rise time	$V_{CC} = 5V$,	$V_{O} = 0.15$ to 3.05 V, $C_{I} = 10.2 \text{ pF},$	5	10		ns
tf	Output fall time	See Figure 1	of = 102 br,	5	13		ns
SR	Slew rate	V _O = 1 to 3 V C _I ≈ 10.2 pF,	average, $R_{L} = 47.5 \Omega$, See Figure 1			0.65	V/ns

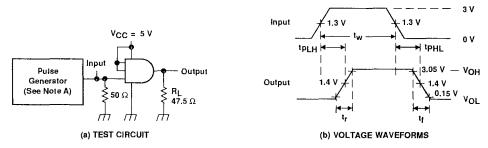
[†]AtPD = |tPLH - tPHL|

receiver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

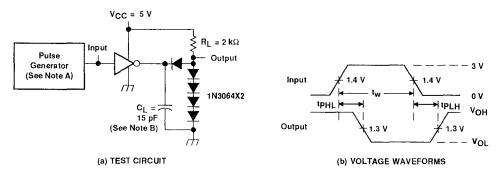
	PARAMETER	TEST C	TEST CONDITIONS		ТҮР	MAX	1.1
V _{OH}	High-level output voltage	V _{CC} = 4.75 V, l _{OH} =400 μA	$V_{l} = 1.15 V_{r}$	2.7			v
VOL Low-level output voltage	$V_{\rm CC} = 4.75 \rm V_{\rm c}$	lOL = 8 mA			0.5	v	
·OL		V _{IH} = 1.55 V	$l_{OL} = 4 \text{mA}$			0.4	
ri	input resistance	$V_{CC} = 0,$	V ₁ = 0.15 to 3.9 V	7.4		20	kΩ
ЧΗ	High-level input current	$V_{\rm CC} = 4.75 \rm V_{\rm c}$	V _{IH} = 3.11 V	•		0.42	mA
Ι _Ι	Low-level input current	$V_{CC} = 5.25 V_{,}$	$V_{ } = 0.15 V$	- 0.24		0.04	mA
los	Short-circuit output current, See Note 2	$V_{CC} = 5.25 V_{,}$	V _{IL} = 0	- 20		- 100	mA
I <mark>с</mark> сн		V _{CC} = 5.25 V,	$V_{I(D)} = 4.5 V,$ $V_{I(R)} = 0$			47	mA
ICCL	Supply current (total package)	No load	$V_{I(D)} = 0,$ $V_{I(R)} = 4.5 V$			80	

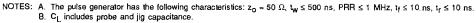
NOTE 2: Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

receiver switching characteristics, $V_{CC} = 5 V \pm 5\%$, $T_A = 25^{\circ}C$


PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
tPLH Propagation delay time, low to high level output	$B_1 = 2 k\Omega$.	$C_1 = 15 pF$	7.5	12	19.5	ns
tpHL Propagation delay time, high to low level output	HL = 2 KΩ, See Figure 2	OL = 10 br	7.5	12	19.5	ns
ΔtpD Differential propagation delay time [†]	See Figure 2				10	ns

 $^{\dagger}\Delta t_{PD} = |t_{PLH} - t_{PHL}|$


SN751730 Triple line drivers/receivers


PARAMETER MEASUREMENT INFORMATION

NOTE A: The pulse generator has the following characteristics: zo ≈ 50 Ω, tw ≤ 500 ns, PRR ≤ 1 MHz, tf ≤ 6 ns, tr ≤ 15 ns

Figure 1. Driver Switching Times

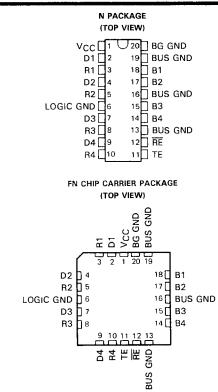


Figure 2. Receiver Switching Times

SN75ALS053 QUAD FUTUREBUS TRANSCEIVER

D3077, JANUARY 1988-REVISED SEPTEMBER 1989

- High-Speed Quad Transceiver
- Fully Compatible with IEEE Std 896.1 – 1987 Futurebus Requirements
- Drives Load Impedances as Low as 10 Ω
- High-Speed Advanced Low-Power Schottky Circuits
- Low Power Dissipation . . . 81 mW Max per Channel
- High-Impedance P-N-P Inputs
- BTL[™] Logic Level 1-V Bus Swing Reduces Power Consumption
- Low Bus-Port Capacitance
- Power-Up/Power-Down Protection (Glitch-Free)
- Open-Collector Driver Outputs Allows
 Wired-OR Connections
- Multiple Bus Channel Ground Returns to Reduce Channel Noise Interference
- Designed to Be a Faster, Lower Power Functional Equivalent of National DS3893

description

The SN75ALS053 is a four-channel, monolithic, high-speed, advanced low-power Schottky device designed for two-way data communication in a densely populated backplane. The SN75ALS053 has independent driver input (Dn) and receiver output (Rn) pins and separate driver and receiver disables. This

transceiver is designed for use in high-speed bus systems and is similar to the SN75ALS057 transceiver except that the trapezoidal feature has been eliminated to speed up the propagation delays.

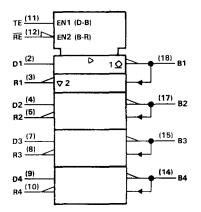
These transceivers feature open-collector driver outputs, each with a series Schottky diode to reduce capacitive loading to the bus. By using a 2-V pullup on the bus, the output signal swing will be approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs are capable of driving an equivalent dc load of as low as 10 Ω .

The receivers have a precision threshold set by an internal bandgap reference to give accurate input thresholds over VCC and temperature variations.

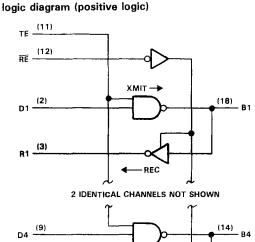
These transceivers are compatible with Backplane Transceiver Logic (BTL™) technology at significantly reduced power dissipation per channel.

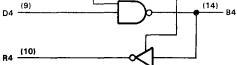
The SN75ALS053 is characterized for operation from 0.ºC to 70.°C.

BTL is a trademark of National Semiconductor Corporation.

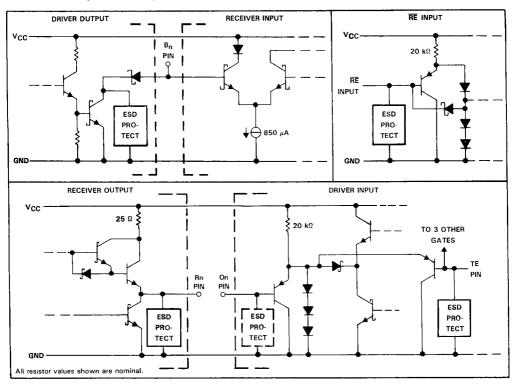

FUNCTION TABLE

CONT	ROLS	CHANNELS			
TE	RE	D→B	B → R		
L	L	D	R		
L	н	D	D		
н	L	т	R		
н	н	Т	D		


H = high level, L = low level, R = receive, T = transmit, D = disable


Direction of data transmission is from Dn to Bn, direction of data reception is from Bn to Rn.

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 6 V
Control input voltage
Driver input voltage
Driver output voltage
Receiver input voltage
Receiver output voltage
Continuous total power dissipation
Operating free-air temperature range
Storage temperature range
Case temperature for 10 seconds: FN package 260 °C
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: N package

NOTE 1: Voltage values are with respect to network ground terminal.

SN75ALS053 QUAD FUTUREBUS TRANSCEIVER

DISSIPATION RATING TABLE									
PACKAGE	$T_A \le 25 ^{\circ}C$ POWER RATING	OERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER'RATING						
FN	1400 mW	11.2 mW/°C	896 mW						
N	1150 mW	9.2 mW/°C	736 mW						

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level driver and control input voltage, VIH	2			V
Low-level driver and control input voltage, VIL			0.8	v
Bus termination voltage	1.9	-	2.1	v
Operating free-air temperature, TA	0		70	°C

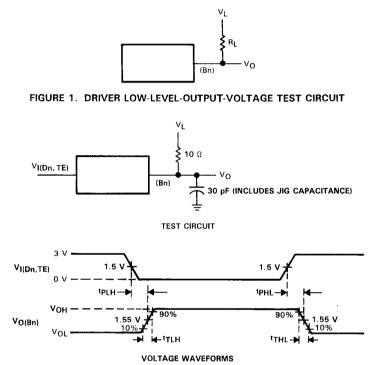
electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT	
VIK	Input clamp voltage at Dn, OE, or RE		lj = −18 mA		- 1.5	v
٧ _T	Receiver input threshold at Bn			1	1.674	v
v _{он}	High-level output voltage at Rn	1	Bn at 1.2 V, ŘE at 0.8 V, loH = −1 mA	2.5		v
	Rr	n	Bn at 2 V, RE at 0.8 V, IOL = 20 mA		0.5	
Vol	Low-level output voltage Bn	Dn at 2.4 V, TE at 2.4 V, V _L = 2 V, R _L = 10 Ω , See Figure 1	0.75	1.2	V	
	Dn, TE or RE	$V_{I} = V_{CC}$		40		
lн	High-level input current Br	n	$V_{I} = 2 V$, $V_{CC} = 0 \text{ or } 5.25 V$, Dn at 0.8 V, TE at 0.8 V,		100	μA
μL	Low-level input current at Dn, TE or RE		V ₁ = 0.4 V		-400	μA
los	Short-circuit output current at Rn		RnatOV, Bnat1.2V, REat0.8V	- 70	- 200	mA
lcc	Supply current				65	mA
Co(B)	Driver output capacitance		$V_{CC} = 5 V, T_A = 25 °C$		6.5	pF

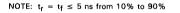
switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted)

driver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	МАХ	UNIT			
^t PLH	Propagation delay time, low-to-high-level output	D	P-	TE at 3 V, $V_L = 2 V$, 2	7	ns			
tPHL	Propagation delay time high-to-low-level output	Dn Bn See Figure 2	Dn Bn See Figure 2	See Figure 2	7	115				
^t PLH	Propagation delay time, low-to-high-level output	Dn	Bn Dn at 3 V, $V_L = 2 V$,	, 2	7	ns				
t₽HL	Propagation delay time, high-to-low-level output	Dn	вп	See Figure 2	2	7	115			
t⊤LH	Transition time, low-to-high-level output						TE at 3 V, VL = 2 V,	, 0.5	5	ns
^t THL	Transition time, high-to-low-level output	Dn	Bn	See Figure 2	0.5	5	, ins			
	Skew between driver channels [†]	Dn	Bn	TE at 3 V, VL = 2 V		1	ns			


receiver

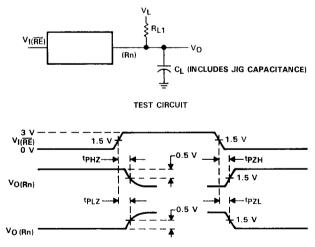
	PARAMETER	FROM (INPUT)	TÖ (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Bn		2	8	ns	
tPHL	Propagation delay time, high-to-low-level output	DI)	Rn	RE at 0.3 V, TE at 0.3 V, See Figure 3	2	8	113
^t PLZ	Output disable time from low level	RE	Rn	Bn at 2 V, TE at 0.3 V, V _L = 5 V, C _L = 5 pF, R _{L1} = 500 Ω, See Figure 4		6	ns
^t PZL	Output enable time to low level	RE	Rn	Bn at 2 V, TE at 0.3 V, V _L = 5 V, C _L = 5 pF, R _{L1} = 500 Ω, See Figure 4		12	ns
tphz	Output disable time from high level	RE	Rn	Bn at 1 V, TE at 0.3 V, V _L = 0, C _L = 5 pF, R _{L1} = 500 Ω, See Figure 4		6	ns
tpzh	Output enable time to high level	RE	Rn	Bn at 1 V, TE at 0.3 V, V _L = 0, C _L = 5 pF, R _{L1} = 500 Ω, See Figure 4		12	ns
	Skew between receiver channels t	Bn	Rn	RE at 0.3 V, TE at 0.3 V		1	ns


[†]Skew is the difference between the propagation delay time (tpLH or tpHL) of one receiver channel and that same propagation delay time of any other receiver channel. It applies for both tpLH and tpHL.

SN75ALS053 QUAD FUTUREBUS TRANSCEIVER

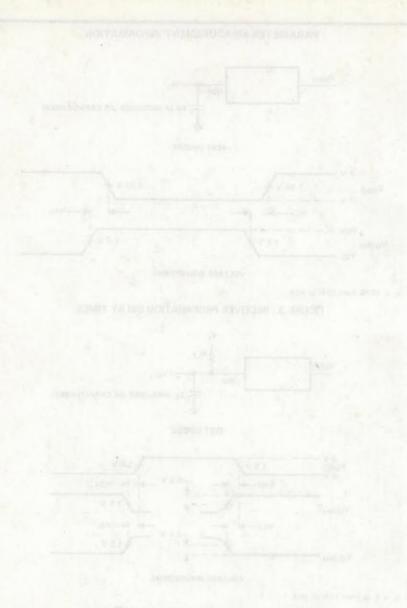
PARAMETER MEASUREMENT INFORMATION

FIGURE 2. DRIVER PROPAGATION DELAY TIMES



PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \le 10$ ns from 10% to 90%


VOLTAGE WAVEVORMS

NOTE: $t_r = t_f \le 5 \text{ ns from } 10\% \text{ to } 90\%$

FIGURE 4. PROPAGATION DELAY FROM RE TO Rn

REMELANCES CONSTRUCTION ON TO A UD

NUMBER, PROPAGATION DELAY PROMINE TO BUT

SN75ALS056, SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVERS

D3025, AUGUST 1987-REVISED JUNE 1990

•	SN75ALS(056 ls	an Octal	Transceiver	
---	----------	--------	----------	-------------	--

- SN75ALS057 Is a Quad Transceiver
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . .
 52.5 mW/Channel Max
- High-Impedance P-N-P Inputs
- Logic Level 1-V Bus Swing Reduces Power Consumption
- Trapezoidal Bus Output Waveform Reduces Noise Coupling to Adjacent Lines
- Power-Up/Down Protection (Glitch Free)
- Open-Collector Driver Outputs Allow Wired-OR Connections
- Designed to Be a Faster, Lower Power Functional Equivalent of National DS3896, DS3897

description

The SN75ALS056 is an 8-channel, monolithic, high-speed, advanced low-power Schottky device designed for 2-way data communication in a densely populated backplane. The SN75ALS057 is a 4-channel version with independent driver input (Dn) and receiver output (Rn) pins and a separate driver disable for each driver (En).

DW C	RI	N PA	CI	KA	GE	
(TOF	VIE	w)		
A1	1 1	\bigcup_2	0		B1	
A2 [2	1	9		B2	
A3 [3	1	8		вз	
A4 🗌	4	1	7	1	Β4	
Vcc 🗍	5	1	6	Ę,	GN	ID
A5 []	6	1	5	ī	B5	
A6 🗌	7	1	4	Ē	86	
A7 [8	1	3	ק	87	
A8 🗌	9	1	2	ק	88	
CS [10	1	1	1	T/Ĩ	Ŧ
			-			
S	N75	ALS	:0	57		
DW 0	DR 1	N PA	AC	KA	G	E
(TO	> VII	EM	/)		
D1	1	U	20	7	B	1
R1	2		19	ħ	E	1
D2	3	1	18	5	B:	2
R2	4		17		E	2
Vcc	5		16	Б	G	ND
D3	6		15	Б	B:	

R3 77

D4 8

R4 19

TF 10

14 E3

13 B4

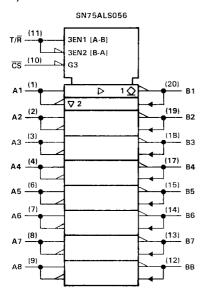
11 RF

12 E4

SN75ALS056

These transceivers feature open-collector driver outputs with a series Schottky diode to reduce capacitive loading to the bus. By using a 2-V pull-up termination on the bus, the output signal swing will be approximately 1 V, which reduces the power necessary to drive the bus load capacitance. The driver outputs generate trapezoidal waveforms that reduce crosstalk between channels. The drivers are capable of driving an equivalent dc load as low as 18.5 Ω .

The receivers have internal low-pass filters to further improve noise immunity.


The SN75ALS056 and SN75ALS057 are characterized for operation from 0°C to 70°C.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN75ALS056, SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVERS

SN75ALS057

& D

10

EN1 (D-B)

EN2 [B-R]

 $\nabla 2$

TE (10) r

RE (11) r

E1 (19)

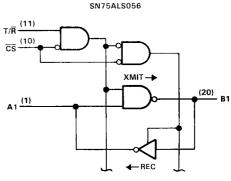
D1 (1)

R1 <u>(2)</u>

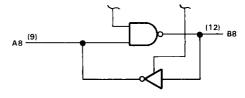
E3 (14) R3 (7)

D4 (8)

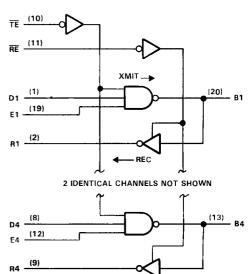
E4 (12)


R4 (9)

E2 (17) R2 (4) D3 (6)


D2 - (3)

(17)


logic diagrams (positive logic)

6 IDENTICAL CHANNELS NOT SHOWN

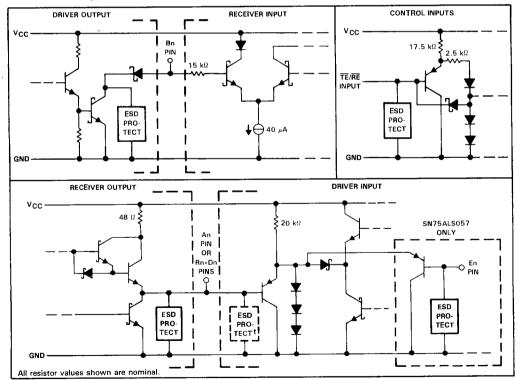
SN75ALS057

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

(<u>20)</u> B1

(<u>18)</u> B2

(15) B3


(<u>13)</u> B4

•	SN75ALS056 FUNCTION TABLE TRANSMIT/RECEIVE		SN75ALS057 FUNCTION TABLE TRANSMIT/RECEIVE						E	
CONT	ROLS	CHANNELS			[CC	NTRO	LS	CHAN	INELS
ĊS	T/R	A↔B			[TE	RE	En	D → B	B → I
L	н	T (A → B)				L	L	L	D	R
L	L	R (B → A)				L	L	н	Т	R
н	х	D			1	L	н	L	D	D
		• • • • • • • • • • • • • • • • • • • •				Ł	н	н	т	D
						н	L	х	D	R
						н	н	х	D	D

H = high level, L = low level, R = receive, T = transmit, D = disable, X = irrelevant

Direction of data transmission is from An to Bn for the SN75ALS056 and from Dn to Bn for the SN75ALS057. Direction of data reception is from Bn to An for the SN75ALS056 and from Bn to Rn for the SN75ALS057. Data transfer is inverting in both directions.

schematics of inputs and outputs

[†]Additional ESD protection is on the SN75ALS057 only, which has separate receiver output and driver input pins.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 6 V
Control input voltage
Driver input voltage
Driver output voltage
Receiver input voltage
Receiver output voltage
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	^
DW	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level driver and control input voltage, VIH	2			V
Low-level driver and control input voltage, VIL			0.8	v
Bus termination voltage	1.9		2.1	v
Operating free-air temperature, TA	0		70	°C

	PARAMETER		TEST	CONDITIONS	MIN	TYP [†] MAX	00.07
Vik	Input clamp voltage at An, T/\overline{R} , or \overline{CS}		$l_{\rm I} = -18 \rm mA$			- 1.5	v
VT	Receiver input threshold at	: Bn			1.426	1.674	mV
Vон	High-level output voltage a	it An	Bn at 1.2 V, T/Řat 0.8 V,	ČŠ at 0. 8 V, I _{OH} = -400 μA	2.4		v
VOL Low-lev		An	Bn at 2 V, T/Řat 0.8 V,			0.5	
	Low-level output voltage	Bn	An at 2 V, T/R at 2 V, R _L = 18.5 Ω,	$V_{L} = 2 V,$	0.75	1.2	V
		An, T/R, or CS	VI = VCC			40	
ίΗ	High-leval input current	Bn	V _j = 2 V, An at 0.8 V,	V _{CC} = 0 or 5.25 V, T/R at 0.8 V		100	μA
hL	Low-level input current at	An, T/R, or CS	V _I = 0.4 V			- 400	μA
los	Short-circuit output current at An		An at 0 V, <u> CS</u> at 0.8 V,	Bn at 1.2 V, T/R at 0.8 V	- 40	- 120	mA
ICC	Supply current		1			75	mA
C _{o(B)}	Driver output capacitance					4.5	ρF

SN75ALS056 electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

SN75ALS057 electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
Vik	Input clamp voltage at Dn, En, TE, or RE		$i_{1} = -18 mA$				-1.5	v
Vr	Receivar input threshold at				1426		1674	mV
∨он	High-level output voltage at Rn		Bn at 1.2 ∨, I _{OH} = −400		2.4			v
	Low-level output voltage	Rn	Bn at 2 ∨, I _{OL} = 16 mA				0.5	
Yol		Bn	Dn at 2 V, TE at 0.8 V, RL = 18.5 Ω,	V _L = 2 V,	0.75		1.2	v
		Dn, En, TE, or RE	$V_{I} = V_{CC}$				40	
Iн	High-level input current	Bn	V ₁ = 2 V, Dn at 0.8 V, TE at 0.8 V	V _{CC} = 0 or 5.25 V, En at 0.8 V,			100	μA
ΙL	Low-level input current at	Dn, En, TE, or RE	VI = 0.4 V				400	μA
los	Short-circuit output current at Rn		Rn at 0, RE at 0.8 V	8n at 1.2 V,	-40		- 120	mA
ICC.	Supply current						40	mA
C _{o(B)}	Driver output capacitance					4.5		ρF

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

.

SN75ALS056 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVER

switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted)

driver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDI	TIONS	MIN	түр†	МАХ	UNIT
^t PLH	Propagation delay time, low-to-high-level output	An	Bn	CS at 0.8 V,	T/Řat2.V,			19	
^t PHL	Propagation delay time, high-to-low-level output		Bill	$V_{L} = 2 V,$	See Figure 2			18	ns
^t PLH	Propagation delay time, low-to-high-level output	टड	Bn	An and T/R at 2 V, See Figure 2	V _L = 2 V,			24	ns
^t PHL	Propagation delay time, high-to-low-level output		Bu				_	20	,,,3
^t PLH	Propagation delay time, low-to-high-level output	т/ П	Bn	$V_{I(An, Bn)} = 5 V,$ R_{L2} not connected, $R_{L1} = 18 \Omega,$				25	ns
^t PHL	Propagation delay time, high-to-low-level output	, i/n			-			35	
ţтгн	Transition time, low-to-high-level output	An	8n	\overline{CS} at 0.8 V, V _L = 2 V,	T/R at 2 V, See Figure 2	1	3	11	- ns
^t THL	Transition time, high-to-low-level output					1	3	6	

[†] All typical values are at $V_{CC} = 5 \text{ V}$. $T_A = 25 \text{ °C}$.

switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted) receiver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN MAX	UNIT
tplh	Propagation delay time, low-to-high-level output		An	CS at 0.8 V, T/R at 0.8 V, See Figure 4	18	ns
^t PHL	Propagation delay time, high-to-low-level output	Bn	An	CS at 0.8 V, 1/H at 0.8 V, See Figure 4	18	
^t PLZ	Output disable time from low level	<u>cs</u>	An	Bn at 2 V, T/ \overline{R} at 0.8 V, C $_L$ = 5 pF, V $_L$ = 5 V, R $_L$ = 390 $\Omega,$ R $_L2$ not connected, See Figure 5	18	ns
tpz∟	Output enable time to low level	cs	An	Bn at 2 V, T/Ā at 0.8 V, C _L = 30 pF, V _L = 5 V, R _{L1} = 390 Ω, R _{L2} = 1.6 kΩ, See Figure 5	15	ns
tphz	Output disable time from high level	CS	An	Bn at 0.8 V, T/R at 0.8 V, C _L = 5 pF, V _L = 0, R _{L1} = 390 Ω, R _{L2} not connected, See Figure 5	E	ns
^t PZH	Output enable time to high level	cs	An	Bn at 0.8 V, T/ \overline{R} at 0.8 V, CL = 30 pF, VL = 0, RL1 not connected, RL2 = 1.6 k\Omega, See Figure 5	17	ns
tplz	Output disable time from low level	T/R	An	$\label{eq:cs} \begin{array}{l} \overline{\text{CS}} \text{ at } 0.8 \ \text{V}, \ \text{V}_{\text{I}(\text{An},\text{Bn})} = 2 \ \text{V}, \ \text{V}_{\text{L}} = 5 \ \text{V}, \\ \text{R}_{\text{L}1} = 390 \ \Omega, \ \text{R}_{\text{L}2} \ \text{not connected}, \\ \text{C}_{\text{L}} = 5 \ \text{pF}, \ \text{See Figure 3} \end{array}$	20	ns
^t PZL	Output enable time to low level	T/R	An	$\label{eq:constraint} \begin{split} \overline{\text{CS}} & \text{at 0.8 V, } V_{\text{I}(\text{An},\text{Bn})} = 2 \text{ V, } V_{\text{L}} = 5 \text{ V,} \\ \text{R}_{\text{L}1} & = 390 \ \Omega, \ \text{R}_{\text{L}2} = 1.6 \ \text{k}\Omega, \\ \text{C}_{\text{L}} & = 30 \ \text{pF}, \ \text{See Figure 3} \end{split}$	40	ns
tphz	Output disable time from high level	T/R	An	$\label{eq:constraint} \begin{split} \overline{\text{CS}} & \text{at } 0.8 \ \text{V}, \ \text{V}_{I(\text{An},\text{Bn})} = 0, \ \text{V}_{L} = 0, \\ \text{R}_{L1} & = 390 \ \Omega, \ \text{R}_{L2} \ \text{not connected}, \\ \text{C}_{L} & = 5 \ \text{pF}, \ \text{See Figure 3} \end{split}$	17	ns
tpzh	Output enable time to high level	T/R	An	$\label{eq:constraint} \begin{array}{l} \overline{\text{CS}} \text{ at } 0.8 \text{ V}, \text{ V}_{1(\text{An},\text{Bn})} = 0, \text{ V}_{L} = 0, \\ \text{R}_{L1} \text{ not connected}, \text{ R}_{L2} = 1.6 \text{ k}\Omega, \\ \text{C}_{L} = 30 \text{ pF}, \text{ See Figure 3} \end{array}$	1	ns
^t w(NF	Receiver noise rejection	Bn	An or Rn	CS at 0.8 V, T/R at 0.8 V, See Figure 6	3	ns

SN75ALS057 TRAPEZOIDAL-WAVEFORM INTERFACE BUS TRANSCEIVER

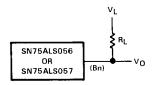
switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted)

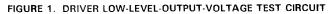
driver

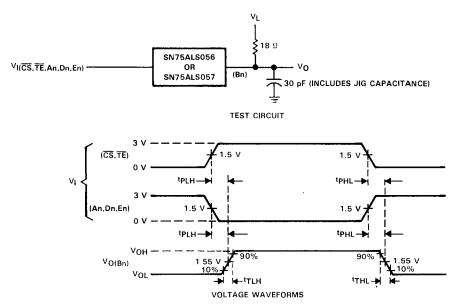
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COND	ITIONS	MłN	TYP [†]	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	Dn or En	Bn	$\overline{\text{TE}}$ at 0.8 V, V _L = 2 V,	RE at 2 V,			19	ns
^t PHL	Propagation delay time, high-to-low-level output	Droren	Bu		See Figure 2		ı	18	ns
^t PLH	Propagation delay tima, low-to-high-level output	TE	Bn	Dn, En, $\overline{\text{RE}}$ at 2 V, R _{L1} = 18 Ω,	VL = 2 V, See Figure 2			24	ns
^t PHL	Propagation delay time, high-to-low-level output		DII					20	115
tτ∟н	Transition time, low-to-high-level output	D	Bn	RE at 2 V,	V _L = 2 V, See Figure 2	1	3	11	ns
^t THL	Transition time, high-to-low-level output	Dn or En	DI	TE at 0.8 V,		1	3	6	113

receiver

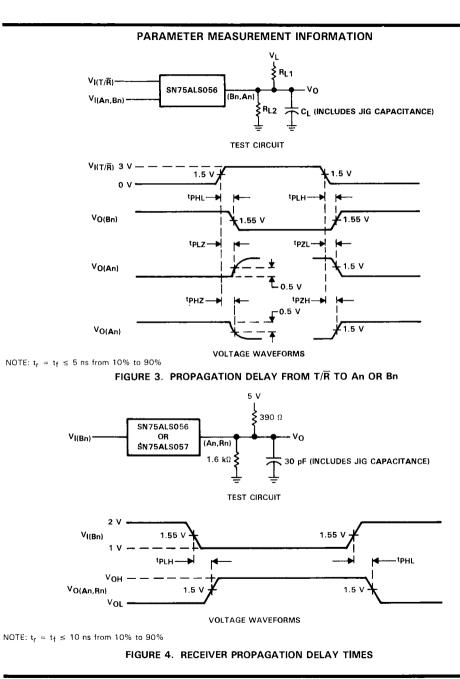
,	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	мах	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Bn	D .	RE at 0.8 V, TE at 2 V, See Figure 4		18	
^t PHL	Propagation delay time, high-to-low-level output	BU	Bn	RE at U.S V, TE at 2 V, See Figure 4		18	ns
^t PLZ	Output disable time from low lavel	ŔĒ	Rn	Bn at 2 V, TE at 2 V, $V_L = 5 V$, $C_L = 5 pF$, $R_{L1} = 390 \Omega$, R_{L2} not connected, See Figure 5		18	ns
^t PZL	Output enabla time to low level	RE	Rn	Bn at 2 V, TE at 2 V, V _L = 5 V, C _L = 30 pF, R _{L1} = 390 Ω, R _{L2} 1.6 kΩ, See Figure 5		15	ns
tPHZ	Output disable time from high level	RE	Rn	Bn at 0.8 V, TE at 2 V, $V_L = 0$, $C_L = 5 pF$, $R_{L1} = 390 \Omega$, R_{L2} not connected, See Figure 5		17	ns
^t PZH	Output enable time to high level	RE	Rn	Bn at 0.8 V, TE at 2 V, $V_L = 0$, $C_L = 30 \text{ pF}$, R_{L1} not connected, $R_{L2} = 1.6 \text{ k}\Omega$, See Figure 5		17	ns
tw(NR	Receiver noise rejection pulse duration	Bn	Cn	TË at 2.0 V, RË at 0.8 V, See Figure 6	3		ns

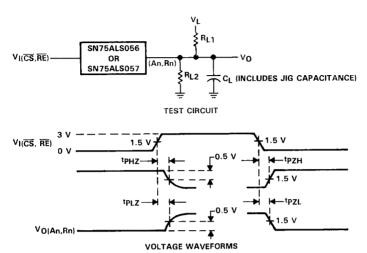

driver plus receiver

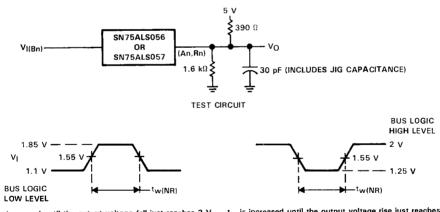

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation dalay time, low-to-high-level output		Ro	RE at 0.8 V, TE at 0.8 V, See Figure 7		40	
^t PHL	Propagation delay time, high-to-low-level output		nn	RE at 0.8 V, TE at 0.6 V, See Figure 7		40	ns


[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

PARAMETER MEASUREMENT INFORMATION

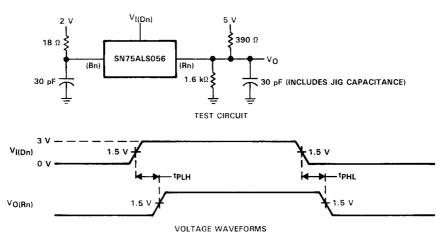



NOTE: t_{f} = t_{f} \leq 5 ns from 10% to 90%



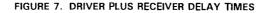
PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \le 5 \text{ ns from 10\% to 90\%}$



 t_W is increased until the output voltage fall just reaches 2 V. t_W is increased until the output voltage rise just reaches 0.8 V. VOLTAGE WAVEFORMS

NOTE: $t_f = t_f \le 2 \text{ ns from 10\% to 90\%}$



PARAMETER MEASUREMENT INFORMATION

NOTE: $t_r = t_f \le 5$ ns from 10% to 90%

D3279, APRIL 1989

 Compatible with IOS 8802.3:1989 and ANSI/IEEE Std 802.3-1988 	NŤ DUAL-IN-LINE PACKAGE (TOP VIEW)
 Interdevice Loop-Back Paths for System Testing 	TXI1 1 1 24 TX01 TXEN1 2 23 TX01
 Squelch Function Implemented on the Receiver Inputs 	LOOP1 3 22 VCC GND 4 21 RXI1 RXEN1 5 20 RXI1
 Drivers Will Drive a Balanced 78-Ω Load 	
 Transformer Coupling Not Required in System 	RXO2 7 18 GND RXEN2 8 17 RXI2 GND 9 16 RXI2
 Power-Up/Power-Down Protection (Glitch- Free) 	LOOP2 10 15 VCC TXEN2 11 14 TXO2
 Isolated Ground Pins for Reduced Noise Coupling 	TXI2 12 13 TXO2

- Fault-Condition Protection Built into the Device
- Driver Inputs Are Level-Shifted ECL Compatible

description

The SN75ALS085 is a monolithic, high-speed, advanced low-power Schottky, dual-channel driver/receiver device designed for use in the AUI of ANSI/IEEE Std 802.3-1988. The two drivers on the device will drive a 78- Ω balanced, terminated twisted-pair transmission line up to a maximum length of 50 meters. In the off (idle) state, the drivers will maintain minimal differential output voltage on the twisted-pair line and, at the same time, remain within the required output common-mode range.

With the driver enable (TXEN) high, upon receiving the first falling edge into the driver input, the differential outputs will rise to full-amplitude output levels within 25 ns. The output amplitude will be maintained for the remainder of the packet. After the last positive packet edge transmitted into the driver, the driver will maintain a minimum of 70% of full differential output for a minimum of 200 ns, then decay down to a minimum level for the reset (idle) condition within 8 μ s. Disabling the driver by taking the driver enable low will also force the output into the idle condition after the normal 8- μ s timeout. While operating, the driver is able to withstand a set of fault conditions and not suffer damage due to the faults being applied. The drivers will power up in the idle state to ensure that no activity is placed on the twisted-pair cable that could be interpreted as network traffic.

The line receiver squelch function interfaces to a differential twisted-pair line terminated external to the device. The receiver squelch circuit allows differential receive signals to pass through as long as the input amplitude and pulse duration are greater than the minimum squelch threshold. This assures a good signal-to-noise ratio while the data path is active and prevents system noise from causing false data transitions during line shut down and line-idle conditions. The RXO outputs default to a high level and the RXEN outputs default to a low level while the squelch function is blocking the data path threshold is exceeded. The line receiver squelch will become active within 50 ns when the input squelch threshold is exceeded. The RXEN pin will be driven high while the squelch circuit is allowing data to pass through the receiver. The receiver squelch circuit will also withstand a set of fault conditions while operating without causing permanent damage to the device.

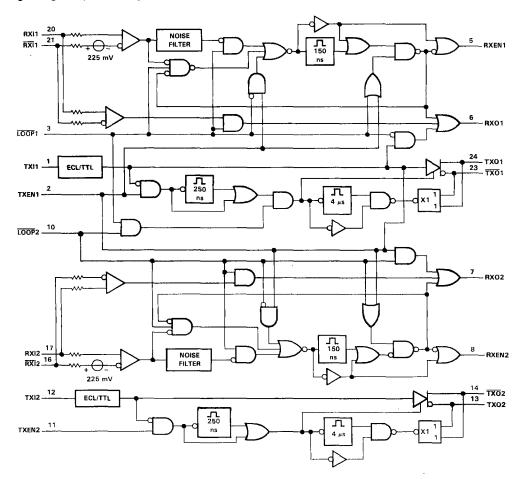
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1989, Texas Instruments Incorporated

The purpose of the loop functions is to provide a means by which system data path verification can be done to isolate faulty interfaces and assist in network diagnosis. The LOOP pins are TTL compatible and must be held high for normal operation. When \overline{LOOP} is taken low, the output of driver 1 (TXO1) immediately goes into the idle state. Also, the input to receiver 1 is ignored and a path from TXI1 to RXO1 is estable $4e^{-4}e^{-4}$. When \overline{LOOP} 1 is taken back high, driver 1 and receiver 1 revert back to their normal operation. When $\overline{L^{i}e^{-4}e^{-4}}$ is taken low, a similar data path is established between TXI1 and RXO2. TXEN1 must be high for the loop functions to operate and TXEN1 can be used to gate the loop function if desired. During loop operation, the respective receiver enable output (RXEN) will reflect the status of TXEN1.

RECEIVER FUNCTION TABLE

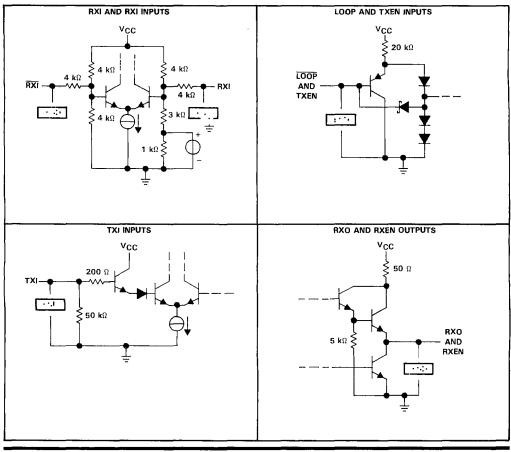
		OUTP	UTS
RXI	PREVIOUS RXEN	RXEN	RXO
$V_{ID} = 1315 \text{ mV} \text{ to} - 175 \text{ mV}, t_W < 25 \text{ ns}$	L	L	н
$V_{ID} = -275 \text{ mV} \text{ to} -1315 \text{ mV}, t_W > 50 \text{ ns}$	x	н	L
$V_{ID} = 318 \text{ mV}$ to 1315 mV, $t_W < 130 \text{ ns}$	н	н	н
V _{ID} = 318 mV to 1315 mV, t _W > 175 ns	х	L	н


DRIVER FUNCTION TABLE

TXI	TXEN	PREVIOUS TXO	OUTPUT TXO
L	L	IDLE	IDLE
н	L	IDLE	IDLE
} +	н	IDLE	L
L	н	ACTIVE	L
H < 200 ns	н	ACTIVE	н
H > 8 μs	н	ACTIVE	IDLE
L	L > 8 µs	ACTIVE	IDLE
H < 200 ns	L > 8 μs	ACTIVE	IDLE
H < 200 ns	L < 200 ns	ACTIVE	н
H > 8 μs	L < 200 ns	ACTIVE	IDLE
L	L < 200 ns	ACTIVE	L

 $H = V_1 \ge V_T \max$, $L = V_1 \le V_T \min$

logic diagram (positive logic)



	LOOP FUNCTION TABLE									
	INPUTS				OUTPUTS					
LOOP1	LOOP2	TX11	TXEN1	P1 **	_ in: _	[P 1	2	Rint	R	1 • • • 1
L	L	L	н	_ ^ _	_ ^ _	-				
L	L	н	н	Х	×	н	н	н	н	IDLE
L	L	х	L	х	х	н	н	L	L	IDLE
L	н	L	Н	x	NORMAL	Ĺ	NORMAL	н	NORMAL	IDLE
L	н	н	н	х	NORMAL	н	NORMAL	н	NORMAL	IDLE
L	н	х	L	х	NORMAL	н	NORMAL	L	NORMAL	IDLE
н	L	L	Н	NORMAL	X	NDRMAL	L	NDRMAL	Н	IDLE
н	L	н	н	NORMAL	х	NORMAL	н	NORMAL	н	IDLE
н	L	х	L	NDRMAL	х	NORMAL	н	NORMAL	L	IDLE
н	н	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL

H = high level, L = low level, X = don't care

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 6 V
TXI and LOOP input voltage
TXO and \overline{TXO} output voltage
RXI and RXI input voltage
RXO and RXEN output voltage \ldots 5.5 V
Continuous total power dissipation at (or below) 25 °C (see Note 2) 1250 mW
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. Voltage values are with respect to network ground terminal.

2. For operation above 25°C free-air temperature, derate linearly to 800 mW at 70°C at the rate of 10 mW/°C.

recommended operating conditions

	MIN	NOM MAX	UNIT
Supply voltage, V _{CC}	4.75	5 5.25	V
mon-mode voltage at RXI inputs, VIC	1	4.2	v
rential voltage between RXI in. V _D	±318	±1315	mV
High-level input voltage, LOOP and ' · '. V _{1H}	2		v
Low-level input voltage, LOOP and T · 'I VIL		0.8	v
High-level output current, and IOH		-0.4	mA
Low-level output voltage, and IOL		16	mA
Setup time, Driver mode, high before TXIL, tsu1 (see Figure 8)	10		ns
Setup time, Loop mode, I w before	15		ns
Setup time, Loop mode, TXFN high before tsu3 (see Figure 10)	10		ns
Hold time, Loop mode, ' ' nigh after ' 'h1 (see Figure 9)	10		ns
Hold time, Loop mode, ow after	15		ns
Operating free-air temperature, TA	Ö	70	°C

electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN	MAX	UNIT	
VIK	Clamp voltage at all inputs		$I_{\rm I} = -18 {\rm mA}$			- 1.5	V	
				V _{CC} = 4.75 V	3.202	3.752		
			$T_A = 0^{\circ}C$	$V_{CC} = 5 V$	3.389	3.998	v	
				V _{CC} = 5.25 V	3.577	4.244		
				V _{CC} = 4.75 V	3.213	3.797		
Vт	Driver input (TXI) threshold voltage		$T_A = 25 ^{\circ}C$	$V_{CC} = 5 V$	3. ·	4.043	v	
				V _{CC} = 5.25 V	3.	4.289		
				V _{CC} = 4.75 V	3	3.849		
		1	$T_A = 70 ^{\circ}C$	$V_{CC} = 5 V$	3.+20	4.095	v	
				Vcc = 5.25 V	3.614	4 741		
VIDT	Receiver differential input threshold	voltage					m۷	
		<u> </u>	TXEN at 0.8 V, LO	OP1 at 2 V,				
		Idle	LOOP2 at 2 V,	Figure 1	1	4.2		
			TXEN at 2 V, I	1 at 2 V,				
	Driver output (TXO) common-mode	Active	LOOP2 at 2 V, TXI	at 3.2 V,	1	4.2		
Voc	voltage		Figure 1				v	
			1 at 2 V, LOOI	P1 at 2 V,				
		Active	LOOP2 at 2 V, TXI	at 4.4 V,	1	4.2		
			• Figure 1					
	· ·		Jat 0.8 V, LO	OP1 at 2 V,				
		idle	·2 at 2 V,	Figure 1		±40		
			at 2 V, i	1 at 2 V.				
	Driver output (TXO) differential	Active	LOOP2 at 2 V, TXI		- 600	- 1315		
VOD	voltage		Figure 1				m۷	
	-	<u> </u>	· J at 2 V, LOOI	P1 at 2 V,		······		
		Active	LOOP2 at 2 V, TXI	at 4.4 V,	600	1315	5	
	,		See Figure 1					
Vон	High-level output voltage	RXO, RYEN	IOH = -0.4 mA		2.4		v	
Voi	Low-level output voltage		IOL = 16 mA			0.5	v	
						20		
ЧН	High-level input current	TXI -	$V_{1} = 4.5 V$		· · · · · · · · · · · · · · · · · · ·	400	μA	
			$V_{\rm ID} = -0.5 V, V_{\rm I}$	c = 1 V to 4.2 V		1000		
	· · · · · · · · · · · · · · · · · · ·	1 · · LOOP	$V_{l} = 0.8 V$			·		
			VI = 3.1 V					
ης Low	Low-level input current	тхі	V ₁ = 0.3 V		4	:-	μA	
		• RXI	$V_{ID} = 0.5 V, V_{IC}$	= 1 V to 4.2 V		1000	1	
			TXEN at 0.8 V, LO		· · · · · ·			
ססי	Driver differential output current	Idle	LDOP2 at 2 V, See			±4	mA	
los	Short-circuit output current [†]	RXO, RXEN	Vo at 0 V, RXI at		- 40	- 150	mA	
			LOOP at 2 V, TXE					
lcc	Supply current		TXI at 4.5 V, Outp			225	mA	

[†]Not more than one output should be shorted at a time, and the duration of the test should not exceed 1 second.

PARAMETER	TEST CONDITIONS [†]	MIN MAX	UNIT
	TXO shorted to TXO,	150	
	Current measured in short	150	
	TXO at 0 V, TXO is open,	150	
	··· it meas it TXO	150	
	s open, at 0,	150	
	t measured at TXO	150	
Driver fault condition current	* 3t 0 V, TXO at 0 V,	150	mA
Driver fault condition current	Current measured at ⊤XO and TXO	150	IIIA
	TXO at 16 V, $\overline{\top XO}$ is open,	150	
	Current measured at TXO		
	TXO is open, TXO at 16 V,	150	
	Current measured at TXO	100	
	TXO at 16 V, TXO at 16 V,		
	• • • • • • • • • • • • • • • • • • •	150	
	 shorted to RXI, 	10	
	Current measured in short		
	RXI at 0 V, RXI is open,	3	1
	Current measured at RXI		
	RXI is open, RXI at 0 V,	3	
	Current me i at RXI		ļ.
Receiver fault condition current	RXI at 0 V, ···· it 0 V,	3	mA
	ent mea: •• at RXI and RXI	-]
	··· at 16 V, • at open,	10	
	Current mea at RXI		
	RXI at open, 1116 V,	10	
	Current measured at RXI		Į
	RXI at 16 V, RXI at 16 V,	10	
	Current measured at RXI and RXI		

electrical characteristics over recommended ranges of operating free-air temperature and supply voltage (unless otherwise noted) (continued)

[†]Fault conditions should be measured on only one channel at a time.

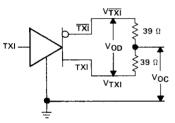
switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted)

driver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	МАХ	UNIT
^t PLH	Propagation delay time, low-to-high level output	TXI	τχο, Τχο	TXEN at 2 V, See Figure 3		15	ns
^t PHL	Propagation delay time, high-to-low level output	тхі	τχο, Τ ΧΟ	TXEN at 2 V, See Figure 3		15	ns
tPIL	Propagation delay time, idle-to-low level output	ТХІ	τχο, τχο	TXEN at 2 V, See Figure 4		25	ns
tPIL	Propagation delay time, idle-to-low level output	TXEN	τχο, Τχο	TXI at 3.2 V, See Figure 5		25	ns
	Propagation delay time,	TXI	TXO, TYO	TXEN at 2 V, See Figure 6	200		
tPH70	high-to-70% level output	, _	тхо, •	TXI at 4.4 V, See Figure 7	<u>⊤.</u> , —		ns
	Propagation delay time,	;,,	тхо,	TXEN at 2 V, See Figure 6	т. —	8000	
tPHI	high-to-idle output	TXEN	TXO, TXO	TXI at 4.4 V, See Figure 7	200	8000	ns
٧U	Driver output differential undershoot	тхі	τ χ ο, <u>τχο</u>	TXEN at 2 V, See Figure 6		- 100	m∨
t _{skew}	Driver caused signal skew (tpLH - tPHL)	тхі	τχο, τχο	TXEN at 2 V, See Figure 3		±3	ns
t _r	Rise time, TXO, TXO			TXEN at 2 V, See Figure 3	1	5	ns
tf	Fall time, TXO, TXO			TXEN at 2 V, See Figure 3	1	5	ns

receiver

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
tPLH	Propagation delay time, low-to-high level output	RXI, RXI	RXO	V _{IC} = 1 V to 4.2 V, See Figure 11		15	ns
^t PHL	Progagation delay time, high-to-low level output	RXI, RXI	RXO	$V_{IC} = 1 V$ to 4.2 V, See Figure 11		15	ns
^t PĽH	Start-up delay time, low-to-high level output	RXI, RXI	RXEN	$V_{IC} = 1 V \text{ to } 4.2 V,$ $V_{ID} = -500 \text{ mV}$, See Figure 13		50	ns
^t PHL	Shutdown delay time, high-to-low level output	RXI, RXI	RXEN	V _{IC} = 1 V to 4.2 V, V _{ID} = 500 mV, See Figure 13	130	175	ns
t _{skew}	Receiver caused signal skew (tpLH - tpHL)	RXI, RXI	RXO	$V_{IC} = 1 V$ to 4.2 V, $V_{ID} = 500 \text{ mV}$, See Figure 11		±3	ns
tw	Pulse duration at RXI and (to not activate squelch)	RXI		V _{IC} = 1 V to 4.2 V, V _{ID} = -175 mV, See Figure 12	25		ns
tw	Pulse duration at RXI and (to activate squelch)	RXI		V _{IC} = 1 V to 4.2 V, V _{ID} = -275 mV, See Figure 12		50	ns
t _r 1	Rise time, RXO			$V_{IC} = 1 V \text{ to } 4.2 V,$ $V_{ID} = \pm 500 \text{ mV}, \text{ See Figure } 11$	1	8	ns
tr2	Rise time, RXEN			$V_{IC} = 1 V \text{ to } 4.2 V,$ $V_{ID} = \pm 500 \text{ mV}, \text{ See Figure } 13$	1	8	ns
tf1	Fall time, RXO			V _{1C} = 1 V to 4.2 V, V _{1D} = ±500 mV, See Figure 11	1	8	ns
^t f2	f2 Fall time, RXEN		$V_{IC} = 2.5 V$, $V_{ID} = \pm 500 mV$, See Figure 13	1	8	ns	
tvalid	RXO valid after RXEN high	1		See Figure 11	- 10	15	ns

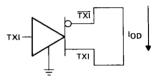
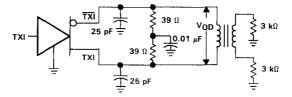


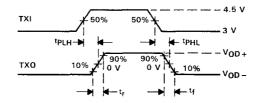
switching characteristics over recommended ranges of operating free-air temperature and VCC (unless otherwise noted)

loop

	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
tplh	Propagation delay time, low-to-high level output	тхі	RXO	LOOP at 0.8 V, TXEN at 2 V, See Figure 14		30	ns
^t PHL	Propagation delay time, high-to-low level output	тхі	RXO	LOOP at 0.8 V, TXEN at 2 V, See Figure 14		30	ns
tPLH	Propagation delay time, low-to-high level output	TXEN	RXEN	LOOP at 0.8 V, See Figure 15		50	ns
^t PHL	Propagation delay time, high-to-low level output	TXEN	RXEN	LOOP at 0.8 V, See Figure 15		50	ns

PARAMETER MEASUREMENT INFORMATION

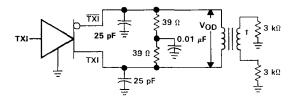




FIGURE 2

PARAMETER MEASUREMENT INFORMATION

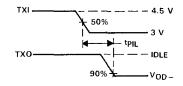
TEST CIRCUIT

VOLTAGE WAVEFORMS


TRANSFORMER SPECIFICATIONS

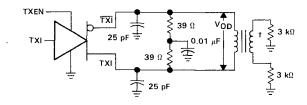
Turns Ratio	1:1
Magnetizing Inductance	26 to 30 μH
Winding Resistance	0.6 Ω Max
Rise Time 10% to 90%	5 ns Max
Interwinding Capacitance	25 pF
Leakage Inductance	0.25 µH Max
Inductive Q	1250 Min

FIGURE 3



PARAMETER MEASUREMENT INFORMATION

[†]See Figure 3


TEST CIRCUIT

VOLTAGE WAVEFORMS

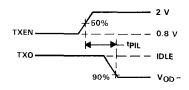
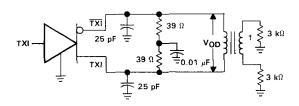

NOTE: Input t_r \leq 5 ns from 10% to 90%; t_f \leq 5 ns from 90% to 10%

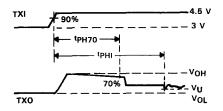
FIGURE 4

TEST CIRCUIT


[†]See Figure 3

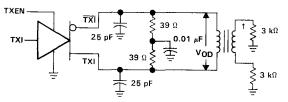
VOLTAGE WAVEFORMS

FIGURE 5



PARAMETER MEASUREMENT INFORMATION

[†]See Figure 3


TEST CIRCUIT

VOLTAGE WAVEFORMS

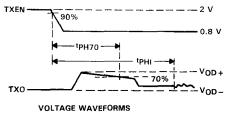
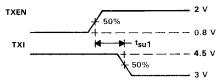
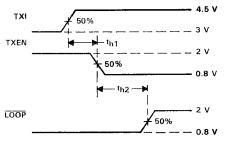

NOTE: Input $t_r~\leq~5$ ns from 10% to 90%; $t_f~\leq~5$ ns from 90% to 10%

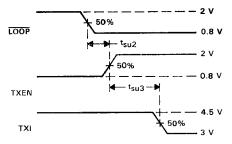
FIGURE 6

[†]See Figure 3


TEST CIRCUIT

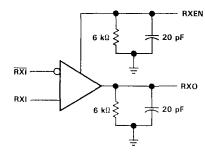


PARAMETER MEASUREMENT INFORMATION

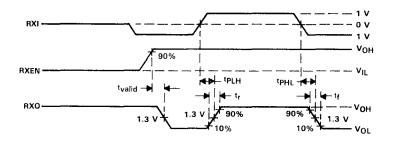

NOTE: input $t_r \le 5$ ns from 10% to 90%; $t_f \le 5$ ns from 90% to 10%

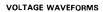
NOTE: Input t_{f} \leq 5 ns from 10% to 90%; t_{f} \leq 5 ns from 90% to 10%

FIGURE 9



NOTE: Input $t_r \le 5$ ns from 10% to 90%; $t_f \le 5$ ns from 90% to 10%


FIGURE 10



PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTE: Input t_{f} \leq 5 ns from 10% to 90%; t_{f} \leq 5 ns from 90% to 10% FIGURE~11

PARAMETER MEASUREMENT INFORMATION

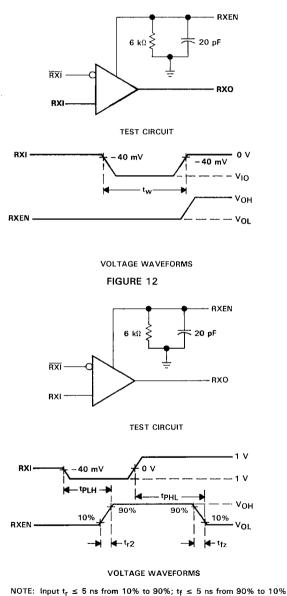
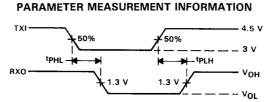
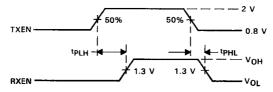



FIGURE 13



.

NOTE: Input t_r \leq 5 ns from 10% to 90%; t_f \leq 5 ns from 90% to 10%

FIGURE 14

NOTE: Input $t_r \leq 5$ ns from 10% to 90%; $t_f \leq 5$ ns from 90% to 10% FIGURE 15

D1334, SEPTEMBER 1987-REVISED AUGUST 1989

- Permits Digital Data Transmission over Coaxial Cable, Strip Line, or Twisted Pair
- Operates with 50-Ω to 500-Ω Transmission Lines
- TTL-Compatible with 5-V Supply
- 2.4-V Output at IOH = -75 mA
- Uncommitted Emitter-Follower Output Structure for Party-Line Operation
- IMPACT[™] Low-Power Schottky Technology
- Improved Replacement for the SN75121 and Signetics 8T13
- Glitchless Power-Up/Power-Down
- Short-Circuit Protection
- AND-OR Logic Configuration
- High Speed . . . Maximum Propagation Delay Time of 14 ns at CL = 15 pF

D OR N PACKAGE (TOP VIEW)					
1 A 🗌	1	U16	□ vcc		
1B 🗌	2	15	_ 2F		
1C 🗌	3	14] 2E		
1D 🗌	4	13] 2D		
1E 🗌	5	12	2C		
1 F 🗌	6	11	2B		
1 Y 🗌	7	10	2A 🗌		
GND	8	9	2Y		

FUNCTION TABLE

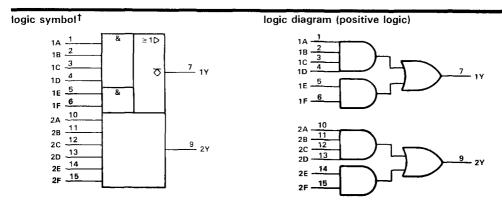
	INPUTS					
Α	В	С	D	E	F	Y
н	н	н	Н	X	Х	н
x	х	х	х	н	н	н
A	Il othe	r input	comb	inatior	ıs	L [

- H = high level
- L = low level
- X = irrelevant

description

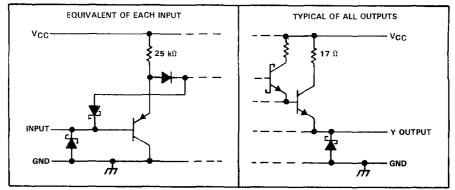
The SN75ALS121 dual line driver is designed for digital data transmission over lines having impedances from 50 to 500 Ω . It is compatible with standard TTL logic and supply voltage levels.

The low-impedance emitter-follower outputs drive terminated lines such as coaxial cable, strip line, or twisted pair. Having the outputs uncommitted allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 1.5 volts. All inputs are in conventional TTL configuration. Gating can be used during power-up and power-down sequences to ensure that no noise is introduced on the line.


The SN75ALS121 employs the IMPACT™ process to achieve fast switching speeds, low power dissipation, and reduced input current requirements.

The SN75ALS121 is characterized for operation from 0°C to 70°C.

IMPACT is a trademark of Texas Instruments Incorporated



SN75ALS121 DUAL LINE DRIVER

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 6 Input voltage 6 Output voltage 6	V
Continuous total dissipation at (or below) 25 °C free air temperature (see Note 2):	
D package	W
N package	W
Operating free-air temperature range	°C
Storage temperature range	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260	°C

NOTES: 1. All voltage values are with respect to network ground terminal.

 For operation above 25 °C free-air temperature, derate the D package linearly to 608 mW at 70 °C at the rate of 7.6 mW/°C and the N package to 736 mW at 70 °C at the rate of 9.2 mW/°C.

recommended operating conditions

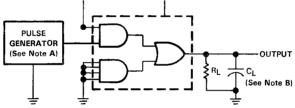
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	V
High-level output current, IOH			- 75	mA
Operating free-air temperature range, TA	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

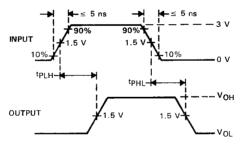
	PARAMETER		TEST CONDITIONS		MIN	TYPT	MAX	UNIT
ViK	Input clamp voltage	$V_{CC} = 5 V_{r}$	lj ≕ −12 mA				-1.5	V
V(BR)I	input breakdown voltage	V _{CC} = 5 V,	lj = 10 mA		5.5			V
VOH	High-level output voltage	V _{IH} = 2 V,	$I_{OH} = -75 \text{ mA},$	See Note 3	2.4	3.2		v
юн	High-level output current	V _{CC} = 5 V, T _A = 25 °C,	V _{IH} = 4.5 V, See Note 3	V _{OH} = 2 V,	- 100	- 200	- 250	mA
¹ OL	Low-level output current	V _{IL} = 0.8 V,	V _{OL} = 0.4 V,	See Note 3			- 800	μA
¹ O(off)	Off-state output current	$V_{CC} = 3 V$,	V ₀ = 3 V				500	μA
^I IH	High-level input current	Vi = 4.5 V					40	μA
μ	Low-level input current	V ₁ = 0.4 V					- 250	μA
los	Short-circuit output current	V _{CC} = 5 V				- 5	- 30	mA
ICCH	Supply current, outputs high	$V_{CC} = 5.25 V_{,}$	All inputs at 2 V,	No load		9	14	mA
ICCL	Supply current, outputs low	$V_{\rm CC} = 5.25 V_{\rm c}$	All inputs at 0.8 V,	No load	<u> </u>	13	30	mA

 † All typical values are at V_CC = 5 V and T_A = 25 °C.

NOTE 3: The output voltage and current limits are ensured for any appropriate combination of high and low inputs specified by the function table for the desired output.

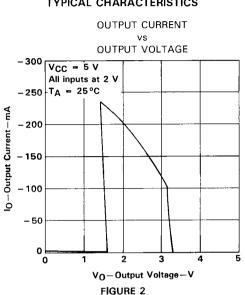

SN75ALS121 DUAL LINE DRIVER

switching characteristics over recommended ranges of supply voltage and operating free-air temperature


	PARAMETER		TEST CONDITIONS	i	MIN	түр	MAX	UNIT
	Propagation delay time,		$R_L = 37 \Omega$, $C_L = 15 pF$, See			6	14	ns
t₽LH	low-to-high-level output	$P_{1} = 27.0$	C 15 pc	See Figure 1			14	113
*	Propagation delay time,	n 37 #,	CL = 15 pr,	See Figure 1		4	14	ns
^t PHL	high-to-low-level output				1		17	113
	Propagation delay time,	~				18	30	ns
tplh	low-to-high-level output	P 27.0	$C_{1} = 1000 \text{ pF}$	See Figure 1		10	MAX 14 14 30 50	115
4	Propagation delay time,	$R_L = 37 \ \Omega$, $C_L = 1000 \ pF$, See Fig	See Figure 1		29	50	ns	
tPHL	high-to-low-level output					2.5	50	115

[†] All typical values are at V_{CC} = 5 V and T_A = 25 °C.

TEST CIRCUIT



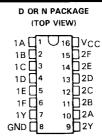
VOLTAGE WAVEFORMS

NOTES: A. The pulse generator has the following characteristics: $Z_p = 50 \Omega$, $t_w = 200$ ns, duty cycle = 50%. B. CL includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

TYPICAL CHARACTERISTICS

D1332, SEPTEMBER 1987-REVISED AUGUST 1989

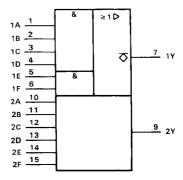

- Meets IBM 360 Input Interface Specifications
- Permits Digital Data Transmission over Coaxial Cable, Strip Line, or Twisted Pair
- TTL-Compatible with 5-V Supply
- 3.11-V Output at IOH = -59.3 mA
- Uncommitted Emitter-Follower Output Structure for Party-Line Operation
- IMPACT[™] Low-Power Schottky Technology
- Improved Replacement for the SN75123 and Signetics 8T13
- Glitchless Power-Up/Power-Down
- Short-Circuit Protection
- AND-OR Logic Configuration
- High Speed . . . Maximum Propagation Delay Time of 14 ns at CL = 15 pF

description

The SN75ALS123 dual line driver is specifically designed to meet the input interface specifications for the IBM System 360. It is compatible with standard TTL logic and supply voltage levels. The low-impedance, emitterfollower outputs drive terminated lines such as coaxial cable, strip line, or twisted pair. The uncommitted output allows wired-OR logic to be performed in party-line applications. Output short-circuit protection is provided by an internal clamping network that turns on when the output voltage drops below approximately 1.5 V. All inputs are in conventional TTL configuration. Gating can be used during power-up and powerdown sequences to ensure that no noise is introduced on the line.

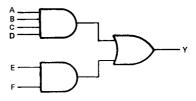
The SN75ALS123 employs the IMPACT[™] process to achieve fast switching speeds, low power dissipation, and reduced input current requirements.

The SN75ALS123 is characterized for operation from 0°C to 70°C.

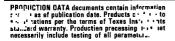


FUNCTION TABLE

	INPUTS						
A	8	С	D	E	F	Y	
н	н	Ĥ	н	Х	х	Н	
x	х	х	x	н	н	н	
A	II othe	r input	t comb	inatior	15	L	


H = high level L = low level X = irrelevant

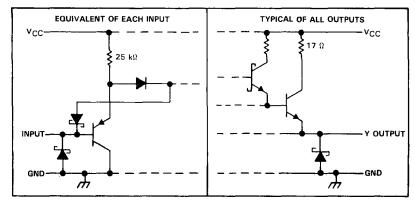
logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram, each driver (positive logic)

IMPACT is a trademark of Texas Instruments Incorporated.



Copyright © 1989, Texas Instruments Incorporated

SN75ALS123 DUAL LINE DRIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V Input voltage 5.5 V
Output voltage
Continuous total dissipation at (or below) 25 °C free air temperature (see Note 2):
D package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to network ground terminal.

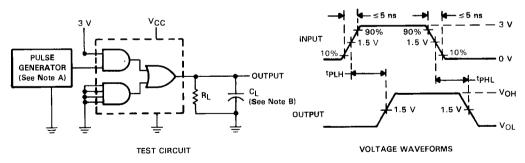
 For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/°C and the N package to 736 mW at 70 °C at the rate of 9.2 mW/°C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	v
High-level output current, IOH			- 100	mA
Operating free-air temperature range, TA	0		70	°C

	PARAMETER		TEST CONDITIONS	i	MIN	TYP	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 5 V,$	$l_1 = -12 \text{ mA}$				- 1.5	V
V(BR)	Input breakdown voltage	$V_{CC} = 5 V$,	lj = 10 mA		5.5			V
		V _{CC} = 5 V, See Note 3	$V_{IH} = 2 V,$	$I_{OH} = -59.3 \text{ mA},$	2.9			v
∨он	High-level output voltage	$V_{CC} = 5 V,$ $T_A = 25 °C,$	V _{IH} = 2 V, See Note 3	$I_{OH} = -59.3 \text{ mA},$	3.11	3.3		• -
VOL	Low-level output voltage	$V_{1L} = 0.8 V_{2}$	$I_{OL} = -240 \ \mu A$,	See Note 2			0.15	V
юн	High-level output current	$V_{CC} = 5 V,$ $T_{A} = 25^{\circ}C,$	V _{IH} = 4.5 V, See Note 3	$V_{OH} = 2 V_{,}$	- 100	- 200	- 250	mA
IO(off)	Off-state output current	$V_{CC} = 0,$	V ₀ = 3 V				40	μA
ЧΗ	High-level input current	V _I = 4.5 V					40	μA
կլ	Low-level input current	$V_{ } = 0.4 V$						μA
los	Short-circuit output current	$V_{CC} = 5 V$				- 5	- 30	mA
1CCH	Supply current, outputs high	$V_{CC} = 5.25 V_{c}$	All inputs at 2 V,	No load		9	14	mA
ICCL	Supply current, outputs low	$V_{CC} = 5.25 V_{,}$	All inputs at 0.8 V,	No load		13	30	mA

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


NOTE 3. The output voltage and current limits are ensured for any appropriate combination of high and low inputs specified by the function table for the desired output.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
tPLH Propagation delay time, low-to-high-level output	$R_1 = 50 \Omega, C_1 = 15 pF$, See Figure 1		4	14	ns
tPHL Propagation delay time, high-to-low-level output			5	14	ns
tPLH Propagation delay time, low-to-high-level output	$R_{I} = 50 \Omega, C_{I} = 100 pF, See Figure 1$		8	20	ns
tPHL Propagation delay time, high-to-low-level output	$R_{L} = 50 \text{I}, C_{L} = 100 \text{pr}, \text{ see Figure 1}$		8	20	ns

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

PARAMETER MEASUREMENT INFORMATION

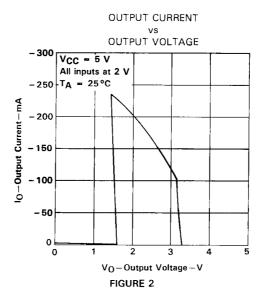


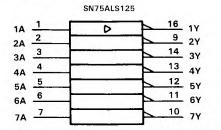
FIGURE 1. SWITCHING TIMES

NOTES: A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, $t_w = 200 ns$, duty cycle = 50%.

B. CL includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

D2239, APRIL 1987-REVISED AUGUST 1989

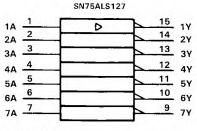

- Meets IBM 360/370 I/O Specification
- Input Resistance . . . 7 kΩ to 20 kΩ
- Output Compatible with TTL
- IMPACT[™] Low-Power Schottky Technology
- Operates from Single 5-V Supply
- High Speed . . . Low Propagation Delay
- Ratio Specification for Propagation Delay Time, Low-to-High/High-to-Low
- Glitch-Free Power-Up and Power-Down
- Seven Channels in One 16-Pin Package
- Standard V_{CC} and Ground Positioning on SN75ALS127

description

The SN75ALS125 and SN75ALS127 are monolithic seven-channel line receivers designed to satisfy the requirements of the IBM System 360/370 input/output interface specifications. Employing the IMPACT[™] process allows low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs.

The SN75ALS125 and SN75ALS127 are characterized for operation from 0°C to 70°C.

logic symbols[†]

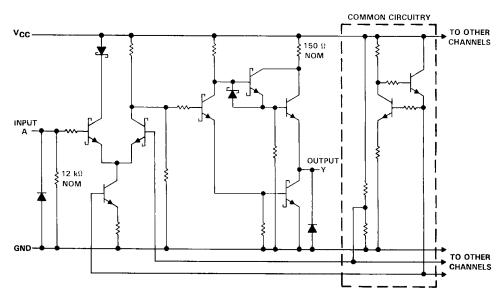

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

(то	P VIEW	1)
1A [1	U16	1 1Y
2A [2	15	□ vcc
3A [3	14] 3Y
4A [4	13	1 4Y
5A [5	12	5Y
6A [6	11	0 6Y
7A [7	10	□ 7Y
GND [8	9	2Y

SN75ALS125 . . . D, J, OR N PACKAGE

SN75ALS127 . . . D, J, OR N PACKAGE

4	10	F VIEVA	
1A [ſ	U16] Vcc
2A [2	15] 1Y
3A [3	14	2Y
4A	4	13] 3Y
5A [5	12] 4Y
6A [6	11] 5Y
7A 🗌	7	10] 6Y
GND [8	9] 7Y



IMPACT is a trademark of Texas Instruments Incorporated

Copyright © 1989, Texas Instruments Incorporated

schematic (each receiver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage range -0.15 V to 7 V
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
D package
J package
N package
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260°C

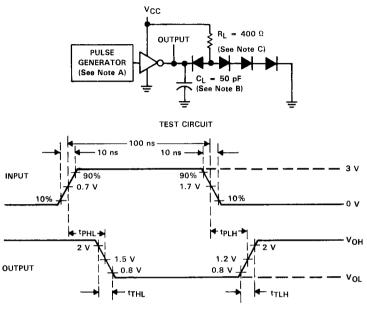
NOTES: 1. All voltage values are with respect to network ground terminal.

 For operation above 25 °C free-air temperature, derate the D package to 608 mW at 70 °C at the rate of 7.6 mW/ °C, the J package to 656 mW/ °C at 70 °C at the rate of 8.2 mW/ °C, and the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	V Ì
High-level input voltage, VIH	1.7			V
Low-level input voltage, VIL			0.7	V
High-level output current, IOH			-0.4	2 V
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


	PARAMETER	TEST CONDITION	IS	MIN	TYP [†]	MAX	UNIT
∨он	High-level output voltage	$V_{CC} = 4.5 V, V_{IL} = 0.7 V,$	$I_{OH} = -0.4 \text{ mA}$	2.4	3.1		V
VOL	Low-level output voltage	$V_{CC} = 4.5 V$, $V_{IH} = 1.7 V$,	$I_{OL} = 16 \text{ mA}$		0.4	0.5	V
ţн	High-level input current	$V_{CC} = 5.5 V, V_{I} = 3.11 V$			0.3	0.42	mA
IL.	Low-level input current	$V_{CC} = 5.5 V, V_{I} = 0.15 V$		1		30	μA
los	Short-circuit output current [‡]	$V_{CC} = 5.5 V, V_{O} = 0$		- 18		- 60	mA
ri	Input resistance	$V_{CC} = 4.5 V$, 0, or open, $\Delta V_{I} = 0.15 V$ to 4.15 V		7		20	kΩ
		$V_{CC} = 5.5 V$, $I_{OH} = -0.4 mA$, All inputs at 0.7 V			15	25	mA
Icc	Supply current	$V_{CC} = 5.5 V$, $I_{OL} = 16 mA$, All inputs at 4 V			28	47	mA

switching characteristics over recommended operating temperature range (unless otherwise noted), $V_{CC} = 5 V$

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output		7	14	25	ns
^t PHL	Propagation delay time, high-to-low-level output		10	18	30	ns
t <u>PLH</u> tPHL	Ratio of propagation delay times	$R_L = 400 \Omega$, $C_L = 50 pF$, See Figure 1	0.5	0.8	1.3	
t тlн	Transition time, low-to-high-level output		1	7	12	ns
t THL	Transition time, high-to-low-level output		1	3	12	ns

 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ Not more than one output should be shorted at a time.

PARAMETER MEASUREMENT INFORMATION

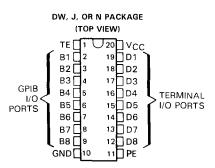
VOLTAGE WAVEFORMS

- NOTES: A. The pulse generator has the following characteristics: Z_{out} \approx 50 $\Omega,$ PRR \leq 5 MHz.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

FIGURE 1

D2525, JUNE 1986-REVISED AUGUST 1989

MEETS IEEE STANDARD 488-1978 (GPIB)


- 8-Channel Bidirectional Transceiver
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Open-Collector Driver Output Option
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

description

The SN75ALS160 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky device designed for two-way data communications over single-ended transmission lines. It is designed to meet the requirements of IEEE Standard 488-1978. The transceiver features driver outputs that can be operated in either the passive-pullup or three-state mode. If Talk Enable (TE) is high, these ports have the characteristics of passive-pullup outputs when Pullup Enable (PE) is low, and of three-state outputs when PE is high. Taking TE low places these ports in the high-impedance state. The driver outputs are designed to handle loads up to 48 milliamperes of sink current.

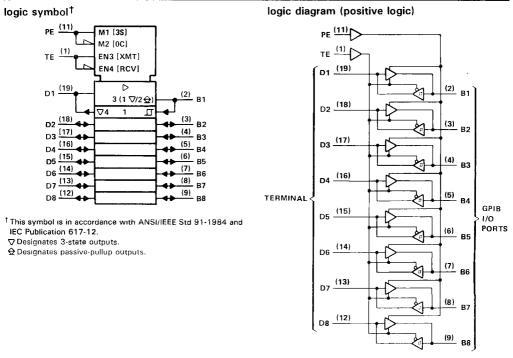
An active turn-off feature has been incorporated into the bus-terminating resistors so that the device exhibits a high impedance to the bus when V_{CC} = 0. When combined with the SN75ALS161 or SN75ALS162 management bus transceiver, the pair provides the complete 16-wire interface for the IEEE 488 bus.

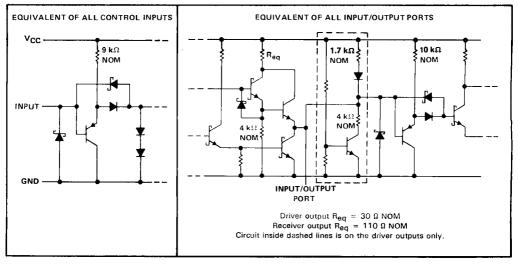
The SN75ALS160 is manufactured in a 20-pin package and is characterized for operation from 0°C to 70°C.

FUNCTION TABLES

EACH DRIVER

EACH RECEIVER


TI II	VPUT	S	OUTPUT		11	NPUT	s	OUTPUT
D	TE	PE	В	1	В	TE	PE	D
Н	н	н	н	1	L	L	X	L
L	н	х	L		н	L	х	н
н	х	L	Z†		х	н	х	Z
х	L.	х	Z†					


H = high level, L = low level, X = irrelevant,

Z = high-impedance state.

 † This is the high-impedance state of a normal 3-state output modified by the internal resistors to V_{CC} and ground.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V _{CC} (see Note 1)
Input voltage
Low-level driver output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
DW package
J package
N package
Operating free-air temperature range O°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from the case for 60 seconds: J package \ldots 300 °C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds: DW or N package \ldots 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

2. For operation above 25 °C free-air temperature, derate the DW and J packages to 656 mW at 70 °C at the rate of 8.2 mW/ °C and derate the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

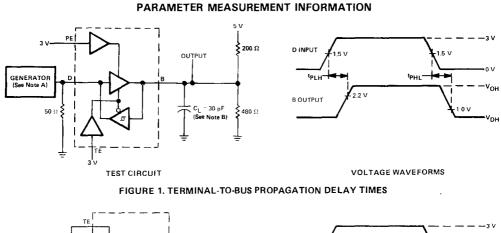
recommended operating conditions

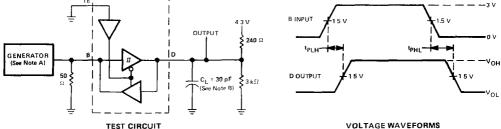
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH		2			V
Low-level input voltage, VIL				0.8	V
	Bus ports with pullups active			-52	mA
High-level output current, IOH	Terminal ports			- 1	μΑ
	Bus ports				1
Low-level output current, IOL	Terminal ports			16	mA
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

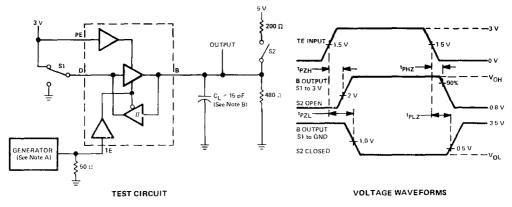
	PARAMETER		т	EST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	input clamp voltage		lj = -18 mA			-0.8	-1.5	V
V _{hys}	Hysteresis (V _{T +} ~ V _{T -})	Bus			0.4	0.65		v
t	High-level	Terminal	IOH = - 800 µ	A, TE at 0.8 V	2.7	3.5		v
∨он‡	output voltage	Bus	IOH = -5.2 m	A, PE and TE at 2 V	2.5	3.3		Ň
Mai	Low-level	Terminal	$I_{OL} = 16 \text{ mA},$	TE at 0.8 V		0.3	0.5	v
VOL	output voltage	Bus	$I_{OL} = 48 \text{ mA},$	TE at 2 V		0.35	0.5	×
lj -	Input current at maximum input voltage	Terminal	V ₁ = 5.5 V			0.2	100	μA
ЧН	High-level input current	Terminal,	VI = 2.7 V			0.1	20	μA
ήL.	Low-level input current	PE, or TE	V _I = 0.5 V			- 10	- 100	μA
			Driver disabled		2.5	3.0	3.7	v
VI/O(bus) Voltage at bus port			priver disabled	$I_{l(bus)} = -12 \text{ mA}$			~ 1.5	· ·
				$V_{l(bus)} = -1.5 V \text{ to } 0.4 V$	-1.3			
				V _{I(bus)} = 0.4 V to 2.5 V	0		-3.2	i
l/()(bus)	Current into bus port	Power on	Driver disabled	$V_{I(bus)} = 2.5 V \text{ to } 3.7 V$		•	2.5 -3.2	mA
1,010001	•	1		$V_{I(bus)} = 3.7 V \text{ to } 5 V$	0		2.5	
				$V_{I(bus)} = 5 V \text{ to } 5.5 V$	0.7		2.5	i
		Power off	$V_{CC} = 0,$	V _{I(bus)} = 0 to 2.5 V			40	μA
	Short-circuit	Terminal			- 15	- 35	- 75	
los	output current	Bus	· · · · · · · · · · · · · · · · · · ·		- 25	- 50	- 125	mA
		•	1	erminal outputs low and enabled	<u> </u>	42	65	-
lcc	Supply current		No load Bus outputs low and enabled		1	52	80	mA
C _{i/o(bus}	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0, V_{1/O} = 0 \text{ to } 2 V,$ f = 1 MHz			30		pF

 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ V_OH applies to 3-state outputs only.




	PARAMETER	FROM	то	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Terminal	Bus	CL ≈ 30 pF,		7	20	
^t PHL	Propagation delay time, high-to-low-level output	rminal	bus	See Figure 1		8	20	ns
^t PLH	Propagation delay time, low-to-high-level output	Bus	Terminal	$C_L \approx 30 \text{ pF},$		7	14	
tPHL	Propagation delay time, high-to-low-level output	DUS	s reminar	See Figure 2		9	14	ns
tpzh	Output enable time to high level			ļ — — — — — — — — — — — — — — — — — — —		19	30	
tphz	Output disable time from high level	TE	Bus	C _L ≃ 15 pF,		5	12	ns
^t PZL	Output enable time to low level			See Figure 3		16	35	
^t PLZ	Output disable time from low level		1			9	20	
^t PZH	Output enable time to high level					13	30	
^t PHZ	Output disable time from high level	TE	Terminal	$C_L \approx 15 \text{ pF},$		12	20	
tPZL	Output enable time to low level	1E	Terminal	See Figure 4		12	20	ns
tPLZ	Output disable time from low level					11	20	
t _{en}	Output pull-up enable time	PE	Bus	CL ≈ 15 pF,		11	22	
t _{dis}	Output pull-up disable time	PE PE	Bus	See Figure 5		6	12	ns

switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), VCC = 5 V


[†]Typical values are at $T_A = 25 \,^{\circ}C$.

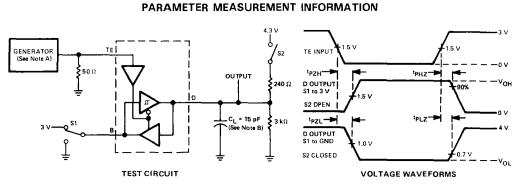
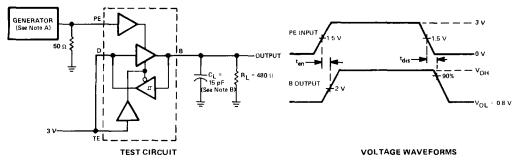


FIGURE 3. TE-TO-BUS ENABLE AND DISABLE TIMES


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.

B. CL includes probe and jig capacitance.

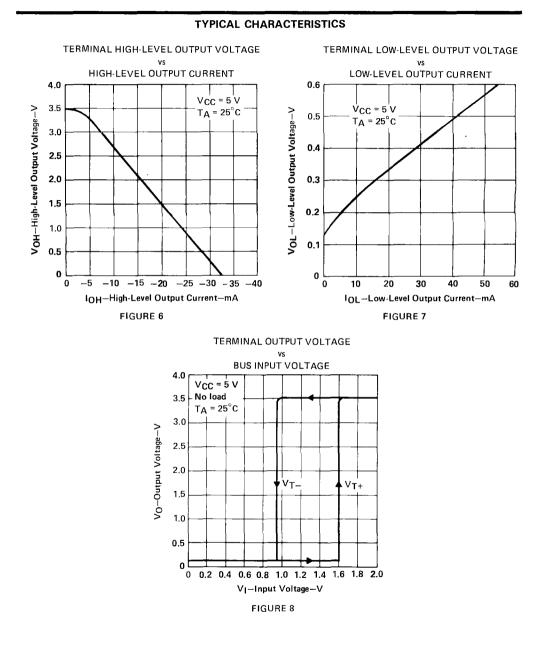


FIGURE 5. PE-TO-BUS PULLUP ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤6 ns, t_f ≤6 ns, Z_{out} = 50 Ω.
 - B. CL includes probe and jig capacitance.

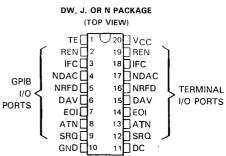
D2618, JUNE 1986 REVISED AUGUST 1989

MEETS IEEE STANDARD 488-1978 (GPIB)

- 8-Channel Bidirectional Transceiver
- Designed to Implement Control Bus Interface
- Designed for Single Controller
- High-Speed Advanced Low-Power Schottky Circuitry
- Low-Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

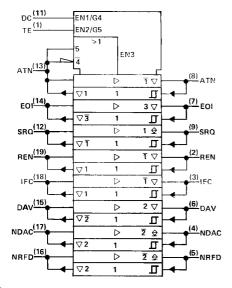
description

The SN75ALS161 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky process device designed to provide the busmanagement and data-transfer signals between operating units of a single controller instrumentation system. When combined with the SN75ALS160 octal bus transceiver, the SN75ALS161 provides the complete 16-wire interface for the IEEE 488 bus.


The SN75ALS161 features eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. The direction of data through these driver-receiver pairs is determined by the DC and TE enable signals.

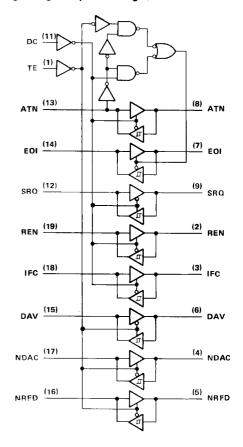
The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when $V_{CC} = 0$. The drivers are designed to handle loads up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and hysteresis of 400 mV minimum for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.

The SN75ALS161 is manufactured in a 20-pin package and is characterized for operation from 0°C to 70°C.


in the second second

CHANNEL IDENTIFICATION TABLE

NAME	IDENTITY	CLASS
DC	Direction Control	Control
ΤE	Talk Enable	Control
ATN	Attention	
SRO	Service Request	Bus
REN	Remote Enable	Management
IFC	Interface Clear	
EOI	End or Identify	
DAV	Data Valid	Data
NDAC	Not Data Accepted	Transfer
NRFD	Not Ready for Data	Transfer



logic symbol[†]

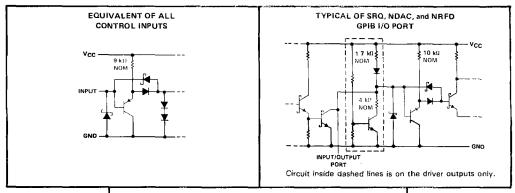
[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

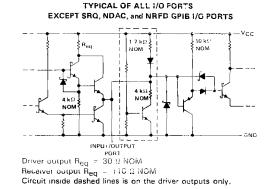
✿ Designates passive-pullup outputs.

logic diagram (positive logic)

RECEIVE/TRANSMIT FUNCTION TABLE

(CONTROL	.S	B	BUS-MANAGEMENT CHANNELS					DATA-TRANSFER CHANNELS			
DC	TE	ATN [‡]	ATN [‡]	SRQ	REN	IFC	EOI	DAV	NDAC	NRFD		
				(Controlled by DC)					ontrolled b	y TE)		
н	<u>H</u>	н	8	*			Т	_	_	_		
н	н	L	n	1	R	R	R	1	R	R		
L	L	н			_		R					
L	L	L	1 '	R	T	T T	T	R	Ť	T		
н	L	x	R	т	R	R	R	R	т	T		
L	н	x	т	R	Ţ	r	т	т	R	R		


H = high level, L = low level, R = receive, T = transmit, X = irrelevant


Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.

[‡]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

1

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V
Low-level driver output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
DW package
J package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from the case for 60 seconds: J package 300 °C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds: DW or N package \ldots 260 °C

NOTES: 1. All voltage values are with respect to network ground terminal.

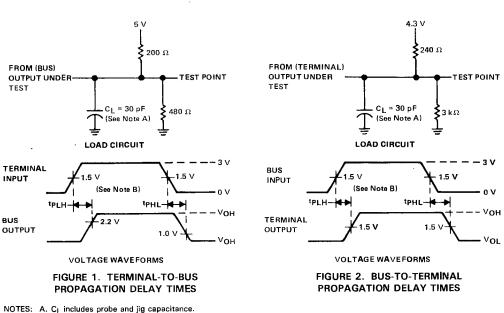
 For operation above 25 °C free-air temperature, derate the DW and J packages to 656 mW at 70 °C at the rate of 8.2 mW/ °C, and derate the N package to 736 mW at 70 °C at the rate of 9.2 mW/ °C.

recommended operating conditions

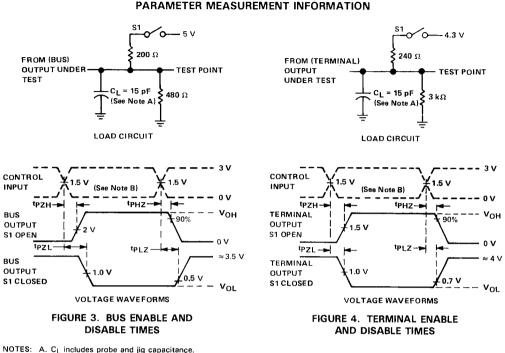
		-3154	"	MAX	UNIT
Supply voltage, VCC		4.75	- J	5.25	V
High-level input voltage, VIH	· ·	2			V
Low-level input voltage, VIL				0.8	V
Lich laure autout aurorate lauro	Bus ports with pullups active			- 5.2	mA
High-level output current, IOH	Terminal ports			-800	μA
1 1	Bus ports			48	
Low-level output current, IOL	Terminal ports			16	mA
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

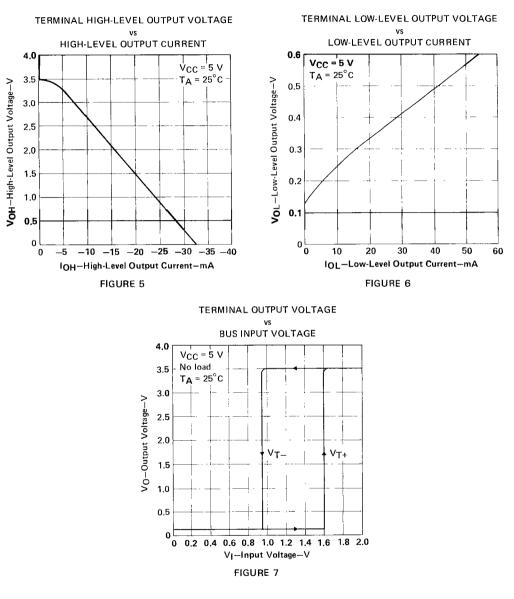
	PARAMETER		TEST CO	NDITIONS	MIN	TYPT	MAX	UNIT	
VIK	Input clamp voltage		$I_{I} = -18 \text{ mA}$			-0.8	- 1.5	V	
Vhys	Hysteresis (VT+ - VT-)	Bus			0.4	0.65		V	
·· +	High-level	Terminal	$I_{OH} = -800 \mu A$		2.7	3.5		v	
[∨] он [‡]	output voltage	Bus	10H = -5.2 mA		2.5	3.3		l v	
N.e.	Low-level	Terminal	$I_{OL} = 16 \text{ mA}$			0.3	0.5	v	
VOL	output voltage	Bus	10L = 48 mA			0.35	0.5	v	
ų	Input current at maximum input voltage	Terminal	Vi = 5.5 V			0.2	100	μA	
μH	High-level input current	Terminal and	V _I = 27V			0.1	20	μA	
1	Low-level	control	$\begin{array}{c} I_{0H} = -800 \ \mu A \\ I_{0H} = -5.2 \ m A \\ I_{0L} = 16 \ m A \\ I_{0L} = 48 \ m A \\ \hline V_{I} = 5.5 \ V \\ \hline V_{I} = 5.5 \ V \\ \hline V_{I} = 2.7 \ V \\ \hline V_{I} = 0.5 \ V \\ \hline Driver \ disabled \\ \hline \begin{array}{c} I_{I(bus)} = 0 \\ I_{I(bus)} = -12 \ m A \\ \hline V_{I(bus)} = 0.4 \ V \ to 2.5 \\ \hline V_{I(bus)} = 3.7 \ V \ to 5 \ V \\ \hline V_{I(bus)} = 5.5 \ V \\ \hline \end{array}$			10	~ 100	μA	
μL	input current	inputs	$v_1 = 0.5 v$			- 10	~ 100	μΑ	
VI/O(bus)	Voltage at bus port		Driver disabled		2.5	3.0 3.7		v	
					- 1.3		- 1.5	<u> </u>	
					~ 1.3		- 3.2		
~				V(bus) = 0.4 V to 2.5 V	0		+ 2.5		
huora	Current into bus port	Power on	Driver disabled	VI(bus) = 2.5 V to 3.7 V			-3.2	mA	
I/O(bus)	Content into bus port	100061 011	Briver disabled	$V_{i(bus)} = 3.7 \text{ V to 5 V}$	0		2.5		
					0.7		2.5		
		Power off	$V_{CC} = 0$				40	μA	
	Short-circuit	Terminal		1	- 15	- 35	- 75		
los	output current	Bus	1		- 25	- 50	- 125	mA	
ICC	Supply current		No load,	TE and DC low		55	75	mA	
C _{i/o(bus)}	Bus-port capacitance					30		pF	


 † All typical values are at V_{CC} = 5 V, T_{A} = 25 °C † V_{OH} applies to 3-state outputs only.

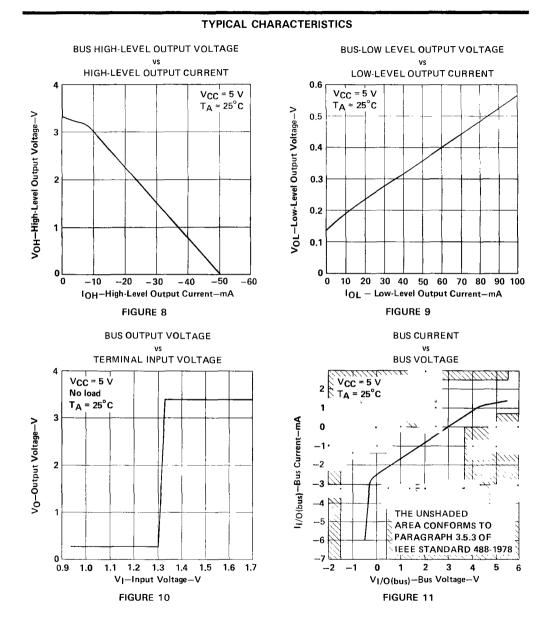
switching characteristics over recommended range of operating free-air temperature (unless otherwise
noted), $V_{CC} = 5 V$


	PARAMETER	FROM	то	TEST CONDITIONS		мах	UNIT
tPLH	Propagation delay time, low-to-high-level output	Terminal	Bus	С _L = 30 рF,	10	20	ns
tPHL	Propagation delay time, high-to-low-level output	reminar	bus	See Figure 1	12	20	
t₽LH	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF,	5	10	ns
tPHL	Propagation delay time, high-to-low-level output	Bus	renninar	See Figure 2	7	14	
^t PZH	Output enable time to high level		BUS			30]
^t PHZ	Output disable time from high level	TE or DC	(ATTN, EOI,	C _L = 15 pF,		20	ns
^t PZL	Output enable time to low level	12 01 00	REN, IFC,	See Figure 3		45 20	
tPLZ	Output disable time from low level		and DAV)				
^t PZH	Output enable time to high leval					30	
^t PHZ	Output disable time from high level	TE or DC	Terminal	C _L = 15 pF,		25	ns
^t PZL	Output enable time to low level	i corbe	i Girlinai	See Figure 4		30	1
tPLZ	Output disable time from low level					25	

[†]All typical values are at $T_A = 25 \,^{\circ}C$.

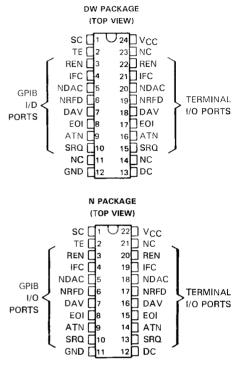

PARAMETER MEASUREMENT INFORMATION

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.


B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, $t_f \leq 6 \text{ ns}, Z_{OUT} = 50 \Omega.$

TYPICAL CHARACTERISTICS

D2618, JUNE 1986-REVISED AUGUST 1989


MEETS IEEE STANDARD 488-1978 (GPIB)

- 8-Channel Bidirectional Transceiver
- Designed to Implement Control Bus Interface
- Designed for Multicontrollers
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

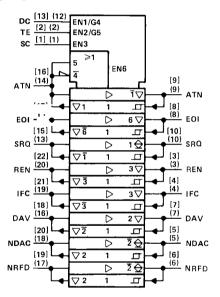
description

The SN75ALS162 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky process device designed to provide the busmanagement and data-transfer signals between operating units of a multiple-controller instrumentation system. When combined with the SN75ALS160 octal bus transceiver, the SN75ALS162 provides the complete 16-wire interface for the IEEE 488 bus.

The SN75ALS162 features eight driver-receiver pairs connected in a front-to-back configuration

to form input/output (I/O) ports at both the bus and terminal sides. The direction of data through these driver-receiver pairs is determined by the DC, TE, and SC enable signals. The SC input allows the REN and IFC transceivers to be controlled independently.

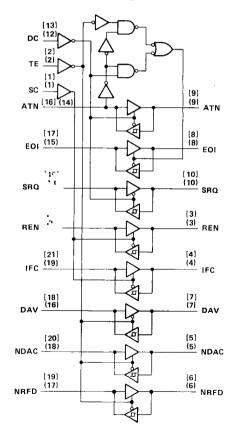
The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when $V_{CC} = 0$. The drivers are designed to handle loads up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and hysteresis of 400 mV minimum for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.


The SN75ALS162 is manufactured in a 22-pin dual-in-line N package and in 24-pin DW package, and is characterized for operation from 0°C to 70°C.

NAME	IDENTITY	CLASS
DC	Direction Control	
TE	Talk Enable	Control
SC	System Control	
ATN	Attention	
SRQ	Service Request	Bus
REN	Remote Enable	Management
IFC	Interface Clear	
EOI	End or Identify	
DAV	Data Valid	0
NDAC	Not Data Accepted	Data
NRFD	Not Ready for Data	Transfer

CHANNEL IDENTIFICATION TABLE

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

♥ Designates 3-state outputs.

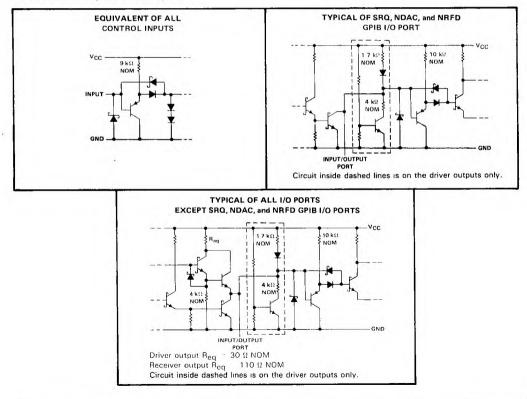
Designates passive-pullup outputs.

logic diagram (positive logic)

[] Denotes pin numbers for DW package.

() Denotes pin numbers for N package.

	CONT	ROLS		B	US-MANA	GEMENT	CHANNEL	5	DATA-TR	ANSFER C	HANNELS
ŚČ	DC	TE	ATN [†]	ATN [†] (Controlle	SRQ d by DC)	REN (Controll	IFC ad by SC)	EOI	DAV	NDAC ntrolled by	NRFD (TE)
	н	н	н		+			Т		B	в
	н	н	L					R		15	п
	L	L.	н	T				R	R	т	т
and a second	L	L	L		n			T			-
: 1	н	L	х	R	т			R	R	T	T
. 1	4	н	x	Ť	Ř			Т	T	H	Ř
1				1		Т	T				
				1		R	B				


RECEIVE/TRANSMIT FUNCTION TABLE

H = high level, L = low level, R = receive, T = transmit, X = irrelevant

Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.

[†]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage
Low-level driver output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
DW package
N package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds: DW or N package 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

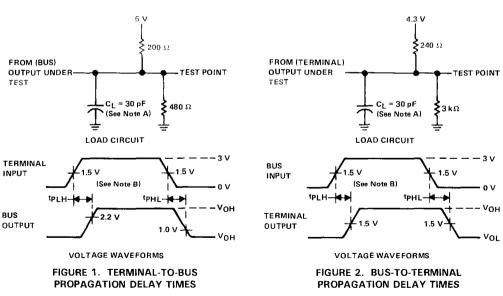
 For operation above 25 °C free-air temperature, derate the DW package to 864 mW at 70 °C at the rate of 10.8 mW/ °C, and derate the N package to 1088 mW at 70 °C at the rate of 13.6 mW/ °C.

recommended operating conditions

		MIN	2022	MAX	UNIT
Supply voltage, V _{CC}		4.75	- 5	5.25	V
High-level input voltage, VIH		2			V
Low-level input voltage, VIL				0.8	V
	Bus ports with 3-state outputs			- 5.2	mA
High-level output current, IOH	Terminal ports			-800	μA
Low-level output current, IOI	Bus ports			48	
Edw-level output current, IOL	Terminal ports		-	16	mA
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

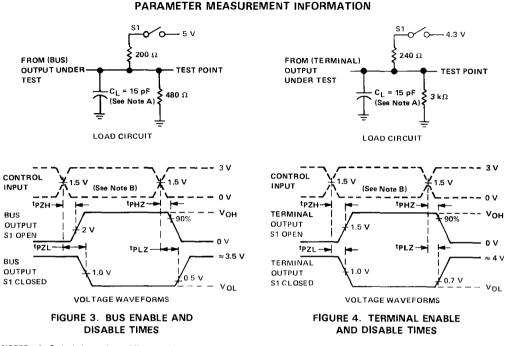
	PARAMETER		TEST CON	NDITIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage		$l_{l} = -18 \text{ mA}$			-0.8	- 1.5	V
V _{hys}	Hysteresis (VT+ - VT-)	Bus			0.4	0.65		V
., t	High-level	Terminal	$J_{OH} = -800 \mu A$		2.7	3.5		V
∨он‡	output voltage	Bus	$I_{OH} = -5.2 \text{ mA}$		2.5	3.3		Í
Max	Low-level	Terminal	l _{OL} = 16 mA			0.3	0.5	v
VOL	output voitage	Bus	I _{OL} = 48 mA			0.35	0.5	
ų	Input current at maximum input voltage	Terminal	V _l = 5.5 V			0.2	100	μA
ін	High-level input current	Terminal and	V _I = 2.7 V			0.1	20	μA
1	Low-level	control	$V_{1} = 0.5 V$			10	~ 100	μA
ίL	input current	inputs	V = 0.5 V			- 10	- 100	μΑ
VI/O(bus)	Voltage at bus port		Driver disabled	$I_{(bus)} = 0$	2.5	3.0	3.7	
- 1/0/003/				$I_{I(bus)} = -12 \text{ mA}$			~ 1.5	
				$V_{i(bus)} = -1.5 V \text{ to } 0.4 V$	- 1.3			
				$V_{l(bus)} = 0.4 V \text{ to } 2.5 V$	0		- 3.2	ļ
II/O(bus)	Current into bus port	Power on	Driver disabled	$V_{1(bus)} = 2.5 V \text{ to } 3.7 V$			+2.5 -3.2	mA
				V _{I(bus)} = 3.7 V to 5 V	0		2.5	
				V(bus) = 5 V to 5.5 V	0.7		2.5	1
		Power off	$V_{CC} = 0,$	VI(bus) = 0 to 2.5 V			- 40	μA
	Short-circuit	Terminal			- 15	- 35	- 75	mA
los	output current	Bus			- 25	- 50	-125	
lcc	Supply current		No load,	TE, DC, and SC low		55	75	mA
Ci/o(bus)	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0,$			30		₽F
			$V_{I/O} \approx 0$ to 2 V,	t = 1 MHz				


 † All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ V_{OH} applies for 3-state outputs only.

switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), VCC = 5 V

	PARAMETER	FROM	то	TEST CONDITIONS	MIN TYP [†]	мах	UNIT
tplh	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,	10	20	ns
^t PHL	Propagation delay time, high-to-low-level output	rennina	503	See Figure 1	12	20	
^t PLH	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF,	5	10	ns
^t PHL	Propagation delay time, high-to-low-level output			See Figure 2	7	14	
tpzh tphz tpzl tplz	Output enable time to high level Output disable time from high level Output enable time to low level Output disable time from low level	TE, DC, or SC	BUS (ATTN, EOI, REN, IFC, and DAV)	C _L = 15 pF, See Figure 3		30 20 45 20	ns
^t PZH ^t PHZ ^t PZL ^t PLZ	Output enable time to high level Output disable time from high level Output enable time to low level Output disable time from low level	TE, DC, or SC	Terminal	C _L = 15 pF, See Figure 4		30 25 30 25	ns

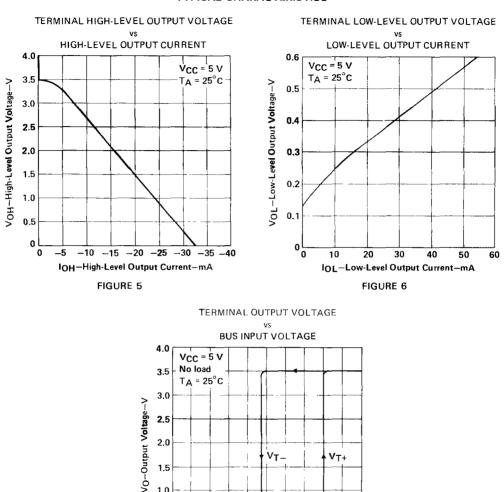
[†]All typical values are at T_A - 25 °C.



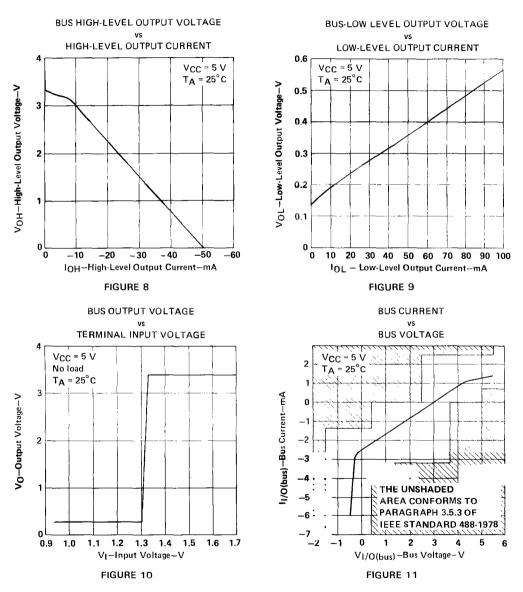
PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .



- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .


1.0 0.5

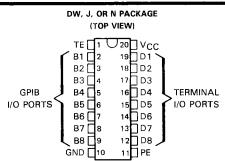
TYPICAL CHARACTERISTICS

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Vj-Input Voltage-V FIGURE 7

TYPICAL CHARACTERISTICS

· · · · · · · · · · · · · · ·

D2611, JUNE 1986-REVISED SEPTEMBER 1989

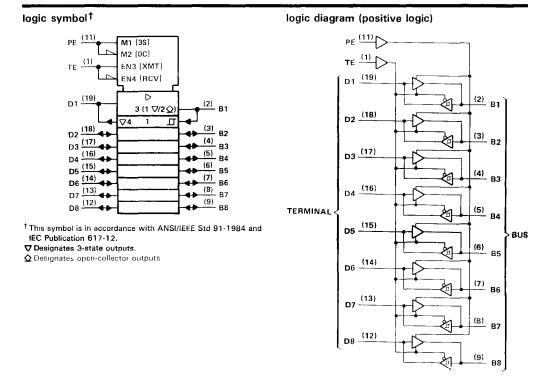

- 8-Channel Bidirectional Transceivers
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Open-Collector Driver Output Option
- No Loading of Bus When Device Is Powered Down (V_{CC}=0)
- Power-Up/Power-Down Protection (Glitch-Free)

description

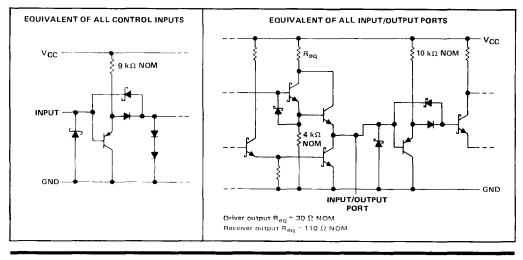
The SN75ALS163 octal general-purpose interface bus transceiver is a monolithic, highspeed, Advanced Low-Power Schottky device. It is designed for two-way data communications over single-ended transmission lines. The transceiver features driver outputs that can be operated in either the open-collector or 3-state mode. If Talk Enable (TE) is high, these outputs have the characteristics of open-collector outputs when Pullup Enable (PE) is low and of 3-state outputs when PE is high. Taking TE low places the outputs in the high-impedance state. The driver outputs are designed to handle loads of up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and 400 mV minimum of hysteresis for increased noise immunity.

Output glitches during power-up and powerdown are eliminated by an internal circuit that disables both the bus and receiver outputs. The outputs do not load the bus when $V_{CC} = 0$.

The SN75ALS163 is characterized for operation from 0°C to 70°C.



FUNCTION TABLES


EACH DRIVER				EACH RECEIVER					
INPUTS		OUTPUT		INPUT	OUTPUT				
D	ΤE	PE	В	В	TE	PE	D		
н	н	н	н	L	L	X	L		
L	н	х	L	н	L	х	н		
н	х	L	z	X	н	х	z		
X	L	х	z						

H = high level, L = low level, X = irrelevant, Z = High-impedance state.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage
Low-level driver output current
Continuous total dissipation
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16) inch from the case for 60 seconds: J package 300 °C
Lead temperature 1.6 mm (1/16 inch) from the case for 10 seconds: DW or N package 260°C

NOTE: 1. All voltage values are with respect to network ground terminal.

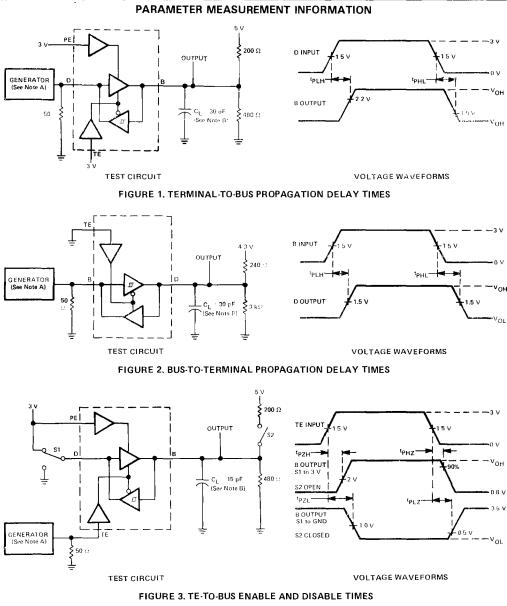
PACKAGE	$T_A \le 25 ^{\circ}C$ POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW
J	1025 mW	8.2 mW/°C	656 mW
N	1150 mW	9.2 mW/°C	736 mW

DISSIPATION RATING TABLE

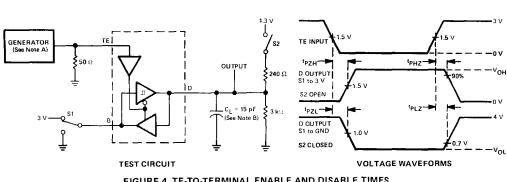
recommended operating conditions

	MIN	NOM	MAX	UNIT
	4.75	5	5.25	V
	2			v
			0.8	v
Bus ports with pullups active			- 5.2	mA
Terminal ports			-800	μA
Bus ports			48	mA
Terminal ports			16	IIIA
Operating free-air temperature range, TA				°C
	Terminal ports Bus ports	4.75 2 Bus ports with pullups active Terminal ports Bus ports	4.75 5 2 Bus ports with pullups active Terminal ports Bus ports	4.75 5 5.25 2 0.8 Bus ports with pullups active -5.2 Terminal ports -800 Bus ports 48

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

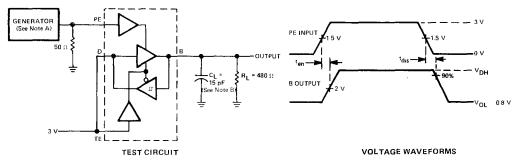

	PARAMETER			TEST	CONDITIONS	MIN	TYPT	MAX	UNIT	
VIK	Input clamp voltage		lj = -18 mA	\			- 0.8	- 1.5	V	
Vhys	Hysteresis (VT + - VT -)	Bus			· · · · · · · · · · · · · · · · · · ·	0.4	0.65		V	
∨ _{он} ‡	High-leve!	Terminal	$I_{OH} = -800 \ \mu A,$ $I_{OH} = -5.2 \ m A,$		TE at 0.8 V	2.7	3.5			
	output voltage	Bus			PE and TE at 2 V	2.5	3.3		v	
Vai	Low-level	Terminał	$I_{OL} = 16 \text{ mA}$	٨,	TE at 0.8 V			0.5	v	
VOL	output voltage	Bus	IOL = 48 mA	3 mA, TE at 2 V			0.30	0.5	v v	
	High-level output current	Bus	$V_0 = 5.5 V_{,}$		PE at 0.8 V,			100	μA	
юн	(open-collector mode)	ous	D and TE at 2 V					100	μΑ	
loz	Off-state output current	Bus	PE at 2 V,		$V_0 = 2.7 V$	1		20	- "A	
	(3-state mode)	BUS	TE at 0.8 V		$V_0 = 0.5 V$	Τ.		- 100		
4	Input current at maximum input voltage	Terminal	V _I = 5.5 V			0.2	100	μA		
ηн	High-level input current	Terminal,	VI = 2.7 V				0.1	20	μA	
ι <u>ι</u>	Low-level input current	PE, or TE	VI = 0.5 V				- 10	- 100	μA	
	Short-circuit	Terminal				- 15	- 35	- 75		
los	output current	Bus				- 25	- 50	-125	mA	
	CC Supply current		Natari	Term	Terminal outputs low and enabled		42	65	mA	
ICC			No load Bus outputs low and enabled				52	80	- mA	
Ci/o(bus) Bus-port capacitance			$V_{CC} = 5 V \text{ or } 0, V_{I/O} = 0 \text{ to } 2 V,$ f = 1 MHz				30		pF	

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}.


switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), $V_{CC} = 5 V$

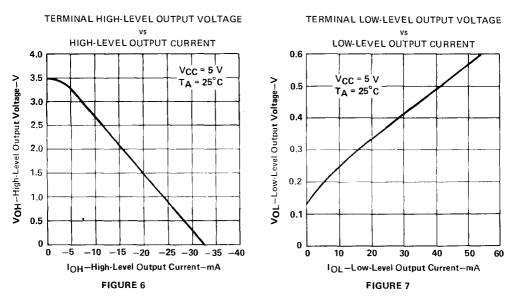
	PARAMETER	FROM	то	TEST CONDITIONS	MIN TYP§	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	- Terminal	Bus	CL = 30 pF, See Figure 1	7	20	ns
^t PHL	Propagation delay time, high-to-low-level output				8	20	
^t PLH	Propagation delay time, low-to-high-level output	Bus Terminal	CL = 30 pF,	7	14		
^t PHL	Propagation delay time, high-to-low-level output		i ei minai	Sce Figure 2	9	14	ns
^t PZH	Output enable time to high level	ΤE		CL = 15 pF, See Figure 3	19	30	ns
^t PHZ	Output disable time from high level		Bus		5	12	
t _{PZL}	Output enable time to low level		Dus		16	35	
^t PLZ	Output disable time from low level				9	20	
^t PZH	Output enable time to high level		TE Terminal		13	30	
^t PHZ	Output disable time from high level			C _L = 15 pF, See Figure 4	12	20	ns
^t PZL	Output enable time to low level	16			12	20	
^t PLZ	Output disable time from low level				11	20	1
ten	Output pull-up enable time	PE	Bus	C _L = 15 pF,	11	22	
tdis	Output pull-up disable time	PE	Bus	See Figure 5	6	12	ns

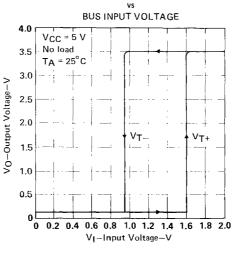
 $^{\$}$ All typical values are at $T_A = 25 \,^{\circ}$ C.



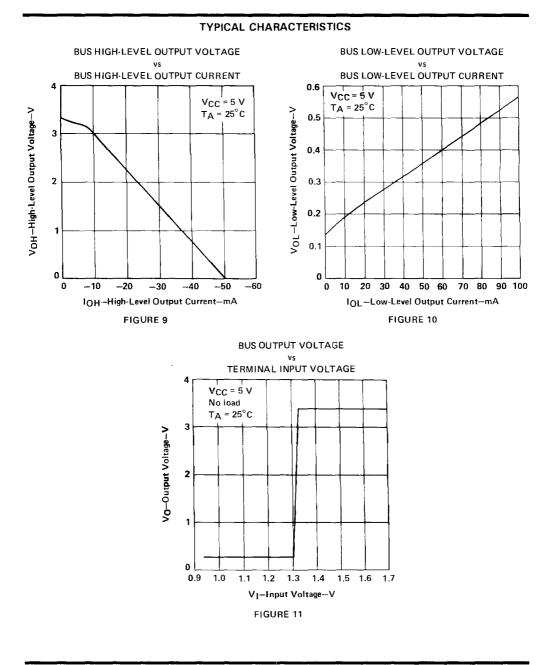
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance.

PARAMETER MEASUREMENT INFORMATION




FIGURE 5. PE-TO-BUS PULLUP ENABLE AND DISABLE TIMES

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, $\begin{array}{l} t_f \leq \mbox{ 6 ns, } Z_{out} = \mbox{ 50 } \Omega. \\ \mbox{ B. } C_L \mbox{ includes probe and jig capacitance. } \end{array}$

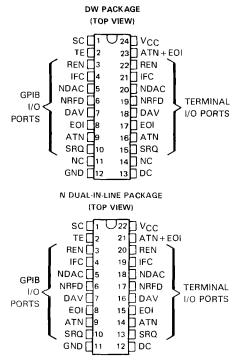


TYPICAL CHARACTERISTICS

TERMINAL OUTPUT VOLTAGE

TEXAS INSTRUMENTS POST OFFICE BOX 665533 • DALLAS, TEXAS 75286

D2908, JUNE 1986-REVISED AUGUST 1989


- 8-Channel Bidirectional Transceiver
- Designed to Implement Control Bus Interface
- Designed for Multicontrollers
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- Bus-Terminating Resistors Provided on Driver Outputs
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)

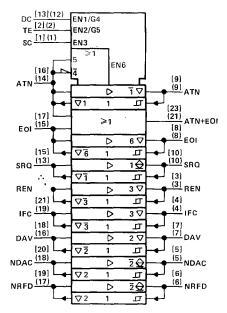
description

The SN75ALS164 eight-channel generalpurpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky device designed to meet the requirements of IEEE Standard 488-1978. Each transceiver is designed to provide the bus-management and data-transfer signals between operating units of a multiple-controller instrumentation system. When combined with the SN75ALS160 octal bus transceiver, the SN75ALS164 provides the complete 16-wire interface for the IEEE 488 bus.

The SN75ALS164 features eight driver-receiver pairs connected in a front-to-back configuration to form input/output (I/O) ports at both the bus and terminal sides. All outputs are disabled (at a high-impedance state) during V_{CC} power-up and power-down transitions for glitch-free operation. The direction of data flow through these driver-receiver pairs is determined by the DC, TE, and SC enable signals. The SN75ALS164 is identical to the SN75ALS162 with the addition of an OR gate to help simplify board layouts in several popular applications. The ATN and EOI signals are ORed to pin 21, which is a standard totem-pole output.

NC-No internal connection.

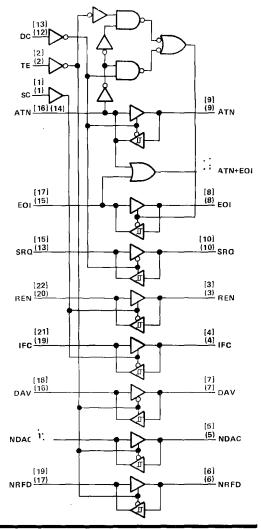
CHANNEL IDENTIFICATION TABLE


NAME	IDENTITY	CLASS
DC	Direction Control	
TE	Talk Enable	Control
SC	System Control	
ATN	Attention	
SRQ	Service Request	Bus
REN	Remote Enable	Management
IFC	Interface Clear	
EOI	End or Identify	
ATN + EOI	ATN logical OR EDI	Logic
DAV	Data Valid	Data
NOAC	Not Data Accepted	Transfer
NRFD	Not Ready for Data	(ana ci

SN75ALS164 Octal General-Purpose Interface Bus Transceiver

The driver outputs (GPIB I/O ports) feature active bus-terminating resistor circuits designed to provide a high impedance to the bus when supply voltage V_{CC} is 0. The drivers are designed to handle loads up to 48 mA of sink current. Each receiver features p-n-p transistor inputs for high input impedance and hysteresis of 400 mV minimum for increased noise immunity. All receivers have 3-state outputs to present a high impedance to the terminal when disabled.

The SN75ALS164 is manufactured in a 22-pin dual-in-line N package and in 24-pin DW package, and is characterized for operation from 0°C to 70°C.


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

♥Designates 3-state outputs.

Designates passive-pullup outputs.

[] Denotes pin numbers for DW package.

() Denotes pin numbers for N package.

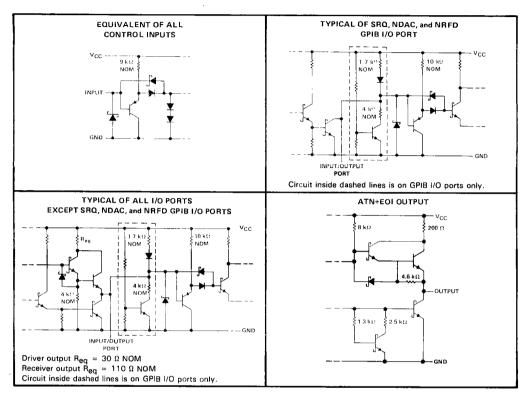
logic diagram (positive logic)

-	CONT	ROLS		B	US-MANA	GIMET	CHANNEL	s	DATA-TR	ANSFER C	HANNELS
SC	DC	TE	ATN [†]	ATN [†] (Controlle	SRQ d by DC)	Controlle	IFC d by SC)	EOI	DAV (Co	NDAC ntrolled b	NRFD y TE)
-	н	н	н					Т	-		
	Н	н	L	R		assis no		R	1	R	R
	L	L	н	T	В			R	B	-	-
	L	L	L	1 '	n	0000		Т			
	н	L	×	R	Т				R	Т	т
	L	н	×	T	R			Ť	т	R	R
н		1000				Т	Т				
L		1989.00				R	R				

RECEIVE/TRANSMIT FUNCTION TABLE

H = high level, L = low level, R = receive, T = transmit, X = irrelevant

Direction of data transmission is from the terminal side to the bus side, and the direction of data receiving is from the bus side to the terminal side. Data transfer is noninverting in both directions.


[†]ATN is a normal transceiver channel that functions additionally as an internal direction control or talk enable for EOI whenever the DC and TE inputs are in the same state. When DC and TE are in opposite states, the ATN channel functions as an independent transceiver only.

ATN + EOI FUNCTION TABLE

INPL	JTS	OUTPUT
ATN EOI		ATN + EOI
н	X	н
х	н	н
L	L	L L

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Low-level driver output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 2):
DW package
N package
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16) inch from the case for 10 seconds: DW or N package 260°C

NOTES: 1. All voltage values are with respect to network ground terminal.

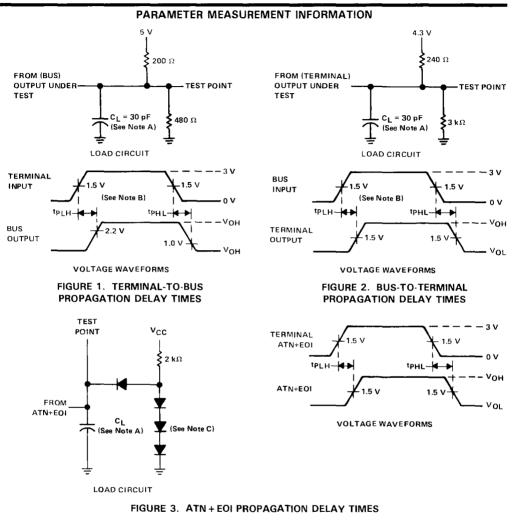
 For operation above 25°C free-air temperature, derate the DW package to 864 mW at 70°C at the rate of 10.8 mW/°C, and derate the N package to 1088 mW at 70°C at the rate of 13.6 mW/°C.

recommended operating conditions

		MIN	NOM	MAX	וואט	
Supply voltage, VCC		4.75	5	5.25	V	
High-level input voltage, VIH		2			V	
Low-level input voltage, VIL				0.8	V	
	Bus ports with 3-state outputs			- 5.2	mA	
High-level output current, IOH	Terminal ports			800		
	ATN+EOI			<u> </u>	μA	
	Bus ports	-		÷₀	1	
Low-level output current, IOL	Terminal ports			16	ן שאן	
	ATN- ·			4	1	
Operating free-air temperature, TA		0		70	°C	

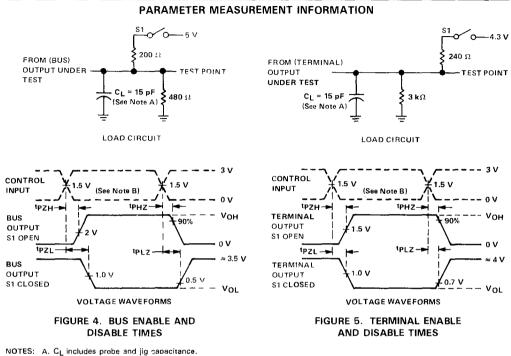
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

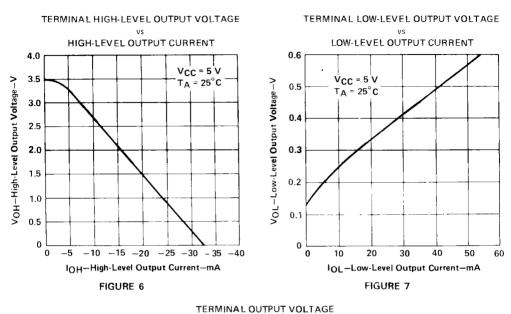
	PARAMETER		TEST CO	NDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage		lj = −18 mA			-0.8	1.5	V
Vhys	Hysteresis (V _{T+} - V _{T-})	Bus .			0.4	0.65		V
		Terminal	loH = -800 μA			3.5		
∨он‡	High-level output voltage	Bus	OH = -5.2 m/	A	2.5	3.3		V
		ATN + EOI	IOH = -400 μA	4	2.7			
		Terminal	IOL = 16 mA			0.3	0.5	
VOL	Low-level output voltage	Bus	1 _{OL} = 48 mA			0.35	0.5	l v
		ATN + EOI	$l_{OL} = 4 \text{ mA}$				0.4	[
	Input current at	Terminal [§]	VI = 5.5 V			0.2	100	
4	maximum input voltage	ATN, EOI	VI = 5.5 V				200	μA
		Terminal	VI = 2.7 V			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
IH High-level input current	High-level input current		$v_1 = 2.7 v_1$			- 0.1	20	μA
		ATN, EOI	VI = 2.7 V				40	_
		Terminal	VI = 0.5 V			- 10	- 100	
ΊL	Low-level input current	control	vi = 0.5 v				- 100	μA
		ATN, EOI	$V_1 = 0.5 V$				- 500	
VI/O(bus)	Voltage at bus port		Duver disabled	Il(bus) = 0	25	3.0	37	v
•1/0(005)	voltage at bus port		Driver disabled	I(bus)12 mA			-15	1
				$V_{\rm l(bus)} = -1.5 \text{ V to } 0.4 \text{ V}$	- 1.3			
				VI(bus) = 0.4 V to 2.5 V	0		3.2	1
hugen i	Current into bus port	Power on	Driver disabled	V _{I(bus)} = 2.5 V to 3.7 V			+ 2.5	1
l/O(bus)	conent into bas port	Foweron	Differ disabled				-3.2) mA
				Vi(bus) = 3.7 V to 5 V	0		2.5	
				$V_{I(bus)} = 5 V \text{ to } 5.5 V$	0.7		2.5	1
		Power off	$V_{CC} = 0,$	V _{I(bus)} = 0 to 2.5 V			- 40	μA
		Terminal			- 15]
los	Short-circuit output current	Bus			- 25	- 50		mA
		ATN + EOI			- 10			
lcc	Supply current		No load,	TE, DC, and SC low		55	75	mA
C _{I/o(bus)}	Bus-port capacitance		$V_{CC} = 5 V to 0$			30		pF
-i/o(ous)	-as pric appairance		VI/O = 0 to 2 V	/, f ≕ 1 MHz	1	00		

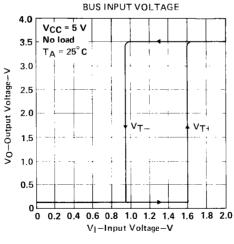

[†] All typical values are at V_{CC} = 5 V, T_A = 25 °C, [‡] V_{OH} applies for 3-state outputs only. [§] Except ATN and EOI terminal pins.

SN75ALS164 Octal general-purpose interface bus transceiver

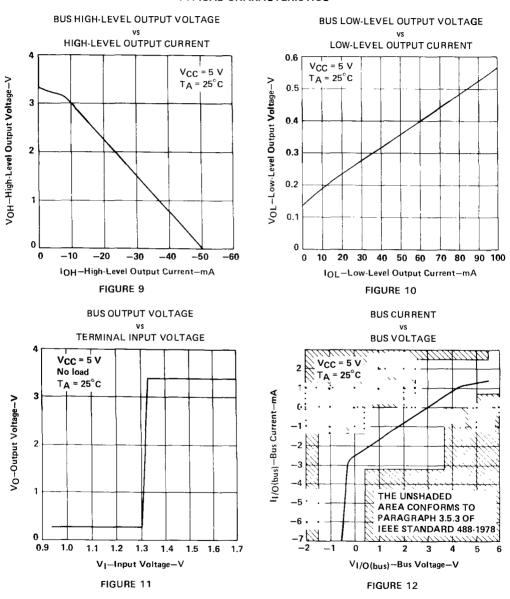
switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), $V_{CC} = 5 V$


	PARAMETER	FROM	то	TEST CONDITIONS	MIN	түр	МАХ	UNIT
^t PLH	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,		10	20	ns
^t PHL	Propagation delay time, high-to-low-level output		003	See Figure 1		12	20	
tplh tphl	Propagation delay time low-to-high-level output Propagation delay time,	Bus	Terminal	C _L = 30 pF, See Figure 2		5	10 14	ns
tplh	high-to-low-level output Propagation delay time, low-to-high-level output	Terminal ATN or Terminal EOI	ATN + EOI	C _L = 15 pF, See Figure 3		3.5	10	ns
^t PHL	Propagation dalay time, high-to-low-level output	Terminal ATN or Terminal EOI	ATN + EOI	C _L = 15 pF, See Figure 3		7	15	пѕ
^t PZH	Output enable time to high level	TE, DC,	BUS				30	
tphz	Output disable time from high lavel	or	(ATTN, EOI,	C _L = 15 pF,			20	ns
^t PZL	Output enable time to low level	sc	REN, IFC,	See Figure 4			45	
^t PLZ_	Output disable time from low level		and DAV)		L		20	L
^t PZH	Output enable time to high level	TE, DC,	1				30	ļ
tPHZ	Output disable time from high level	or	Terminal	С _L = 15 рF,			25	ns
tPZL	Output enable time to low level	sc		See Figure 5			30	
^t PLZ	Output disable time from low level						25	


- NOTES: A. CL includes probe and jig capacitance.
 - B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .
 - C. All diodes are 1N916 or 1N3064.

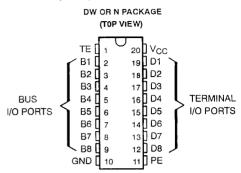


B. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤6 ns, t_f ≤6 ns, Z_{out} = 50 Ω.


TYPICAL CHARACTERISTICS

vs

FIGURE 8


D3011, JUNE 1986-REVISED AUGUST 1989

MEETS IEEE STANDARD 488-1978 (GPIB)

- 8-Channel Bidirectional Transceiver
- High-Speed Advanced Low-Power Schottky Circuitry
- Low Power Dissipation . . . 46 mW Max per Channel
- Fast Propagation Times . . . 20 ns Max
- High-Impedance P-N-P Inputs
- Receiver Hysteresis . . . 650 mV Typ
- No Loading of Bus When Device Is Powered Down (V_{CC} = 0)
- Power-Up/Power-Down Protection (Glitch-Free)
- Driver and Receiver Can Be Disabled
 Simultaneously

description

The SN75ALS165 eight-channel general-purpose interface bus transceiver is a monolithic, high-speed, Advanced Low-Power Schottky device designed for two-way data communications over single-ended transmission lines. It is designed to meet the requirements of IEEE Standard 488-1978. The transceiver features driver outputs that can be operated in either the passive-pullup or 3-state mode. If Talk

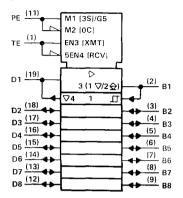
FUNCTION TABLES

		EAC	H DR	IVER	EACH RECEIVER					
[INPUTS		OUTPUT	INPUTS		OUTPUT				
	D TE PE B		в	ΤE	PE	D				
ľ	Н	Н	н	н	L	L	н	L.		
	L	н	х	L	н	L	н	н		
	н	х	L	Z†	х	н	х	Z		
	х	L	х	Z [†]	Х	X	L	Z		

H = high level, L = low level, X = irrelevant,

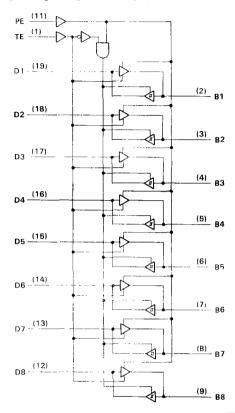
Z = high impedance state

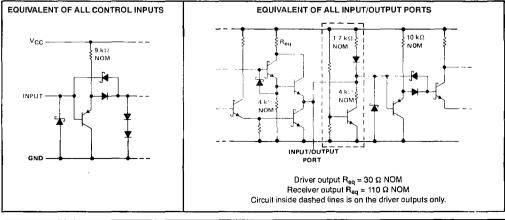
 † This is the high impedance state of a normal 3-state output modified by the internal resistors to V_{CC} and ground.


Enable (TE) is high, these ports have the characteristics of passive-pullup outputs when Pullup Enable (PE) is low and of3-state outputs when PE is high. Taking TE low places these ports in the high-impedance state. Taking TE and PE low places both the drivers and receivers in the high-impedance state. The driver outputs are designed to handle loads up to 48 mA of sink current.

An active turn-off feature is incorporated into the bus-terminating resistors so that the device exhibits a high impedance to the bus when V_{CC} = 0. When combined with the SN75ALS161 or SN75ALS162 management bus transceiver, the pair provides the complete 16-wire interface for the IEEE 488 bus.

The SN75ALS165 is manufactured in a 20-pin package and is characterized for operation from 0°C to 70°C.


logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

✿ Designates passive-pullup outputs

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Low-level driver output current	
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range	0°C to 70°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds	260 °C

NOTE 1: All voltage values are with respect to network ground terminal.

	DISSIPATION RATING TABLE									
	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C							
PACKAGE	POWER RATING	ABOVE $T_A = 25^{\circ}C$	POWER RATING							
DW	1025 mW	8.2 mW/°C	656 mW							
N	1150 mW	9.2 mW/°C	736 mW							

recommended operating conditions

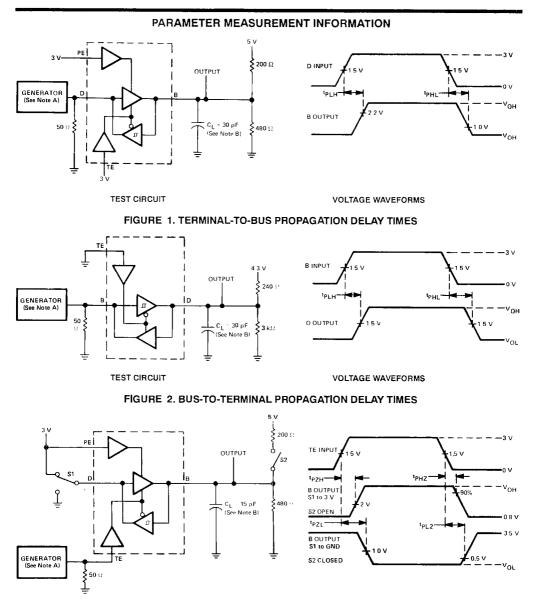
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH		2			V
Low-level input voltage, V1L				0.8	٧
High level entrut entrest 1	Bus ports with pullups active			-5.2	mA
High-level output current, I _{OH}	Terminal ports			-800	μA
	Bus ports			48	mA
Low-level output current, 10L	Terminal ports			16	11/4
Operating free-air temperature, TA		0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			TYP [†]	MAX	UNIT
V _{IK}	Input clamp voltage		l _l =18 mA			-0.8	1.5	V
V _{hys}	Hysteresis (V _{T+} – V _{T-})	Bus			0.4	0.65		v
 V _{он} ‡	High-level	Terminal	l _{OH} = -800 μA,	TE at 0.8 V	2.7	3.5		v
VOH.	output voltage	Bus	1 _{OH} = -5.2 mA,	PE and TE at 2 V	2.5	3.3		v
Vol	Low-level	Terminal	I _{OL} = 16 mA,	TE at 0.8 V		0.3	0.5	v
VOL	output voltage	Bus	l _{OL} = 48 mA,	TE at 2 V		0.35	0.5	v
l _l	Input current at maximum input voltage	Terminal	V _I = 5.5 V			0.2	100	μА
I	High-level input current	Terminal and	V ₁ = 2.7 V		0.1	20	μA	
I _{IL}	Low-level input current	control inputs	V _I = 0.5 V		-10	-100	μA	
	Voltage at bus port		Driver disabled	I _{1(bus)} = 0	2.5	3	3.7	v
V _{I/O(bus)}			Driver disabled	I _{I(bus)} = 12 mA			-1.5	
				$V_{I(bus)} = -1.5 V \text{ to } 0.4 V$	-1.3			
				V _{I(bus)} = 0.4 V to 2.5 V	0		-3.2	
I _{I/O(bus)}	Current into bus port	Power on	Driver disabled	$V_{l(bus)} = 2.5 V \text{ to } 3.7 V$			2.5 -3.2	mA
				V _{l(bus)} = 3.7 V to 5 V	0		2.5	
				V _(bus) = 5 V to 5.5 V	0.7		2.5	
		Power off	V _{cc} = 0,	V _{I(bus)} = 0 to 2.5 V			40	μA
	Short-circuit	Terminal		<u> </u>	- 15	-35	-75	mA
los	output current	Bus			-25	-50	- 125	AIII
	0		Ne load	Terminal outputs low and enabled	1	42	65	mA
lcc	Supply current		No load	Bus outputs low and enabled		52	80	mA
Ci/o(bus)	Bus-port capacitance		$V_{CC} = 5 V \text{ to } 0,$ f = 1 MHz	$V_{I/O} = 0$ to 2 V,		30		pF

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

⁺ V_{OH} applies for 3-state outputs only.



switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), V_{CC} = 5 V

	PARAMETER	FROM	то	TEST CONDITIONS	MIN TYP	MAX	UNIT			
t _{PLH}	Propagation delay time, low-to-high-level output	Terminal	Bus	C _L = 30 pF,	7	20	ns			
t _{PHL}	Propagation delay time, high-to-low-level output	- terminal		See Figure 1	8	20	115			
t _{PLH}	Propagation delay time, low-to-high-level output	Bus	Terminal	C _L = 30 pF,	7	14	ns			
t _{PHL}	Propagation delay time, high-to-low-level output	Bus	1611111101	See Figure 2	9	14	115			
t _{PZH}	Output enable time to high level				19	30				
t _{PHZ}	Output disable time from high level	- TE	TF	TF	TF	Bus	С _L = 15 рF,	5	12	ns
t _{PZL}	Output enable time to low level		Dus	See Figure 3	16	35				
t _{PLZ}	Output disable time from low level				9	20				
t _{PZH}	Output enable time to high level				13	30				
t _{PHZ}	Output disable time from high level	ТЕ	Terminal	C _L = 15 pF,	12	20	ns			
t _{PZL}	Output enable time to low level	7 '	lernman	See Figure 4	12	20	115			
t _{PLZ}	Output disable time from low level	7			11	20				
t _{en}	Output pull-up enable time	PE	Terminel	C _L = 15 pF,	11	22				
t _{dis}	Output pull-up disable time		Terminal	See Figure 5	6	12	ns			

[†] All typical values are at T_A = 25°C.

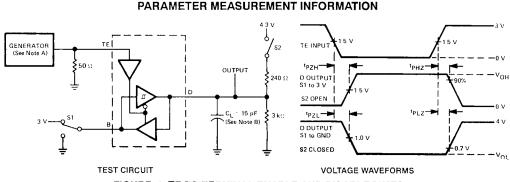
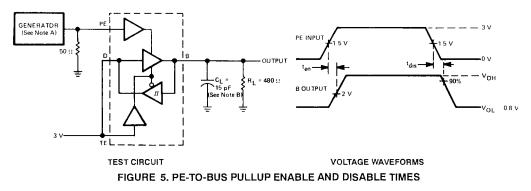
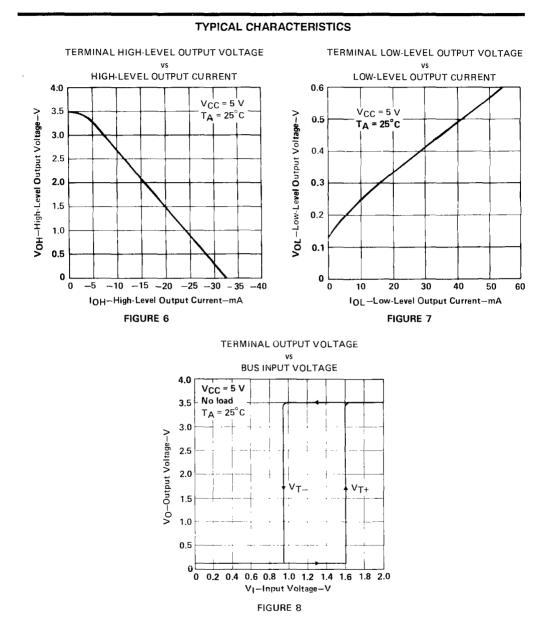


FIGURE 3. TE-TO-BUS ENABLE AND DISABLE TIMES

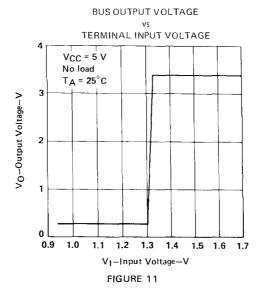

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_r ≤ 6 ns, t_f ≤ 6 ns, Z_{out} = 50 Ω.

B. CL includes probe and jig capacitance.



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω .

B. CL includes probe and jig capacitance.



BUS HIGH-LEVEL OUTPUT VOLTAGE BUS LOW-LEVEL OUTPUT VOLTAGE vs vs **BUS HIGH-LEVEL OUTPUT CURRENT** BUS LOW-LEVEL OUTPUT CURRENT 4 0.6 $V_{CC} = 5 V$ $V_{CC} = 5 V$ $T_A = 25^\circ C$ VOH-High-Level Output Voltage-V VoL-Low-Level Output Voltage-V $T_A = 25^{\circ}C$ 0.5 3 0.4 2 0.3 0.2 1 0.1 0 0 -10 -20 --30 -40 --50 --60 20 30 40 50 60 70 80 90 100 0 10 0 IOH-High-Level Output Current-mA IOL-Low-Level Output Current-mA FIGURE 9 FIGURE 10

TYPICAL CHARACTERISTICS

D3040, AUGUST 1987-REVISED MAY 1990

- Three Bidirectional Transceivers
- Driver Meets EIA Standards RS-422A and RS-485 and CCITT Recommendations V.11 and X.27 and ANSI Standard X3.131-1986
- High-Speed Advanced Low-Power Schottky Circuitry
- Designed for 25-MBaud Operation in Both Serial and Parallel Applications
- Low Skew . . . 6 ns Max
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirements 90 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ± 60mA
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedances . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 300 mV Max
- Receiver input Hysteresis . . . 60 mV Typ
- Operates from a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Features Independent Direction Controls for Each Channel

description

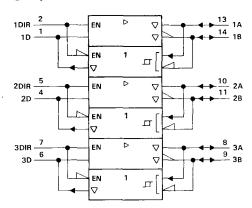
The SN75ALS170 triple differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and the driver meets EIA Standards RS-422-A and RS-485 and CCITT recommendations V.11 and X.27 and ANSI Standard X3.131-1986.

The SN75ALS170 operates from a single 5-V power supply. The drivers and receivers have active-high and active-low enables, respectively, which are internally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN75ALS170 is characterized for operation from 0°C to 70°C.

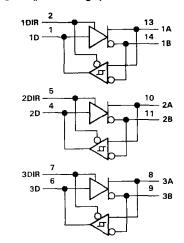
J PACKAGE (TOP VIEW)							
1D[1	Ο	14] 1B			
1DIR]	2		13] 1A			
GND]	3		12] V _{CC}			
2D[4		11] 2B			
2DIR]	5		10] 2A			
3D[6		9] 3B			
3DIR]	7		8] 3A			

Function Table (each driver)

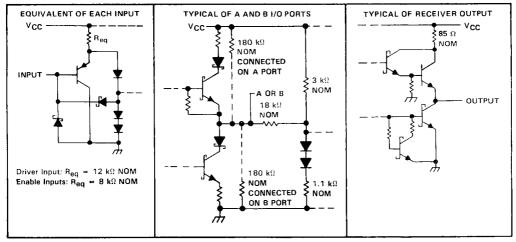

INPUT D	DIR	OUTPUTS			
	חוס	A	В		
н	н	н	L		
L	н	L	н		
x	L	z	z		

Function Table (each receiver)

DIFFERENTIAL INPUTS A – B	DIR	OUTPUT R
V _{ID} ≥ 0.3 V	L	Н
0.3 V < V _{ID} < 0.3 V	L	?
V _{ID} ≤ - 0.3V	L	L
Х	н	z


H = high level, L = low level, ? = indeterminate; X = irrelevant, Z = high impedance (off)

logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V	/
Voltage at any bus terminal	1
Enable input voltage	/
Continuous total power dissipation See Dissipation Rating Table	3
Operating free-air temperature range)
Storage temperature range)
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds)

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
J	1025 mW	8.2 mW/°C	656 mW

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode), Vį or V _{IC}				12 -7	v
High-level input voltage, VIH	D, DIR	2			v
Low-level input voltage, VIL	D, DIR			0.8	v
Differential input voltage, VID (see Note 2)			±12	v
	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μΑ
	Driver			60	
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA				70	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS [†]	MIN	түр‡	MAX	UNIT
VIK	Input clamo voltage	= −18 mA	l ₁ = -18 mA			-1.5	٧
Vo	Output vi · · ·	IO = 0		0		6	V
VOH	High-level output voltage	$V_{CC} = 4.75 V,$ $V_{IH} = 2 V,$ $V_{IL} = 0.8 V$	I _{ОН} = -55 mA	2.7			v
VOL	Low-level output voltage	$V_{CC} = 4.75 V,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, I _{OL} = 55 mA			1.7	v
VOD1	Differential output voltage	IO = 0		1.5		6	٧
VOD2	Differential output voltage	$R_L = 100 \Omega$,	See Figure 1	1/2 VOD1 2			v
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	۷
VOD3	Differential output voltage	$V_{test} = -7 V to 12 V,$	See Figure 2	1.5		5	V
A VOD	Change in magnitude of differential output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_{L} = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			+3	۷
	Change in magnitude of common-mode output voltage§					±0.2	v
10	Output current	Output disabled, See Note 3	$V_0 = 12 V$ $V_0 = -7 V$			1 0.8	mA
ЧН	High-level input current	VI = 2.4 V				20	μA
۱Ľ	Low-level input current	VI = 0.4 V				-400	μA
		$V_0 = -7 V$	$V_{O} = 0$			250	
los	Short-circuit output current [¶]	$V_0 = 0$ $V_0 = V_{CC}$				-150	mA
		V _O = 12 V				; i	
lcc	Supply current	No load	Outputs enabled Outputs disabled		69 57	90	mA

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at V_{CC} = 5 \lor and T_A = 25°C.

§ Δ | V_{OO} | and Δ | V_{OO} | are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.

[¶] Ouration of the short-circuit current should not exceed one second.

NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

PARAMETER		PARAMETER TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
taa	Differential-output delay time	RL = 54 Ω, See Figure 3	CL = 50 pF.	3	8	13	ns
^t DD	Dinerennar-ourput beray inne	$R_{L1} = R_{L3} = 165 \Omega,$ $C_{L} = 60 \text{ pF},$	$R_{L2} = 75 \Omega$, See Figure 6	3	8	13	ns
	$R_L = 54 \Omega$, See Figure 3	CL = 50 pF,		1	6		
	Skew (tDDH-tDDL)	$R_{L1} = R_{L3} = 165 \Omega,$ C _L = 60 pF,	$R_{L2} = 75 \Omega$, See Figure 6		1	6	ns
t	Differential-output transition time	$R_{L} = 54 \Omega,$ See Figure 3	CL = 50 pF,	3	8	13	
τD		$R_{L1} = R_{L3} = 165 \Omega,$ $C_{L} = 60 \text{ pF},$	$R_{L2} = 75 \Omega$, See Figure 6	3	8	13	ns
¹ PZH	Output enable time to high level	$R_L = 110 \Omega,$	See Figure 4		30	50	ns
t _{PZL}	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		30	50	ns
^t PHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4	3	8	13	ns
^t PLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5	3	8	13	ns
tPDE	Differential it ·	$R_{L1} = R_{L3} = 165 \Omega_{1}$	R _{L2} = 75 Ω,	8	30	45	ns
^t PDZ	Differential curput cisusio inno	C _L = 60 pF,	See Figure 7	5	10	15	ns

driver switching characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
VO	V _{oa} , V _{ob}	V _{oa} , V _{ob}
	Vo	Vo
VOD2	V_{t} ($R_{L} = 100 \Omega$)	$V_t (R_L = 54 \Omega)$
Vod3		Vt (Test Termination Measurement 2)
Vtest		Vtst
Δ V _{OD}	V _t V _t	$ V_t - V_t $
Voc	Vos	V _{os}
∆ Voc	V _{os} − V _{os}	Vos – Vos
los	Isa , Isb	
l0	xa , xb	lia, lib

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VTH	Differential-input high-threshold voltage	V _O ≃ 2.7 V,	$I_{O} = -0.4 \text{ mA}$			0.3	V
VTL	Differential-input low-threshold voltage	V _O = 0.5 V,	lo = 8 mA	-0.3‡			v
V _{hys}	Hysteresis§				60		mV
VIK	Enable-input clamp voltage	lı = -18 mA				-1.5	v
VOH	High-level output voltage	VID = 300 mV, See Figure 8	I _{OH} = -400 μA,	2.7			V
VOL	Low-level output voltage	VID = - 300 mV, See Figure 8	i _{DL} = 8 mA,			0.45	v
107	High-impedance-state output current	V _O = 2.4 V				20	
loz	High-Impedance-state output current	$V_0 = 0.4 V$				-400	μA
	Line input current	Other input = 0 V,	VI = 12 V			1	
ų	Ene input current	See Note 4	V = −7 V			0.8	mA
ΫН	High-level enable-input current	ViH = 2.7 V				20	μA
4L	Low-level enable-input current	VIL = 0.4 V		-		-100	μA
ri	input resistance			12			kΩ
los	Short-circuit output current	V _{ID} = 300 mV,	VO = 0	15		-85	mA
loo	Supply current	No load	Outputs enabled		69	90	
ICC	Supply current	No ioau	Outputs disabled	57		78	mA

[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

§ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. See Figure 4.

NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output				14	19	ns
t PHL	Propagation delay time, high-to-low-level output	V _{ID} = -1.5 V to 1.5 V, See Figure 9	СL = 15 рF,	9	14	19	ns
	Skew (tpLH - tpHL)				2	6	ns
^t PZH	Output enable time to high level	— С _L = 15 рF,	See Figure 10		7	14	ns
t PZL	Output enable time to low level				7	14	ns
tPHZ	Output disable time from high level	CL = 15 pF,	Can Figure 40		20	35	ns
t _{PLZ}	Output disable time from low level		See Figure 10		8	17	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

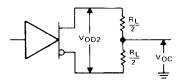


FIGURE 1. DRIVER VOD AND VOC

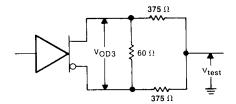


FIGURE 2. DRIVER VOD3

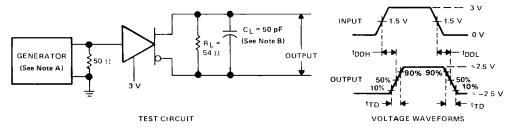
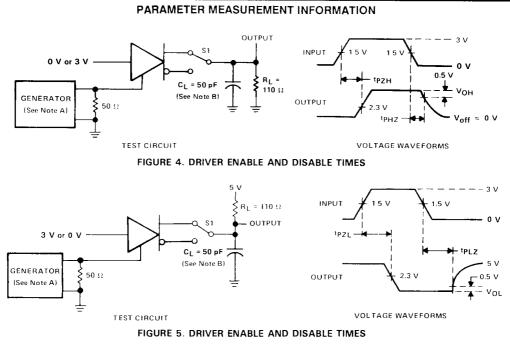
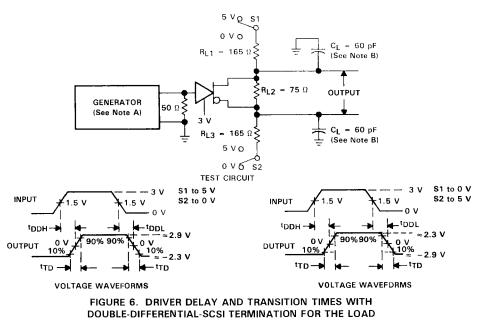
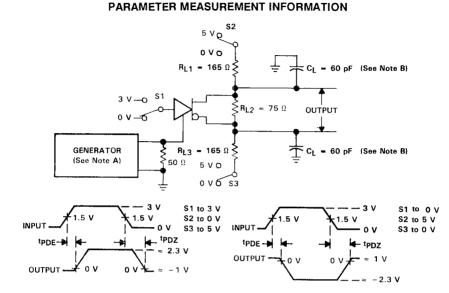



FIGURE 3. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES


- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω.
 - B. CL includes probe and jig capacitance.

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω.
 - B. CL includes probe and jig capacitance.



PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω.

B. CL includes probe and jig capacitance.

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z₀ = 50 Ω .
 - B. CL includes probe and jig capacitance.

FIGURE 7. DRIVER DIFFERENTIAL-ENABLE AND DISABLE TIMES WITH A DOUBLE-SCSI TERMINATION

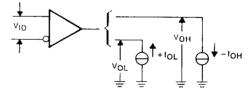
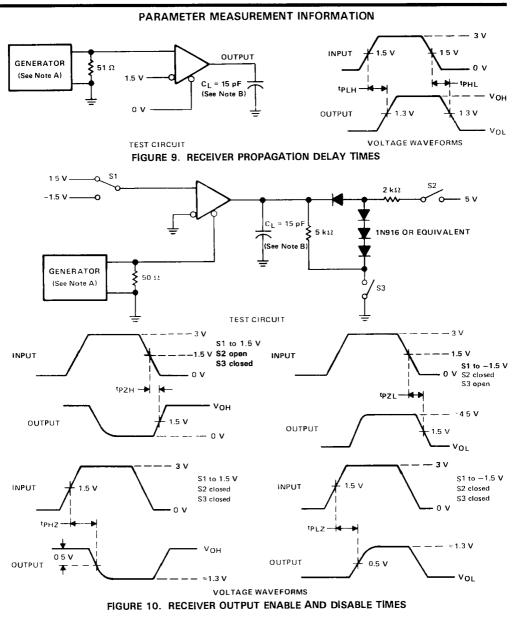
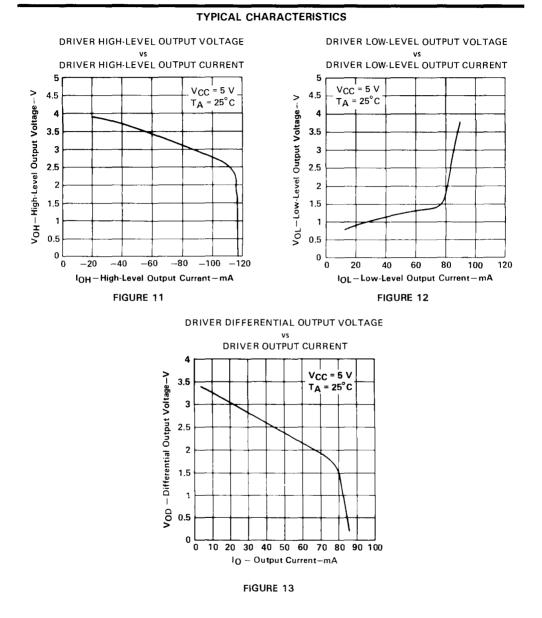
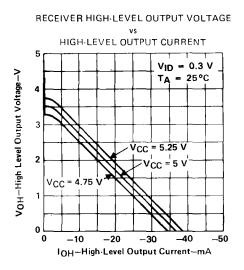



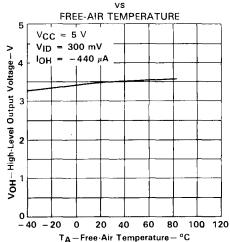
FIGURE 8. RECEIVER VOH AND VOL



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, tr ≤ 6 ns, tr ≤ 6 ns, Z₀ = 50 Ω.


B. CL includes probe and jig capacitance.

TEXAS INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265


TYPICAL CHARACTERISTICS

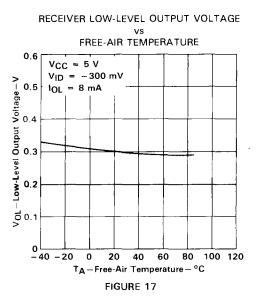

FIGURE 14

FIGURE 16

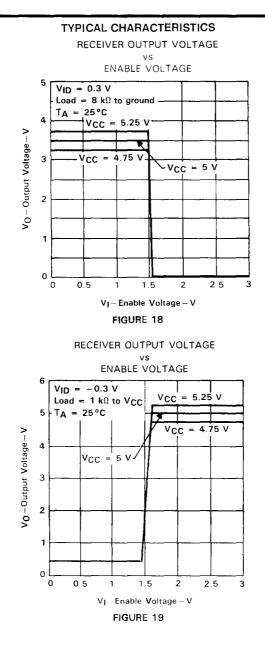
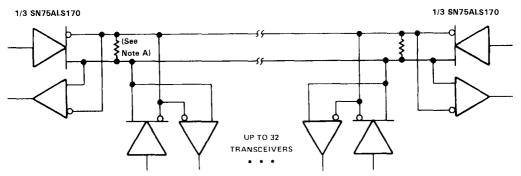
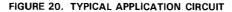


FIGURE 15


TEXAS T INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265


RECEIVER HIGH-LEVEL OUTPUT VOLTAGE

TEXAS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

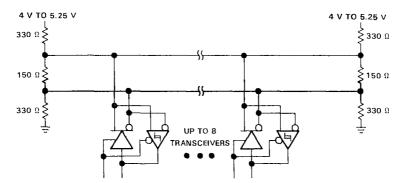
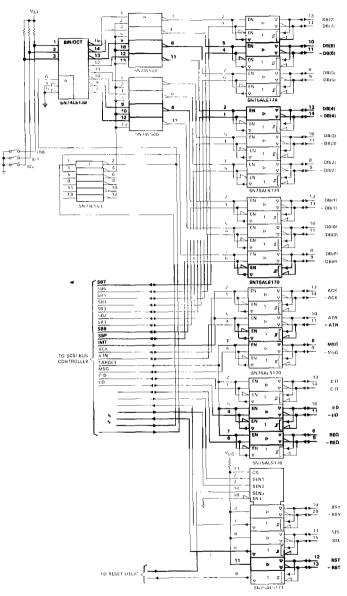



FIGURE 21. TYPICAL DIFFERENTIAL SCSI APPLICATION CIRCUIT

APPLICATION INFORMATION

FIGURE 22. TYPICAL DIFFERENTIAL SCSI BUS INTERFACE IMPLEMENTATION

3DE 🚺 10

DE

н

н

L

х

DIFFERENTIAL INPUTS ENABLE

A – B

V_{ID} ≥ 0.3 V

 $-0.3 V < V_{ID} < 0.3 V$

 $V_{1D} \leq -0.3 V$

х

INPUT

D

Ĥ

L

Х

х

11 3D

OUTPUTS

R

L

н

Z

Z

OUTPUT

R

H

?

L.

7

A

н

L

z

Ζ

FUNCTION TABLE (EACH DRIVER)

CDE

н

н

х

L

RE

L.

L

L

н

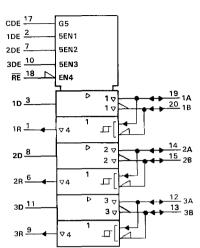
FUNCTION TABLE (EACH RECEIVER)

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

ENABLE

	D3041, AUGUST 1987	MAY 1990
Three Bidirectional Transceivers	J PACKAGE (TOP VIEW)	
 Driver Meets EIA Standards RS-422A and 		
RS-485 and CCITT Recommendations V.11	1R 🚺 1 💛 _{2D} 🗍 1B	
and X.27 and ANSI Standard X3.131-1986	1DE 🛛 2 19 🗍 1A	
Uti-to Original Astronomial Jaw Device Schottler	1D 🚺 3 18 🛛 RE	
High-Speed Advanced Low-Power Schottky	GND 🛛 4 17 🗍 CDE	
Circuitry	GND 🚺 5 16 🗍 V _{CC}	
 Designed for 25-MBaud Operation in Both 	2R 🚺 6 15 🗍 2B	
Serial and Parallel Applications	2DE 🚺 7 14 🗍 2A	
······	2D 🛛 8 13 🗍 3B	
 Low Skew 6 ns Max 	3R 🚺 9 12 🗍 3A	

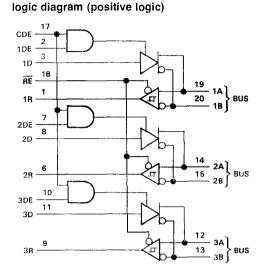
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Features Independent Driver Enables and Combined Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltages Ranges
- Driver Output Capacity . . . ± 60 mA
- Thermal Shutdown Protection
- Driver Positive and Negative Current
 Limiting
- Receiver Input Impedances . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ± 300 mV Max
- Receiver Input Hysteresis . . . 60 mV Typ
- Operates from a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection
- Low Supply Current Requirements 90 mA Max

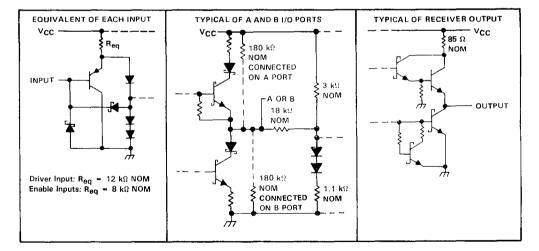

description

The SN75ALS171 triple differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and the driver meets EIA Standards RS-422-A and RS-485 and CCITT recommendations V.11 and X.27 and ANSI Standard X3.131-1986.

The SN75ALS171 operates from a single 5-V power supply. The drivers and receivers have individual activehigh and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential output and the receiver differential input pairs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or V_{CC} is at 0 V. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

The SN75ALS171 is characterized for operation from 0°C to 70°C.





logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Voltage at any bus terminal	
Enable input voltage	5.5 V
Continuous total power dissipation Se	
Operating free-air temperature range	
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	300°C

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DISSPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70° C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING
Ĵ	1025 mW	8.2 mW/°C	656 mW

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal (separately or common mode),	VI or VIC	-7		12	v
High-level input voltage, VIH	D, CDE, DE, and RE	2			V
Low-level input voltage, VIL	D, CDE, DE, and RE			0.8	v
Differential input voltage, VID (see Note 2)				±12	v
	Driver			- 60	mA
High-level output current, IOH	Receiver			- 400	μA
	Driver			60	
Low-level output current, IOL	Receiver			8	mΑ
Operating free-air temperature, TA		0		70	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

PARAMETER		TEST CON	TEST CONDITIONS [†]		TYP‡	MAX	UNIT
VIK	Input clamp voltage	lj = -18 mA				-1.5	V
Vo	Output voltage	$i_{O} = 0$		0		6	V
VOH	High-level output voltage	V _{CC} = 4.75 V, V _{II1} = 2 V, V _{IL} = 0.8 V	I <mark>OH</mark> = −55 mA	2.7			v
VOL	Low-level output voltage	$V_{CC} = 4.75 V,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, I _{OL} = 55 mA		<u> </u>	1.7	v
VOD1	Differential output voltage	IO = 0		1.5		6	٧
VOD2	Differential output voltage	$R_{L} = 100 \Omega,$ $R_{L} = 54 \Omega.$	See Figure 1 See Figure 1	1/2 V _{OD1} 2 1.5	2.5	5	v
V _{OD3}	Differential output voltage	$V_{\text{test}} = -7 \text{ V to } 12 \text{ V},$		1.5	2.5	5	V
A VOD	Change in magnitude of differential output voltage§				-	±0.2	v
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega, S$	See Figure 1		1 =1	+3 -1	v
∆ V _{OC}	Change in magnitude of common-mode output voitage§					±0.2	V
ю	Output current	Output disabled, See Note 3	$V_0 = 12 V$ $V_0 = -7 V$			-0.8	mA
lΉ	High-level enable-input current	D and DE CDE	V _{IH} = 2.7 V			20 60	
۹L	Low-level enable-input current	D and DE CDE	V _{IL} = 0.4 V			-100 -900	μA
los	Short-circuit output current ¹	$\frac{V_{O} = -7 V}{V_{O} = 0}$				250 150	
.02		$V_{O} = V_{CC}$ $V_{O} = 12 V$				250 250	mA
lcc	Supply current	No load	Outputs enabled Outputs disabled		69 57	90 78	mA

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at $\forall_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}C$.

§ Δ [V_{OD}] and Δ [V_{OC}] are the changes in magnitude of V_{OD} and V_{DC} respectively, that occur when the input is changed from a high level to a low level.

[¶] Duration of the short-circuit current should not exceed one second.

NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

	PARAMETER	TEST COND	ITIONS	MIN	TYP [†]	MAX	UNIT
		$R_L = 54 \Omega$, See Figure 3	CL = 50 pF,	3	8	13	
tDD	Differential-output delay time	$R_{L1} = R_{L3} = 165 \Omega,$	$R_{L2} \approx 75 \Omega_{1}$				ns
		CL = 60 pF,	V _{TERM} = 5 V,	3	8	13	
		See Figure 6					
		$R_{L} = 54 \Omega,$	C _L = 50 pF,		4	6	
	Skow (1 to provide the provide	See Figure 3			'	0	ns
Skew (IDDF	Skew (tDDH-tDDL)	$R_{L1} = R_{L3} = 165 \Omega,$	$R_{L2} = 75 \Omega$,		1	6	115
		$C_{L} = 60 \text{ pF},$	See Figure 6		1	0	
·		$R_L = 54 \Omega$,	CL = 50 pF,	3	8	13	
	Differential-output transition time	See Figure 3		3	0	15	
tTD.		$R_{L1} = R_{L3} = 165 \Omega,$	$R_{L2} = 75 \Omega$,				ns
		$C_{L} = 60 \text{ pF},$	V _{TERM} = 5 V,	3	8	13	[
		See Figure 6					
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4		30	50	ns
^t PZL	Output enable time to low level	$R_{L} = 110 \Omega_{1}$	See Figure 5		30	50	ns
^t PHZ	Output disable time from high level	$R_{L} = 110 \Omega_{r}$	See Figure 4	3	8	13	ns
^t PLZ	Output disable time from low level	$R_L = 110 \Omega,$	See Figure 5	3	8	13	ns
tPDE	Differential-output enable time	$R_{L1} = R_{L3} = 165 \Omega,$	$R_{L2} = 75 \Omega_{1}$	8	30	45	ns
^t PDZ	Differential-output disable time	$C_{L} = 60 \text{ pF},$	See Figure 7	5	10	15	ns

driver switching characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

[†] All typical values are at $V_{CC} = 5 V$ and $T_A = 25^{\circ}C$.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	Voa, Vob	V _{oa} , V _{ob}
VOD1	Vo	Vo
VOD2	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
VOD3		V _t (Test Termination Measurement 2)
Vtest		V _{tst}
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	Vos	Vos
	Vos - Vos	V _{os} – V _{os}
los	Isa IIsb	
10	Ixa , Ixb	lia, lib

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
VTH	Differential-input high-threshold voltage	V _O = 2.7 V,	$l_0 = -0.4 \text{ mA}$			0.3	V
VTL	Differential-input low-threshold voltage	V _O = 0.5 V,	l _O = 8 mA	-0.3‡			V
Vhys	Hysteresis§				60		mV
VIK	Enable-input clamp voltage	lı = −18 mA	· · · · · · · · · · · · · · · · · · ·			-1.5	V
VOH	High-level output voltage	V _{ID} = 300 mV, See Figure 8	[!] OH = -400 μA,	2.7			v
VOL	Low-level output voltage	V _{ID} = - 300 mV, See Figure β	l _{OL} = 8 mA,			0.45	v
loz	High-impedance-state output current	Vo = 0.4 V to 2.4 V				±20	μΑ
l.	Line input current	Other input = 0 V,	VI = 12 V			1	mA
Ц	Citie triput current	See Note 4	$V_{I} = -7 V$			-0.8	
ЧΗ	High-level enable-input current	VIH = 2.7 V				60	μΑ
1 _{IL}	Low-level enable-input current	$V_{1L} = 0.4 V$	·			-300	μA
ri	Input resistance		· · · · · · · · · · · · · · · · · · ·	12			kΩ
los	Short-circuit output current	Vip = 300 mV,	$V_0 = 0$	-15		-85	mA
1	Supply surrent	Nelood	Outputs enabled		69	90	
CC	Supply current	No load	Outputs disabled		78	mA	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

⁺ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

§ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TEST CONDI	TIONS	MIN	TYPT	MAX	UNIT
t PLH	Propagation delay time, low-to-high-level output	V _{ID} = -1.5 V to 1.5 V, C _L = 15 pF, See Figure 9		9	14	19	ns
tphl,	Propagation delay time, high-to-low-level output		CL = 15 pF,	9	14	19	ns
	Skew (tpLH ~ tpHL)			2	6	ns	
^t PZH	Output enable time to high level	0 45 45	See Figure 10		7	14	ns
†PZL	Output enable time to low level	- C _L = 15 pF,			7	14	ns
^t PHZ	Output disable time from high level	- CL = 15 pF,	See Figure 10		20	35	ns
^t PLZ	Output disable time from low level		See Figure 10		8	17	ns

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

PARAMETER MEASUREMENT INFORMATION

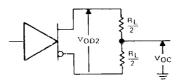


FIGURE 1. DRIVER VOD AND VOC

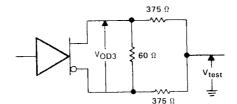


FIGURE 2. DRIVER VOD3

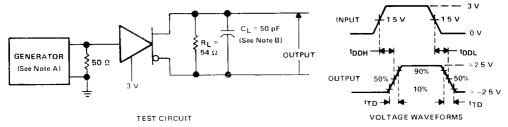
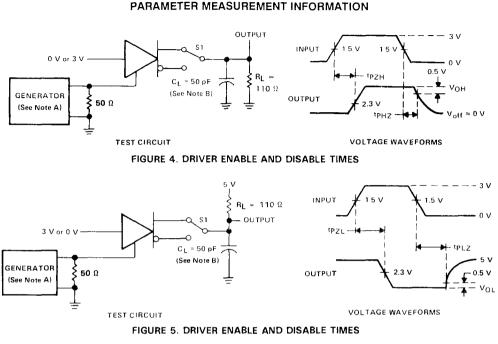



FIGURE 3. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω.

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR < 1 MHz, 50% duty cycle, t_f < 6 ns, t_

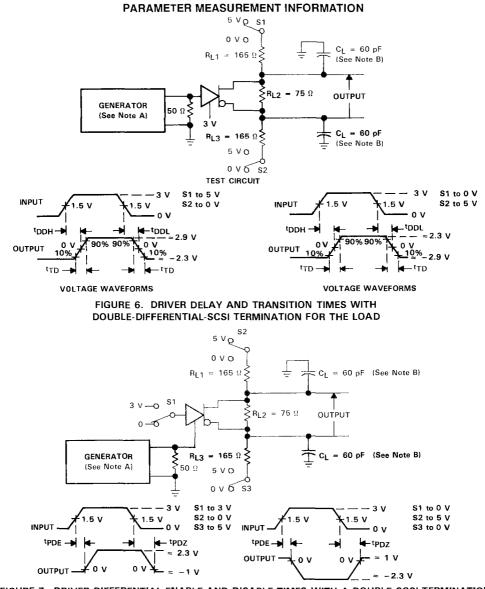
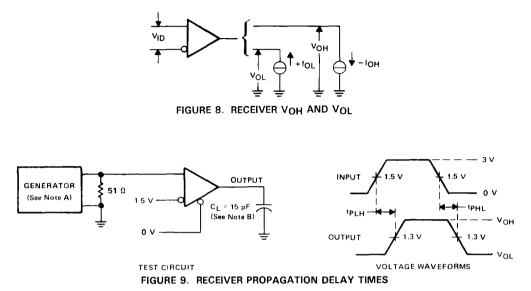
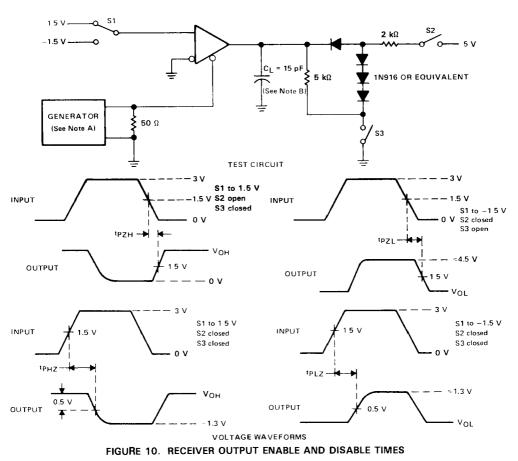



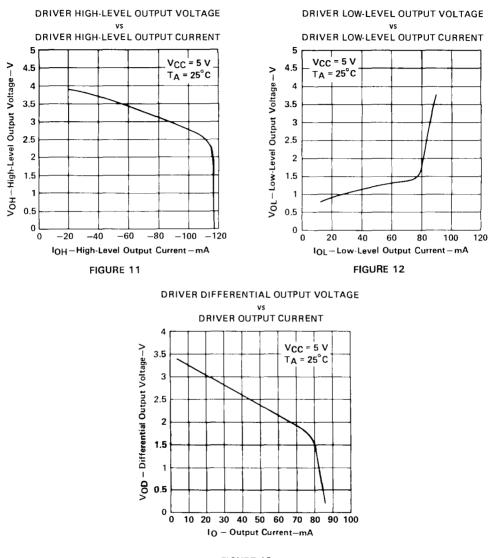
FIGURE 7. DRIVER DIFFERENTIAL-ENABLE AND DISABLE TIMES WITH A DOUBLE-SCSI TERMINATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR < 1 MHz, 50% duty cycle, t_f < 6 ns, t_f < 6 ns, Z₀ = 50 Ω.



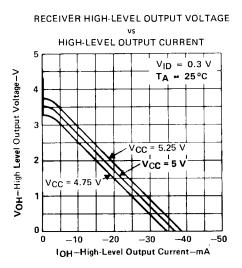
PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_{f} ≤ 6 ns, t_{f} ≤ 6 ns,
 - B. CL includes probe and jig capacitance.



PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 1 MHz, 50% duty cycle, t_f ≤ 6 ns, t_f ≤ 6 ns, Z₀ = 50 Ω.

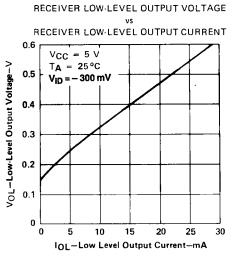
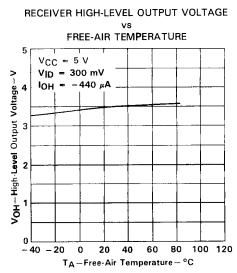
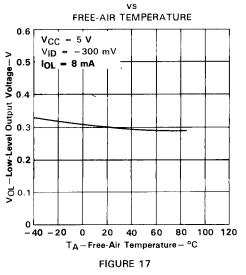


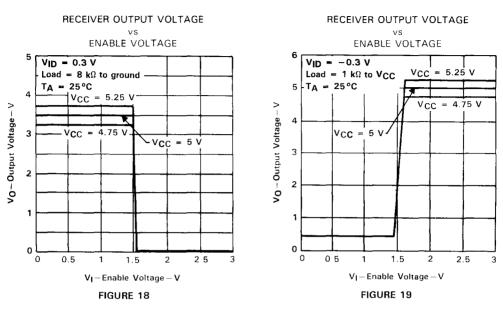
TYPICAL CHARACTERISTICS

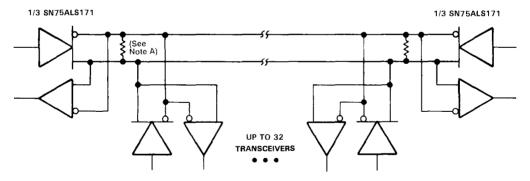
FIGURE 13

TYPICAL CHARACTERISTICS

FIGURE 14


FIGURE 16


RECEIVER LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 20. TYPICAL APPLICATION CIRCUIT

APPLICATION INFORMATION

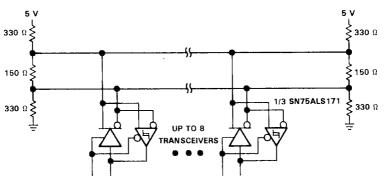
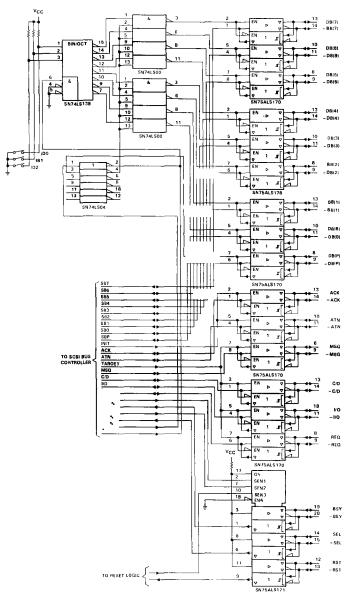



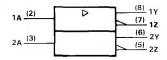
FIGURE 21. TYPICAL DIFFERENTIAL SCSI APPLICATION CIRCUIT

APPLICATION INFORMATION

FIGURE 22. TYPICAL DIFFERENTIAL SCSI BUS INTERFACE IMPLEMENTATION

SN75ALS191 DUAL DIFFERENTIAL LINE DRIVER

D3068, DECEMBER 1987-REVISED AUGUST 1989

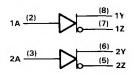

- Meets EIA Standard RS-422-A
- High Speed, Low-Power ALS Design
- TTL-and CMOS-Input Compatibility
- Single 5-V Supply Operation
- Output Short-Circuit Protection
- Improved Replacement for the UA9638

description

The SN75ALS191 is a dual high-speed differential line driver designed to meet EIA Standard RS-422-A. The inputs are TTL- and CMOS-compatible and have input clamp diodes. Schottky-diode-clamped transistors are used to minimize propagation delay time. This device operates from a single 5-volt power supply and is supplied in 8-pin packages.

The SN75ALS191 is characterized for operation from 0 °C to 70 °C.

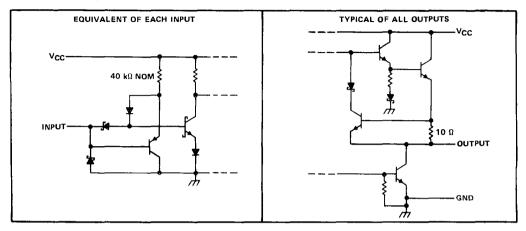
logic symbol[†]


[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

D OR P PACKAGE (TOP VIEW)						
	1 (2 3 4	- 8 7 6 5]1Y]1Z]2Y]2Z			

FUNCTION TABLE (EACH DRIVER)

INPUT	OUT	PUTS
A	Y	Z
н	н	L
L	L	н


logic diagram (positive logic)

SN75ALS191 DUAL DIFFERENTIAL LINE DRIVER

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V	
Input voltage, VI	
Continuous total dissipation	
Operating free-air temperature range 0°C to 70°C	
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260 °C	

NOTES: 1. All voltage values except differential output voltage VOD are with respect to network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	TA = 70°C POWIE RATING
Ð	725 mW	5.8 mW/°C	' mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN NO	M MAX	UNIT
Supply voltage, V _{CC}	4.75	5 5.25	V
High-level input voltage, VIH	2		V
Low-level input voltage, VIL		0.8	V
High-level output current, IOH		- 50	mA
Low-level output current, IOL		50	mA
Operating free-air temperature, TA	0	70	°C

electrical characteristics over operating free-air temperature range (unless otherwise noted)

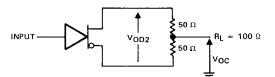
	PARAMETER	TEST CONDI	TIONS	MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, \text{ I}_{\text{J}} = -18 \text{ mA}$			- 1	- 1.2	V
∨он	High-level output voltage	$V_{CC} = 4.75 V, V_{IH} = 2 V,$	$i_{OH} = -10 \text{ mA}$	2.5	3.3		v
			$I_{OH} = -40 \text{ mA}$	2			I
VOL	Low-level output voltage	$V_{CC} = 4.75 V$, $V_{IH} = 2 V$, $I_{OL} = 40 mA$	V _{IL} = 0.8 V,			0.5	⊻.
VOD1	. • rential output voltage	$V_{CC} = 5.25 V, I_{O} = 0$			_	2V0D2	V
VOD2	··· rential output voltage			2			V
∆ V _{OD}	Change in magnitude of [‡] differential output voltage					±0.4	v
Voc	Common-mode output voltage §	$V_{CC} = 4.75 V \text{ to } 5.25 V, R_L$	= 100 Ω, See Figure 1			3	V
AI VOC I	Change in magnitude of [‡] common-mode output voltage					±0.4	v
			$V_0 = 6 V$		0.1	_ ·	
ю	Output current with power off	$V_{CC} = 0$	$V_0 = -0.25 V$		-0.1	-	μA
			$V_0 = -0.25 \text{ V to 6 V}$			± 100	
h .	Input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{\text{I}} = 5.5 \text{ V}$				50	μA
Чн	High-level input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{l} = 2.7 \text{ V}$				25	μA
կլ	Low-level input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{j} = 0.5 \text{ V}$				- 200	μA
los	Short-circuit output current	$V_{CC} = 5.25 V, V_{O} = 0$		- 50		150	mA
lcc	Supply current (all drivers)	$V_{CC} = 5.25 V$, No load,	All inputs at 0 V		32	40	mA

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

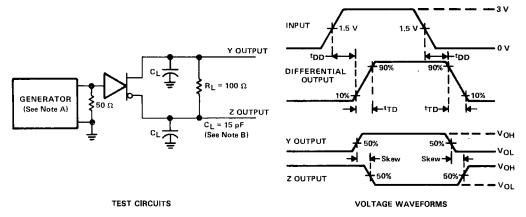
 $\Delta | V_{OD} |$ and $\Delta | V_{OC} |$ are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

[§]In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. ¶Only one output at a time should be shorted and duration of the short-circuit should not exceed one second.

switching characteristics over recommended range of operating free-air temperature (unless otherwise noted), VCC = 5 V


PARAMETER	TEST CO	NDITION	MIN	ТҮР#	MAX	UNIT
tDD rential-output Goray time	0 15 -5	$R_I = 100 \Omega$		3.5	7	ns
tTD rential-output transition time	$C_L = 15 \text{ pF},$	$R_L = 100 \Omega$		3.5	7	nŝ
GREW	See Figure 2			1.5	4	ns

Typical values are at T_A = 25 °C.



SN75ALS191 DUAL DIFFERENTIAL LINE DRIVER

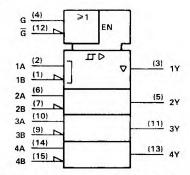
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse generator has the following characteristics: $Z_{OUT} = 50 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W = 100 \text{ ns}$, $t_r = \leq 5 \text{ ns}$. B. CL includes probe and jig capacitance.

D2931, JUNE 1986-REVISED AUGUST 1989

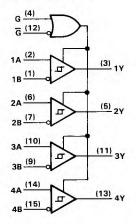
- Meets EIA Standards RS-422-A and RS-423-A
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range . . . – 7 V to 7 V
- Input Sensitivity . . . ± 200 mV
- Input Hysteresis . . . 120 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5-V Supply
- Low ICC Requirements: ICC . . . 35 mA Max
- Improved Speed and Power Consumption Compared to AM26LS32A

description


The SN75ALS193 is a monolithic quadruple line receiver with 3-state outputs designed using Advanced Low-Power Schottky technology. This technology provides combined improvements in bar design, tooling production, and wafer fabrication. This, in turn, provides significantly less power requirements and permits much higher data throughput than other designs. The device meets the specifications of EIA Standards RS-422-A and RS-423-A. It features 3-state outputs that permit direct connection to a bus-organized system with a Fail-Safe design that ensures the outputs will always be high if the inputs are open.

The device is optimized for balanced multipoint bus transmission at rates up to 20 megabits per second. The input features high input impedance, input hysteresis for increased noise immunity, and an input sensitivity of ± 200 mV over a common-mode input voltage range of -7to 7 V. It also features active-high and activelow enable functions that are common to the four channels. The SN75ALS193 is designed for optimum performance when used with the SN75ALS192 quadruple differential line driver.

The SN75ALS193 is characterized for operation from 0°C to 70°C.


		ACKAG	
1B	ſ	U16	Dvcc
1AC	2	15	4 B
1Y [3	14	4A
G	4	13	4Y
2Y [5	12	ΠG
2A	6	11] 3Y
2B [7	10] 3A
GND	8	9	🗍 3B

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Copyright © 1989, Texas Instruments Incorporated

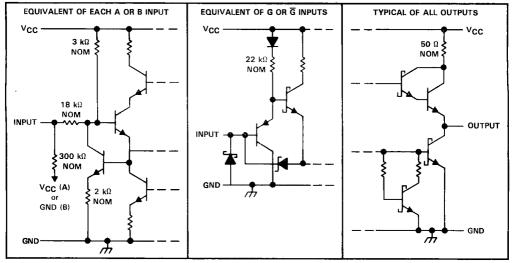
PRODUCTION 1141A locuments contain information current as o'1.41-auon dete. Products conform to specifications put time terms of Texes Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

TEXAS TANK

DIFFERENTIAL	ENABLES		OUTPUT
A-B	G	G	Y
¥- > 0.2 ¥	н	х	н
$V_{ D} \ge 0.2 V$	x	L	H H ? ?
~0.2 V < VID < 0.2 V	Н	х	?
~0.2 V < V D < 0.2 V	Х	L	?
V _{ID} ≤ −0.2 V	н	X	L
VID ≅ =0.2 V	X	L	L
X	L	н	Z

FUNCTION TABLE (EACH RECEIVER)

H = high level


L = low level

X = irrelevant

? = indeterminate

Z = high impedance (off)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage, A or B inputs
Differential input voltage (see Note 2) ±15 V
Enable input voltage
Low-level output current
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 3) 1025 mW
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

3. For operation above 25 °C free-air temperature, derate the J package to 656 mW at 70 °C at the rate of 8.2 mW/ °C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.75	5	5.25	V
Common-mode input voltage, ViC			±7	V
··· ential input voltage, VID			±12	V
ingui-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	v
High-level output current, IOH			<u> </u>	μA
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended range of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

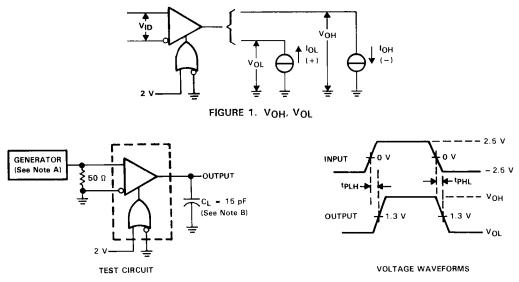
	PARAMETER	TEST COM	NDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T +}	Positive-going threshold voltage					200	mV
v _{T-}	Negative-going threshold voltage			- 200 [‡]			mV
Vhys	Hysteresis§				120		mV
VIK	Enable-input clamp voltage	lj = - 18 mA				- 1.5	v
v _{он}	High-level output voltage	V _{ID} = 200 mV, See Figure 1	$I_{OH} = -400 \ \mu A$	2.7	3.6		v
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 1	l _{OL} = 8 mA l _{OL} = 16 mA			0.45	v
loz	High-impedance-state output current	$V_{CC} = 5.25 V$	$V_0 = 2.4 V$ $V_0 = 0.4 V$		-	20 - 20	μA
h	Line input current	Other input at 0 V, See Note 4	$V_{\rm I} = 15 V$ $V_{\rm I} = -15 V$		0.7 - 1.0	1.2 - 1.7	mA
IH	High-level enable-input current		$V_{IH} = 2.7 V$ $V_{IH} = 5.25 V$			20 100	μA
ΙL	Low-level enable-input current	$V_{IL} = 0.4 V$				- 100	μA
	Input resistance			12	18		kΩ
los	Short-circuit output current	V _{ID} = 3 V, See Note 5	$V_0 = 0,$	- 15	- 78	- 130	mA
Icc	Supply current	Outputs disabled			22	35	mA

[†] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

⁺ The algebraic convention, in which the less positive limit is designated minimum, is used in this data sheet for threshold voltage levels only.

§ Hysteresis is the difference between the positive-going input threshold voltage, VT +, and the negative-going input threshold voltage,

V_T_. See Figure 4.

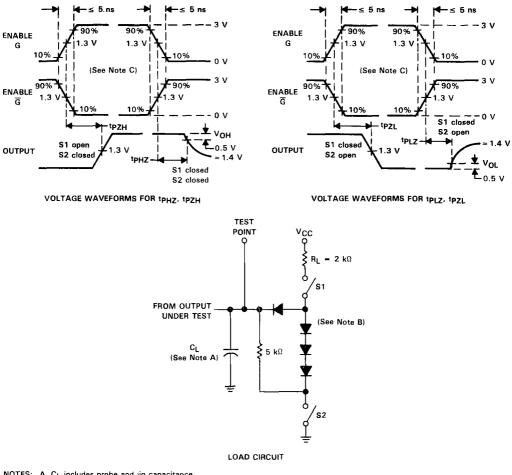

NOTES: 4. Refer to EIA Standard RS-422-A and RS-423-A for exact conditions.

5. Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second...

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = -2.5 V \text{ to } 2$	$2.5 \text{ V}, \text{ C}_{\text{L}} = 15 \text{ pF},$		15	22	ns
tPHL	Propagation delay time, high-to-low-level output	See Figure 2		-	15	22	ns
t PZH	Output enable time to high level	С _L = 15 pF,	See Figure 3		13	25	ns
^t PZL	Output enable time to low level	CL = 15 pF,	See Figure 3		11	25	ns
t PHZ	Output disable time from high level	$C_L = 5 pF$,	See Figure 3		13	25	ns
^t PLZ	Output disable time from low level	$C_L = 5 pF$,	See Figure 3		15	22	ns

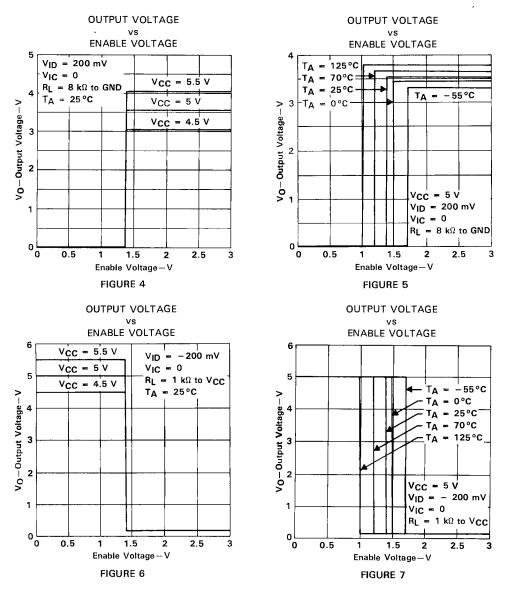
PARAMETER MEASUREMENT INFORMATION



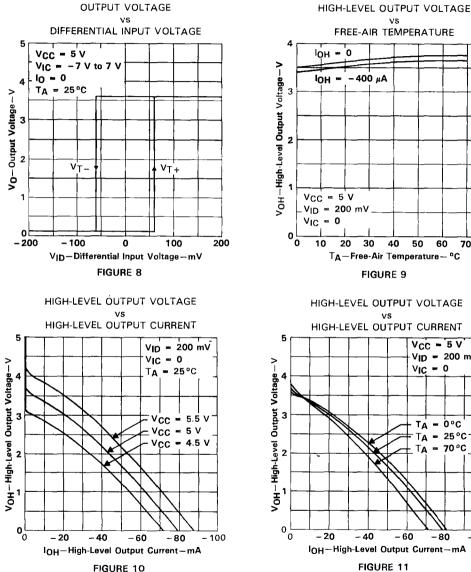
NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 $\Omega_{t_{f}} \leq$ 6 ns, t_f \leq 6 ns.

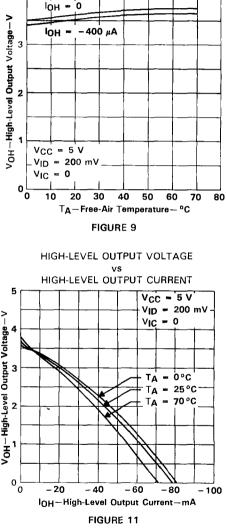
B. CL includes probe and jig capacitance.

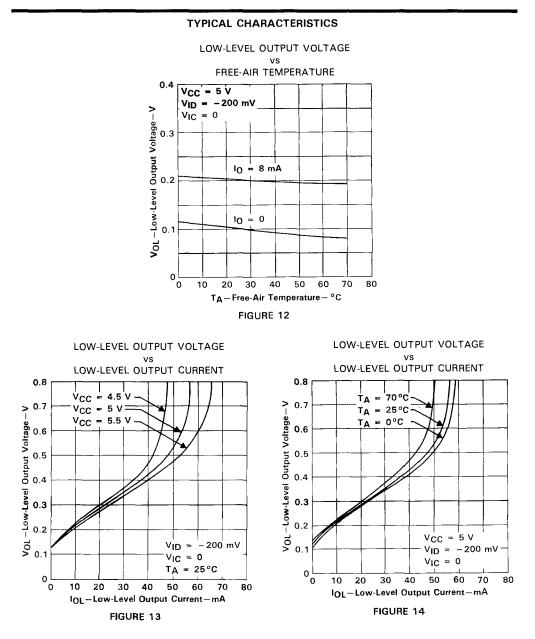
FIGURE 2. tPLH, tPHL

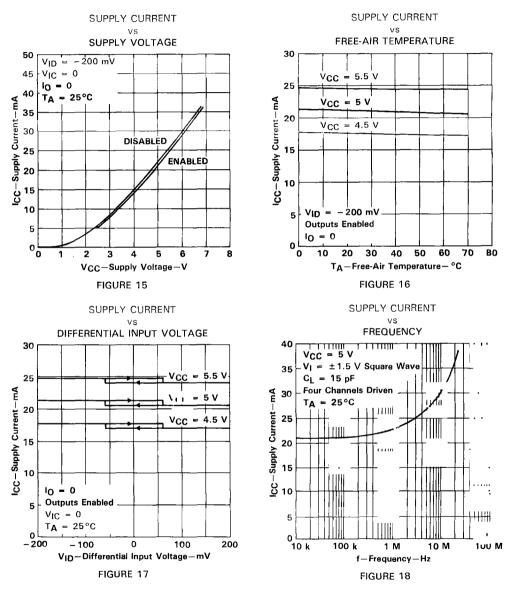

PARAMETER MEASUREMENT INFORMATION

- NOTES: A, CL includes probe and jig capacitance. B. All diodes are 1N3064 or equivalent.
 - - C. Enable G is tested with G high; G is tested with G low.


FIGURE 3. tPHZ, tPZH, tPLZ, tPZL

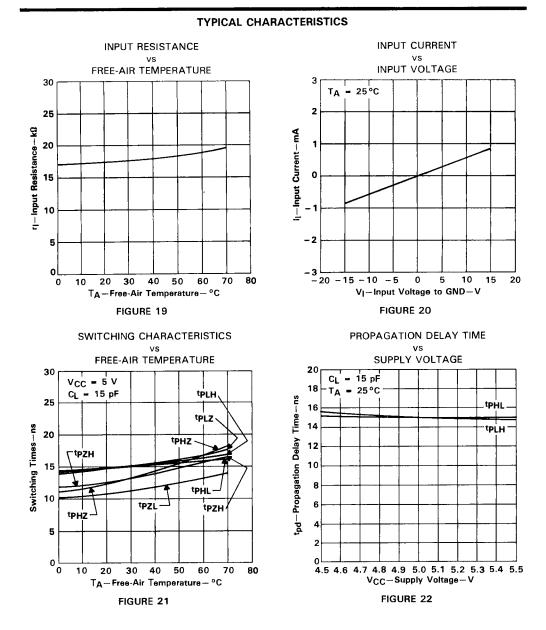



TYPICAL CHARACTERISTICS


V5

FREE-AIR TEMPERATURE

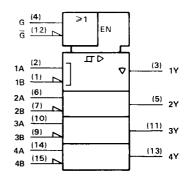
TEXAS INSTRUMENTS PDST OFFICE BOX 655303 · DALLAS, TEXAS 75265



TYPICAL CHARACTERISTICS

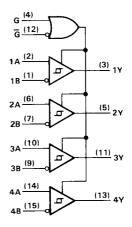
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Bus Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Input Voltage Range . . . - 7 V to 7 V
- Input Sensitivity . . . ± 300 mV
- Input Hysteresis . . . 120 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5-V Supply
- Low ICC Requirements: ICC . . . 35 mA Max
- Improved Speed and Power Consumption Compared to AM26LS32A

description


The SN75ALS197 is a monolithic quadruple line receiver with three-state outputs designed using Advanced Low-Power Schottky technology. This technology provides combined improvements in bar design, tooling production, and wafer fabrication. This, in turn, provides significantly less power requirements and permits much higher data throughput than other designs. The device meets the specifications of CCITT Recommendations V.10, V.11, X.26, and X.27. It features three-state outputs that permit direct connection to a bus-organized system with a Fail-Safe design that ensures the outputs will always be high if the inputs are open.

The device is optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. The input features high input impedance, input hysteresis for increased noise immunity, and an input sensitivity of \pm 300 mV over a common-mode input voltage range of -7 V to 7 V. It also features active-high and active-low enable functions that are common to the four channels. The SN75ALS197 is designed for optimum performance when used with the SN75ALS192 quadruple differential line driver.

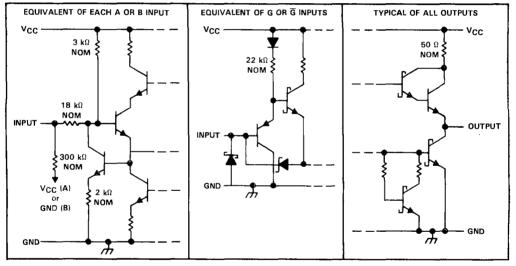
The SN75ALS197 is characterized for operation from 0°C to 70°C.


D OR N PACKAGE (Top view)					
1B [1A [1Y [2Y [2A [1 2 3 4 5 6	U16 15 14 13 12	V _{CC} 4B 4A 4Y G 3Y		
28 [GND [7 8	10 9	3A		

logic symbol[†]

 $^\dagger \text{This}$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)


Copyright © 1989, Texas Instruments Incorporated

FUNCTION TABLE (EACH RECEIVER)

DIFFERENTIAL	ENA	OUTPUT	
A-B	G	Ğ	Y
V = 0.2.V	н	x	н
$V_{\text{ID}} \ge 0.3 \text{ V}$	х	L	н
0.0.1/ . 0.0.1/	н	х	?
$-0.3 V < V_{\text{ID}} < 0.3 V$	х	L	7
V 0.0.V	н	x	L
V _{ID} ≤ −0.3 V	х	L	L L
x	Ļ	н	Z

- H = high level
- L = low level
- X = irrelevant
- ·? = indeterminate
- Z = high-impedance (off)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V
Input voltage, A or B inputs
Differential input voltage (see Note 2) ±15 V
Enable input voltage
Low-level output current
Continuous total dissipation See Dissipation Rating Table
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package 260 °C

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

	DISSIFATION	NATING TRUEL	
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWI P RATING
D	950 mW	7.6 mW/°C	
N	1150 mW	9.2 mW/°C	736 mW

DISSIPATION RATING TABLE

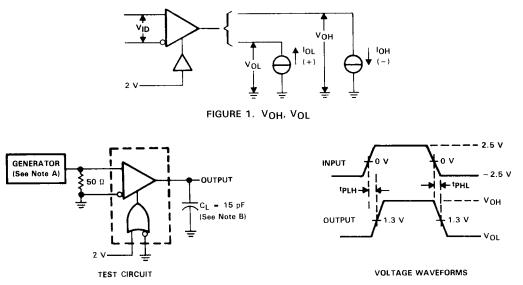
recommended operating conditions

MIN	NOM	MAX	UNIT
4.75	5	5.25	V
		±7	V
		± 12	V
2			V
		_ ^ & _	V
		-:	μA
		16	mA
0		70	°C
	2	4.75 5 2	4.75 5 5.25 ±7 ±12 2

electrical characteristics over recommended range of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYPT	MAX	UNIT
VT+	Positive-going threshold voltage						mV
VT	Negative-going threshold voltage			- 300‡			mV
V _{hys}	Hysteresis §				120		mV
VIK	Enable-input clamp voltage	$i_{j} = -18 \text{ mA}$				- 1.5	V
VOH	High-level output voltage	V _{ID} = 300 mV,	$I_{OH} = -400 \ \mu A$	2.7	3.6		V
		$V_{1D} = -300 mV$	$i_{OL} = 8 mA$			0.45	v
VOL	Low-level output voltage	vID = - 300 mv	$I_{OL} = 16 \text{ mA}$			0.5	v
1	High-impedance-state output current	V _{CC} = 5.25 V	$V_0 = 2.4 V$			20	μA
loz	High-Impedance-state output current	VCC - 5.25 V	$V_0 = 0.4 V$			-20 ^{µA}	μ
		Other input at 0 V,	Vi = 15 V		0.7	1.2	mA
4	Line input current	See Note 3	$V_{I} = -15 V$		- 1.0	- 1.7	1114
			V _{IH} ≠ 2.7 V			20	μA
ЧΗ	High-level enable-input current		V _{IH} = 5.25 V			100	<u>س</u>
ίιL	Low-level enable-input current	$V_{IL} = 0.4 V$				- 1 -	μΑ
	Input resistance			12	18		kΩ
1.		$V_{ID} = 3 V$,	V ₀ = 0,	- 15		- 130	mA
los	Short-circuit output current	See Note 4		-15	- 70	- 130	
Icc	Supply current	Outputs disabled			22	35	mA

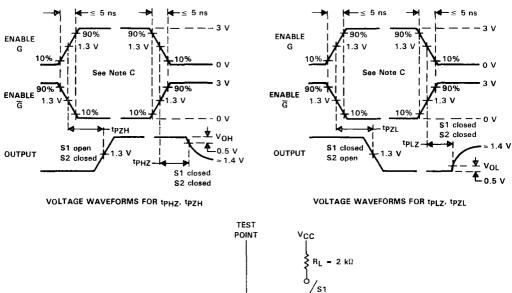
[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C. [‡]The algebraic convention, in which the less positive limit is dasignated minimum, is used in this data sheet for threshold voltage levels only. [§] Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. NOTES: 3. Refar to CCITT Recommendation V.10 and V.11 for exact conditions.


4. Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25 °C

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	V _{ID} = −2.5 V to 2	2.5 V, C _L = 15 pF,		15	22	ns
^t PHL	Propagation dalay time, high-to-low-level output	See Figure 2			15	22	ns
tPZH	Output enable time to high level	C. 15 -5	Can Figure 3		13	25	
tPZL	Output enable time to low level	C _L = 15 pF.	See Figure 3		11	25	ns
tPHZ	Output disable time from high level	0 15-5	Care Elaura 2		13	25	
tPLZ	Output disable time from low level	C _L = 15 pF,	See Figure 3		15	22	ns

PARAMETER MEASUREMENT INFORMATION



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 Ω, t_f \leq 6 ns, t_f \leq 6 ns.

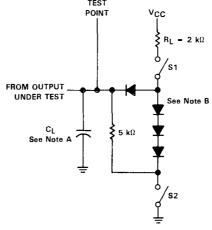
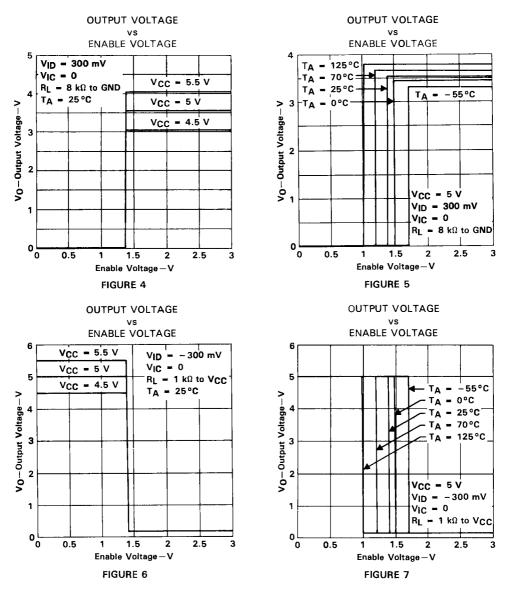

B. CL includes probe and jig capacitance.

FIGURE 2. tPLH, tPHL

PARAMETER MEASUREMENT INFORMATION

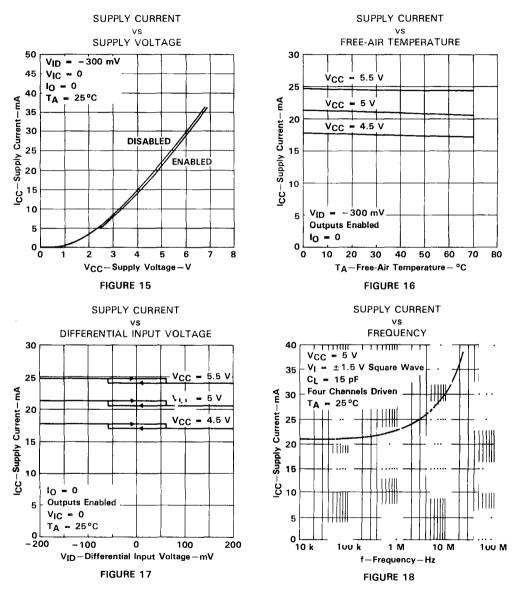

LOAD CIRCUIT

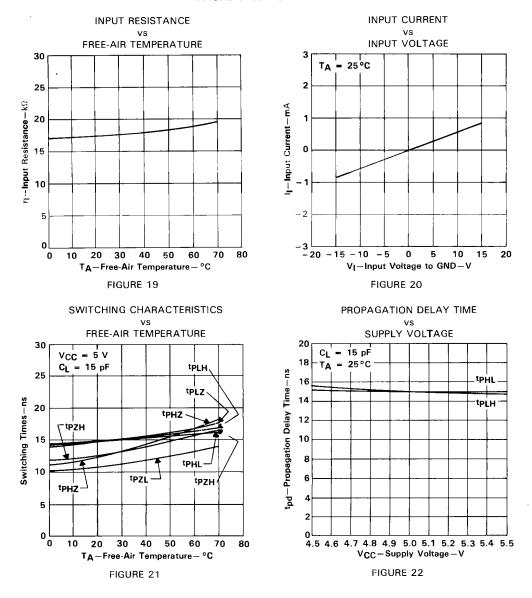
NOTES: A. CL includes probe and jig capacitance.

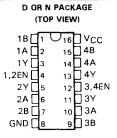
- B. All diodes are 1N3064 or equivalent.
- C. Enable G is tested with \overline{G} high; \overline{G} is tested with G low.

FIGURE 3. tPHZ, tPZH, tPLZ, tPZL

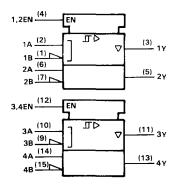






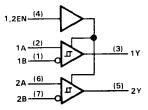

- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- -7 V to 7 V Common-Mode Range with 300-mV Sensitivity
- 3-State TTL-Compatible Outputs
- High Input Impedance . . . 12 kΩ Min
- Input Hysteresis . . . 120 mV Typ
- Single 5-V Supply Operation
- Low Supply Current Requirement . . . 35 mA Max
- Improved Speed and Power Consumption Compared to MC3486

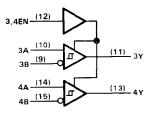
description


The SN75ALS199 is a monolithic quadruple line receiver with three-state outputs designed using Advanced Low-Power Schottky technology. This technology provides combined improvements in bar design, tooling production, and wafer fabrication, providing significantly less power consumption and permitting much higher data throughput than other designs. The device meets the specifications of CCITT Recommendations V.10, V.11, X.26 and X.27.

The SN75ALS199 features three-state outputs that permit direct connection to a bus-organized system with a fail-safe design that ensures the outputs will always be high if the inputs are open. The device is optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. The input features high input impedance, input hysteresis for increased noise immunity, and an input sensitivity of \pm 300 mV over a common-mode input voltage range of \pm 7 V. It also features an active-high enable function for each of two receiver pairs. The SN75ALS199 is designed for optimum performance when used with the SN75ALS194 quadruple differential line driver.

The SN75ALS199 is characterized for operation from 0°C to 70°C.



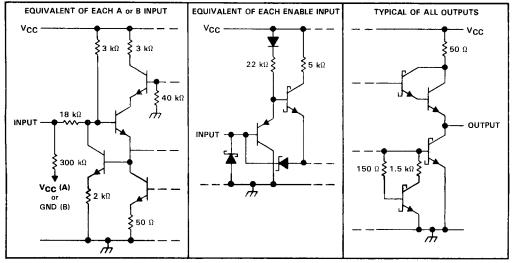

logic symbol[†]

 $^\dagger \text{This}$ symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

Copyright © 1986, Texas Instruments Incorporated

PROBUCTION INA'A documents contain information current as of , ibication dato. Products confarm to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.



FUNCTION TABLE (EACH RECEIVER)

DIFFERENTIAL	ENA	BLES	OUTPUT		
A-B	G	G	Í Y		
V _{ID} ≥ 0.3 V	н	x	н		
VID ≥ 0.3 V	х	L	н		
-0.3 V < V _{ID} < 0.3 V	н	X	?		
-0.3 V < VID < 0.3 V	х	L	7		
V _{ID} ≤ -0.3 V	Н	Х	L		
VID 5 -0.3 V	Х	L	L		
x	L	н	z		

- H = high level
- L = low level
- X = irrelevant
- ? = indeterminate
- Z = high-impedance (off)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage, A or B inputs, VI
Differential input voltage (see Note 2) ±15 V
Enable input voltage
Low-level output current
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.

2. Differential-input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE $T_A \leq 25 °C$ DERATING $T_A = 70 \,^{\circ}C$ PACKAGE POWER RATING POWER RATING FACTOR 7.6 mW/°C D 950 mW 608 mW 9.2 mW/°C 736 mW Ν 1150 mW

recommended operating conditions

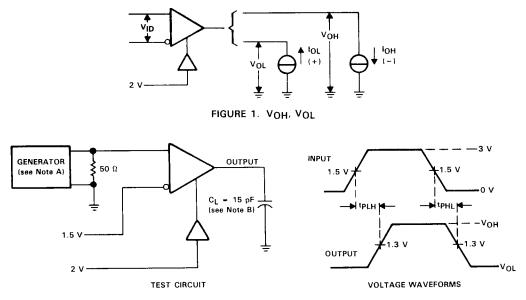
	MIN NOM	MAX	UNIT
Supply voltage, VCC	4.75 5	5.25	V
Common-mode input voltage, Vic		±7	V
Differential input voltage, VID		±12	V
High-level input voltage, VIH	2		V
Low-level input voltage, VIL		0.8	V
High-level output current, IOH		- 400	μΑ
Low-level output current, IOL	······································	16	mA
Operating free-air temperature, TA	0	70	°C

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP [†]	MAX	UNIT	
V _{T+}	Positive-going threshold voltage					300	mV	
VT-	Negative-going threshold voltage			- 300‡			mV	
V _{hys}	Hysteresis §		,		120		mV	
VIK	Enable-input clamp voltage	Ij = -18 mA				-1.5	V	
Vон	High-level output voltage	$V_{ID} = 300 \text{ mV},$	I _{OH} = -400 μA	2.7	3.6		v	
Va	Low-level output voltage	$V_{ID} = -300 mV$	IOL = 8 mA			0.45	v	
VOL	Low-level buildt voltage	VID = -300 mV	$I_{OL} = 16 \text{ mA}$				v	
		$V_{1L} = 0.8 V_{2}$	$V_{ID} = -3 V,$			20		
loz	High-impedance state output current	V ₀ = 2.7 V				20	μA	
νΟΖ	righ-impedance state output content	$V_{\rm HL} = 0.8 V_{\rm c}$	$V_{10} = 3 V$,			- 20	μ-	
		$V_0 = 0.5 V$						
կ	Line input current	Other input at 0 V,	V _I = 15 V		0.7	1.2	mA	
"		See Note 3	$V_{j} = -15 V$		- 1.0	- 1.7		
hн	High-level enable-input current		$V_{IH} = 2.7 V$			20	μA	
чн	Tight-level anable-super current		V _{IH} = 5.25 V			100	μn	
ήL	Low-level enable-input current	$V_{ L} = 0.4 V$				- 100	μA	
	Input resistance			12	18		kΩ	
100	Short-circuit output current	$V_{ID} = 3 V$,	V ₀ = 0,	- 15	_ 79	- 130	mA	
los	Short-circuit output current	See Note 4	lote 4		- 78	- 130		
lcc	Supply current	Outputs disabled			22	35	mA	

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

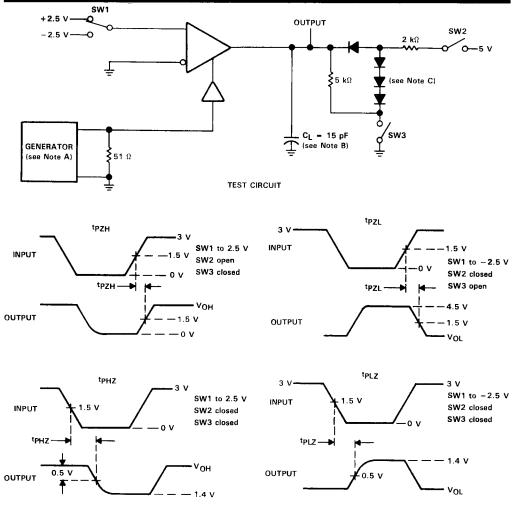
⁺ The algebraic convention, in which the less positive limit is designated minimum, is used in this data sheet for threshold voltage levels only. [§] Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_{T-}. NOTES: 3. Refer to CCITT Recommendations V.10 and V.11 for exact conditions.


4. Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

PARAMETER		TEST CONDITIONS		MIN	түр	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = 0 V$ to 3 V,	C _L = 15 pF,		15	22	ns
TPHL	Propagation delay time, high-to-low-level output	See Figure 2			15	22	ns
^t PZH	Output enable time to high level	$C_1 = 15 pF_2$	See Figure 3		13	25	
^t PZL	Output enable time to low level	CL = 15 pr,	See Figure S		11	25	ns
^t PHZ	Output disable time from high level	$C_{1} = 15 pF_{2}$	Can Figure 2		13	25	
^t PLZ	Output disable time from low level	υ <u>μ</u> – το με,	See Figure 3		15	22	ns

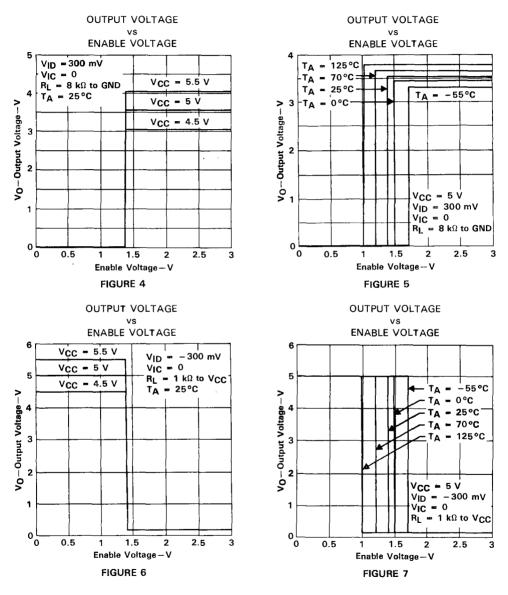
PARAMETER MEASUREMENT INFORMATION



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 Ω, t_f \leq 6 ns, t_f \leq 6 ns.

B. CL includes probe and jig capacitance.

FIGURE 2. PROPAGATION DELAY TIMES



VOLTAGE WAVEFORMS

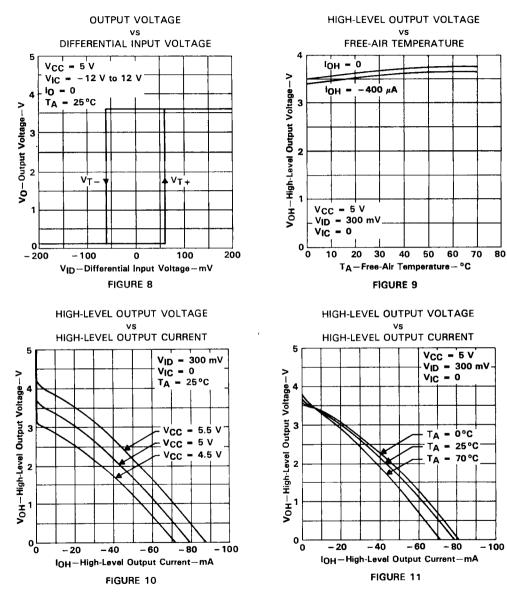
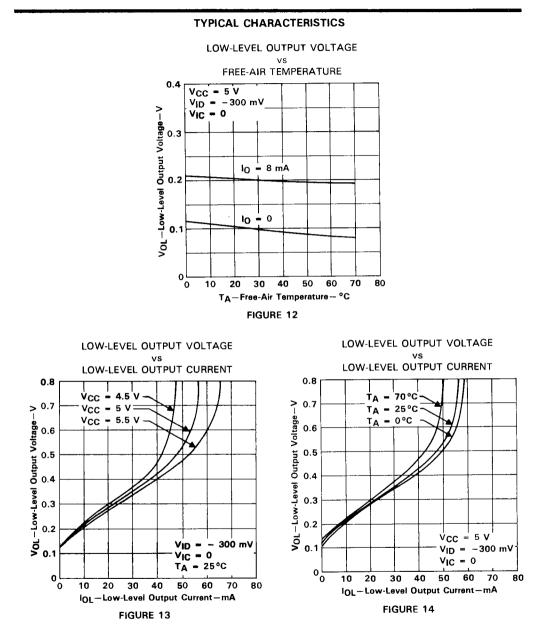
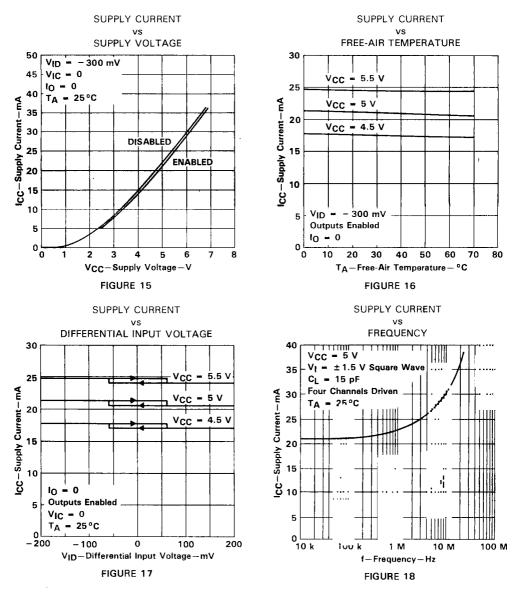
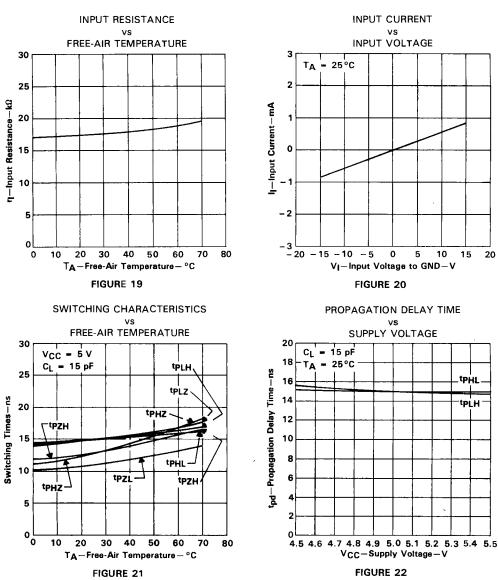
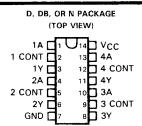

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} = 50 Ω, t_f \leq 6 ns, t_f \leq 6 ns.
 - B. CL includes probe and jig capacitance.
 - C. All diodes are 1N3064 or equivalent.

FIGURE 3. ENABLE AND DISABLE TIMES

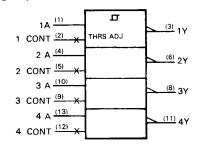






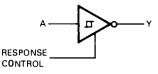

D3144, OCTOBER 1988-REVISED JULY 1990

- Meets Standard EIA-232-D (Revision of RS-232-C)
- Low Supply Current . . . 420 μA Typ
- Preset On-Chip Input Noise Filter
- Built-in Input Hysteresis
- Response and Threshold Control Inputs
- Push-Pull Outputs
- ESD Protection Exceeds 1000 V Per MIL-STD-883C, Method 3015
- Functionally Interchangeable and Pin Compatible with Texas Instruments SN75189/SN75189A, Motorola MC1489/MC489A, and National Semiconductor DS14C88A


description

The SN65C189, SN65C189A, SN75C189, and SN75C189A are low-power bipolar quadruple line receivers that are used to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices have been designed to conform with Standard ANSI/EIA-232-D-1986, which supersedes RS-232-C.

The SN65C189 and SN75C189 have a 0.25 V typical hysteresis compared with 1 V for the SN65C189A and SN75C189A. Each receiver has provision for adjustment of the overall input threshold levels. This is achieved by choosing external series resistors and voltages to provide bias levels for the response control pins. The output is in the high logic state if the input is left open circuited or shorted to ground.

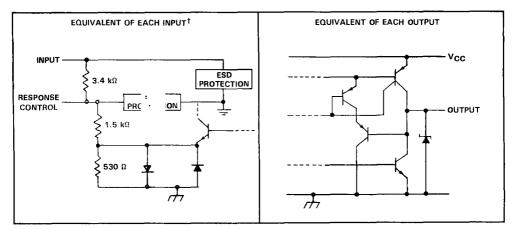


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (each receiver)

These devices have an on-chip filter that rejects input pulses of shorter than $1-\mu s$ minimum duration. An external capacitor may be connected from the control pins to ground to provide further input noise filtering for each receiver.


The SN65C189, SN75C189, SN65C189A, and SN75C189A have been designed using low-power techniques in a bipolar technology. In most applications, these receivers will interface to single inputs of peripheral devices such as UARTs, ACEs, or microprocessors. By using sampling, such peripheral devices are usually insensitive to the transition times of the input signals. If this is not the case, or for other uses, it is recommended that the SN65C189, SN75C189, SN65C189A, and SN75C189A outputs be buffered by single Schmitt input gates or single gates of the HCMOS, ALS or 74F logic families.

The SN65C189 and SN65C189A are characterized for operation from -40 °C to 85 °C. The SN75C189 and SN75C189A are characterized for operation from 0 °C to 70 °C.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematic of inputs and outputs

[†]All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage range
Output voltage range -0.3 V to V _{CC} + 0.3 V
Continuous total dissipation
Operating free-air temperature range: SN65C189, SN65C189A40°C to 85°C
SN75C189, SN75C189A
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	TA = 85°C POWER RATING
0	950 mW	7.6 mW/°C	494 mW
DB	525 mW	4.2 mW/ °C	273 mW
N	1150 mW	9.2 mW/°C	598 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	6	v
Input voltage, V ₁ (see Note 2)	- 25		25	v
High-level output current, IOH				mA
Low-level output current, IOL			3.2	mΑ
Response control current			±1	mA
. iC189, iC189A	- 40		85	°C
Operating free-air temperature, TA	0		70	-C

NOTE 2: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if -10 V is a maximum, the typical value is a more negative voltage.

electrical characteristics over recommended free-air temperature range, V_{CC} = 5 V ± 10% (unless otherwise noted) (See Note 3)

	PARAMETE	RS	TEST CON	DITIONS	MIN	TYPT	MAX	UNIT
	Positive-going	SN75C189	Dee Figure 1		1		1.5	v
v _{T +}	threshold level	SN75C ···	See Figure 1		1.6		2.25	v
	Negative-going	SN75C ·	See Figure 1		0.75		1.25	v
V _T –	threshold level	SN750	See Figure 1		0.75	1	1.25	v
		SN75(-	0.15		0.33		v	
V _{hγs}	 Input hysteresis 	SN75C189A	See Figure 1		0.65	0.97		v
			$V_{CC} = 4.5 V \text{ to } 6 V,$	$= 4.5 V \text{ to } 6 V$, $V_{\parallel} = 0.75 V$, $O_{\parallel} = 0.75 V$				
∨он	High-level output voltage		$I_{OH} = -20 \ \mu A$		3.5			v
			$V_{l} = 0.75 V_{r}$	ioH = ~3.2 mA	2.5			
Val	Low-level output ve		$V_{CC} = 4.5 V \text{ to } 6 V$,	VI = 3 V,			0.4	v
VOL	LOW-level output vi	Jitage	$I_{OL} = 3.2 \text{ mA}$				0.4	v
1	High-level input current		V ₁ = 25 V		3.6		8.3	mA
ЧH	Fign-level input cu	rent	See Figure 2 VI = 3 V 0.43		.43			
1	l ave level (anut ave		See Figure 2 $V_1 = -25 V_1 = -3.6$			-8.3		
կլ	Low-level input cur	rent	See Figure 2	$V_{1} = -3 V$	-6.40		- 1	mA
los	Short-circuit output	t current	See Figure 3				- 35	mA
^l cc	Supply current		V _I = 5 V, No load, See	Figure 2		420	700	μA

 $^\dagger All$ typical values are at T_A = 25 °C. NOTE 3: All characteristics are measured with response control terminal open.

switching characteristics at TA = $25 \,^{\circ}$ C, VCC = $5 \,^{\circ}$ V $\pm 10 \%$

	PARAMETERS	TEST CO	NDITIONS	MIN	TYP MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output	C _L = 50 pF,	See Figure 4		6	μs
tPHL	Propagation delay time high-to-low-level output	$C_L = 50 \text{ pF},$	See Figure 4		6	μs
^t TLH	Transition time, high-to-low-level output [‡]	C _L = 50 pF,	See Figure 4		500	ns
t THL	Transition time, high-to-low-level output [‡]	C _L = 50 pF,	See Figure 4		300	ns
t _{w(N)}	Duration of longest pulse rejected as noise	C _L = 50 pF,	See Figure 4	1	6	μs

[‡]Measured between 10% and 90% points of output waveform.

[§]The intent of this specification is that any input pulse of less than 1 µs will have no effect on the output, and any pulse duration of greater than 6 µs will cause the output to change state twice. Reaction to a pulse duration between 1 µs and 6 µs is uncertain.

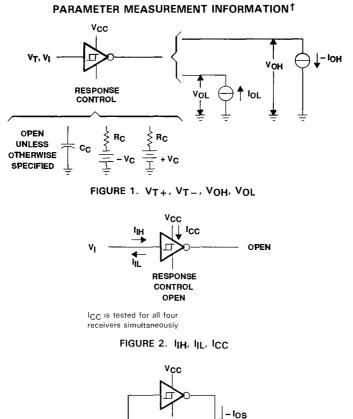
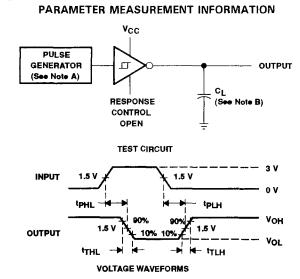
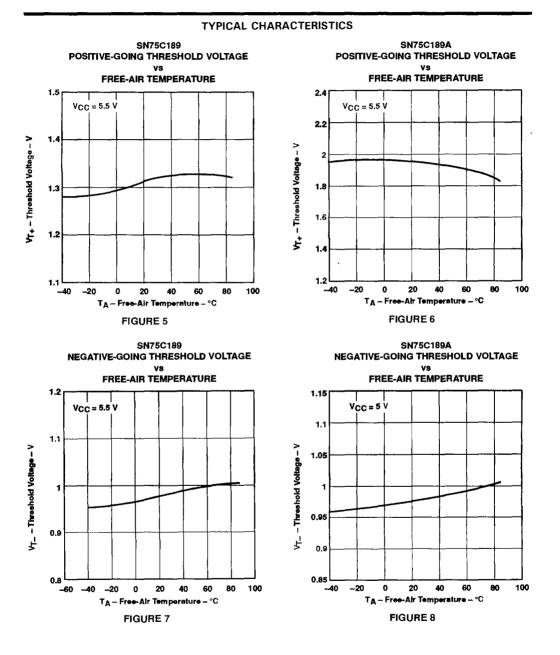



FIGURE 3. IOS

[†]Arrows indicate actual direction of current flow. Current into a terminal is a positive value.



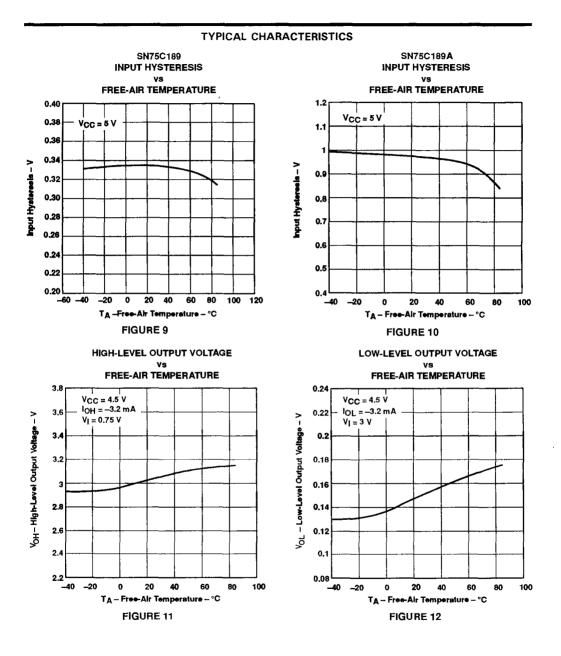
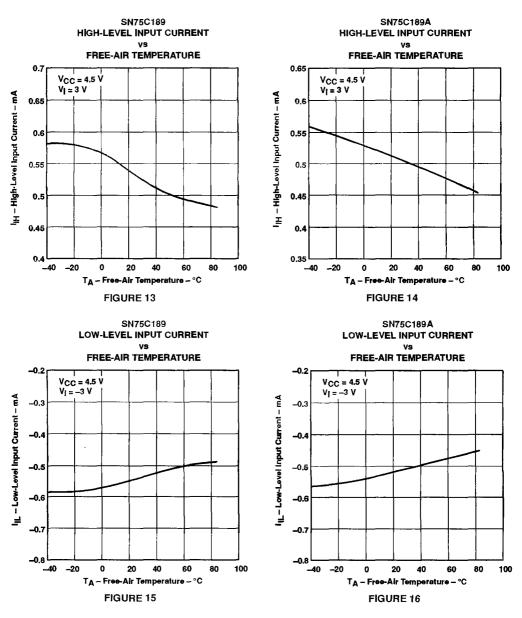
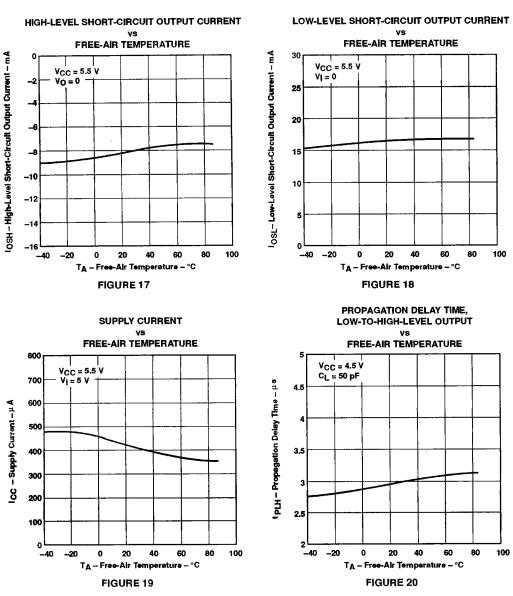
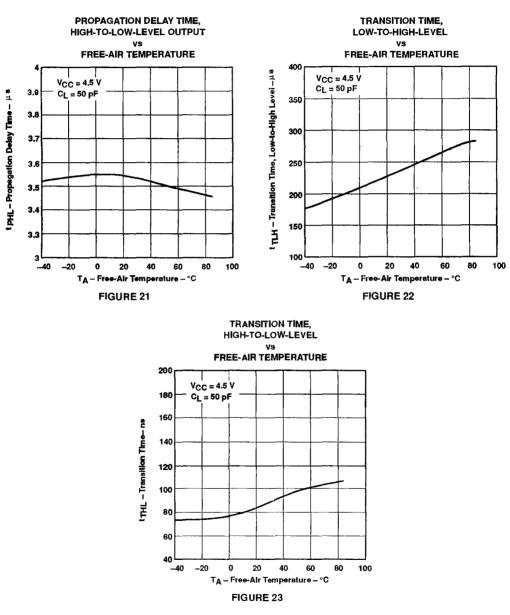

NOTES: A. The pulse generator has the following characteristics: Z₀ = 50 Ω , t_w = 25 μ s. B. C_L includes probe and jig capacitances.

FIGURE 4. SWITCHING TIMES







TYPICAL CHARACTERISTICS

TH XAS W INSTRUMENTS PDST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN65C198, SN75C198 QUADRUPLE LOW-POWER LINE DRIVER

D3472, JULY 1990

- Meets EIA-232-D (Revision of RS-232-C)
- Very Low Supply Current . . . 115 μA Typ
- Sleep Mode: 3-State Outputs in High-Impedance State Ultra Low Supply Current . . . 17 μΑ Τγρ
- Improved Functional Replacement for: SN75188 Motorola MC1488 National Semiconductor DS14C88 and DS1488
- CMOS- and TTL-Compatible Data Inputs
- On-Chip Slew-Rate Limit . . . 30 V/μs
- Output Current Limit . . . 10 mA Typ
- Wide Supply Voltage Range . . . ± 4.5 V to ± 15 V
- ESD-Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015.2

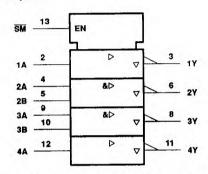
description

The SN65C198 and SN75C198 are monolithic low-power BI-MOS quadruple line drivers designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE) in conformance with the specifications of ANSI/EIA-232-D-1986.

The Sleep Mode input SM can be used to switch the outputs to high impedance, which avoids the transmission of corrupted data during power up and allows significant system power savings during data-off periods.

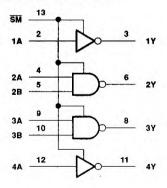
The SN65C198 is characterized for operation from -40 °C to 85 °C. The SN75C198 is characterized for operation from 0 °C to 70 °C.

FUNCTION	TABLE
1 One Children	TADLL


INPUTS			OUTPUT
SM	Α	В	Y
н	н	н	L
н	L	х	н
н	х	L	н
L	х	х	Z

H = high level, L = low level, X = irrelevant,

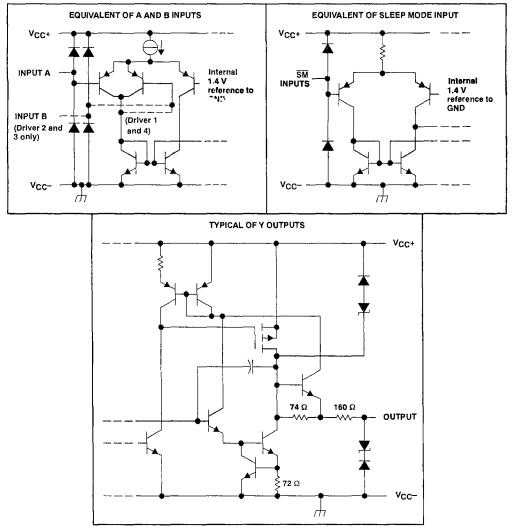
Z = high-impedance


D. DB. OB N PACKAGE (TOP VIEW) 714 VCC+ Vcc-Π1 1A C 2 13 T SM 1Y T 3 12 4A 2A 14 111 4Y 2B 15 10 3B Ħ 2Y 16 9 3A GND [3Y 7 8

logic symbol[†]

 $^\dagger \text{This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.$

logic diagram (positive logic)



Copyright © 1990, Texas Instruments Incorporated

SN65C198, SN75C198 QUADRUPLE LOW-POWER LINE DRIVER

schematics of inputs and outputs

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} + (see Note 1) 15 V
Supply voltage, VCC
Input voltage range
Output voltage range VCC6 V to VCC + + 6 V
Continuous total power dissipation
Operating free-air temperature range: SN65C19840°C to 85°C
SN75C198
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	494 mW
DB	525 mW	4.2 mW/°C	273 mW
N	1150 mW	9.2 mW/°C	598 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC +}		4.5	12	15	, , , , , , , , , , , , , , , , , , ,
Supply voltage, V _{CC} -		-4.5	-12	- 15	. V
Input voitage, VI (see Note 2)		V _{CC} - + 2		V _{CC+}	V
High-level input voltage, VIH		2			V
t un invel in eutraliane Mu	A and B inputs			0.8	
Low-level input voltage, VIL	SM input				v
Operating free-air temperature	- C198	-40		80	۰C
	'A	0		70	۰.

NOTE 2: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if -10 V is a maximum, the typical value is a more negative voltage.

electrical characteristics over recommended free-air temperature range, $V_{CC\pm} = \pm 12 V$, \overline{SM} at 2 V (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONS	MIN	TYPT	МАХ	UNIT
∨он	High-level output voltage	$V_{\rm IL} = 0.8 \rm V,$	$V_{CC\pm} = \pm 5 V$	4			v
		$\frac{R_{L} = 3 K\Omega}{V_{ H } = 2 V,}$	$\frac{V_{CC\pm} = \pm 12 \text{ V}}{V_{CC\pm} = \pm 5 \text{ V}}$	10		-4	v
Vol	Low-level output voltage (see Note 2)	$R_{L} = 3 k\Omega$	$V_{CC\pm} = \pm 12V$			- 10	v
lΗ	High-level input current	Vi = 5 V				10	μA
կլ	Low-level input current	V _I = O				- 10	μA
			$V_0 = 12 V,$ $V_{CC \pm} = \pm 12 V$			100	
loz	High-impedance state output current	SM at 0.6 ∨	$V_0 = -12 V,$ $V_{CC \pm} = \pm 12 V$			- 100	μΑ
losh	High-level short-circuit output current [‡]	V ₁ = 0.8 V,	$V_0 = 0 \text{ or } V_{CC-}$	-4.5	- 10	- 19.5	mA
IOSL	Low-level short-circuit output current [‡]	$V_1 = 2 V$,	$V_0 = 0 \text{ or } V_{CC+}$	45	10	19.5	mA
ro	Output resistance with power off	$V_{CC\pm} = 0,$	$V_0 = -2 \vee to 2 \vee$	•			Ω
		A and B inputs at 0.8 V	$V_{CC\pm} = \pm 5 V$	_	90	160	
1	Supply current from VCC+	or 2 V, no load	$V_{CC\pm} = \pm 12 V$		95	160	μA
VCC +	Supply current nom VCC+	A and B inputs at 0.8 V or	$V_{CC\pm} = \pm 5 V$		17	40	μΑ
		2 V, $R_L = 3 k\Omega$, \overline{SM} at 0.6 V	$V_{CC\pm} = \pm 12 V$		17	40	
		A and B inputs at 0.8 V	$V_{CC\pm} = \pm 5 V$		- 90	<u>- · 1</u>	
10.0	Supply ourset from Vee	or 2 V, no load	$V_{CC\pm} = \pm 12 V$		- 95		1.
·CC ~	Supply current from VCC-	A and B inputs at 0.8 V or	$V_{CC\pm} = \pm 5 V$		- 17	-40	μA
		2 ∨, R _L = 3 kΩ, SM at 0.6 ∨	$V_{CC\pm} = \pm 12 V$		-17	- 40	

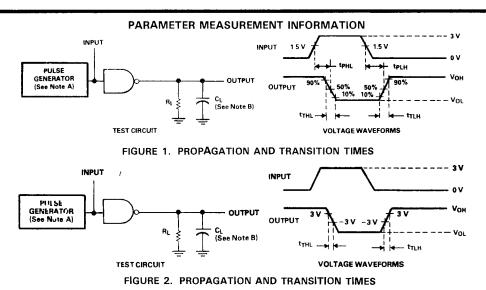
[†]All typical values are at $T_A = 25 \,^{\circ}C$.

[‡]Not more than one output should be shorted at a time.

NOTE 2: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only, e.g., if - 10 V is a maximum, the typical value is a more negative voltage.

switching characteristics over recommended operating free-air temperature range, $V_{CC\pm} = \pm 12 V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYPT	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output§					3	μS
tphl.	Propagation delay time, high-to-low-level output [§]	$R_L = 3 k\Omega$ to $7 k\Omega$,	$C_{L} = 15 pF,$			3.5	μs
^t TLH	Transition time, low-to-high-level output	See Figure 1		0.53	1	3.2	μS
^t THL	Transition time, high-to-low-level output			0.53	1	3.2	μS
t TLH	Transition time, low-to-high-level output#	$R_L = 3 k\Omega \text{ to } 7 k\Omega$,	$C_{L} = 2500 \text{ pF},$		1.5		μs
^t THL	Transition time, high-to-low-level output#	See Figure 2			1.5		μS
tpzh	Output enable time to high level	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 15 pF,			50	μs
^t PHZ	Output disable time from high level	See Figure 3				10	μS
tpZL	Output enable time to low level	$R_L = 3 k\Omega \text{ to } 7 k\Omega$,	$C_{L} = 15 pF$,			15	μS
tplz	Output disable time from low level	See Figure 4				10	μs
SR	Output slaw rate#	$R_L = 3 k\Omega \text{ to } 7 k\Omega$,	CL = 15 pF	6	15	30	V/µs

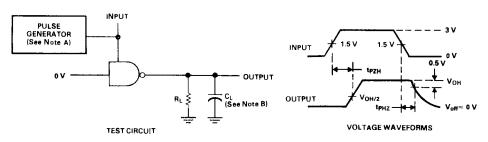
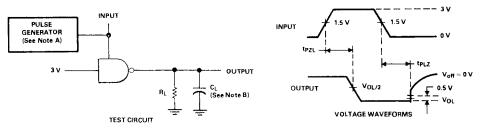

[†]All typical values are at $T_A = 25$ °C.

 ${}^{\$}$ tpHL and tpLH include the additional time due to on-chip slew rate and are measured at the 50% points.

Measured between 10% and 90% points of output waveform.

#Measured between 3-V and -3-V points of output waveform.

NOTE: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu s$, PRR = 20 kHz, $Z_0 = 50 \ \Omega$, $t_r = t_f \le 50 \ ns$. B. CL includes probe and jig capacitance.

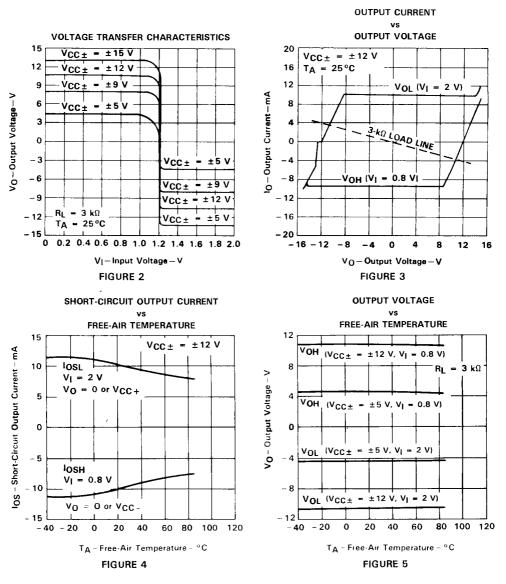
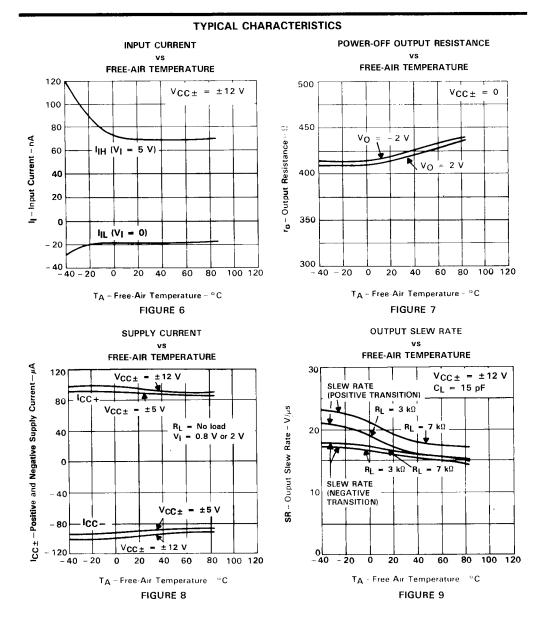
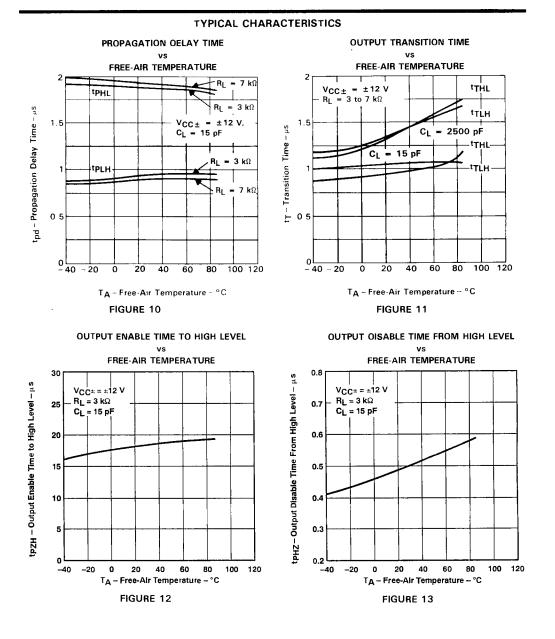
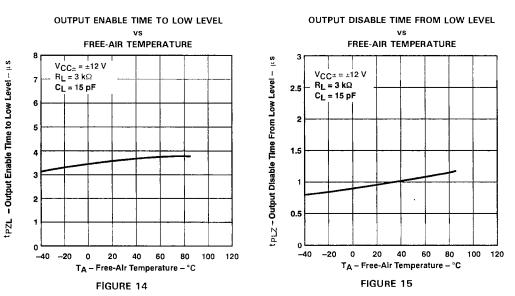

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES

FIGURE 4. DRIVER ENABLE AND DISABLE TIMES

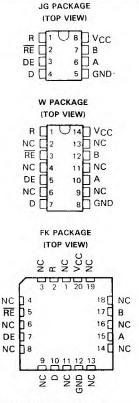

NOTE: A. The pulse generator has the following characteristics: $t_W = 25 \ \mu s$, PRR = 20 kHz, $Z_0 = 50 \ \Omega$, $t_f = t_f \le 50 \ ns$. B. C_L includes probe and jig capacitance.



TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS


D3272, MARCH 1989

- Bidirectional Transceiver
- Suitable for Most EIA Standards RS-422-A and RS-485 Applications
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability . . . ± 60 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Sensitivity . . . ± 200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operates from Single 5-V Supply
- Low Power Requirements

description

The SN95176B differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. These transceivers are suitable for most RS-422-A and RS-485 applications to the extent of the specified data sheet characteristics and operating conditions.

The SN95176B combines a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or V_{CC} = 0. These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

NC-No internal connection

FUNCTION TABLE (DRIVER)

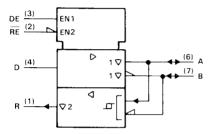
INPUT	ENABLE	OUTPUTS	
D	DE	A	B
н	н	н	L
L	н	L	н
х	L.	z	z

FUNCTION TABLE (RECEIVER)

DIFFERENTIAL INPUTS A B	ENABLE RE	OUTPUT R
VID≥0.2 V	L	Н
-0.2 V <vid<0.2 td="" v<=""><td>L</td><td>?</td></vid<0.2>	L	?
$V_{ID} \leq -0.2 V$	L	L
X	н.	z

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

PRODUCTION IIA1.3 documents contain information current as of istii: atlion dats. Products conform to specifications per the terms of Texas is strictures standard warranty. Production processing is so not necessarily include testing of all parare iters

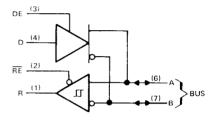


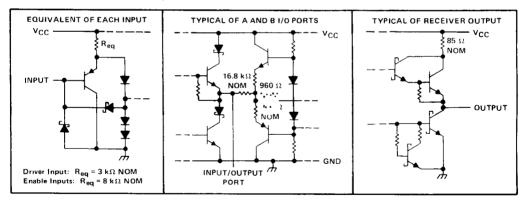
description (continued)

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positiveand negative-current limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150 °C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The SN95176B is characterized for operation from -40°C to 110°C.

logic symbol[†]




[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the JG package

schematics of inputs and outputs

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Voltage at any bus terminal 10 V to 15 V
Enable input voltage
Continuous total dissipation
Operating free-air temperature range
Storage temperature range
Case temperature for 60 seconds: FK package
Lead temperature 1,6 mm (1/16 inch) from the case for 60 seconds: JG or W package 300 °C

NOTE 1: All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	TA = 85°C PO∴LI: RATING	T _A = 110°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	mW	440 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	3 36 mW
w	1000 mW	8.0 mW/°C	640 mW	520 mW	320 mW

DISSIPATION RATING TABLE

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
				12	v
Voltage at any bus terminal (separately or con	nmon mode), vi or viC			- 7	v
High-level input voltage, VIH	D, DE, and RE	2			V
level input voltage, VIL	D, DE, and RE			0.8	v
·· rential input voltage, VID (see Note 2)			-	±12	V
	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μA
	Driver			60	mA
ow-level output current, IOL	Receiver			8	
Operating free-air temperature, TA		-40		110	°C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONE	DITIONS	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	lj = -18 mA				- 1.5	v
vo	Output voltage	I ₀ = 0		0		6	V
VOD1	Differential output voltage	I _O = 0		1.5		6	v
IMI		$R_{\rm L} = 100 \Omega,$	See Figure 1	2			V
VOD2	Differential output voltage	$R_{L} = 54 \Omega,$	See Figure 1	1.5	2.5	5	v
V _{OD3}	rential output voltage	See Note 3		1	4		V
∆ V _{OD} [differential output voltage [§]				-	±0.2	v
Voc	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3	V
∆ V _{OC}	Change in magnitude of common-mode output voltage [§]	-				±0.2	v
1		Outputs disabled,	V ₀ = 12 V			1	0
1 <mark>0</mark>	Output current	See Note 4	$V_0 = -7 V$			-0.8	mA
ін	High-level input current	VI = 2.4 V	·			20	μA
ΊL	Low-level input current	$V_{I} = 0.4 V$				- 400	μA
		$V_0 = -7 V$					
1	Shart size of automatic surgery	$V_0 = 0$				- ••••	mA
los	Short-circuit output current	$V_0 = V_{CC}$				250	IIIA
		$V_0 = 12 V$					
laa	Supply current (total package)	No load	Outputs enabled		42	- 75	mA
lcc	Supply current (total package)		Outputs disabled		26	35	

[†]The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡]All typical values are at V_{CC} = 5 V and T_A = 25 °C.

 $\frac{\delta}{\Delta}$ VOD and Δ VOC are the changes in magnitude of VOD and VOC respectively, that occur when the input is changed from a high level to a low level.

NOTES: 3. See EIA Standard RS-485 Figure 3.5, Test Termination Measurement 2.

4. This applies for both power on and off; refer to EIA Standerd RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

driver switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
tDD	Differential-output delay time		I-output delay time	erential-output delay time		15	22	ns
tTD.	Differential-output transition time	$R_{L} = 54 \Omega$,	See Figure 3		20	30	ns	
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4		85	120	ns	
^t PZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5		40	60	ns	
tPHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4		•	250	ns	
^t PLZ	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5		 ∠J	30	ns	

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
	Vo	Vo
VOD2	$V_t (R_L = 100 \Omega)$	$V_{t} (R_{L} = 54 \Omega)$
		V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	Vos
	$ V_{os} - \overline{V}_{os} $	V _{os} – ∇ _{os}
los	lisa], lisb	
10	Ixal, Ixb	l _{ia} , l _{ib}

SYMBOL EQUIVALENTS

RECEIVER SECTION

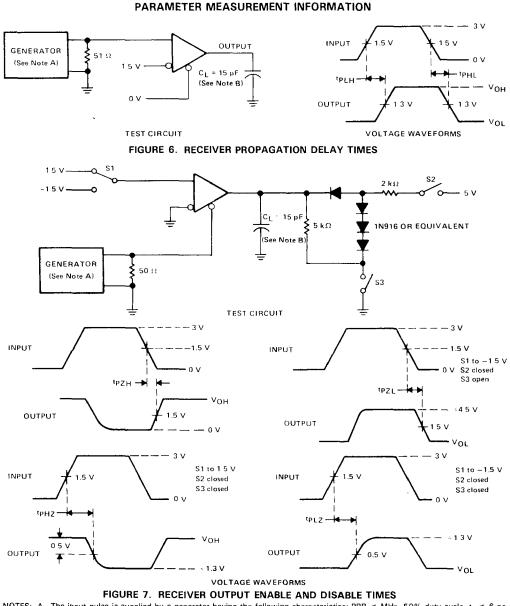
receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST COND	DITIONS	MIN	TYP [†]	MAX	UNIT
VTH	 rential-input high-threshold voltage 	$V_0 = 2.7 V_{,}$	$l_0 = -0.4 \text{ mA}$			0.2	V
VTL	 rential-input low-threshold voltage 	$V_0 = 0.5 V_{,}$	lo = 8 mA	-0.2 [‡]			V
Vhys	Hysteresis [§]				50		m۷
ViK	Enable-input clamp voltage	lj = -18 mA				-1.5	V
Vон	High-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	$i_{OH} = -400 \ \mu A$,	2.7			v
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$ See Figure 2	$i_{OL} = 8 \text{ mA},$			0.45	v
loz	High-impedance-state output current	$V_0 = 0.4$ V to 2.4 V				± 20	μA
,		Other input = 0 V,	V ₁ = 12 V			1	0
iş	Line input current	See Note 5	$V_{I} = -7 V$			-0.8	mA
ін	High-level enable-input current	V _{IH} = 2.7 V				20	μA
ΙL	Low-level enable-input current	$V_{IL} = 0.4 V$				- 100	μA
r _i	Input resistance	V _I = 12 V		12			kΩ
los	Short-circuit output current			- 15		-85	mA
			Outputs enabled		42	70	0
lcc	Supply current (total package)	No load	Outputs disabled		26	35	mA

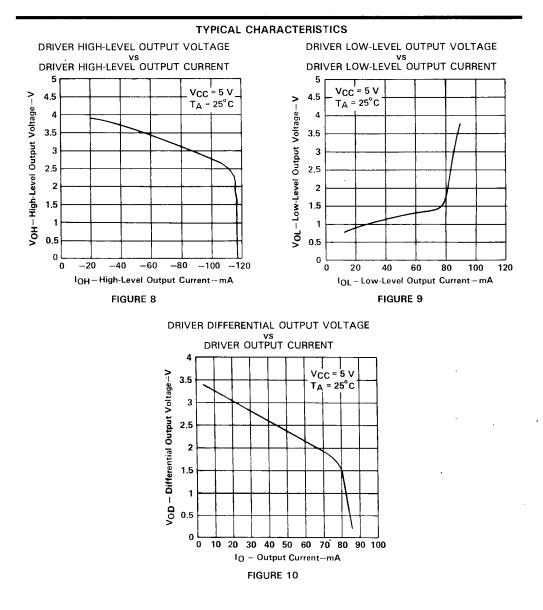
[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

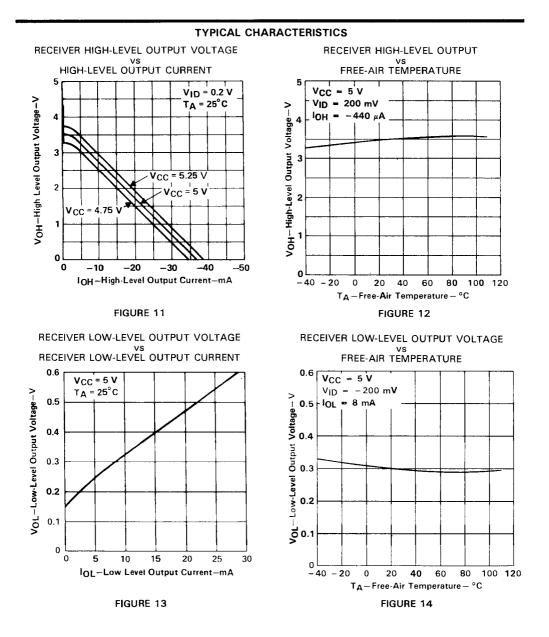
*The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for commonmode input voltage and threshold voltage levels only.

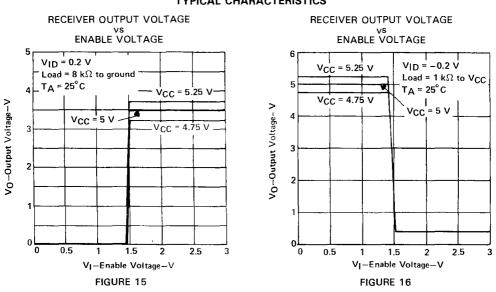
[§]Hysteresis is the difference between the positive-going input threshold voltage, V_{T+} , and the negative-going input threshold voltage, V_{T-} . See Figure 4.


NOTE 5: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

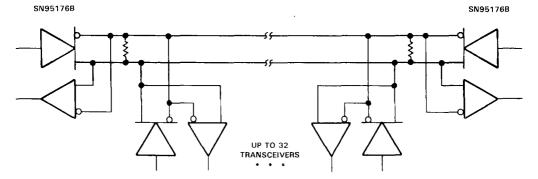
receiver switching characteristics, V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C


	PARAMETER	TEST CONDITIONS		MIN	түр	MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level output	$V_{ID} = 0$ to 3 V,			21	35	ns
^t PHL	Propagation delay time, high-to-low-level output	C _L = 15 pF,		23	35	ns	
tPZH	Output enable time to high level	C 15 -F	See Figure 7		10	20	ns
tPZL	Output enable time to low level	C _L = 15 pF,		12	20	ns	
TPHZ	Output disable time from high level	0 15 -5	C		20	35	ns
tPLZ	Output disable time from low level	C _L = 15 pF,	See Figure 7		17	25	ns


C. Equivalent test circuits may be substituted for actual testing.



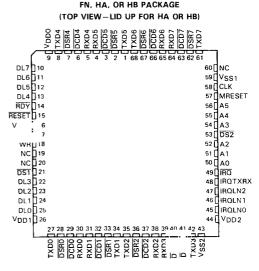
- B. CL includes probe and jig capacitance.
- C. Equivalent test circuits may be substituted for actual testing.



TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.


FIGURE 17. TYPICAL APPLICATION CIRCUIT

TCM78808 OCTAL ASYNCHRONOUS RECEIVER/TRANSMITTER

D2941, APRIL 1986-REVISED JULY 1990

- Eight Independent Full-Duplex Serial Data Lines
- Programmable Baud Rates Individually Selectable for the Transmitter/Receiver of Each Line (50 to 19,200 Baud)
- Summary Registers Allow a Single Read to Detect a Data Set Change or to Determine the Cause of an Interrupt on Any Line
- Triple Buffers for Each Receiver
- Device Scanner Mechanism Reports Interrupt Requests Due to Transmitter/Receiver Interrupts
- Independently Programmable Lines for Interrupt-Driven Operation
- Modem Status Change Detection for Data Set Ready (DSR) and Data Carrier Detect (DCD) Signals
- Programmable Interrupts for Modem Status Changes
- Synchronizes Critical Read-Only Registers
- Replaces Eight Signetics 2661 UARTs
- Direct Second Source to DEC DC349 (78808)

NC-No internal connection

PACKAGE DESIGNATIONS

DESCRIPTION	TI	DEC
Cerquad Gull-Wing	HA	GA
Cerquad Straight	HB	FA
Plastic PLCC	FN	

description

The TCM78808 octal asynchronous receiver/transmitter is designed for the new generations of asynchronous serial communications and for microcomputer systems. The device performs the basic operations necessary for simultaneous reception and transmission of asynchronous messages on eight independent lines.

On-chip baud rate generation allows the designer to select and program any one of 16 rates between 50 and 19,200 baud. Baud rates are selectable for each receiver and transmitter. A built-in scanning mechanism provides an alternative to the customary polling of status registers.

The TCM78808 functions as a serial-to-parallel, parallel-to-serial converter/controller. It can be programmed by a microprocessor to provide different characteristics for each of its eight serial data lines (stop bits, parity, character length, baud rates, etc.). Each individual serial line functions as a one-line UART-type device.

An integral interrupt scanner checks for device interrupt conditions on the eight lines of the TCM78808. Its scanning algorithm is designed to give priority to receivers over transmitters. The scanner can also be programmed to check for interrupts due to changes in modem control signals (DSR and DCD).

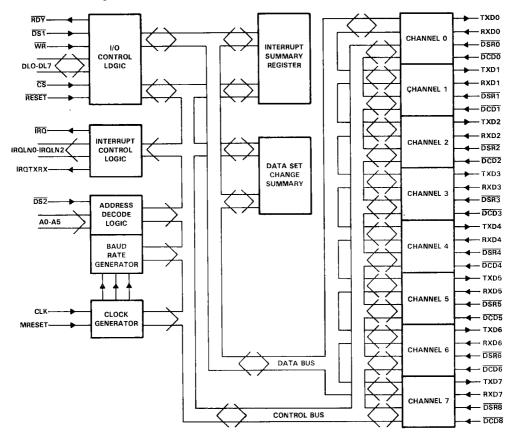
The TCM78808 contains two types of programmable registers: line specific and summary. The six linespecific registers provide independent control of each of the eight serial lines. Two summary registers consolidate information about the current state of all eight lines and allow programs to service device interrupts quickly and efficiently.

TCM78808 Octal Asynchronous Receiver/Transmitter

Each of the eight serial data lines in the TCM78808 has a set of line-specific registers for buffering data into and out of the line and for external control of line characteristics. The receiver buffer register comprises a character assembly register plus a two-entry, first-in first-out (FIFO) buffer. The transmitter holding register provides similar functions on the output side. Information about the current state of the given line is contained in the (read-only) status register. Two mode registers control communications parameters. One mode register handles stop bits, parity, character length, and modem control interrupt enable (MCIE). The second mode register sets the incoming and outgoing baud rates. The command register controls various other functions of the given line.

The TCM78808 has a pair of summary registers that provide the current status of all eight serial data lines. This makes it possible to determine that line status has changed with a single read operation. The (read-only) interrupt summary register indicates that an interrupt has occurred and contains both the line number that generated the interrupt and the corresponding direction of flow (transmitter or receiver). With both MCIEs set and receiver interrupt enabled, the interrupt summary register will \cdots and to changes in DSR or DCD. The data-set-change summary register monitors changes in 1 for $\overline{E}^{1} \rightarrow \infty n$ a line-by-line basis and indicates whether a modem status change has occurred on each data line subsequent to the last time the corresponding bit was cleared.

SIGNAL	DESCRIPTION
AO THRU A5	Address bits 0 through 5 select the internal registers in the 1
CLK	Clock input for timing
27	Chip Select. When low, activates the TCM78808 to receive and transmit data over data lines DL0 through DL7.
· ñ тнец DCD7	Data-Set Carrier Detect inputs monitor data-set carrier detect signals from modems.
DL0 :)L7	Data Lines 0 through 7 receive and transmit the parallel data.
DS1, US2	Data Strobes 1 and 2 receive timing information for data transfers. The DS1 and DS2 inputs must be connected together.
DSRC THRU DSR7	Data Set Ready inputs monitor data-set-ready signals from modems.
IRO	Interrupt Request output requests a processor interrupt.
10 THRU IROLN2	Interrupt Request Line number outputs indicate the line number of the originating interrupt request.
II · . ' KRX	Interrupt Request Transmit/Receive output indicates whether an interrupt request is for transmitting or receiving data.
T.	Manufacturing Reset. For manufacturing use
•E+	Ready output indicates when the TCM78808 is ready to participate in data-transfer cycles.
ल इन	Reset input initializes the internal logic.
n' i / RXD7	Receive Data inputs accept asynchronous bit-serial data input streams.
TXDO . TXD7	Transmit Data output provides asynchronous bit-serial data output streams.
VDD0 ····· VDD2	5-V nominal power supply
V _{SS0} 1 / V _{SS2}	Ground reference
WR	Write input specifies direction of data transfer on the DLO through DL7 lines.


The TCM78808 is characterized for operation from 0°C to 70°C.

TCM78808 Octal Asynchronous Receiver/Transmitter

functional block diagram

1

TCM78808 OCTAL ASYNCHRONOUS RECEIVER/TRANSMITTER

absolute maximum ratings over operating free-air temperature range

Supply voltage, VDD(see Note 1)
Input voltage, VI
Input current, Ij
Operating free-air temperature range
Storage temperature range: HA or HB package65°C to 150°C
FN package

NOTE 1: All voltage values are with respect to VSS1 and VSS2.

recommended operating conditions

	MIN	NOM	МАХ	UNIT
Supply voltage, VDD	4.75	5	5.25	V
High-level input voltage, VIH	2			v
Low-level input voltage, VIL			0.8	V
Operating free-air temperature, T _A	0		70	°C

electrical characteristics over recommended operating free-air temperature range, $V_{DD} = 5.25 V$ (unless otherwise noted)

	PARA	METER	TEST CONDITIONS	MIN	MAX	UNIT
VOH High-level output voltage		ut voltage	$V_{DD} = 4.75 \text{ V},$ I_{OH} for DL0 thru DL7 = -3.5 mA, I_{OH} for all other (except \overline{IRO} and \overline{RDY}) = -2 mA	2.4		v
V _{OL} Low-level output voltage		ut voltage	$V_{DD} = 4.75 V,$ I_{OL} for DL0 thru DL7 = 5.5 mA, I_{OL} for all other = 3.5 mA		0.4	v
ЧH	H High-level input current		$V_{l} = 5.25 V$		10	μA
կլ	Low-level input current		V ₁ = 0		- 10	μA
	Short-circuit output current	DLO-DL7	her outputs $V_{DD} = 5.25 V$	- 50	- 180	
los†		All other outputs except IRQ and RDY		- 30	- 110	mA
lozн‡	Off-state output current, high-level voltage applied		V ₀ = 2.4 V		- 10	μA
^I OZL [‡]	Off-state outpu low-level voltag		V ₀ = 0.4 V		10	μA
IDD	Supply current		$V_{DD} = 5 V$, $T_A = 25 °C$		200	mA
Ci	Input capacitance				4	рF
^و Cio	Input/output ca	pacitance			5	рF

[†]Not more than one output should be short circuited at a time, and the duration of the short should not exceed 1 second.

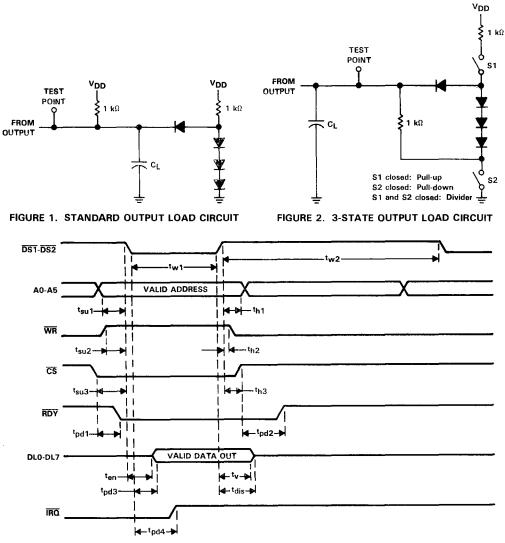
[‡] All 3-state output drivers are wired in an I/O configuration. The parameters include the driver and receiver input currents. [§] This parameter includes the capacitive loads of the output driver and the receiver input.

bus read and write timing requirements (see Figures 3 and 4)

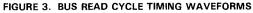
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
tw1	Pulse duration, DS1 · . low	WR high	0.18	10	μs
tw2	Pulse duration, DS1 . high		450		ns
t _{w3}	Pulse duration, DS1 . low	WR low	0.13	10	μs
t _{su1}	Setup time, A5-A0 valid before DS1 and . ow		30	·	ns
t _{su2}	Setup time, igh before DS1 anc . ow		30		ns
t _{su} 3	Setup time, US low before DS1 and US2 low		30		ns
t _{su} 4	Setup time, DL7-DL0 valid t · DS1 DS2 low		130		ns
t _{h1}	Hold time, A5-A0 valid after and high		10		ns
^t h2	Hold time, WR high or low after DS1 and . high		10		ns
th3	Hold time, CS low after DS1 and DS2 high		10		ns
t _{h4}	Hold time, DL7-DL0 valid after • and DS2 high		30		ns
t _v	Valid time, DL7-DL0 after DS1 and DS2 high		0		ns

write switching characteristics (see Figures 3 and 4)

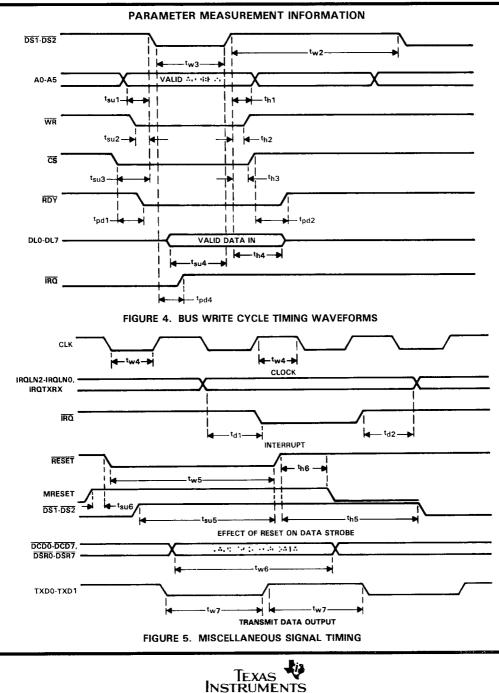
	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
t _{en}	Enable time	CL = 150 pF	165	ns
		CL = JU pF	50	
^t dis ·	Disable time	C _L = 100 pF	60	ns
		$C_L = 150 \text{ pF}$	65	
^t pd1	Propagation dalay time, from CS low to RDY low	C _L = 50 pF	90	ns
tpd2 [†]	Propagation delay time, from CS high to RDY high	C _L = 50 pF	210	ns
t _{pd3}	Propagation delay time, from DS1 and DS2 low to DL7-DL0 valid	C _L = 150 pF	165	ns
t _{pd4} †	Propagation delay time, from DS1 and DS2 low to IRQ high	$C_{L} = 50 \text{ pF}$	635	ns


[†]Total rise time is dependent upon internal delay plus the pull-up delay introduced by the external resistor being used. Parameter t_{pd2} is calculated from $t_{pd2} = 75 \text{ ns} + R_{CL}$, and t_{pd4} is calculated from $t_{pd4} = 500 \text{ ns} + R_{CL}$ where R = value of the resistor that connects to C_L in Figure 1.

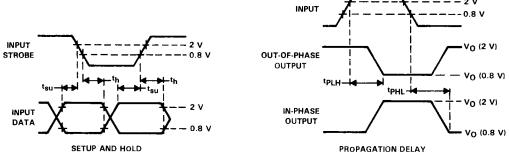
write timing requirements (see Figure 5)


	TEST CONDITIONS	MIN	MAX	UNIT
fclock Clock frequency		4.9152		MHz
tw4 Pulse duration, clock high or low		95		ns
tw5 Pulse duration, 'i low		1		μS
tw6 Pulse duration, i) and		1		μs
tw7 Pulse duration TXD7-TXD0 high or row		250		ns
t _{SU5} Setup time, DS2 high L R high		Τ· —		ns
tsu6 Setup time,		250		ns
th5 Hold time, DS, nigh JET high		1		μs
the Hold time, MRI ligh after Thigh		250		ns
t _{d1} I I RX to	$C_L = 50 pF$	±		ns
td2 11000 ushe, incluive 1 onu 1 X vanu after ince nigh	CL = 50 pF	Ţ• —		ns

TCM78808 Octal Asynchronous Receiver/Transmitter



PARAMETER MEASUREMENT INFORMATION


TCM78808 OCTAL ASYNCHRONOUS RECEIVER/TRANSMITTER

POST OFFICE BOX 655303 + DALLAS, TEXAS 75265

TCM78808 Octal Asynchronous Receiver/Transmitter

PARAMETER MEASUREMENT INFORMATION

NOTE tpd = tPLH or tPHL

FIGURE 6. VOLTAGE WAVEFORMS

PRINCIPLES OF OPERATION

electrical operation

data and address

data lines (DL7 through DL0)

These lines are used for the parallel transmission and reception of data between the CPU and the TCM78808. The receivers are activated by the data strobe $(\overline{DS1}, \overline{DS2}) \ s \cdots$.¹ The output drivers are active only when the chip select (\overline{CS}) signal is low (active), the data strobe \therefore 1 $\overline{DS2}$ signal goes low (active), and the write (\overline{WR}) signal is high (inactive). The drivers will become inactive (high impedance) within 50 ns when one or more of the following occurs: the chip select (\overline{CS}) signal goes high, the data strobe $(\overline{DS1}, \overline{DS2})$ goes high, or the write (\overline{VR}) signal goes low.

address lines (A5 through A0)

These lines select which internal register is accessible through the data I/O lines (DL7 through DL0) when the data strobe ($\overline{DS1}$, $\overline{DS2}$) and chip select (\overline{CS}) signals are low. Table 1 lists the addresses corresponding to each re : : . I. The receiver buffer and transmitter holding register for each line have the same address. When the ...I' signal is high, the address accesses the receiver buffer register. When \overline{WR} is low, it accesses the transmitter holding register.

TABLE 1. TCM78808 REGISTERS ADDRESS SELECTION

	A	DDRES	S LINE	†		READ/	
A5	Α4	A3	A2	A1	A0	WRITE	REGISTER
L	L	L	L	L	L	Read	Line 0 Receiver Buffer
L	L	L	L	Ł	L	Write	Line 0 Transmitter Holding
Ł	Ł	L	L	L	н	Read	Line O Status
L	Ł	L	L	н	L	Read/Write	Line 0 Mode Registers 1 and 2
L	L	L	Ł	н	н	Read/Write	Line 0 Command
L	L	н	L	L	L	Read	Line 1 Receiver Buffer
L	L	н	L	L	L	Write	Line 1 Transmitter Holding
L	L	н	L	L	н	Read	Line 1 Status
L	L	н	L	н	L	Read/Write	Line 1 Mode Registers 1 and 2
L	L	н	L	н	н	Read/Write	Line 1 Command
L	н	L	L	L	L	Read	Line 2 Receiver Buffer
L	н	L	L	L	L	Write	Line 2 Transmitter Holding
L	н	L	L	L	н	Read	Line 2 Status
L	н	L	L	н	Ł	Read/Write	Line 2 Mode Registers 1 and 2
L	н	L	L	н_	н	Read/Write	Line 2 Command
L	н	н	L	L	Ľ	Read	Line 3 Receiver Buffer
L	н	н	L	L	L	Write	Line 3 Transmitter Holding
L	н	н	L	L	н	Read	Line 3 Status
L	н	н	L	н	L	Read/Write	Line 3 Mode Registers 1 and 2
L	н	н	L	н	н	Read/Write	Line 3 Command
н	Ļ	L	L	L	L	Read	Line 4 Receiver Buffer
н	Ł	L	L	L	L	Write	Line 4 Transmitter Holding
н	L	L	L	L	н	Read	Line 4 Status
н	L	Ł	L	н	L	Read/Write	Line 4 Mode Registers 1 and 2
н	Ł	L	L	н	н	Read/Write	Line 4 Command
ГН	L	н	L	L	L	Read	Line 5 Receiver Buffer
н	L	н	L	L	L	Write	Line 5 Transmitter Holding
н	L	н	L	L	н	Read	Line 5 Status
н	L	н	Ł	н	L	Read/Write	Line 5 Mode Registers 1 and 2
н	L	н	<u> </u>	н	н	Read/Write	Line 5 Command
н	н	L	L	L	L	Read	Line 6 Receiver Buffer
н	н	L	Ł	L	Ł	Write	Line 6 Transmitter Holding
H	н	L	L	L	н	Read	Line 6 Status
н	н	L	L	н	L	Read/Write	Line 6 Mode Registers 1 and 2
н	н	L	L	н	н	Read/Write	Line 6 Command
Н	н	н	L	ι	L	Read	Line 7 Receiver Buffer
н	н	н	L	L	L	Write	Line 7 Transmitter Holding
н	н	н	L	L	н	Read	Line 7 Status
н	н	н	L	н	L	Read/Write	Line 7 Mode Registers 1 and 2
н	н	н	L	н	н	Read/Write	Line 7 Command
X	х	х	н	L	L	Read	Interrupt Summary
X	X	X	н	L	н	Read	Data Set Change Summary

 $^{\dagger}X = Either L or H$

bus transaction control

chip select (CS)

This signal, when low, permits data transfers through the DL7 through DL0 lines to or from the internal registers. Data transfer is controlled by the data strobe $(\overline{DS1}, \overline{DS2})$ signal and the write (\overline{WR}) signal.

data strobe (DS1, DS2)

The data strobe inputs (DS1 and DS2) must be connected together. This input receives timing information for data transfers. During a write cycle, the CPU activates the data strobe signal when valid output data is available and deactivates the data strobe signal before the data is removed. During a read cycle, the CPU activates the data strobe signal, and the TCM78808 transfers the valid data.

When the data strobe signal is high, the DL7 through DL0 lines are in a high-impedance state.

write (WR)

The write (\overline{WR}) signal specifies the direction of data transfer on the DL7 through DL0 pins by controlling the direction of their transceivers. If the \overline{WR} signal is low during a data transfer (with the \overline{CS} , $\overline{DS1}$, and $\overline{DS2}$ signals also low), the TCM78808 receives data from DL7 through DL0. If the \overline{WR} signal is high during a write data transfer, the TCM78808 drives data onto the DL7 through DL0 lines.

interrupt request (IRQ)

The IRQ output is an active-low, open-drain output. The integral interrupt scanner drives the IRQ signal low when it has detected an interrupt condition on one of the eight serial data lines.

interrupt request transmit/receive (IRQTxRx)

This signal indicates when the interrupt scanner stops and activates \overline{IRQ} because of a transmitter interrupt condition (IRQTrrR = H) or because of a receiver interrupt condition (IRQTrRx = L). The signal is valid only while the Irrsignal is low. The state of IRQTxRx signal also appears as bit 0 of the interrupt summary register.

interrupt request line number (IRQLN2 through IRQLN0)

These lines indicate the line number at which the TCM78808 interrupt scanner stopped and activated the interrupt request (IRQ) signal. The number on these lines is valid only while the IRQ signal is low. Line IRQLN2 is the high-order bit, and the IRQLN0 line is the low-order bit.

The state of these signals also appears as bits in the interrupt summary register: IRQLN2 as bit 3, IRQLN1 as bit 2, and IRQLN0 as bit 1. Table 2 shows the line numbers corresponding to settings of IRQLN2 through IRQLN0.

TABLE 2. TCM78808 INTERRUPT REQUEST LINE INDICATIONS

IRQLN2	IRQLN1	IRQLNO	INTERRUPT REQUEST LINE NUMBER		
L	L	L	0		
L L	Ł	н	1		
L L	н	L	2		
i.	н	н	3		
н	Ł	L	4		
н	L	н	5		
н	н	L	6		
н	н	н	7		

serial data

transmit data (TXD7 through TXD0)

These outputs transmit the asynchronous bit-serial data streams. They remain at a high level when no data is being transmitted and at a low level when the TxBRK bit in the command register of the associated line is set.

receive data (RXD7 through RXD0)

These lines accept asynchronous bit-serial data streams. The input signals must remain at the high level for at least one-half bit time before a high-to-low transition is recognized. A high-to-low transition is required to signal the beginning of a start bit and initiate data reception.

modem signals

data set ready (DSR7 through DSR0)

These eight inputs, one for each serial data line on the TCM78808, are typically connected via intervening level converters to the data set ready outputs of modems. A TTL low at a DSR pin cal the DSR bit (bit 7) in the status register of the corresponding line to be activated. A TTL high at a i pin causes the DSR bit in the status register of the corresponding line to be inactive. A change of this input from high to low or low to high causes the activation of the data set change (DSCHNG) bit that corresponds to this line in the data set change summary register. Changes from one level to the other and back again that occur within 1 μ s may not be detected.

carrier detect (DCD7 through DCD0)

These eight inputs, one for each serial data line of the TCM78808, are typically connected through intervening level \cdot enters to the received-line-signal-detect (also called carrier-detect) outputs of modems. A TTL low at a $\overline{I} \cdot \cdot \cdot$ input causes the DCD bit of the corresponding line status register to be deactivated. A change of this input from high to low or low to high causes the activation of the data-set-change (DSCHNG) bit that corresponds to this line in the data-set-change summary register. Changes from one level to the other and back again that occur within 1 μ s may not be detected.

general control signals

ready (RDY)

The $\overline{\text{RDY}}$ output is an open-drain output. Upon detecting a negative transition of $\overline{\text{CS}}$, the TCM78808 activates the $\overline{\text{RDY}}$ signal to indicate readiness to take part in data transfer cycles. The $\overline{\text{RDY}}$ signal deactivates on the trailing edge of $\overline{\text{CS}}$.

reset (RESET)

When the RESET input goes low, the TxD7 through TxD0 lines are low, and all internal status bits listed in the Architecture Summary paragraph are cleared.

manufacturing reset (MRESET)

This signal is for manufacturing use only. The input should be connected to ground for normal operation.

clock signals

clock input (CLK)

All baud rates and internal clocks are derived from this input. Normal operating frequency is 4.9152 MHz $\pm 0.1\%$, and duty cycle is 50 $\pm 5\%$.

architecture summary

line-specific registers

Each of the eight serial data lines has a set of registers for buffering data into and out of the line and for external control of the line characteristics. These registers are selected for access by setting the appropriate address on lines A5 through A0. Lines A5 through A3 select one of the eight data lines. Lines A2 through A0 select the specific register for that line. Refer to Table 1 for the register address assignments.

receiver buffer register

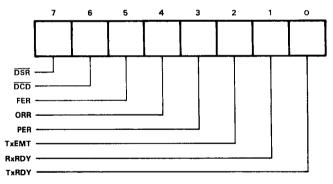
Each line receiver consists of a character-assembly register and a two-entry FIFO that is the receiver buffer register. When the RxEN bit in a line command register is set, received characters are moved automatically into the line receiver buffer as soon as they have been deserialized from the associated communications line. When there are characters in this FIFO, the RxRDY bit is set in the status register for the line.

The activation of the RxRDY signal for a line that already has the RxIE bit of its command register set causes the interrupt scanner logic to stop and generate an interrupt condition (the IRQ signal is low). When the receiver buffer is read, the interrupt condition is cleared (the IRQ signal is high), and the interrupt scanner resumes operation.

If there is another entry in a line FIFO, the RxRDY bit remains active. When the interrupt scanner reaction this line again, the activation of RxRDY causes the scanner to halt and generate another interrupt I = : goes low).

The RESET signal clears the RxEN bit and initializes the receiver logic. The RxRDY flag is cleared, and the receiver buffer register outputs become undefined. Any data in the FIFO at that time is lost.

transmitter holding register


Each line has a transmitter holding register that can be written to. When the TxEN bit in the line command register is set and the serialization logic becomes idle, characters are automatically moved from the output of this register into the transmitter serialization logic.

When this register is empty, the TxRDY bit in the line status register is set. If the transmitter interrupt enable (TxIE) bit in the line command register is also set, the interrupt scanner logic halts and generates an interrupt condition. If a character is then loaded into the register, the interrupt is cleared, and the scanner resumes operation.

The $\overline{\text{RESET}}$ signal also initializes the transmitter logic. The TxRDY flag is cleared, and the transmitter holding register contents are lost. The transmitter enable (TxEN) bit in the line command register: is also cleared by $\overline{\text{RESET}}$. Software clearing of TxEN alone produces results different from the full I... $\overline{\text{ET}}$ in that the transmitter holding register contents are not lost. They are transmitted when TxEN is set again.

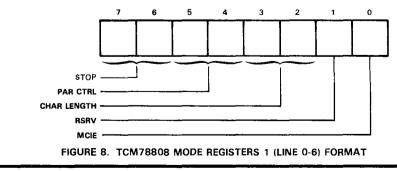
status register

Each line has a read-only status register that provides information about the current state of the given line. This register indicates the readiness of a line for transmission or reception of data and flags error conditions in its bit fields. Figure 7 shows the format of the status register. Table 3 lists the flag bits in each register.

TCM78808 Octal Asynchronous Receiver/Transmitter

PRINCIPLES OF OPERATION

TABLE 3. TCM78808 STATUS REGISTERS (LINES 0 THROUGH 7) DESCRIPTION


BIT	DESCRIPTION
7	DSR (Data Set Ready). This bit is the inverted state of the $\overline{\text{DSR}}$ line.
6	DCD (Data Set Carrier Detect). This bit is the inverted state of the DCD line.
5	FER (Frame Error). Set when the received character currently displayed in the receiver buffer register was not framed by a stop
	bit. Only the first stop bit is checked to determine that a framing error exists. Subsequent reading of the receiver buffer register
	that indicates all zeros (including the parity bit, if any) can be interpreted as a Break condition. This bit is cleared by clearing
	. (bit 2) of the command register, by RESET, or by setting the reset error RERR (bit 4) of the command register.
4	Overrun error). Set when the character in the receiver buffer was not read before another character was received. Cleared
	by clearing RxEN (bit 2) of the command register, by RESET, or by setting reset error RERR (bit 4) of the command register.
3	PER (Parity Error). If parity is enabled and this bit is set, the received character in the receiver buffer register has an incorrect
	parity bit. This bit is cleared by clearing RxEN (bit 2) of the command register, by RESET, by setting reset error RERR (bit 2)
	of the command register, or by reading the current character in the receiver buffer register.
2	TxEMT (Transmitter Empty). Set when the transmitter serialization logic for the associated line has completed transmission of
	a character, and no new character has been loaded into the transmission holding register. Cleared by loading the transmitter
	h: register, by clearing TxEN(0) of the command register, or by RESET.
1	R: Receiver Buffer Ready). When set, a character has been loaded into the FIFO buffer from the deserialization logic. Cleared
	by reading the receiver buffer register, by clearing RxEN (bit 2) in the command register, or by
0	TxRDY (Transmitter Holding Register Ready). When set, this bit indicates that the transmitter hold.
ļ	when the program has loaded a character into the transmitter holding register, when the transmitter for this line is disabled by
	claaring TxEN (bit 0) in the command register, or RESET. This bit is initially set when the transmitter logic is enabled by the setting
	of the TxEN (bit 0) and the transmitter holding register is empty. This bit is not set when the automatic echo or remote loopback
	modes are programmed. Data can be overwritten if a consecutive write is performed while TxRDY is cleared.

mode registers 1 and 2

These read/write registers control the attributes (including parity, character length, and line speed) of the communications line.

Each of the eight communications lines has two of these registers, both accessed by the same address on A5 through A0. Successive access operations (either read or write, in any combination) alternate between the two registers at that address by use of an internal pointer. The first operation addresses mode register 1. The pointer is reset to point to mode register 1 by RESET or by a read of the command register for this line. These registers should not be accessed by bit-oriented instructions that do read/modify/write cycles such as the PDP-11 BIS, BIC, and BIT instructions.

Figure 8 shows the format of mode registers 1, and Table 4 describes the function of the register information.

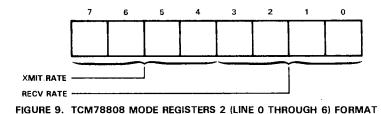


TABLE 4. TCM78808 MODE REGISTERS 1 (LINES 0 THROUGH 6) DESCRIPTION

BIT				DESCRIPTION					
7,6	STOP. These bits determine the number of stop bits that are appended to the transmitted characters as follows. These bits are cleared by RESET.								
	Bit 7	Bit 6	Stop Bits						
	ι I	L	Invalid						
	L	н	1.0						
	н	L	1.5						
	н	н	2.0						
5,4	PAR CTRI	L (Parity co	ntrol). These bits	determine parity as follows and are cleared by $\overline{\text{RESET}}$. (X = either H or L)					
	Bit 5	Bit 4	Parity Type						
	н	н	Even						
	L	н	Odd						
	х	L	Disabled						
3,2	CHAR LEN	NGTH (Chai	acter length). The	se bits determine the length (excluding start bit, parity, and stop bits) of the characters					
	received a	and sent. R	eceived character	s of less than 8 bits are "right aligned" in the receiver buffer with unused high-order					
	bits equal	to zero. Par	ity bits are not sh	own in the receiver buffer. The character length bits are cleared by RESET. The character					
	length bit	s are defin	ed as follows:						
	Bit 3	Bit 2	Bit Length						
	L	L	5						
	L	н	6						
	н	L	7						
	Н	н	8						
1	• •• Re	served and	cleared by 1	T					
0	<u></u>	dem contro	l interrupt enable,	When set and RxIE (bit 5) of the command register is set, the modem control interrupts					
	are enable	ed. Refer to	o the interrupt So	anner and Interrupt Handling information. Cleared by RESET.					

Figure 9 shows the format of mode registers 2, and Table 5 indicates the baud rate selections of the register. Bits 7 through 4 of mode register 2 control the transmitter baud rate, and bits 3 through 0 control the receiver baud rate. These registers are cleared by RESET.

TCM78808 OCTAL ASYNCHRONOUS RECEIVER/TRANSMITTER

PRINCIPLES OF OPERATION

TABLE 5. TCM78808 MODE REGISTERS 2 (LINES 0 THROUGH 6) DESCRIPTION

BIT						C	ESCF	RIPTIO	N		
7-0	XMIT RATE/RECV RATE (Transmitter/Receiver Rate), Selects the baud rate of the										
	tran	smitte	r (bits	7 thro	ugh 4) ar	nd re	ceive	r (bits	3 through 0)	as follows:	
	I I	ransm	itter E	Bits	R	eceiv	er Bit	ts	Nominal	Actual	Error [†]
	7	6	5	4	3	2	1	0	Rate	Rate	(percent)
	L	L	L	L	L	L	٤	L	50	same	
	L	L	L	н	L	L	L	н	75	same	-
l	L	L	н	L	L	L	н	Ĺ	110	109.09	0.826
	L	L	н	н	L	L	н	н	134.5	133.33	0.867
	L	н	L	L	L	н	L	٤	150	same	-
	L	н	٤	н	Ĺ	н	٤	н	300	same	-
	L	н	н	L	L	н	н	L	600	same	_
	L	н	н	н	L	н	н	н	1 200	same	-
1	н	Ĺ	L	L	н	Ł	٤	L	1800	1745.45	3.03
	н	٤	Ĺ	н	н	Ł	L	н	2000	2021.05	1.05
	н	L	н	L	н	L	н	L	2400	same	-
	н	L	н	н	н	L	н	н	3600	3490.91	3.03
	н	н	L	L	н	н	L	L	4800	same	-
	н	н	L	н	н	н	L	н	7200	6981.81	3.03
	н	н	н	L	н	н	н	L	9600	same	
	н	н	н	н	н	н	н	н	19200	same	

[†] The frequency of the clock input (CLK) is 4.9152 MHz. The clock input may vary by 0.1%. This variance results in an error that must be added to the error listed in the error column.

command register

These read/write registers control various functions on the selected line. Figure 10 shows the format of the command registers, and Table 6 describes the function of the register information.

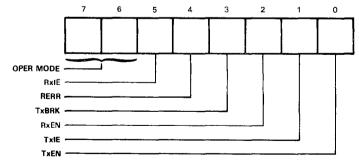


FIGURE 10. TCM78808 COMMAND REGISTERS (LINE 0 THROUGH 6) FORMAT

TABLE 6. TCM78808 COMMAND REGISTERS (LINES 0 THROUGH 7) DESCRIPTION

BIT	DESCRIPTION							
7,6	OPER MODE (Operation Mode). These bits control the operating mode of the channel as follows. These bits are cleared by RESET.							
	Bit 7 Bit 6 Operating Mode							
	L L Normal operation							
1	L	н	Automatic echo					
	н	L	Local loopback					
	н	н	Remote loopback					
5	· · · Rece	iver Interr	upt Enable). When set, the RxRDY flag (bit 1) of the status register for this line will generate an interrupt.					
4	-∷··(Res	et Error). V	When set, this bit clears the framing error, overrun error, and parity error of the status register associated					
	with this I	ine. This t	oit is cleared by RESET. It is not self-clearing.					
3	TxBRK (Tr	ansmit Bre	eak). When set, this bit forces the appropriate TxD7-TxD0 line to the spacing state at the conclusion of					
ł	the character presently being transmitted. When the program clears this bit, normal operation is restored, and any character							
	pending in	the trans	mitter holding register is moved into the serialization logic and transmitted. The minimum break length					
	obtainable is twice the character length plus 1 bit time. The maximum break length depends on the amount of time between							
	the program setting and clearing this bit, but is en integral number of bit times. This bit is cleared by RESET.							
2	RxEN (Receiver Enable). When set, this bit enables the receiver logic. When cleared, it stops the assembling of the received							
	character, clears all receiver error bits and the RxRDY (bit 1) of the status register, clears any receiver interrupt conditions							
	associated	with this	line, and initializes all receiver logic. This bit is cleared by RESET.					
1	TxIE (Transmit Interrupt Enable). When set, the state of the associated TxRDY flag (bit 0) of the status register is made available							
ļ	to the interrupt scanner logic. When the interrupt scanner logic scans this line, it determines if the TxRDY flag is set and,							
	if so, generates an interrupt.							
0	TxEN (Transmitter Enable). When set, this bit enables the transmitter logic. When cleared, it inhibits the serialization of the							
	characters	s that follo	w, but the serialization of the current character is completed. It also clears the TxRDY flag (bit 0) of the					
	status reg	ister, clear	s any transmitter interrupt conditions associated with the transmitter holding register, and initializes all					
ł	transmitter logic except that associated with the transmitter holding register. The character in the transmitter holding regis							
	is retained	l so that X	CON/XOFF situations can be properly processed. This bit is cleared by I					

Bits 5 through 0 enable the line receiver and transmitter, enable handling of interrupts, initiate the transmission of break characters, and reset error bits for the line. Refer to the "Interrupt Scanner and Interrupt Handling" paragraphs for detailed interrupt information. Bits 7 and 6 control the operating mode of the line. The four modes that can be set are normal operation, automatic echo, local loopback, and remote loopback.

normal operation

The serial data received is assembled in the receiver logic and transferred in parallel to the receiver buffer register. The RxEN bit must be set. Data to be transmitted is loaded in parallel into the transmitter holding register, then automatically transferred into the transmitter logic and serialized for transmission. The TxEN bit must be set.

automatic echo

The serial data received is assembled into parallel form in the receiver logic (the RxEN bit must be set) and transferred to the receiver buffer register. Arriving serial data is also routed to the line's TxDn pin for serial output. TxEN is ignored, and the transmitter logic is disabled. TxRDY flags and TxEMT indications are cleared. No transmitter interrupts are generated.

TCM78808 OCTAL ASYNCHRONOUS RECEIVER/TRANSMITTER

PRINCIPLES OF OPERATION

local loopback

The serial data from the RxDn input is ignored, and the receiver serial input receives data from the transmitter serial output. That data is assembled into parallel form in the receiver logic (the RxEN bit must be set) and transferred to the receiver buffer register where it can be read by the program. Data to be transmitted to the receiver is loaded in parallel form into the transmitter holding register from which it is automatically moved into the transmitter logic and serialized for transmission. The TxEN bit must be set. The transmission goes only to the receiver serial input; the TxDn output is held high. As in normal operation, transmission and reception baud rates are controlled by the transmitter speed and receiver speed entries in mode register 2.

remote loopback

The serial data received on the RxDn line is returned to the TxDn line without further action. No data is received or transmitted. The RxRDY, TxRDY, and TxEMT flags are disabled. The TxEN and RxEN bits of the command register are held cleared, causing the transmitter and receiver logic to be disabled.

summary registers

The TCM78808 contains two registers that summarize the current status of all eight serial data lines, making it possible to determine that a line status has changed with a a single read operation. These registers are selected for access by setting the appropriate address on inputs A2 through A0. Because the registers are shared by eight serial lines, the line-selection bits A5 through A3 are ignored when these registers are accessed. Refer to "Interrupt Scanner and Interrupt Handling" for detailed interrupt information.

interrupt summary register

This read-only register indicates that a transmitter or receiver interrupt condition has occurred and indicates the line number that generated the interrupt. Figure 11 shows the format of the interrupt summary register, and Table 7 describes register information.

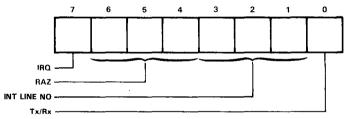
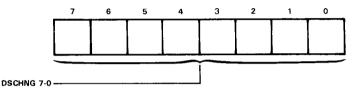


FIGURE 11. TCM78808 INTERRUPT SUMMARY REGISTER FORMAT



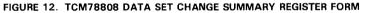

PRINCIPLES OF OPERATION

TABLE 7. TCM78808 INTERRUPT SUMMARY REGISTER DESCRIPTION

BIT	DESCRIPTION
7	IRQ (Interrupt Request). When set, this bit indicates that the interrupt scanner has found an interrupting condition among
	the eight serial lines of the TCM78808. These conditions also result in activating the IRQ signal.
6,5,4	RAZ (Read as Zero). Not used
3,2,1†	INT LINE NO (Interrupting Line Number). These bits indicate the line number upon which an interrupting condition was found. These bits correspond to the IRQLN2-IRQLNO signals: bit 3 = IRQLN2, bit 2 = IRQLN1, and bit 1 = IRQLN0. See Table 2.
0†	Tx/Rx (Transmit/Receive). This bit indicates whether the interrupting condition was caused by a transmitter (Tx/Rx = 1) or a receiver (Tx/Rx = 0). This bit corresponds to the IRQTxRx signal of the TCM78808 and is set when IRQTxRx is set.

[†]Bits 3-0 above represent the outputs of a free-running counter and are valid only when bit 7 is set.

When the MCIE bit in a line mode register 1 is set and RxIE is also set, the modem control interrupts are enabled for that line. If DSCHNG for that line is then set, the interrupt scanner will halt and generate an interrupt. The data set change summary register bits are cleared by writing a high into the bit position. A program that uses this register should read and save a copy of its contents. The copy can then be written back to the register to clear the bits that were set. The system interrupts should be disabled, and writeback should directly follow the read operation.

The RESET signal disables and initializes the data set change logic. When the RESET signal is high, future changes in DSR and DCD are reported as they occur.

interrupt scanner and interrupt handling

The interrupt scanner is a 4-bit counter that sequentially checks lines 0 through 7 for a receiver interrupt (counter positions 0 through 7) and then checks the lines in the same order for a transmitter interrupt (counter positions 8 through 15). If the scanner detects an interrupt condition, it stops, and the IRQ signal goes low. An interrupt must be serviced by software, or no other interrupt request can be posted.

The scanner determines that a line has a receiver interrupt if the line receiver buffer is ready and receiver interrupts are enabled for that line (RxRDY and RxIE = H) or if either of the line modem status signals has changed state and both receiver and modem control interrupts are enabled for that line (DSCHNG, RxIE, and MCIE all high).

The scanner determines that a line has a transmitter interrupt if the line's transmitter holding the register is empty and transmitter interrupts are enabled for that line (TxRDY and TxIE both high).

PRINCIPLES OF OPERATION

When the scanner detects an interrupt, it reports the line number on the IRQ2-IRQ0 lines. The IRQTxRx signal is high for a transmitter interrupt and is low for a receiver interrupt. The appropriate bits are also updated in the interrupt summary register. The IRQ line goes high, and the scanner is restarted for each of the following three types of interrupt conditions:

- 1. Reading the receiver buffer or resetting the RxIE bit of the interrupting line for the first type of receiver interrupt previously described.
- 2. Resetting the MCIE, RxIE, or DSCHNG bit of the interrupting line for the second type of receiver interrupt previously described.
- Loading the transmitter holding register or resetting the TxIE bit of the interrupting line for transmitter interrupts.

If the scanner was originally stopped by a receiver interrupt condition, the scanner resumes sequential operation from where it stopped, thus providing receivers with equal priority. If the scanner was stopped by a transmitter condition, the scanner restarts from position 0 (line receiver), thus giving receivers priority over transmitters.

edge-triggered and level-triggered interrupt systems

If the intervet system of the TCM78808 is used only for generating interrupts for the RxRDY and/or TxRDY flags, the low line can be connected to a processor having either edge-triggered or level-triggered interrupt capability. If the modem control interrupts are being used (MCIE in mode register 1 = 1), the IRQ line can be connected only to a processor that uses level-triggered interrupts.

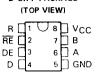
modem handling

The TxEMT (transmitter empty) bit of the status register is typically used to indicate when a program can disable the transmission medium, as when deactivating the request-to-send line of a modem. A typical program will load the last character for transmission and then monitor the TxEMT bit of the status register.

The setting of the TxEMT bit to indicate that transmission is complete may occur a substantial time after the loading of the last character. After the last character is loaded, one character is in the transmitter holding register, and one character is in the serialization logic. Therefore, it will be two character times before the transmission process is completed. Waiting for the TxRDY signal to be set before monitoring the TxEMT status shortens this by one character time because the TxRDY status bit indicates that there are no characters in the transmitter holding register. The times involved are calculated by taking the reciprocal of the baud rate being used, multiplying by the number of bits per character [a start bit - 5, 6, 7, or 8 data bits (plus parity bit if enabled) and 1, 1.5, or 2 stop bits], and multiplying by either two characters or one depending on when TxEMT monitoring begins.

D3408, NOVEMBER 1988 -- REVISED JANUARY 1990

- Bidirectional Transceiver
- Meets EIA Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27
- High-Speed Advanced Low-Power Schottky Circuitry
- Designed for 25-MBaud Operation in Both Serial and Parallel Applications
- Low Skew ... 8 ns Max
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Low Supply Current Requirements 30 mA Max
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal Shutdown Protection
- Driver Positive and Negative Current
 Limiting
- Receiver Input impedances . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 70 mV Typ
- Fail Safe ... High Receiver Output with Inputs Open
- Operates from a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down
 Protection
- Interchangeable with National DS3695


description

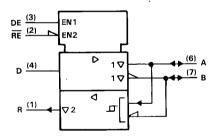
The TL3695 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bus transmission lines. It is designed for balanced transmission lines and meets EIA Standards RS-422-A and RS-485 and CCITT recommendations V.11 and X.27.

The TL3695 combines a 3-state differential line driver and a differential input line receiver both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected together to function as a direction control. The driver differential outputs

• http://fibh.lif.if.ourments contain information ••••• s of pither tion date. Products conform to •••••• standard warrenty. Production processing does not necessarily include testing of all parameters.

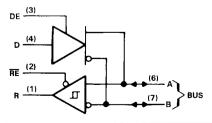
D OR P PACKAGE

FUNCTION TABLE (DRIVER)


INPUT	ENABLE	OUTPUTS
D	DE	A B
н	н	нL
L	н	ŁН
x	٤	ZZ

FUNCTION TABLE (RECEIVER)

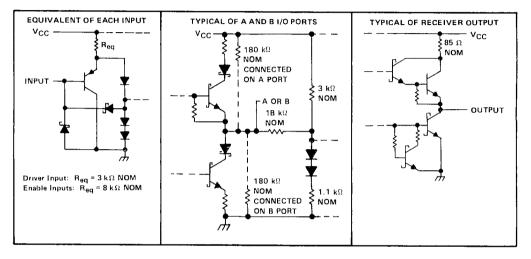
DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A B	RE	R
$V_{ID} \ge 0.2 V$	L	Н
$-0.2 V < V_{\text{ID}} < 0.2 V$	L	?
$V_{ID} \leq -0.2 V$	Ł	Ł
X	н	z
Inputs Open	L	н


H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



Copyright © 1990, Texas Instruments Incorporated

and the receiver differential inputs are connected internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $V_{CC} = 0$. This port features wide positive and negative common-mode voltage ranges making the device suitable for party line applications.

The TL3695 is characterized for operation from 0°C to 70°C.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	
Voltage range at any bus terminal	– 10 V to 15 V
Enable input voltage	5.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, TA	
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package	ge 260°C

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

	DISSIPATION RATING TABLE						
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING				
D	725 mW	5.8 mW/°C	464 mW				
Р	1000 mW	8.0 mW/°C	640 mW				

recommended operating conditions

		MIN TYP MAX	UNIT
Supply voltage, VCC		4.75 5 5.2	5 V
oltage at any bus terminal (separately or common mode), VI or VIC		1:	2 V
voltage at any bus terminal (separately o			7 V
High-level input voltage, VIH	D, DE, and RE	2	V
Low-level input voltage, VIL	D, DE, and RE	0.3	3 V
Differential input voltage, VID (see Note 2	2)	±1:	2 V
Lieb level extent europt leve	Driver	-6) mA
High-level output current, IOH	Receiver	-40	μΑ
Level autout auroat 1-	Driver	6	mA
Low-level output current, IOL	Receiver		3 mA
Operating free-air temperature, TA	and a low sector continue.	0 70	D° C

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

DRIVER SECTION

driver electrical characteristics over recommended ranges of supply voltage and operating freeair temperature (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS [†]	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	$I_{I} = -18 mA$				-1.5	V
Vo	Output voltage	$I_{O} = 0$	1	0		6	V
VOD1	Differential output voltage	$I_{O} = 0$		1.5		5	V
		$R_{I} = 100 \Omega$	See Figure 1	1/2 VOD1			
VOD2	Differential output voltage	112 - 100 12,	See Figure 1	2			V
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
VOD3	Differential output voltage	V _{test} = -7 V to 12 V	See Figure 2	1.5		5	V
A VOD	Change in magnitude of differential output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3	V
∆ Voc	Change in magnitude of common-mode output voltage§			±0.2			V
1-	Output ourrent	Output disabled,	V _O = 12 V			1	
10	Output current	See Note 3	$V_0 = -7 V$			-0.8	mA
ΙΗ	High-level input current	V _I = 2.4 V			-	20	μΑ
ΙL	Low-level input current	$V_{I} = 0.4 V$				-200	μA
		$V_0 = -7 V$				-250	
laa	Short circuit output ourropt	$V_0 = 0$	$V_{O} = 0$		-150		
los	Short-circuit output current	AO = ACC		250			mA
		$V_0 = 12 V$				250	
loc	Supply current	No load	Outputs enabled		23	50	mA
ICC	oupply content	1 to toad	Outputs disabled		19 35		

[†] The power-off measurement in EIA Standard RS-422-A applies to disabled outputs only and is not applied to combined inputs and outputs. [‡] All typical values are at V_{CC} = 5 V and T_A = 25°C.

§ Δ | V_{OD} | and Δ | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC} respectively, that occur when the input is changed from a high level to a low level.

NOTE 3: This applies for both power on and off; refer to EIA Standard RS-485 for exact conditions. The RS-422-A limit does not apply for a combined driver and receiver terminal.

driver switching characteristics over recommended ranges of supply voltage and operating freealr temperature

	PARAMETER	TEST	CONDITIONS		MIN	TYPT	MAX	UNIT
tDD	Differential-output delay time					8	22	ns
	Skew (t _{DDH} -*')	$C_{L1} = C_{L2} = 100 \text{ pF},$	$R_L = 60 \Omega$,	See Figure 3		1	8	ns
tτD	Differential outp · · · · sition time		_			8	18	ns
tpzh	Output enable time to high level	C _L = 100 pF,	$R_{L} = 500 \Omega$,	See Figure 4			50	ns
tpzL	Output enable time to low level	C _L = 100 pF,	$R_{L} = 500 \Omega$,	See Figure 5			50	ns
^t PHZ	Output di ime nigh level	CL = 15 pF,	$R_L = 500 \Omega$,	See Figure 4		8	30	ns
^t PLZ	Output discore time from low level	C _L = 15 pF,	$R_{L} = 500 \Omega$,	See Figure 5		. 8	30	ns

[†] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-422-A	RS-485
Vo	Voa, Vob	V _{oa} , V _{ob}
VOD1	Vo	Vo
VOD2	$V_t (R_L = 100 \Omega)$	V _t (R _L = 54 Ω)
V _{OD3}		Vt (Test Termination Measurement 2)
Vtest		V _{tst}
A VOD	$ V_t - \overline{V}_t $	$ \vee_t - \widetilde{V}_t $
Voc	V _{os}	Vos
∆ Voc1	V _{os} – V _{os}	V _{os} − V _{os}
los	Isal Isbl	
lo	Ixa , Ixb	lia, lib

RECEIVER SECTION

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYPT	MAX	UNIT
VTH	Differential-input high-threshold voltage	V _O = 2.7 V,	$I_0 = -0.4 \text{ mA}$			0.2	V
VTL	Differential-input low-threshold voltage	V _O = 0.5 V,	1 ₀ = 8 mA	-0.2‡			v
Vhys	Hysteresis§	$V_{OC} = 0$			70		mV
VIK	Enable-input clamp voltage	lı = −18 mA		1		-1.5	v
VOH	High-level output voltage	$V_{\rm ID} = 200 \text{ mV or lnp}$ $I_{\rm OH} = -400 \ \mu\text{A}$	uts open See Figure 6	2.4			v
VOL	Low-level output voltage	VID = -200 mV, See Figure 6	IOL = 16 mA			0.5 0.45	v
loz	High-impedance-state output current	Vo = 0.4 V to 2.4 V				±20	μA
ų	Line input current	Other input = 0 V, See Note 4	$V_{l} = 12 V$ $V_{l} = -7 V$		····	1 -0.8	mA
ίн	High-level enable-input current	VIH = 2.7 V				20	μA
μL	Low-level enable-input current	VIL = 0.4 V				-100	μA
ri	Input resistance			12			kΩ
los	Short-circuit output current	V _O = 0		-15		-85	mA
łcc	Supply current	No load	Outputs enabled Outputs disabled		23 19	50 35	mA

NOTE 4: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	R TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
t PLH	Propagation delay time, low-to-high-level output	$V_{\rm ID} = -1.5 \rm V$ to 1.5 V,	CL = 15 pF,		14	37	ns
^t PHL	Propagation delay time, high-to-low-level output	See Figure 7			14	37	ns
^t PZH	Output enable time to high level	$-C_1 = 15 \text{pF},$	See Figure 8		7	20	ns
tPZL	Output enable time to low level	$-10\Gamma = 10 \text{ bc}$	r, See Figure 8		7	20	ns
t PHZ	Output disable time from high level	0 15 pE	See Figure 8		7	16	ns
^t PLZ	Output disable time from low level	$-C_{L} = 15 \text{pF}$	See Figure o		8	16	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

⁺ The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

§ Hysteresis is the difference between the positive-going input threshold voltage, V_{T+}, and the negative-going input threshold voltage, V_T.

PARAMETER MEASUREMENT INFORMATION

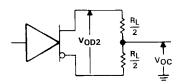


FIGURE 1. DRIVER VOD AND VOC

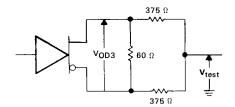
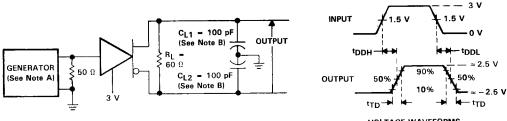
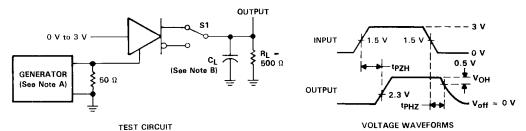



FIGURE 2. DRIVER VOD3


TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 6 ns, t_f \leq 6 ns, Z_{out} = 50 Ω.

B. CL includes probe and jig capacitance.

FIGURE 3. DRIVER DIFFERENTIAL-OUTPUT DELAY AND TRANSITION TIMES

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_f \leq 10 ns, t_f \leq 10 ns, Z_{out} = 50 Ω.

B. CL includes probe and jig capacitance. (See switching characteristics - test conditions)

FIGURE 4. DRIVER ENABLE AND DISABLE TIMES

5 V --3 V **-** 500 Ω INPUT 1.5 V S1 OUTPUT 3 V or 0 V οv ^tPZL CI (See Note B) tpi 7 GENERATOR 5**0** Ω 5 V (See Note A) OUTPUT 2.3 V 0.5 V VOL

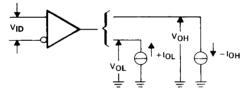
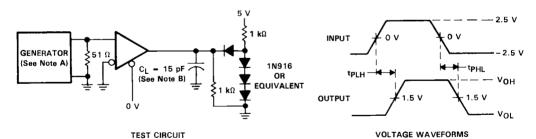
PARAMETER MEASUREMENT INFORMATION

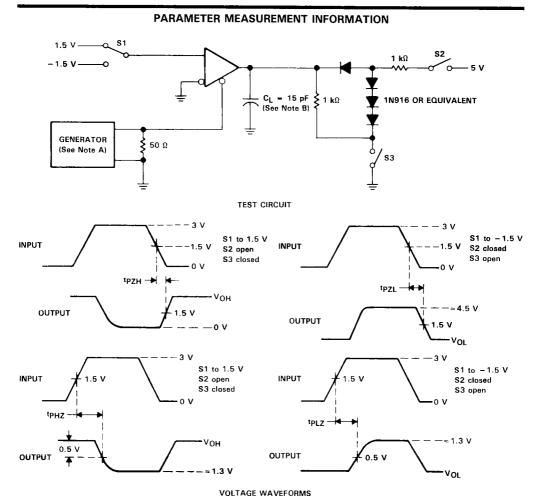
TEST CIRCUIT

VOLTAGE WAVEFORMS

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 10 ns, t_f \leq 10 ns, Z_{out} = 50 Ω .
 - B. CL includes probe and jig capacitance. (See switching characteristics test conditions)

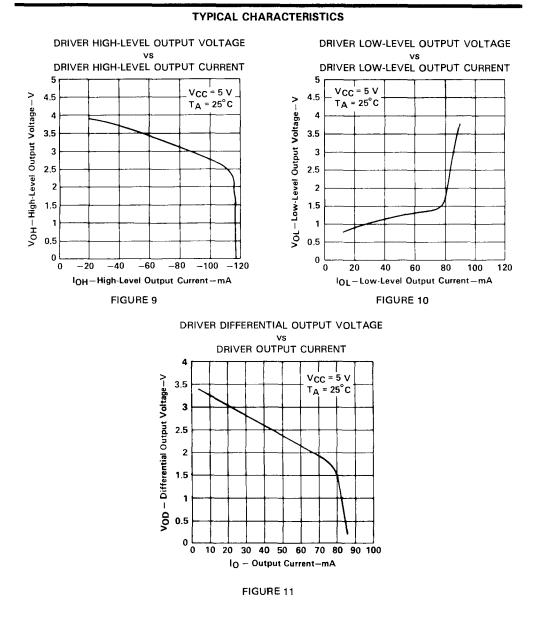
FIGURE 5. DRIVER ENABLE AND DISABLE TIMES


FIGURE 6. RECEIVER VOH AND VOL

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 10 ns, t_f \leq 10 ns, Z_{out} = 50 Ω.
 - B. CL includes probe and jig capacitance.

FIGURE 7. RECEIVER PROPAGATION DELAY TIMES



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, t_r \leq 10 ns, t_f \leq 10 ns, Z_{0Ut} = 50 Ω .

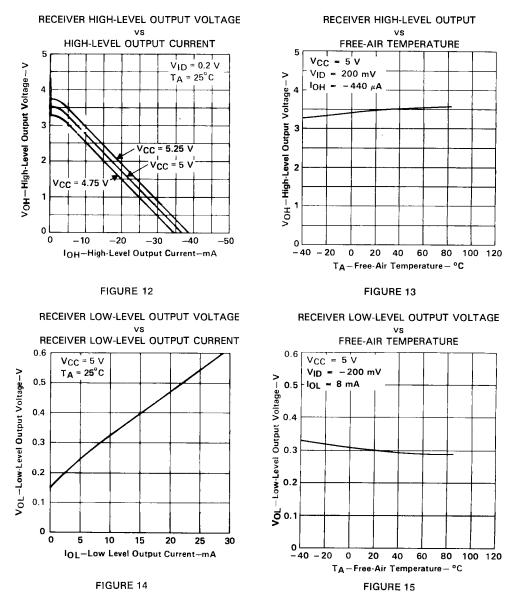
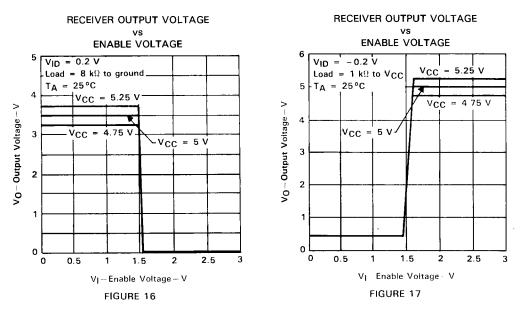
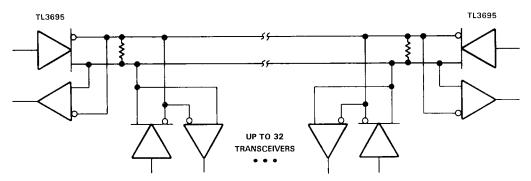

B CL includes probe and jig capacitance.

FIGURE 8. RECEIVER OUTPUT ENABLE AND DISABLE TIMES




TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

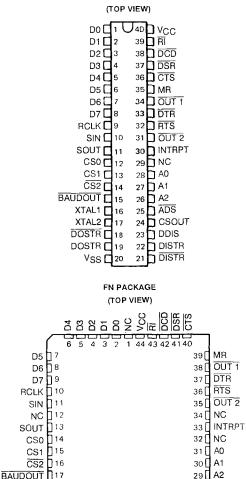
NOTE: The line should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

FIGURE 18. TYPICAL APPLICATION CIRCUIT

N DUAL-IN-LINE PACKAGE

D3096, MARCH 1988 - REVISED APRIL 1989

- Programmable Baud Rate Generator Allows Division of Any Input Reference Clock by 1 to (2¹⁶ - 1) and Generates an Internal 16 X Clock
- Full Double Buffering Eliminates the Need for Precise Synchronization
- Adds or Deletes Standard Asynchronous Communication Bits (Start, Stop, and Parity) to or from the Serial Data Stream
- Independent Receiver Clock Input
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Fully Programmable Serial Interface Characteristics:
 - 5-, 6-, 7-, or 8-Bit Characters
 - Even-, Odd-, or No-Parity Bit Generation and Detection
 - 1-, 1 1/2-, or 2-Stop Bit Generation
 - Baud Generation (DC to 256 Kilobits per Second)
- False Start Bit Detection
- Complete Status Reporting Capabilities
- Three-State TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- Internal Diagnostic Capabilities:
 Loopback Controls for
 - Communications Link Fault Isolation – Break, Parity, Overrun, Framing Error
 - Simulation
- Fuil Prioritized Interrupt System Controls
- Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
- Easily Interfaces to Most Popular Microprocessors
- Faster Plug-In Replacement for National Semiconductor NS16C450


description

NC - No internal connection

The TL16C450 is a CMOS version of an Asynchronous Communications Element (ACE). It typically functions in a microcomputer system as a serial input/output interface.

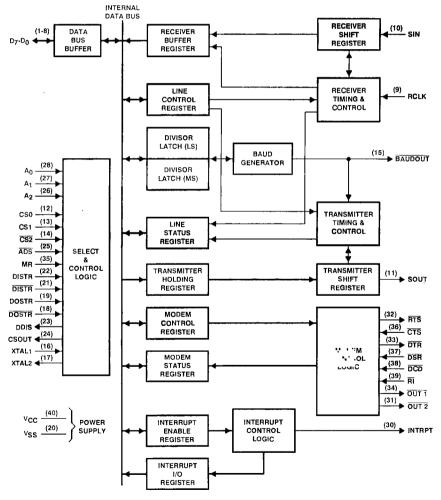
The TL16C450 performs serial-to-parallel conversion on data received from a peripheral device or modem and parallel-to-serial conversion on data received from its CPU. The CPU can read and report on the status of

PANPIICTION OATA documents contain information as of publication date. Products conform to op_cri..ations per the terms of Texas Instruments stenderd warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1988, Texas Instruments Incorporated

18 19 20 21 22 23 24 25 26 27 28

DISTR DISTR DDIS CSDUT


DOSTR DOSTR VSS NC

XTAL2

the ACE at any point in the ACE's operation. Reported status information includes: the type of transfer operation in progress, the status of the operation, and any error conditions encountered.

The TL16C450 ACE includes a programmable, on-board, baud rate generator. This generator is capable of dividing a reference clock input by divisors from 1 to $(2^{16} - 1)$ and producing a 16 X clock for driving the internal transmitter logic. Provisions are also included to use this 16 X clock to drive the receiver logic. Also included in the ACE is a complete modern control capability and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing required to handle the communications link.

block diagram

Pin numbers shown are for the N package.

PIN			
NAME	NO.†	I/O	DESCRIPTION
AO	28 [31]		Register Select. Three inputs used during read and write operations to select the ACE register to read
A1	27 [30]	I.	from or write to. Refer to Table 1 for register addresses, also refer to the Address Strobe (ADS) signal
A2	26 [29]		description.
ADS	25 [28]	1	Address Strobe. When $\overline{\text{ADS}}$ is active (low), the Register Select signals (A0, A1, and A2) and Chip Select signals (CS0, CS1, $\overline{\text{CS2}}$) drive the internal select logic directly; when high, the Register Select and Chip Select signals are held in the state they were in when the low-to-high transition of $\overline{\text{ADS}}$ occurred.
BAUDOUT	15 [17]	0	Baud Out. 16 X clock signal for the transmitter section of the ACE. The clock rate is established by the reference oscillator frequency divided by a divisor specified by the Baud Generator Divisor Latches. BAUDOUT may also be used for the receiver section by tying this output to the RCLK input.
CS0 CS1 CS2	12 [14] 13 [15] 14 [16]	I	Chip Select. When active (high and low, respectively), these three inputs select the ACE. Refer to the ADS (Address Strobe) signal description.
CSOUT	24 [27]	0	Chip Select Out. When CSOUT is high, it indicates that the ACE has been selected by the Chip Select inputs (CS0, CS1, and CS2). CSOUT is low when the chip is deselected.
CTS	36 [40]	l	Clear To Send. CTS is a modern status signal whose condition can be checked by reading bit 4 (CTS) of the Modern Status Register. Bit 0 (DCTS) of the Modern Status Register indicates that this signal has changed state since the last read from the Modern Status Register. If the Modern Status Interrupt is enabled when CTS changes state, an interrupt is generated.
D0	1 [2]		
D1	2 [3]		
D2	3 [4]		
D3	4 [5]	1/0	Data Bus. Eight 3-state data lines provide a bidirectional path for data, control, and status information
D4	5 [6]	"~	between the ACE and the CPU.
D 5	6 [7]		
D6	7 [8]		
70	8 [9]		
DCD	38 [42]	•	Data Carrier Detect. DCD is a modern status signal whose condition can be checked by reading bit 7 (DCD) of the Modern Status Register. Bit 3 (DDCD) of the Modern Status Register indicates that this signal has changed state since the last read from the Modern Status Register. If the Modern Status Interrupt is enabled when the DCD changes state, an Interrupt is generated.
DDIS	23 [26]	0	Driver Disable. This output is active (high) when the CPU is not reading data. When active, this output can be used to disable an external transceiver.
DISTR DISTR	22 [25] 21 [24]	1	Data Input Strobes. When either input is active (high or low, respectively) while the ACE is selected, the CPU is allowed to read status information or data from a selected ACE register. Only one of these inputs is required for the transfer of data during a read operation; the other input should be tied in its inactive state (i.e., DISTR tied low or DISTR tied high).
D' D	19 [21] 18 [20]	I	Data Output Strobes. When either input is active (high or low, respectively), while the ACE is selected, the CPU is allowed to write control words or data into a selected ACE register. Only one of these inputs is required to transfer data during a write operation; the other input should be tied in its inactive state (i.e., DOSTR tied low or DOSTR tied high).
DSR	37 [41]	I	Data Set Ready. DSR is a modem status signal whose condition can be checked by reading bit 5 (DSR) of the Modem Status Register. Bit 1 (DDSR) of the Modem Status Register indicates that this signal has changed state since the last read from the Modem Status Register. If the modem status interrupt is enabled when the DSR changes state, an interrupt is generated.
DTR	33 [37]	0	Data Terminal Ready. When active (low), DTR informs a modern or data set that the ACE is ready to establish communication. DTR is placed in the active state by setting the DTR bit of the Modern Control Register to a high level. DTR is placed in the inactive state either as a result of a Master Reset or during loop mode operation or resetting bit 0 (DTR) of the Modern Control Register.
INTRPT	30 [33]	0	Interrupt. When active (high), INTRPT informs the CPU that the ACE has an interrupt to be serviced. Four conditions that cause an interrupt to be issued are; a receiver error, received data is available, the transmitter holding register is empty, and an enabled modem status interrupt. The INTRPT output is reset (inactivated) either when the interrupt is serviced or as a result of a Master Reset.

[†] Pin numbers shown in brackets are for the FN package.

NAME	PIN NO.†	1/0	DESCRIPTION
MR	35 [39]	1	Master Reset. When active (high), MR clears most ACE registers and sets the state of various output signals. Refer to Table 2, ACE Reset Functions.
OUT 1 OUT 2	34 [38] 31 [35]	0	Outputs 1 and 2. User-designated output pins that are set to their active states by setting their respective Modern Control Register bits (OUT 1 and OUT 2) high. OUT 1 and OUT 2 are set to their inactive (high) states as a result of Master Reset or during loop mode operations or by resetting bit 2 (OUT 1) or bit 3 (OUT 2) of the MCR.
RCLK	9 [10]	1	Receiver Clock. The 16 X baud rate clock for the receiver section of the ACE.
না	39 [43]	I	Ring Indicator. Ri is a modem status signal whose condition can be checked by reading bit 6 (RI) of the Modem Status Register. Bit 2 (TERI) of the Modem Status Register indicates that the Ri input has transitioned from a low to a high state since the last read from the Modem Status Register. If the Modem Status Interrupt is enabled when this transition occurs, an interrupt is generated.
RTS	32 [36]	0	est to Send. When active, informs the modern or data set that the ACE is ready to transmit data. set to its active state by setting the RTS Modern Control Register bit and is set to its inactive (high) state either as a result of a Master Reset or during loop mode operations or by resetting bit 1 (RTS) of the MCR.
SIN	10 [11]	1	Serial Input. Serial data input from a connected communications device.
SOUT	11 [13]	0	Serial Output. Composite serial data output to a connected communication device. SOUT is set to the Marking (logic 1) state as a result of Master Reset.
Vcc	40 [44]		5-V Supply Voltage
VSS	20 [22]		Supply Common
XTAL1 XTAL2	16 [18] 17 [19]	I/O	External Clock. Connects the ACE to the main timing reference (clock or crystal).

[†] Pin numbers shown in brackets are for the FN package.

absolute maximum ratings over free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage range at any input, V ₁
Output voltage range, VO
Continuous total dissipation at (or below) 70°C free-air temperature:
FN package
N package
Operating free-air temperature range
Storage temperature range
Case temperature for 10 seconds: FN package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package 260°C
NOTE 1: All voltage values are with respect to VSS.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level input voltage, VIH	2		Vcc	V
- A evel input voltage, VIL	-0.5		0.8	v
Operating free-air temperature, TA	0		70	°C

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
V _{OH} ‡	High-level output voltage	$I_{OH} = -1 \text{ mA}$	24			V
VOL [‡]	Low-level output voltage	1 _{OL} = 1 6 mA			04	v
likg	Input leakage current				±10	μA
loz	High-impedance output current	$V_{CC} = 525 V \qquad V_{SS} = 0$ $V_{O} = 0 V to 525 V,$ chip selected, write mode or, chip deselected			±20	μΑ
ICC	Supply current	$\label{eq:VC} \begin{array}{c} V_{CC} = 5 \ 25 \ V, & T_A = 25^\circ C, \\ SIN, \ \overline{DSR}, \ \overline{DCD}, \ \overline{CTS}, \ \text{and} \ \overline{Ri} \ \text{at} \ 2 \ V, \\ All \ other inputs \ at \ 0 \ 8 \ V, \\ XTAL1 \ at \ 4 \ MHz, \\ No \ load \ on \ outputs \\ Baud \ rate = 50 \ kilobits \ per \ second \end{array}$			10	mA
CXTAL1	Clock input capacitance			15	20	pF
CXTAL2	Clock output capacitance	$V_{CC} = 0,$ $V_{SS} = 0,$		20	30	pF
C,	Input capacitance	$f = 1 \text{ MHz},$ $T_A = 25^{\circ}\text{C},$ All other pins grounded		6	10	рF
Co	Output capacitance			10	20	pF

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

T All typical values are at V_{CC} = 5 V, T_A = 25°C

[‡] These parameters apply for all outputs except XTAL2

system timing requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	FIGURE	MIN MAX	UNIT
tcR	Cycle time, read (tw7 + td8 + td9)		175	ns
tcW	Cycle time, write (tw6 + td5 + td6)		175	ns
tw5	Pulse duration, address strobe low	2, 3	15	ns
tw6	Pulse duration, write strobe	2	80	ns
tw7	Pulse duration, read strobe	3	80	ns
twMR	Pulse di , master reset			ns
t _{su1}	Setup tir.,, address	2,3	1.5	ns
t _{su2}	Setup time, chip select	2,3	15	ns
t _{su3}	Setup time, data	2	15	ns
t _{h1}	Hold time address	2,3	0	ns
th2	Hold chip select	2,3	0	ns
th3	Hold,., write to chip select	2	20	ns
th4	Hold time write to address	2	20	ns
t _{h5}	me, data	2	t5	ns
tn6	me, read to chip select	3	20	ns
th7	Hold time, read to address	3	20	ns
t _{d4} §	Delay time, salect to write	2	15	ns
td5 [§]	Delay time address to write	2	15	ns
t _{d6}	Delay time, write cycle	2	80	ns
τd7 [§]	Delay time, chip select to read	3	15	ns
td8 [§]	Delay time, address to read	3	15	ns
td9	Delay time, read cycle	3	80	ns

§ Only applies when ADS is low

system switching characteristics over recommended ranges of supply voltage and operating freeair temperature

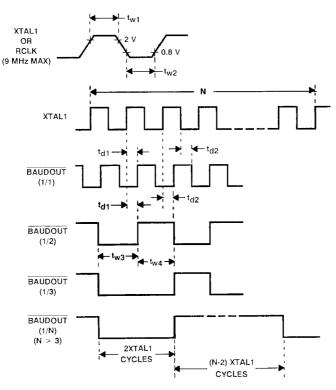
	PARAMETER	FIGURE	TEST CONDITIONS	MIN MAX	UNIT
tw1	Pulse duration, clock high	1	f = 9 MHz maximum	50	ns
tw2	Pulse duration, clock low	1	f = 9 MHz maximum	50	ns
td3	Delay time, select to CS output	2,3	CL = 100 pF	70	ns
^t d10	Delay time, read to data	3	$C_{L} = 100 pF$	60	ns
td11	Delay time, read to floating data	3	CL = 100 pF	0 60	ns
tdis(R)	Read to driver disable	3	C _L = 100 pF	60	ns

baud generator switching requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	FIGURE	TEST CONDITIONS	MIN MAX	UNIT
tw3	Pulse duration, BAUDOUT low	1	$f = 6.25 \text{ MHz}, \text{ CLK} \div 1,$ CL = 100 pF	80	ns
tw4	Pulse duration, BAUDOUT high	1	$f = 6.25 \text{ MHz}, \text{ CLK} \div 1, CL = 100 \text{ pF}$	80	ns
td1	Delay time, BAUDOUT low to high	1	C _L = 100 pF	125	ns
td2	Delay time, BAUDOUT high to low	1	C _L = 100 pF	125	ns

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

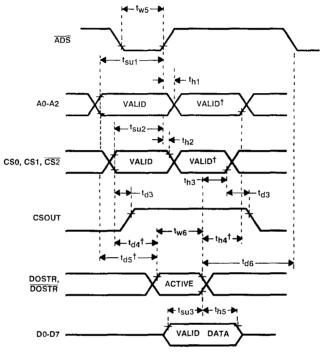
	PARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
^t d12	Delay time, RCLK to sample	4			100	ns
^t d13	Delay time, stop to set interrupt	4		1	1	RCLK cycles
^t d14	Delay time, read RBR/LSR to reset interrupt	4	CL = 100 pF		140	ns


transmitter switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
^t d15	Delay time, initial write THR to transmit start	5		8	24	baudout cycles
^t d16	Delay time, stop to interrupt	5		8	8	baudout cycles
^t d17	Delay time, write THR to reset interrupt	5	$C_L = 100 \text{ pF}$		140	ns
^t d18	Delay time, initial write to interrupt (THRE)	5		16	32	baudout cycles
td19	Delay time, read IIR to reset interrupt (THRE)	5	C _L = 100 pF		140	ns

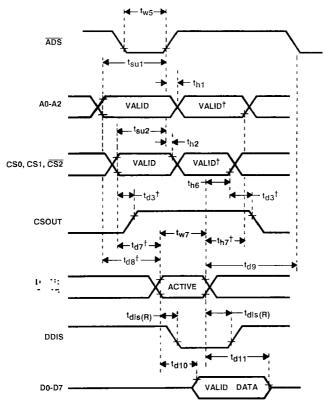
modem control switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	FIGURE	TEST CONDITIONS	MIN MAX	UNIT
td20 Delay time, write ** o it	6	CL = 100 pF	100	ns
td21 Delay time, modern input to set interrupt	6	CL = 100 pF	170	ns
td22 Delay time, read MSR to reset interrupt	6	Cլ = 100 pF	140	ns



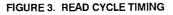
PARAMETER MEASUREMENT INFORMATION

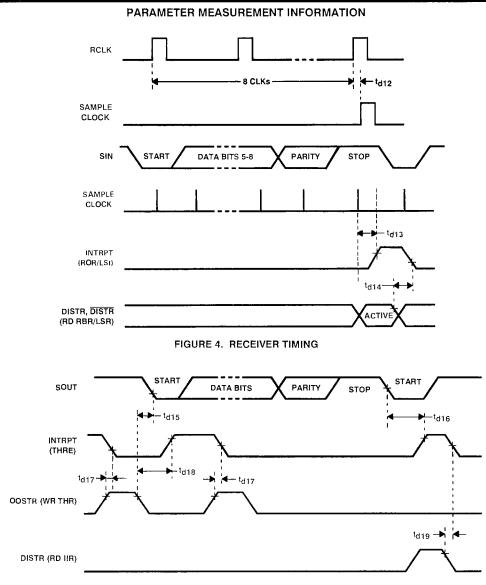
FIGURE 1. BAUD GENERATOR TIMING



PARAMETER MEASUREMENT INFORMATION

[†] Applicable only when ADS is tied low.


FIGURE 2. WRITE CYCLE TIMING



PARAMETER MEASUREMENT INFORMATION

† Applicable only when ADS is tied low.

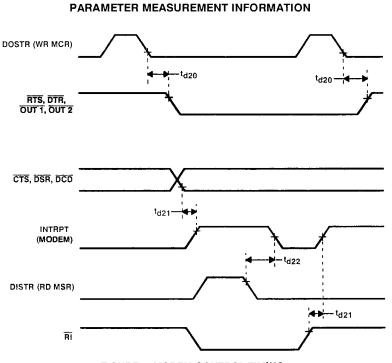
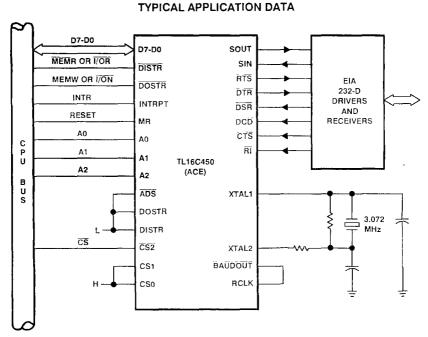
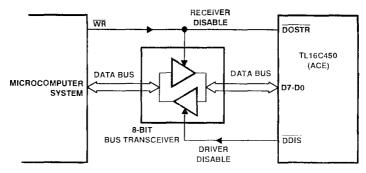
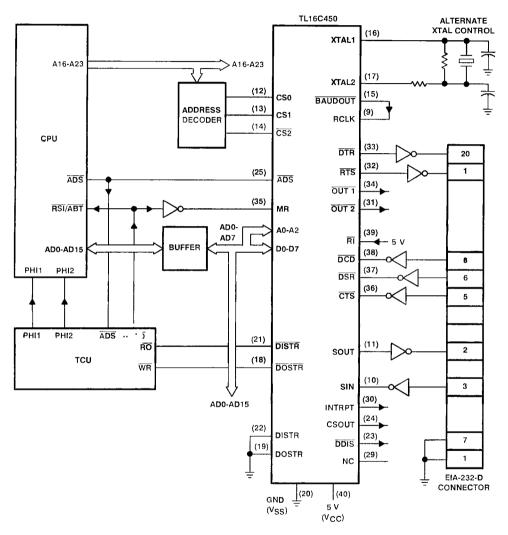
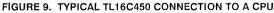




FIGURE 6. MODEM CONTROL TIMING





TYPICAL APPLICATION DATA

PRINCIPLES OF OPERATION

DLAB†	A2	A1	A0	REGISTER
0	L	L	L	Receiver buffer (read), transmitter holding register (write)
0	L	Ĺ	Н	Interrupt enable
X	L	Н	L	Interrupt identification (read only)
Х	L	Н	н	Line control
Х	н	L	L	Modem control
Х	н	L	н	Line status
Х	Н	Н	L	Modem status
Х	н	Н	н	Scratch
1	L	L	L	Divisor latch (LSB)
1	L	L	н	Divisor Latch (MSB)

TABLE 1. REGISTER SELECTION

[†] The Divisor Latch Access Bit (DLAB) is the most significant bit of the Line Control Register. The DLAB signal is controlled by writing to this bit location (see Table 3).

REGISTER/SIGNAL	RESET CONTROL	RESET STATE
Interrupt Enable Register	Master Reset	All bits low (0-3 forced and 4-7 permanent)
Interrupt Identification Register	Master Reset	Bit 0 is high, bits 1 and 2 are low, and bits 3-7 are permanently low
Line Control Register	Master Reset	All bits low
Modern Control Register	Master Reset	All bits low
Line Status Register	Master Reset	Bits 5 and 6 are high, all other bits are low
Modem Status Register	Master Reset	Bits 0-3 are low, bits 4-7 are input signals
SOUT	Master	High
INTRPT (Receiver Error Flag)	Read L → 🖓 ï	Low
INTRPT (Received Data Available)	Read RBR/MR	Low
INTRPT (Transmitter Holding Register Empty)	Read IIR/Write THR/MR	Low
INTRPT (Modern Status Changes)	Read MSR/MR	Low
OUT 2	Master Reset	High
RTS	Master Reset	High
DTR	Master Reset	High
OUT 1	Master Reset	High
Scratch Register	Master Reset	No effect
Divisor Latch (LSB and MSB) Registers	••••	No effect
Receiver Buffer Register		No effect
Transmitter Holding Register		No effect

TABLE 2. ACE RESET FUNCTIONS

PRINCIPLES OF OPERATION

accessible registers

The system programmer, via the CPU, has access to and control over any of the ACE registers that are summarized in Table 3. These registers are used to control ACE operations, receive data, and transmit data. Descriptions of these registers follow Table 3.

	REGISTER ADDRESS										
	0 DLAB = 0	0 DLAB=0	1 DLAB = 0	2	3	4	5	6	7	0 DLAB = 1	1 DLAB = 1
Bit No.	Receiver Buffer Register (Read	Transmitter Holding Register (Write Only)	interrupt Eneble Register	Interrupt Ident. Register (Read Only)	Line Control Register	MODEM Control Register	Line Status Ragister	MODEM Status Register	Scratch Register	Divisor Latch (LSB)	(**
		THR	IER	IIR	LCR	MCR	LSR	MSR	SCR	DLL	DLM
0	Data Bit 0*	Data Bit 0	Enable Received Data	"0" If Interrupt Pending	Word Length Select Bit 0 (WLS0)	Data Terminal Ready (DTR)	Data Ready (DR)	Deita Clear to Send (DCTS)	Bit 0	Bit 0	Bit 8
1	Data Bit 1	Data Bit 1	Enable Transmitter Holding Register Empty Interrupt (ETBEI)	Interrupt ID Bit (0)	Word tenath (WLS1)	Request to Send (RTS)	Dverrun Error (OE)	Delta Data Set Ready (DDSR)	Bit 1	Bit 1	Bit 9
2	Data Bit 2	Data Bit 2	Enable Receiver Line Status	Interrupt ID Bit (1)	Number of Stop Bits (STB)	Out 1	Parity Error (PE)	Trailing ∛ing bor	Bit 2	Bit 2	Bit 10
3	Data Bit 3	Data Bit 3		o	Parity Enable (PEN)	Out 2	Framing Error (FE)	Delta Data	Bit 3	Bit 3	Bit 11
Data Bit 4	Data Bit 4	0	0	Even Parity Select (EPS)	Loop	Break Interrupt (BI)	Clear to Send (CTS)	Bit 4	Bit 4	Bit 12	
5	Data Bit 5	Data Bit 5	0	0	Stick Parity	0	Tranemitter	Çata	Bit 5	Bit 5	Bit 13
6	Data Bit 6	Data Bit 6	0	0	Set Break	0	Transmitter Empty (TEMT)	Ring Indicator (RI)	Bit 6	Bit 6	Bit 14
7	Data Bit 7	Data Bit 7	0	0	Divisor Latch Access Bit (DLAB)	0	0	Data •	Bit 7	Bit 7	Bit 15

TABLE 3. SUMMARY OF ACCESSIBLE REGISTERS

* Bit 0 is the least significant bit. It is the first bit serially transmitted or received.

PRINCIPLES OF OPERATION

receiver buffer register (RBR)

The ACE's receiver section consists of a Receiver Shift Register and a Receiver Buffer Register. Timing is supplied by the 16 X Receiver Clock (RCLK). Receiver section control is a function of the ACE's Line Control Register.

The ACE's Receiver Shift Register receives serial data from the Serial Input (SIN) pin. The Receiver Shift Register then converts the data to a parallel form and loads it into the Receiver Buffer Register. When a character is placed in the Receiver Buffer Register and the Received Data Available interrupt is enabled, an interrupt is generated. This interrupt is cleared when the data is read out of the Receiver Buffer Register.

transmitter holding register (THR)

The ACE's transmitter section consists of a Transmitter Holding Register and a Transmitter Shift Register. Timing is supplied by the Baud Out (BAUDOUT) clock signal. Transmitter section control is a function of the ACE's Line Control Register.

The ACE Transmitter Holding Register receives data off the Internal Data Bus and, when the shift register is idle, moves it into the Transmitter Shift Register. The Transmitter Shift Register serializes the data and outputs it at the Serial Output (SOUT). If the Transmitter Holding Register is empty and the Transmitter Holding Register Empty (THRE) interrupt is enabled, an interrupt is generated. This interrupt is cleared when a character is loaded into the register.

Interrupt enable register (IER)

The Interrupt Enable Register enables each of the four types of interrupts (refer to Table 4) and the INTRPT output signal in response to an interrupt generation. The Interrupt Enable Register can also be used to disable the interrupt system by setting bits 0 through 3 to logic 0. The contents of this register are summarized in Table 3 and are described below.

- Bit 0. This bit, when set to logic 1, enables the Received Data Available interrupt.
- Bit 1. This bit, when set to logic 1, enables the Transmitter Holding Register Empty interrupt.
- Bit 2. This bit, when set to logic 1, enables the Receiver Line Status interrupt.
- Bit 3. This bit, when set to logic 1, enables the Modern Status interrupt.

Bits 4 thru 7. Bits 4 through 7 in the Interrupt Enable Register are not used and are always set to logic 0.

PRINCIPLES OF OPERATION

interrupt identification register (IIR)

The ACE has an on-chip interrupt generation and prioritization capability that permits a flexible interface with most microprocessors.

The ACE provides four prioritized levels of interrupts:

- Priority 1 Receiver line status (highest priority)
- Priority 2 Receiver data ready
- Priority 3 Transmitter holding register empty
- Priority 4 Modem status (lowest priority)

When an interrupt is generated, the Interrupt Identification Register indicates that an interrupt is pending and the type of that interrupt in its three least significant bits (bits 0, 1, and 2). The contents of this register are summarized in Table 3 and described in Table 4.

Bit 0. This bit can be used either in a hardwire-prioritized, or polled interrupt system. If this bit is a logic 0, an interrupt is pending. When bit 0 is a logic 1, no interrupt is pending.

Bits 1 and 2. These two bits are used to identify the highest priority interrupt pending, as indicated in Table 4.

Bits 3 thru 7. Bits 3 through 7 in the Interrupt Identification Register are not used and are always set at logic 0.

INTERRUPT IDENTIFICATION REGISTER BIT 2 BIT 1 BIT 0		PRIORITY	INTERRUPT TYPE	INTERRUPT SOURCE	INTERRUPT RESET METHOD	
]				
0	0	1	None	None	None	—
1	1	0	1	Receiver line status	Overrun error, parity error, framing error or break interrupt	Reading the Line Status register
1	0	0	2	Received data available	Receiver data available	Reading the Receiver buffer Buffer register
0	1	0	3	Transmitter Holding register empty	Transmitter Holding register empty	Reading the Interrupt Identification register (if source of interrupt) or writing into the Transmitter Holding register
0	0	0	4	Modem status	Clear to Send, Data Set Ready, Ring Indicator, or Data Carrier Detect	Reading the Modem Status register

TABLE 4. INTERRUPT CONTROL FUNCTIONS

PRINCIPLES OF OPERATION

line control register (LCR)

The system programmer controls the format of the asynchronous data communication exchange through the Line Control register. In addition, the programmer is able to retrieve, inspect, and modify the contents of the Line Control register; this eliminates the need for separate storage of the line characteristics in system memory. The contents of this register are summarized in Table 3 and are described below.

Bits 0 and 1. These two bits specify the number of bits in each transmitted or received serial character. These bits are encoded as follows:

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bit 2. This bit specifies either one, one and one-half, or two Stop bits in each transmitted character. If bit 2 is a logic 0, one Stop bit is generated in the data. If bit 2 is a logic 1, the number of Stop bits generated is dependent on the word length selected with bits 0 and 1. The Receiver checks the first Stop bit only, regardless of the number of Stop bits selected. The number of Stop bits generated, in relation to word length and bit 2, is shown in the following.

Bit 2	Word Length Selected by Bits 1 and 2	Number of Stop Bits Generated
0	Any word length	1
1	5 bits	1 1/2
1	6 bits	2
1	7 bits	2
1	8 bits	2

Bit 3. This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated in transmitted data between the last data word bit and the first stop bit. In received data, if bit 3 is a logic 1, parity is checked. When bit 3 is a logic 0, no parity is generated or checked.

Bit 4. Bit 4 is the Even Parity Select bit. When parity is enabled by bit 3: a logic 1 in bit 4 produces Even Parity (an even number of logic is in the data and parity bits) and a logic 0 in bit 4 produces Odd Parity (an odd number of logic 1s).

Bit 5. This is the Stick parity bit. When bits 3, 4, and 5 are logic 1s, the Parity bit is transmitted and checked as a logic 0. When bits 3 and 5 are logic 1s and bit 4 is a logic 0, the Parity bit is transmitted and checked as a logic 1.

Bit 6. This bit is the Break Control bit. Bit 6 is set to a logic 1 to force a break condition, i.e, a condition where the Serial Output (SOUT) pin is forced to the spacing (logic 0) state. When bit 6 is set to a logic 0, the break condition is disabled. The break condition has no effect on the transmitter logic, it only effects the serial output.

Bit 7. This bit is the Divisor Latch Access bit (DLAB). Bit 7 must be set to a logic 1 to access the Divisor Latches of the Baud Generator during a read or write. Bit 7 must be set to a logic 0 during a read or write to access the Receiver Buffer, the Transmitter Holding register, or the Interrupt Enable register.

modem control register (MCR)

The Modem Control register is an 8-bit register that controls an interface with a modem, data set, or peripheral device that is emulating a modem. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 (DTR) controls the Data Terminal Ready (DTR) output. Setting this bit to a logic 1 forces the DTR output to its active state (low). When bit 0 is set to a logic 0, DTR goes high.

Bit 1. Bit 1 (RTS) controls the Request to Send (RTS) output in a manner identical to Bit 0's control over the DTR output.

Bit 2. Bit 2 (OUT 1) controls the Output 1 ($\overline{OUT 1}$) signal, a user designated output signal, in a manner identical to Bit 0's control over the \overline{DTR} output.

Bit 3. Bit 3 (OUT 2) controls the Output 2 (OUT 2) signal, a user designated output signal, in a manner identical to Bit 0's control over the DTR output.

Bit 4. Bit 4 provides a local loopback feature for diagnostic testing of the ACE. When this bit is set to a logic high, the following occurs:

- 1. The transmitter Serial Output (SOUT) is set high.
- 2. The receiver Serial Input (SIN) is disconnected.
- 3. The output of the Transmitter Shift register is looped back into the Receiver Shift register input.
- 4. The four modem control inputs (CTS, DSR, DCD, and RI) are disconnected.
- 5. The four modem control outputs (DTR, RTS, OUT 1, and OUT 2) are internally connected to the four modem control inputs.
- 6. The four modem control output pins are forced to their inactive states (high).

In the diagnostic mode, data that is transmitted is immediately received. This allows the processor to verify the transmit- and receive-data paths to the ACE. The receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational but the modem control interrupt's sources are now the lower four bits of the Modem Control register instead of the four modem control inputs. All interrupts are still controlled by the Interrupt Enable register.

Bit 5 through 7. These bits are set to logic 0.

line status register (LSR)[†]

The Line Status Register provides information to the CPU concerning the status of data transfers. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 is the Data Ready (DR) indicator for the receiver. This bit is set to a logic 1 condition whenever a complete incoming character has been received and transferred into the Receiver Buffer register and is reset to logic 0 by reading the Receiver Buffer Register.

Bit 1[‡]. Bit 1 is the Overrun Error (OE) indicator. When this bit is set to logic 1, it indicates that before the character in the Receiver Buffer register was read, it was overwritten by the next character transferred into the register. The OE indicator is reset every time the CPU reads the contents of the Line Status register.

Bit 2[‡]. Bit 2 is the Parity Error (PE) indicator. When this bit is set to logic 1, it indicates that the parity of the received data character does not match the parity selected in the Line Control Register (bit 4). The PE bit is reset every time the CPU reads the contents of the Line Status register.

Bit 3[‡]. Bit 3 is the Framing Error (FE) indicator. When this bit is set to logic 1, it indicates that the received character did not have a valid (logic 1) Stop bit. The FE bit is reset every time the CPU reads the contents of the Line Status register.

[†] The Line Status register is intended for read operations only; writing to this register is not recommended outside of a factory testing environment.

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

Bit 4[‡]. Bit 4 is the Break Interrupt (BI) indicator. When this bit is set to logic 1, it indicates that the received data input was held in the logic 0 state for longer than a full-word transmission time. A "full-word transmission time" is defined as the total time of the Start, Data, Parity, and Stop bits. The BI bit is reset every time the CPU reads the contents of the Line Status register.

Bit 5. Bit 5 is the Transmitter Holding Register Empty (THRE) indicator. This bit is set to a logic 1 condition when the Transmitter Holding Register is empty, indicating that the ACE is ready to accept a new character. If the THRE interrupt is enabled when the THRE bit is a logic 1, then an interrupt is generated. THRE is set to a logic 1 when the contents of the Transmitter Holding Register are transferred to the transmitted Shift Register. This bit is reset to logic 0 concurrent with the loading of the Transmitter Holding Register by the CPU.

Bit 6. Bit 6 is the Transmitter Empty (TEMT) indicator. This bit is set to a logic 1 when the Transmitter Holding register and the Transmitter Shift register are both empty. When either the Transmitter Holding register or the Transmitter Shift register contains a data character, the TEMT bit is reset to logic 0.

Bit 7. This bit is always reset to logic 0.

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

modem status register (MSR)

The Modem Status register is an 8-bit register that provides information about the current state of the control lines from the modem, data set, or peripheral device to the CPU. Additionally, four bits of this register provides change information; when a control input from the modem changes state the appropriate bit is set to logic 1. All four bits are reset to logic 0 when the CPU reads the Modem Status register. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 is the Delta Clear to Send (DCTS) indicator. This bit indicates that the CTS input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modern Status Interrupt is enabled, a Modern Status Interrupt is generated.

Bit 1. Bit 1 is the Delta Data Set Ready (DDSR) indicator. This bit indicates that the DSR input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modern Status Interrrupt is enabled, a Modern Status Interrupt is generated.

Bit 2. Bit 2 is the Trailing Edge of Ring Indicator (TERI) detector. This bit indicates that the RI input to the chip has changed from a low to a high state. When this bit is a logic 1 and the Modern Status Interrrupt is enabled, a Modern Status Interrupt is generated.

Bit 3. Bit 3 is the Delta Data Carrier Detect (DDCD) indicator. This bit indicates that the DCD input to the chip has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modern Status Interrupt is enabled, a Modern Status Interrupt is generated.

Bit 4. Bit 4 is the complement of the Clear to Send (\overline{CTS}) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 1 (RTS).

Bit 5. Bit 5 is the complement of the Data Set Ready (DSR) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 0 (DTR).

Bit 6. Bit 6 is the complement of the Ring Indicator (\overline{RI}) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control registers bit 2 (OUT 1).

Bit 7. Bit 7 is the complement of the Data Carrier Detect (\overline{DCD}) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control registers bit 3 (OUT 2).

scratch register (SCR)

The Scratch register is an 8-bit register that is intended for the programmer's use as a "scratchpad," in the sense that it will temporarily hold the programmer's data without affecting any other ACE operation.

programmable baud generator

The ACE contains a programmable Baud Generator that takes a clock input in the range between DC and 9 MHz and divides it by a divisor in the range between 1 and $2^{16}-1$. The output frequency of the Baud Generator is sixteen times (16 X) the baud rate. The formula for the divisor is:

divisor # = XTAL1 frequency input \div (desired baud rate X 16)

Two 8-bit registers, called Divisor Latches, are used to store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization of the ACE in order to ensure desired operation of the Baud Generator. When either of the Divisor Latches is loaded, a 16-bit baud counter is also loaded to prevent long counts on initial load.

Tables 5 and 6, which follow, illustrate the use of the Baud Generator with crystal frequencies of 1.8432 MHz and 3.072 MHz, respectively. For baud rates of 38.4 kilobits per second and below, the error obtained is very small. The accuracy of the selected baud rate is dependent on the selected crystal frequency.

Refer to Figure 10 for examples of typical clock circuits.

PRINCIPLES OF OPERATION

TABLE 5. BAUD RATES USING A 1.8432-MHz CRYSTAL


DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
1800	64	
2000	58	0.69
2400	~ 48	
3600	32	
4800	24	
7200	16	
9600	12	
19200	6	
38400	3	
56000	2	2.86

TABLE 6. BAUD RATES USING A 3.072-MHz CRYSTAL

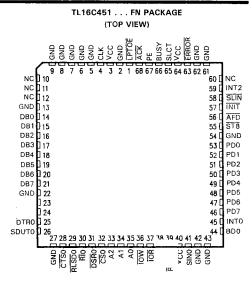
DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	
75	2560	
110	1745	0.026
134.5	1428	0.034
150	1280	
300	640	
600	320	
1200	160	
1800	107	0.312
2000	96	
.:	80	
•	53	0.628
4800	40	
7200	27	1.23
9600	20	
19200	10	
38400	5	

TL16C450 Vcc DRIVER EXTERNAL CLOCK XTAL1 OPTIONAL DRIVER OSCILLATOR CLOCK OPTIONAL TO BAUD CLOCK GENERATOR OUTPUT LOGIC XTAL2 Vcc XTAL1 C1 Rp Ş CRYSTAL OSCILLATOR CLOCK RX2 TO BAUD GENERATOR \sim XTAL2 LOGIC < C2

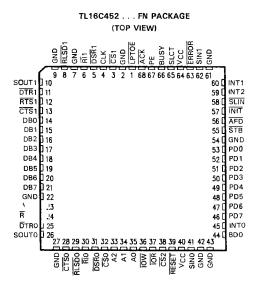
PRINCIPLES OF OPERATION

CRYSTAL	Rp	R _{X2}	C1	C2
3.1 MHz	1 MΩ	1.5 kΩ	10-30 pF	40-60 pF
1.8 MHz	1 MΩ	1.5 kΩ	10-30 pF	40 -60 pF

FIGURE 10. TYPICAL CLOCK CIRCUITS

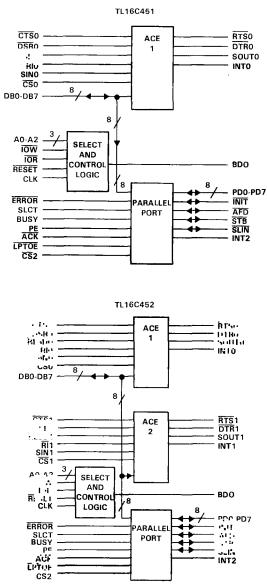


D3284, MAY 1989-REVISED JANUARY 1990


- Integrates Most Communications Card Functions From the IBM PC/AT or Compatibles with Single-/ or Dual-Channel Serial Ports
- TL16C451 Consists of One TL16C450 Plus Centronix Printer Interface
- TL16C452 Consists of Two TL16C450s Plus Centronix Printer Interface
- Fully Programmable Serial Interface Characteristics:
 - 5-, 6-, 7-, or 8-Bit Characters
 - Even-, Odd-, or No-Parity Bit Generation and Detection
 - 1-, 1 1/2-, or 2 Stop-Bit Generation
 Programmable Baud Rate (DC to 256 Kilobits per Second)
- Fully Double Buffered for Reliable
 Asynchronous Operation

description

The TL16C451 and TL16C452 provide singleand dual-channel (respectively) serial interfaces along with a single Centronix parallel-port interface. The serial interfaces provide a serial-toparallel conversion for data received from a peripheral device or modem and a parallel-toserial conversion for data transmitted by a computer CPU. The parallel interface provides a bidirectional parallel data port that fully conforms to the requirements for a Centronix-type printer. A computer CPU can read the status of the asynchronous-communications-element (ACE) interfaces at any point in the operation. The status ... les the state of the modem signals (CTS. · RLSD, and RI) and any changes to these signals that have occurred since the last time they were read, the state of the transmitter and receiver including errors detected on received data, and printer status. The TL16C451 and TL16C452 provide control for modem signals (RTS and DTR), interrupt enables, baudrate programming, and parallel-port control signals.



NC-No internal connection

functional block diagrams

PIN		· · · · ·	
NAME [†]	NO.	I/O	DESCRIPTION
A0 A1 A2	35 34 33	I	Register Select. Three inputs used during read and write operations to select the register to read from or write to. Refer to Table 1 for register addresses, also refer to the chip select signals (CS0, CS1, CS2).
ACK	68	1	Line Printer Acknowledge. This input goes low to indicate a successful data transfer has taken place. It generates a printer-port interrupt during its positive transition.
AFD	56	I/O	Line Printer Autofeed. This open-drain line provides the line printer with a low signal when continuous- form paper is to be autofed to the printer. An internal pullup is provided.
BDO	44	0	Bus Buffer Output. This output is active (high) when the CPU is reading data. When active, this output can be used to disable an external transceiver.
BUSY	66	I	Line Printer Busy. This is an input line from the line printer that goes high when the line printer is not ready to accept data.
CLK	4	1/0	External Clock, Connects the ACE to the main timing reference.
CS0 CS1 [V _{CC}] CS2	32 3 38	1	Chip Selects. Each chip select enables read and write operations to its respective channel. $\overline{CS0}$ and $\overline{CS1}$ select serial channels 0 and 1, respectively, and $\overline{CS2}$ selects the parallel port.
CTS0 CTS1 [GND]	28 13	1	Clear To Send. CTS is an active-low modem status signal whose state can be checked by reading bit 4 (CTS) of the Modem Status Register Bit 0 (DCTS) of the Modem Status Register indicates that this signal has changed state since the last read from the Modem Status Register. If the Modem Status Interrupt is enabled when CTS changes state, an interrupt is generated.
DB0	14		
DB1	15		
DB2	16		
DB3	17	1/O	Data Bus. Eight 3-state data lines provide a bidirectional path for data, control, and status information
DB4	18		between the TL16C451/TL16C452 and the CPU. DB0 is the least significant bit (LSB).
DB5	19		
DB6	20		
DB7	21		
) 1 [GND]	31 5		Data Set Ready. DSR is an active-low modem status signal whose state can be checked by reading bit 5 (DSR) of the Modem Status Register. Bit 1 (DDSR) of the Modem Status Register indicates that this signal has changed state since the last read from the Modem Status Register. If the modem status interrupt is enabled when the DSR changes state, an interrupt is generated.
DTR0 DTR1 [NC]	25 11	0	Data Terminal Ready. When active (low), DTR informs a modem or data set that the ACE is ready to establish communication. DTR is placed in the active state by setting the DTR bit of the Modem Control Register to a high level. DTR is placed in the inactive state either as a result of a reset or during loop mode operation or resetting bit 0 (DTR) of the Modem Control Register.
ERROR	63	I	Line Printer Error. This is an Input line from the line printer. The line printer reports an error by holding this line low during the error conditon.
INIT	57	1/0	Line Printer initialize. This open-drain line provides the line printer with a signal that allows the line printer initialization routine to be started. An internal pullup is provided.
INTO INT1 [NC]	45 60	0	interrupt. INTn is an active-high 3-state output that is enabled by bit 3 of the MCR. When active, iNTn informs the CPU that the ACE has an interrupt to be serviced. Four conditions that cause an interrupt to be issued are; a receiver error, received data is available, the transmitter holding register is empty, and an enabled modem status interrupt. The INTn output is reset (low) either when the Interrupt is serviced.
INT2	59	0	Printer Port Interrupt. This signal is an active-high 3-state output generated by the positive transition of - It is enabled by bit 4 of the Write Control Register.
IOR	37	1	Data Read Strobe. When IOR input is active (low) while the ACE is selected, the CPU is allowed to read status information or data from a selected ACE register.
IOW	36	1	Data Write Strobe. When IOW input is active (low) while the ACE is selected, the CPU is allowed to write control words or data into a selected ACE register.

[†] Names shown in brackets are for the TL16C451.

PIN	NO.	1/0	DESCRIPTION
	1	1	Parallel Data Output Enable. When low, this signal enables the Write Data Register to the PD0-PD7 lines. A high puts the PD0-PD7 lines in the high-impedance state allowing them to be used as inputs. LPTOE is usually tied low for line printer operation.
PD0-PD7	53-46	1/0	Parallel Data Bits (0-7). These eight lines provide a byte-wide input or output port to the system. The eight lines are held in a high-impedance state when LPTOE is high.
PE	67	1	Line Printer Paper Empty. This is an input line from the line printer that goes high when the printer runs out of paper.
RESET	39	1	Reset. When active (low), RESET clears most ACE registers and sets the state of various output signals. Refer to Table 2, ACE Reset Functions.
Rio Ri1 [gnd]	30 6	1	Ring Indicator. \overline{RI} is an active-low modern status signal whose state can be checked by reading bit 6 (Ri) of the Modern Status Register. Bit 2 (TERI) of the Modern Status Register indicates that the \overline{RI} input has transitioned from a low to a high state since the last read from the Modern Status Register. If the Modern Status Interrupt is enabled when this transition occurs, an interrupt is generated.
RLSD0 RLSD1 [GND]	29 8	1	Receive Line Signal Detect. RLSD0 is an active-low modern status signal whose state can be checked by reading bit 7 of the Modern Status Register. Bit 3 (DRLSD) of the Modern Status Register indicates that this signal has changed state since the last read from the Modern Status Register. If the Modern Status Interrupt is enabled when RLSD0 changes state, an interrupt is generated. This bit is low when a data carrier is detected.
i0 · i1 [NC]	24 12	0	Request To S When active (low), this signal informs the modern or data set that the ACE is ready to transmit data set to its active state by setting the RTS Modern Control Register bit and is set to its inactive (high) state either as a result of a reset or during loop mode operations or by resetting bit 1 (RTS) of the modern control register.
SINO SIN1 [GND]	41 62	1	Serial input. Serial data input from a connected communications device.
SLCT	65	1	Line Printer Selected. This is an Input line from the line printer that goes high when the line printer has been selected.
SLIN	58	1/0	Line Printer Select. This open-drain line selects the printer when it is active (low). An internal pullup is provided.
SOUT0 SOUT1 [NC]	26 10	0	Serial Output. Composite serial data output to a connected communication device. SOUT is set to the Marking (logic 1) state as a result of reset.
STB	55	i/O	Line Printer Strobe. This open-drain line provides communication synchronization between the TL16C451/TL16C452 and the line printer. When it is active (low), it provides the line printer with a signal to latch the data currently on the parallel port. An internal pullup is provided.
Vcc	23,40, 64		5-V Supply Voltage
GND	2,7,9, 22,27, 42,43, 54,6 1		Supply Common

TNames shown in brackets are for the TL16C451.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, VCC (see Note 1)	
Input voltage range at any input, VI	
Output voltage range, Vo	
Continuous total power dissipation	
Operating free-air temperature range	
Storage temperature range	
Case temperature for 10 seconds	
DTE 1: All voltage values are with respect to GND.	

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply	4.75	5	5.25	V
High-le	2		Vcc	V
I ow-level input voltage, VIL	-0.5		0.8	V
· · · · ig free-air temperature, TA	0		70	ç

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
		$i_{OH} = -0.4$ mA on DB0-DB7				
M	High-ievel output voltage	$i_{OH} = -2 \text{ mA to } 4 \text{ mA on PD0-PD7}$	2.4			v
V _{OH}		$I_{OH} = -0.2$ mA on INIT, AFD, STB, and SLIN	2.4			v
		$I_{OH} = -0.2$ mA on all other outputs				
		IOL = 4 mA on DB0-DB7				
		IOL = 12 mA on PD0-PD7				
VOL	Low-level output voltage	IOL = 10 mA on INIT, AFD, STB, and SLIN	1		0.4	v
	· _	(see Note 2)	1			
		IOL = 2 mA on all other outputs	-1			
	· · · ·	$V_{CC} = 5.25 V, V_{SS} = 0,$				
likg	Input leakage current	$V_{I} = 0$ to 5.25 V,			±10	μΑ
ing		All other pins floating				
	High-impedance output current	$V_{CC} = 5.25 V$, $V_{SS} = 0$,				
		$V_{O} = 0$ to 5.25 V,				
loz		Chip selected and write mode,	±.		±20	μA
		or chip deselected				
		$V_{CC} = 5.25 V$, $T_A = 25^{\circ}C$,				
		SIN, DSR, RLSD, CTS, and RI at 2 V,				
lcc	Supply current	All other inputs at 0.8 V,			10	mA
00	17 F	XTAL1 at 4 MHz, No load on outputs.				
		Baud rate = 50 kilobits per second				
CXTAL1	Clock input capacitance			15	20	pF
CXTAL2	Clock output capacitance	$V_{CC} = 0,$ $V_{SS} = 0,$		20	30	pF
Ci	Input capacitance	$f = 1 \text{ MHz}, \qquad T_A = 25^{\circ}\text{C},$		6	10	pF
Co	Output nce	All other pins grounded		10	20	pF

All typical values are at $v_{CC} = 5 V$, $T_A = 25^{\circ}C$. NOTE 2: INIT, AFD, STB, and SLIN are open-collector output plns that each have an internal pullup to V_{CC} . This will generate a maximum of 2 mA of internal I_{OL} per pin. In addition to this internal current, each pin will sink at least 10 mA while maintaining the V_{OL} specification of 0.4 V Max.

system timing requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	FIGURE	MIN MAX	UNIT
^t cR	Cycle time, read (tw7 + td8 + td9)		175	ns
tcW	Cycle time, write $(t_{we} + t_{d5} + t_{d6})$		175	ns
twt	Pulse du , cl. jh	1	50	ns
tw2	Pulse duration, Clour ow	1	50	ns
tw5	Pulse duration, write strobe	2	80	ns
t _{w6}	Pulse d 1, read strobe	3	80	ns
twRST	Pulse duration, reset	······	1000	ns
t _{su1}	Setup time, address	2,3	15	ns
^t su2	Setup time, chip select	2,3	15	ns
t _{su3}	Setup time, data	2	15	ns
th1	Hold time, address	2,3	20	ns
th2	Hold time, chip select	2,3	20	ns
th3	Hold time, data	2	15	ns
td3	Delay time, write cycle	2	80	ns
t _{d4}	Delay time, read cycle	3	80	ns

system switching characteristics over recommended ranges of supply voltage and operating freeair temperature

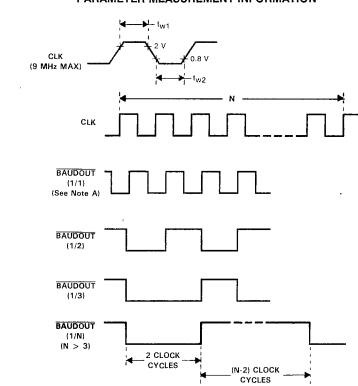
	PARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
t _{d5}	Delay time, read to data	3	CL = 100 pF		60	ns
^t d6	Delay time, read to floating data	3	CL = 100 pF	0	60	ns
tdis(R)	Read to driver disable	3	Cլ = 100 pF		60	ns

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature

[PARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
td7	Delay time, RCLK to sample	4			100	ns
td8	Delay time, stop to set interrupt	4		1	1	RCLK cycles
td9	Delay time, read RBR/LSR to reset interrupt	4	CL = 100 pF		140	ns

transmitter switching characteristics over recommended ranges of supply voltage and operating free-air temperature

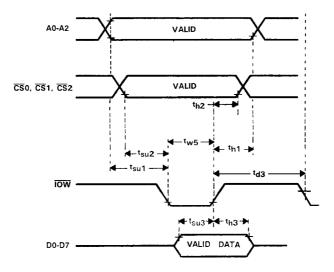
	PARAMETER	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
td10	Delay time, initial write THR to transmit start	5		8	24	baudout cycles
¹ d11	Delay time, stop to interrupt	5		8	8	baudout cycles
td12	Delay time, write THR to reset interrupt	5	C _L = 100 pF		140	ns
td13	Delay time, initial write to interrupt (THRE)	5		16	32	baudout cycles
tdt4	Delay time, read IIR to reset interrupt (T	5	CL = 100 pF		140	ns


modem control switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	FIGURE	TEST CONDITIONS	MIN MAX	UNIT
td15 Delay time, write MCR to output	6	CL = 100 pF	100	ns
td16 Delay time, modem input to set interrupt	6	CL = 100 pF	170	ns
td17 Delay time, read MSR to reset interrupt	6	C _L = 100 pF	140	ns

parallel port switching characteristics over recommended ranges of supply voltage and operating free-air temperature

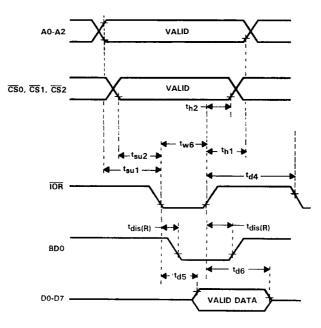
,	PARAMETER	FIGURE	TEST CONDITIONS	MIN MAX	UNIT
td18	Delay time, write parallel port control to output	7	C _L = 100 pF	60	ns
^t d19	Delay time, write parallel port data to output	7	CL = 100 pF	60	ns
td20	Delay time, output enable to data	7	· CL = 100 pF	60	ns
td21	Delay time, ACK to iNT2	7	CL = 100 pF	100	ns



PARAMETER MEASUREMENT INFORMATION

NOTE A: BAUDOUT is an internally generated signal used in the receiver and transmitter circuits to synchronize data.

FIGURE 1. BAUD GENERATOR TIMING



PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

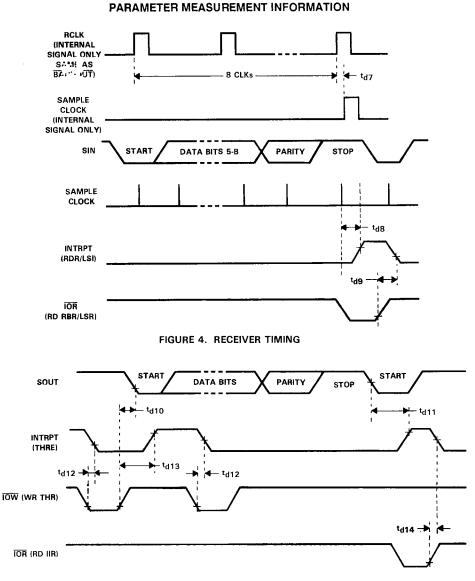
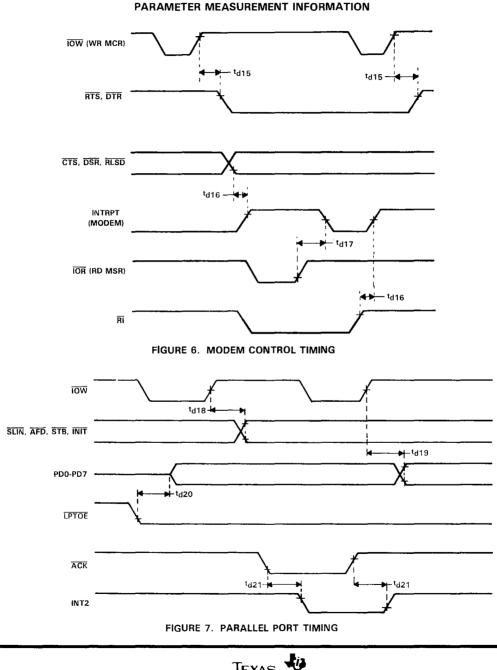



FIGURE 5. TRANSMITTER TIMING

SERIAL 9-PIN DATA -CHANNEL O "D" BUS -BUFFERS CONN ACE AND PRINTER ADDR PORT BUS CTL BUS 25-PIN PARALLEL OPTION PORT "D" JUMPERS R/C NET CONN FIGURE 8. TL16C451

APPLICATION INFORMATION

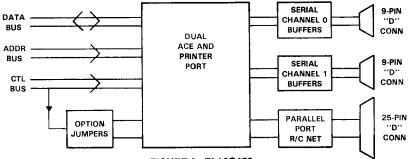


FIGURE 9. TL16C452

PRINCIPLES OF OPERATION

DLAB [†]	A2	A1	AO	REGISTER
0	L	L	L	Receiver buffer (read), transmitter holding register (write)
0	_L	L	н	Interrupt enable
- x	L	н	Ł	Interrupt identification (read only)
x	L	н	н	Line control
X	н		L	Modem control
x	н	L	н	Line ··· s
X	— н	- н	L	Mocum Jatus
x	н	н	н	Scratch
1	L.	L	L	Divisor latch (LSB)
1	L	Ŀ	н	Divisor Latch (MSB)

TABLE 1. REGISTER SELECTION

[†] The Divisor Latch Access Bit (DLAB) is the most significant bit of the Line Control Register. The DLAB signal is controlled by writing to this bit location (see Table 3).

REGISTER/SIGNAL	CAN'R L	RESET STATE
Interrupt Enable Register	Reset	All bits low (0-3 forced and 4-7 permanent)
Interrupt Identification Register	Reset	Bit 0 is high, bits 1 and 2 are low, and bits 3-7 are permanently low
Line Control Register	Reset	All bits low
Modem Control Register	Reset	All bits low
Line Status Register	Reset	Bits 5 and 6 are high, all other bits are low
Modem Status Register	Reset	Bits 0-3 are low, bits 4-7 are input signals
SOUT	Reset	High
INTRPT (Receiver Error Flag)	Read Lonineset	Low
INTRPT (Received Data Available)	Read RBR/Reset	Low
INTRPT (Transmitter Holding Register Empty)	Read TH	Low
INTRPT (Modern Status Changes)	Read MSR/Reset	Low
OUT 2 (interrupt enable)	Reset	High
RTS	Reset	High
DTR	Reset	High
OUT 1	Reset	High
Scratch Register	Reset	No effect
Divisor Latch (LSB and MSB) Registers	Reset	No effect
Receiver Buffer Registers	Reset	No effect
Transmitter Holding Registers	Reset	No effect

TABLE 2. ACE RESET FUNCTIONS

PRINCIPLES OF OPERATION

accessible registers

The system programmer, via the CPU, has access to and control over any of the ACE registers that are summarized in Table 3. These registers are used to control ACE operations, receive data, and transmit data. Descriptions of these registers follow Table 3.

					REG	ISTER ADDR	ESS				
	0 DLAB = 0	0 DLAB=0	1 DLAB=0	2	3	4	5	6	7	0 DLAB = 1	1 DLAB = 1
Bit No.	Receiver Buffer • 3r (1000 Only)	Transmitter ng ter ter Unite Only)	Interrupt Enable Register	Interrupt Ident. Register (Read Only)	Line Control Register	Modem Control Register	Line Status Register	Modem S:sr	Scratch Register	Divisor Latch (LSB)	Latch (MSB)
	RBR	THR	IER	11R	LCR	MCR	LSR	MSR	SCR	DLL	DLM
0	Data Bit 0*	Data Bit 0	Enabla Received Data Availabla interrupt (ERBFI)	"0" if interrupt Pending	Word Length (WLS0)	Data		Delta Ciear to Send (DCTS)	Bit O	Bit 0	Bit 8
1	Data Bit 1	Data Bit 1	Enable Transmitter g ir	interrupt ID Bit (0)	Word Length Select Bit 1 (WLS1)	R: tc	Overrun Error (OE)	Deita Data	Bit 1	Bit 1	Bit 9
2	Data Bit 2	Data Bit 2	Receiver Line Status interrupt (ELSI)	interrupt ID Bit (1)	Number of Stop Bits (STB)	Out 1	Parity Error (PE)	Trailing Edge Ring indicator (TERI)	Bit 2	Bit 2	Bit 10
3	Data Bit 3	Data Bit 3	Enable MODEM Status Interrupt (EDSSI)	0	Parity Enable (PEN)	Dut 2 (interrupt Enable)	Framing Error (FE)	Delta Receive Line Signal Detect (DRLSD)	Bit 3	Bit 3	Bit 11
4	Data Bit 4	Data Bit 4	0	0	Even	Loop	Break interrupt (Bi)	Clear to Send (CTS)	Bit 4	Bit 4	Bit 12
5	Data Bit 5	Data Bit 5	0	0	Stick Parity	0	Transmitter Holding Register (THRE)	Data Set Ready (DSR)	Bit 5	Bit 5	Bit 13
6	Data Bit 6	Data Bit 6	0	0	Set Break	0	Transmitter Empty (TEMT)	Ring Indicator (Ri)	Bit 6	Bit 6	Bit 14
7	Data Bit 7	Data Bit 7	0	0	Divisor Latch Access Bit (DLAB)	o	0	Receive	Bit 7	Bit 7	Bit 15

TABLE 3. SUMMARY OF ACCESSIBLE REGISTERS

* Bit 0 is the least significant bit, it is the first bit serially transmitted or received.

PRINCIPLES OF OPERATION

receiver buffer register (RBR)

The ACE's receiver section consists of a Receiver Shift Register and a Receiver Buffer Register. Timing is supplied by the 16 X Receiver Clock (RCLK). Receiver section control is a function of the ACE's Line Control Register.

The ACE's Receiver Shift Register receives serial data from the Serial Input (SIN) pin. The Receiver Shift Register then converts the data to a parallel form and loads it into the Receiver Buffer Register. When a character is placed in the Receiver Buffer Register and the Received Data Available interrupt is enabled, an interrupt is generated. This interrupt is cleared when the data is read out of the Receiver Buffer Register.

transmitter holding register (THR)

The ACE's transmitter section consists of a Transmitter Holding Register and a Transmitter Shift Register. Timing is supplied by the Baud Out (BAUDOUT) clock signal. Transmitter section control is a function of the ACE's Line Control Register.

The ACE Transmitter Holding Register receives data off the Internal Data Bus and, when the shift register is idle, moves it into the Transmitter Shift Register. The Transmitter Shift Register serializes the data and outputs it at the Serial Output (SOUT). If the Transmitter Holding Register is empty and the Transmitter Holding Register Empty (THRE) interrupt is enabled, an interrupt is generated. This interrupt is cleared when a character is loaded into the register.

interrupt enable register (IER)

The Interrupt Enable Register enables each of the four types of interrupts (refer to Table 4) and the INTRPT output signal in response to an interrupt generation. The Interrupt Enable Register can also be used to disable the interrupt system by setting bits 0 through 3 to logic 0. The contents of this register are summarized in Table 3 and are described below.

Bit 0. This bit, when set to logic 1, enables the Received Data Available interrupt.

Bit 1. This bit, when set to logic 1, enables the Transmitter Holding Register Empty interrupt.

Bit 2. This bit, when set to logic 1, enables the Receiver Line Status interrupt.

Bit 3. This bit, when set to logic 1, enables the Modem Status interrupt.

Bits 4 thru 7. Bits 4 through 7 in the Interrupt Enable Register are not used and are always set to logic 0.

PRINCIPLES OF OPERATION

interrupt identification register (IIR)

The ACE has an on-chip interrupt generation and prioritization capability that permits a flexible interface with most microprocessors.

The ACE provides four prioritized levels of interrupts:

Priority 1 - Receiver line status (highest priority)

Priority 2 - Receiver data ready

Priority 3 - Transmitter holding register empty

Priority 4 - Modem status (lowest priority)

When an interrupt is generated, the Interrupt Identification Register indicates that an interrupt is pending and the type of that interrupt in its three least significant bits (bits 0, 1, and 2). The contents of this register are summarized in Table 3 and described in Table 4.

Bit 0. This bit can be used either in a hardwire-prioritized, or polled interrupt system. If this bit is a logic 0, an interrupt is pending. When bit 0 is a logic 1, no interrupt is pending.

Bits 1 and 2. These two bits are used to identify the highest priority interrupt pending, as indicated in Table 4.

Bits 3 thru 7. Bits 3 through 7 in the Interrupt Identification Register are not used and are always set at logic 0.

IDE	INTERRUPT IDENTIFICATION REGISTER		NTIFICATION PRIORITY		PRIORITY	INTERRUPT TYPE	INTERRUPT SOURCE	INTERRUPT RESET METHOD		
BIT 2	BIT 1	BITO	1							
0	0	1	None	None	None	-				
1	1	0	1	Receiver line status	Overrun error, parity error, framing error or break interrupt	Reading the Line Status register				
1	0	0	2	Received data available	Receiver data available	Reading the Receiver buffer Buffer register				
0	1	0	3	Transmitter Holding register empty	Transmitter Holding register empty	Rea he Interrupt Iden ion register (if source interrupt) or writing into the Transmitter Holding register				
0	0	0	4	Modem status	Clear to Send Data Set y, ator, or Heceive usy, al Detect	Reading the Modem Status register				

TABLE 4. INTERRUPT CONTROL FUNCTIONS

PRINCIPLES OF OPERATION

line control register (LCR)

The system programmer controls the format of the asynchronous data communication exchange through the Line Control register. In addition, the programmer is able to retrieve, inspect, and modify the contents of the Line Control register; this eliminates the need for separate storage of the line characteristics in system memory. The contents of this register are summarized in Table 3 and are described below.

Bits 0 and 1. These two bits specify the number of bits in each transmitted or received serial character. These bits are encoded as follows:

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bit 2. This bit specifies either one, one and one-half, or two Stop bits in each transmitted character. If bit 2 is a logic 0, one Stop bit is generated in the data. If bit 2 is a logic 1, the number of Stop bits generated is dependent on the word length selected with bits 0 and 1. The number of Stop bits generated, in relation to word length and bit 2, is as follows:

Bit 2	Word Length Selected by Bits 1 and 2	Number of Stop Bits Generated
0	Any word length	1
1	5 bits	1 1/2
1	<u> </u>	2
1	7 6.10	2
1	8 bits	2

Bit 3. This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated in transmitted data between the last data word bit and the first stop bit. In received data, if bit 3 is a logic 1, parity is checked. When bit 3 is a logic 0, no parity is generated or checked.

Bit 4. Bit 4 is the Even Parity Select bit. When parity is enabled by bit 3: a logic 1 in bit 4 produces Even Parity (an even number of logic is in the data and parity bits) and a logic 0 in bit 4 produces Odd Parity (an odd number of logic 1s).

Bit 5. This is the Stick parity bit. When bits 3, 4, and 5 are logic 1s, the Parity bit is transmitted and checked as a logic 0. When bits 3 and 5 are logic 1s and bit 4 is a logic 0, the Parity bit is transmitted and checked as a logic 1.

Bit 6. This bit is the Break Control bit. Bit 6 is set to a logic 1 to force a break condition, i.e, a condition where the Serial Output (SOUT) pin is forced to the spacing (logic 0) state. When bit 6 is set to a logic 0, the break condition is disabled. The break condition has no effect on the transmitter logic, it only effects the serial output.

Bit 7. This bit is the Divisor Latch Access bit (DLAB). Bit 7 must be set to a logic 1 to access the Divisor Latches of the Baud Generator during a read or write. Bit 7 must be set to a logic 0 during a read or write to access the Receiver Buffer, the Transmitter Holding register, or the Interrupt Enable register.

modem control register (MCR)

The Modem Control register is an 8-bit register that controls an interface with a modem, data set, or peripheral device that is emulating a modern. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 (DTR) controls the Data Terminal Ready (DTR) or : Setting this bit to a logic 1 forces the DTR output to its active state (low). When bit 0 is set to a logic $0, \pm 1$, goes high.

Bit 1. Bit 1 (RTS) controls the Request to Send (RTS) output in a manner identical to Bit 0's control over the DTR output.

Bit 2. Bit 2 (OUT 1) is a reserved location used only in the loopback mode.

Bit 3. Bit 3 (OUT 2) controls the output enable for the interrupt signal. When set to a logic 1, the interrupt is enabled. When bit 3 is set to a logic 0, the interrupt is disabled.

Bit 4. Bit 4 provides a local loopback feature for diagnostic testing of the ACE. When this bit is set to a logic high, the following occurs:

- 1. The transmitter Serial Output (SOUT) is set high.
- The receiver Serial Input (SIN) is disconnected.
- 3. The output of the Transmitter $\{ \cdot, \cdot e \cdot, \cdot \cdot is \}$ 4. The four modem status inputs $\{ \cdot, \cdot e \cdot, \cdot \cdot is \}$: ed back into the Receiver Shift register input.
- , and RI) are disconnected.
- 5. The modem control register bits (DTR, RTS, OUT1, and OUT2) are connected to the modem status register bits (DSR, CTS, RI, and RLSD), respectively.
- 6. The four modem control output pins are forced to their inactive states (high).

In the diagnostic mode, data that is transmitted is immediately received. This allows the processor to verify the transmit- and receive-data paths to the ACE. The receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational but the modem control interrupt's sources are now the lower four bits of the Modem Control register instead of the four modem control inputs. All interrupts are still controlled by the Interrupt Enable register.

Bit 5 through 7. These bits are set to logic 0.

line status register (LSR)[†]

The Line Status Register provides information to the CPU concerning the status of data transfers. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 is the Data Ready (DR) indicator for the receiver. This bit is set to a logic 1 condition whenever a complete incoming character has been received and transferred into the Receiver Buffer register and is reset to logic 0 by reading the Receiver Buffer Register.

Bit 1[‡]. Bit 1 is the Overrun Error (OE) indicator. When this bit is set to logic 1, it indicates that before the character in the Receiver Buffer register was read, it was overwritten by the next character transferred into the register. The OE indicator is reset every time the CPU reads the contents of the Line Status register.

Bit 2[‡]. Bit 2 is the Parity Error (PE) indicator. When this bit is set to logic 1, it indicates that the parity of the received data character does not match the parity selected in the Line Control Register (bit 4). The PE bit is reset every time the CPU reads the contents of the Line Status register.

Bit 3[‡]. Bit 3 is the Framing Error (FE) indicator. When this bit is set to logic 1, it indicates that the received character did not have a valid (logic 1) Stop bit. The FE bit is reset every time the CPU reads the contents of the Line Status register.

[†] The Line Status register is intended for read operations only; writing to this register is not recommended outside of a factory testing environment.

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

Bit 4[‡]. Bit 4 is the Break Interrupt (BI) indicator. When this bit is set to logic 1, it indicates that the received data input was held in the logic 0 state for longer than a full-word transmission time. A "full-word transmission time" is defined as the total time of the Start, Data, Parity, and Stop bits. The BI bit is reset every time the CPU reads the contents of the Line Status register.

Bit 5. Bit 5 is the Transmitter Holding Register Empty (THRE) indicator. This bit is set to a logic 1 condition when the Transmitter Holding Register is empty, indicating that the ACE is ready to accept a new character. If the THRE interrupt is enabled when the THRE bit is a logic 1, then an interrupt is generated. THRE is set to a logic 1 when the contents of the Transmitter Holding Register are transferred to the transmitted Shift Register. This bit is reset to logic 0 concurrent with the loading of the Transmitter Holding Register by the CPU.

Bit 6. Bit 6 is the Transmitter Empty (TEMT) indicator. This bit is set to a logic 1 when the Transmitter Holding register and the Transmitter Shift register are both empty. When either the Transmitter Holding register or the Transmitter Shift register contains a data character, the TEMT bit is reset to logic 0.

Bit 7. This bit is always reset to logic 0.

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

modem status register (MSR)

The Modem Status register is an 8-bit register that provides information about the current state of the control lines from the modem, data set, or peripheral device to the CPU. Additionally, four bits of this register provides change information; when a control input from the modem changes state the appropriate bit is set to logic 1. All four bits are reset to logic 0 when the CPU reads the Modem Status register. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 is the Delta Clear to Send (DCTS) indicator. This bit indicates that the CTS input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modem Status Interrupt is enabled, a Modem Status Interrupt is generated.

Bit 1. Bit 1 is the Delta Data Set Ready (DDSR) indicator. This bit indicates that the DSR input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modem Status Interrrupt is enabled, a Modem Status Interrupt is generated.

Bit 2. Bit 2 is the Trailing Edge of Ring Indicator (TERI) detector. This bit indicates that the $\overline{\text{RI}}$ input to the chip has changed from a low to a high state. When this bit is a logic 1 and the Modern Status Interrrupt is enabled, a Modern Status Interrupt is generated.

Bit 3. Bit 3 is the Delta Receive Line Signal Detect (DRLSD) indicator. This bit indicates that the RLSD input to the chip has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modem Status Interrupt is enabled, a Modem Status Interrupt is generated.

Bit 4. Bit 4 is the complement of the Clear to Send (\overline{CTS}) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 1 (RTS).

Bit 5. Bit 5 is the complement of the Data Set Ready (DSR) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 0 (DTR).

Bit 6. Bit 6 is the complement of the Ring Indicator (\overline{RI}) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control registers bit 2 (OUT 1).

Bit 7. Bit 7 is the complement of the Receive Line Signal Detect (RLSD) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control registers bit 3 (OUT 2).

scratch register (SCR)

The Scratch register is an 8-bit register that is intended for the programmer's use as a "scratchpad," in the sense that it will temporarily hold the programmer's data without affecting any other ACE operation.

programmable baud generator

The ACE contains a programmable Baud Generator that takes a clock input in the range between dc and 9 MHz and divides it by a divisor in the range between 1 and $2^{16}-1$. The output frequency of the Baud Generator is sixteen times (16 X) the baud rate. The formula for the divisor is:

divisor # = CLK frequency input \div (desired baud rate X 16)

Two 8-bit registers, called Divisor Latches, are used to store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization of the ACE in order to ensure desired operation of the Baud Generator. When either of the Divisor Latches is loaded, a 16-bit baud counter is also loaded to prevent long counts on initial load. For baud rates of 38.4 kilobits per second and below, the error obtained is very small. The accuracy of the selected baud rate is dependent on the selected crystal frequency.

interrupt control logic

The interrupt control logic is shown in Figure 9.

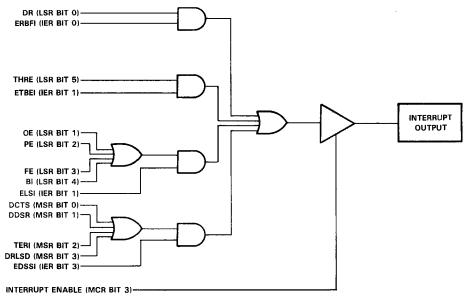


FIGURE 9. INTERRUPT CONTROL LOGIC

parallel port registers

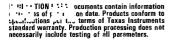
The parallel port registers interface either device to a Centronix-style printer. When Chip Select 2 ($\overline{CS2}$) is low, the parallel port is selected. Tables 5 and 6 show the registers associated with this parallel port. The read or write function of the register is controlled by the state or the read (\overline{IOR}) and write (\overline{IOW}) pin as shown. The Read Data Register allows the microprocessor to read the information on the parallel bus.

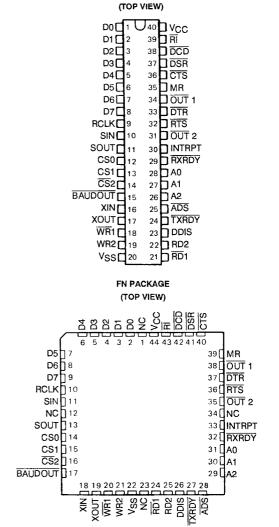
The Read Status Register allows the microprocessor to read the status of the printer in the five most significant bits. The status bits are Printer Busy (\overline{Bl} \cdot , Acknowledge (\overline{ACK}) which is a handshake function, Paper Empty (PE), Printer Selected (SLCT), and Error (\overline{ERROR}). The Read Control Register allows the state of the control lines to be read. The Write Control Register sets the state of the control lines, which are Interrupt Enable (IRQ ENB), Select In (SLIN), Initialize the Printer (\overline{INIT}), Autofeed the Paper (AFD), and Strobe (STB), which informs the printer of the presence of a valid byte on the parallel bus. These signals are set to 0 when a reset occurs. The Write Data Register allows the microprocessor to write a byte to the parallel bus. The parallel port is completely compatible with the parallel port implementation used in the IBM Serial/Parallel Adaptor.

REGISTER	REGISTER BITS								
REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
Read Data	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
Read Status	BUSY	ACK	PE	SLCT	ERROR	1	1	1	
Read Control	1	1	1	IRQ ENB	SLIN	INIT	AFD	STB	
Write Data	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
Write Control	1	1	1	IRQ ENB	SLIN	INIT	AFD	STB	

TABLE 5. PARALLEL PORT REGISTERS

	co						
IOR	IOW	CS2	A1	A0	REGISTER SELECTED		
L	н	L	L	L	Read Data		
L	н	L	L	н	Read Status		
L	н	L	н	L	Read Control		
L	н	L	н	н	Invalid		
н	L	L	L	L	Write Data		
Н	L	L	L	н	Invaild		
н	L	L	н	L	Write Control		
н	L	L	н	н	Invalid		


TABLE 6. PARALLEL PORT REGISTER SELECT



N PACKAGE

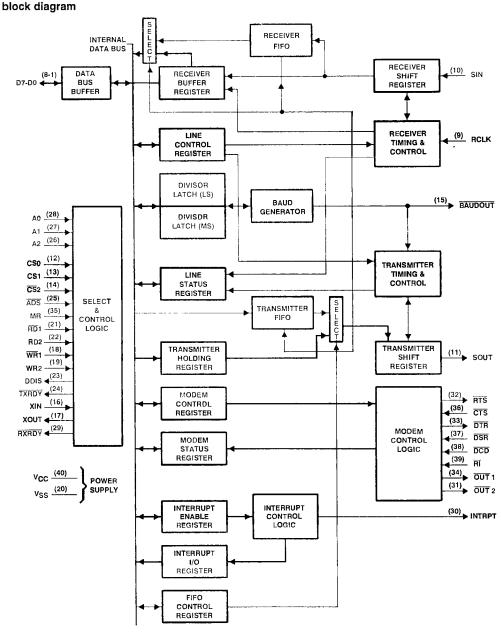
D3128, AUGUST 1989 - REVISED FEBRUARY 1990

- Capable of Running with All Existing TL16C450 Software
- After Reset, All Registers Are Identical to the TL16C450 Register Set
- In the FIFO Mode, Transmitter and Receiver Are Each Buffered with 16-Byte FIFOs to Reduce the Number of Interrupts to the CPU
- In the TL16C450 Mode, Holding and Shin Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
- Programmable Baud Rate Generator Allows Division of Any Input Reference Clock by 1 to (2¹⁶ - 1) and Generates an Internal 16 X Clock
- Adds or Deletes Standard Asynchronous Communication Bits (Start, Stop, and Parity) to or from the Serial Data Stream
- Independent Receiver Clock Input
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Fully Programmable Serial Interface Characteristics:
 - 5-, 6-, 7-, or 8-Bit Characters
 - Even-, Odd-, or No-Parity Bit Generation and Detection
 - 1-, 1 1/2-, or 2-Stop Bit Generation
 - Baud Generation (DC to 256 Kilobits per Second)
- False-Start Bit Detection
- Complete Status Reporting Capabilities
- 3-State TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- Internal Diagnostic Capabilities:
 Loopback Controls for
 - Communications Link Fault Isolation
 Break, Parity, Overrun, Framing Error
 - Simulation
- Fuil Prioritized Interrupt System Controls
- Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
- Faster Plug-In Replacement for National Semiconductor NS16550A

NC-No internal connection

description

The TL16C550A is a functional upgrade of the TL16C450 Asynchronous Communications Element (ACE). Functionally identical to the TL16C450 on powerup (Character Mode[†]), the TL16C550A can be placed in an alternate mode (FIFO) to relieve the CPU of excessive software overhead.


In this mode, internal FIFOs are activated allowing 16 bytes (plus 3 bits or error data per byte in the receiver FIFO) to be stored in both receive and transmit modes. To minimize system overhead and maximize system efficiency, all logic is on the chip. Two of the TL16C450 pin functions (pins 24 and 29 on the N package and pins 27 and 32 on the FN package) have been changed to allow signalling of DMA transfers.

The TL16C550A performs serial-to-parallel conversion on data received from a peripheral device or modem and parallel-to-serial conversion on data received from its CPU. The CPU can read and report on the status of the ACE at any point in the ACE's operation. Reported status information includes: the type of transfer operation in progress, the status of the operation, and any error conditions encountered.

The TL16C550A ACE includes a programmable, on-board, baud rate generator. This generator is capable of dividing a reference clock input by divisors from 1 to $(2^{16} - 1)$ and producing a 16 X clock for driving the internal transmitter logic. Provisions are also included to use this 16 X clock to drive the receiver logic. Also included in the ACE is a complete modern control capability and a processor interrupt system that may be software tailored to the user's requirements to minimize the computing required to handle the communications link.

[†] The TL16C550A can also be reset to the TL16C450 mode under software control.

Pin numbers shown are for the N package.

PIN NAME	NO.†	I/O	DESCRIPTION							
A0 A1 A2	28 [31] 27 [30] 26 [29]	I	Register Select. Three inputs used during read and write operations to select the ACE register to read from or write to. Refer to Table 1 for register addresses, also refer to the Address Strobe (ADS) signal description.							
ADS	25 [28]		Address Strobe. When ADS is active (low), the Register Select signals (A0, A1, and A2) and Chip Select signals (CS0, CS1, CS2) drive the internal select logic directly; when high, the Register Select and Chip Select signals are held in the state they were in when the low-to-high transition of ADS occurred.							
BAUDOUT	15 [17]	0	Baud Out. 16 X clock signal for the transmitter section of the ACE. The clock rate is est: : the reference oscillator frequency divided by a divisor specified by the Baud Generator Divisor Latches T may also be used for the receiver section by tying this output to the RCLK input. T							
CS0 CS1 CS2	12 [14] 13 [15] 14 [16]	I	Chip Select. When active (high, high, and low, respectively), these three inputs select the ACE. If any of these inputs are inactive, the ACE remains inactive. Refer to the ADS (Address Strobe) signal description.							
CTS	36 [40]		Clear To Send. CTS is a modem status signal whose condition can be checked by reading bit 4 (CTS) of the Modem Status Register. Bit 0 (DCTS) of the Modem Status Register indicates that this signal has changed state since the last read from the Modem Status Register. If the Modem Status Interrupt is enabled when CTS changes state, an interrupt is generated.							
D0 D1 D2 D3 D4 D5 D6 D7	1 [2] 2 [3] 3 [4] 4 [5] 5 [6] 6 [7] 7 [8] 8 [9]	1/0	Data Bus. Eight 3-state data lines provide a bidirectional path for data, control, and status information between the ACE and the CPU.							
DCD	38 [42]	I	Data Carrier Detect. DCD is a modern status signal whose condition can be checked by reading bit 7 (DCD) of the Modern Status Register. Bit 3 (DDCD) of the Modern Status Register indicates that this signal has changed state since the last read from the Modern Status Register. If the Modern Status Interrupt is enabled when the DCD changes state, and interrupt is generated.							
DDIS	23 [26]	0	Driver Disable. This output is active (high) when the CPU is not reading data. When active, this output can be used to disable an external transceiver.							
DSR	37 [41]	1	Data Set Ready. DSR is a modem status signal whose condition can be checked by reading bit 5 (DSR) of the Modem Status Register indicates that this signal has ··· yed state since the last read from the Modem Status Register. If the modem status interrupt is enabled when the changes state, an interrupt is generated.							
DTR	33 [37]	0	Data Terminal Ready. When active (low), DTR informs a modem or data set that the ACE is ready to establish comr tion. DTR is placed in the active state by setting the DTR bit of the Modem Control Register to a high level · s placed in the inactive state either as a result of a Master Reset or during loop mode operation or resetting bit 0 (DTR) of the Modem Control Register.							
INTRPT	30 [33]	0	Interrupt. When active (high), INTRPT informs the CPU that the ACE has a interrupt to be serviced. Four conditions that cause an interrupt to be issued are; a receiver error, received data is available or timeout (FIFO mode only), the transmitter holding register is empty, and an enabled modern status interrupt. The INTRPT output is reset (deactivated) either when the interrupt is serviced or as a result of a Master Reset.							
MR	35 [39]	1	Master Reset. When active (high), MR clears most ACE registers and sets the state of various output signals. Refer to Table 2, ACE Reset Functions.							
OUT1 OUT2	34 [38] 31 [35]	0	Outputs 1 and 2. User-designated output pins that are set to their active states by setting their respective Modem Control Register bits (OUT 1 and OUT 2) high. OUT 1 and OUT 2 are set to their inactive (high) states as a result of Master Reset or during loop mode operations or by resetting bit 2 (OUT 1) or bit 3 (OUT 2) of the MCR.							
RCLK	9 [10]	1	Receiver Clock. The 16 X baud rate clock for the receiver section of the ACE.							
RD1 RD2	21 [24] 22 [25]	1	Read inputs. When either input is active (high or low, respectively) while the ACE is selected, the CPU is allowed to read status information or data from a selected ACE register. Only one of these inputs is required for the transfer of data during a read operation; the other input should be tied in its inactive state (i.e., RD2 tied low or RD1 tied high).							

[†] Pin numbers shown in brackets are for the FN package.

PIN NAME	NO.†	I/O	DESCRIPTION
RI	39 [43]	I	Ring indicator. RI is a modem status signal whose condition can be checked by reading bit 6 (RI) of the Modem Status Register. Bit 2 (TERI) of the Modem Status Register indicates that the RI input has transitioned from a low to a high state since the last read from the Modem Status Register. If the Modem Status interrupt is enabled when this transition occurs, an interrupt is generated.
RTS	32 [36]	0	Request to Send. When active, informs the modem or data set that the ACE is ready to transmit data. ATS is set to its active state by setting the RTS Modem Control Register bit and is set to its inactive (high) state either as a result of a Master Reset or during loop-mode operations or by resetting bit 1 (RTS) of the MCR.
RXRDY	29 [32]	0	Receiver Ready Output. Receiver DMA signalling is available with this pin. When operating in the FIFO mode, one of two types of DMA signalling can be selected via FCR3. When operating in the TL16V450 mode, only DMA Mode 0 is allowed. Mode 0 supports single-transfer DMA in which a transfer is made between CPU bus cycles. Mode 1 supports multitransfer DMA in which multiple transfers are made continuously until the receiver FIFO has been emptied. In DMA Mode 0 (FCRO = 0 or FCRO = 1, FCR3 = 0), if there is at least 1 character in the receiver FIFO or receiver holding register, RXRDY • active (low). When RXRDY has been active but there are no characters in the FIFO or holding register, RXR will gr (high). In DMA Mode 1 (FCRO = 1, FCR3 = 1), when the trigger level or the timeout has been reached will go active (low); when it has been active but there are no more characters in the FIFO or holding register, it will go inactive (high).
SIN	10 [11]	1	Serial Input. Serial data input from a connected communications device.
SOUT	11 [13]	0	Serial Output. Composite serial data output to a connected communication device. SOUT is set to the Marking (logic 1) state as a result of Master Reset.
TXRDY	24 [27]	0	Transmitter Ready Output. Transmitter DMA signalling is available with this pin. When operating in the FIFO mode, one of two types of DMA signalling can be selected via FCR3. When operating in the TL16C450 mode, only DMA mode 0 is allowed. Mode 0 supports single-transfer DMA in which a transfer is made between CPU bus cycles. Mode 1 supports multitransfer DMA in which multiple transfers are made continuously until the transmit FIFO has been filled.
Vcc	40 [44]		5-V Supply Voltage
VSS	20 [22]		Supply Common
WR1 WR2	18 [20] 19 [21]	 .	Write Inputs. When either input is active (high or low, respectively), while the ACE is selected, the CPU is allowed to write control words or data into a selected ACE register. Only one of these inputs if required to transfer data during a write operation; the other input should be tied in its inactive state (i.e., WR2 tied low or WR1 tied high).
XIN XOUT	16 [18] 17 [19]	1/0	External Clock, Connects the ACE to the main timing reference (clock or crystal).

[†] Pin numbers shown in brackets are for the FN package.

absolute maximum ratings over free-air temperature range (unless otherwise noted)

Supply Voltage range, V _{CC} (see Note 1)	\ldots – 0.5 V to 7 V
Input voltage range at any input, VI	
Output voltlage range, Vo	– 0.5 V to 7 V
Operating free-air temperature range, TA	
Storage temperature range	
Case temperature for 10 seconds: FN package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: N package	

NOTE 1: All voltage values are with respect to VSS.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	v
High-level input voltage, V _{IH}	2		Vcc	V
Low-level input voltage, VIL	- 0.5		0.8	V
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYPT	MAX	UNIT
VOH‡	High-level output voltage	$I_{OH} = -1 \text{ mA}$	2.4		V
VOL [‡]	Low-level output voltage	IOL = 1.6 mA	<u> </u>	0.4	V
likg	Input leakage current	$\label{eq:VCC} \begin{array}{lll} V_{CC} = 5.25 \ V, & V_{SS} = 0, \\ V_I = 0 \ \text{to} \ 5.25 \ V, \\ \mbox{All other plns floating} \end{array}$		±10	μΑ
loz	High-impedance output current	$V_{CC} = 5.25 V$, $V_{SS} = 0$, $V_O = 0$ to 5.25 V, Chip selected in Write mode or Chip deselected		±20	μA
lcc	Supply current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 5.25 \text{ V}, & T_{A} = 25^{\circ}\text{C}, \\ \text{SIN, DSR, DCD, CTS, and RI at 2 V,} \\ \text{All other inputs at 0.8 V,} \\ \text{XTAL1 at 4 MHz,} \\ \text{No load on outputs,} \\ \text{Baud rate} = 50 \text{ kilobits per second} \end{array}$		10	mA
CXIN	Clock input capacitance		15	20	p۴
Схоџт	Clock output capacitance	$V_{CC} = 0,$ $V_{SS} = 0,$	20	30	pF
Ci	Input capacitance	All other pins grounded, $f = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$	6	10	pF
Co	Output capacitance		10	20	pF

[†] Ail typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [‡] These parameters apply for all outputs except XOUT.

system timing requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	ALT. SYMBOL	FIGURE ,	MIN MAX	UNIT
t _{cR}	Cycle time, read (tw7 + td8 + td9)	RC		175	ns
t _{cW}	Cycle time, write (tw6 + td5 + td6)	WC		175	ns
t _{w5}	Puise duration, address strobe low	tADS	2,3	15	ns
^t w6	Puise duration, write strobe	^t WR	2	80	ns
tw7	Pulse duration, read strobe	^t RD	3	80	ns
t _{w8}	Pulse duration, master reset	^t MR		1	μs
t _{su1}	Setup time, address	tAS	· 2,3	15	ns
t _{su2}	Setup time, chip select	tcs	2,3	15	ns
t _{su3}	Setup time, data	tDS	2	15	ns
th1	Hoid time, address	taH	2,3	0	ns
th2	Hold time, chip select	tCH	2,3	0	ns
t _{h3}	Hold time, write to chip select	twcs	2	20 .	ns
th4	Hold time, write to address	twa	2	20	ns
th5	Hold time, data	tDH	2	15	ns
t _{h6}	Hold time, read to chip select	^t RCS	3	20	ns
th7	Hold time, read to address	tRA	3	20	ns
t _{d4} §	Delay time, select to write	tcsw	2	15	ns
td5§	Delay time, address to write	taw	2	15	ns
^t d6	Delay time, write cycle	twc	2	80	ns
td7§	Delay time, chip select to read	tCSR	3	15	n\$
t _{d8} §	Delay time, address to read	tAR	3	15	កទ
t _{d9}	Delay time, read cycle	tRC	3	80	ns

§ Only applies when ADS is low.

system switching characteristics over recommended ranges of supply voltage and operating freeair temperature (see Note 2)

	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
^t w1	Pulse duration, clock high	tхн	1	f = 9 MHz maximum	50		ns
tw2	Pulse duration, clock low	txL	1	f = 9 MHz ma	50		ns
	Delay time, read to data	tRVD	3	CL = 100 pF		60	ns
td10 td11	Delay time, read to floating data	tHZ	3	CL = 100 pF	0	60	ns
tdis(R)	Read to driver disable	^t RDD	3	CL = 100 pF		60	ns

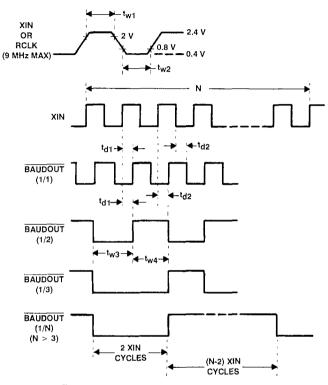
baud generator switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
t _{w3}	Pulse duration, BAUDOUT low	tLW	1	f = 9 MHz, CLK ÷ 2, CL = 100 pF	80		ns
t _{w4}	Pulse duration, BAUDOUT high	t _{HW}	1	$f = 9 MHz, CLK \div 2,$ $C_L = 100 pF$	100		ns
t _{d1}	Delay time, BAUDOUT low to high	^t BLD	1	CL = 100 pF		125	ns
td2	Delay time, BAUDOUT high to low	^t BHD	1	C _L = 100 pF		125	ns

receiver switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Note 3)

	PARAMET	'ER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
td12	Delay time, RCLK to samp	le	tSCD	4			100	ns
^t d13	Delay time, stop to set inte to LS	rrupt or	tSINT	4,5,6,7,8			1	RCLK cycles
td14	· · · · · · · · · · · · · · · · · · ·	to reset interrupt	^t RINT	4,5,6,7,8	CL = 100 pF		150	ns

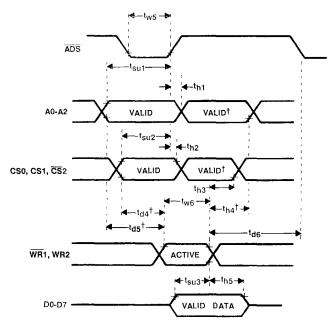
transmitter switching characteristics over recommended ranges of supply voltage and operating free-air temperature


	PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
^t d15	Delay time, initial write to transmit start	tins	9		8	24	baudout cycles
td16	Delay time, stop to interrupt	tsti	9		8	8	baudout cycles
td17	Delay time, write THR to reset interrupt	tHR	9	CL ≃ 100 pF		140	ns
^t d18	Delay time, initial write to interrupt (THRE)	tSI	9		16	32	baudout cycles
td19	Delay time, read IIR to reset interrupt (THRE)	tIR	9	C _L = 100 pF		140	ns
td20	Delay time, write to TXRDY inactive	twxi	10,11	C _L = 100 pF		195	ns
td21	Delay time, start to TXRDY active	tSXA	10,11	CL = 100 pF		8	baudout cycles

modem control switching characteristics over recommended ranges of supply voltage and operating free-air temperature

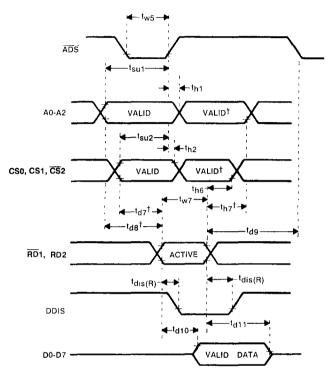
PARAMETER	ALT. SYMBOL	FIGURE	TEST CONDITIONS	MIN	MAX	UNIT
td22 Delay time, write MCR to output	tMDO	12	C _L = 100 pF	v	100	ns
td23 Delay time, modern interrupt to set interrupt	tsim	12	CL = 100 pF		170	ns
td24 Delay time, read MSR to reset interrupt	^t RIM	12	CL = 100 pF		140	ns

NOTES: 2. Charge and discharge time is determined by VOL, VOH, and external loading.


3.In FIFO mode RC = 425 ns (minimum) between reads of the receiver FIFO and the status registers (interrupt identification register or line status register).

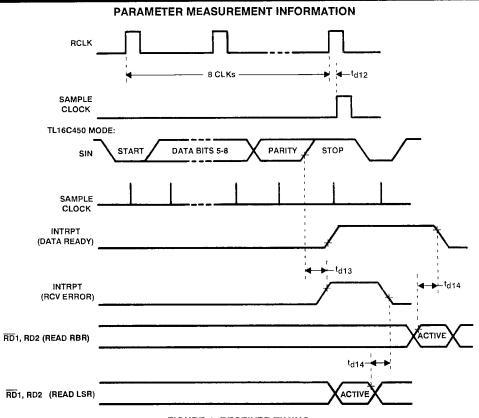
PARAMETER MEASUREMENT INFORMATION

FIGURE 1. BAUD GENERATOR TIMING



PARAMETER MEASUREMENT INFORMATION

[†] Applicable only when ADS is tied low.



PARAMETER MEASUREMENT INFORMATION

[†] Applicable only when ADS is tied low.

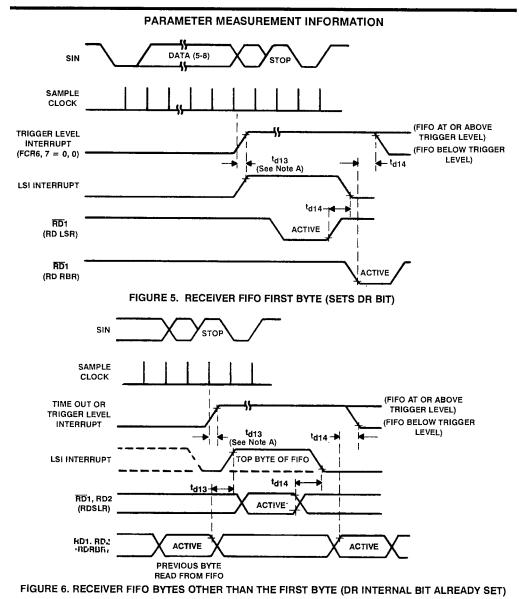
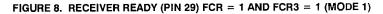
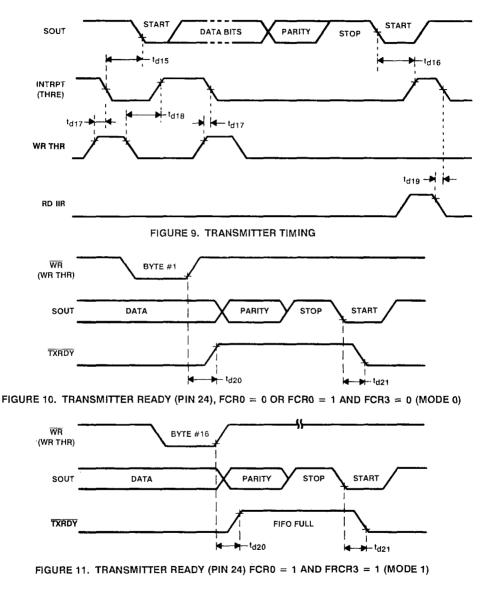

FIGURE 3. READ CYCLE TIMING

FIGURE 4. RECEIVER TIMING

NOTE A: For a timeout interrupt, $t_{d13} = 8$ RCLKs.



NOTES: A. This is the reading of the last byte in the FIFO. B. For a timeout interrupt, t_{d13} = 8 RCLKs.


FIGURE 7. RECEIVER READY (PIN 29), FCR0 = 0 OR FCR0 = 1 AND FCR3 = 0 (MODE 0)

NOTES: A.This is the reading of the last byte in the FIFO. B.For a timeout interrupt, t_{d13} = 8 RCLKs.

PARAMETER MEASUREMENT INFORMATION

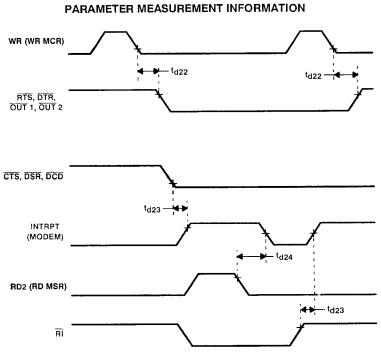
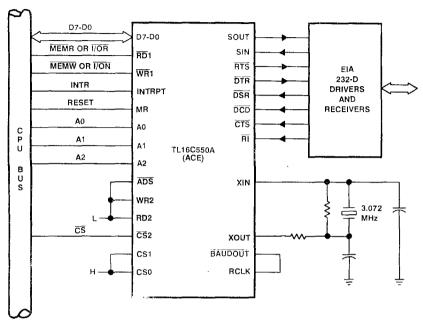
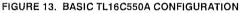




FIGURE 12. MODEM CONTROL TIMING

APPLICATION INFORMATION

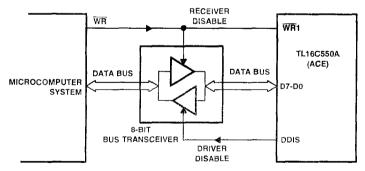


FIGURE 14. TYPICAL INTERFACE FOR A HIGH-CAPACITY DATA BUS

APPLICATION INFORMATION

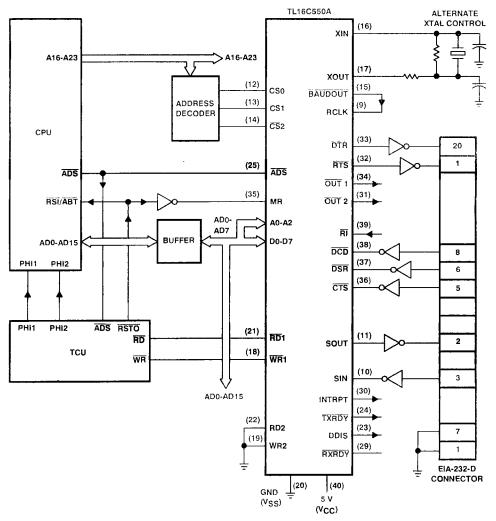


FIGURE 15. TYPICAL TL16C550A CONNECTION TO A CPU

PRINCIPLES OF OPERATION

DLAB	A2	A1	A0	REGISTER	
0	L	L	L	Receiver buffer (read), transmitter holding register (write)	
0	L	L	н	Interrupt enable	
X	L	н	L	Interrupt identification (read only)	
X	L	н	Ľ	FIFO control (Witte,	
X	_ L	н	Н	Line control	
X	н	L	L.	Modem control	
X	н	L	н	Line status	
X	н	Н	L	Modern status	
x	н	н	н	Scratch	
1	L	L	L	Divisor latch	
1	L.	L.	н	Divisor Later.	

TABLE 1. REGISTER SELECTION

[†] The Divisor Latch Access Bit (DLAB) is the most significant bit of the Line Control Register. The DLAB signal is controlled by writing to this bit location (see Table 3).

REGISTER/SIGNAL	RESUT CONTROL	RESET STATE
Interrupt Enable Register	Master Reset	All bits low (0-3 forced and 4-7 permanent)
Interrupt Identification Register	Master Reset	Bit 0 is high, bits 1-3 are low, and bits 4-7 are permanently low
FIFO Control	Master Reset	All bits low
Line Control Legisler	Master Reset	All bits low
Modem Control Register	Master Reset	Jits low (5-7 permanent)
Line Status Register	Master Reset	- 5 and 6 are high, all other bits are low
Modem Status Re,: · . ·	Master Reset	Bits 0-3 are low, bits 4-7 are input signals
SOUT	Master Reset	High
INTRPT (Receiver Error Flag)	Read LSR/MR	Low
INTRPT (Received Data Available)	RBR/MR	Low
INTRPT (Transmitter Holding Register Empty)	Head IR/Write THR/MR	Low
INTRPT (Modern Status Changes)	Read MSR/MR	Low
OUT 2	Master Reset	High
RTS	Master Reset	High
DTR	Master Reset	High
	Master Reset	Hiph
· .· iter	Master Reset	Nc · ·
(LSB and MSB) Registers	Master Reset	No unou
Receiver Buffer Reg	Master Reset	No effect
Transmitter Holding inguisers	Master Reset	No effect
RCVR FIFO	MR/FCR1·FCR0/	All bits low
XMIT FIFO	MR/FCR2·FCR0/ ΔFCR0	All bits low

TABLE 2. ACE RESET FUNCTIONS

PRINCIPLES OF OPERATION

accessible registers

The system programmer, via the CPU, has access to and control over any of the ACE registers that are summarized in Table 3. These registers are used to control ACE operations, receive data, and transmit data. Descriptions of these registers follow Table 3.

						REGISTER	ADDRESS					
	0 DLAB = 0	0 DLAB = 0	1 DLAB=0	2	2	3	4	5	6	7	0 DLAB = 1	1 DLAB = 1
Bit No.	Receiver Buffer Register (Read Only)	Transmitter Holding Register (Write Oniy)	interrupt Enable Register	interrupt ident. Register (Read Only)	FIFO Contro! Register (Write Oniy)	Line Controi Register	M(''' Cri'' Regiolo:	Line Status Register	MODEM Status Register	Scratch Register	Divisor Latch (LSB)	Latch (MSB)
	RBR	THR	IER	IR	FCR	LCR	MCR	LSR	MSR	SCR	DLL	DLM
0	Data Bit 0 [†]	Data Bit 0	Enable Received Data Available Interrupt (ERBI)	"0" if Interrupt Pending	FIFO Enable	Word Length !	Data Terminal Ready (DTR)	Data Ready (DR)	Deita Claar to Send (ΔCTS)	Bit 0	Bit 0	Bit 8
1	Data Bit 1	Deta Bit 1	Enable Transmitter Holding Register Empty	Interrupt ID Bit (0)	Receiver FIFO Reset	Word Length Select Bit 1 (WLS1)	Fl- tc	(1	Delta Data Set Ready (∆DSR)	Bit 1	Bit 1	Ġit 9
2	Data Bit 2	Data Bit 2	Line Status Interrupt (ELSI)	interrupt ID Bit (1)	Transmittar FIFO Reset	Number of Stop Bits (STB)	Out 1	Parity Error (PE)	Trailing • • • inc	Bit 2	Bit 2	Bit 10
3	Data Bit 3	Data Bit 3	Enable MODEM	Interrupt ID Bit (2) (Note 4)	DMA Mode Select	Parity Enable (PEN)	Out 2	Framing Error (FE)	Delta Data Carrier Detect (∆DCD)	Bit 3	Bit 3	Bit 11
4	Data Bit 4	Data Bit 4	0	0	Reserved	Even Parity Select (EPS)	Loop	Break Interrupt (BI)	Clear to Send (CTS)	Bit 4	Bit 4	Bit 12
5	Data Bit 5	Data Bit 5	0	0	Reserved	Stick Parity	0	Transmittar Hoiding Register (THRE)	Data Set Ready (DSR)	Bit 5	Bit 5	Bit 13
6	Data Bit 6	Data Bit 6	0	FIFO: d	Receivar Trigger (LSB)	Sat Break	0	Transmitter Empty (TEMT)	Ring Indicator (Ri)	Bit 6	Bit 6	Bit 14
7	Data Bit 7	Data Bit 7	0	1 (1010 +)		Divisor Latch Access Bit (DLAB)	0	Error in RCVR FIFO (Note 4)	Data	Bit 7	Bit 7	Bit 15

TABLE 3. SUMMARY OF ACCESSIBLE REGISTERS

⁺ Bit 0 is the least significant bit. It is the first bit serially transmitted or received.

NOTE 4' These bits are always 0 in the TL16C450 mode

PRINCIPLES OF OPERATION

receiver buffer register (RBR)

The ACE's receiver section consists of a Receiver Shift Register (RSR) and a Receiver Buffer Register (RBR). The RBR is actually a 16-byte FIFO. Timing is supplied by the 16 X Receiver Clock (RCLK). Receiver section control is a function of the ACE's Line Control Register.

The ACE's RSR receives serial data from the Serial Input (SIN) pin. The RSR then deserializes the data and moves it into the RBR FIFO. In the TL16C450 mode, when a character is placed in the Receiver Buffer Register and the Received Data Available interrupt is enabled, an interrupt is generated. This interrupt is cleared when the data is read out of the Receiver Buffer Register. In the FIFO mode, the interrupts are generated based on the control setup in the FIFO Control Register.

transmitter holding register (THR)

The ACE's transmitter section consists of a Transmitter Holding Register (THR) and a Transmitter Shift Register (TSR). The THR is actually a 16-byte FIFO. Timing is supplied by the Baud Out (BAUDOUT) clock signal. Transmitter section control is a function of the ACE's Line Control Register.

The ACE THR receives data off the Internal Data Bus and, when the shift register is idle, moves it into the TSR. The TSR serializes the data and outputs it at the Serial Output (SOUT). In the TL16C450 mode, if the THR is empty and the Transmitter Holding Register Empty (THRE) interrupt is enabled, an interrupt is generated. This interrupt is cleared when a character is loaded into the register. In the FIFO mode, the interrupts are generated based on the control setup in the FIFO control register.

interrupt enable register (IER)

The Interrupt Enable Register enables each of the five types of interrupts (refer to Table 4) and the INTRPT output signal in response to an interrupt generation. The interrupt Enable Register can also be used to disable the interrupt system by setting bits 0 through 3 to logic 0. The contents of this register are summarized in Table 3 and are described below.

- Bit 0. This bit, when set to logic 1, enables the Received Data Available interrupt.
- Bit 1. This bit, when set to logic 1, enables the Transmitter Holding Register Empty interrupt.
- Bit 2. This bit, when set to logic 1, enables the Receiver Line Status interrupt.
- Bit 3. This bit, when set to logic 1, enables the Modern Status interrupt.

Bits 4 thru 7. Bits 4 through 7 in the Interrupt Enable Register are not used and are always set to logic 0.

FIFO control register

The FIFO control register (FCR) is a write-only register at the same location as the IIR, which is a read-only register. The FCR is used to enable the FIFOs, clear the FIFOs, set the receiver FIFO trigger level, and select the type of DMA signalling.

Bit 0. FCR0, when set to logic 1, enables the transmit and receive FIFOs. This bit must be a 1 when other FCR bits are written to or they will not be programmed. Changing this bit clears the FIFOs.

Bit 1. FCR1, when set to logic 1, clears all bytes in the receiver FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 that is written to this bit position is self clearing.

Bit 2. FCR2, when set to logic 1, clears all bytes in the transmit FIFO and resets its counter to 0. The shift register is not cleared. The 1 that is written to this bit position is self clearing.

Bit 3. If FCR0 is a 1, setting FCR3 to a 1 causes the RXRDY and TXRDY to change from mode 0 to mode 1.

PRINCIPLES OF OPERATION

Bits 4 and 5. FCR4 and FCR5 are reserved for future use.

Bits 6 and 7. FCR6 and FCR7 are used to set the trigger level for the receiver FIFO interrupt.

BIT 7	BIT 6	RECEIVER FIFO TRIGGER LEVEL (BYTES)
0	0	01
0	1	04
1	0	08
1	1	14

interrupt identification register (IIR)

The ACE has an on-chip interrupt generation and prioritization capability that permits a flexible interface with most popular microprocessors.

The ACE provides four prioritized levels of interrupts:

- Priority 1 Receiver line status (highest priority)
- Priority 2 Receiver data ready or Receiver character timeout
- Priority 3 Transmitter holding register empty
- Priority 4 Modem status (lowest priority)

When an interrupt is generated, the Interrupt Identification Register indicates that an interrupt is pending and the type of that interrupt in its three least significant bits (bits 0, 1, and 2). The contents of this register are summarized in Table 3 and described in Table 4. Detail on each bit are as follows:

Bit 0. This bit can be used either in a hardwire-prioritized, or polled interrupt system. If this bit is a logic 0, an interrupt is pending. When bit 0 is a logic 1, no interrupt is pending.

Bits 1 and 2. These two bits are used to identify the highest priority interrupt pending, as indicated in Table 4.

Bit 3. This bit is always 0 in the TL16C450 mode. In FIFO mode, this bit is set with bit 2 to indicate that a timeout interrupt is pending.

Bits 4 thru 5. These two bits are not used and are always set at logic 0.

Bits 6 and 7. These two bits are always 0 in the TL16C450 mode. They are set when bit 0 of the FIFO Control Register is equal to 1.

PRINCIPLES OF OPERATION

TABLE 4. INTERRUPT CONTROL FUNCTIONS

1	INTER OENTIF REGI	ICATION	1	PRIORITY LEVEL	INTERRUPT TYPE	INTERRUPT SOURCE	INTERRUPT RESET METHOD
BIT 3	BIT 2	BIT 1	BIT 0			I	
0	0	0	1	None	None	None	-
0	1	1	0	1	Receiver line status	Overrun error, parity error, framing error, or break interrrupt	Reading the Line Status register
1	1	0	0	2	Received data available	Receiver data available in the TL16C450 mode or trigger level reached in the FIFO mode.	Reading the Receiver buffer Buffer register
1	1	0	0	2	Character timeout indication	No characters have been removed from or input to the receiver FIFO during the last four character times and there is at least one character in it during this time	Reading the Receiver Buffer Register
0	0	1	0	3	Transmitter Holding register empty	Transmitter Holding register empty	Reading the Interrupt Identification register (if source of interrupt) or writing into the Transmitter Holding register
0	0	o	o	4	Modem status	Clear to Send, Data Set Ready, Ring Indicator, or Data Carrier Detect	Reading the Modem Status register

PRINCIPLES OF OPERATION

line control register (LCR)

The system programmer controls the format of the asynchronous data communication exchange through the Line Control register. In addition, the programmer is able to retrieve, inspect, and modify the contents of the Line Control register; this eliminates the need for separate storage of the line characteristics in system memory. The contents of this register are summarized in Table 3 and are described below.

Bits 0 and 1. These two bits specify the number of bits in each transmitted or received serial character. These bits are encoded as follows:

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bit 2. This bit specifies either one, one and one-half, or two Stop bits in each transmitted character. If bit 2 is a logic 0, one Stop bit is generated in the data. If bit 2 is a logic 1, the number of Stop bits generated is dependent on the word length selected with bits 0 and 1. The receive clocks the first stop bit only, regardless of the number of stop bits selected. The number of Stop bits generated, in relation to word length and bit 2, is shown in the following.

Bit 2	Word Length Selected by Bits 1 and 2	Number of Stop Bits Generated
0	Any word length	1
1	5 bits	1 1/2
1	6 bits	2
1	7 bits	2
1	8 bits	2

Bit 3. This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated in transmitted data between the last data word bit and the first stop bit. In received data, if bit 3 is a logic 1, parity is checked. When bit 3 is a logic 0, no parity is generated or checked.

Bit 4. Bit 4 is the Even Parity Select bit. When parity is enabled by bit 3: a logic 1 in bit 4 produces Even Parity (an even number of logic 1s in the data and parity bits) and a logic 0 in bit 4 produces Odd Parity (an odd number of logic 1s).

Bit 5. This is the Stick parity bit. When bits 3, 4, and 5 are logic 1s, the Parity bit is transmitted and checked as a logic 0. When bits 3 and 5 are logic 1s and bit 4 is a logic 0, the Parity bit is transmitted and checked as a logic 1. If bit 5 is a logic 0, stick parity is disabled.

Bit 6. This bit is the Break Control bit. Bit 6 is set to a logic 1 to force a break condition, i.e, a condition where the Serial Output (SOUT) pin is forced to the spacing (logic 0) state. When bit 6 is set to a logic 0, the break condition is disabled. The break condition has no effect on the transmitter logic; it only effects the serial output.

Bit 7. This bit is the Divisor Latch Access bit (DLAB). Bit 7 must be set to a logic 1 to access the Divisor Latches of the Baud Generator during a read or write. Bit 7 must be set to a logic 0 during a read or write to access the Receiver Buffer, the Transmitter Holding register, or the Interrupt Enable register.

modem control register (MCR)

The Modem Control register is an 8-bit register that controls an interface with a modem, data set, or peripheral device that is emulating a modem. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 (DTR) controls the Data Terminal Ready (DTR) output. Setting this bit to a logic 1 forces the DTR output to its low state. When bit 0 is set to a logic 0, DTR goes high.

Bit 1. Bit 1 (RTS) controls the Request to Send (RTS) output in a manner identical to Bit 0's control over the DTR output.

Bit 2. Bit 2 (OUT 1) controls the Output 1 (OUT 1) signal, a user-designated output signal, in a manner identical to Bit 0's control over the DTR output.

Bit 3. Bit 3 (OUT 2) controls the C \therefore It 2 (\overline{OUT} 2) signal, a user-designated output signal, in a manner identical to Bit 0's control over the \overline{i} I!: putput.

Bit 4. Bit 4 provides a local loopback feature for diagnostic testing of the ACE. When this bit is set to a logic high, the following occurs:

- 1. The transmitter Serial Output (SOUT) is set high.
- 2. The receiver Serial Input (SIN) is disconnected.
- 3. The output of the Transmitter Shift reg: ised back into the Receiver Shift register input.
- 4. The four modem control inputs (CTS, ..., i. , and RI) are disconnected.
- 5. The four modem control outputs (DTR, RTS, OUT 1, and OUT 2) are internally connected to the four modem control inputs.
- 6. The four modem control output pins are forced to their inactive states (high).

In the diagnostic mode, data that is transmitted is immediately received. This allows the processor to verify the transmit- and receive-data paths to the ACE. The receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational but the modem control interrupt's sources are now the lower four bits of the Modem Control register instead of the four modem control inputs. All interrupts are still controlled by the Interrupt Enable register.

Bit 5 through 7. These bits are permanently set to logic 0.

line status register (LSR)†

The Line Status Register provides information to the CPU concerning the status of data transfers. The contents of this register are described below and summarized in Table 3.

Bit 0. Bit 0 is the Data Ready (DR) indicator for the receiver. This bit is set to a logic 1 condition whenever a complete incoming character has been received and transferred into the Receiver Buffer register or the FIFO and is reset to logic 0 by reading all of the data in the Receiver Buffer Register or the FIFO.

Bit 1[‡]. Bit 1 is the Overrun Error (OE) indicator. When this bit is set to logic 1, it indicates that before the character in the Receiver Buffer register was read, it was overwritten by the next character transferred into the register. The OE indicator is reset every time the CPU reads the contents of the Line Status register. If the FIFO mode data continues to fill the FIFO beyond the trigger level, an overrun error will occur only after the FIFO is full and the next character has been completely received in the shift register. OE is indicated to the CPU as soon as it happens. The character in the shift register is overwritten, but is not transferred to the FIFO.

Bit 2[‡]. Bit 2 is the Parity Error (PE) indicator. When this bit is set to logic 1, it indicates that the parity of the received data character does not match the parity selected in the Line Control Register (bit 4). The PE bit is reset every time the CPU reads the contents of the Line Status register. In the FIFO mode, this error is

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

[†] The Line Status register is intended for read operations only; writing to this register is not recommended outside of a factory testing environment.

associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO.

Bit 3[‡]. Bit 3 is the Framing Error (FE) indicator. When this bit is set to logic 1, it indicates that the received character did not have a valid (logic 1) Stop bit. The FE bit is reset every time the CPU reads the contents of the Line Status register. In the FIFO mode, this error is associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO. The ACE will try to resynchronize after a framing error. To accomplish this, it is assumed that the framing error is due to the next start bit. The ACE then samples this start bit twice and then accepts the input data.

Bit 4[‡]. Bit 4 is the Break Interrupt (BI) indicator. When this bit is set to logic 1, it indicates that the received data input was held in the logic 0 state for longer than a full-word transmission time. A "full-word transmission time" is defined as the total time of the Start, Data, Parity, and Stop bits. The BI bit is reset every time the CPU reads the contents of the Line Status register. In the FIFO mode, this error is associated with the particular character in the FIFO to which it applies. This error is revealed to the CPU when its associated character is at the top of the FIFO. When break occurs, only one 0 character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking state and receives the next valid start bit.

Bit 5. Bit 5 is the Transmitter Holding Register Empty (THRE) indicator. This bit is set to logic 1 when the Transmitter Holding Register is empty, indicating that the ACE is ready to accept a new character. If the THRE interrupt is enabled when the THRE bit is a logic 1, then an interrupt is generated. THRE is set to a logic 1 when the contents of the Transmitter Holding Register are transferred to the transmitted Shift Register. This bit is reset to logic 0 concurrent with the loading of the Transmitter Holding Register by the CPU. In the FIFO mode, this bit is set when the transmit FIFO is empty; it is cleared when at least 1 byte is written to the transmit FIFO.

Bit 6. Bit 6 is the Transmitter Empty (TEMT) indicator. This bit is set to a logic 1 when the Transmitter Holding register and the Transmitter Shift register are both empty. When either the Transmitter Holding register or the Transmitter Shift register contains a data character, the TEMT bit is reset to logic 0. In the FIFO mode, this bit is set to a 1 when the transmitter FIFO and shift register are both empty.

Bit 7. In the TL16C550A, this bit is always reset to logic 0. In the TL16C450 mode, this bit is always a 0. In the FIFO mode, LSR7 is set when there is at least one parity, framing, or break error in the FIFO. It is cleared when the microprocessor reads the LSR and there are no subsequent errors in the FIFO.

[‡] Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt.

modem status register (MSR)

The Modem Status register is an 8-bit register that provides information about the current state of the control lines from the modem, data set, or peripheral device to the CPU. Additionally, four bits of this register provides change information; when a control input from the modem changes state, the appropriate bit is set to logic 1. All four bits are reset to logic 0 when the CPU reads the Modem Status register. The contents of this register are summarized in Table 3 and are described below.

Bit 0. Bit 0 is the change in Clear to Send (DCTS) indicator. This bit indicates that the CTS input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modem Status Interrupt is enabled, a Modem Status Interrupt is generated.

Bit 1. Bit 1 is the change in Data Set Ready (DDSR) indicator. This bit indicates that the DSR input has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modern Status Interrupt is enabled, a Modern Status Interrupt is generated.

Bit 2. Bit 2 is the Trailing Edge of Ring Indicator (TERI) detector. This bit indicates that the RI input to the chip has changed from a low to a high state. When this bit is a logic 1 and the Modern Status Interrupt is enabled, a Modern Status Interrupt is generated.

Bit 3. Bit 3 is the change in Data Carrier Detect (DDCD) indicator. This bit indicates that the DCD input to the chip has changed state since the last time it was read by the CPU. When this bit is a logic 1 and the Modem Status Interrupt is enabled, a Modem Status Interrupt is generated.

Bit 4. Bit 4 is the compliment of the Clear to Send $\overline{(CTS)}$ input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 1 (RTS).

Bit 5. Bit 5 is the compliment of the Data Set Ready (DSR) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control register bit 0 (DTR).

Bit 6. Bit 6 is the compliment of the Ring Indicator (\overline{RI}) input. If Bit 4 (loop) of the Modern Control register is set to a logic 1, this bit is equivalent to the Modern Control registers bit 2 (OUT 1).

Bit 7. Bit 7 is the compliment of the Data Carrier Detect (DCD) input. If Bit 4 (loop) of the Modem Control register is set to a logic 1, this bit is equivalent to the Modem Control registers bit 3 (OUT 2).

scratch register (SCR)

The Scratch register is an 8-bit register that is intended for the programmer's use as a "scratchpad," in the sense that it will temporarily hold the programmer's data without affecting any other ACE operation.

programmable baud generator

The ACE contains a programmable baud generator that takes a clock input in the range between dc and 8 MHz and divides it by a divisor in the range between 1 and $2^{16}-1$. The output frequency of the baud generator is sixteen times (16 X) the baud rate. The formula for the divisor is:

divisor # = XIN frequency input \div (desired baud rate X 16)

Two 8-bit registers, called divisor latches, are used to store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization of the ACE in order to ensure desired operation of the baud generator. When either of the divisor latches is loaded, a 16-bit baud counter is also loaded to prevent long counts on initial load.

Tables 5 and 6, which follow, illustrate the use of the baud generator with crystal frequencies of 1.8432 MHz and 3.072 MHz, respectively. For baud rates of 38.4 kilobits per second and below, the error obtained is very small. The accuracy of the selected baud rate is dependent on the selected crystal frequency.

Refer to Figure 10 for examples of typical clock circuits.

FIFO interrupt-mode operation

When the receiver FIFO and receiver interrupts are enabled (FCR0 = 1, IER0 = 1) receiver interrupts will occur as follows:

- The Receive Data Available interrupt will be issued to the microprocessor when the FIFO has reached its programmed trigger level. It will be cleared as soon as the FIFO drops below its programmed trigger level.
- The IIR Receive Data Available indication also occurs when the FIFO trigger level is reached, and, like the interrupt, it is cleared when the FIFO drops below the trigger level.
- 3. The Receiver Line Status interrupt (IIR = 06), as before, has higher priority than the Received Data Available (IIR = 04) interrupt.
- 4. The data ready bit (LSR0) is set as soon as a character is transferred from the shift register to the receiver FIFO. It is reset when the FIFO is empty.

When receiver FIFO and receiver interrupts are enabled, receiver FIFO timeout interrupts will occur as follows:

- 1. FIFO timeout interrupt will occur if the following conditions exist:
 - a. At least one character is in the FIFO.
 - b. The most recent serial character received was longer than 4 continuous character times ago (if 2 stop bits are programmed, the second one is included in this time delay).

c. The most recent microprocessor read of the FIFO was longer than 4 continuous character times ago.

This will cause a maximum character received to interrupt issued delay of 160 ms at 300 baud with a 12-bit character.

- Character times are calculated by using the RCLK input for a clock signal (this makes the delay proportional to the baud rate).
- When a timeout interrupt has occurred, it is cleared and the timer reset when the microprocessor reads one character from the receiver FIFO.
- 4. When a timeout interrupt has not occurred, the timeout timer is reset after a new character is received or after the microprocessor reads the receiver FIFO.

When the transmit FIFO and transmitter interrupts are enabled (FCR0 = 1, IER1 = 1), transmit interrupts will occur as follows:

- The Transmitter Holding Register interrupt (02) occurs when the transmit FIFO is empty. It is cleared as soon as the Transmitter Holding Register is written to (1 to 16 characters may be written to the transmit FIFO while servicing this interrupt) or the IIR is read.
- The Transmit FIFO Empty indications will be delayed 1 character time minus the last stop bit time when the following occurs: THRE = 1 and there have not been at least two bytes at the same time in the transmit FIFO since the last THRE = 1. The first transmitter interrupt after changing FCR0 will be immediate, if it is enabled.

Character timeout and receiver FIFO trigger level interrupts have the same priority as the current Received Data Available interrupt; Transmit FIFO Empty has the same priority as the current Transmitter Holding Register Empty interrupt.

FIFO polled-mode operation

With FCR0 = 1, resetting IER0, IER1, IER2, IER3, or all four to 0 puts the ACE in the FIFO Polled Mode of operation. Since the receiver and transmitter are controlled separately, either one or both can be in the polled mode of operation.

In this mode, the user program will check receiver and transmitter status via the LSR. As stated previously:

- 1. LSR0 will be set as long as there is one byte in the receiver FIFO.
- 2. LSR1 through LSR4 will specify which error(s) have occurred. Character error status is handled the same way as when in the interrupt mode, the IIR is not affected since IER2 = 0.
- 3. LSR5 will indicate when the transmit FIFO is empty.
- 4. LSR6 will indicate that both the transmit FIFO and shift registers are empty.
- 5. LSR7 will indicate whether there are any errors in the receiver FIFO.

There is no trigger level reached or timeout conditions indicated in the FIFO Polled Mode. However, the receiver and transmit FIFOs are still fully capable of holding characters.

PRINCIPLES OF OPERATION

TABLE 5. BAUD RATES USING A 1.8432-MHz CRYSTAL

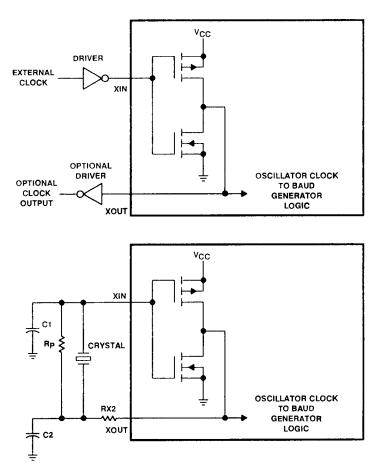

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	2304	
75	1536	
110	1047	0.026
134.5	857	0.058
150	768	
300	384	
600	192	
1200	96	
1800	64	
2000	58	0.69
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19200	6	
38400	3	
· ·	2	2.86

TABLE 6. BAUD RATES USING A 3.072-MHz CRYSTAL

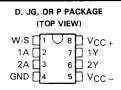
DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 X CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED AND ACTUAL
50	3840	
75	2560	
110	1745	
134.5	1428	
150	1280	
300	640	
600	320	
1200	160	
1800	107	0.312
2000	96	
2400	80	·····
3600	53	0.628
•	40	
· · · · · · · · · · · · · · · · · · ·	27	1.23
9600	20	
·	10	
÷ :	5	

PRINCIPLES OF OPERATION

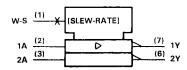
CRYSTAL	Rp	RX2	C1	C2
3.1 MHz	1 MΩ	1.5 kΩ	10-30 pF	40-60 pF
1.8 MHz	1 MΩ	1.5 kΩ	10-30 pF	40-60 pF

FIGURE 16. TYPICAL CLOCK CIRCUITS

D2608, OCTOBER 1980-REVISED SEPTEMBER 1986

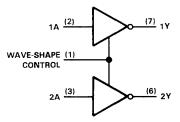

- Meets EIA Standards RS-423-A and RS-232-C and Federal Standard 1030
- Slew Rate Control
- Output Short-Circuit-Current Limiting
- Wide Supply Voltage Range
- 8-Pin Package
- Designed to Be Interchangeable With Fairchild 9636A

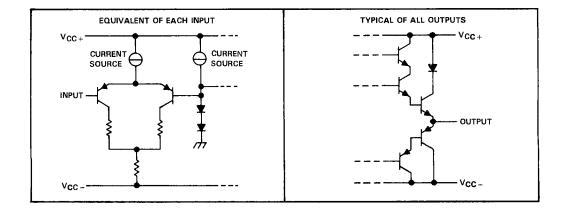
description


The uA9636AC is a dual single-ended line driver designed to meet EIA Standards RS-423-A and RS-232-C and Federal Standard 1030. The slew rates of both amplifiers are controlled by a single external resistor, RWS, connected between the wave-shape-control terminal and ground. Output current limiting is provided. Inputs are compatible with TTL and CMOS and are diodeprotected against negative transients. This device operates from ± 12 V and is supplied in an 8-pin package.

The uA9636AC is characterized for operation from 0°C to 70°C.

schematics of inputs and outputs




logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Positive supply voltage range, V _{CC} + (see Note 1)
Output voltage
Output current
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range 0°C to 70°C
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P packages 260 °C

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. In the JG package, uA9636AC chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25$ °C	TA ≈ 70 °C POWER RATING
D	725 mW	5.8 mW/ °C	464 mW
JG	825 mW	6.6 mW/°C	528 mW
₽	1000 mW	8.0 mW/ °C	640 mW

recommended operating conditions

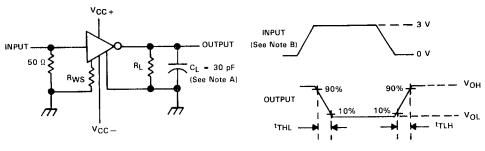
	MIN NOM	MAX	UNIT
Positive supply voltage, V _{CC+}	10.8 12	13.2	V
Negative supply voltage, V _{CC} _	-10.8 -12	-13.2	V
High-level input voltage, VIH	2		V
Low-level input voltage, VIL		0.8	V
Wave-shaping resistor, RWS	10	_	kΩ
Operating free-air temperature, TA	0	70	°C

electrical characteristics over recommended range of free-air temperature, supply voltage, and waveshaping resistance (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN (S	TYP [†] ee Note	MAX 3)	UNIT
VIK	Input clamp voltage	$i_{1} = -15 mA$			- 1.1	-1.5	V
			$R_{L} = \infty$	5	5.6	6	
∨он	High-level output voltage	$V_1 = 0.8 V$	$R_L = 3 k\Omega$ to ground	5	5.6	6	v
••••	-		$R_{L} = 450 \Omega$ to ground	4	5.4	6	
			$R_{L} = \infty$	-6	- 5.7	- 5	ļ –
VOL	Voi Low-level output voltage	VI = 2 V	$R_L = 3 k\Omega$ to ground	-6	-5.6	-5	v
0L			$R_L = 450 \Omega$ to ground	- 6	- 5.4	-4	
		V1 = 2.4 V				10	μA
ΊΗ	High-level input current	V _I = 5.5 V				_· :	μη
Ι <u>Ι</u> L	Low-level input current	V _I = 0.4 V	_		- 20	- 00	μA
10	Output current (power off)	$V_{CC\pm} = 0,$	$V_0 = \pm 6 V$			±	μA
	8t	V ₁ = 2 V		15	25	_	mA
los	Short-circuit output current [‡]	$V_{I} = 0$		-15	-40	- 150	
ro	Output resistance	RL = 450 Ω			25	50	Ω
		$V_{CC} = \pm 12 V,$	$V_{I} = 0,$		13	18	mA
ICC+	Positive supply current	$R_{WS} = 100 k\Omega$,	Output open		13	10	
		$V_{CC} = \pm 12 V,$	$V_{I} = 0,$		- 13	- 18	mA
ICC-	Negative supply current	$R_{WS} = 100 k\Omega$,	Output open		-13	- 10	1 104

[†]All typical values are at V_{CC} ± 12 V, T_A = 25 °C.

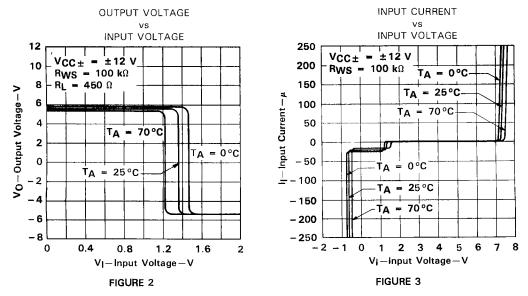
[‡]Not more than one output should be shorted to ground at a time.


NOTE 3: The algebraic convention, in which the less-positive (more-negative) limit is designated as minimum, is used in this data sheet for logic voltage levels, e.g., when -5 V is the maximum, the minimum is a more-negative voltage.

switching characteristics, VCC \pm = 12 V, T_A = 25 °C, see Figure 1

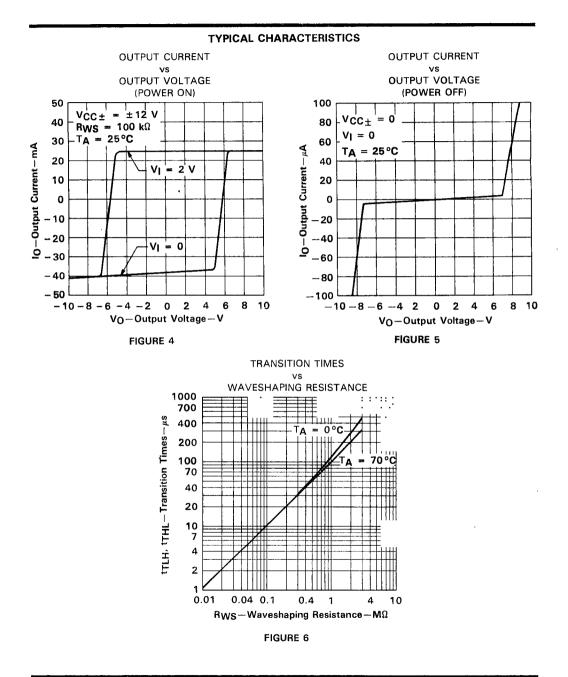
PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT
tTLH Transition time, low-to-high-level output		$R_{WS} = 10 k\Omega$	0.8	1.1	1.4		
	$R_{\rm L} = 450 \Omega,$	$R_{WS} = 100 k\Omega$	8	11	14	_	
	$C_{L} = 30 pF$	$R_{WS} = 500 k\Omega$	40	55	70	μs	
	-	$R_{WS} = 1 M\Omega$	80	110	140	l	
tTHL Transition time, high-to-low-level output		Rws = 10 kΩ	0.8	1.1	1.4		
		$R_L = 450 \Omega$,	$R_{WS} = : < \Omega$	8	11	14	
	$C_{L} = 30 pF$	R _{WS} = · ≺Ω	40	55	70	μs	
			$R_{WS} = 1 m\Omega$	80	110	140	1

PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. CL includes probe and jig capacitance.


B. The input pulse is supplied by a generator having the following characteristics: $t_f \le 10$ ns, $t_f \le 10$ ns, $Z_0 = 50 \Omega$, PRR ≤ 1 kHz, duty cycle = 50%.

TYPICAL CHARACTERISTICS

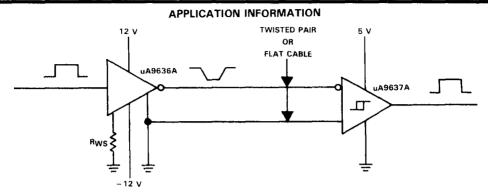
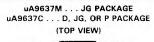


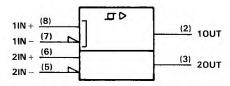
FIGURE 7. RS-423-A SYSTEM APPLICATION

D2609, SEPTEMBER 1980-REVISED NOVEMBER 1986

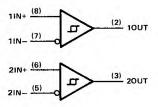

- Meets EIA Standards RS-422-A and RS-423-A
- Meets Federal Standards 1020 and 1030
- Operates from Single 5-V Power Supply
- Wide Common-Mode Voltage Range
- High Input Impedance
- TTL-Compatible Outputs
- High-Speed Schottky Circuitry
- 8-Pin Dual-In-Line and "Small Outline" Packages
- Similar to SN75157 except for Corner VCC and Ground Pin Positions
- Designed to Be Interchangeable with Fairchild μA9637A

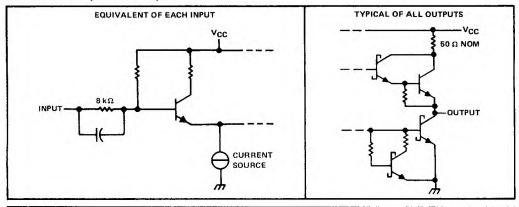
description

The uA9637AC is a dual differential line receiver designed to meet EIA standards RS-422-A and RS-423-A and Federal Standards 1020 and 1030. It utilizes Schottky circuitry and has TTLcompatible outputs. The inputs are compatible with either a single-ended or a differential-line system. This device operates from a single 5-volt power supply and is supplied in an 8-pin dual-inline package and small outline package.


The uA9637AM is characterized over the full military temperature range of -55 °C to 125 °C. The uA9637AC is characterized for operation from 0 °C to 70 °C.

schematics of inputs and outputs


		U 8	11N+
10UT			11N-
20UT	3	6	21N+
GND	4	5	21N -


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

Photourifield (1414) docrations on the entropy of the current as of prilination latprice to section to specifications of the terrary of locas Instruments statulated warranty. Production processing does not necessarily include testing of all paremeters.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) -0.5 V to 7 V
Input voltage
Differential input voltage (see Note 2) ±15 V
Output voltage (see Note 1)
Low-level output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3):
D package
JG package: uA9637AM 1050 mW
uA9637AC
P package
Operating free-air temperature range: uA9637AM
uA9637AC
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

For operation above 25°C free-air temperature, derate linearly at the following rates: 5.8 mW/°C for the D package, 8.4 mW/°C for uA9637AM in the JG package, 6.6 mW/°C for uA9637AC in the JG package, and 8.0 mW/°C for the P package.

recommended operating conditions

	u	uA9637AM			9637A	UNIT	
	MIN	NOM	MAX	MIN	2012	MAY	
Supply voltage, V _{CC}	4.5	5	5.5	4./0	J		V
Common-mode input voltage, VIC		_	±7			±7	V
Operating free-air temperature, TA	- 55		125	0		70	°C

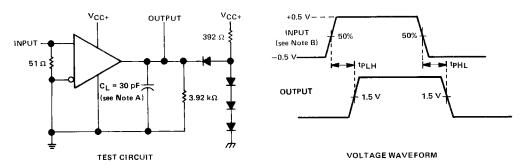
electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

PARAMETER		AMETER TEST CONDITIONS		MIN TYP [†] MAX See Note 4			UNIT
۷T	Threshold voltage (V_{T+} and V_{T-})	See Note 5		-0.2		0.2 0.4	v
V _{hys}	Hysteresis (V _{T+} - V _{T-})	· · · · · · · · · · · · · · · · · · ·			70		mV
VOH	High-level output voltage	$V_{ID} = 0.2 V_{,}$	$I_0 = -1 mA$	2.5	3.5		V
VOL	Low-level output voltage	$V_{ID} = -0.2 V_{,}$	lo = 20 mA		0.35	0.5	V
li i	Input current	$V_{CC} = 0$ to 5.5 V,				3. 2 5	mA
1		See Note 6	$V_{I} = -10 V$		- 1.6	- 3.25	
los	Short-circuit output current [‡]	$V_0 = 0,$	$V_{1D} = 0.2 V$	-40	- 75	- 100	mA
ICC	Supply current	$V_{1D} = -0.5 V$,	No load		35	50	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

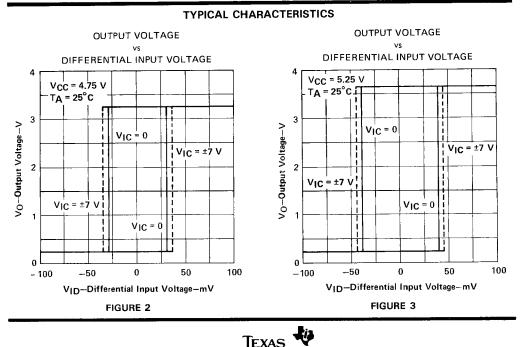
[‡]Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

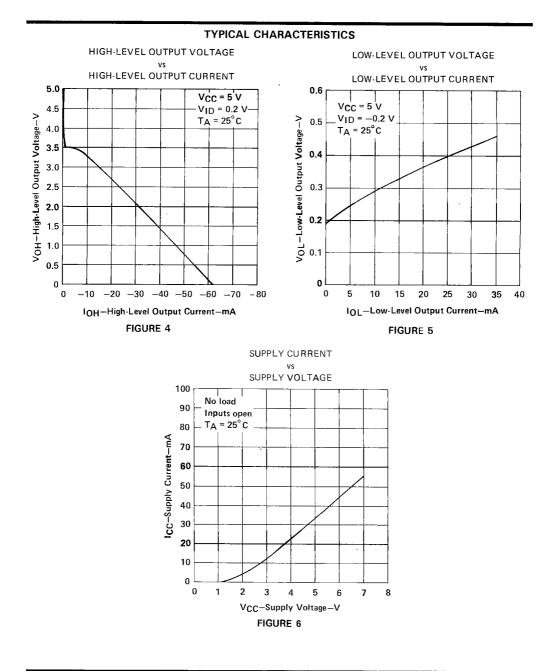
NOTES: 4. The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.


- 5. The expanded threshold parameter is tested with a 500- Ω resistor in series with each input.
- 6. The input not under test is grounded.

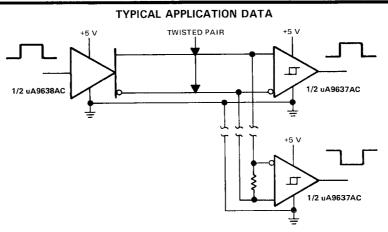
switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$

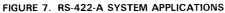
	PARAMETER TEST CONDITION		MIN	ТҮР	MAX	UNIT
TPLH	Propagation delay time, low-to-high-level output			15	25	ns
TPHL	Propagation delay time, high-to-low-level output	C _L = 30 pF, See Figure 1		13	25	ns


PARAMETER MEASUREMENT INFORMATION

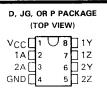

NOTES: A. Cl includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 5 MHz, duty cycle = 50%.



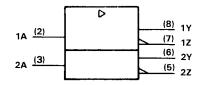


uA9638C DUAL HIGH-SPEED DIFFERENTIAL LINE DRIVER

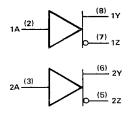

D2612, OC

- Meets EIA Standard RS-422-A
- Operates From a Single 5-V Supply
- TTL-and CMOS-Input Compatibility
- Output Short-Circuit Protection
- Schottky Circuitry
- Designed to Be Interchangeable With Fairchild 9638

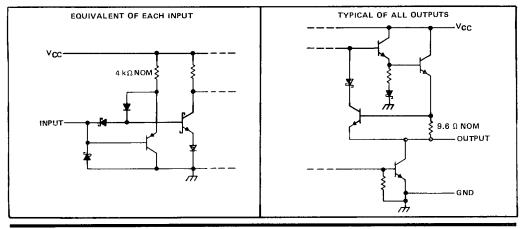
description


The uA9638C is a dual high-speed differential line driver designed to meet EIA Standard RS-422-A. The inputs are TTL- and CMOScompatible and have input clamp diodes. Schottky-diode-clamped transistors are used to minimize propagation delay time. This device operates from a single 5-V power supply and is supplied in an 8-pin package.

The uA9638C is characterized for operation from 0 °C to 70 °C.



1980-REVISED SEPTEMBER 1986



logic diagram

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

PRODUCTION DATA documents contain information current as of publication date. Products conform te specifications par the terms of Taxas instruments standard warranty. Production processing does not necossarily include testing of all parameters.

Copyright © 1986, Texas Instruments Incorporated

uA9638C DUAL HIGH-SPEED DIFFERENTIAL LINE DRIVER

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, VCC (see Note 1)
Input voltage range
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from 10 seconds: D and P package

NOTES: 1. Voltage values except differential output voltages are with respect to network ground terminal. 2. In the JG package, uA9638C chips are glass mounted.

DISSIPATION RATING TABLE

PACKAGE	T _A = 25°C POWER RATING	DERATING FACTOR ABOVE $T_A = 25^{\circ}C$	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
JG	825 mW	6.6 mW/°C	528 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

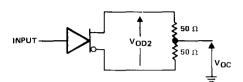
	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
High-level input voltage, VIH	2			V
Low-level input voltage, VIL			0.8	v
High-level output current, IOH			- 50	mA
Low-level output current, IOL			50	mA
Operating free-air temperature, T _A	0		70	°C

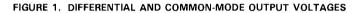
PARAMETER		TEST CONDITIONS		MIN	TYPT	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = 4.75 \text{ V}, \text{ I}_{I} = -18 \text{ mA}$			- 1	-1.2	V
	I link found output under an	$V_{CC} = 4.75 V, V_{H} = 2 V,$	IOH = -10 mA	2.5	3.5		v
∨он	High-level output voltage	V _{IL} = 0.8 V	$I_{OH} = -40 \text{ mA}$	2			V
Va	Low-level output voltage	$V_{CC} = 4.75 V, V_{IH} = 2 V,$	$V_{IL} = 0.8 V,$			0.5	v
VOL		l _{OL} = 40 mA				0.5	V
VOD1	i " rential output voltage	$V_{CC} = 5.25 V, I_{O} = 0$			2	VOD2	V
VOD2	· · rential output voltage						V
	Change in magnitude of [‡]					±0.4	v
∆ V _{OD}	differential output voltage	V _{CC} = 4.75 V to 5.25 V, R _L = 100 Ω, See Figure 1				±0.4	v
Voc	Common-mode output voltage [§]	VCC = 4.75 V to 5.25 V, RL = 100 1, See Figure 1				3	V
∆ Voc	Change in magnitude of [‡]					±0.4	v
41 VOC 1	common-mode output voltage					10.4	· ·
			V0 = 6 V		0.1	100	
10	Output current with power off	$V_{CC} = 0,$	$V_0 = -0.25 V$		-0.1	- 100	μA
			$V_0 = -0.25 \text{ V to 6 V}$			±100	
lį	Input current	$V_{CC} = 5.25 V, V_{I} = 5.5 V$				50	μA
ιн	High-level input current	$V_{CC} = 5.25 V, V_{I} = 2.7 V$				25	μA
ΊL	Low-level input current	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} = 0.5 \text{ V}$				- 200	μA
los	Short-circuit output current	$V_{CC} = 5.25 V, V_0 = 0$		- 50		- 150	mA
lcc	Supply current (all drivers)	VCC = 5.25 V, No load,	All inputs at 0 V		45	65	mA

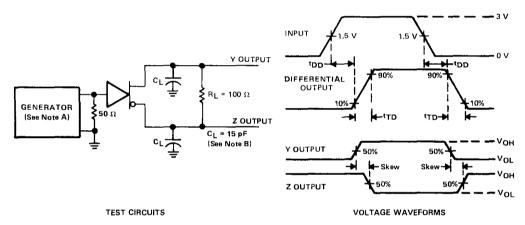
electrical characteristics over operating free-air temperature range (unless otherwise noted)

[†]All typical values are at V_{CC} = 5 V and T_A = 25 °C. [‡] Δ | V_{OD} | and Δ | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

[§]In EIA Standard RS-422-A, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. Only one output at a time should be shorted and duration of the short circuit should not exceed one second.


switching characteristics, VCC = 5 V, TA = 25°C


PARAMETER	TEST CONDITION		MIN	түр	MAX	UNIT
tDD rential-output delay time	CL = 15 pF, RL = 100 Ω, See Figure 2	R _L = 100 Ω,		10	15	ns
tTD rential-output transition time			C	10	15	ns
JAGW			1		ns	

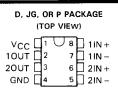


uA9638C DUAL HIGH-SPEED DIFFERENTIAL LINE DRIVER

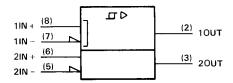
PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input pulse generator has the following characteristics: $Z_0 = 50 \Omega$, PRR $\leq 500 \text{ kHz}$, $t_W = 100 \text{ ns}$, $t_r = \leq 5 \text{ ns}$. B. CL includes probe and jig capacitance.

D3009, OCTOBER 1986

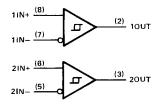

- Meets EIA Standards RS-422-A and RS-423-A
- Meets Federal Standards 1020 and 1030
- Dperates from Single 5-V Power Supply
- Wide Common-Mode Voltage Range
- High Input Impedance
- TTL-Compatible Dutputs
- High-Speed Schottky Circuitry
- 8-Pin Dual-In-Line and "Small Dutline" Packages
- Designed to be Interchangeable with Fairchild µA9639AC

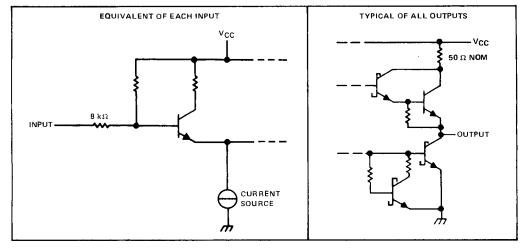
description


The uA9639C is a dual differential line receiver designed to meet EIA standards RS-422-A and RS-423-A and Federal Standards 1020 and 1030. It utilizes Schottky circuitry and has TTLcompatible outputs. The inputs are compatible with either a single-ended or a differential-line system. This device operates from a single 5-volt power supply and is supplied in an 8-pin dual-inline package and "small outline" package.

The uA9639C is characterized for operation from 0 $^{\circ}$ C to 70 $^{\circ}$ C.

schematics of inputs and outputs




logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Inatruments standard warrenty. Preductien precessing daes not necessarily includo testing of all perameters.

Copyright © 1986, Texas Instruments Incorporated

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage
Differential input voltage (see Note 2) ±15 V
Output voltage (see Note 1)
Low-level output current
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 3):
D package
JG package
P package
Operating free-air temperature range
Storage temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D and P package 260°C

NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.

- 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. For operation above 25 °C free-air temperature, derate the D package to 464 mW at 70 °C at the rate of 5.8 mW/°C, the JG package to 528 mW at 70 °C at the rate of 6.6 mW/°C, and the P package to 640 mW at 70 °C at the rate of 8.0 mW/°C.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
Common-mode input voltage, VIC			±7	V
Operating free-air temperature A	0		70	°C

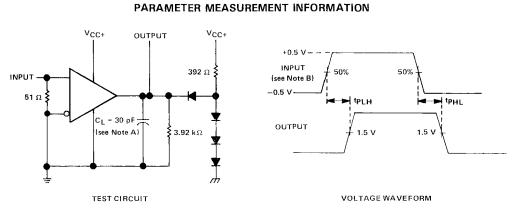
electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless othewise noted)

PARAMETER		TEST CONDITIONS		MIN TYP See No		UNIT
	Threshold voltage (V _{T +} and V _{T -})			- 0.2	0.2	$\frac{1}{2}$
۷T		See Note 5		- 0.4	0.4	V
Vhys	Hysteresis (VT+ - VT-)			70)	mν
VOH	High-level output voltage	$V_{ID} = 0.2 V_{,}$	io = ~1 mA	2.5 3.5	5	V
VOL	Low-level output voltage	$V_{1D} = -0.2 V_{,}$	$I_0 = 20 \text{ mA}$	0.35	0 .5	V
կ	Input current	$V_{CC} = 0$ to 5.5 V,	V _I = 10 V	1.1	3.25	-
		See Note 6	$V_{ } = -10 V$	~1.6	5 - 3.25	mA
los	Short-circuit output current [‡]	V _O = 0,	$V_{\rm 1D} = 0.2 V$	- 40 - 75	5 - 100	mA
^I CC	Supply current	$V_{ID} = -0.5 V_{,}$	No load	35	50	mA

[†]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[‡]Only one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

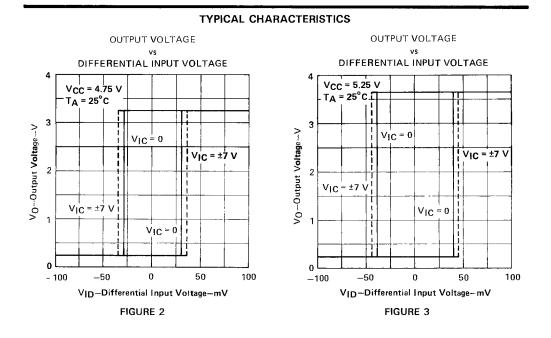
NOTES: 4. The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.

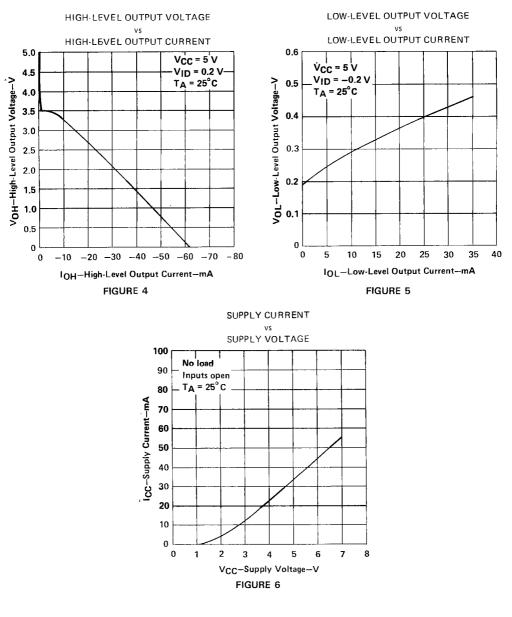

5. The expanded threshold parameter is tested with a 500- Ω resistor in series with each input.

6. The input not under test is grounded.

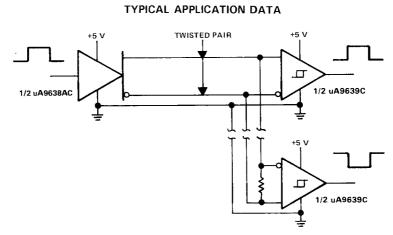
switching characteristics, $V_{CC} = 5 V$, $T_A = 0 \circ C$ to $70 \circ C$

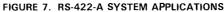
PARAMETER		TEST CONDITION	MIN MA	
^t PLH	Propagation delay time, low-to-high-level output	$C_1 = 30 \text{ pF}$, See Figure 1	8	5 ns
^t PHL	Propagation delay time, high-to-low-level output		8	5 ns





NOTES: A, \mathbf{C}_{L} includes probe and jig capacitance.


B. The input pulse is supplied by a generator having the following characteristics: $t_r \le 5$ ns, $t_f \le 5$ ns, PRR ≤ 5 MHz, duty cycle = 50%.



TYPICAL CHARACTERISTICS

