

ATTENTION

These devices contain circuits to protect the inputs and outputs against damage due to high static voltages or electrostatic fields; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

Unused inputs must always be connected to an appropriate logic voltage level, preferably either supply voltage or ground.

Additional information concerning the handling of ESD sensitive devices is provided in Section 12 in a document entitled *"Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies."*

19 SOUT

18 TR/OE 17 CAS

16 0

15 AO

14 A1

JD PACKAGE

(TOP VIEW)

SIN 1 U20 VSS

SCLK 2

SOE 3

RAS 6

A6 7

SOUT

TR/OF

VDD

Vss

W

D[4 W 15 NOVEMBER 1985

- MIL-STD-883C High-Reliability Processed and -55 °C to 100 °C (S Designator) Temperature Range, 20-Pin 300-Mil Ceramic Sidebrazed Package
- Dual Accessibility One Port Sequential Access, One Port Random Access
- Four Cascaded 64-Bit Serial Shift Registers for Sequential Access Applications
- Designed for both Video and Non-Video Applications
- Fast Serial Port . . . Can Be Configured for Video Data Rates in Excess of 150 MHz
- TR/QE as Output Enable Allows Direct Connection of D, Q and Address Lines to Simplify System Design
- **Random-Access Port Looks Exactly Like a** SMJ4164
- Separate Serial In and Serial Out to Allow . Simultaneous Shift In and Out
- 65,536 × 1 Organization
- Supported by TI's Video System Controller (VSC)
- Maximum Access Time from RAS Less Than 150 ns
- Minimum Cycle Time (Read or Write) Less Than 240 ns
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.7% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Outputs for Both Random . and Serial Access
- Common I/O Capability with Early Write Feature
- Page-Mode Operation for Faster Access
- Low Power Dissipation (SMJ4161-15) .
 - Operating . . . 250 mW (Typical)
 - Standby ... 80 mW (Typical)
- New SMOS (Scaled-MOS) N-Channel Technology
- SOE Simplifies Multiplexing of Serial Data Streams

PROPLICTION DATA documents contain information - Itent as al within ation data. Products conform - specifications we the terms of Texas in structure res standard was: ...t.p. Froduction processing if an un necessarily include testing of all party data.

	A5 8 13 A2 A4 9 12 A3
	VDD 10 11 A7
	PIN NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
D	Random-Access Data In
Q	Random-Access Data Out
RAS	Row-Address Strobe
SCLK	Serial Data Clock
SIN	Serial Data In
SOE	

Serial Data Out

5-V Supply

Write Enable

Ground

Register Transfer/Q Output Enable

Copyright © 1985, Texas Instruments Incorporated

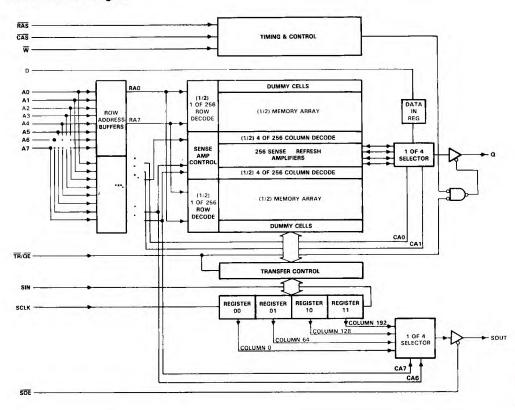
description

The SMJ4161 is a high-speed, dual-access 65,536-bit dynamic random-access memory. The randomaccess port makes the memory look like it is organized as 65,536 words of one bit each like the SMJ4164. The sequential access port is interfaced to an internal 256-bit dynamic shift register organized as four cascaded 64-bit shift registers which makes the memory look like it is organized as up to 256 words of up to 256 bits each which are accessed serially. One, two, three, or four 64-bit shift registers can be sequentially read out after a transfer cycle depending on a two-bit code applied to the two most significant column address inputs. The SMJ4161 employs state-of-the-art SMOS (Scaled-MOS) N-channel doublelevel polysilicon gate technology for very high performance combined with low cost and improved reliability.

The SMJ4161 features full asynchronous dual access capability except when transferring data between the shift register and the memory array.

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power. Note that the transfer of a row of data from the memory array to the shift register also refreshes that row.

All inputs and outputs, including clocks, are compatible with Series 54 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.


The SMJ4161 is offered in a 20-pin ceramic dual-in-line package. It is guaranteed for operation from $T_A = -55$ °C to $T_C = 100$ °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

random access address space to sequential address space mapping

The SMJ4161 is designed with each row divided into four, 64-column sections (see functional block diagram). The first column section to be shifted out is selected by the two most significant column address bits. If the two bits represent binary 00, then one to four registers can be shifted out in order. If the two bits represent binary 01, then only 1 to 3 (the most significant) registers can be shifted out in order. If the two bits represent binary 10, then one to two of the most significant registers can be shifted out in order. If the two bits represent binary 10, then one to two of the most significant registers can be shifted out. All registers are shifted out with the least significant bit (bit 0) first and the most significant bit (bit 63) last. Note that if the two column address bits equal 00 during the last register transfer cycle (TR/QE at logic level ''O'' as RAS falls) a total fo 256 bits can be sequentially read out.

functional block diagram

random-access operation

TR/QE

The TR/QE pin has two functions. First, it selects either register transfer or random-access operation as RAS falls, and second, if this is a random-access operation, it functions as an output enable after CAS falls.

To use the SMJ4161 in the random-access mode, $\overline{TR}/\overline{QE}$ must be high as \overline{RAS} falls, Holding $\overline{TR}/\overline{QE}$ high as \overline{RAS} falls keeps the 256 elements of the shift registers disconnected from the corresponding 256 bit lines of the memory array. If data is to be transferred, the shift registers must be connected to the bit lines. Holding $\overline{TR}/\overline{QE}$ low as \overline{RAS} falls enables the 256 switches that connect the shift registers to the bit lines and indicates that a transfer will occur between the shift registers and one of the memory rows.

During random-access operation, once \overrightarrow{CAS} has been pulled low, $\overrightarrow{TR}/\overrightarrow{QE}$ controls when the data will appear at the Q output (if this is a read cycle). Whenever $\overrightarrow{TR}/\overrightarrow{QE}$ is held high during random-access operation, the Q output will be in the high-impedance state. This feature removes the possibility of an overlap between data on the address lines and data appearing on the Q output making it possible to connect the address lines to the Q and D lines (Use of this organization prohibits the use of the early write cycle.).

Military Products

8

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage cell locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (RAS). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (RAS). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (RAS). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and $\frac{1}{2}$ 5. RAT is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. The falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 54 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) (1.0) as long as CAS or TR/QE is held high. Data will not appear on the output until after both CAS and TR (1) f have been brought low. In a read cycle, the guaranteed maximum output enable access time time is valid only if t_{CQE} is greater than t_{CQE} MAX, and t_{RLCL} is greater than t_{RLCL} MAX. Likewise, t_a(C) MAX is valid only if t_{RLCL} is greater than t_{RLCL} MAX. Once the output is valid, it will remain valid while CAS and TR/QE are both low; CAS or TR/QE going high will return the output to a high-impedance state. In an early write cycle, the output is always in a high-impedance state. In a register transfer cycle, the output will follow the sequence for the read cycle. In a register transfer cycle, the output will always be in a high-impedance state.

refresh

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in high-impedance state unless \overline{CAS} is applied, the \overline{RAS} -only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} can remain high (inactive) for this refresh sequence to conserve power.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 256 column locations on a single RAM, the row address and RAS are applied to multiple 64K RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, \overline{RAS} must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

sequental access operation

TR/QE

Memory transfer operations involving parallel use of the shift register are first indicated by bringing $\overline{TR/QE}$ low before RAS falls low. This enables the switches connecting the 256 elements of the shift register to the 256 bit lines of the memory array. The \overline{W} line determines whether the data will be transferred from or to the shift registers.

write enable (W)

In the sequential access mode, W determines whether a transfer will occur from the shift registers to the memory array, or from the memory array to the shift registers. To transfer from the shift registers to the memory array, W is held low as RAS falls, and, to transfer from the memory array to the shift registers, W is held high as RAS falls. Thus, reads and writes are always with respect to the memory array. The write setup and hold times are referenced to the falling edge of RAS for this mode of operation.

row address (A0 through A7)

Eight address bits are required to select one of 1:m 256 possible rows involved in the transfer of data to or from the shift registers. AO-A7, \overline{W} , and \overline{TR} \subseteq are latched on the falling edge of \overline{RAS} .

register column address (A7, A6)

To select one of the four shift registers (transfer from memory to register only), the appropriate 2-bit column address (A7, A6) must be valid when CAS falls. However, the CAS and register address signals need not be supplied every cycle, only when it is desired to change or select a new register.

SCLK

Data is shifted in and out on the rising edge of SCLK. This makes it possible to view the shift registers as though it were made of 256 rising edge D flip-flops connected D to Q. The SMJ4161 is designed to work with a wide range duty cycle clock to simplify system design. Note that data will appear at the SOUT pin not only on the rising edge of SCLK but also after an access time of $t_{a(RSO)}$ from \overline{RAS} high during a parallel load of the shift registers.

SIN and SOUT

Data is shifted in through the SIN pin and is shifted out through the SOUT pin. The SMJ4161 is designed such that it requires 3 ns hold time on SIN as SCLK rises. SOUT is guaranteed not to change for at least 6 ns after SCLK rises. These features make it possible to easily connect SMJ4161s together, to allow SOUT to be connected to SIN, and to give external circuitry a full SCLK cycle time to allow manipulation of the serial data. If SOUT is connected to SIN, the SCLK cycle time must include $t_{su}(SI)$. When loading data into the shift register from the serial input in preparation for a shift-register-to-memory transfer operation, the serial clock must be clocked an even number of times. To guarantee proper serial clock sequence after power up, a transfer cycle must be initiated before a serial data stream is applied at SIN.

SOE

The serial output enable pin controls the impedance of the serial output, allowing multiplexing of more than one bank of SMJ4161 memories into the same external video circuitry. When SOE is at a logic low level, SOUT will be enabled and the proper data read out. When SOE is at a logic high level, SOUT will be disabled and be in the high-impedance state.

refresh

The shift registers are also dynamic storage elements. The data held in the registers will be lost unless SCLK goes high to shift the data one bit position, a transfer write operation is invoked, or the data is reloaded from the memory array. See specifications for maximum register data retention times.

8

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

Voltage on any pin except VDD and data out (see Note 1)	_	1.	.5	v	to 10 V
Voltage on VDD supply and data out with respect to VSS			- '	1 ١	v to 6 V
Short circuit output current					50 mA
Power dissipation					1 W
Minimum operating free-air temperature					-55°C
Operating case temperature					100°C
Storage temperature range	- 6	5	°C	to	0 150°C

¹ Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values in this data sheet are with respect to V_{SS}.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VDD	Supply voltage	4.75	5	5.25	٧
Vss	Supply voltage		0		V
VIH	High-level input voltage	2.4		VDD+0.3	V
VIL	Low-level input voltage (see Notes 2 and 3)	-0.6		0.8	V
TA	Operating free-air temperature	- 55			°C
Тс	Operating case temperature			100	°C

NOTES: 2. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

3. Due to input protection circuitry, the applied voltage may begin to clamp at -0.6 V; test conditions must comprehend this occurrence.

4. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

			SI	MJ4161	-15	SN	AJ4161	-20	
	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	MIN	TYPT	MAX	UNIT
Vон	High-level output voltage (Q, SOUT)	I _{OH} = -5 mA	2.4			2.4			v
VOL	Low-level output voltage (Q, SOUT)	I _{OL} = 4.2 mA			0.4			0.4	v
ų	Input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All other pins = 0 V			±10			± 10	μΑ
¹ 0 [‡]	Output current (leakage) (Q,SOUT)	$V_{O} = 0.4 V \text{ to } 5.5 V,$ $V_{DD} = 5 V$			±10			±10	μA
IDD 1	Average operating current during read or write cycle	^t c(rd) = minimum cycle time, TR/QE low after RAS falls, [§] SCLK and SIN low, SOE high, No load on Q and SOUT		50	75		45	75	mA
DD29	Standby current	After 1 - RAS cycle, RAS and CAS high, SCLK and SIN low, SOE high, No load on Q and SOUT		16	25		16	25	mA
IDD3	Average refresh current	t _{c(rd)} = minimum cycle time, CAS high, RAS cycling, SCLK and SIN low, SOE high, TR/QE high, No load on Q and SOUT		42	60		37	60	mA
IDD4	Average page-mode current	$\begin{array}{l} t_{c(P)} \ = \ \mbox{minimum cycle time}, \\ \hline RAS low, CAS cycling, \\ \hline TR/QE low after RAS falls, \\ SCLK and SIN low, \\ \hline SOE high, \end{array}$		45	75		40	75	mA
DD5	Average shift register current (includes IDD2)	No load on Q and SOUT RAS and CAS high, No load on Q and SOUT, t _c (SCLK) = t _c (SCLK) min		30	45		30	45	mA
	Worst case average DRAM and shift register current	$t_{c(rd)}$ = minimum cycle time, $t_{c(SCLK)}$ = minimum cycle time, $T\bar{R}/QE$ low after RAS falls, No load on Q and SOUT		85	100		85	100	mA

electrical characteristics over full range of recommended operating conditions (unless otherwise noted)

[†]All typical values are at $T_A = 25 \,^{\circ}$ C and nominal supply voltages.

[‡]SOUT output current (leakage) is guaranteed but not tested.

§See appropriate timing diagram.

¶V_{IL} > ~0.6 V.

Military Products

8-9

capacitance over recommended supply voltage and operating temperature range, f = 1 MHz

	PARAMETER	TYP [†] MAX	UNIT
Ci(A)	Input capacitance, address inputs	4	
Ci(D)	Input capacitance, data input	4	
Ci(RC)	Input capacitance, strobe inputs	8	10.0
Ci(W)	Input capacitance, write enable input	8	
Ci(CK)	Input capacitance, serial clock	8	
Ci(SI)	Input capacitance, serial in	4	pF
Ci(SOE)	Input capacitance, serial output enable	4	
Ci(TR)	Input capacitance, register transfer input	4	1
Co(Q)	Output capacitance, random-access data	5	100
Co(SOUT)	Output capacitance, serial out	5	1.00

[†]All typical values are at $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating temperature range (see Figure 1)

	PARAMETER	TEST CONDITIONS [†]	ALT.	SMJ4161-15	SMJ4161-20	UNIT
	PARAMETER	TEST CONDITIONS	SYMBOL	MIN MAX	MIN MAX	UNI
ta(C)	Access time from CAS	C _L = 80 pF,	^t CAC	100	135	
^t a(QE)	Access time of Q from TR/QE low	$I_{OL} = 4.2 \text{ mA},$ $I_{OH} = -5 \text{ mA}$		40	50	
t _a (R)	Access time from RAS	$t_{RLCL} = max,$ $C_L = 80 \text{ pF},$ $I_{OL} = 4.2 \text{ mA},$ $I_{OH} = -5 \text{ mA}$	^t RAC	150	200	
t _a (RSO)	SOUT access time from RAS high			65	85	ns
t _a (SOE)	Access time from SOE low to SOUT			45	50	
ta(SO)	Access time from SCLK	CL = 80 pF,	-	45	55	
^t dis(CH)	Q output disable time from CAS high	^I OL = 4.2 mA, ^I OH = -5 mA	tOFF	40	40	
tdis(QE)	Q output disable time from TR/QE high			30	40	
tdis(SOE)	Serial output disable time from SOE high			20	25	

[†]Figure 1 shows the load circuit; CL values shown are typical for test system used.

		ALT.	SM.14161-15	SM.14161-20	UNIT
-		SYMBOL	MIN MAX	MIN MAX	UNIT
t _c (P)	Page-mode cycle time	tPC	160	225	ns
tc(rd)	Read cycle time [†]	TRC	240	315	ns
tc(W)	Write cycle time	twc	240	315	ns
tc(TW)	Transfer write cycle time [‡]		240	315	ns
tc(Trd)	Transfer read cycle time		240		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	265	••	ns
tc(SCLK)	Serial clock cycle time (see Note 5)	tSCC	45 50,000	55 50,000	ns
tw(CH)	Pulse duration, CAS high (precharge time)§	tCP	50	80	ns
tw(CL)	Pulse duration, CAS low¶	tCAS	100 10,000	135 10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	, 80	105	ns
tw(RL)	Pulse duration, RAS low#	tRAS	150 10,000	200 10,000	ns
tw(W)	Write pulse duration	twp	45	45	ns
tw(CKL)	Pulse duration, SCLK low		20	20	ns
tw(CKH)	Pulse duration, SCLK high		20	20	ns
tw(QE)	TR/QE pulse duration low time (read cycle)		50	50	ns
tsu(CA)	Column address setup time	tASC	0	0	ns
tsu(RA)	Row address setup time	tASR	0	0	ns
^t su(RW)	\overline{W} setup time before \overline{RAS} low with $\overline{TR}/\overline{QE}$ low		0	0	ns
t _{su(D)}	Data setup time	tDS	0	0	ns
tsu(rd)	Read command setup • • • • •	tRCS	5	5	ns
^t su(WCL)	Early write command actual time before CAS low	twcs	- 5	-5	ns
t _{su} (WCH)	Write command setup time before CAS high	tCWL	40	60	ns
t _{su} (WRH)	Write command setup time before RAS high	tRWL	40	60	ns
tsu(TR)	TR/QE setup time before RAS low		5	5	ns
t _{su} (SI)	Serial data setup time before :- I K high		6	6	ns
th(Si)	Serial data in hold time after out high		3	3	ns
th(CLCA)	Column address hold time after CAS low	tCAH	45	55	ns
th(RA)	Row address hold time	tRAH	20	25	ns
th(RW)	W hold time after RAS low with TR/QE low		30	30	ns
th(RLCA)	Column address hold time after RAS low	tAR	95	120	ns

timing requirements over recommended supply voltage range and operating temperature range

Continued next page.

NOTES: 5. t_{c(SCLK)} min is tested by connecting SIN to SOUT and test conditions include t_{SU(SI)}, see paragraph entitled SIN and SOUT on page 5.

Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, V_{IL} max and V_{IH} min must be met at the 10% and 90% r · .

7. System transition times (rise and (all) for *** CAS, and SCLK are to be a minimum of 3 ns and a maximum of 50 ns.

[†]All cycle times assume $t_t = 5$ ns except $t_c(SCLK)$ which assumes $t_t = 3$ ns.

[‡]Multiple transfer write cycles require separation by either a 1-µs RAS-precharge interval or any other active RAS-cycle. [§]Page-mode only.

In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{W(CL)}). This applies to page-mode read-modify-write also.

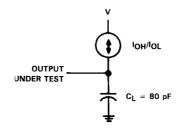
#in a read-modify-write cycle, tRLWL and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

This parameter is guaranteed but not tested.

		ALT.	SMJ4161-15	SM-14161-20	UNIT
		SYMBOL	MIN MAS	MIN MAX	UNII
th(CLD)	Data hold time after CAS low	^t DH	60	80	ns
th(RLD)	Data hold time after RAS low	^t DHR	110	145	ns
th(WLD)	Data hold time after ₩ low	tDH	45	55	ns
h(CHrd)	Read command hold time after CAS high	^t RCH	0	0	ns
h(RHrd)	Read command hold time after RAS high	tRRH	5	5	ns
h(CLW)	Write command hold time after CAS low	tWCH	60	80	ns
h(RLW)	Write command hold time after RAS low	tWCR	110	145	ns
th(RSO)	Serial data out hold time after RAS low with TR/QE low		30	30	ns
th(SO)	fata out hold time after SCLK high		6	6	ns
th(TR)	hold time after RAS low (transfer)		40	40	ns
TRLCH	Delay time, RAS low to CAS high	tCSH	150	200	ns
tCHRL	Delay time, CAS high to low	tCRP	0	0	ns
^t CLOEH	Delay time CAS low to QE high		100	135	ns
tCLRH	Delay time, CAS low to RAS high	tRSH	100	135	ns
^t CLWL	Delay time, CAS low to W low (read-modify cycle only)	tCWD	65	75	ns
^t CQE	Delay time,		60	85	ns
TRHSC	Delay time, RAS high to SCLK high		80	80	ns
TRLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	25 50	30 65	ns
tRLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	135	150	ns
^t CKRL	Delay time, SCLK high before RAS low with TR/QE low ☆		10	10	ns
trf(MA)	Refresh time interval, memory array	tREF1	4		ms
trf(SR)	Refresh time interval, shift register ^D	tREF2	50,000	50,000	ns

timing requirements over recommended supply voltage range and operating case temperature range (concluded)

NOTE 6: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.


This parameter is guaranteed but not tested.

. The may be high or $\cdot \Rightarrow$ during tw(RL), but there cannot be any positive edge transitions on SCLK for a minimum of 10 ns prior to $\exists h \exists g \in \mathcal{F}$ low with $\exists h \in \mathcal{F}$ low (i.e., before a transfer cycle).

"See "refresh" on page 8-7.

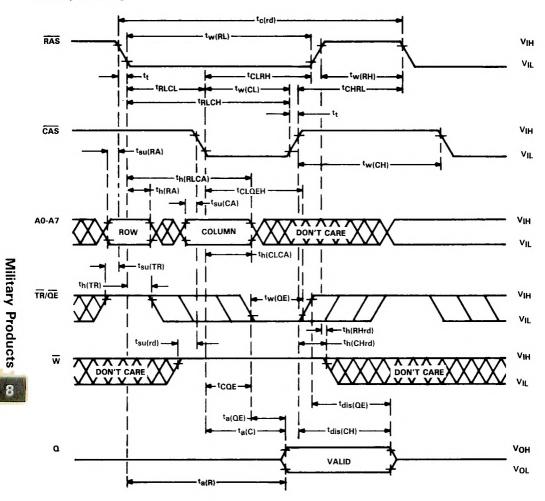
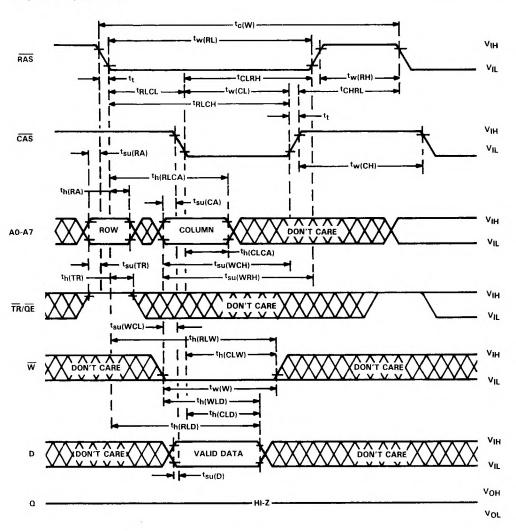
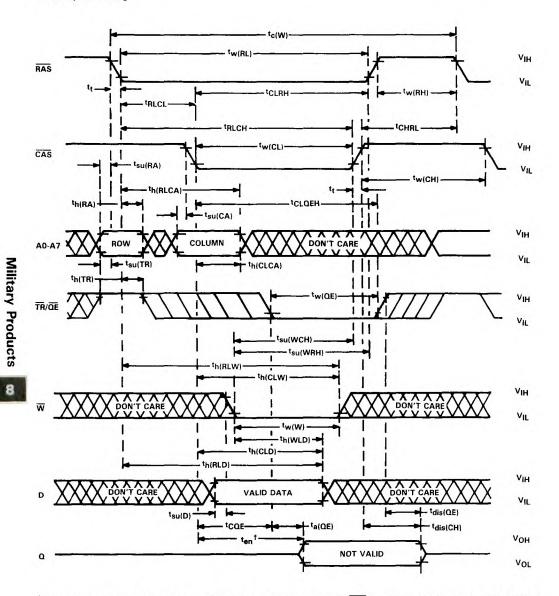

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. EQUIVALENT LOAD CIRCUIT

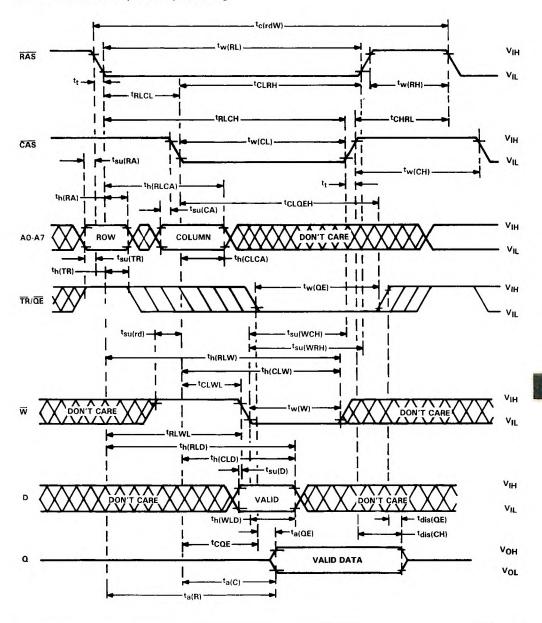


read cycle timing

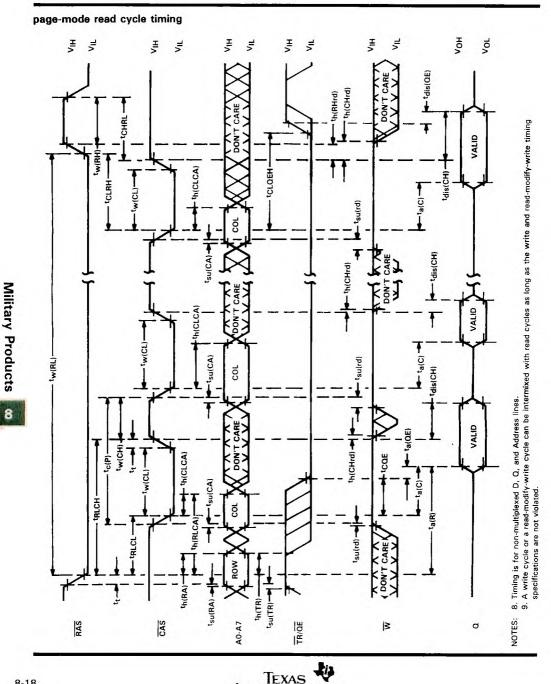


early write cycle timing

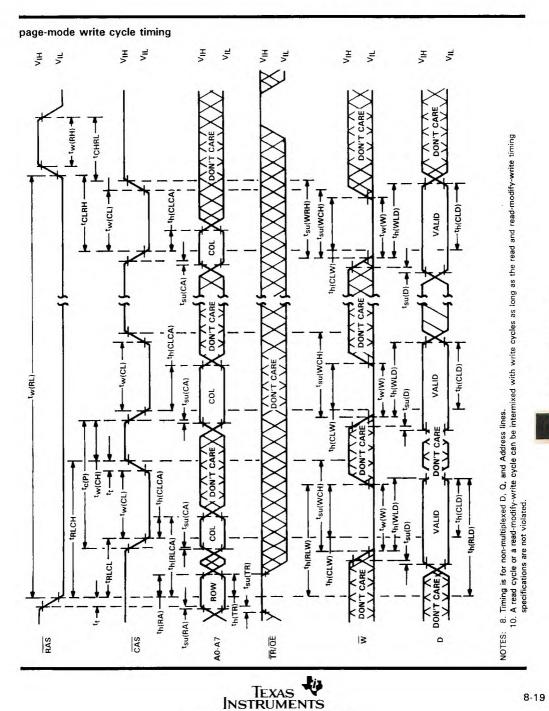
write cycle timing



[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.


8-16

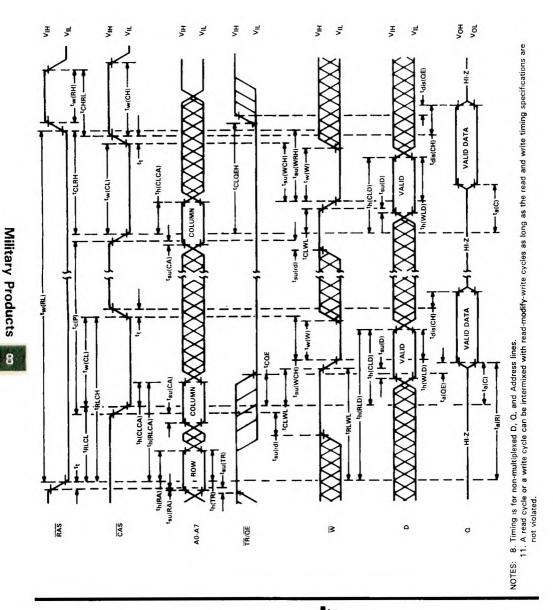
read-write/read-modify-write cycle timing



Military Products

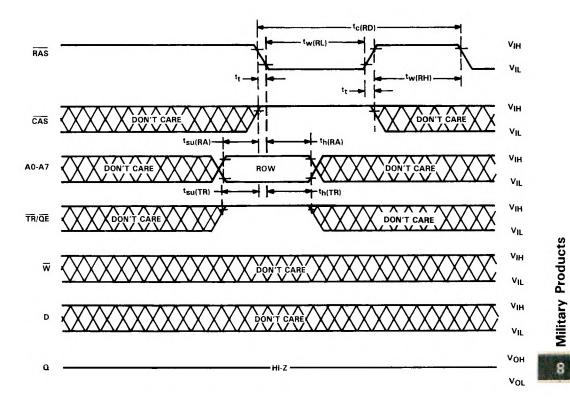
8-18

INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

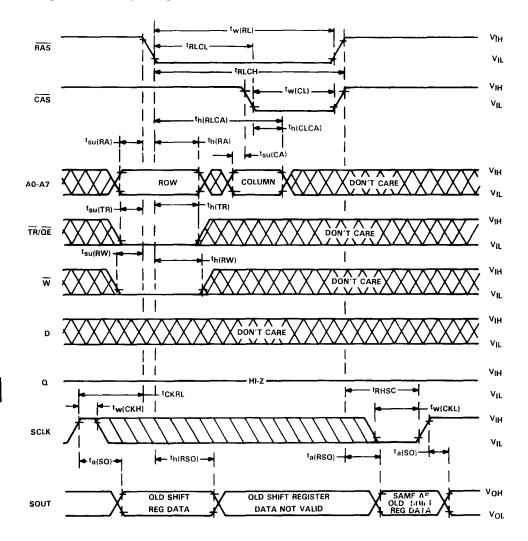

8-19

Military Products

8

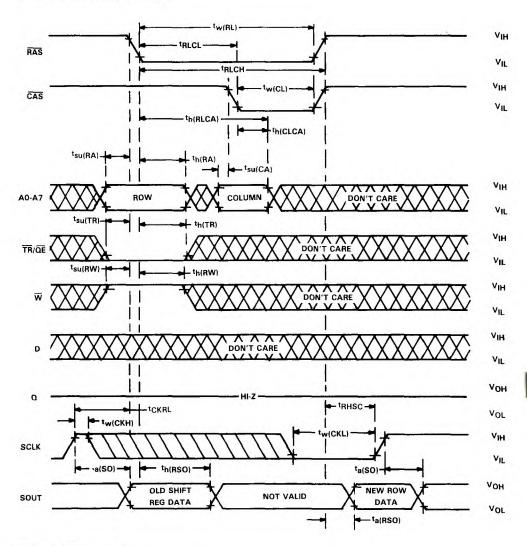

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

page-mode read-modify-write cycle timing


TEXAS INSTRIMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

RAS-only refresh timing

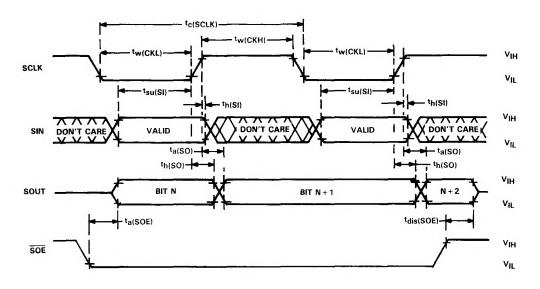
shift register to memory timing



NOTES:12. The shift register to memory cycle is used to tranfer data from the shift register to the memory array. Every one of the 256 locations in the shift register is written into the 256 columns of the selected row. Note that the data that was in the shift register mey have resulted, either from a sarial shift in or from a parallel load of the shift register from one of the memory array rows. 13. SOE assumed low.

- 14. SCLK may be high or low during tw(RL).
- 15. Multiple transfer write cycles require aither a 1-μs RAS-precharga interval or any other active RAS cycle before initiation of the transfer write cycles and separation between any two consecutive transfer write cycles.

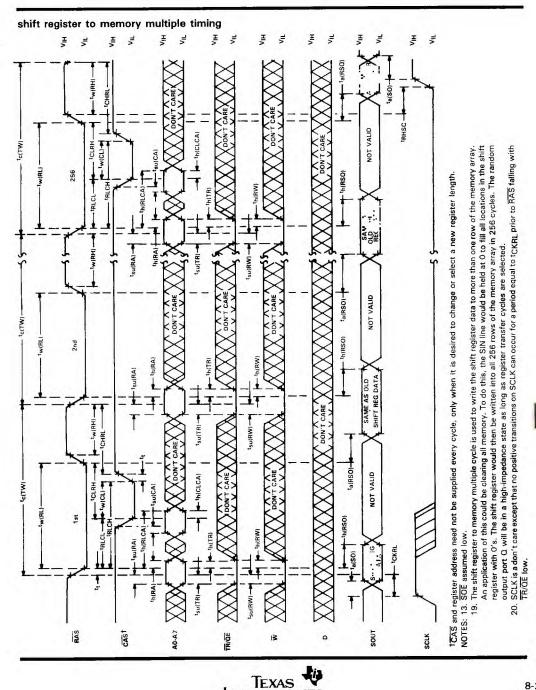
8


memory to shift register timing

NOTES: 13. SOE assumed low.

- 14. SCLK may be high or low during tw(RL).
- 15. Multiple transfer write cycles require either a 500-ns RAS-precharge interval or any other active RAS cycle before initiation of the transfer write cycles and separation between any two consecutive transfer write cycles.
- 16. The memory to shift register cycle is used to load the shift register in parallel from the memory array. Every one of the 256 locations in the shift register are written into from the 256 columns of the selected row. Note that the data that is loaded into the shift register may be either shifted out or written back into another row.

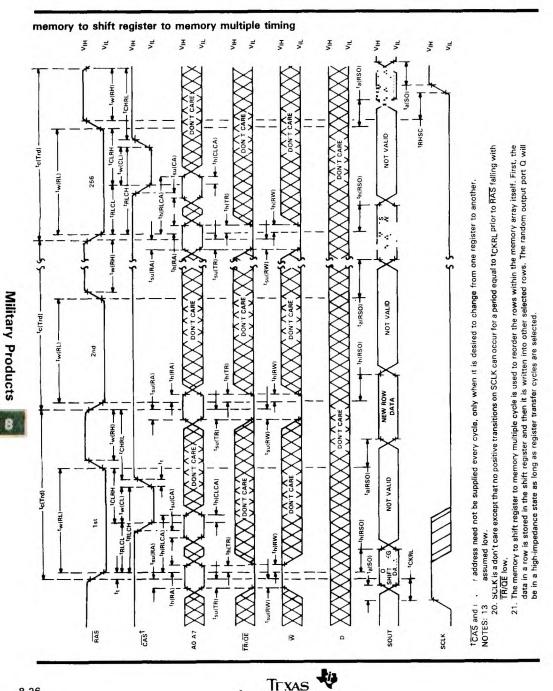
8


serial data shift timing

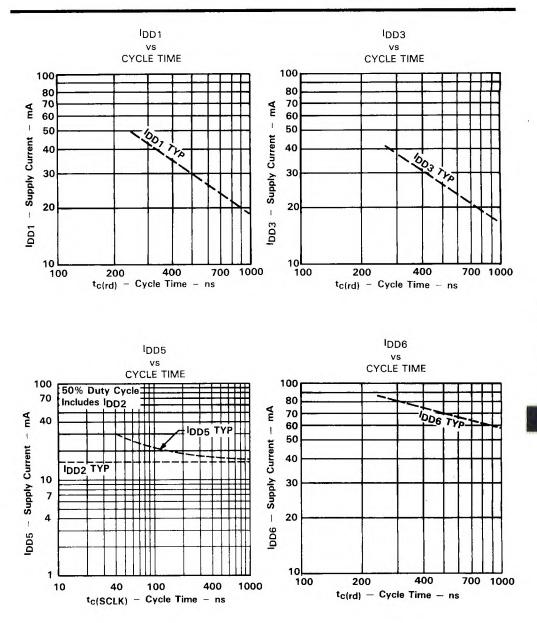
- NOTES: 5. t_{c(SCLK)} min is tested by connecting SIN to SOUT and test conditions include t_{su(SI)}, see paragraph entitled SIN and SOUT on page 5.
 - 17. While shifting data through the serial shift register, the state of TR/QE is a don't care as long as TR/QE is held high when RAS goes low and t_{su(TR)} and t_{h(TR)} timings are observed. This requirement avoids the initiation of a register-to-memory or memory-to-register data transfer operation. The serial data transfer cycle is used to shift data in and/or out of the shift register.
 - 18. When loading data into the shift register from the serial input in preparation for a shift-register-to-memory tranfer operation, the serial clock must be clocked an even number of times.

8

TEXAS INSTRUMENTS



8-25


Military Products

8

INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75285

INSTRUMENTS

8-27

Military Products

-

.

.

65,536-BIT DYNAMIC RANDOM-ACCESS MEMORY

NOVEMBER 1985

- JD PACKAGE . 65,536 X 1 Organization (TOP VIEW) **DESC** Approved NC 1 U16 VSS -SMJ4164-15JDS DESC No. 8201006EX DD2 15 CAS -SMJ4164-20JDS DESC No. 8201007EX wΠ3 1400 Single 5-V Supply (±10% Tolerance) RAS 4 13 A6 AOTI5 12 A3 JEDEC Standardized Pinout in Ceramic Dual-A216 11 A4 in-Line Package (JD Suffix) A1[7 10 A5 Upward Pin Compatible with '4116 (16K VDD 08 91A7 **Dynamic RAM)** FG PACKAGE . Available Temperature Ranges with (TOP VIEW) MIL-STD-883C High-Reliability Processing: -S... -55°C to 110°C VSS -E... -40°C to 85°C -L . . . 0°C to 70°C Long Refresh Period ... 4 ms Low Refresh Overhead Time . . . As Low As 1.8% of Total Refresh Period All Inputs, Outputs, Clocks Fully TTL Compatible
- **3-State Unlatched Output**
- Common I/O Capability with Early Write Feature
- **Page-Mode Operation for Faster Access**
- Low Power Dissipation -Operating . . . 125 mW (Typ) -Standby . . . 17.5 mW (Typ)
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
'4164-12	120 ns	70 ns	230 ns	260 ns
'4164-15	150 ns	85 ns	260 ns	285 ns
'4164-20	200 ns	135 ns	326 ns	345 ns

New SMOS (Scaled-MOS) N-Channel Technology

description

The SMJ4164 is a Military high-speed, 65,536-bit, dynamic random-access memory, organized as 65,536 words of one bit each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon gate technology for very high performance combined with low cost and improved reliability.

The SMJ4164 features RAS access times of 120 ns, 150 ns, and 200 ns maximum. Power dissipation is 125 mW typical operating and 17.5 mW typical standby,

....

PRODUCTION DATA documents contain information specifications per the terms of Texas Instruments stendard warranty. Production processing does not necessarily include testing of all parameters.

0	True T
8	TEXAS
t	INSTRUMENTS
	POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

wρ	3	16 [
RAS	4	15 🖸	
NC D	5	14	NC
AO D	6	130	A3
	7	12	A4
		A5 A5 A5	

PI	N NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
D	Data In
NC	No Connection
٥	Data Out
RAS	Row-Address Strobe
VDD	5-V Supply
VSS	Ground
∇	Write Enable

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power.

All inputs and outputs, including clocks, are compatible with Series 54/74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility. Pin 1 has no internal connection to allow compatibility with other 64K RAMs that use this pin for an additional function.

The SMJ4164 is offered in a 16-pin dual-in-line ceramic sidebraze package (JD suffix) and in a leadless ceramic chip carrier package (FG suffix). The JD package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers whereas the FG package is intended for surface mounting on solder lands on 1,27-mm (0.050-inch) centers. The FG package is a three-layer, 18-pad, rectangular ceramic chip carrier with dimensions of 7,37 \times 10,8 \times 1,65 mm (0.290 \times 0.425 \times 0.065 inches).

operation

address (A0 through A7)

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data-out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

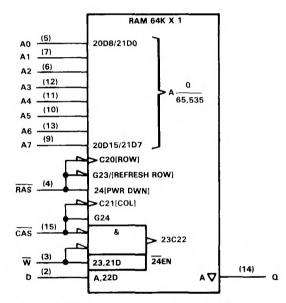
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 54/74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_{a}(C)$ that begins with the negative transition of CAS as long as $t_{a}(R)$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in the high-impedance state unless CAS is applied, the RAS-only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with RAS causes all bits in each row to be refreshed. CAS can remain high (inactive) for this refresh sequence to conserve power.

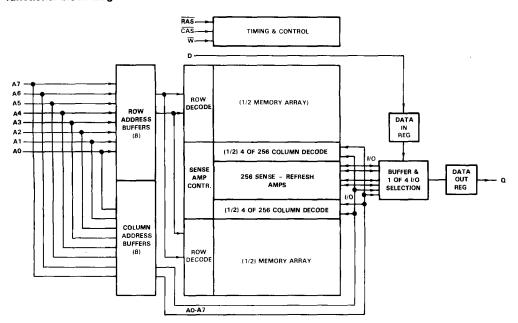

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 256 column locations on a single RAM, the row address and RAS are applied to multiple 64K RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, \overline{RAS} must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

SMJ4164 65,536-BIT DYNAMIC RANDOM-ACCESS MEMORY

functional block diagram

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

Voltage on any pin except V _{DD} and data out (see Note 1)	1.5 V to 10 V
Voltage on VDD supply and data out with respect to VSS	−1 V to 6 V
Short circuit output current	50 mA
Power dissipation	1 W
Minimum operating free-air temperature: S version	55°C
E version	40°C
L version	0°C
Operating case temperature: S version	110°C
E version	85°C
L version	70°C
Storage temperature range	5°C to 150°C

[†]Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values in this data sheet are with respect to $\mathsf{V}_{SS}.$

 Additional information concerning the handling of ESD sensitive devices is available in a document entitled "Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies" in Section 12.

		S	S VERSION		E VERSION			L VERSION			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VDD	Supply Voltage	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	٧
VSS	Supply voltage		0			0			0		V
VIH	High-level input voltage	2.4		V _{CC} +0.3	2.4		V _{CC} +0.3	2.4		V _{CC} +0.3	v
VIL	Low-level input voltage (Notes 3 and 4)	-0.6		0.8	-0.6		0.8	-0.6		0.8	v
TA	Operating free- air temperature	- 55		224	-40			0			°C
т _с	Operating case temperature			110			85			70	°C

recommended operating conditions

NOTES: 3. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

4. Due to input protection circuitry, the applied voltage may begin to clamp at ~0.6 V. Test conditions should comprehend this occurrence. See Application Report entitled "TMS4164A and TMS4416 Input Diode Protection" on page 9-5.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

		TEST		J4164-	12	SMJ4164-15			
	PARAMETER	CONDITIONS	MIN TYPT MAX		MIN TYPT MAX			UNIT	
VOH	High-level output voltage	IOH = -5 mA	2.4			2.4		1	V
VOL	Low-level output voltage	IOL = 4.2 mA			0.4			0.4	V
<u>ң</u>	Input current (leakage)	$V_{I} = 0 V$ to 5.8 V, $V_{DD} = 5.5 V$, All other pins = 0 V			±10			± 10	μA
10	Output current (leakage)	V _O = 0.4 V to 5.5 V, V _{DD} = 5 V, ⊷ nigh			±10			± 10	μΑ
IDD1 [‡]	Average operating current during read or write cycle	t _c = minimum cycle, All outputs open		40	48		35	45	mA
IDD2 [§]	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open		3.5	5		3.5	5	mA
IDD3 [‡]	Average refresh current	t _c = minimum cycle, CAS high and RAS cycling, All outputs open		28	40		25	37	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low and CAS cycling, All outputs open		28	40		25	37	mA

[†]All typical values are at $T_C = 25$ °C and nominal supply voltages.

[‡]Additional information on page 8-46.

[§]VIL > -0.6 V. See Application Report entitled "TMS4164A and TMS4416 Input Diode Protection" on page 9-5.

SMJ4164 65,536-BIT DYNAMIC RANDOM-ACCESS MEMORY

	PARAMETER	TEST		SMJ4164-20				
	PARAMETER	CONDITIONS	MIN TYP1		MAX	UNI		
VOH	High-level output voltage	I _{OH} = -5 mA	2.4			V		
VOL	Low-level output voltage	IOL = 4.2 mA			0.4	V		
η	Input current (leakage)	$V_{I} = 0 V \text{ to } 5.8 V,$ $V_{DD} = 5.5 V,$ All other pins = 0 V			±10	μA		
۰ <u>0</u>	Output current (leakage)	$V_0 = 0.4 \text{ V to 5.5 V},$ $V_{DD} = 5 \text{ V},$ CAS high			±10	μA		
¹ DD 1 [‡]	Average operating current during read or write cycle	t _C = minimum cycle All outputs opan		27	37	mA		
IDD2 [§]	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open		3.5	5	mA		
[†] EDd [‡]	Average refresh current	t _c = minimum cycle, CAS high and RAS cycling, All outputs open		20	32	mA		
IDD4	Average page-mode current	^t c(P) = minimum cycle, RAS low and CAS cycling, All outputs open		20	32	mA		

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†]All typical values are at $T_C = 25 \,^{\circ}C$ and nominal supply voltages.

[‡]Additional information on page 8-46.

[§]V_{IL} > −0.6 V. See Application Report entitled "TMS4164A and TMS4416 Input Diode Protection" on page 9-5.

capacitance over recommended supply voltage range and recommended temperature range, $f = 1 \text{ MHz}^{\dagger}$

	nput capacitance, data input nput capacitance strobe inputs	SMJ4164	
	PARAMETER	TYP [‡] MAX	UNIT
Ci(A)	Input capacitance, address inputs	4 7	pF
Ci(D)	Input capacitance, data input	4 7	pF
Ci(RC)	Input capacitance strobe inputs	8 10	pF
Ci(W)	Input capacitance, write enable input	8 10	pF
Co	Output capacitanca	5 8	pF

[†]These parameters are guaranteed but not tested.

[‡]All typical values are at $T_C = 25 \,^{\circ}C$ and nominal supply voltages.

PARAMETER		TEST CONDITIONS	ALT.	SMJ4164-12		SMJ4164-15		
		SYMBO		MIN	MAX	MIN	MAX	UNIT
ta(C)	Access time from CAS	C _L = 80 pF, see Figure 1	tCAC		70		85	ns
^t a(R)	Access time from RAS	C _L = 80 pF, t _{RLCL} = MAX, see Figure 1	^t RAC		120		150	ns
^t dis(CH)	Output disable time after CAS	CL = 80 pF, see Figure 1	tOFF	0	40	0	40	ns

switching characteristics over recommended supply voltage range and recommended operating temperature range

	PARAMETER	TEST CONDITIONS	ALT.	SMJ4		
	PARAMETER	TEST CONDITIONS	SYMBOL	MIN	MAX	
t _{a(C)}	Access time from CAS	C _L = 80 pF, see Figure 1	[†] CAC		135	ns
t _{a(R)}	Access time from RAS	C _L = 80 pF, t _{RLCL} = MAX, see Figure 1	^t RAC		200	ns
^t dis(CH)	Output disable time after CAS high	C _L = 80 pF, see Figure 1	tOFF	0	50	ns

8

timing requirements over recommended supply voltage range and recommended operating temperature range

	and the second se	ALT.	SMJ416	SMJ4164-12		164-15	UNIT
	Sector and an and a sector of the sector of the	SYMBOL	MIN	MAX	MIN	MAX	UNIT
tc(P)	Page-mode cycle time	tPC	130		- · · ·		ns
tc(rd)	Read cycle time [†]	tRC	230		· . ·		ns
tc(W)	Write cycle time	twc			. 1/ 1		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	_ ·· _		285		ns
tw(CH)	Pulse duration, CAS high (precharge time) [‡]	tCP	50		50		ns
tw(CL)	Pulse duration, CAS low [§]	tCAS	70	10,000	85	10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	80		100		ns
tw(RL)	Pulse duration, RAS low	tRAS	120	10,000	150	10,000	ns
tw(W)	Write pulse duration	tWP	40		45		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	- 5		- 5		ns
t _{su(RA)}	Row-address setup time	tASR	0		0		ns
t _{su(D)}	Data setup time	tDS	• 0		0		ns
t _{su(rd)}	Read-command setup time	^t RCS	0		0		ns
tsu(WCH)	Write-command setup time before CAS high	tCWL	50		50		пз
t _{su} (WRH)	Write-command setup time before RAS high	TRWL	50		50		ns
th(CLCA)	Column-address hold time after CAS low	tCAH	40		45	-	ns
th(RA)	Row-address hold time	tRAH	15		20		ns
th(RLCA)	Column-address hold time after RAS low	tAR	85		95		ns
th(CLD)	Data hold time after CAS low	^t DHC	40		45		ns
th(RLD)	Data hold time after RAS low	^t DHR	85		95		ns
th(WLD)	Data hold time after W low	tDHW	40		45		ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	^t RBH	5		5	-	ns
th(CLW)	Write-command hold time after CAS low	tWCH	40		45		ns
th(RLW)	Write-command hold time after RAS low	tWCR	85	-	95		ns
TRLCH	Delay time, RAS low to CAS high	1CSH	120		150		ns
tCHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
tCLRH	Delay time, CAS low to RAS high	tRSH	70		85		ns

Continued next page.

NOTE 5: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.

[†]All cycle times assume $t_t = 5$ ns.

[‡]Page-mode only.

[§]In a read-modify-cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL})). This applies to page-mode read-modify-write also.

In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(RL)}).

These parameters are guaranteed but not tested.

timing requirements over recommended supply voltage range and recommended operating temperature range (continued)

		ALT.	SMJ41	64-12	SMJ41	64-15	
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
tCLWL	Delay time, CAS low to W low (read-modify-write cycle .	tcwD .	40		60		ns
^t RLCL	Delay time, RAS low to *** ow (maximum value specified only to guarantee access time)	^t RCD	15	45	20	50	ns
tRLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	85		100		ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5		- 5		ns
trf	Refresh time interval	tREF		4		4	ms

timing requirements over recommended supply voltage range and recommended operating temperature range (continued)

		ALT.	SMJ4164-20	
		SYMBOL	MIN MAX	UNIT
tc(P)	Page-mode cycle time	tPC		ns
tc(rd)	Read cycle time [†]	tRC		ПS
tc(W)	Write cycle time	twc		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	345	ns
tw(CH)	Pulse duration, CAS high (precharge time) [‡]	tCP	80	ns
tw(CL)	Pulse duration, CAS low [§]	tCAS	135 10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	120	ns
tw(RL)	Pulse duration, RAS low	tRAS	200 10,000	ns
tw(W)	Write pulse duration	tWP	55	ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3 50	ns
tsu(CA)	Column-address setup time	tASC	- 5	ns
tsu(RA)	Row-address setup time	tASR	0	ns
tsu(D)	Data setup time	tDS	0	ns
tsu(rd)	Read-command setup time	tRCS	0	ns
tsu(WCH)	Write-command setup time before CAS high	tCWL	80	ns
tsu(WRH)	Write-command setup time before RAS high	tRWL	80	ns
th(CLCA)	Column-address hold time after CAS low	tCAH	55	ns
th(RA)	Row-address hold time	tRAH	25	ns
th(RLCA)	Column-address hold time after RAS low	tAR	140	ns
th(CLD)	Data hold time after CAS low	tDHC	80	ns

Continued next page.

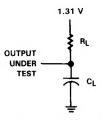
NOTE 5: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.

[†]All cycle times assume $t_t = 5$ ns.

[‡]Page-mode only.

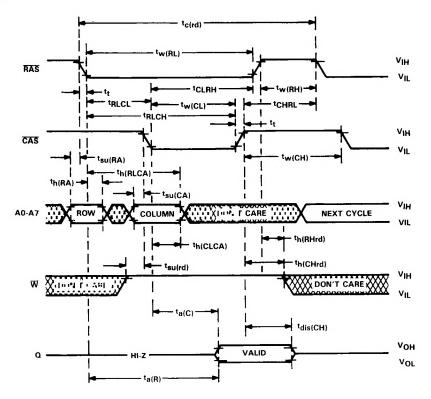
 § In a read-modify-cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}). This applies to page-mode read-modify-write also.

In a read-modify-write cycle, tRLWL and t_{SU}(WRH) must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

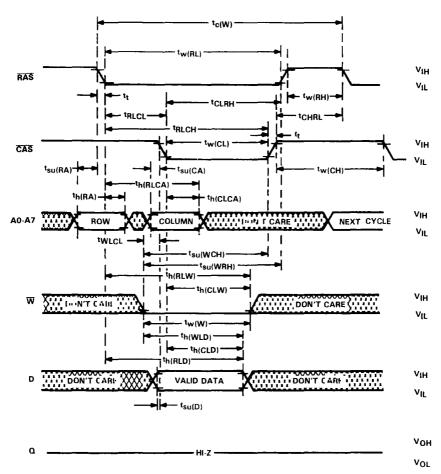

timing requirements over recommended supply voltage range and recommended operating temperature range (concluded)

		ALT	SMJ4164-20	
		SYMBOL	MIN MAX	
th(RLD)	Data hold time after RAS low	^t DHR	145	ns
th(WLD)	Data hold time after W low	tDHW	55	ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0	ns
th(RHrd)	Read-command hold time after RAS high	tRRH	5	ns
th(CLW)	Write-command hold time after CAS low	tWCH	80	ns
th(RLW)	Write-command hold time after RAS low	twcr	145	ns
TRLCH	Delay time, RAS low to CAS high	tCSH	200	ns
tCHRL	Delay time, CAS high to RAS low	tCRP	0	ns
tCLRH	Delay time, CAS low to RAS high	tRSH	135	ns
^t CLWL	Delay time, CAS low to W low (read-modify-write cycle only)	tCWD	65	ns
^t RLCL	Delay time, ow to CAS low (maximum value specified only to guarantee access time)	tRCD	25 65	ns
TRLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	130	ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	- 5	ns
t _{rf}	Refresh time interval	tREF	4	ms

These parameters are guaranteed but not tested.



PARAMETER MEASUREMENT INFORMATION



read cycle timing

early write cycle timing

٧н

VIL

ViH

٧IL

VIH

VIL

٧н

٧IL

VIH

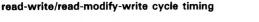
VIL

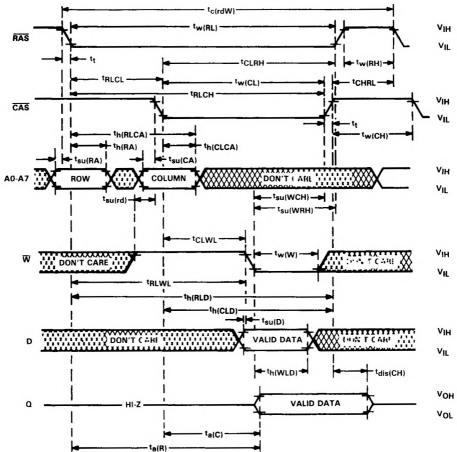
۷он

VOL

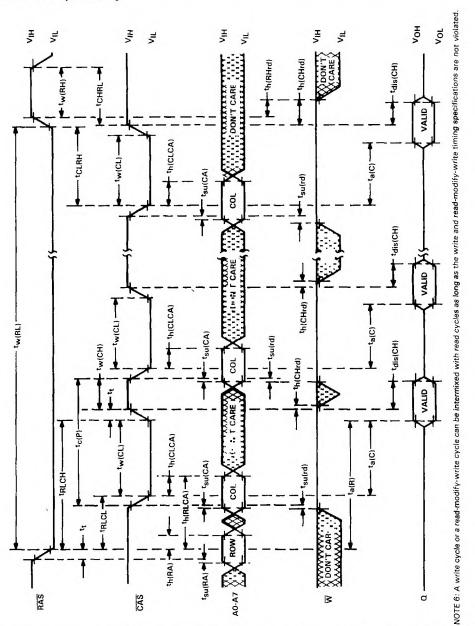
tc(W) tw(RL) RAS t+ w(RH) ^tCLRH *RLCL ^tCHRL 1 П TRLCHtw(CL) CAS 1 tsu(RA) tw(CH)ł tsu(CA) I th(RLCA) • t_t I th(RA) * th(CLCA) A0-A7 <. [| 481 | 1111 NEXT CYCLE ROW COLUMN 000 10 t_{su}(WCH) t_{su}(WRH) th(RLW) th(CLW) DON'T CARE ·····DON'T CARE Ŵ - tw(W) -th(WLD) -۲ th(CLD)h(RLD) IIIII CARE THE T APE D VALID DATA tsu(D) ten¹tdis(CH)

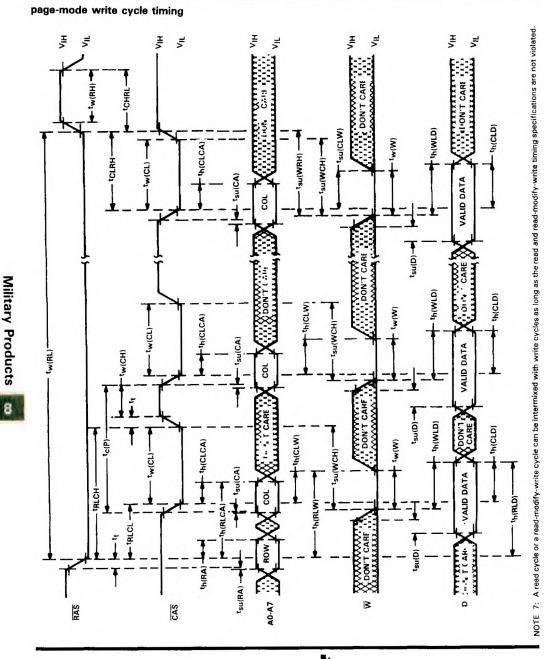
write cycle timing

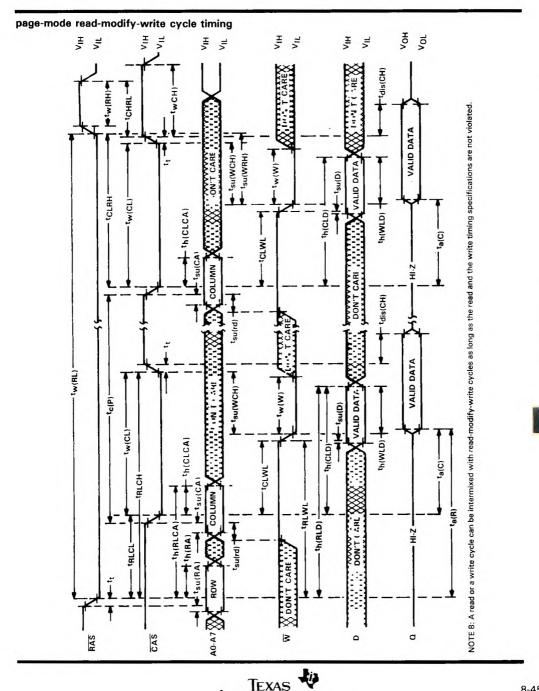

α


HI-Z

[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from TAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.

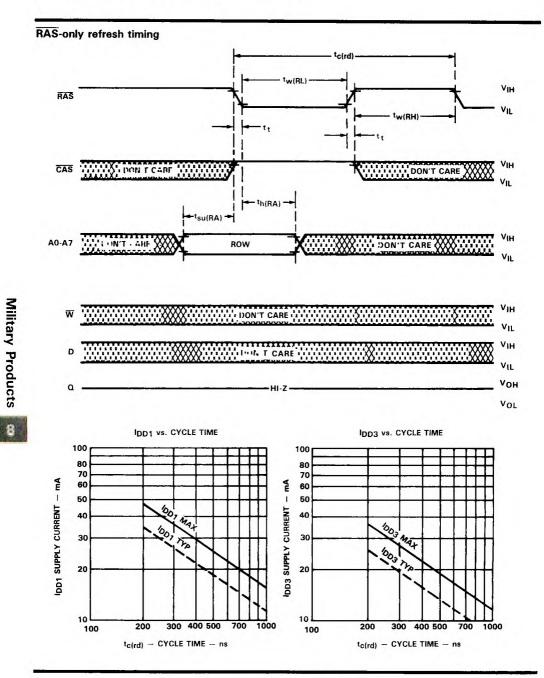

NOT VALID




page-mode read cycle timing

TEXAS TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 **Military Products**

TEXAS VI INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265


8-44

SMJ4164 65,536-BIT DYNAMIC RANDOM-ACCESS MEMORY

INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 8-45

Military Products

SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

NOVEMBER 1985

- 262,144 X 1 Organization
- Single 5-V Supply
- JEDEC Standardized Pinout
- Upward Pin Compatible with SMJ4164 (64K Dynamic RAM)
- Performance Ranges:

	ACCESS	ACCESS	READ
	TIME	TIME	OR
	ROW	COLUMN	WRITE
	ADDRESS	ADDRESS	CYCLE
	(MAX)	(MAX)	(MIN)
SMJ4256-15	150 ns	80 ns	260 ns
SMJ4256-20	200 ns	100 ns	330 ns

- Long Refresh Period . . . 4 ms (Max)
- Low Refresh Overhead Time . . . As Low As 1.3% of Total Refresh Period
- On-Chip Substrate Bias Generator
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Common I/O Capability with "Early Write" Feature
- Power Dissipation as Low As

 Operating . . . 300 mW (Typ)
 Standby . . . 12.5 mW (Typ)
- MIL-STD-883C Class B High-Reliability Processing

		ACKAG VIEW	
A8 [D] W] RAS [A0] A2] A1]	1 2 3 4 5 6 7	U16 15 14 13 12 11	V <u>SS</u> CAS Q A6 A3 A4 A5
VDD	8	9	

PIN	NOMENCLATURE
A0-A8	Address Inputs
CAS	Column-Address Strobe
D	Data In
a	Data Out
RAS	Row-Address Strobe
VDD	5-V Supply
Vss	Ground
W	Write Enable

- RAS-Only Refresh Mode
- Hidden Refresh Mode
- CAS-Before-RAS Refresh Mode
- Full Military DRAM Temperature Range Operation . . . – 55 °C to 110 °C

description

The SMJ4256 is a high-speed, 262,144-bit dynamic random-access memory, organized as 262,144 words of one bit each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

The SMJ4256 features maximum RAS access times of 150 ns or 200 ns. Typical power dissipation is as low as 300 mW operating and 12.5 mW standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks are 125 mA typical, and a -0.5-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 54 TTL. All address and data-in lines are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The SMJ4256 is offered in a 16-pin ceramic dual-in-line package. It is guaranteed for operation from -55 °C to 110 °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

IFYAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS TEXAS 25285

SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

operation

address (A0 through A8)

Eighteen address bits are required to decode 1 of 262,144 storage cell locations. Nine row-address bits are set up on pins A0 through A8 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the nine column address bits are set up on pins A0 through A8 and latched onto the chip by the column-address strobe 1.4 \leq . All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 54 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_{a(C)}$ that begins with the negative transition of CAS as long as $t_{a(R)}$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In a read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (A0-A7). A normal read or write cycle will refresh all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

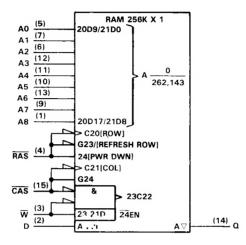
CAS-before-RAS refresh

The CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS (see parameter tCLRL) and holding it low after RAS falls (see parameter tRLCHR). For successive CAS-before-RAS refresh cycles, CAS can remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.

hidden refresh

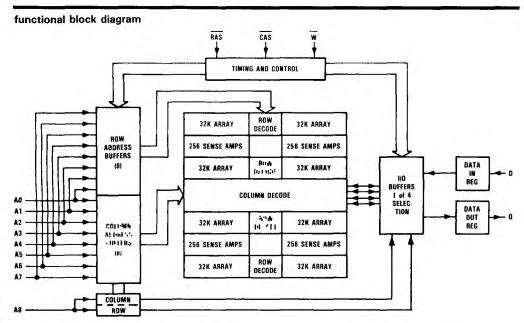
Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by holding CAS at VIL after a read operation and cycling RAS after a specified precharge period, similar to a "RAS-only" refresh cycle. The external address is also ignored during the hidden refresh cycles.

page mode


Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to setup and strobe sequential row

addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_{w(RL)}$, the maximum RAS low pulse duration.

power-up


To achieve proper device operation, an initial pause of 200 μ s is required after power up followed by a minimum of eight initialization cycles.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

Voltage range for any pin including VDD supply (see Note 1)	 -1 V to 7 V
Short circuit output current	 50 mA
Power dissipation	 1 W
Minimum operating free-air temperature	 55°C
Operating case temperature	 100°C
Storage temperature range	 °C to 150°C

[†]Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

		MIN NO	MAX NAX	UNIT
VDD	Supply voltage	4.75	5 5.25	V
Vss	Supply voltage		0	V
VIH	High-level input voltage	2.4	5	V
VIL	Low-level input voltage (see Note 2)	-0.5	0.6	V
TA	Operating free-air temperature	- 55		°C
Тс	Operating case temperature		110	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

PARAMETER		TEST CONDITIONS		SMJ4256-15			SMJ4256-20		
				TYP	MAX	MIN	TYPT	MAX	UNI
Voн	High-level output voltage	I _{OH} = -5 mA	2.4			2.4			V
VOL	Low-level output voltage	¹ OL = 4.2 mA			0.4			0.4	V
կ	Input current (leakage)	$V_I = 0 V$ to 5 V, $V_{DD} = 5 V$, All other pins = 0 V to 5 V			±10			±10	μA
10	Output current (leakage)	$V_0 = 0 V$ to 5.5 V, $V_{DD} = 5 V$, CAS high	1		±10			±10	μA
IDD1	Average operating current during read or write cycle	t _c = minimum cycle, Output open	I.	60	75	1	45	60	mA
IDD2	Standby current	After 1 memory cycle, RAS and CAS high, Output open		2.5	5		2.5	5	mΑ
¹ DD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high, Output open		45	60		35	45	mA
IDD4	Average page-mode current	t _C (P) = minimum cycle, RAS low, CAS cycling, Output open		35	50		25	45	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†]All typical values are at $T_A = 25$ °C and nominal supply voltages.

capacitance over recommended supply voltage range and operating temperature range, $f\,=\,1\,\,\text{MHz}$

	PARAMETER	TYP [†]	UNIT
Ci(A)	Input capacitance, address inputs	4	pF
Ci(D)	Input capacitance, data input	4	pF
Ci(RC)	Input capacitance strobe inputs	4	pF
Ci(W)	Input capacitance, write enable input	4	pF
Co	Output capacitance	5	pF

[†]All typical values are at $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating temperature range

PARAMETER		TEST CONDITIONS [†]	ALT.	SMJ4256-15		SMJ4256-20		114.117
			SYMBOL	MIN	MAX	MIN	-MAX	UNIT
^t a(C)	Access time from CAS	$t_{RLCL} \ge MAX, C_L = 80 \text{ pF},$ $I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	tCAC		80		100	ns
t _{a(R)}	Access time from RAS	$t_{RLCL} = MAX, C_L = 80 \text{ pF},$ $t_{OH} = -5 \text{ mA}, t_{OL} = 4.2 \text{ mA}$	^t RAC		150		200	ns
^t dis(CH)	Output disable time after CAS high	$C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$ $I_{OL} = 4.2 \text{ mA}$	tOFF	0	30	0	35	ns

[†]Figure 1 shows the load circuit; CL values shown are typical for test system used.

SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

		ALT.	SMJ4	256-15	SMJ4:	UNIT	
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _c (P)	Page-mode cycle time (read or write cycle)	tPC	145		190		กร
tc(PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	205		250		ns
tc(rd)	Read cycle time [†]	^t RC	260		330		ns
t _{c(W)}	Write cycle time	tWC	260		330		ns
tc(rdW)	Read-write/read-modify-write cycle time	¹ RWC	315		390		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	60		80		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	^t CPN	60		80		ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	80	10,000	100	10,000	ns
tw(RH)P	Pulse duration, RAS high (page mode)	tRP	120		120		ns
tw(RH)	Pulse duration, RAS high (non-page mode)	tRPN	100		120		ns
tw(RL)	Pulse duration, RAS low§	tRAS	150	10,000	200	10,000	ns
tw(W)	Write pulse duration	twp	45		55		ns
tsu(CA)	Column-address setup time	tASC	0		0		កទ
t _{su} (RA)	Row-address setup time	tASR	5		5		ns
tsu(D)	Data setup time	tDS	3		3		ns
t _{su(rd)}	Read-command setup time	tRCS	5		5		ns
t _{su} (WCL)	Early write-command setup time before CAS low	tWCS	0		0		ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	45		65		ns
t _{su} (WRH)	Write-command setup time before RAS high	^t RWL	45		65		ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	30		45		ns
th(RA)	Row-address hold time	tRAH	20		25		ns
th(RLCA)	Column-address hold time after RAS low	tAR	100		145		ns
th(CLD)	Data hold time after CAS low	^t DH	50		55		ns
th(RLD)	Data hold time after RAS low	^t DHR	120		155		ns
th(WLD)	Data hold time after W low	^t DH	45		55		กร
th(CHrd)	Read-command hold time after CAS high	tRCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	tRRH	10		15		ns
th(CLW)	Writa-command hold time after CAS low	tWCH	50		55		ns
th(RLW)	Write-command hold time after RAS low	tWCR	120		155		ns

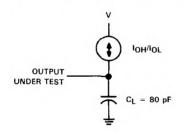
timing requirements over recommended supply voltage range and operating temperature range

Continued next page.

NOTES: 3. Timing measurements are referenced to V_{IL} max and V_{IH} min.

4. System transition times (rise and fall) for RAS and CAS are to be a minimum of 3 ns and a maximum of 50 ns. [†]All cycle times assume $t_t = 5$ ns.

[‡]In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time tw(CL)). This applies to page-mode read-modify-write also.


In a read-modify-write cycle, tRLWL and tsu(WRH) must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

		ALT.	142	56-15	SMJ42	56-20	UNIT
		SYMBOL	W S	MAX	MIN	MAX	UNI
TRLCH	Delay time, RAS low to CAS high	tCSH	150		200		ns
^t CHRL	Delay time, CAS high to RAS low	tCRP	5		5		ns
^t CLRH	Delay time, CAS low to RAS high	tRSH	80		100		ns
TRLCHR	Delay time, RAS low to CAS high	tCHR	30		40		ns
tCLRL	Delay time, CAS low to RAS low 1	tCSR	30		35		ns
^t CLWL	Delay time, CAS low to W low (read-modify-write cycle only)	tCWD	85		90		ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	25	70	35	100	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	155		190		ns
trf	Refresh time interval	tREF		4		4	ms

timing requirements over recommended supply voltage range and operating temperature range (concluded)

NOTE 3: Timing measurements are referenced to VIL max and VIH min. $\P \overline{\text{CAS-before-RAS}}$ refresh only.

PARAMETER MEASUREMENT INFORMATION

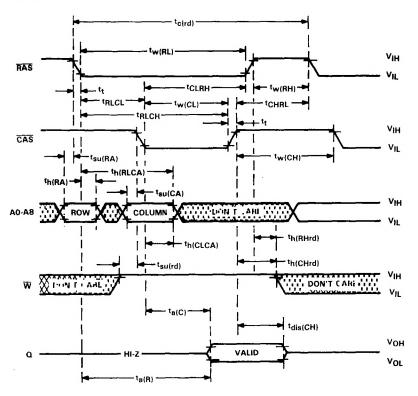
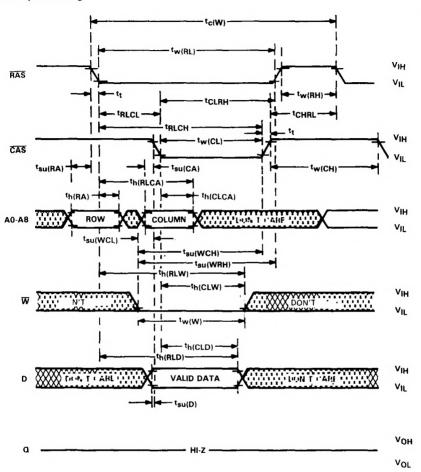


FIGURE 1. EQUIVALENT LOAD CIRCUIT


SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

read cycle timing

Military Products

early write cycle timing

SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

write cycle timing tc(W) tw(RL) RAS tw(RH) 🗝 tt **tCLRH** - tRLCL ^tCHRL П ^tRLCH tw(CL) CAS 1 tsu(RA) t_{su}(CA) h tw(CH) ٦ 1 th(RLCA) tt th(RA) ካ(CLCA) A0-A8 👯 COLUMN FINT AHI ROW 1 11 tsu(WCH) I tsu(WRH) th(RLW) H th(CLW DON'T ARE TATA TATATATATATAT DON'T CARE W tw(W) - th(WLD) 🗕 I. N T CARE THE DOW T CARE D XXX VALID DATA Ξų. tsu(D) ^ten[†] tdis(CH) NOT VALID Q HI-Z

VIH

VIL

VIH

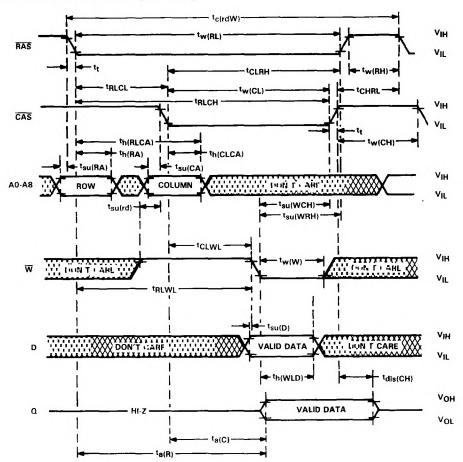
VIL

VIH

VIL

٧н

VIL

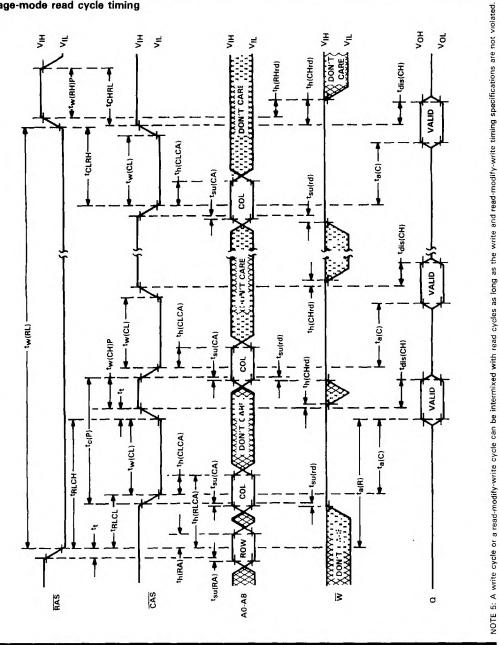

ViH

VIL

٧он

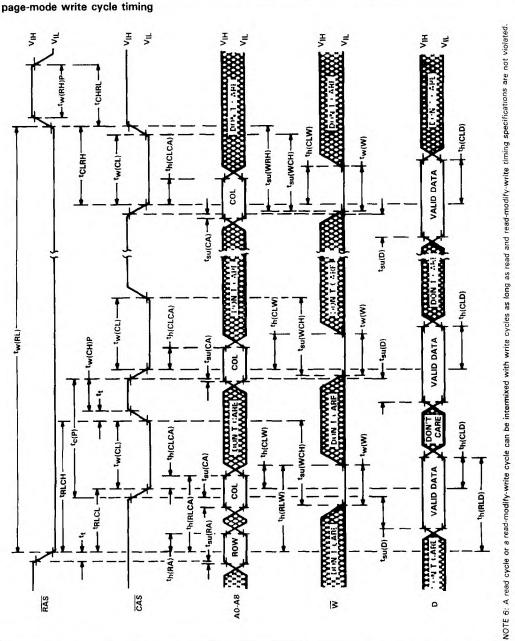
VOL

[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.



read-write/read-modify-write cycle timing

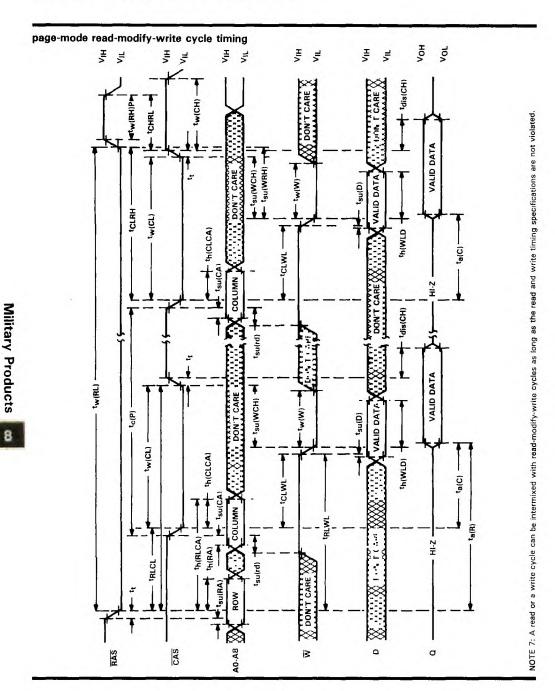
[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS t_{a(C)}) in a read cycle; but the active levels at the output are invalid.


SMJ4256 **262.144-BIT DYNAMIC RANDOM-ACCESS MEMORY**

page-mode read cycle timing

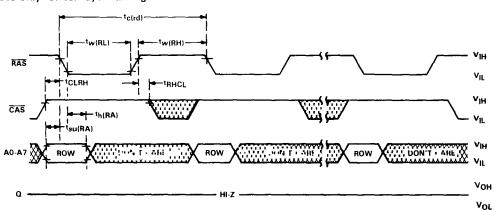
Texas Instruments POST OFFICE BOX 225012 . DALLAS TEXAS 75265

Military Products

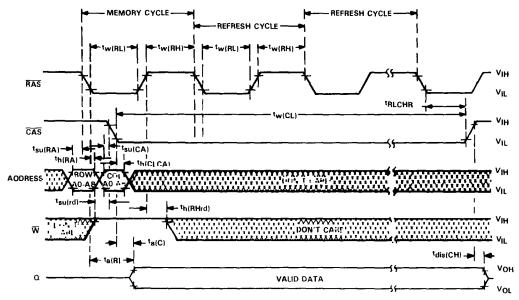


SMJ4256 **262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY**

TEXAS INSTRUMENTS POST OFFICE BOX 225012 . DALLAS, TEXAS 75265


8-59

Military Products


SMJ4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

RAS-only refresh cycle timing

[†]This timing is guaranteed but not tested.

SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

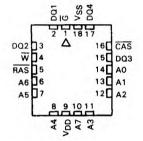
AUGUST 1980 - REVISED NOVEMBER 1985

- 16,384 X 4 Organization
- Single 5-V Supply (± 10% Tolerance)
- Performance Ranges:

1

	ACCESS	ACCESS	READ	READ-
	TIME	TIME	OR	MODIFY
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
4416-12	120 ns	70 ns	230 ns	320 ns
4416-15	150 ns	80 ns	260 ns	330 ns
4416-20	200 ns	120 ns	330 ns	440 ns

- Available Temperature Ranges with MIL-STD-883C Class B High-Reliability Processing
 - -S...-55°C to 100°C -E...-40°C to 85°C
 - -L... 0°C to 70°C
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.7% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Outputs
- Early Write or G to Control Output Buffer Impedance
- Page-Mode Operation for Faster Access
- Low Power Dissipation


 Operation . . . 200 mW (Typ)
 Standby . . . 17.5 mW (Typ)
- New SMOS (Scaled-MOS) N-Channel Technology

Ğ (1	UIS] Vss
DQ1 [2	17] DQ4
DQ2 [3	16	CAS
w [4	15	DO3
RAS [5	14] AO
A6 [6	13] A1
A5 [7	12] A2
A4 [8	11	A3
VDD [9	10	A7

JD PACKAGE

(TOP VIEW)

FG PACKAGE (TOP VIEW)

A0-A7	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4	Data In/Data Out
G	Output Enable
RAS	Row-Address Strobe
VDD	5-V Supply
VSS	Ground
W	Write Enable

description

The SMJ4416 is a Military high-speed, 65,536-bit, dynamic, random-access memory, organized as 16,384 words of 4 bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon gate technology for very high performance combined with low cost and improved reliability.

The SMJ4416 features \overline{RAS} access times to 120 ns maximum. Power dissipation is 200 mW typical operating, 17.5 mW typical standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks have been reduced to 60 mA typical, and a -1-V input voltage undershoot can be tolerated, minimizing system noise considerations. Input clamp diodes are used to ease system design.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texes Instruments standard warrenty. Production processing does not necessarily include testing of all parameters.

SMJ4416 16,384-Word by 4-bit dynamic ram

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power.

All inputs and outputs, including clocks, are compatible with Series 54/74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The SMJ4416 is offered in 18-pin 300-mil ceramic side-braze dual-in-line and 18-pad ceramic chip-carrier packages. It is available in -55° C to 100° C, -40° C to 85° C, and 0° C to 70° C temperature ranges. Dual-in-line packages are designed for insertion in mounting-hole rows on 7,62 mm (300-mil) centers.

operation

address (A0 through A7).

Fourteen address bits are required to decode 1 of 16,384 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the six column-address bits are set up on pins A1 through A6 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state allowing a write cycle with \overline{G} grounded.

data in (DQ1 through DQ4)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In delayed or read-modify-write, \overline{G} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 54/74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_{a(C)}$ that begins with the negative transition of CAS as long as $t_{a(R)}$ and $\underline{t_{a(E)}}$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS and \overline{G} are low. CAS or \overline{G} going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high-impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{G} high prior to applying data, thus satisfying t_{GHD}.

output enable (G)

The \overline{G} controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers putting them in the low-impedance state. It is necessary for both RAS and \overline{CAS} to be brought low for the output buffers to go into the low-impedance state. Once in the low-impedance state, they will remain in the low-impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least every four millise \rightarrow Is to retain data. Since the output buffer is in the high-impedance state unless CAS is applied, the right-only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with RAS causes all bits in each row to be refreshed. CAS can remain high (inactive) for this refresh sequence to conserve power.

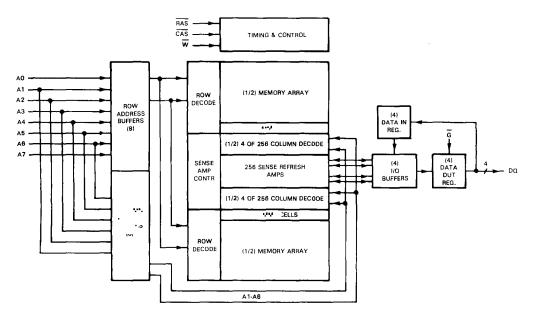
page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 64 column locations on a single RAM, the row address and RAS are applied to multiple 16K × 4 RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, the \overline{RAS} input 1.1... remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight $\frac{1}{2}$ cycles before proper device operation is achieved.

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

functional block diagram

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

Voltage on any pin except VDD and data out (see Note 1)
Voltage on VDD supply and data out with respect to VSS
Short circuit output current
Power dissipation
Minimum operating free-air temperature: S version
E version
L version
Operating case temperature: S version
E version
L version
Storage temperature range

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

			s	S VERSION		E	E VERSION		L VERSION			
			MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VDD	Supply voltage		4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	v
Vss	Supply voltage			0			0	_		0		v
		V _{DD} = 4.5 V	2.4		4.8	2.4		4.8	2.4		4.8	v
VIH	High-level input voltage	$V_{DD} = 5.5 V$	2.4		5.8	2.4		5.8	2.4	_	5.8	· ·
VIL	Low-level input voltage		VIK		0.8	VIK		0.8	VIK		0.8	v
TA	Operating free-air temper	ature	- 55			- 40			0			°C
тс	Operating case temperat	ure			100			85			70	۰c

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

_			SN	1J4416 -1	2		
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX		
Vik	Input clamp voltage	l _j = - 15 mA, see Figure 1			-1.2	v	
Voн	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			v	
VOL	Low-level output voltage	I _{OL} = 4.2 mA			0.4	v	
lj	Input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All other pins = 0 V			±10	μA	
1 ₀	Output current (leakage)	$V_{O} = 0.4 V$ to 5.5 V, $V_{DD} = 5 V$, \overline{CAS} high		-	±10	μA	
^I DD1 [‡]	Average operating current during read or write cycle	At t _C = minimum cycle			54	mA	
IDD2 [‡]	Standby current (see Note 3)	After 1 memory cycle, RAS and CAS high		3 .5	5	mA	
IDD3‡	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high			46	mA	
IDD4 [‡]	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling			46	mA	

[†]All typical values are at $T_C=25\,^{o}C$ and nominal supply voltages. $^{\ddagger}I_{DD1}I_{DD4}$ are measured with open outputs. NOTE 3: V_{IL} ≥ -0.6 V on all inputs.

			SMJ4416-15			SM	AJ4416-	20	
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	MIN	TYPT	MAX	UNI
Vik	input clamp voltage	$I_{I} = -15 \text{ mA},$ see Figure 1			-1.2			-1.2	v
VOH	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			2.4			v
VOL	Low-level output voltage	IOL = 4.2 mA			0.4			0.4	v
łį	Input current (leakage)	$V_{I} = 0 V \text{ to } 5.8 V,$ $V_{DD} = 5 V,$ All other pins = 0 V			±10			± 10	μA
ю	Output current (leakage)	$V_0 = 0.4 V$ to 5.5 V, $V_{DD} = 5 V$, \overline{CAS} high			±10			±10	μА
IDD1 [‡]	Average operating current during read or write cycle	At t _c = minimum cycle		40	48		35	42	mA
IDD2 [‡]	Standby current (see Note 3)	After 1 memory cycle, RAS and CAS high		3.5	5		3.5	5	m/
IDD3 [‡]	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high		25	40		21	34	mA
IDD4 [‡]	Average page-mode	torp) = minimum cycle,		25	40		21	34	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†]All typical values are at T_C = 25°C and nominal supply voltages. I_{DD1} -IDD4 are measured with open outputs. NOTE 3: V_{IL} ≥ -0.6 V on all inputs.

capacitance over recommended supply voltage range and recommended temperature range, $f = 1 MHz^{\dagger}$

	PARAMETER	SMJ	SMJ4416		
		TYP‡	MAX	UNIT	
Ci(A)	Input capacitance, address inputs	5	7	pF	
Ci(RC)	Input capacitance, strobe inputs	8	10	pF	
Ci(W)	Input capacitance, write enable input	8	10	pF	
Ci/o	Input/output capacitance, data ports	8	10	pF	

These parameters are guaranteed but not tested.

 \pm All typical values are at T_C = 25 °C and nominal supply voltages.

	PARAMETER	TEST CONDITIONS	ALT. SYMBOL	SM.14 MIN	416-12 MAA	UNIT
^t a(C)	Access time from CAS	C _L = 100 pF, Load = 2 Series 54 TTL gates	tCAC		70	ns
^t a(R)	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF Load = 2 Series, 54 TTL gates	^t RAC		120	ns
t _{a(G)}	Access time after G low	$C_L = 100 \text{ pF},$ Load $\approx 2 \text{ Series 54 TTL gates}$			30	ns
^t dis(CH)	Output disable time after CAS high	$C_L = 100 \text{ pF},$ Load = 2 Series 54 TTL gates	tOFF	0	30	ns
^t dis(G)	Output disable time after G high	$C_L = 100 \text{ pF},$ Load = 2 Series 54 TTL gates		0	30	ns

switching characteristics over recommended supply voltage range and recommended operating temperature range

	04 0 4 METER	TFOT COMPLETIONS	ALT.	5M 14416-15		SMIL	416-20	UNIT	
-	PARAMETER	TEST CONDITIONS	SYMBOL	- sut,	MAX	MIN	MAX		
^t a(C)	Access time from CAS	CL = 100 pF, Load = 2 Series 54 TTL gates	^t CAC		80		120	ns	
t _{a(R)}	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF Load = 2 Series 54 TTL gates	^t RAC		150		200	ns	
t _{a(G)}	Access time after G low	CL = 100 pF, Load = 2 Series 54 TTL gates			40		50	ns	
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 54 TTL gates	tOFF	o	30	0	40	ns	
^t dis(G)	Output disable time after G high	C _L = 100 pF, Load = 2 Series 54 TTL gates		0	30	0	40	ns	

Military Products

timing requirements over recommended supply voltage range and recommended operating temperature range

1		ALT.	SMJ44	16-12	UNIT	
	the second s	SYMBOL	MIN	MAX	UNI	
t _{c(P)}	Page-mode cycle time	tPC			ns	
cirdi	Read cycle time [†]	tRC			ns	
c(W)	Write cycle time	twc	230		ns	
c(rdW)	Read-write/read-modify-write cycle time	tRWC	315		ns	
W(CH)	Pulse duration, CAS high (precharge time) [‡]	tCP	40		ns	
w(CL)	Pulse duration, CAS low [§]	tCAS	70		ns	
w(RH)	Pulse duration, RAS high (precharge time)	tRP	80		ns	
w(RL)	Pulse duration, RAS low	tRAS	120	5000	ns	
W(W)	Write pulse duration	tWP	30		ns	
t	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	ns	
su(CA)	Column-address setup time	tASC	0		ns	
su(RA)	Row-address setup time	tASR	0		ns	
su(D)	Data setup time	tDS	0		n	
su(rd)	Read-command setup time	tRCS	0		n	
su(WCH)	Write-command setup time before CAS high	tCWL	50		n	
su(WRH)		tRWL	50		n	
h(CLCA)	Column-address hold time after CAS low	tCAH	35	5.	n	
h(RA)	Bow-address hold time	tRAH	15	-	n	
h(RLCA)	Column-address hold time after RAS low	tAR	85		n	
h(CLD)	Data hold time after CAS low	tDH	40		n	
h(RLD)	Data hold time after RAS low	tDHR	90		n	
	Data hold time after W low	tDH	30		n	
^t h(WLD) ^t h(RHrd)	Read-command hold time after "" high	tRRH	10		n	
	Read-command hold time after '. high	tRCH	0		n	
th(CHrd)	Write-command hold time after CAS low	twch	40	-	n	
th(CLW)	Write-command hold time after RAS low	tWCR	90	1.10	n	
th(RLW)	Delay time, RAS low to CAS high	tCSH	120		n	
TRLCH	Delay time, CAS high to RAS low	tCRP	0		n	
CHRL	Delay time, CAS low to RAS high	tRSH	70		n	
CLRH	Delay time, CAS low to W low			-		
tCLWL	(read-modify-write-cycle ··· #	tCWD	120		n	
	Delay time, RAS low to ow			-	-	
RLCL		tRCD	20	50	n	
	(maximum value specified only to guarantee access time) Delay time, RAS low to \overline{W} low		-		-	
TRLWL	(read-modify-write-cycle only)	tRWD	170		n	
	(read-modify-write-cycle only)" Delay time, W low to CAS low (early write cycle)	tues	- 5			
tWLCL		twcs	30	-		
tGHD	Delay time, G high before data applied at DQ		30	4	m	
trf	Refresh time interval	tREF	1	4		

[†] All cycle times assume t_t = 5 ns.

[‡] Page mode only.

In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time t_{W(CL)}.

1 In a read-modify-write cycle, tRLWL and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time tw(RL). I These parameters are guaranteed but not tested.

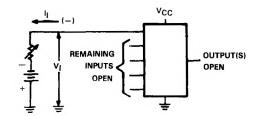
[#] Necessary to insure G has disabled the output buffers prior to applying data to the device.

		ALT.	SMJ4416-15		SMJ4416-20		UNIT
	in the second	SYMBOL	MIN	MAX	MIN	MAX	Unin
tc(P)	Page-mode cycle time	tPC	140				ns
tc(rd)	Read cycle time [†]	tRC	260		330		ns
tc(W)	Write cycle time	twc	Γ.	-	L *:		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC			440	100	กร
tw(CH)	Pulse duration, CAS high (precharge time) [‡]	tCP	50		80		ns
tw(CL)	Pulse duration, CAS low [§]	†CAS	80	5000	120	5000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	100		120		ns
tw(RL)	Pulse duration, RAS low	tRAS	150	5000			ns
tw(W)	Write pulse duration	tWP	40		50	1	ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	0		0		ns
t _{su} (RA)	Row-address setup time	tASR	0		0		ns
t _{su(D)}	Data setup time	tDS	0		0		ns
tsu(rd)	Read-command setup time	tRCS	0		0		n
tsu(WCH)	Write-command setup time before CAS high	tCWL	60		80		n
tsu(WRH)	Write-command setup time before RAS high	tRWL	60		80		n
th(CLCA)	Column-address hold time after CAS low	^t CAH	40		50		n
th(RA)	Row-address hold time	tRAH	20		25		n
th(RLCA)	Column-address hold time after RAS low	tAR	110		130		n
th(CLD)	Data hold time after CAS low	tDH	60		80	-	n
th(RLD)	Data hold time after RAS low	^t DHR	Τ.,		160		n
th(WLD)	Data hold time after W low	tDH	40		50	-	n
th(RHrd)	Read-command hold time after PAS high	tRRH	10	1.1.1	10		n
th(CHrd)	Read-command hold time after high	^t RCH	0		0		п
th(CLW)	Write-command hold time after www.	tWCH	60		80		n
th(RLW)	Write-comn · · · nold time after · · ow	tWCR	130		160		n
TRLCH	Delay time, low to CAS high	tCSH	150		200		n
tCHRL	Delay time, TAS high to RAS low	^t CRP	0		0		n
tCLRH	Delay time, ow to RAS high	tRSH	80		120		n
tCLWL	Delay time,	tCWD	120		150		n
RLCL	Delay time, RAS low to *** ow (maximum specified only to guarantee access time)	tRCD	20	70	25	80	n
RLWL	Delay time, ow to W low (read-modify-write-cycle only)#	tRWD	190		230		n
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5	2	-5		n
tGHD	Delay time, G high before data applied at DQ		30		40		n
trf	Refresh time interval	tREF		4		4	m

timing requirements over recommended supply voltage range and operating case temperature range

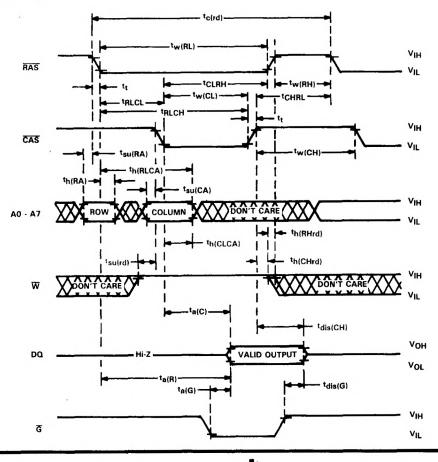
[†] All cycle times assume $t_t = 5$ ns.

[‡] Page mode only.

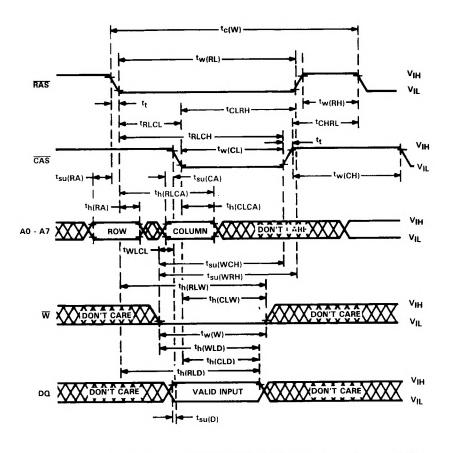

In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time t_{w(CL)}.

In a read-modify-write cycle, t_{RLWL} and t_{su}(WRH) must be observed. Depending on the user's transition times, this may require additional RAS low time t_w(RL).

¹ This parameter is guaranteed but not tested.

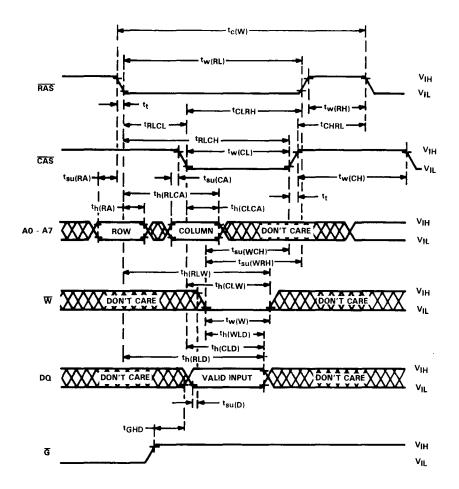

PARAMETER MEASUREMENT INFORMATION

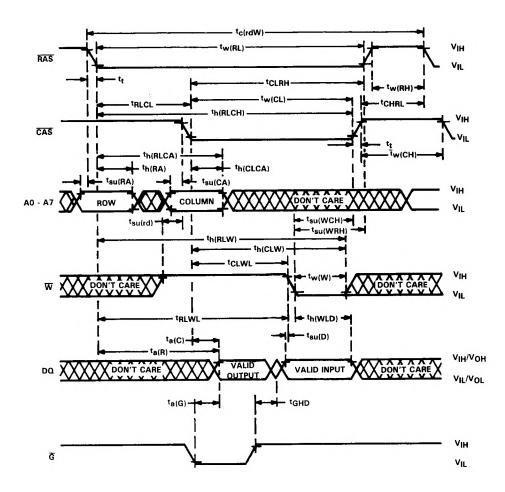
NOTE 4: Each input is tested separately.


FIGURE 1. INPUT CLAMP VOLTAGE TEST CIRCUIT

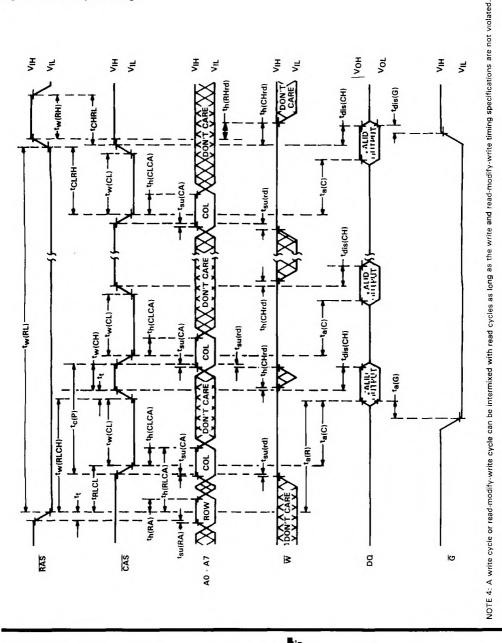
read cycle timing

early write cycle timing



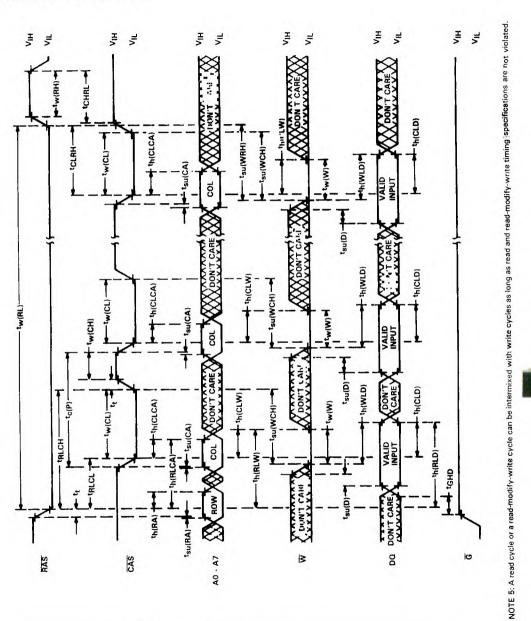

SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

write cycle timing


read-write/read-modify-write cycle timing

SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

page-mode read cycle timing



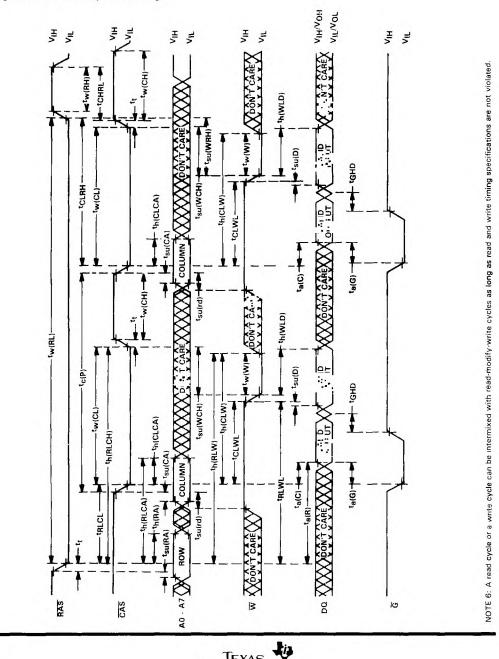
TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

8-76

Military Products

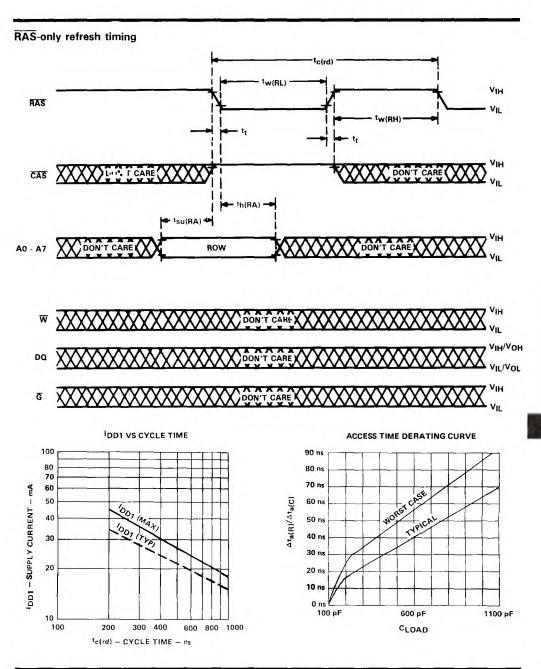
page-mode write cycle timing

TEXAS VI INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75285


SMJ4416 16,384-Word by 4-bit dynamic ram

8-77

Military Products


SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

page-mode read-modify-write timing

TEXAS TEXAS INSTRUMENTS POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

SMJ4416 16,384-WORD BY 4-BIT DYNAMIC RAM

TEXAS INSTRUMENTS