
TTTTTTTT IIIIIIII GGGG UU UU IIIIIIII DDDDD EEEEEE

%• TT II GG G UU UU II DD DD EE

TT II GG UU UU II DD DD EE

TT II GG UU UU II DD D EE

TT II 6 UU UU II DD D EEEE

TT II GG 6GGG UU UU II DD D EE

TT II GG GG UU UU II DD DD EE

TT II GG GG UU UU II DD DD EE

TT 0 IIIIIIII 0 GGGGG UUUU IIIIIIII DDDDD EEEEEE

COPYRIGHT 1985 JOE BILLO.

It is my intent that this guide be used AS a guide and is not intended to be
used as a substitute for the original T.I. documentation that was supplied with
home computer. This guide is intended for the new user on the T.I. 99/4(A) but
information contined within may be useful to any user, new or experienced.
This guide will step thru 15 chapters, each dedicated to a particular part

of the computer or to a particular peripheral.
The best advice I can give to an individual looking for help, or looking to

get the most out of the computer is to JOIN A USERS BROUP. Many areas have a
users group, and some have several. Check the area nearest you for a BBS and
call if you have a modem.

THE CHAPTERS ARE :

1. Putting the system together for the first time.
2. Extended Basic, Why so popular ?
3. Modules, GRDM, ROM, and RAM, what difference ?
4. RS232 Interface.

5. Disk Drives and Controllers.

6. Disk software (DISKO, etc. >
7. Loaders, XBASIC, E/A, MM
8. Languages. < including P-CODE)
9. Extended BASIC PEEKs and POKE'S

10. TI Bulletin Board numbers

11. 99/4A Pin outs

12. ASCII characters and color tables.

13. 3d party retailers and 99 Magazines.
14. FREEWARE available

15. List of T.I. WRITER and Multiplah commands.

If anyone has a better idea or more information that could be added to what
is offered here, please let me know. As I give a lot of attention to the
information, What is presented here is, to the best of my knowledge, complete
and accurate, any errors found can be relayed back to me, and I will check and
correct them. This is the second edition, and if it seems a little too short
in context, the original first edition was 66 pages, I had to condense certain
sections and the end result is this guide. Use it and let me know what you
think. If you like the guide, you may obtain a copy of the 'original' version
for a * 4.00 donation for printing. The original gude has mini-tutorials for
Assembly and Pascal. See the address on the back of this guide.

Thank You.

CHAPTER ONE- PUTTING IT TOGETHER!!!'

Ok, so you have just aquired a T.I. 99/4(A) home computer and all the
accessories to go with it, or you have just picked up that P-Box you have
always wanted. With more people selling off the T.I. for some other branc of
computer, more and more people ^re just now purchasing either full or semi-full
99 systems. Unfortionatly, the previous owner cannot sell the information that
they have gaind through use, and sometimes they even have lost or thrown away
parts of the original documentation. This leaves it up to the new user to find
a way to 'make the thing work' and that tends to frustrate a lot of the new
owners. The T.I. is not the hardest thing to use, but without prior knowledge
and the correct instruction manuals, the job is about ten times harder.

That is where I hope that this manual will help you.

Now, lets put that computer together and get going !

After unpacking all of the parts of the system, hook up the computer as shown
in figure #1. If you have gotten a P-Box (Peripheral Expansion System box)
then the large connector on the interface card goes to the connector on the
RI8HT side of the console, see figure 1. At this point we will not go into the
RS232 hookup for a printer or the disk drive connections, If you have purchased
a P-Box with a disk drive in it, it is more likely to be hooked up already, if
not, then see figure 2 as to how to hook it up, then come back here.

Now that all the components are hooked up together, it is time to plug them
all in and see if the system works. NOTE : late in 1982 T.I. had a safety
modification fo^the console in-line power supply. Two types of
supplies are available, one is a self-contained unit that plugs into the wall
and then a cord runs to the computer. This is not the one that needs the
safety mod. The one that needs the safety mod has the transformer IN-LINE, in
the center of the cord from the wall plug to the computer. If you have one of
these, check the box that the console came in, on the transformer itself, or on
the console. If you see a green 'saf*ety checked' sticker, then you are O.K, if
not, look at the wall plug-end of the cord, and see if it has a 'bulge' on it.
The safety mod is installed if you have what looks like about a two inch long
fat plug. If you have a regular plug, you can obtain a safety adapter free
from T.I. The address is in the back of this guide. The safety mod will not
affect the operation of the computer and you do not need it, but T.I. was
concerned about the power supply in the console shorting out. I have never
seen one do anything but just go 'off and quit working.
T.I. tells us to turn on the monitor < or TV) first, then the P-box and finaly
the console. This is a good idea, but I have known several people including
myself that use a power strip with a 'master' switch to turn on the entire
system at once, and it works just as well, just leave all the power on and shut
off at the main switch on the power strip.

If the computer is working right, the screen will display the TI logo and
two stripes of color bars one each above and below the logo. A beep will be
heard from the screen. If this does not occur, then please shut all the power
down and check all the connections. If the computer still does not work, then
proceed to the TROUBLESHOOTING chapter of this guide, (not in the short vers)

If all works, then you are ready to compute. I will not give a description
of the BASIC language here, many books have been written on the subject, and
the TI BASIC is close to any BASIC language there is. As with all computers,
some of the conventions of languages are not used, some have a unique language

s

usage (such as the CALL CLEAR) of commands, but all have manuals written that
can take you step-by-step to program POWER !

^While I will not go over the BASIC language itself, I will go over some of
the more common usages that the TI uses to load, edit and save programs.

Here is a list of the commands and what they do for you. The command is
listed on the left in the syntax (wording) that the computer expects, and the
result of that command is on the right.

OLD DSK1.L0AD

OLD CS1

OLD CS2

SAVE CS1

SAVE DSK1.L0AD

CALL CLEAR

CALL LOAD(-22,^

CALL LINK("START")

EDIT 100

OPEN #i:nRS232.BA=4800.DA=8'

PRINT #1

CALL SOUND(100,400,0)

Loads a program called "LOAD" from disk
Drive #1. Command must be in capitals.
Loads a program from the cassette tape
player designated as #1. If you have a
single tape cable, this is all that you
use. OLD CS1 must be in capital letters.
Loads a program from second cassette player,
cannot be used with some of the new grey
case consoles. Note that cassettes do not
require a program name to load.
Save a progr*am to cassette recorder. (no
program name needed)

Save a program to disk in drive #1 with a
program name of "LOAD". Command must be in
capital letters only
Clears the screen.

This command can only be used if the Editor
assembler, Mini Memory or Extended BASIC
modules are in the game port and the memory
expansion attached. This loads a '0' in the
memory spot '-22'. For more info, see the
chapter on the memory expansion,
runs an assembly program that has been loaded
with a 'CALL LOAD' or a subroutine. See above
Displays line 100 with the cursor ready to
EDIT the line.

This is the 99's way of handling a file, in
this case, a device attached to the RS232
port #1 at 4800 baud using 8 data bits. See
the section on the RS232 for more information
Writes to a file opened as #1. See above.
Produces a 100 millisecond 400 hr sound at
the loudest possible volume. 100=length of
the tone, 400=frequency and 0=volume. The
volume is variable from 0 (high) to 16 (off).

O.H APTER2 - EXTENDED BASIC

/.

In this part, I would like to discuss the advantages of Extended BASIC ove~
the console BASIC, and at the same time provide a small insight as to the
reason that this software module is so popular. I will begin with the actual
module itself.

Extended BASIC is a module that plugs into the BROM (or game) port on the
computer. It is a language like BASIC but much more expanded in that Extence-
BASIC has 43 more commands over the regular console BASIC that comes with the
computer. With it you can create moving images, called SPRITES, magnify the
image, and even tell when two or more of the sprites are 'touching.' The
sprite feature is probably the single biggest reason for getting the Extender
BASIC module, but with the module comes another surprising change from the
console, and that is SPEED ! The EX. BASIC module is about three times faste-
displaying data to the screen, and LISTs much faster than console BASIC.
Are sprites and speed the only advantage ? No, you also get error control,

the feature of being able to choose what action is taken if an error occurs
durring program execution. You also get 'chaining,' or having multiple
statements on a single line of up to 140 characters per line, and having the
ability to place comments at the end of the line. You can load and run another
Ex. BASIC program from within your program, and even have subroutines written
on disk that can be called from the main program.
Direct screen control is one feature TI should have put in the console, but

Ex. BASIC has it. This is the ability to input or display data from any place
on the screen, not just to input from the bottom line scrolling up. You can
even check how much memory you have left !

>

In Ex. BASIC, if the P-Box is attached and the disk drives hooked up, when
the module is inserted into the BROM port and Ex. BASIC is selected, the module
will automaticaly look at disk drive #1 and if it finds a program stored under
the name 'LOAD' then it will load and run this program immediately. It is a
nice feature if you have a multiprogram series to run, and want a main title to
select from, and then you can always return to the main title (LOAD program)
when the program execution is complete. If you do not have the P-Box or disk
drive, or do not have a disk in drive #1 that has a program name LOAD on it,
the computer will respond with the >READY prompt, and you are ready to enter a
command.

When programing in Ex. BASIC, you have 24K of space to program if the memo*-/
expansion is attached, and 13K if not. If you do have the memory expansion,
you also have 8K of stack, or workspace, to use. this space is used by the Dl.r
statement to allow you greater usage of program space.

Lets go over some of the T.I. Extended BASIC conventions, again with the
commands on the left and the action of the command to the right. Please note
that most of the commands that deal with files need to be in capital letters
ONLY or an error message will result, even if the spelling is correct.

CALL SAY("HELLO") - 'Speaks' the word hello if the speech synthesiser is
attached to the computer. Bives and error if the
speech unit is not atached.

CALL SPRITE(#1,A,X,YI0,0)- Produces a sprite labled #1 (of 26 available) and
uses the charcater code A, places the sprite at
screen location X,Y and has 0 movement in the X and
Y axis. X is row. Y is Column.

CALL COINC(ALL,C) - Checks for the coincidence of all sprites. If any
two sprites are touching or overlaping, then the
value placed in variable C will be a -1. You can
also specify any two individual sprites, or any
location on the screen to check for. A tolerance

•GALL CHARSET

RUN "DSK1.L0AD"

CALL DELSPRITE(#1>

CALL PEEK(-22,XX)

CALL LOADC'DSKl.AA)

CALL INIT

ON ERROR STOP

SIZE

This command resets the standard TI character set.

This is useful 1f you use the run feature a lot, an:
do a lot of re-defining the characters.
This command can be given in a program or in the
immediate mode, and is used to load and run a

prqgram from disk. Note : if you have defined a new
character in a previous program and then do a RUN
for a new program, the old characters are still set
and will show up in the new program being run. To
avoid this, do a CALL CHARSET.
This is to delete a sprite from a program. It also
clears the sprite from the screen. After using this
command, you can re-define that sprite number. The
cammand can also be used to delete ALL sprites.
This command allows you to look at any memory
location, in this case location -22, and places the
value in the variable XX. The value may then be
read by the command Print XX. This is very useful
if you are planning on doing a few Loads, and want
to see what was there first, before you do the call
load command.

Loads a 9900 assembly program from disk drive #1.
Note : You must do a CALL INIT sometime prior to the
CALL LOAD command or a syntax error will result,
even if the spelling is correct. You also need to
have the Memory expansion connected to use this
command. Only one CALL INIT need to be used prior
to any CALL LOAD statements.
Must be used before the CALL LOAD command. This

command tells the computer to get ready to accept an
assembly language program from Ex. BASIC. Also
clears any assy, program from memory.
Instructs the computer to stop upon an error in the
program. A line number could be specified instead
of STOP if you wish to bring control to another part
of the program.

Returns the number of bytes left for program.
The exclamation mark (!) can be used instead of the

REM statement to place a REhark at the end of a line
or on a seperate line. You may place the remark at
the end of a multiple statement line, such as :
100 GOSUB 10355 :: ! Branch and loop to control.
The REM or ! statement is not executed, and can be
any comments that you desire.

The CALL LOAD subprogram can be used to load an assembly language program
directly into memory, such as the Nibbler disk copy program. This is a long
way to load a program, but it works. The CALL LOAD can also be used to load
values directly into the computer. In other computers this action is called
'poking' a value. The TI is a 16 bit computer, and any value from 0 to 255 can
be loaded to any location. Be advised that indescriminate Poking of values
into unknown locations can cause the computer to 'lock up' or to act very
strange. Use the list of Peeks and Pokes at the back of this guide to be sure
of what you are doing. While using this table, remember that most of the
locations are accurate, but some, more notably the speech locations, are not
the same from the 99/4 to the 99/4A. A little bit of experimentation will
yield the best results. Just remember that at any time, the computer could
lock up and you will lose any data that you have in the computer.

CHAPTER 3 - MODULES, 0 R 0 M, ROM, RAM

'This is a short chapter. many people have questions about the difference
between these three terms, and why some of the grey (blond) consoles cannot
run the ATARISOFT modules.

ROM - Stands for Read Only Memory. A ROM is a semiconductor chip that has
been programmed at the factory and cannot be altered. A ROM can be in many
different versions such as PROM, a ROM that is 'blank' when purchased, and can
be programmend using a special machine, or an EPROM, which is about the same as
a PROM but can be erased after being programmed and then re-programmed again.

GROM - Stands for Graphics Read Only Memory. A GROM is a specialy designed
ROM that T.I. uses in most of the modules produced by T.I. The main difference
is that the GROM has an internal PC regester, or counter, that the 99/4A
recognizes. The reason some of the grey consoles do not work with ROM's is
that T.I. checks for the internal PC to see if it is a GROM, and if not, the PC
interrupt will not increment, 'locking up' the computer. The consoles that do
not work display a 'COPYRIGHT 1983 Texas Instruments' title screen.
Those who have a 1983 console can get the ROM modules to work by getting

another module-type device that plugs into the computer game port and then the
module plugs into it. It is called a 'GROM BUSTER' and can be purchsed from
several of the retail outlets listed in the back of this guide. Prices are
usualy in the *20-*25 range.

RAM - Random Access Memory. This is the memory the computer uses to store
the program and>»rogram information. RAM is not permanent, and can be written
to and read from. The T.I. has two types of RAM, it has console RAM and also
VDP (Video Display Proccessor) RAM. Console RAM is the BASIC storage area
for programs and data, and VDP RAM is where the computer stores certain vital
conters, data and screen information. You need not be concerned with the
difference unless you are planning to program in assembly language, and that
discussion is far beyond the scope of this text.

CHAPTER 4 -RS232 INTERFACE PERIPHERAL

♦:This xs a rather long chapter, and will deal with the role of the RS232
interface and some tips on using it along with differences in the 'standard'
RS232 and the T.I. RS232.

The RS232 interface, either in the stand-alone or the P-Bon card form, has
the job of 'interfacing' the computer with the outside world. The RS232 allocs
you to connect the computer to a MODEM, printer, another computer, or any othe-
RS232 equipped device.

The T.I. interface comes with TWO serial (RS232C) ports and one parallel
port. See the end of section for the pin numbers and names. Most printers on
the market are ready for parallel connection, having a 'CENTRONICS'
type-connection. All this means is that the printer connector is using a
standard 36 pin connector, with (more or less) standard pin outs. The pin
connections vary with each manufacturer, but all are pretty much the same. The
parallel connection coming from the T.I. Peripheral is in the form of a 16 pin
connector, again see the section on pin outs for the pin number and name.

The RS232 (serial > interface ports are on the same connector, a DB 25
female connector. Most accessories that can be hooked up to the RS232 ports
require only three wires to operate, transmit data (out), receive data (in),
and ground. Other applications such as auto-dial, auto-answer modems may
require more connections. If you come up on one, you will have to refer to the
instructions of the accessory you will be using.

When setting J5^ a printer to the computer, the easiest way is to run the
parallel set-up. Parallel is easy for two reasons, 1) Most printers are
parallel from the factory, serial is generaly an- extra charge, and 2) When
programming, it is easier to type in MPIO" to open a port for parallel than to
type in "RS232.BA=4800" as a typical serial port open statement. A word of
caution for the MPIOn users, if the printer prints garbage, or misses a
character now and then, check the position of the cable to the monitor, a
drill, etc. The parallel configuration is very suseptable to noise, and the
longer the cable, the more important is is to run a shielded cable. Most
cases the parallel cable should not be longer than four feet. This keeps noise
and errors due to line loss (signal delay) down.

TIP - To print only a few lines to a parallel printer, use the command :

LIST "PIO:120-150" This will list the lines 120 thru 150 to the printer.

Modems and terminal emulation terminology :

Modems are devices that allow you to communicate with other computers over
the telephone lines. Modem stands for MODulate, DEModulate, which is what a
MODEM does, converts the computers serial RS232 output into an audible sound
that the phone lines can handle. A modem has two modes, Originate and answer.
If you are calling, you are Originating a call. If you are Receiving a call,
yo are answering. Each mode uses a different tone, and the modem 'knows' the
difference, and will not work if you have the wrong mode. See the section on
dialing up the FLUB BBS for more info on Modem use.

STANDARD TERMS - WHAT THEY MEAN.

HALF DUPLEX

FULL DUPLEX

STOP BIT

PARITY

BAUD RATE

In the half duplex mode, both communicating terminals can
'TALK,' or, transmit data, but only one at a time. If ore
computer wants to send data, it must wait for the other tc
finish first.

In full duplex, both computers are permitted to 'talk' at
the same time. It is not that simple, but the idea is the
same.

The number of BIT's length to use to tell the other system
that your transmission is complete. 1 BIT= 1 BIT length
stop BIT, 2= 2 BIT length stop bit.
A method of sending an extra 'odd' bit. If you select
eight bit data, 9 BITs are sent. The other system knows
that a total of nine BITs are coming, and if it does not get
all nine, then a 'parity error' occurs and the sending
system is requested to repeat the transmission.
Parity can be checked with either an odd or even BIT, or not
be checked at all (ODD, EVEN, NONE)
Actualy, BITs-per-second. The speed at which the data is
sent or received.

STANDARD RS232 SIGNALS AND T.I. NAMES FOR THEM.

PIN 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

IB

19

20

21

22

23

24

25

rs: name

Protective ground
Transmitted data

Received data

Request to send
Clear to send

DSR (Data set ready)
Signal ground (return)
Received line signal detect
DST (reserved)

DST

Not used

Port 2 line signal detect
Secondary Clear to send
Secondary transmitted data
DCE (TRANS TIMING)

Secondary received data
DCE (REC TIMIMG)

Not used

Secondary request to send
Data terminal ready
Signal quality
Ring detector
DSR Select (DTE/DCE)

TSET

Not used

T.I. name

Protective ground.
Transmitted data (RS232 port 1)
Recieved data (port 1 >
Not used

Clear to send (handshake)

Pull up to +12volts DC.
Signal ground (return)
Data carrier detect (port 1)
Not used

Not used

Not used

Data carrier detect (port 2)
Clear to send (port 2)
Port 2 Transmitted data

Not used

Port 2 recieved data

Not used

Not used

Data terminal ready (port 2)
Data terminal ready (port 1)
Not used

Not used

Not used

Not used

Not used.

CHAPTER 3 - DISK DRIVES AND CONTROLLERS

"This chapter deals with the types o-f disk drives and disk drive controllers
on the market today.

The original disk drive that T.I. sold for the 99/4A was a Shugart 400L, a
5 1/4 inch single sided double density disk drive. The drive could only be
operated in the single density mode due to the controller card. Later on, T.I.
also sold MPI 51 disk drives, also single sided double density drives.

The original controller peripheral or card, was able to use double sided
drives, but still in the single density mode. To make the card read and write
in double density was not done because of the cost o-f the controller chips that
would have to be used to do double density. Two controller cards are available
on the market to make use of double density drives, they are made by MYARC and
COR-COMP. Although both are double density-double sided controllers, they
cannot read each others format. The MYARC card is coming out with an up-grade
to allow it to read the COR-COMP format.

Disk drives for the computer are 40 track 48 TPI (tracks per inch) 5 1/4"
diskette drives. For a disk drive to be QUAD density, it must be an 80 track
drive (96 TPI), or in other words, a DOUBLE-DOUBLE density drive. These high
density drives are available at a reasonable cost, but beware, if you purchase
them, you cannot use them on the origianal T.I. controller card, but can use
them on a COR-COMP or a MYARC controller. You must tell the card that you are
using an 80 track drive, so that it can set up the stepping to the higher rate
and steps. If you plan on getting the newer Double Sided, Double Density
<DSDD> disk drives and have the original T.I. controller, you can still use the
double sided feature, just not the double density. I like the double sided
disk format because most of the folks I know have it, and it makes it a lot
easier to keep track of. A double sided disk will work in a single side drive
if the programs are on the first side (which, incedentaly, when you look at the
'front' side of the disk with the lable, the program side is the BACK of the
disk.) of the disk, and are not 'fractured,' or spread onto the second side.
(More on fractured files in the longer version of this guide)

3 1/2" Drives :

The 3 1/2" drives CAN be used with a a few modifications, but savings are
lost in the cost of the mods and of the diskette itself. The 3 1/2" drives are
132 track drives and are 4X density, so the formated disk has (get this) -
9,520 sectors. It takes about 50 minutes to format.
The modifications necessary to run these drives are beyond the scope of this

guide, but they can be performed only on the MYARC card.

WINCHESTER (HARD) DRIVES :

The hard drives (5-40 MEGABYTES > are a special drive with a sealed chamber
that the disk spins in. The disk is not removable. To run a hard drive
requires two cards, a personality card and a controller card. The personality
card simply inerfaces to the computer to tell it that the hard drives are in
place and introduces the software instructions into the operating system to
allow the computer to accept command intended for the hard drive.

The hard drive controller is NOT the same as the disk drive controllers
mentioned before. The hard drive controller is a seperate entity that will
allow up to four hard disk drives to be used. Both cards are needed to run a
hard drive system. The personality card is not hard to make or to get, you can
get one from MYARC or other makers. The controller is expensive, and will run
about $300.00 or more. A COMPLETE hard drive system for the computer will run
about * 700.00 if you have to buy all of the parts new. A good list of
suppliers can be found in the Computer Shopper magazine or look around at some
of the surplus stores, Lolir Electronics is a good place to start.

(CHAPTER 6 - DISK PROGRAMS AND FORMATS

*** WARNING ***

*** WARNING ***

********** THE INFORMATION CONTAINED HERE HAS THE POTENTIAL TO DESTROY

ANY DATA ON THE DISK BEING USED. IF YOU PLAN TO USE ANY OF THE PROGRAMS
DESCRIBED HERE, MAKE SURE THAT IT IS DONE ON A BACK-UP DISK ONLY !! DO NOT
ATTEMPT TO CHANGE DATA ON ANY DISK THAT YOU CANNOT AFFORD TO RE-INITIALIZE
LATER.

This chapter will be a lengthy segment on how the 99 uses the disk
drives to store information and how disk sector editor programs such as the
public domain DISKO, and copyright programs such as DISK FIXER, DISK+AID and
others may be used to recover lost data on a disk.

The first part of our discussion will be on the diskette media itself. The
T.I. uses standard 5 1/4 inch 48 TPI disks. The disks are formatted into 40
tracks for a regular disk drive and 80 tracks for a quad drive. The tracks are
seperated into 9 sectors each for a total of 360 for normal SSSD and 1440
sectors for SSQD. Each sector holds about 256 characters. A character is the
same as a letter or number on the screen, so looking at a printout of a sector
dump, you can count directly across or down. While using the disk sector
editor programs DISKO and DISK FIXER (what I use in the examples later,) you
have a row (vertical count) and column (horizontal count) of 19X28 Hex display
for DISKO and a 16X32 display for DISK FIXER in Hex
When the disk is formatted the report comes back to the user that you have

358 sectors available, not the 360 that I said earlier. The reason for the
'lost' two sectors is that the computer automaticaly uses up the first two
sectors on the disk for the disk directory and the disk bit-map. The directory
is at sector 0 and the bit-map is at sector 1. With computers, most of the
internals start at zero and increment up, hence the sector '0' is the first.
The disk directory holds the information such as the disk name, number of

sectors available and the number of sectors used. If you have ever encountered
an error of 'DISK NOT INITIALIZED*' when trying to read a disk catalog, this is
the sector that does it. If sector 0 is damaged in anyway, the disk may be
imposible to catalog, but all is not lost. later I will go over the way to
re-buld a disk with a blown directory and bit-map. (original version only)
The bit-map sector (1) is the 'roadmap' to the data on the disk. As programs

are written to the disk, a record must be kept as to the spot (sector) that
the program is placed, and the alphabetical order that the program falls into.
This is the job of the bit-map. The bit-map 'tells' the disk controller what
sector to send the read/write head to find the program header. The bit-map
sector also keeps track of the order the programs are in. If a new program is
written to the disk, the bit-map is updated to reflect the order of loading. I
will give an example of this later.
The sectors 2-22 are reserved for the program header. Just as the bit-map

tells the disk read/write head where to find the program header, the program
header tells the read/write head what sector the actual program is located. In
addition to the program location, the type of program, the program name, if
the program is write-protected (cannot be accidentaly written over), and the
length of the program are recorded on this sector. The program length is
in sectors, and one is added to this number durring the disk catalog to show
the space used by the program header itself. All that is read durring a disk
catalog is the first few sectors, no reading to any of the programs or other
data is done at that time.

The -following ie a screen dump of the data on the TI-WRITER disk that I am
using to write this. I will give the information that the two most popular
programs used show on the screen. The DISK FIXER version I am using is the
module version marketed by Navarone industries. The DISKO program is a T.I.
public domain program that has been around -for a long time. DISKO has the
feature of searching for a specific program name, and if found will tell you
all the information about that file. Although the information is not changed
from one program to the next, you will see the different ways that the data is
displayed to the user to get an clearer idea of how to count the bytes. In
each case, I will point out what most of the numbers mean in the sector, and
later will explain how to manipulate those numbers to gain the results that you
need to re-build a 'blown' directory. (NOTE : a directory can be blown by not
closing a file you were writing to, as in BASIC or when writing to the disk
while using a Terminal emulator, and forgetting to 'log off the disk. This
will usualy result in the disk directory showing a 'DIS/VAR 0' file instead of a
'DIS/VAR 80' (TI WRITER file) like it should.)

The disk sector 0 (Disk directory) screen dump using DISKO :

54492D5752495445522001680944

534B202801010000000000000000
0000000000000000000000000000

000000000000FFFFF8D030FCFFFF
0000007FFF0000000F7FF7000000

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFF0FFFFFF0FFFFFF7FF0

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFF

The disk sector 0 screen dump using DISK FIXER by navarone :

NAVARONE IND. ** DISK FIXER V20. ** SECTOR DUMP SECTOR ADDRESS 0000
ADDR = 01 23 45 67 89 AB CD EF INTERPRETED

0000 s 5449 2D57 5249 5445 5220 0168 0944 534B

0010 s 2028 0101 0000 0000 0000 0000 0000 0000

0020 ts 0000 0000 0000 0000 0000 0000 0000 0000
0030 = 0000 0000 0000 0000 FF8D 0300 FCFF FFFF
0040 s FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0050 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0060 s FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0070 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0080 B FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0090 S FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00A0 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

00B0 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

00C0 ss FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

00D0 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

00E0 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
017JF0 s FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

TI-WRITER *h*DSK
(**************

The disk sector 1 (BIT MAP) screen dump using DISKO (NOTE : ALL THE 'ZERO'S
IN BYTES >0040 AND BELOW ARE NOT SHOWN, OTHERWISE THE NEXT FOUR SCREEN DUMP'S
ARE IDENTICAL TO THE SCREEN WHILE BEING VIEWED. - THE ZEROS ARE EXTRANEOUS AM
ARE BEING DELETED FROM THIS TEXT ONLY FOR SPACE SAVINGS.)

000300020004000500060007000A

000B000F00110010000800000000

0000000000000000000000000000

0000000000000000000000000000

0000000000000000000000000000

The disk sector 1 using the DISK FIXER :

NAVARONE IND. *** DISK FIXER V2.0 ** SECTOR DUMP SECTOR ADDRESS 0001
ADDR = 0 1 2 3 45 67 89 AB CD EF INTERPRETED

0000~=~0003~0003~0004~0005~0^ ****************
0010 = 000F 0011 0010 0008 0000 0000 0000 0000 ****************

0020 = 0000 0000 0000 0000 0000 0000 0000 0000 ****************

0030 = 0000 0000 0000 0000 0000 0000 0000 0000 ****************

0040 = 0000 0000 0000 0000 0000 0000 0000 0000 ****************

The disk sector 2 (First program on disk) screen dump using DISKO :

44454D4F46494C45202000008003

0002AE5002000000000000000000

2210000000000000000000000000

0000000000(300000000000000000

0000000000000000000000000000

The disk sector 2 screen dump using DISK FIXER :

NAVARONE IND. *** DISK FIXER V2.0 ** SECTOR DUMP SECTOR ADDRESS 0002
ADDR = 01 23 45 67 89 AB CD EF INTERPRETED

0000 = 4445~4D4F~4649~4C45~2020~0000~8003~0002 DEMOfTle" ******
0010 = AE50 0200 0000 0000 0000 0000 2210 0000 .P**********1'***
0020 = 0000 0000 0000 0000 0000 0000 0000 0000 ****************
0030 = 0000 0000 0000 0000 0000 0000 0000 0000 »»*******#*»*♦*♦

0040 = 0000 0000 0000 0000 0000 0000 0000 0000 ****************

Now that you have seen what the disk sectors look like and the different
types of data storage, lets use that information to change the disk a bit.
First get a good disk and copy it to anot*her disk. DO NOT USE THE ORIGINAL TO
DO THIS. After you have made the copy, catalog the disk and keep the catalog
for the next part. Using the disk sector program that you have, place the disk
in drive #1 and look at sector 1, the bit map. See the information that is
stored on the disk? Now move the numbers around a little, like taking the
first two and switching them. What you have just done is tell the disk
controller that the alphabetical order has changed. Save the new
configuration, and then use the disk manager or other program to catalog the
disk again. What has happened ? If it worked ok, the first two file names
should now be reversed, if not, look at the catalog list and see what HAS
changed. If nothing has changed, you may not have saved the changes made while

To load the DISKO program, plug in the Editor Assembler module and select 2
for the Editor Assembler. At the E/A menu select option #3, LOAD AND RUN, the-,
enter in the program name that it is saved under. The program as released by
T.I. was DISKO/1 and DISKO/2. If you have the VI.5 program, all you need is to
load the DISKO/1 file at the prompt. If you are not sure of the program
version, try loading just the first program and then press "ENTER." At the
next prompt, "PROGRAM NAME," enter the name "START" in capital letters. The
program should start running, if not, shut the computer off and then on again
an start loading again, but this time enter BOTH file names.
After the program is loaded and running, it places a menu on the screen with

sveral options. Only option #1 and #2 are available. To run the disk sector
editor, press 1 and then follow the prompts. Enter the drive number, then the
sector number, press enter and the program should access the disk and display
th data on the screen. To toggle from the HEX mode to the ASCII mode, press
"FUNCTION 2."

NOTE : The DISKO program will accept sector inputs for double sided or
double density disks, but will not page "forward" past sector >168 (360), it
will go "backward" only.

FUNCTION KEY ACTION CAUSED

1 Toggles (turns on) Hex display mode. All data is
displayed in Hex format.

2 Toggles the ASCII display mode. Screen displays normal
characters.

3 Return to Editor Assembler screen.
4 Read one sector backwards from present sector.
5 Return to Sector editor title screen. (change disk or

sector number)

6 Read forward one sector.
7 Not used.

8 Write to displayed sector. A confirmation will be asked
prior to the write operation, and you must press 'Y' to
write to the disk.

9 Return to DISKO main title screen.

I hope that this helps. For a further explanation I would suggest that you
get the HIDDEN POWERS OF DISK FIXER from Navarone. The book explains a lot of
things that I can not get into here due to space limitaions.

C HA PTER 7 - LOADERS - XBASIC, E/A, MINI MEM.

This section deals with the difference between the 'big three' modules, the
Editor Assembler, Extended BASIC, and the Mini Memory module. When we say
loader, I mean the way that the module handles the loading of an assembly
language file into memory. There are some differences, and the easiest way tc
understand them is to read the Editor Assembler book. If you do not have the
E/A manual, then the following is a brief description of the loaders.

Please note that the number presented are in hexadecimal (base 16) and are
represented by the > symbol. >2000 means "Hex location 2000," and that all the
loaders are what are called 'tagged object code' loaders. Object code is the
program produced in DISPLAY FIXED 80 format after being written and assembled
from the SOURCE code.

The loader is called when the option #3, LOAD AND RUN is selected from the
E/A main menu, if a CALL INIT is done in BASIC with the E/A in place, or the
first time a CALL LOAD is invoked from BASIC. Please note that the CALL

subroutines in BASIC will only work if the E/A module is in place, and the
memory expansion turned on. The reason the memory expansion must be on is that
the CALL INIT and CALL LOAD loads the E/A loader from the module to the lower

memory block (>2000) of the expansion.
There are basicaly two types of code that can be written for the 99, they are

absolute and relocatable. The differences are not important here, but for
simplicity, absolute code is code that is written to allow it to load into
and/or run in a specific place in memory, and relocatable code is an assembly
program (code) that can be manipulated by the memory expansion to 'load'
anywhere the expansion has room for it. This is an over-simplified explanation
but it will do for now. If you load an absolute code program, then load a
relocatable program, it is possible for the two to overwrite each other.

The E/A module uses the area >A000 to >FFD7 to attempt to load. Address
>A000 is the first address in the memory expansion. If the area is used, the
computer will look to >2024 for the first free address to start the load.
These numbers do not mean much to a non-assembly programmer, but they are the
locations used.

The REF/DEF table is located in low memory >3FFF to >3000. The REF/DEF table
holds the program name and the memory location of the first instruction of the
program. This is the location that the computer goes to when a CALL LINK is
entred from BASIC or the program name is entered from the E/A option # 3.

If the operator tries to load a program twice or another program with the
same name in the REF/DEF table, then the E/A loader will give an error of a
'DUPLICATE DEFINITION' and loading will stop. The Extended BASIC loader does
not give this error when a duplicate is found, it just loads the new program
OVER the first, leaving the second program.

The Extended BASIC loader is in the utility section of the module at location
>2000 also. The main difference is the Speed of loading, with the Editor
Assembler being much faster, and the type of object code that the loaders can
load. The E/A loader will load either Compressed object or uncompressed object
code, while the Ex BASIC will only load the uncompressed code. Compressed
object code is the code that is produced when the program is assembled with the
'C option on the assembler. The EX. BASIC module also requires a CALL INIT
command to clear memory prior to the first CALL LOAD command to load a program
from disk (or a value into memory), and BASIC with the E/A module does not
require a CALL INIT first.

i^

The fllNI MEMORY module also has a linking loader that loads at >2000. The
main difference between the MM module and the E/A is the use of the memory
space, and the fact that the MM module dose not have to have the memory
expansion to operate. The MM can be use to load assembly routines or programs
from cassette and from disk, and comes with a 'line by line' assembler on
cassette. For those wanting to learn 9900 assembly, the MINI MEMORY module is
a good choice, along with the COMPUTE! book, Assembly language for the TI
99/4A. A program written for the MM module and saved to disk will not
immediately run on the E/A module due to the memory usage differences, but with
a small amount of effort, and a good amount of knowledge, the program can be
made to run. Changing the REF/DEF table is one the things you need to know how
to do, and that is beyond this text, but be advised that it can be done. Do a
little experimentation (and frustration) and see what happens.

The MM REF/DEF table is at locations >7FFF down to >7119. The location >7118
is the first free memory location for the module.

LOADING PROGRAMS INTO MEMORY :

Sometimes you get a disk in the mail or from a friend that does not come with
any instructions on loading it, and the program is not running, and you do not
know how to get it going. Here are some tips on loading.

The Program image loader and save routine (option #5 on the Editor Assembler)
only understands files in BK 'blocks' which translate to a maximum of 33
sectors on a disk. If a file saved in program image format is longer than
this, the program is stored under the original name, and then another program
is created that is one ASCII character lower than the original, and so on.
What does this mean ? If you have a disk listing like the one below, The
Program name listed as 33 sectors, and the next LOWER program are in PROGRAM
IMAGE format, and can be loaded with the E/A option #5. In this example, I am
using the files for DM1000, a freeware utility most of the 99 comunity is
familiar with. Although the DM1000 files have an Ex. BASIC loader program that
loads these files, they can be loaded with option #5 of the E/A also. Please
note that the PROGRAM IMAGE FORMAT is NOT a BASIC or Extended BASIC loadable
format, even though they have the PROGRAM listing on a disk catalog. The
easiest way to distinguish the two are the sectors, 33, on an assembly language
program image format. Trying to load a program into BASIC or Ex BASIC will not
harm the computer, but will result in an I/O error 50.

TIP - If you have a file in program image and re-name the file UTILl, and
each subsequent file UTIL2, UTIL3, etc, then you will be able to load the file
just by selection option #5 on the E/A menu, and then press 'enter' at the
filename prompt, and the program will load. The bad point about this is that
the program cannot be identified by the program name (what does UTILl mean?) in
a catalog, and only one program can be stored with this name per disk.

If you have a DISPLAY VARIABLE 80 file, that is a file that is readable from
the TI WRITER module. You can load and edit the file using the 'LF' command on
the TI WRITER, or you can print out the file using the E/A module and a
printer. Just ©elect option #1, EDIT from the main menu, and then select #4,
print. Next enter the file name to print (DSK1.MGRD0C in the previous disk
catalog) and press enter. Next enter the printer ID, such as RS232.BA=4800 or
PIO depending on your printer. The file should start to print.
The display variable 80 file is also the format used by the E/A module to

store source code for the assembly language programmer. Source code is the
un-assembled assembly language program.

A DISPLAY FIXED 80 file is the object code storage format used by the Editor
Assembler after assembly. It is loadable by the option 3, LOAD AND RUN command
from the main menu. A program name may have to be entered to make the program
run. Most program names are a relation to the file name, or are a command like
START, RUN, GO, LOAD, Etc. The Fast-Term terminal emulator uses the program
name TERM to start the program, so you can see that most programmers use some
type of recognition with the type of program or program name. if you cannot
find the program name by experimenting, use DISKO or some other disk sector
editor to locate the LAST sector of the program and page forward one sector.
The program name should appear in the ASCII view of the sector in the lower
right hand corner, but it could be in the last sector also, see the "PROGRAM
NAME" screen dump of DISKO at the end of this chapter.

An INTERNAL VARIABLE 254 file is the way Ex. BASIC saves a file to disk that
is longer than 12K in length. The loading of this program may require you do a
CALL INIT and then a CALL FILES(l) command to load the program, depending on
the total lenght. Internal variable 254 files are generaly over 47 sectors in
length and can be loaded using the regular OLD DSK1.XXXXX command.

A DISPLAY VARIABLE 163 file is an Ex. BASIC MERGE format file, and can be
loaded with the "MERGE DSK1.XXXXX" command.

Please note that any type of file, with any number, including those listed
above, can be used by a program to store data or text, and may not be an
executable file, so a little experimentation mey be in order. Remember to try
any of your experiments with a backup disk to avoid "permanent" loss of data
due to an error. Reading from a disk will not cause any damage to the data,
but when writing a file or data to disk, if the disk sector program goes off
into never-never land, you can say good-by to the data on the disk.

i-l

CHAPTER 8 -LANGUAGES FOR THE TI99

This chapter deals with the available languages for the TI 99/4(A). This is
not a review or tutorial of the languages, just a presentation of the languages
that are available and a few pro's and con's of each. As with all programming
languages, the preference is entirely up to the programmer/user that is doing
the work.

A language is classified as either high or low level. A low level langage is
close to the actual binary (the lowest) language that the microprocessor
understands, and a high level language is one that requires an 'interpreter,' a
program that 'converts' that level into a form the microprocessor can
understand (binary). The 'HIGHER' the level, the more interpretation is
required. BASIC is a HIGH level language, and actual goes through TWO
interpretations per instruction, one through the BASIC interpreter, and the
other in the GPL (graphics programming language) interpreter. This
dual-translaton is one reason the console BASIC is as slow as it is.

The languages so far available are :

Comes with the console)

module)

E/A module and disk)

Three versions, one cassette, two on disk)
P-Box card or stand alon peripheral and disk)
disk)

module)

module)

disk)

BASIC COMPILER (disk)

Most of the languages require either the E/A or Ex BASIC module to load, plus
the memory expansion and disk drive.

BASIC : The language that comes with the computer console, is slow and has
quite a few limitations, such as no direct access to the internal program
counters, clock, or interrupts. The TI BASIC is very easy to learn and use,
and is a good language to learn on.

Extended BASIC : This module offers the advantage of greater speed and
versatility through more commands, and has the advantage of more disk I/O
available. The same limitations are in effect for the Ex BASIC module as
BASIC, with some execptions. Please see the section on Ex. BASIC. >

Assembly language : Assembly is very fast and efficient while running, but
very difficult to learn and de-bug once written. The assembly programmer has
many variables to take care of and keep track of, but the speed of the language
is the greatest advantage. All of the functions of the 9900 microprocessor are
available to the assembly language programmer to control the program.

FORTH : The three versions of FORTH are Pretty much the same, with some samll
differences in the syntax and disk storage. FORTH is a difficult language to
learn at first, but has the advantage of having more SIG's (special interest
groups) than most other languages. This interest in FORTH is due to the speed
of the program execution, which is almost as fast as an assembly program. Many
good books have been written on FORTH and are available at most book stores.

BASIC (

Extended BASIC (

Assembly (

FORTH (

PASCAL (

PILOT 99 <

LOGO <

LOGO II (

C (

i4

.PASCAL : The T.I. version is UCSD PASCAL. The P-Code card allows you to run
the P-System without using up much memory space. The P-System language is easy
to learn, and is a compiled language so it runs very fast. The dissadvantage of
PASCAL is the extra cost of the P-Code card, and the time involved to compile a
large file.

PILOT 99 : A FREEWARE language that is easy to learn and very useful1.
Requires E/A to load and run, and comes with a 68 page manual. PILOT 99 is a
simple language to learn and use, and is good for a begining programmer. Speed
is slow, but not as slow as BASIC.

LOGO : Designed as a 'childrens' language, LOGO is a high level language
with many features, and can be used even by most adults who enjoy programming.
TI LOGO requres a module and cassette player to save programs and procedures.

LOGO II : A higher-developed version of LOGO. Uses cassette or disk to load
the programs or procedures.

C : A new programming language, offered as FREEWARE. I do not know
much about the T.I. version, but c in general is a"difficult language to learn
and use, but yields exellent results in speed and accuracy.

BASIC COMPILERS : While not a language, compilers are a part of the packages
offered for the 99. most are simple, use either the Mini Memory or E/A
modules, and have quite a few restrictions as to the use of variables, disk I/O
and higher functions. In most cases, a complicated program can be written in a
lower—level language easier than trying to write for a compiled version.

eUhf^r 1- fr<** *-p*A*%
i'D/2/85

Re following 1s o Met of Peeks and
kes that was downloaded from the

f irce. It Is In 80 column format.
CwiTip 11ed by Scott Oar 11ng.

24K OF DATA STORAGE

If you need to work with quite a bit of data or would like to change
frograms, but save the data after you press CALL QUIT then you can set up the
4K of High-Memory In the PEB as a single data file called *EXPMEM2M, you opeen

this file Just as you would a disk file with one exception - you must PRECEED
th OPEN statement with a CALL LOAD to the location -24574 as follows:

For INT/VAR files - 24
For DIS/VAR files - 16
For 1NIT/FIX files - 8
For D1S/FIX flies - 0

Heres and example: „ _ _
If you want to open up the Expansion Memory for DI splay. Variable 80 files

this Is what you'd do:
100 CALL INIT

120 OPEN #?*"E^PMEM2",RELATIVE. UPDATE,DISPLAY,VARIABLE 80
Then continue on as you normally would.

If you want to store both data and assembly language routines at the same
time do this:

<rr

too
110
120
130
140
150
160

CALL
CALL
OPEN
CALL
CALL
CALL

INIT
LOAD(-24574,-16)
#I:MEXPMEM2H
LOAD
LOAD
LINK

DSKl.ASSMl^)
DSK2.ASSM2'
START")

BEH~CONTINUE REST OF PROGRAM
In the above example the 24 K of high-memory was saved for use as a DATA

file (DIS/VAR 80 format) then the assembly routines were loaded. The computer
will look for the best place to put the routines and will adjust the pointer
accordingly. After the routines are loaded, a LINK statement starts the first
routine and off we go.

If that's not enough for you, you can also use the MINI-MEMORY for
of storage of assembly routinesI Now that's 16K of program space, 12K
assembly routine space 1

\\

4K
of

more

THESE ARE ALL OF THE PEEKS S POKES I HAVE COME ACROSS FOR USE WITH X-BASIC
AND 32K MEMORY EXPANSION (BE SURE TO DO A "CALL INIT"). THE
P & Q VARIABLES ARE USED FOR "PEEK" - THE NUMBERS ARE FOR. "POKE" OR "LOAD". IF
YOU KNOW OF ANY OTHERS PLEASE LET ME KNOW AND I WILL ADD THEM IN.

:cctcrrs :rssr=csrr=s

ADDRESS . VALUE(S) MEANING IN EXTENDED BASIC
:BSccrz:sccBcr

8192
8194
8196
-28672
-31572
31740
31744
-31748
-31788

-31794

TO 255

Wis
TO 255

P
0
P
0
0
160
224
226
227
232

:SCCCCCSCBBSffCC3SCSCCBKBCCCCCBCCCB: :S8CBBBB88CBCBrS

CALL VERSION(X) IF X=100 100= NEWEST
USE (PEEK,P) IF P<> 70 OR <>121 THEN DO A CALL INI
FIRST FREE ADDRESS IN LOW MEMORY
LAST FREE ADDRESS IN LOW MEMORY

VERSION OF X/B CART

P=0 SPEECH NOT ATTACHED
VARY KEYBOARD RESPONSE
PUT IN DIFFERENT TO CHANGE
CONTINUATION OF LAST SOUND
CHANGE THE CURSOR FLASHING
BLANK OUT THE SCREEN (MUST
NORMAL OPERATION
DOUBLE SIZE SPRITES
MAGNIFIED & DOUBLE SIZED SPRITES
MULTICOLOR MODE (48 BY 64 SQUARES)
TIMER FOR CALL SOUND (COUNTS FROM 255
r%r-nri ir*ki *rr% tuc titi r

P«96 OR P«255 SPEECH IS ATTACHED

BEEPS.WARNINGS. ETC
(0«=LOUD AND 15=SOFT)
AND RESPONSE TONE RATES
PUSH A KEY TO ACTIVATE)

TO 0)
V V\H\

»«ttctc&etcectctrc

i♦LAii i i^b iN LailNULU bMbit
icectscri tCBBBBBBI

•31808
•31860
-31866
-31868

-31873
-31877
-31878
-31880
-31884
-31888

-31931

-31952
-31962

-31974
-32112
•32114

-32116

•32187

-32188

-32630
-32699

-32700
-32729
-32730
-32961

55
0
2
4
14
15
16
64
128
P
32
255

%•
2
13
119
2
4
0
2
4
9
14
15
16
64
128
1
127
128
0
2
4
14
15
16
64
128
0
0
32
51
149

THE FOLLOWING LOADS
«BBBBBBBBr?^se«¥«B,*-»**- — — i

ADDRESS ,
XBBBSBEBSX

784

-24574
-30945
-32272
-32766
-32768
-32280
-32352

VALUE
:ssssb

P

8
0

8-"
0
0
107

SSSSBB

LOADS

231

ISSt! ISttffi iU|5nEKE?UR FOR CONTl»°u^H50UND>-
SABLE AUTO SPRITE MOTION
SABLE SPRITES ft QUIT KEY
SABLE SPRITES AND SOUND
SABLE ALL THREE

DOUBLE RANDOM NUMBERS (0 TO 255) NEED "RANDOMIZE"
GO FROM EX-BASIC TO CONSOLE BASIC (NEED "NEW")
END OF CPU PROGRAM ADDRESS (P-256+Q)
NO "RUN" OR "LIST" AFTER "BREAK" IS USED
TURNS OFF THE 32K MEMORY EXPANSION
TURNS ON THE 32K MEMORY EXPANSION
SCREEN COLUMN TO START AT WITH A "PRINT"
P&32 - SPRITE COINCIDENCE P&64 * 5 SPRITES ON A LINE
HIGHEST NUMBER SPRITE IN MOTION (0 STOPS ALL)
RANDOM NUMBER (0 TO 99) NEED "RANDOMIZE"
CHANGE KEYBOARD MODE (LIKE "CALL KEY(K,...)")
DISABLE ALL DISK DRIVES (USE "NEW" TOVREE MEMORY)
ENABLE ALL DISK DRIVES (USE "NEW" TO FREE DRIVES)
UNPROTECT X-B PROTECTION u '
SET "ON WARNING NEXT" COMMAND
SET "ON WARNING STOP" COMMAND
SET "UNTRACE" COMMAND
SET "UNTRACE" COMMAND & "NUM" COMMAND
SET "TRACE" COMMAND
SET "ON BREAK NEXT" COMMAND
PROTECT X/B PROGRAM
PEEK P=55 THEN 32K EXPANSION MEMORY IS OFF <>55 MEANS ONRETURN TO THE TITLE SCREEN »o urr ^M ntANS ON
RESTART X/B W/DSK1.LOAD ••
END OF VDP STACK ADDRESS (P»256+Q)
SEARCHES DISK FOR ?
RANDOM GARBAGE
SCREEN GOES WILD
PRODUCE LINES
RANDOM CHARACTERS ON SCREEN
GO FROM X/BASIC TO BASIC
UNPROTECT XB PROGRAM
SET "ON WARNING NEXT" COMMAND
SET "ON WARNING STOP" COMMAND
SET 0 LINE NUMBER
SET "UNTRACE" COMMAND
SET "UNTRACE" COMMAND & "NUM" COMMAND
SET "TRACE" COMMAND
SET "ON BREAK NEXT" COMMAND
PROTECT XB PROGRAM
CHANGE COLOR AND RECEIVE SYNTAX ERROR
CHANGE COLOR AND RECEIVE BREAKPOINT
RESET TO TITLE SCREEN
UNPROTECT XB PROGRAM
SET "ON WARNING NEXT" COMMAND
SET "ON WARNING STOP" COMMAND
SET "UNTRACE" COMMAND
SET "UNTRACE" & "NUM" COMMAND
SET "TRACE" COMMAND
SET "ON BREAK NEXT"
PROTECT XB PROGRAM
CLEARS CREEN FOR AN INSTANT
RUN "DSK1.LOAD"
RESET TO TITLE SCREEN
RESET TO TITLE SCREEN
SETS "ON BREAK GOTO" LOCKS SYSTEM

REQUIRE E/A OR MM «==*»=eeb

MEANING

i^EoR^PcSil^
^HllTE^DGEi ALL°WS THE MINI"MEM T0 USE THE 24K FOR STORAGE

" * i?T9MAP*MOD^ WILL PUT Y°U IN TEXT M0DE
GRAPHICS (NORMAL MODE) \
MULTI-COLOR MODE '
WILL BLANK THE SCREEN. ANY KEY PRESS WILL RESTORE

sssseeeebebsebsesseessbebsssssssebssbsbesbbsbsseesessz s s essesse

SBSSSBSS

(S)

J

)

* PASCAL
itetrrrer

14586 , 0

End of file

:=== = = e = «S = B:SEttBSBBB=SBSSSSBEBEEBESSBEBBBl

THIS ALLOWS YOU TO DO A
TO BASIC.

SSBBBSBBS

'RUN-TIME WARM START" FROM PASCAL

CHAPTER 10 - BULLETIN BOARD SYSTEMS FOR Tl

CITY/STATE

Tots River NJ

New Haven CT

Seattte HA

Portland HE

Veazie, HE
Dallas TX

His quitell
Oil Us TX

Phil. PA

Reading PA
Cleveland Oh

Mashinston DC
Newark DE

Colo Spg CO
Ocoee FL

Ft Laud. FL

Hest Pali FL

Orlando FL.

Hazel Pk HI

Detroit HI

Clawson HI

Taylor, HI
St Louis HO

Wichita KS

Lake Chas LA

Atlanta II

Marietta, 6A
Atl 8A

Atl 6A

Pittsburgh PA.
Appleton HI
Milwaukee HI

Sreenbay HI
Redwood City
fSreshai OR

Knoxvlle IA

Albany NY
Biloxi, HS
BC Canada 3P-7A

Hound, HN
Coluibus OH

Knoxvilie TN

Chatt. TN

Boston HA

San Diego CA
San Diego CA
Las Vegaas NA
Hash. DC

Charlotte NC

Char. NC

Houston TX

Houston TX

Fontana CA

Tonawanda NY

Va Bch. VA

Bradenton FL

Phone 1 Hours TYPE OF PR06RAH

929 8161 - 24 hours A ho.e-bren BBS prog
777 8588 - 24 hours TIBBS

542-8529 - 24 hours TIBBS

797-5690 - 24 hours TIBBS

945-5709 - 24 hours TIBBS

353-0502 -

681-5729 - 24 hours Dungeon Keep TIBBS
995-3054 - FLUB TIBBS (TI)

927-6432 - 24 hours

929-5348 - Ticonn BBS

289-7311 - 24 hours TIBBS

434-0117 - 24 hours TIBBS

322-3999 - TIBBS

574-5762 - 24 hours TIBBS 300/1200

877-6546 - 24 hours TIBBS

583-4343 - 24 hours

793-8050 -

831-5990 - 24 hours TIBBS

544-0714 - TIBBS

544-7788 - 24 hours TIBBS

751-1119 - TIBBS

292-6147 - TIBBS

878-4289 - TIBBS

681-3167 - TIBBS

474-6144 - TIBBS

425-5254 - TIBBS

955-2731 - TIBBS

363-1640 - 24 hours TIBBS

366-1914 - 24 hours TIBBS

882-0717 - 24 hours TIBBS

739-5380 - 24 hours TIBBS

649-TEAh" - 24 hours TIBBS

437-6930 - TIBBS

364-B517 - TIBBS

661-0408 - 24 hours TIBBS

842-2104 -

765-4993 - 24 hours TIBBS

392-B717 -

531-6423 - Weekends TIBBS

472-3490 - 24 hours TIBBS

451-0880 - 24 hours Spirtit of 99 TIBBS
691-9558 -

267-1721 - 24 hours TIBBS

367-6341 - 24 hours ELITE TIBBS

276-3173 -

282-3525 - 24 hours SCCG TIBBS

648-1247 - 24 hours TICOHH

631-8772 - 24 hours TIBBS

376-8124 -

541-3776 -

487-5530 - changes nuibers frequently
537-0741 - 24 hours Bood TIBBS

350-8583 -

837-6635 - TIBBS

4B6-14B4 - TIBBS

-747-2081 - 24 hours ACTION TIBBS

SYSOP A/C

Jeanete Shader 201

Katt Sinclair 2f3

J.R.-XCHANGE 206

Hark Rideout 267

Eric Benton #217

Bill Kauth #214

Keith HugTiey 214
R.A.Fleetwood 214

Philly TIBBS 215
6ene Deisher 215

216

Phil 301

Dlwre VIy U.S. 302
John Hilliaes #303

Dennis Neubauer 305

Ed Q'Shaunessy 305
Dave Sholdar 305

Brian Del any . 305
Thou Thibodeau 313

Coiputer corner 313
Craig Barton 313
Jeff Thrush 313

Ron Courtois 314

Jerry HcClusky #316
Bayou TIBBS 318
Ralph Fowler M04
Hreta TIBBS 404

Hai Radio TIBBS #404

Atl 99/4A U.S. 404

Coiputer Bug 412
Hare Schiidt 414

Dan 6unia 414

D. Pfotenhauer 414

Bay Cities 415
Hike Herstlen 503

Keith Jan son 515

Dick Ferrigan 518
Larry Levy 601
WD/24 1604

Hark Ziesier 612

Spirit of 99 614
Dick Tracey #615
Hines of Horia 625

Elite TIBBS 617

Irish Input 619
SCC6 TIBBS 619

John Hartin 702

PHIL #703

Bits N Chips 704
Queen City TIBBS 704
H.U.6.TIBBS #713

Phoenix TIBBS #713

Peter Covert 714

Peter Testa 716

T.U.6 TIBBS 804

Action-Link #813

10 teg hard disk
aa -w

Tiipi FL

Sheldon, ItV
Psudenj CA

Sylis-, CA

Seiphis, TK
Dartmouth

Nova Sect;a

Dtytona FL

Savanna 6A.

Hiddlet.n NY

Sacraiento Ca

Durhu NC

Hnstn-Sli NC

Raleigh NC
Orphanage(994a

Nice BBS !

- 24 hours TIBBS

TIBBS

- Nights only

- 24 hours TIBB5

613 677-0716

815 429-3533

818 578-06?8

#818 361-9294

901 357-5425

902 434-3121

904 255-0326

912 354-0508

914 343-5076

«916 927-3012

919 383-8707

919 723-2415

♦919 851-8460

•214 276-7832

Kike Carroll

Vayne Burgess

<KCN>

Heiphis U.E.
Terry Atkinson

Dave Taylor
David Stith

SAC TIBBS

Bull City TIBBS

Amon Nissan

i PCjr)
RANDY BAITER

24 hours TICOflH

TIBBS

Weekends TIBBS

24 hours TIBBS

TIBBS

24 hours TIBBS

24 Hours TURBO BBS

BBS Runs on IBH PCjr and has
HtODEH TI file transfers.

CHAPTER 1 1 - T I 9 9 FIN OUTS

The -following pin connections are in reference to the -figures or. the next
page. In most cases, I will tell you the top, bottom or side that the view
is of.

GROM PORT CONNECTOR (36 pin
PIN NUMBER SIGNAL

)

LINE 15

1 RESET

2 GROUND

3 DATA LINE 7

4 CRU CLOCK

5 DATA LINE 6

6 CRU INPUT

7 DATA LINE 5

8 CRU OUT ?< ADDRESS 1

9 DATA LINE 11

10 ADDRESS LINE 13

11 DATA LINE 3

12 ADDRESS LINE 12

13 DATA LINE 2

14 ADDRESS LINE 11

15 DATA LINE 1

16 ADDRESS LINE 10

17 DATA LINE 0

18 ADDRESS LINE 9

19 + 5 VOLTS

20 ADDRESS LINE 8

21 GROM SELECT SIGNAL

22 ADDRESS LINE 7

23 ADDRESS LINE 14

24 ADDRESS LINE 3

25 DATA BUS IN

26 ADDRESS LINE 6

27 GROM CLOCK

28 ADDRESS LINE 5

29 -5 VOLTS

30 ADDRESS LINE 4

31 GROM READY

32 WRITE ENABLE LOW

.33 GROM VSS

34 ROMG LOW

35 DATA LINE 4

36 GROUND

JOYSTICK PORT CONNECTOR

PIN NUMBER SIGNAL

1 LEFT

2 FIRE BUTTON

3 UP

4 JOYSTICK 1 GND

5 NO CONNECTION

6 RIGHT

7 DOWN

8 JOYSTICK 2 GND

9 NO CONNECTION

PERIPHERAL PORT (44 PIN)

PIN NUMBER SIGNAL

1 +5 VOLTS

2 SBE

3 RESET

4 EXT INTERRUPT

5 ADDRESS LINE 5

6 ADDRESS LINE 10

7 ADDRESS LINE 4

8 ADDRESS LINE 11

9 DB INPUT

10 ADDRESS LINE 13

11 ADDRESS LINE 12

12 READY/HOLD LINE

13 LOAD

14 ADDRESS LINE 8

15 ADDRESS LINE 3

16 ADDRESS LINE 14

17 ADDRESS LINE 7

18 ADDRESS LINE 9

19 ADD. 15/CRU OUT

20 ADDRESS LINE 2

21 GROUND REFERENCE

22 CRU CLOCK

23 GROUND REFERENCE

24 CPU CLOCK PHASE 3

25 GROUND

26 WRITE ENABLE

27 GROUND

28 MEMORY BLOCK EN.

29 ADDRESS LINE 6

30 ADDRESS LINE 1

31 ADDRESS LINE 0

32 MEMORY ENABLE

3^ CRU INPUT

34 DATA LINE 7

35 DATA LINE 4

36 DATA LINE 6

37 DATA LINE 0 (MSB;

38 DATA LINE 5

39 DATA LINE 2

40 DATA LINE 1

41 INST. AQUAS.(IAC)

42 DATA LINE 3

43 -5 VOLTS

44 AUDIO IN

CASSETTE PORT CONNECTOR

PIN NUMBER SIGNAL

1 MOTOR CONTROL 1

MOTOR CONTROL 1
T,

RECORD OUT GROUND
4 AUDIO INPUT

5 RECORD OUT
6 MOTOR CONTROL 2
7 MOTOR CONTROL 2
8 MAG IN

9 MAG OUT

RS232 PIN PARALLEL CONNECTOR
PIN NUMBER SIGNAL

1 HANDSHAKE OUT
2 DATA LINE 15

DATA LINE 14
4 DATA LINE 13

5 DATA LINE 12

6 DATA LINE 11
7 DATA LINE 10

8 DATA LINE 9

9 DATA LINE 8

10 HANDSHAKE IN

11 SIGNAL GROUND

12 10 OHM PULLUP TO +5 VOL
13 SPARE INPUT BIT

14 SPARE OUTPUT BIT

15 1 K PULL UP TO +5 VOLTS

16 LOGIC < SIGNAL) GROUND

VIDEO CONNECTOR

PIN NUMBER SIGNAL

1 +12 VOLTS
O GROUND

o AUDIO OUT

4 COMPOSITE VIDEO
5 GROUND

RS232 SERIAL CONNECTOR
PIN NUMBER SIGNAL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

PROTECTIVE GND.

TRANSMIT DATA

RECEIVED DATA

NOT USED

CLEAR TO SEND (1)

+12V PULL UP

SIGNAL GROUND

CARRIER DET (1)

NOT USED

NOT USED

NOT USED

CARRIER DET (2)

CLEAR TO SEND

TRANSMIT DATA

NOT USED

RECEIVED DATA

NOT USED

NOT USED

DTR PORT 2

DTR PORT 1

NOT USED

(2)

(2)

(2)

CHAPTER - ASCII CHARACTERS AND VALUES

COLOR- VALUE

CHARACTER SETS

SET ASCII CODES

TRANSPARENT 1

BLACK dL.

MED. GREEN 3

LT. GREEN 4

DARK BLUE 5

LT. BLUE 6

DARK RED 7

CYAN 8

MED. RED 9

LT. RED 10

DK. YELLOW 11

LT. YELLOW 12

DK. GREEN 13

MAGENTA 14

GRAY 15

WHITE 16

0 30-31

1 |T "? _ "T O

*-y
40-47

3 48-55

4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

10 104-111

11 112-119

12 120-127

13 128-131

14 132-143

15 144-151 -\ USE IN

16 152-159 -/ BASIC

ASCII CHARACTER CODES

The defined characters on the TI-99/4A Computer are the standard ASCII characters for codes 32
through 127. The following chart lists these characters and their codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 (space) 65 A 97 A

33 ! (exclamation point) 66 B 98 B

34 (quote) 67 C 99 C

35 # (number or pound sign) 68 D 100 D

36 $ (dollar) 69 E 101 £

37 % (percent) 70 F 102 F

38 & (ampersand) 71 G 103 G

39 (apostrophe) 72 H 104 H

40 ((open parenthesis) 73 1 105 I
41) (close parenthesis) 74 J 106 J
42 * (asterisk) 75 K 107 K
43 + (plus) 76 L 108 L

44 , (comma) 77 M 109 M

45 — (minus) 78 N 110 N

46 . (period) 79 O 111 O

47 / (slant) 80 P 112 P

48 0 81 Q 113 Q
49 1 82 R 114 R

50 2 83 S 115 S

51 3 84 T 116 T

52 4 85 U 117 U

53 5 86 V 118 V

54 6 87 W 119 w

55 7 88 X 120 X
56 8 89 Y 121 Y
57 9 90 Z 122 Z
58 : (colon) 91 1 (open bracket) 123 { (left brace)
59 ; (semicolon) 92 \ (reverse slant) 124 1

1

60 < (less than) 93 1 (close bracket) 125 } (right brace)
61 • (equals) 94 A (exponentiation) 126 (tilde)
62 > (greater than) 95 «_ (line) 127 DEL(appears on
63 ? (question mark.) 96 (grave) screen as a
64 @ (at sign) blank.)

c
n

c
n

c
n

m
C

n
c
n

c
n

m
c
n

c
n

4
t
j
t
.
i
f
c
.
t
w

Cn
£

A
4

fc
4

fc
A

(
^
C

O
U

)
C

O
C

O
C

O
O

J
U

>
C

O
U

>
K

J

9 8-
U

l
A

U
I
O

w
O

«
0

0
>

I
I
>

U
l
*

U
M

M

fc
-H

c
o

s

I*
^
O

O
O

O
n

I
O

v
C

n
^
fc

O
J
K

)"
—

O
^
O

O
O

v
lO

s
C

n
4

w
U

>
K

>
-
*

O
r
O

0
0

«
v
J
C

>
C

n
4

fc
C

d
tO

o
r

to

G
?
o

o
^

m
w

w
o

tT
iw

z
D

C
J
D

C
J
O

w
a
)o

*
T

i<
ir

a
:t

o
w

>
M

tT
jm

w
w

p
s

w
(/

n
/)

W
(/

iC
2

>
H

^
n

n
n

n
r"

O
ji

),
fl

H
,i

H
i/

)M
n

z
o

H
H

0
8

3

8
8

8
8

8
8

H
H

H
H

H
H

50
ja

50
50

5
0

5
0

O
O

O
O

O
O

r
r

r
r

r
r

V
D

0
0

i
N

O
O

O
o

o
o

50
po

50
o

o
o

r
r

r

o
o

o
o

o
o

H
H

H
JO

50
50

O
O

O
r

r
r

o
o

o
o

o
o

H
H

H
5

0
5

0
5

0
o

o
o

r
r

r

c
/>

5
o

<
o

o
o

o
o

o
o

H
H

H
?0

50
50

o
o

o
r
r
r

O
O

O
Q

O
O

O
O

'Z
'Z

'Z
'Z

50
50

JO
50

O
O

O
O

r
r

r
r

O
O

O
O

O
O

O
O

H
H

H
H

50
50

50
50

O
O

O
O

r
r

r
r

~
n
:
o
^

o
o
o
o
o

o
o
o
o
o

5
0
5
0
5
0
5
0
JO

g
O
O
O
O
O
"

r
r
r

r
r

m
o
o
w
>

W
W

§
5

o o 3 o

4
fc

4
fc

4
fc

*
*

L
O

U
>

O
J
U

>
U

)U
>

U
>

L
O

U
>

<
>

J
K

>
O

'
(f

l
O

J
K

>
»

-
»

0
,0

0
0

*
N

lO
N

C
n

4
fc

O
J
K

)«
-»

0
*

0
Q

.O
c
b

9 8-

S
?

c o o 3

*
< o o * (
A

o
o

o
o
o
o
o
o
o
o
o
o
o
c
*

?
-
*
H
H
H
H
H
H
H
H
H
H
H
H
H
H
>
S

z
z
m
z
z
z
z
z
z
z
z
z
z
z
z
^
o

<
o

c
n

"^CHAPTER 13 - THIRD PARTY ADDRESSES

A semi-complete listing of magazines, newsletters, and mail-order
companies devoted to the Texas Instruments 99/4a Home Computer.

name

Micropendium

Super 99 Monthly

address

MICROPENDIUM

P.O. BOX 1343

ROUNDROCK, TEXAS
7S6S0

BYTEMASTER CQMP.

SERVICES

171 MUSTANG ST.

SULPHUR, LA

70633

descripti on

A magazine TOTALLY devoted
to the T.I. 99/4a. Every
issue gets better. Includes
such things as reviews,
articles, how-tos, editorial
pages, and the best

collection of advertising
you'll find anywhere.

Another magazine for 99/4a:'s.
only. Really worth checking
out.

cost

$18.50

first class

$15.00

third class

12 ISSUES

$16.00

first class

$12.00

third class

12 ISSUES

Computer COMPUTER SHOPPER While not a 99/4a only $18.00

Shopper 407 WASHINGTON AVE magazine, Randy Holcombs I
P.O. BOX F T.I. column, plus all the A YEAR

TITUSVILLE, FL ads, classifieds, BBS
32781 numbers, etc. make this one

a must -for any library,
(a monthly with ^300 pages!)

12 ISSUES

Millers MILLERS GRAPHICS MILLERS GRAPHICS has become $12.50

Graphics ! 1475 W.CYPRESS AVE known as one o-f the best

Newsletter SAN DIMAS, CA sources o-f quality programs A YEAR

! 91773 ! for the 99/4a around. Their

newsletter cannot be beat

! for hardcore tech. and prog.

mail order companies that specialize in the T.I. 99/4A

TEX-COMP ! P.O. BOX 33084

! GRANADA HILLS,CA

I 91344

BIGGEST SELECTION OF /4A

SOFTWARE AND HARDWARE. !

(Bie)

366-6631

ORDERS ONLY

TENEX ! P.O. BOX 6578

COMPUTER ! SOUTHBEND, IN
EXPRESS ! 46660

NICE SELECTION OF ALMOST

! EVERYTHING FOR THE /4A

-FREE CATALOG-

(800)

! 348-2270

! ORDERS

I (219)

! 259-7051

! QUESTIONS

TRITON

TRITON

TIGERCUB

SOFTWARE

P.O. BOX 8123

SAN FRANCISCO. CA

94128

P.O. BOX 8123

SAN FRANCISCO, CA
94128

156 COLLINGWOOD

AVE.

COLUMBUS, OHIO
43213

FAIR SELECTION OF STUFF FOR

THE /4A. LOTS OF EDUCATIONAL

SOFTWARE.-FREE CATALOG-

FAIR SELECTION OF STUFF FOR
THE /4A. LOTS OF EDUCATIONAL

SOFTWARE.-FREE CATALOG-

I

JIM PETERSON IS THE OWNER

OF THIS COMPANY AND PROVIDES

A GREAT QUANTITY OF SOFTWARE
ALL OF WHICH HE HAS WRITTEN
HIMSELF. HE ALSO WRITES A
NEWSLETTER FOR USERS GROUPS
AT NO CHARGE. HE IS A

DRIVING FORCE BEHIND THE /4A
-CATALOG *3 REFUNDABLE-

(800)

227-69C.

(800)

227-6900

(614)

235-354!

(MSI 1LKM i-aul Charlton lllt> hmehurst Court Lhalutitisviile, VA 2-.VL-1
Simpl^, THE BEST TERMINAL EMULATOR IN THE WORLD!

SPRITE BUILDER John Taylor 2170 Estaline Drive Florence, AL. 35630 XB
graphics generating program with assembly language routines for speed at
crucial places. Includes a full disk, of preformed graphics.

PIL0T99 Thomas Weithofer 1000 Harbury Drive Cincinnati, OH. 45220 An
ENTIRE language for the TI that is the simplest programming language known to
us (or anyone else!) **********TWO SSSD DISKS REQUIRED**********

MASTER CATALOG Mack McCormick 215 A Yorktown, Ft. Lee, Virginia 23801 A
100'/. assembly language disk catalog program that is super fast; handles up to
2000 different disk files.

TI SORT David R. Romer 213 Earl St. Walbridg, Oh. 43465 An exellent program
that sorts a display variable 80 file in either a quick sort or a shell sort.

EASYSPRITE Tom Freeman 515 Alma Real Dr.,Pacific Palisades, CA 90272 An
extremely fast XB program with assembly routines to create graphics 8< sprites
with easy cursor control Z< saving for program insertion.

DISASSEMBLER Marty Kroll 218 Kaplan Avenue Pittsburg, P. 15227 Super-fast
disassembler, 1007. assembly and full featured.

»

XBJJTILITY Silver Wolf Software P.O. Box 4242 Santa Rosa, Ca. 95402. This
is a great utilities program that lets you save any screen for instant recall,
and gives an on-screen ascii instant referance. Many more features.

TECHIE BBS Monty Schmidt 121 N. Blair, Madison, WI. 53703 Freeware BBS
system for the 99/4A. After 8/15/85: 525 Wingra St., Madison, Wi 53714

COMPACTOR Monty Schmidt (see above) Assembly langauge program that takes
an uncompressed D/F80 AL program and will compress to about 2/3 the disk space
and yield faster load times.

UNCOMPACTOR Monty Schmidt (see above) Opposite of above.

PRO 99er BBS Mark Hoogendoorne 21 Long Street, Burlington, MA. 01803 TI
BBS system with TRUE TE2 transfer capabilites.

DISK MANAGER Todd Kaplan, 5802 N. Western Apt. 3S, Chicago, IL. 60659
INCREDIBLE Disk ae on disk; forget TI'S DM2

TRIVIA 99er Robert L. Wessler 4300 Frazier Fort Worth, Texas 76115. A Trivia
game in XBASIC that has a nice data base and exellent doc's. Send a blank
initialized disk or $ 7.00 and he will provide the disk, mailer and postage.
Extra disk lables are available for users groups for the asking.

TRIVIA and GRAPHICS DEMO programs by Danny Cox 1861 The Elms Avenue, Memphis,
TN. 38127. Six graphics demos in Ex BASIC and an up-to four player trivia
game. Both require Ex. BASIC.

TOMB OF DEATH John Behnke, 5755 W. Grace, Chicago, 111. 60634. Requires
Tunnels of Doom cartridge, some new graphics.

ASSAULT THE CITY, John Behnke (see above).

FAST FORTH, Tim Curran, 4153 Four Pole Road, Huntington, WV 25701.
XBasic Loader, fast editor, fast editor locator, 40 column auto-repeat.

, i>

fi HftKDU mm TI-MTEB U8ER8 REFERENCE GUIDE
SUBMITTED BY BOB STEPHENS

The following handy TI-WRITER commands »re reprinted for the
June issue of the 99'er News published by the TI Users Group of
Nill County, Romeoville, II. This puts the most used commands on
one page for handy access at your computer.

EDITOR COMMAMD iFCTNiCTRL! EDITOR COMMAND JFCTNICRTL! EDITOR COMMAND FCTNICTRL

Bad: tab I
Beginning/line !
Command/escape !
Delete character!
Del. end of line!
Delete line !
Line »'s(on/off)!
Down arrow !
Duplicate line !
Home cursor !

9
1

3
0

X

T :ins. Blank line !
V llnsert character!
C JLast paragrapph 1
F '.Left arrow !
K JLeft margin rel.!
N !New page •

•New paragraph !
A 'Next paragraph !
5 {Next window !
L SOops! i

8 ! 0 SOuit
2 ! 6 {Reformat

!6orH!Right arrow
S ! S SRolI down

! Y {Roll up
!9orP!Screen color
!8orM!Tab
!A0rJ!Up arrow

S ! SWord tab
SlorZiWord wrap/fixed

D
4

6

7

E

2orR

D
A
B
3

I
E

7orW

0

Load files: LF (enter) DSK1.FILENAME (load entire file)
LF (enter) 3 DSK1.FILENAME (merges filename with data in memory

after line 3)

LF (enter) 3 I 10 DSK1.FILENAME (lines I thru 10 of filename are
merged after line 3 in memory)

LF (enter) 1 10 DSKl.FILENAME (loads lines 1 thru 10 of filename)

Save f

Print

iles: SF (enter) DSK1.FILENAME (save entire file)
SF (enter) 1 10 DSK1.FILENAME (save lines 1 thru 10)

s:s:r8cts8BE8CESc::sss8:ess::s::sce3BBssB:sssss:

Files:PF (enter) PIO (prints control characters and line numb
PF (enter) C PIO (prints with no control characters)
PF (enter) L PIO (prints 74 characters with line number
PF (enter) F PIO (prints fixed BO format)
PF (enter) 1 10 PIO (prints lines 1 thru 10)

NOTE: The above assumes PIO. DSKl.FILENAME, and RS232 are also vali
To cancel the print command press FCTN 4.

ers)

s)

d!

888888

8888888888 88 888X888: 1888SS888S88S888SrS8KSX8888S88S8S88SS8S88 88 88 88 8 8 888 8888S:

Delete file.DF (enter) DSKl.FILENAME

Setting Margins and Tabs: (16 tabs maximum)
L - Left margin R - Right margin I - Indent T - Tab

Use ENTER to execute or COMMAND/ESCAPE to terminate command.

Recover Edit: RE (enter) Y or N

Line move: M (enter) 2 6 10 (moves lines 2 thru 6 after line 10)
M (enter) 2 2 10 (moves line 2 after line 10)

888S88S88S8S888S8888883B88888S88S8888888B8888S888SSS88888S888S88S:888S8:S88SS888

Copy: same as move except use C instead of M.
88888888888888888888888888888186888888188181888888888888818888288888888888888888

Find String: FS (enter) /string/ (will look for string in entire file)
FS (enter) t 13 /string/ (will look for string in lines 2 thru 15)

SSS8£888:8S888SSr:88SKS8888SS8SS8S8S888S8888888888S8888S888S8SSSCS8SS:8S8SS:8:s:

Delete: D (enter) 10 15 (deletes lines 10 thru 15 in memory)
::S888SrS8S8S8888888888888&888r.8888SS81 ESSS8SS82

	content001
	content002
	content003

