~

v

&
JITTTTTT ITITIIII GGG6 uu uu ITIIIIII DDDDD EEEEEE
8

> TT I1 GG G uu uu II DD DD EE
TT II GG uu uu 11 DD DD EE
TT II GG uu uu I DD D EE
TT II G uu uu Il DD D EEEE
TT II GG GGGG uu uu II DD D EE
TT II GG GG uu uu I DD DD EE
T7 11 GG GG uu uu II DD DD EE
TT O ITIIIIII O GGGGE uuuu ITIIIIII DDDDD EEEEEE

COFYRIGHT 1985 JOE GILLO.

It is my intent that this guide be used AS a guide and is not intended to be
used as & substitute for the original T.I. documentation that was supplied with
home computer. This guide is intended for the new user on the T.I. 29/4(A) but
information contined within may be useful to any user, new or experienced.

This guide will step thru 15 chapters, each dedicated to a particular part
of the computer or to a particular peripheral.

The best advice I can give to an individual looking for help, or looking to
get the most out of the computer is to JOIN A USERS GROUP. Many areas have a
users group, and some have several. Check the area nearest you for a BES and
call if you have a modem.

THE CHAPTERS ARE :

1. Putting the system together for the first time.
2. Extended Basic, Why so popular ?

3. Modules, GROM, ROM, and RAM, what difference ?
4, RS232 Interface.

S. Disk Drives and Controllers.

6. Disk software (DISKO, etc.)

7. Loaders, XBASIC, E/A, MM

8. Languages. (including P-CODE)

9. Extended BASIC PEEkKs and POKE's

1. TI Bulletin Board numbers

11. 99/4A Fin outs

12. ASCII characters and color tables.

2. 3d party retailers and 99 Magazines.

14. FREEWARE available

15. List of T.I. WRITER and Multiplan commands.

I1f anyone has a better idea or more information that could be added to what
is offered here, please let me know. As I give a lot of attention to the
information, What is presented here is, to the best of my knowledge, complete
and accurate, any errors found can be relayed back to me, and I will check and
correct them. This is the second edition, and if it seems a little too short
in context, the original first edition was &6 pages, I had to condense certain
sections and the end result is this guide. Use it and let me know what you
think. If you like the guide, you may obtain a copy of the ’original’ version
for a ¢ 4.99 donation for printing. The original gude has mini-tutorials for
Assembly and Pascal. See the address on the back of this guide.

Thank You.

~
14

CHAPTER ONE - PUTTING IT TOGETHER?: ! 1 1

S

Ok, so you have just aquired a T.l. 99/4(A) home computer and all the
accessories to go with it, or you have just picked up that P-Box you have
always wanted. With more people selling off the T.l. for some other branc of
computer, more and more people are just now purchasing either full or sem:-full
99 systems. Unfortionatly, the previous owner cannot sell the information that
they have gaind through use, and sometimes they even have lost or thrown away
parts of the original documentation. This leaves it up to the new user to find
@& way to "make the thing work’ and that tends to frustrate a lot of the new
owners. The T.I. is not the hardest thing to use, but without prior knowledge
and the correct instruction manuals, the job is about ten times harder.

That is where I hope that this manual will help you. '

Now, lets put that computer together and get going !

After unpacking all of the parts of the system, hook up the computer as shown
in figure #1. If you have gotten a P-Box (Peripheral Expansion System box)
then the large connector on the interface card goes to the connector on the
RIGHT side of the console, see figure 1. At this point we will not go into the
RS232 hookup for a printer or the disk drive connections, If you have purchased
a P-Box with a disk-drive in it, it is more likely to be hooked up already, if
not, then see figure 2 as to how to hook it up, then come back here.

Now that all the components are hooked up together, it is time to plug thenm
all in and see if the system works. NOTE : late in 1982 T.I. had a safety
modification fo™the console in-line power supply. Two types of
supplies are available, one is a self-contained unit that plugs into the wall
and then a cord runs to the computer. This is not the one that needs the
safety mod. The one that needs the safety mod has the transformer IN-LINE, in
the center of the cord from the wall plug to the computer. If you have one of
these, check the box that the console came in, on the transformer itself, or on
the console. If you see a green ’'saf*ety checked’ sticker, then you are C.K, if
not, look at the wall plug-end of the cord, and see if it has & ’bulge’ on it.
The safety mod is installed if you have what looks like about a two inch long
fat plug. If you have a regular plug, you can obtain a safety adapter free
from T.l1. The address is in the back of this guide. The safety mod will not
affect the operation of the computer and you do not nmeed it, but T.I. was
concerned about the power supply in the console shorting out. I have never
seen one do anything but just go ’off’ and quit working.

T.I. tells us to turn on the monitor (or TV) first, then the P-box and finaly
the console. This is a good idea, but I have known several people including
myself that use a power strip with a "master’ switch to turn on the entire
system at once, and it works just as well, just leave all the power on anc shut
off at the main switch on the power strip.

If the computer is working right, the screen will display the Tl logo and
two stripes of color bars one each above and below the logo. A beep will be
heard from the screen. If this does not occur, then please shut all the pcwer
down and check all the connections. If the computer still does not work, then
proceed to the TROUBLESHOOTING chapter of this guide. (not in the short vers)

If all works, then you are ready to compute. I will not give a description
of the BASIC language here, many books have been written on the subject, and
the TI BASIC is close to any BASIC language there is. As with all computers,
some of the conventions of languages are not used, some have a unique language

s
usage (such as the CALL CLEAR) of commands, but all have manuals written that
can take you step-by-step to program POWER !

<
9",_

5 While I will not go over the BASIC language itself, I will go over some of
the more common usages that the Tl uses to load, edit and save programs.

Here is a list of the commands and what they do for you. The command is
listed on the left in the syntax
result of that command is on the right.

OLD DSK1.LOAD

OLD Csi

OLD Cs2

SAVE Cs1
SAVE DSK1.LOAD

CALL CLEAR
CALL LOAD(-22,0m

CALL LINK("START")
EDIT 1@

OFEN #1:"RS232.BA=48¢w. DA=8"

PRINT #1
CALL SOUND(1em,400,0)

(wording) that the computer expects, and thre

Loads & program called "LOAD" from disk
Drive #1. Command must be in capitals.

Loads a program from the cassette tape
pPlayer designated as #1. If you have a
single tape cable, this is all that you

use. OLD CS1 must be in capital letters.
Loads @ program from second cassette player,
cannot be used with some of the new grey
case consoles. Note that cassettes do not
require a program name to load.

Save a progr#*am to cassette recorder. (no
program name needed)

Save a program to disk in drive #1 with a
program name of "LOAD". Command must be in
capital letters only

Clears the screen.

This command can only be used if the Editor
assembler, Mini Memory or Extended BASIC
modules are in the game port and the memory
expansion attached. This loads a @’ in the
memory spot '-22'. For more info, see the
chapter on the memory expansion.

runs an assembly program that has been loaded
with a CALL LOAD’ or a subroutine. See above
Displays line 120 with the cursor ready to
EDIT the line.

This is the 99’s way of handling a file, in
this case, a device attached to the RS232
port #1 at 48B@ baud using 8 data bits. See
the section on the RS232 for more information
Writes to & file opened as #1. See above.
Froduces a 10¢ millisecond 4¢¢ hz sound at
the loudest possible volume. 1@@=length of
the tone, 4@0@=frequency and @=volume. The
volume is variable from @ (high) to 16 (off).

CHAPTER 2 - EXTENDETD BARAS1IC

5.

In this part, I would like to discuss the advantages of Extended BASIC ove-
the console BASIC, and at the same time provide a small insight as to the
reason that this software module is so popular, I will begin with the actuas:
module itself.

Extended BASIC is a module that plugs into the GROM (or game) port on tre
computer. It is a language like BASIC but much more expanded in that Extence=z
BASIC has 43 more commands over the regular console BASIC that comes with the
computer. With it you can create moving images, called SPRITES, magnify the
image, and even tell when two or more of the sprites are "touching.” The
sprite feature is probably the single biggest reason for getting the Extendesz
BASIC module, but with the module comes another surprising change from the
console, and that is SPEED ! The EX. BASIC module is about three times faste-
displaying data to the screen, and LISTs much faster than console BASIC.

Are sprites and speed the only advantage ? No, you also get error control,
the feature of being able to choose what action is taken if an error occurs
durring program execution. VYou also get ’'chaining,’ or having multiple
statements on a single line of up to 140@ characters per line, and having the
ability to place comments at the end of the line. You can load and run anot-er
Ex. BASIC program from within your program, and even have subroutines writte-
on disk that can be called from the main program.

Direct screen control is one feature TI should have put in the console, bu:
Ex. BASIC has it. This is the ability to input or display data from any place
on the screen, not just to input from the bottom line scrolling up. You can
even check how Qgch memory you have left !

In Ex. BASIC, if the P-Box is attached and the disk drives hooked up, when
the module is inserted into the GROM port and Ex. BASIC is selected, the module
will automaticaly look at disk drive #1 and if it finds a program stored uncer
the name *LOAD’ then it will load and run this program immediately. It is a
nice feature if you have a multiprogram series to run, and want & main title <o
select from, and then you can always return to the main title (LOAD program)
when the program execution is complete. If you do not have the P-Box or dis:
drive, or do not have a disk in drive #1 that has a program name LOAD on it,
the computer will respond with the >READY prompt, and you are ready to enter s
command.

When programing in Ex. BASIC, you have 24K of space to program if the memc-vy
expansion is attached, and 13k if not. If you do have the memory expansion,
you also have BK of stack, or workspace, to use. this space is used by the DI~
statement to allow you greater usage of program space.

Lets go over some of the T.I. Extended BASIC conventions, again with the
commands on the left and the action of the command to the right. Please note
that most of the commands that deal with files need to be in capital letters
ONLY or an error message will result, even if the spelling is correct.

CALL SAY("HELLO"™) - 'Speaks’ the word hello if the speech synthesiser 1s
attached to the computer. Gives and error if the
speech unit is not atached.

CALL SPRITE(#1,A,X,Y,®,0)- Produces a sprite labled #1 (of 26 available) ang
uses the charcater code A, places the sprite at
screen location X,Y and has @ movement in the X ang
Y axis. X is row. Y is Column.

CALL COINC(ALL,C) - Checks for the coincidence of all sprites. If any
two sprites are touching or overlaping, then the
value placed in variable C will be @ -1. You can
also specify any two individual sprites, or any
location on the screen to check for. A tolerance

ran he ATvuer ¢4 alTmn reamre, P ;1 e ? S dbm e 1 d -

¢ .,

TALL CHARSET - This command resets the standard Tl character set.
This is useful 1{f{ you use the rurn feature & lot, anc
do & lot of re-defining the characters.

RUN "DSkK1.LOAD" - This command can be given in a program or in the
immediate mode, and 1s& used to load and run a
praogram from disk. Note ! if you have defined a new
character in a previous program and then do a RUN
for a new program, the old characters are still set
and will show up in the new program being run. To
avoid this, do @ CALL CHARSET.

CALL DELSFRITE(#1) - This is to delete a sprite from a program. It also
clears the sprite from the screen. After using this
command, you can re-define that sprite number. The
cammand can also be used to delete ALL sprites.

CALL PEEK (=22, XX) = This command allows you to look at any memory

location, in this case location -22, and places the

value in the variable XX. The value may then be

read by the command Print XX. This is very useful
if you are planning on doing a few Loads, and want
to see what was there first, before you do the call

load command. .

Loads a 9900 assembly program from disk drive #1.

‘Note ¢ You must do & CALL INIT sometime prior to the

CALL LOAD command or a syntax error will result,

even if the spelling is correct. VYou also need to

b have the Memory expansion connected to use this
command. Only one CALL INIT need to be used prior
to any CALL LOAD statements.

CALL INIT - Must be used before the CALL LOAD command. This
command tells the computer to get ready to accept an
assembly language program from Ex, BASIC. Also
clears any assy. program from memory.

ON ERROR STOF - Instructs the computer to stop upon an error in the
program. A line number could be specified instead
of STOP if you wish to bring control to another part
of the program.

SIZE - FReturns the number of bytes left for program.

' - The exclamatiorn mark (!) can be used instead of the
REM statement to place a REMark at the end of a line
or on a seperate line. You may place the remark at
the end of a multiple statement line, such as :

1o GOSUR 1@35S ! ! Branch and loop to control.
The REM or ! statement 1 not executed, and can be
any comments that you desire.

CALL LOAD("DSK1.ARA)

The CALL LOAD subprogram can be used to load an assembly language program
directly into memory, such as the Nibbler disk copy program. This is & long
way to load a program, but it works. The CALL LOAD can also be used to load
values directly into the computer. In other computers this action is called
’poking’ a value., The Tl is a 16 bit computer, and any value from @ to 255 can
be loaded to any location. Be advised that indescriminate Poking of values
into unknown locations can cause the computer to ’'lock up’ or to act very
strange. Use the list of Peeks and Fokes at the back of this guide to be sure
of what you are doing. While using this table, remember that most of the
locations are accurate, but some, more notably the speech locations, are not
the same from the 9974 to the 99/4A. A little bit of experimentation will
yield the best results. Just remember that at any time, the computer could
lochk up and you will lose any data that you have in the computer.

CHAPTER 3 - MODULES, BGROM, ROM, RAM

“Thts is a short chapter. many paeocple have questions about the difference
between these three terms, and why some of the grey (blond) consoles cannot
run the ATARISOFT modul es.

ROM - Stands for Read Only Memory. A ROM is a semiconductor chip that has
been programmed at the factory and cannot be altered. A ROM can be in many
different versions such as PROM, a ROM that is ’blank’ when purchased, and can
be programmend using a special machine, or an EPROM, which is about the same as
& PROM but can be erased after being programmed and then re-programmed again.

GROM - Stands for Graphics Read Only Memory. A GROM is a specialy designed
ROM that T.I. uses in most of the modules produced by T.I. The main difference
is that the BROM has an internal PC regester, or counter, that the 99/4A
recognizes. The reason some of the grey consoles do not work with ROM’'s is
that T.I. checks for the internal PC to see if it is a GROM, and if not, the PC
interrupt will not increment, "locking up’ the computer. The consoles that do
not work display a "COPYRIGHT 1983 Texas Instruments’ title ecreen.

Those who have a 1983 console can get the ROM modules to work by getting
another module-type device that plugs into the computer game port and then the
module plugs into it. It is called a 'GROM BUSTER’ and can be purchsed from
several of the retail outlets listed in the back of this guide. Prices are
usualy in the #20-%25 range.

RAM - Random Access Memory. This is the memory the computer uses to store
the program and™rogram information. RAM is not permanent, and can be written
to and read from. The T.I. has two types of RAM, it has console RAM and also
VDP (Video Display Proccessor) RAM. Console RAM is the BASIC storage area
for programs and data, and VDP RAM is where the computer stores certain vital
conters, data and screen information. VYou need not be concerned with the
difference unless you are planning to program in assembly language, and that
discussion is far beyond the scope of this text.

CHAPTER 4 - RS232 INTERFACE FPERIPHERAL

‘This 18 & rather long chapter, and will deal with the role of the RS232
interface and some tips on using it along with differences in the 'standard’
RS232 and the T.I. RS232.

The RS5232 interface, either in the stand-alone or the F-Box card form, has
the job of ’interfacing’' the computer with the outside world. The RS2I2 allows
you to connect the computer to a MODEM, printer, another computer, or any othe-
RS232 equipped device.

The T.l. interface comes with TWO serial (RS232C) ports and one parallel
port. See the end of section for the pin numbers and names. Most printers on
the market are ready for parallel connection, having a "CENTRONICS’
type-connection. All this means is that the printer connector is using a
standard 36 pin connector, with (more or less) standard pin outs. The pin
connections vary with each manufacturer, but all are pretty much the same. The
parallel connection coming from the T.I. Peripheral is in the form of & 16 pin
connector, again see the section on pin ocuts for the pin number and name.

The RS232 (serial) interface ports are on the same connector, a DB 29
female connector. Most accessories that can be hooked up to the RS232 ports
require only three wires to operate, transmit data (out), receive data (in),
and ground. Other applications such as auto-dial, auto-answer modems may
require more connections. If you come up on one, you will have to refer to the
instructions of the accessory you will be using.

When setting M a printer to the computer, the easiest way is to run the
parallel set-up. Parallel is easy for two reasons, 1) Most printers are
parallel from the factory, serial is generaly an extra charge, and 2) When
programming, it is easier to type in "PIO" to open a port for parallel than to
type in "RS232.BA=480" as a typical serial port open statement. "A word of
caution for the "PIOD" users, if the printer prints garbage, or misses a
character now and then, check the position of the cable to the monitor, a
drill, etc. The parallel configuration is very suseptable to noise, and the
longer the cable, the more important is is to run & shielded cable. Most
cases the parallel cable should not be longer than four feet. This keeps noise
and errors due to line loss (signal delay) down.

TIP - To print only a few lines to a parallel printer, use the command :
LIST "PIO:120-15@" This will list the lines 12@ thru 159 to the printer.
Modems and terminal emulation terminology @

Modems are devices that allow you to communicate with other computers over
the telephone lines. Modem stands for MODulate, DEModulate, which is what a
MODEM does, converts the computers serial RS232 output into an audible sound
that the phone lines can handle. A modem has two modes, Originate and angwer.
If you are calling, you are Originating a call. If you are Receiving a call,
yo are answering. Each mode uses a different tone, and the modem ’'knows’® the
difference, and will not work if you have the wrong mode. See the section on
dialing up the FLUG BBS for more info on Modem use.

%TANDARD TERMS

HALF DUPLEX

FULL DUFLEX
STOP BIT

PARITY

BAUD RATE

STANDARD RS232 SIGNALS AND T.I.

FIN #

WHAT THEY MEAN.

In the half duplex mode,

"TALK,’ or, transmit data,
computer wants to send data,

finish first.

both communicating terminals can
but only one at a time. If ore

it must wait for the other t=

In full duplex, both computers are permitted to ’talk’ at

the same time. It is not that simple, but the idea is the

same.

- The number of BIT’'s length to use to tell the other systen
that your transmission is complete. 1 BIT= 1 BIT length
stop BIT, 2= 2 BIT length stop bit.

- A method of sending an extra ’"odd’ bit. If you select
eight bit data, 9 BITs are sent. The other system knows
that a total of nine BITs are coming, and if it does not get
all nine, then a "parity error’ occurs and the sending
system is requested to repeat the transmission.
Parity can be checked with either an odd or even BIT, or not

be checked at all (0ODD,

- Actualy, BlITs-per-second.

sent or received.

RS232 name

Protective ground
Transmitted data

Received data

Request to send

Clear to send

DSR (Data set ready)
Signal ground (return)
Received line signal detect
DST (reserved)

DST

Not used

Port 2 line signal detect
Secondary Clear to send
Secondary transmitted data
DCE ¢ TRANS TIMING)
Secondary received data
DCE (REC TIMIMG)

Not used

Secondary request to send
Data terminal ready

Signal quality

Ring detector

DSR Select (DTE/DCE)

TSET

Not used

EVEN, NONE)
The speed at which the data is

NAMES FOR THEM,

T.I. name

Protective ground.
Transmitted data (RS23I2 port 1)
Recieved data (port 1)

Not used

Clear to send (handshake)
Pull up to +12volts DC.
Signal ground (return)

Data carrier detect (port 1)
Not used

Not used

Not used

Data carrier detect (port 2)
Clear to send (port 2)

Port 2 Transmitted data

Not used

Fort 2 recieved data

Not used

Not used

Data terminal ready (port 2
Data terminal ready (port 1)
Not used

Not used

Not used

Not used

Not used.

CHAPTER S - DISK DRIVES AND CONTROLLERS

JThis chapter deals with the types of disk drives and disk drive controllers
on the market today.

The original disk drive that T.I. sold for the 99/4AQ was a Shugart 44@L, a
S 1/4 inch single sided double density disk drive. The drive could only be
operated in the single density mode due to the controller card. Later on, T.I.
also sold MPI 51 disk drives, also single sided double density drives.

The original controller peripheral or card, was able to use double sided
drives, but still in the single density mode. To make the card read and write
in double density was not done because of the cost of the controller chips that
would have to be used to do double density. Two controller cards are available
on the market to make use of double density drives, they are made by MYARC and
COR-COMP. Although both are double density-double sided controllers, they
cannot read each others format. The MYARC card is coming out with an up-grade
to allow it to read the COR-COMP format.

Disk drives for the computer are 4¢ track 48 TPI (tracks per inch) 5 1/4"
diskette drives. For a disk drive to be QUAD density, it must be an 8¢ track
drive (96 TPI), or in other words, a DOUBLE-DOUELE density drive. These high
density drives are available at a reasonable cost, but beware, if you purchase
them, you cannot use them on the origianal T.I. controller card, but can use
them on a COR-COMFP or a MYARC controller. You must tell the card that you are
using an BW track drive, so that it can set up the stepping to the higher rate
and steps. If you plan on getting the newer Double Sided, Double Density
(DSDD) disk drives and have the original T.I. controller, you can still use the
double sided feature, just not the double density. I like the double sided
disk format because most of the folks I know have it, and it makes it a lot
easier to keep track of. A double sided disk will work in a single side drive
if the programs are on the first side (which, incedentaly, when you look at the
'front’ side of the disk with the lable, the program side is the BACK of the
disk.) of the disk, and are not "fractured,’ or spread onto the second side.

(More on fractured files in the longer version of this guide)

3 1/2" Drives :

The 3 1/2" drives CAN be used with a a few modifications, but savings are
lost in the cost of the mods and of the diskette itself. The 3 1/2" drives are
132 track drives and are 4X density, so the formated disk has (get this) -

9,520 sectors. It takes about 52 minutes to format.

The modifications necessary to run these drives are beyond the scope of this

guide, but they can be performed only on the MYARC card.

WINCHESTER (HARD) DRIVES :

The hard drives (S5-4% MEGABYTES) are a special drive with a sealed chamber
that the disk spins in. The disk is not removable. To run a hard drive
requires two cards, a personality card and a controller card. The personality
card simply inerfaces to the computer to tell it that the hard drives are in
place and introduces the software instructions into the operating system to
allow the computer to accept command intended for the hard drive.

The hard drive controller is NOT the same as the disk drive controllers
mentioned before. The hard drive controller is a seperate entity that will
allow up to four hard disk drives to be used. Both cards are needed to run a
hard drive system. The personality card is not hard to make or to get, you can
get one from MYARC or other makers. The controller is expensive, and will run
about $32@.0¢ or more. A COMFPLETE hard drive system for the computer will run
about ¢ 7¢0.90¢ if you have to buy all of the parts new. A good list of
suppliers can be found in the Computer Shopper magazine or look around at some
of the surplus stores, Lolir Electronics is a good place to start.

CHAPTER 6 - DI SK PROGBGRAMS A ND FORMATSES
*xx WARNING ##x

*xx WARNING %**#

LS 2T T2 L T THE INFORMATION CONTAINED HERE HAS THE FOTENTIAL TO DESTROY
ANY DATA ON THE DISK BEING USED. IF YOU PLAN TO USE ANY OF THE PROGRAMS
DESCRIBED HERE, MAKE SURE THAT IT IS DONE ON A BACK-UP DISK ONLY !! DO NOT

ATTEMFT TO CHANGE DATA ON ANY DISK THAT YOU CANNOT AFFORD TO RE-INITIALIZE
LATER.

This chapter will be a lengthy segment on how the 99 uses the disk
drives to store information and how disk sector editor programs such as the
public domain DISKO, and copyright programs such as DISK FIXER, DISK+AID and
others may be used to recover lost data on a disk.

The first part of our discussion will be on the diskette media itself. The
T.I. uses standard § 1/4 inch 48 TPI disks. The disks are formatted into 40
tracks for a regular disk drive and 8@ tracks for a quad drive. The tracks are
seperated into ? sectors each for a total of 364 for normal SSSD and 144y
sectors for SSG@D. Each sector holds about 256 characters. A character is the
same as a letter or number on the screen, so looking at a printout of a sector
dump, you can count directly across or down. While using the disk sector
editor programs DISKO and DISK FIXER (what I use in the examples later,) you
have a row (vertical count) and column (horizontal count) of 19X28 Hex display
for DISKO and a 16X32 display for DISK FIXER in Hex

When the disk is formatted the report comes back to the user that you have
338 sectors available, not the 368 that I said earlier. The reason for the
'lost’ two sectors is that the computer automaticaly uses up the first two
sectors on the disk for the disk directory and the disk bit-map. The directory
is at sector @ and the bit-map is at sector 1. With computers, most of the
internals start at zero and increment up, hence the sector '@’ is the first.

The disk directory holds the information such as the disk name, number of
sectors available and the number of sectors used. If you have ever encountered
an error of "DISK NOT INITIALIZED® when trying to read a disk catalog, this is
the sector that does it. If sector @ is damaged in anyway, the disk may be
imposible to catalog, but all is not lost. later I will go over the way to
re-buld a disk with a blown directory and bit-map. (original version only)

The bit-map sector (1) is the ’roadmap’ to the data on the disk. As programs
are written to the disk, a record must be kept as to the spot (sector) that
the program is placed, and the alphabetical order that the program falls into.
This is the job of the bit-map. The bit-map 'tells’ the disk controller what
sector to send the read/write head to find the program header. The bit-map
sector also keeps track of the order the programs are in. If a new program is
written to the disk, the bit-map is updated to reflect the order of loading. 1
will give an example of this later.

The sectors 2-22 are reserved for the program header. Just as the bit-map
tells the disk read/write head where to find the program header, the program
header tells the read/write head what sector the actual program is located. In
addition to the program location, the type of program, the program name, if
the program is write-protected (cannot be accidentaly written over), and the
length of the program are recorded on this sector. The program length is
in sectors, and one is added to this number durring the disk catalog to show
the space used by the program header itself. All that is read durring a disk
catalog is the first few sectors, no reading to any of the programs or other
data is done at that time.

- . —_ S

‘The following is a screen dump of the data on the TI-WRITER disk that I am
using to write this. I will give the information that the two most popular
programs used show on the screen. The DISK FIXER version I am using is the
mcdule version marketed by Navarone industries. The DISKDO program is a T.I.
public domain program that has been around for a long time. DISKO has the
feature of searching for a specific program name, and if found will tell you
all the information about that file. Although the information is not changed
from one program to the next, you will see the different ways that the data is
displayed to the user to get an clearer idea of how to count the bytes. In
each case, I will point out what most of the numbers mean in the sector, and
later will explain how to manipulate those numbers to gain the results that you
need to re-build a ’blown’ directory. (NOTE : a directory can be blown by not
closing a file you were writing to, as in BASIC or when writing to the disk
while using a Terminal emulator, and forgetting to ’log off’ the disk. This
will usualy result in the disk directory showing a *DIS/VAR @' file instead of a
'DIS/VAR 8¥" (TI WRITER file) like it should.) :

The disk sector @ (Disk directory) screen dump using DISKO :

54492DS752495445522001 680944
SI4B20260 101 QUAOGOBBBBHBDBDY
PILBHOPOIVBBOBBBOBPLBBVBBBODY
PEDEOOBROLEFFFFFEDE3EFCFFFF
PRBOBE7FFFO0BRooF 7FF 7000000
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFF@FFFFFFOFFFFFF7FF O
FFFFFFFFFFFFFFFFFFFFFFFFFEFF

' FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFF

The disk sector @ screen dump using DISK FIXER by navarone :

NAVARONE IND. %% DISK FIXER V2@. #%* SECTOR DUMF SECTOR ADDRESS @ung
ARDDR = @1 23 45 67 89 AB CD EF INTERPRETED

2ol = 5449 2DS7 5249 S445 5220 ¢168 @944 SI4E TI-WRITER *h#*DSk
PRle = 2028 Q101 0000 O0UE QUOE GO0 @O0E DOOY 969696 96 96 96 9 96 36 2 3% 9 96 %
QP20 = QOOE QOG0 GOGD OOOC GOEHD DGO OOOE GDBE KK W RN N RN
PO3Y = 0000 OU0D OO0 OOPZ FFBD B3WH FCFF FFFF %% 9555 55 % % % %
PB4 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF %% %% %% % X %%
PASW = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF #3555 8 606 5 % % % %
PO&D = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF %% %55 65 %% % % % %
PB70 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF %559 % 50 3 3 5 9 6 3 %
PP8EA = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FEFF #3395 %% 5% % X %%
P98 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 99955 5 3 % % % % % % % %
QWA = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF X% %% 3% % %% %% %% %
POBE = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF %5555 5 5 5 3 % % % % % %
WBCW = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF %% %% %% %% % % % %%
PUDW = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF SEA%XEEXXEXNH NN X
BUEW = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF SE## e %% axex
O0F0 = FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF S % % %533 %% N3%¥ 485

The disk sector 1 (EIT MAF) screen dump using DISHO (NOTE : ALL THE ’ZERO's
IN BYTES >004¢ AND BELOW ARE NOT SHOWN, OTHERWISE THE NEXT FOUR SCREEN DUMF'S
ARE IDENTICAL TO THE SCREEN WHILE BEING VIEWED. - THE ZEROS ARE EXTRANEOUS AND
ARE BEING DELETED FROM THIS TEXT ONLY FOR SFACE SAVINGS.)

RIUSAOA20UB4ADBSHDBOBOD 7 BODA
GEBBRAOAF D1 1001 AEAABAGIBADE
2028429 20 2029 23 20 70 28 2023 20 2020 203 9 S D0 D YD DD B1D
(nludalaadrdalaltdaladriaalatelaliaionlalndulafulul)
20420 29 20 20 29 20232 24 20 20 G20 2 20 20 420 28 2820 2020 0 D D 425 V28

The disk sector 1 using the DISK FIXER :

NAVARONE IND. *x* DISK FIXER V2.¢ %% SECTOR DUMF SECTOR ADDRESS @@@1

ADDk = ¥ 1 23 45 67 B89 AEB CD EF INTERFRETED

PoD = POOT POOT COO4 PODS BODC BOH7 DOSA DOPE KXXEXKEKEXEEXXXKE
@FLE = QOOF GU11 GE10 QO0S GEBE GOUY OOPE BO0E HRREEREEEEKKEEXR
PO = POOD BOOD POBH BOOE GOOD BODE QOO0 BUBE KRR KEKEKKKKEK
BESH = POOE QOON DODD QOOH GOOD GOBO DOOH BODE FERRRERERKKEKEEK
PBAD = POBE GUOD BURY BOBY GIOE DODD DOBE BUDE R KEEK KR

The disk sector 2 (First program on disk) screen dump using DISKO :

44454DAF46494C4T2020000080D3
DB 2 AE S0 22 (2373 0428 428 29 28 20 23 2020 28 20 03 2 28 8 20
22100033030 BBOBBOBOBLIDBDBBY

BHBBBBBBBBOBBOBBBBDBDBEBABDBY
The disk sector 2 screen dump using DISK FIXER :

NAVARONE IND. *%%* DISE FIXER V2.8 %% SECTOR DUMF SECTOR ADDRESS @@@2
ADDR w1 23 45 67 89 AB CD EF INTERPRETED

@oEd = 44435 4DAF 4649 4CAS 2020 @G@d@ BOMZ B@G2 DEMOFILE **%xxx*
vele = AESY 200 o003 0000 GOV OD0E 2210 GUPE (PREEEEREERE"RRR
PE2@ = POga gOad OO0d G000 OO0 GO0 BOBE GOBE RREREEREEXEEEXREER
VASY = @GOGV GOOE OO0 GBOY GUO0 CUDEH PO00 BOBE EEREREEERREEREERE
QE4E = @gagd gOod 0000 GE00 GOO0 GODE D000 GODE EEXRXEEREREREEEEEK

Now that you have seen what the disk sectors look like and the different
types of data storage, lets use that information to change the disk a bit.
First get a good disk and copy it to anot*her disk. DO NOT USE THE ORIGINAL TO
DO THIS. After you have made the copy, catalog the disk and keep the catalog
for the next part. Using the disk sector program that you have, place the disk
in drive #1 and look at sector 1, the bit map. See the information that is
stored on the disk? Now move the numbers around a little, like taking the
first two and switching them. What you have just done is tell the disk
controller that the alphabetical order has changed. Save the new
configuration, -and then use the disk manager or other program to catalog the
disk again. What has happened ? If it worked ok, the first two file names
should now be reversed, if not, look at the catalog list and see what HAS
changed. If nothing has changed, you may not have saved the changes made while

To load the DISKO program, plug in the Editor Assembler module and select =
for the Editor Assembler. At the E/A menu select option #X, LOAD AND RUN, the-
enter in the program name that it is saved under. The program as released by
T.I. was DISKO/1 and DISKO/2. 1If you have the Vi.5 program, all you need is to
load the DISKO/1 file at the prompt. 1If you are not sure of the program
version, try loading just the first program and then press "ENTER." At the
next prompt, "PROGRAM NAME," enter the name "START" in capital letters. The
program should start running, if not, shut the computer off and then on again
an start loading again, but this time enter BOTH file names.

After the program is loaded and running, it places a menu on the screen with
sveral options. Only option #1 and #2 are available. To run the disk sector
editor, press 1 and then follow the prompts. Enter the drive number, then the
sector number, press enter and the program should access the disk and display
th data on the screen. To toggle from the HEX mode to the ASCII mode, press
"FUNCTION 2."

NOTE ¢ The DISKO program will accept sector inputs for double sided or
double density disks, but will not page "forward" past sector >168 (36, it
will go "backward" only.

FUNCTION KEY --- ACTION CAUSED

1 ——— Toggles (turns on) Hex display mode. All data is
displayed in Hex format.

2 -—— Toggles the ASCII display mode. Screen displays normal
characters.)

3 === Return to Editor Assembler screen.

4 --— Read one sector backwards from present sector.

S —=- Return to Sector editor title screen. (change disk or
sector number)

6 -——= Read forward one sector.

7 === Not used.

8 -—=— Write to displayed sector. A confirmation will be asked

prior to the write operation, and you must press 'Y’ to
write to the disk.
9 === Return to DISKO main title screen.

I hope that this helps. For a further explanation I would suggest that you
get the HIDDEN POWERS OF DISK FIXER from Navarone. The book explains a lot of
things that I can not get into here due to space limitaions.

CHAPTER 7 - LOADERS - XBASIZEC, E/A, MINI MEM,

This section deals with the difference between the ’big three’ modules, the
Editor Assembler, Extended BASIC, and the Mini Memory module. When we say
loader, I mean the way that the module handles the loading of an assembly
language file into memory. There are saome differences, and the easiest way tc
understand them is to read the Editor Assembler book. If you do not have the
E/A manual, then the following is a brief description of the loaders.

Please note that the number presented are in hexadecimal (base 16) and are
represented by the > symbol. >2000 means "Hex location 2000," and that all the
loaders are what are called ’tagged object code’ loaders. Object code is the

program produced in DISPLAY FIXED 8 format after being written and assembled
from the SOURCE code.

The loader is called when the option #3, LOAD AND RUN is selected from the
E/A main menu, if a CALL INIT is done in BASIC with the E/A in place, or the
first time a CALL LOAD is invoked from BASIC. Please note that the CALL
subroutines in BASIC will only work if the E/A module is in place, and the
memory expansion turned on. The reason the memory expansion must be on is that
the CALL INIT and CALL LOAD loads the E/A loader from the module to the lower
memory block (>200¢) of the expansion.

There are basicaly two types of code that can be written for the 99, they are
absolute and relocatable. The differences are not important here, but for
simplicity, absolute code is code that is written to allow it to load into
and/or run in & specific place in memory, and relocatable code is an assembly
program (code) that can be manipulated by the memory expansion to ’load’
anywhere the expansion has room for it. This is an over-simplified explanation
but it will do for now. If you load an absolute code program, then load a
relocatable program, it is possible for the two to overwrite each other.

The E/A module uses the area >Af@¥ to >FFD7 to attempt to load. Address
A is the first address in the memory expansion. If the area is used, the
computer will look to >2024 for the first free address to start the load.

These numbers do not mean much to a non—assembly programmer, but they are the
locations used.

The REF/DEF table is located in low memory »>3IFFF to >3@0@@. The REF/DEF table
holds the program name and the memory location of the first instruction of the
program. This is the location that the computer goes to when a CALL LINK is
entred from BASIC or the program name is entered from the E/A option # 3.

If the operator tries to load a program twice or another program with the
same name in the REF/DEF table, then the E/A loader will give an error of a
'DUPLICATE DEFINITION' and loading will stop. The Extended BASIC loader does
not give this error when a duplicate is found, it just loads the new program
OVER the first, leaving the second program.

The Extended BASIC loader is in the utility section of the module at location
22000 also. The main difference is the Speed of loading, with the Editor
Assembler being much faster, and the type of object code that the loaders can
load. The E/A loader will load either Compressed object or uncompressed object
code, while the Ex BASIC will only load the uncompressed code. Compressed
object code is the code that is produced when the program is assembled with the
'C’ option on the assembler. The EX. BASIC module also requires a CALL INIT
command to clear memory prior to the first CALL LOAD command to load a program

from disk (or & value into memory), and BASIC with the E/A module does not
require a CALL INIT first.

The MINI MEMORY module also has a linking loader that loads at >200¢. The
main difference between the MM module and the E/A is the use of the memory
space, and the fact that the MM module dose not have to have the memory
expansion to operate. The MM can be use to load assembly routines or programs
from cassette and from disk, and comes with a ’line by line’ assembler on
cassette. For those wanting to learn 990¢ assembly, the MINI MEMORY module is
a good choice, along with the COMPUTE! book, Assembly language for the TI
?9/4A. A program written for the MM module and saved to disk will not
immediately run on the E/A module due to the memory usage differences, but with
a small amount of effort, and a good amount of knowledge, the program can be
made to run. Changing the REF/DEF table is one the things you need to know how
to do, and that is beyond this text, but be advised that it can be done. Do &
little experimentation (and frustration) and see what happens.

The MM REF/DEF table is at locations >»7FFF down to >7119. The location >7118
is the first free memory location for the module.

LOADING PROGRAMS INTO MEMORY @

Sometimes you get a disk in the mail or from a friend that does not come with
‘any instructions on loading it, and the program is not running, and you do not
know how to get it going. Here are some tips en loading.

The Program image loader and save routine (option #5 on the Editor Assembler)
only understands files in 8K "blocks’ which translate to a maximum of 33
sectors on a disk. If a file saved in program image format is longer than
this, the program is stored under the original name, and then another program
is created that is one ASCII character lower than the original, and so on.

What does this mean ? If you have a disk listing like the one below, The
Program name listed as 33 sectors, and the next LOWER program are in PROGRAM
IMAGE format, and can be loaded with the E/A option #5. In this example, I am
using the files for DM1@@@, a freeware utility most of the 99 comunity is
familiar with. Although the DM1@@3@ files have an Ex. BASIC loader program that
loads these files, they can be loaded with option #5 of the E/A also. Please
note that the PROGRAM IMAGE FORMAT is NOT a BASIC or Extended BASIC loadable
format, even though they have the PROGRAM listing on a disk catalog. The
easiest way to distinguish the two are the sectors, 33, on an assembly language
program image format. Trying to load a program into BASIC or Ex BASIC will not
harm the computer, but will result in an I1/0 error 5@.

TIF - If you have a file in program image and re-name the file UTIL1, and
each subsequent file UTIL2, UTIL3, etc, then you will be able to load the file
just by selection option #5 on the E/A menu, and then press ’enter’ at the
filename prompt, and the program will load. The bad point about this is that
the program cannot be identified by the program name (what does UTIL1 mean?) in
a catalog, and only one program can be stored with this name per disk.

If you have a DISPLAY VARIABLE 8¢ file, that is a file that is readable from
the TI WRITER module. You can load and edit the file using the ’LF’ command on
the TI WRITER, or you can print out the file using the E/A module and a
printer. Just select option #1, EDIT from the main menu, and then select #4,
print. Next enter the file name to print (DSK1.MGRDOC in the previous disk
catalog) and press enter. Next enter the printer ID, such as RS23I2.BA=48¢WY or
FI0 depending on your printer. The file should start to print.

The display variable 8¢ file is also the format used by the E/A module to

store source code for the assembly language programmer. Source code is the
un-assembled assembly language program.

A DISFLAY FIXED B2 file is the object code storage format used by the Editor
Assembler after assembly. It is loadable by the option I, LOAD AND RUN command
from the main menu. A program name may have to be entered to make the program
run. Most program names are a relation to the file name, or are a command like
START, RUN, GO, LOAD, Etc. The Fast-Term terminal emulator uses the program
name TERM to start the program, so you can see that most programmers use some
type of recognition with the type of program or program name. if you cannot
find the program name by experimenting, use DISKD or some other disk sector
editor to locate the LAST sector of the program and page forward one sector.
The program name should appear in the ASCII view of the sector in the lower
right hand corner, but it could be in the last sector also, see the "PROGRAM
NAME" screen dump of DISKO at the end of this chapter.

An INTERNAL VARIABLE 254 file is the way Ex. BASIC saves a file to disk that
is longer than 12K in length. The loading of this program may require you do a
CALL INIT and then a CALL FILES(1) command to load the program, depending on
the total lenght. Internal variable 254 files are generaly over 47 sectors in
length and can be loaded using the regular OLD DSK1.XXXXX command.

A DISPLAY VARIABLE 163 file is an Ex. BASIC MERGE format file, and can be
loaded with the "MERGE DSK1.XXXXX" command.

Please note that any type of file, with any number, including those listed
above, can be used by a program to store data or text, and may not be an
executable file, so a little experimentation mey be in order. Remember to try
any of your experiments with a backup disk to avoid "permanent" loss of data
due to an error. Reading from a disk will not cause any damage to the data,
but when writing a file or data to disk, if the disk sector program goes off
into never-never land, you can say good-by to the data on the disk.

CHAPTER B8 - LANGUAGES FOR THE T1l19¢9 ¢

This chapter deals with the available languages for the TI 99/4(A). This is
not a review or tutorial of the languages, just a presentation of the languages
that are available and & few pro’s and con's of each. As with all programming
languages, the preference is entirely up to the programmer/user that is doing
the work.,

A language is classified as either high or low level. A low level langage is
close to the actual binary (the lowest) language that the microprocessor
understands, and a high level language is one that requires an ’interpreter,’ a
program that 'converts’ that level into a form the microprocessor can
understand (binary). The *HIGHER®’ the level, the more interpretation is
required. BASIC is a HIGH level language, and actual goes through TWO
interpretations per instruction, one through the BASIC interpreter, and the
other in the GPL (graphics programming language) interpreter. This
dual-translaton is one reason the conscle BASIC is as slow as it is.

The languages so far available are :

BASIC (Comes with the console)

Extended BASIC (module)

Assembly (E/A module and disk) ’

FORTH (Three versions, one cassette, two on disk)
PASCAL (P~Box card or stand alon peripheral and disk)
PILOT 9% (disk)

LOGO (module)

LOGD II (module)

C (disk)

BASIC COMPILER (disk)

Most of the languages require either the E/A or Ex BASIC module to load, plus
the memory expansion and disk drive.

BASIC ¢ The language that comes with the computer console, is slow and has
quite a few limitations, such as no direct access to the internal program
counters, clock, or interrupts. The TI BASIC is very easy to learn and use,
and is a good language to learn on.

Extended BASIC : This module offers the advantage of greater speed and
versatility through more commands, and has the advantage of more disk I/0
available. The same limitations are in effect for the Ex BASIC module as
BASIC, with some execptions. Please see the section on Ex. BASIC. ,

Assembly language : Assembly is very fast and efficient while running, but
very difficult to learn and de-bug once written. The assembly programmer has
many variables to take care of and keep track of, but the speed of the language
is the greatest advantage. All of the functions of the 99¢@ microprocessor are
available to the assembly language programmer to control the program.

FORTH ! The three versions of FORTH are Pretty much the same, with some samll
differences in the syntax and disk storage. FORTH is a difficult language to
learn at first, but has the advantage of having more SIG’s (special interest
groups) than most other languages. This interest in FORTH is due to the speed
of the program execution, which is almost as fast as an assembly program. Many
good books have been written on FORTH and are available at most book stores.

&

‘e

.PASCAL : The T.I. version is UCSD PASCAL. The P-Code card allows you to run
the P-System without using up much memory space. The P-System language is easy
to learn, and is a compiled language so it runs very fast. The dissadvantage of

PASCAL is the extra cost of the P-Code card, and the time involved to compile a
large file.

PILOT 99 : A FREEWARE language that is easy to learn and very usefull,
Requires E/A to load and run, and comes with a 48 page manual. PILOT 99 is a

simple language to learn and use, and is good for a begining programmer. Speed
is slow, but not as slow as BASIC.

LOGO : Designed as a ’"childrens’ language, LOGO is a high level language
with many features, and can be used even by most adults who enjoy programming.
Tl LOGO requres a module and cassette player to save programs and procedures.

LOGO II : A higher-developed version of LOGO. Uses cassette or disk to load
the programs or procedures.

c : A new programming language, offered as FREEWARE. I do not know
much about the T.I. version, but c in general is a difficult language to learn
and use, but yields exellent results in speed and accuracy.

BASIC COMFILERS : While not a language, compilers are a part of the packages
offered for the 99. most are simple, use either the Mini Memory or E/A
modules, and have quite a few restrictions as to the use of variables, disk 1/0
and higher functions. In most cases, a complicated program can be written in a
lower—-level language easier than trying to write for a compiled version.

A0

oo - chagTer - Peeks & Polics -
10/2/85

 EEE R R T R EE S P E S E E E E R R FEE R EEEEEREEFEEERERERE
Ene followlng fs 8 1ist of Peeks and
that was downloaded from the
arce. It s In 80 column format.
«npiled by Scott Darling.

24K OF DATA STORAGE

If you need to work with quite a bit of date or would 11ke to change
grograms but save the data after you press CALL QUIT then you can set up the
4K of Hligh-Memory fn the PEB as single data file called EXPMEM2
this file just as you would a disk Flle with one exception - you must REC D
th OPEN statement with a CALL LOAD to the location -24574 as follows:

For INT/VAR files - 24
fFor DIS VAR files - 16
For INIT/FIX files - 8
For DIS/FIX files - O

Heres and example:

1f you want to open up the Expansion Memory for Display,Variable 80 files
this §is what you’d do:

{?8 EQLL iOAD(24574,

120 OPEN #1: "EXPHEHZ".RELATlVE.UPDATE.D!SPLAY.VARIABLE 80

Then continue on as you ndrmally would.

1f you want to store both data and assembly language routines at the ssame
time do this:

CALL INIT
LL LOADé -24574,-16)
EN #1:"EXPMEM2"™
LL "DSK]1.ASSMI" ;
(L Lo {oBsge e
M CONTINUE REST 6F PROGRAM
the above example the 24 K of hi?h memory was saved for use as a DATA
file S/VAR 80 format) then the assembly routines were loaded. The computer
will for the best place to put the routines and will adjust the fnter
accordingly. After the routines are loaded, a LINK statement starts €ﬁe first
routine and off we go.
l1f that’s not enough for you, Kou can also use the MINI-MEMORY for 4K more
of storage of assembly routfines! Now that’s 16K of program space, 12K of
assembly routine space!

X X X X XXX XX XXX X RSN R RS A RR NS R R SRS A A A R R A A X X R R R R R R R R R R R R R N RN R RN NN X X |

THESE ARE ALL OF THE PEEKS 8 POKES I HAVE COME ACROSS FOR USE WITH X-BASIC
AND 32K MEMORY EXPANSION (BE SURE TO DO A "CALL INIT").

P& VARIABLES ARE USED FOR _"PEEK"™ - THE NUMBERS ARE FOR "POKE" OR "LOAD™. IF
YOU KNOW OF ANY OTHERS PLEASE LET ME KNOW AND | WILL ADD THEM IN.

'YX XX XXX XEXEXEXEEESRNNX NN SN X RN NRNNERRE R R NAERERE S AR ERE R E X R R R R R RN N R R R RN RN R X X

100
110 C
120 O
130 C
140 C
150 CAL
160 REM
In th
DI

EEECEETESSEEES=ESE P SR R E e R E S S T S S S S S S N T S S T S e T E S S E T EE S S S S ERES
ADDRESS , VALUE(S) HMEANING IN EXTENDED BASIC
BERCEEERSEDRESTESE P R e E S T e P E E S R E I e e R E T e E R EE R E R ST

CALL VERSION(X IF X=100 100= NEWEST VERSION OF ? B CART

8192 P USE K, P <> 70 OR <>121 THEN DO A
8194 . Frest ERR e dobReEs 1noLon MEMORY A CALL IN
S8es2 | P B SPRECH ROt CATTACHED" PESe OR P=255 SP
lhie B Tos B RN A s e, e
31744 . 0 YO 15 CONTINUATION OF LAST SOUND (0=LOUD AND 15'55!?
231788 ¢ D600 2% BlANGoumETaE e ZREERATHUSS PhoHESREVSETONE 8 RATES
. 224 NORMAL OPERAT ION TIVATE)
. 226 DOUBLE SI1ZE SPRITES
. 227 MAGNIF1ED & DOUBLE SIZED SPRITES
. 232 MUCT | COLOR MODE {48 BY 64
-31794 , P TIHER FOR CALL SOUND_(COUNTS FRO 5 10 0)
~tAnAm e “) ACTIIDA TA TUC TITY DEEN (2 Y wAn)y

P IV O

e el DD e vALUL (D) vl iv0 BN LATLNULD DADIL
2Rz :::x&ctzl::::rzz x:l::gxxzzctnntzzgtz====:===z=:====:z=:=xt::::gz:uztnng;;.;

YT 82 °'528t5 soung (usc‘¥sg QUR FOR CONTINOUS SDUND)
: lgAgLE i8¥o sgn?¥ no§10~

BLE SPRITES & QUIT KEY

BLE SPRITES AND SOUND

ALL THRE

J 3
NOoAD

-

0 0
3
merr
m

EED "RANDOM]ZE")
(NEED "NEW") ~
S'u

U IR |

wwww

OO

Al fe)

[0 o Yo lsi]
L J

« O
-
c
Ry
r4
n
o]
m
ﬁ
-4
X
m
w
nNomn
x
X
m
X
]
Q
<
m
X
RY
>

wn
U
onN
w
-
C
Y
Z
w
O
z
-
I
m
w
N
X
m
X
(@]
Q
-
m
x
Ry
>
z

O
w

!
w wwwwww

S O Gt B e St et
O OOODOOD®

2
HIGHEST NUMBER SPRITE IN MOTIO
RANDOM NUMBER (0 TO 99) NEED "RA
CHANGE KEYBOARD MODE (LIKE “CALL
DISABLE ALL DISK DRIVES (USE "NE
ENABLE ALL DISK DRIXE?O§USE "NEW

™
RITES ON A LINE
PS ALL)

OV T ITWNOO VA D—~YON

r4
o

2
.Y
4

2

3
-
_.'

2
»
m
-4
m
0

3
@
.

OODOINN
- OAODVW

‘.O'.‘.‘.Q.'.‘O.‘...Q"CQOQ.QO‘O..O.Q...C....Q.OC.'.'..O.“C.

O.')"
TO FREE nénonv)
TO FREE DRIVES)

!
nw
.0
NN
-
o

w

D

"UNTRACE" COMMAND & "NUM" COMMAND

"TRACE" COMMAND

"ON BREAK NEXT" COMMAND
OTECT X/B_PROGRAM .
PEEK P=55 THEN 32K EXPANSION MEMORY 1S OFF <>55 MEANS ON
RETURN _TO THE TITLE SCREEN
éB W/DSKI1.LOAD -

STACK ADDRESS (P*256+Q)
SEARCHES géﬁé FOR ?

IOLONONC
ammmmmmzZ

Vo O\ s e e A IO N OH
[04]

ON Naovoa
-

.}

m

n

-

>

1)

-

x

)
[Ve}
v
328
Moom
0Cm
0OZ
g
xXTIr
NP =M
ZWn
x
—
o

GO FROM
UNPROTECT’ XB_ PROGRAM .
SET "ON WARNING NEXT" COMMAND
SET "ON WARNING STOP" COMMAND
SET 0 LINE NUMBER)
SET "UNTRACE"™ COMMAND
"UNTRACE" COMMAND & "NUM" COMMAND
SET "TRACE™ COMMAND
SET "ON BREAK NEXT"™ COMMAND
PROTECT XB PROGRAM
CHANGE COLOR AND RECEIVE SYNTAX ERROR
CHANGE COLOR AND RECEIVE BREAKPOINT
RESET TO TITLE SCREEN
UNPROTECT XB PROGRAM
SET "ON WARNING NEXT" COMMAND
"ON WARNING STOP" COMMAND
SET "UNTRACE™ COMMAND
SET "UNTRACE"™ & "NUM" COMMAND
"TRACE™ COMMAND
SET "ON BREAK NEXT®
PROTECT XB PROGRAM
CLEARS CREEN FOR AN INSTANT
RUN "DSK1 LOAD"™ ,
RESET T0 TITLE SCREEN :
RESET TO TITLE SCREEN
SETS "ON BREAK GOTO" LOCKS SYSTEM

18=8===============2=========8===========:===========BR==B====8=BBREBSSGBRSSB

THE FOLLOWING LOADS REQUIRE E/A OR MM
B.===SSBGS====8====8====8===8====8====888=‘g838:3:::2:888888288:88BBSR'ZSBB:&‘
ADDRESS , VALUE(S) MEANING

333232 3 1t 2 X F F ¥ 5 3 X ¥ ¥ ================================B=============:==——--———-—

—_—_———_—ss=s=cc=

VANOAN==NDTNW

[aA1%17 N
L
m
-

@

-32188

-32630
-32698

NN s
o LN

NaAGOUIA
@

L

m

-

n
m
-

-0OWwo

3270
3272
3273
3296

! i
0

784 L, P USE_POKEV(784,P) (WHERE P IS 16 TO 31) CHANGES BAGK
24574 , 8 ;C?h?ﬁx°§aégR§950us THE MINI-MEM TO usé THE 24K FOR v
- ’ -
7322930 % . e M 00GsEP0ES LILL PUT YOU IN TEXT MODE STORAGE
» ») - °
-3576€ | 0 BiT MAP MODE 4
-357é8 | o GRAPHTCS '(NORMAL MODE)
-35280 . 0 MULT1-COLOR MODE
-32352 | 107 WILL BLANK THE SCREEN, ANY KEY PRESS WILL RESTORE
!888::::===:==t:::z:zt‘::::I::::::zz:::2::8l======:g==:===:====8=====8::::8:83::::
» PASCAL LOADS
8‘====::::==:=====g:===:=8==g::gc.—-:::z:::========================z==========::
14586 , 0 , 0O THIS ALLOWS YOU TO DO A "RUN-TIME WARM START FROM PASCAL

Ind of file

CHAPTER 1@ - BULLETIN BOARD SYSTEMS FOR T1

CITY/STATE

Toss River NJ
Kew Haven (T
Seattte WA
Portland ME
Veazie, NE
Dallas TX
Mesquite -TX
Dallas TX
Phil. PA
Reading PA
Cleveland Oh
Mashington DC
Newark DE
Colo Spg CO
Ocoee FL

Ft Laud. FL
West Pala FL
Orlando FL.
Hazel Pk Ml
Detroit NI
Clawson NI
Taylor, Ml

St Louis M0
Nichita KS
Lake Chas LA
Atlanta #1
Marietta, GA
Atl A

Rtl 64

Pittsburgh PA.

fppleton Wi
Milwaukee W]

_ Breenbay NI

Redwood City
Sreshas OR
Knoxvlle IA
Albany NY
Biloxi, MS

BC Canada 3P-7A

Nound, MN
Coluabus OH
Knoxville TN
Chatt. TN
Boston MA
San Diego CA
San Diego CA
Las Vegaas NA
¥ash, DC
Charlotte NC
Char, NC
Houston TX
Houston TX
Fontana CA
Tonawanda KY
Va Bch. VA
Bradenton FL

SYSop A/C Phone § Hours

Jeanete Shader 281 929 8141 - 24 hours
Matt Sinclair 263 777 BS88 - 24 hours
J.R. -XCHANGE 286 542-852% - 24 hours
Mark Rideout 267 797-5698 - 24 hours
Eric Benton #287 945-5789 - 24 hours
Bill Kauth #214 353-6582 -
Keith Hughey 214 4B1-572% - 24 hours
R.A.Fleetwood 214 995-3854 -
Philly TIBBS 215 927-6432 - 24 hours
Gene Deisher 215 929-5348 -

214 289-7311 - 24 hours
Phil 361 434-8117 - 24 hours
Diwre Vly U.6, 382 322-3999 -
John Williams #383 574-5762 - 24 hours
Dennis Neubauer 385 B77-4546 - 24 hours
Ed 0'Shaunessy 365 583-4343 - 24 hours
Dave Sholdar 385 793-865¢ -
Brian Delany . 365 831-59%¢ - 24 hours
Thoe Thibodeau 313 S44-6714 - ,
Computer corner 313 544-7788 - 24 hours
Craig Barton 33 751-1119 -
Jetf Thrush 3 292-6147 -
Ron Courtois 314 878-4289 -
Jerry McClusky 316 6B1-3167 -
Bayou TIBBS 318 474-6144 -
Ralph Fowler 484 425-3254 -
Kreta TIBBS 484 955-2731 -
Hae Radio TIBBS #484 363-1648 - 24 hours
Atl 99748 U.B. 484 J46-1914 - 24 hours
Coaputer Bug 412 BB2-6717 - 24 hours
Marc Schaidt 414 739-5386 - 24 hours
Dan 6unia 414 b49-TEAM - 24 hours
D. Pfotenhauer 414 437-493¢ -
Bay Cities 415 J44-8517 -
Nike Werstlen 583 661-8488 - 24 hours
Keith Jamison 515 B42-2184 -
Dick Ferrigan 518 765-4393 - 24 hours
Larry Levy 681 392-8717 -
ND/24 #4604 531-6423 - Weekerds
Mark liesaer 612 472-3498 - 24 hours
Spirit of 99 414 451-6886 - 24 hours
Dick Tracey #4515 491-9558 -
Mines of Moria 615 267-1721 - 24 hours
Elite TIBBS 617 347-6341 - 24 hours
Irish Input 619 278-3173 -
SCCE TIBBS 619 282-3525 - 24 hours
John Martin 762 648-1247 - 24 hours
PHIL #7163 631-8772 - 24 hours
Bits N Chips 764 376-8124 -
Queen City TIBBS 784 541-3774 -

TYPE OF PROGRAN

R hoee-brex BBS prog
T1BBS
TIBBS
T1BBS
TIBBS

Dungeon Keep TIBBS
FLUB TIBBS (TD)

TICOMM BBS
TIBBS

TIBBS

TIBBS

T1BBS 386/1268
TIBBS

TIBBS
T1BBS
T1BBS
TIBBS
T1BBS
TIBBS
T1BBS
TIBBS
TIBBS
TIBBS
TIBBS
TIBBS
TIBBS
T1BBS
TIBBS
T1BBS
TIBBS
TIBBS

TIBBS

TIBBS
T1BBS
Spirtit of 99 TIBBS

T1BBS
ELITE TIBBS

SCCG TIBES
TiComs
T1BBS

H.U.6.TIBBS #713 487-5538 - changes nusbers frequently

Phoenix TIBBS #713 537-§741 - 24 hours
Peter Covert 714 35¢-8583 -

Peter Testa 716 B37-4635 -

T.U.6 TIBBS 864 484-1484 -
Action-Link 813-747-2881 - 24 hours
1§ eeq hard disk

Bood TIBBS

T1BBS
TIBBS
ACTION TIBBS

13 2w

Tasps FL Nike Carroll 813 &77-8716 - 24 hours TIBBS

Sheldon, 1t= Vayne Burgess 815 429-3533 - T1BBS

Pasadena CA B18 578-8678 - Nights only

Sylés-, CA CMEN? T 4818 J41-9294 -

Heaphis, TN Weaphis U.6. 981 3I37-5425 - 24 hours TIBBS

Dartmocth Terry Atkinson 962 434-3121 -

Nova Scctia

Daytona FL Dave Taylor 964 255-9326 - 24 hours TICOMN

Savanra BA, David Saith 912 354-£568 - TIBBS

Niddletun NY 914 JA3-5676 - Weekends TIBES

Sacrasento Ca SAC TIBBS 916 927-3812 - 24 hours TIBBS

Durhas NC Bull City TIBBS 919 383-8787 - TIBBS

Wnstn-Sla NC 919 723-2415 - 24 hours TIBBS

Raleigh NC fanon Nissan #919 851-8448 -

Orphanage(994a & PCjr) #214 276-7832 ~ 24 Hours TURBO BBS
RANDY BAXTER ~ BBS Runs on IBM PCjr and has

Nice BBS ! - X-MODEM TI file transfers.

CHAPTEHR 11 -

TI1I 99 FIN

ouTSs

The following pin connections are in reference to the figures on the next

page. In most cases, I will tell you the top, bottom or side that the view
is of.
GROM PORT CONNECTOR (36 pin) PERIPHERAL PORT (44 PIN)
PIN NUMBER SIGNAL PIN NUMBER SIGNAL
i RESET 1 +5 VOLTS
2 GROUND 2 SRE
3 DATA LINE 7 3 RESET
4 CRU CLOCHK 4 EXT INTERRUPT
S DATA LINE & S ADDRESS LINE S
1) CRU INFUT : 6 ADDRESS LINE 1@
7 DATA LINE S 7 ADDRESS LINE 4
8 CRU OUT & ADDRESS LINE 15 8 ADDRESS LINE 11
9 DATA LINE 11 9 DE INPUT
i ADDRESS LINE 13 19 ADDRESS LINE 173
i1 DATA LINE 3 11 ADDRESS LINE 12
12 ADDRESS LINE 12 12 READY/HOLD LINE
13 DATA LINE 2 1z LOAD
14 ADDRESS LINE 11 14 ADDRESS LINE 8
15 DATA LINE 1 15 ADDRESS LINE 3
16 ADDRESS LINE 1@ 16 ADDRESS LINE 14
17 DATA LINE @ 17 ADDRESS LINE 7
18 ADDRESS LINE 9 18 ADDRESS LINE 9
19 + 5 VOLTS 19 ADD. 15/CRU OUT
20 ADDRESE LINE 8 20 ADDRESS LINE 2
21 GROM SELECT SIGNAL 21 GROUND REFERENCE
22 ADDRESS LINE 7 22 CRU CLOCFE.
3 ADDRESS LINE 14 23 GROUND REFERENCE
24 ADDRESS LINE 3 24 CPU CLOCK FHASE 3
25 DATA BUS IN 25 GROUND
26 ADDRESS LINE 6 26 WRITE ENAEBLE
27 GROM CLOCK 27 GROUND
28 ADDRESS LINE S 2 MEMORY BLOCHK EN.
29 -5 VOLTS 29 ADDRESS LINE &
3@ ADDRESS LINE 4 I ADDRESS LINE 1
31 GROM READY K] ADDRESS LINE ¢
32 WRITE ENAERLE LOW 2 MEMORY ENABLE
.33 GROM VSS I3 CRU INPUT
34 ROMG LOW 34 DATA LINE 7
35 DATA LINE 4 IS DATA LINE 4
I6 GROUND 2 DATA LINE 6
37 DATA LINE # (MSE:;
8 DATA LINE S
39 DATA LINE 2
JOYSTICE PORT CONNECTOR 4 DATA LINE 1
PIN NUMBER SIGNAL 41 INST. ARUAS. (IAR)
2 DATA LINE 3
1 LEFT 43 -5 VOLTS
2 FIRE BUTTON 44 AUDIO IN
3 UpP
4 JOYSTICE 1 GND
S NO CONNECTION
) RIGHT
7 DOWN
8 JOYSTICK 2 GND
9 NO CONNECTION

;-

léASSETTE PORT CONNECTOR VIDEO CONNECTOR

FIN NUMEER SIGNAL FIN NUMBER SIGNAL
1 MOTOR CONTROL 1 1 +12 VOLTS
2 MOTOR CONTROL 1 2 GROUND
3 RECORD OUT GROUND 3 AUDIO OUT
4 AUDIO INPUT 4 COMFOSITE VIDED
] RECORD OUT S GROUND
é MOTOR CONTROL 2
7 MOTOR CONTROL 2
8 MAG 1IN
? MAG OUT

RS232 SERIAL CONNECTOR

PIN NUMBER SIGNAL
RS232 PIN PARALLEL CONNECTOR

FIN NUMBER SIGNAL 1 PROTECTIVE GND.

2 TRANSMIT DATA
1 HANDSHAKE 0OUT 3 RECEIVED DATA
2 DATA LINE 15 ' 4 NOT USED
3 DATA LINE 14 S CLEAR TO SEND (1}
4 DATA LINE 13 é +12V PULL UP
S DATA LINE 12 7 SIGNAL GROUND
&b DATA LINE 11 8 CARRIER DET (1)
7 DATA LINE 14 9 NOT USED
8 DATA LINE 9 . 1@ NOT USED
Q? DATA LINE 8 11 NOT USED
14 HANDSHAKE IN 12 CARRIER DET (2) -
11 SIGNAL GROUND 3 CLEAR TO SEND (2!
12 14 OHM PULLUF TO +5 VOLTS 14 TRANSMIT DATA (2)
13 SPARE INFUT BIT iS5 NOT USED
14 SPARE OUTPUT EBRIT 16 RECEIVED DATA (2
15 1 K PULL UP TO +5 VOLTS 17 NOT USED
16 LOGIC (SIGNAL) GROUND i8 NOT USED

' 19 DTR PORT 2
24 DTR PORT 1

21-25 NOT USED

R e e Y - 1 + 3 3 3 F F 3 X P X

CHARACTER SETS

COLOR VALUE SET ASC1I CODES

TRANSFARENT 1 @ -3

BLACHE 2 1 I2-39

MED. GREEN 3 < 4(3-47

LT. GREEN 4 3 48-355

DARK BLUE S 4 S56-63

LT. BLUE b6 S 64-71

DARK RED 7 é 72-79

CYAN 8 7 8¢~-87

MED. RED 9 8 88-95

LT. RED 19 ? 6-1@3

DK. YELLOW 11 1 1@4-111

LT. YELLOW 12 11 112-119

DK. GREEN 13 12 120-127

MAGENTA 14 13 128-131

GRAY 15 14 32-143

WHITE 16 15 144-151 -\ USE 1IN
16 152-159 -/ BASIC

The defined characters on the TI-99/4A Computer are the standard ASCII characters for codes 32

ASCIllI CHARACTER CODES

through 127. The following chart lists these characters and their codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER
32 {space) 65 A 97 A
33 ! (exclamation point) 66 B 98 B
34 " (quote) 67 C 99 C
35 # (number or pound sign) 68 D 100 D
36 $ (dollar) 69 E 101 E
37 % (percent) 70 F 102 F
38 & (ampersand) 71 G 103 G
39 ° (apostrophe) 72 H 104 H
40 ((open parenthesis) 73 1 105 1
41) (close parenthesis) 74] 106
42 * (asterisk) 75 K 107 Kk
43 + (plus) 76 L 108 L
44 | (comma) 77 M 109 M
45 - (minus) 7 N 110 N
46 . (period) 79 O 111 O
47 / (slant) 80 P 112 P
48 0 81 Q 113 Q
49 1 82 R 114 R
50 2 83 S 115 s
, 51 3 84 T 116 T

-’ 52 4 8 U 117 U
53 5§ 86 V 118 v
54 6 87 W 119 w
5 7 88 X 120 x
56 8 89 Y 121 v
57 9 9% Z 122 2z
58 : (colon) 91 | (open bracket