Ums.x; i

Lo

A’*’"’ o

o m’x:‘ .

The Com,

b

plete

£ 1 ;
i i x i el
Bt i

i
V B
‘ - 2:l>x“znqx~syuz$ mx, 4
’ Sp g e
; i @g . e
! o w,xmsm;w -
i uaimumx; ot i
§ ik -
i e oo
Toiw =
. : i i
; Mw g ﬁlﬁ’»‘éi“"é?;ﬂx, s
i i
:)
H
H
§
H
§ ‘ (
‘) i S,
k i 7
| “ . ﬁ
u e FE - ol
i - . i 8 a‘ - 4 k ﬁ!
i x 0 i . e
& : e MW Ly
‘ o AL
§ h ‘R & e
2 i
; R -
;
;
H

S,
i,

i
o mwx,
e G
@
‘ -
: e
|) L
o
i %tx!&vix@(x!x b -
i x! e ‘S
o
?memﬂm*i i

e q,

s
».:a.,(W Gl 0)
e
m‘,, ik

i a5
i)
A

e
i W .

i
e

My
g

i e R bAoA 20

W K b R o
e ”L?”um'fi.ﬂ Au - w&‘,‘u,,n =
At e

(F dindh iy

m S

S

Second Edltlon
| Mountain View Press,

nc.

s e

FORTH
Encyclopedia

The Complete FORTH Programmer's Manual

by
Mitch Derick & Linda Baker

Second Edition
Mountain View Press, Inc.

Copyright © 1982
by
Mitch Derick and Linda Baker

Mountain View Press
PO Box 4656
Mountain View, CA 94040

TABLE OF CONTENTS

Foeeertectecccasacens cesesnne teesesscencsscsartecccasansensans PR,
/> teecsenessasarasaans Ceeceeseesteetteretasesacasneannos
S ecreecncnsenens R PN
1]

veesesaas tecseccssecsssssanne teeeaccecensastesascecastsestresesssesannnn
(R teeesecsscssscsssannasnes eeceeresene ceesessasces teseccsecseans
(M
. ceeseces cesees teececescsscstscassesessans ceseene certestascsencnns R,
(+LOOP) iivececcennes ceessee tetestseccescnsssssnssennns teesseceressesenss
(;CODE) +ivveenn cesssecssannans Cecsreesessasaanes Ceessesseetiatttenaaennas
(ABORT) ceeeenns tescsssasecsnsssasssnssons esecescsctetsssasccsnssssennen
(DO) teevvvecncacnens cecrenes P ceseccsstecsesaenonns erecesnsens
(FIND) cevvecenes teseasescsecsanes eeesresaenaaas ietessscsececncseonaannn
Ph
(LOOP) tieeeencncnsens cessenes ceesecane teeeeecasestacasetresstesssannnsnn
(NUMBER) +ievaene tesessaassaes teeescseeccctesscenssssssseeasesetnssasnnn
* *se0 e ssssee sev s ses0ssee LI A A A A I) ®ees s e D R N N N R R Y
L7 A cececsececnne e seeseececsessaccsatcstsccesecsscetcasasnsnannans .
*/MOD ceeeves teescecsstssesecssessnns esesens tesceececscaccccrarennes
F oeeenenn ceseans ceeennes cecesnecesenanee ceceeses tesecececans cesescnrenanne
. eeennee

cesesensne ecscccessescsnanesecsans tectessetrnnens

F= eeececcasscsscssacnses R, ceecneeens tecetssescscsesesnonns cessenes
4BUF tieievicvtetarcascssssssccnnssesssncns ceceanane teeecececscseentnsanas
+O0P cesesaes esesns teceeteccsncosanesssrens tesesetsesssraranes
+ORIGIN ..ceiececencnccces cesens cevressssase cecsesssesasescannnnns Ceseseanss
3 sessesecesssens ceeetsstsnsenns cesannns esesecnane tecececscsccncnssannenns
= eeseseassse cs e e *se s s e e R R R R EEE R EEERE I A A A A A I SR BN S BN R BN B R I B
L cecsssscnsae asnssaca ceseccnns P .
DUP tieiitecrecsscsssnascsssnanens cecerennes cirecanne tecetenstacsasecnes
FIND coveeneee ceeeesnen ceceen PN
STRAILING cicviveereecncocens vesesane teeesecccenesatasscsssseasssssenrans
+ eeeccescassessesssecesscsscssvenne tecesssccsccssstssesacsssasasasnanns
"
. ceecssasrreessnns teceecsacssseraasnns teseecesees tietesassacsccoesesnnns
LINE oaeeeens ceesnnes cereens eeesesnercncas e eecescscsecssctattrsacarenaas
8 2 cesenans vesasan sesssssenans teeesesssasessssanes cesene
) PO ceesececssanes cesnaean ceseees teeesecscesancssactassetacsssesan
/MOD ceerenns W et easeeseesneacenennetatasasesesastsoresenannasaesnnnns
0 ciiiiennencnns ceseens tececccsacsnacsenns ceesseteenrons cetasecscacssans .e
O tietecnecascnssccnnns cecertsecasesaas tetectececseananns teesecsecssasane
0= ..ciiveeee cesesens ceresssescnns veeens cesesesansesane tececcesscaresans
OBRANCH Ceeacesseasescasacsssensasnnen ecsssctacsnanes ceceenenns
1 teeeeieccrccsscancsannas ceeesane ceeees tececsttacscsrescscsnsennn eeesnne
14 ciieeerccenen testesescsesenanans tesecasesvecansnna teceseesacessscssasee
2 iieeneens eeresens PR eteseseseneriasecans Ceteseesetasecssssotancnne
2 [ceacass ecesesaseesesessesaasenessnn teesscsscnas
3 tieececnns cieeccnserenas PR ceesees teresieecncseascssanens Cerecesenan
: vosescasesstostastasasascsartrosanrsesoantere teeencesccaccnacacanaans
$ eeeccscacens eessaes ceseees ceerseeeans tececsaseseone teetecsessrecrecaans
sCODE tesceesescnense teccecessssssescsaasescsosnsasnnens tesesessessannns e
B teeesecceserastssasasessenns tecitceesasecssccsncsanns ceeecessassieanans
< tieenes cerecreonn cieesen cereenenes vecsnons tececscecsseatesareasaassaanas
1</ cesscseseaas P Ceteseesctsecticscastcsrecacanans Cetecscsans
CBUILDS civvcvcevsccncne tececsaecannnanse teecseeseaaas ceeterenens ceessnans
= ssessssee sssssscsccsns R esseee ssseesecssecsscscssesanesses R EEEEEEEREE) .

2

PCOMP tiiiierernrsesstrosasccssccnns Crevesesevreceeas ceereessacenan
PCSP ceeeiieenanes [Geeseassetecacaseaeanansenntettrencsarencanns
P7ERROR ...iiveencanses cetteetsecacanes eeccnccesssesasvsenans ceesecennsane
PEXEC tevevecnncncccncanccnns ceversevesancans Ceeeeesenatecnactcannaaaaaes
P7LOADING icvaenns tessecesssesceasranss N

PPAIRS ..o iiieiiiiiinnnns cveseeeanas cevasesasssnncensens ceesens [N
PSTACK tveeeeerveccsnonssaasasssscccsnne ceesscenrnsans weeetessecccvrecns
PTERMINALen teesesessesccsssssssannnnns cevvesenn cessrcsccsnne
ABORT cieeencccrcccsccsccnscnncscncses eessssansassnanaanesnns rransassan
ABS ecesecsessves cvesennsaas sanesesacancsesses ceeecerecsannns
AGAINccceeens ceteeeecacnaarnes cecestessnena sevscecnccansecsnsnnrens

......

....................................

Cl ovennnn et eraeeeeaaaaes ettt eeaeeaeeeeeerer i rareeeennaaaes
Cy eevennnn Ceeereeeeen ereernnereeeaaaes et et ettt ra et e eeeaaeeaaaaas
oy /T, e eeeeennaaas
ca ettt et eeeeeehateet et aareeet e ateeeeeaateeeeeaananas

CMOVE .iiiviieennnnnnnnn M

CONSTANT ..iieveenneenen tesrecstccnsrtesnennnns Cersesssestecesreccsraes
CONTEXT ..cvevennnnn.. ceteesevecenanean e .e
COUNT ciiiniieeenneeccossacencaancescnccasnnconns ceveessecestcsssssacsse
COP tiiieicttnececcccacsosnccssosstessoseesasncoasasnssasssssasssacoscscs

D4 teeseessessscsscesssssssssessesssscsscsssssessessasscssssnase cessseens

P ceceancencsreasons ..
D. ceeeeeeena.. B cesrecsesaenes T NP ceceae
ceesvecesessane cesssevaancoe cesseacnne

INDEX tiitteireesresnoreraneeenserasnsnessssrecsssseeesasasesnsennnsonnns

P eeeeeenns cessscssstsensesesstsateonsne ceessssssnnnae cestseessccsesnanas

iii

117
118
119
120
122
124
126
127
128
129
132
133
134
135
136
137
139
140
141
142
144
146
147
149
153
154
155
156
156
157
158
159
162
163
164
168
170
172
173
175
176
180
181
182

211
212
213

I R Cesrestisseenaann Chteesseseseanennann cesess 216

LOAD tiittreeesoncesnsnsssccsonscocsoososssassssessssascssnesnccsnsossne 219

QUERY tevrnnnnnnnnnnnnns et eteeeeeaaereeeeeeeeeeeeeearaaaaa, ceeeeeee. 251
QUIT eutenennnnnnnnnnnnnnnnneaeeeesanenseeeeeeeseseeeeees eeeeaas veee. 252
R eeveennnneneeceennns et teeeeee e eeteeeeeeieeerere s 254
REF eeeernenininnnnnnnnnnnes ereeeeeeraana, ettt e eerrraeeeenaan I, 255
RIW eevrnieeennnnnnns eeteeenareeeeaanan., et eeereeeieaaeenn ceeeeenes. 256
1 ceereeeen 259
RO trenernnnnnnnnnnnnnnns et eee et eee ettt ettt eeeeee e a———.. 260
REPEAT cuvvevvvvennnnns eereeeranreeeaeaas e eritiieteeeaeens ceeeenns 261
ROT trerrnnnnnnnnnnnnnnns . eereeeeeanereeeeaaans ereean 264
RP! teevvrnnnnnns e aeeetetereeeetiteireeteeeeeaeeaanaaa, ceeee. 265
RPE veeerrnnnneseeseeennnnnneeennnnnnns T ceeeee. 266
s SRR eeeernreeeennaas e etteieeeeeeeeeeees ceee. 267
SO vererrrrnnns e ettt itieeaeeeeeeeeeeanae eeaeeeeeetiearanaannnns ceeees . 268
SCR evevrnnennnnnns e eraieeaaan R, Ceeeeeenes eeeeeeeeieeee. 269
SIGN eeveeennnnnnnseceennnnnneeesnnnnnans e eeeeeeneees eeeerrreeeeaaas 270
SMUDGE +vvvvvvnnnns ettt eteeeeeeeenaaaaeaseeasaeerasaanannaaraaaaaann . 271
Ol ettt et e e eeee e et e e teae e iaaeeeeaaanaaeeeaannas . 272
o I ettt eeeeneetatteeeeranaaeeaaaas eee 273
SPACE vvvevnnn. ereenennaes eeeeeeeeeeeean, ettt eteiiiieeieeeeeeaeaaaa, 274
SPACES +vvvvns Cereeereaenaeaees et ettt iteeeeeeetraaaeeeaanaans Y
178 1 et eeeeeienanans Ceereeennnaraaaeen 276
SWAP vrvrvrnnnnnnnns eeeeeeennanes eeerreteeeeaas et eerateeeeeenaaas 277
TASK tevevnnnnnnnnnnnnnsnnennes e et etteieieeeteieeaaas ceeeeesss 218
THEN eeeeeeans e teeeeeeeeaeaaeeereeeeeereeeeerrrnanans ceveee. 279

TOGGLE tiiicereneenecnicansnanes Ceetesetteseannns T .. 282
TRAVERSE ... cicccccccscccssccscsccnss 2 - 3
TRIAD cieieeveennennes cecevcancanns Geteesseececasanans cessecevessstasscans 285
TYPE ciieiiiiiiiencnnccnns cesresrnes teeecseseececcseccasencnsanes ceeeeaa. 287
L0 e . 289
U. ceecessaneans cereseesanenns Cetieiittcencceones Ceeteeeerenatntaaanens 291
{8 cecsrrcecsnes Cietecsitereeeenen ceesesssssssssisrssane 292
UNTIL tiiieennneneccencecccncnnenan Ceteciteecnananaan cesevessossrcase ceees 295
UPDATE D ceeeseanes Geesesesesasesassrtessesosasne 297
L ceetseenetesensceesaneanas ceseeese.. 298
USER teeviiievvnnnss coereecsanneecsceseesssencsasseresessscaosteennoosans 299
VARIABLE . .iicecoecccnccanns cetesascanne crecnes U 1) §
VLIST .eeveveeennacnnes creseesvosrnns cecesentceeeanan U 13
VOC-LINK ticieeecrveccccccccncsanns teetseeseeracassesassnena B 111
VOCABULARY ciieecveoccnnns ceesiieans et cteecentscencncaans S 11|
W o oeeee.a. N cersecestsatcns ceeees 314
WARNING ceeesseaenns cesescsanan ceescasescrcassasacancuensanes . 315
WHILE Censeessesesennas cesesenas tecrvecececceraasnnas R 2 [
WIDTH ssasescnsescssessnans tesesevecesensescaaeaes ceseescecesccesas 318
WORD ..eieiierencccoscanss cesesececsccsesasusncecernsssasasnsesstasenes . 319

D Cesevsereerreseenesasae ceresescervecasstesacaonan ceeeees 322
XOR teeceesscesssasesasasansnanse tsssssassasssssansanns cenncesccsssa 323
[veiiiieiianeannnes Ceeeeneaereeaans ceeenns Cececessssseessnscscsasasnassas 324
[COMPILE] tiiiiiiiirnnnrereeerecncaconns Ceseereertitteseateeannenas eee 325
e Ceesecesennnanans Ceereretetaaans ceesseveesenanne ceveces . 327

FORTH SYSTEM MESSAGES ...vevieecternnnoanccasanasennnannns ceeereanee.. 328

ASCH CHARACTER SET (7-bit c0de) v.vveervernrrrennessonnccaseosssnonenns . 329
STANDARD fig-FORTH MEMORY MAP ...iiiiiiiieterennnnnnenaeanan ceeeuas .. 330
ALPHABETICAL INDEXccc... eresesateassatrrresaroes ceseresrtcersnee . 331
FUNCTIONAL INDEX tiiceeeererosrosaanscseansessonsscssssscascscansacasas 332

PREFACE

The purpose of the FORTH ENCYCLOPEDIA is to make available in one location all of the information necessary to use and understand
each individual word in the FORTH language. It is useful for everyone from FORTH beginners to FORTH experts. Just like any other
programmer's manual, this book is a tool which allows the programmer to spend more time "solving the problem" and less time "fighting
the language."

As FORTH programmers, we saw a need for documentation that would explain in one place everything one needed to know about a
FORTH word. It is our intent to relieve the programmer of the burden of sifting through multiple sources and/or FORTH code in order to
understand a desired FORTH definition.

The specific implementation documented is the 8080 Version 1.1 (CP/M) fig-Model. However, the usefulness of this book is not limited to
just this implementation. Indeed, even non-fig-FORTH programmers will find it a useful reference. The activity of each definition is
both literally and conceptually described. Each definition references FORTH-79. Those words which have two or more activities
(defining words and compiler words) have all activities described in detail. The low-level code primitives are described in "generic"
terms common to all assembly languages.

In summary, this book is truly a FORTH "Encyclopedia" as it provides information ranging from the overview to the internal details of
each definition. The acceptance of FORTH in the software community has been limited by a lack of this type of documentation. We

hope this and other recent publications will help satisfy that need.

vi

ACKNOWLEDGMENTS

The efforts of many people (both directly and indirectly) made this book possible. First and foremost we would like to thank Eric Weaver
who worked closely with us and edited both the rough and final copies of the manuscript. Without Eric's expert knowledge of the
internals of FORTH, the FORTH ENCYCLOPEDIA would not have attained its high degree of technical quality.

We would also like to thank Gary Fierbach, Jim McDaniels, Terry Holmes, and Kim Harris for reviewing the final manuscript.

We greatly appreciate the "above and beyond" efforts of Dick Weismann and Ken Moore in the physical preparation of the manuscript for
printing.

We would especially like to thank Kim Harris for teaching us how to use FORTH and for allowing us to reproduce some of his class
materials in this publication.

Then there is Fig. Thank you, FORTH Interest Group. Although not directly involved in this book, the indirect efforts of many members
of the FORTH community were what made all of this possible in the first place. After analyzing every single piece of code in the
fig-FORTH Model, we truly appreciate and acknowledge the magnitude of effort Bill Ragsdale expended in writing the first fig-Model.

We would like to thank the FORTH Implementation Team, especially John Cassady (who implemented the 8080 Version) and Kim Harris
(who later modified the 8080 Version 1.1 referenced in this book).

Last but certainly not least, thank you Charles Moore for creating such a marvelous language.

The fig-FORTH Mode!l and the 8080 Version 1.1 listing are distributed by:
FORTH Interest Group

P.O. Box 1105
San Carlos, CA 94070

vii

HOW THIS BOOK IS ORGANIZED

Fach word (or "definition") description follows this general format:

1. Word Name (Parameter Stack Activity)-

2. Text Section

a. Word Pronounciation

b. General Description

c. Detailed Description

d. Example

Formal Parameters

High or Low Level Statement

Likely Error Messages

"Refer to" List

FORTH-79

. Flowchart Section
a. High Level Flowchart (if applicable)
b. Detailed Flowchart

.

b

oo\ta\.vu.\w

Word Name (Parameter Stack Activity) -- The first line of each description is printed in bold characters. The definition name is on
the left followed by the parameter stack activity enclosed in parentheses. The general format for parameter stack entries is:

(before execution -- after execution)

When multiple stack parameters are listed, each entry is separated by a "\'. The lefthand entry is lowest on the stack, the righthand
entry is the top of the parameter stack.

HINT: By pronouncing "\' as "under” and "--" as "leaves" this horizontal stack format is quite readable. For example:

(valuel \ value? -- value3) becomes "valuel under value2 leaves value3"

Some definitions return different stack conditions depending upon their input (for example, successful or unsuccessful completion of a
word). In these cases, each condition is listed separately.

Normally the stack parameters described reflect the "execution time" (Sequence 3) action of a word. (See "Definition of Sequence
Times" Section.) If a word has more than one action (e.g., execution time and compile time action), the stack parameters for each
activity are listed separately.

2.

5.

6.

Text Section

a. Word Pronounciation - Since FORTH is intended to be a speakable language, the pronunciation (if necessary) is given inside
parentheses.

b. General Description - The first part of the text section is usually a summary of the purpose of the definition.
c. Detailed Description - This section is the pertinent information concerning the werd.

Compiler and defining words have two sets of actions and therefore the description of this category of words is divided inte two
sections. The compile time action is listed followed by the execution time action.

d. Example - An example of a word which uses the described word is usually included.

Formal Parameters - This section contains a description of the "at entry" and "at exit" parameter stack entries for the definition.
This normally reflects the execution time action of a word. Words with more than one action have parameters for each action listed
separately.

If no stack parameters are present, "at entry" or "at exit" is followed by the phrase "No parameters".

The activity of some words affect more than just the parameter stack. In those instances, all other affected parameters are also
described.

High or Low Level Statement - This states whether the word is a high level definition (comprised of other FORTH definitions) or an
assembly langwage.code primitive.

Likely Error Messages - This section describes the error messages which are most likely to occur when using this word. (Only the
most likely messages are listed because serious error conditions can cause indeterminable error messages.)

"Refer to" List - Lists words to refer to for more information.

FORTH-79 - This shows how the described word relates to the FORTH-79 Standard.

viii

8. Flowchart Section - All flowcharts use the following format:

The flowcharts are generally divided into three columns. The leftmost column contains word names and labels. The middle column
contains a formal definition of the activity of the word. The rightmost column contains branch labels and comments describing the
activity of this word as it relates to the definition being discussed.

A right square bracket, located on the far right of the comment column, encloses those words which would normally be grouped
together as a FORTH phrase. A phrase in FORTH is a logical grouping of words which when combined together produce a desired
result.

The larger, more complex words may also be divided into groupings analogous to sentences in English. These sentences are proceeded
by a comment enclosed in curly brackets.

The more complex flowcharts are accompanied by a high level (macro) flowchart so the overall action of the definition can easily be
grasped. Each box in the macro flowchart roughly corresponds to a curly bracket section of the detailed flowcharts.

The same general format is followed for the low level code primitives. Code definitions must always terminate with an eventual jump
to NEXT . This is shown with a dashed line extending across all three columns.

ABORT vs. QUIT:

Either an ABORT or a QUIT may occur when an error condition arises. The contents of the user variable WARNING determines which
action is taken. Flowchart references assume that a QUIT will occur.

ix

DEFINITION OF SEQUENCE TIMES

One of the major philosophical differences between FORTH and the more traditional programming languages is the fact that the FORTH
compiler is itself composed of FORTH words. This compiler may also be extended at any time with the addition of new compiler words;
this causes a special set of problems to arise.
Specifically:

What is a word doing at any given time?

Is it being defined?

Is it being compiled?

Is it executing?

This ambiguity is made clear through the use of the terms Sequence 1, Sequence 2, and Sequence 3. These sequences will be described in
ascending order of complexity.

Sequence 3:

The purpose of all FORTH definitions is to eventually execute. The act of executing is termed a definition's "run time" or "execution
time" or "Sequence 3" action. For example, dropping a value from the top of the parameter stack is the "run time" (Sequence 3) action of
the word DROP .

Sequence 2:

In order to be able to execute, a definition must first be compiled or assembled. The act of being compiled or assembled, then, is the
"Sequence 2" time for the word being compiled. e.g., The Sequence 2 time for DROP is when DROP is being compiled.

Confusion often arises when one considers the action of the compiler words themselves. Compiler words must execute in order to
compile a definition. i.e., Compiler words execute (the compiler word's Sequence 3 time) during the Sequence 2 time of the word being
compiled.

Compiler words normally have two sets of actions described; those at compile time (Sequence 2) and those at execution time (Sequence
3). The most common compiler words are control structure words such as ELSE . ELSE is used within a definition (FROG for example) to
produce a specific action when that word, FROG, is executed at its Sequence 3 time. This action is the Sequence 3 action of ELSE . But,
in order for ELSE to be able to correctly perform this desired action, certain manipulations must be performed when FROG is being
compiled (at FROG's Sequence 2). The code within ELSE which performs these compile time manipuiations determines the Sequence 2
action of ELLSE . This dual action is true for all compiler words.

Sequence 1:

There are groups or types of words in FORTH which are defining words. (Defining words are generally classified as words which do not
execute in the system "compile" state and which directly use the word CREATE (and not :) to begin creating a definition.) These words
create compiler definitions, or "parents", which when executed at compile time (Sequence 2) create "children" definitions which then
execute (Sequence 3) to perform some task. "Parent" definitions (e.g., VOCABULARY) are created at the parent's Sequence 1 time.
"Child" definitions (e.g., FORTH) are compiled via the "parent" at the "child's Sequence 2 time. The "child" then executes at its own
Sequence 3 time (e.g., when FORTH executes, FORTH is made the CONTEXT vocabulary).

Always bear in mind that the Sequence time of any definition is relative to itself. It is perfectly legal and necessary for compiler words
to be executing (Sequence 3) while a definition is being created (Sequence 1 or Sequence 2).

Some compiler words purposely switch the system back and forth between states while all the time remaining in the
definition-being-compiled's Sequence 2 time. At any given time the "state" the system is in may be either "interpretation" state or
"compilation" state. Do not confuse the overall Sequence time action of a definition with the "state" of the system.

! (value\ address —)

! (pronounced "store") stores the 16-bit value located in the second parameter stack entry into the memory location specified by the top
parameter stack entry.

C! is the word used to store 8-bit (or byte or character) values.
@ has the opposite effect of * .

* At entry - The top of the parameter stack contains the 16-bit address specifying the memory location the value is to be
stored into. The second stack entry contains the 16-bit value.

* At exit - No parameters.
! is a low level code primitive.
Refer toC!;and @ .

FORTH-79: The FORTH-79 equivalent for ! is!.

8080 fig-FORTH
Version 1.1

Pop the address into
registers.

Pop the word value
into registers.

1

|
Store the word value
into memory.

ICSP

‘csP ()

'CSP (pronounced "store-C-S-P") saves the current parameter stack address in the user variable CSP . This word is used in conjunction
with ?CSP to determine if the parameter stack has become unbalanced due to a compilation error.

An example of the use of !CSP can be found in: .
* At entry - No parameters.
* At exit - No parameters.

'CSP is a high level colon definition.

Refer to 7CSP .

FORTH-79: There is no FORTH-79 equivalent for 'CSP .
De finition: : ICSP (=) sPa CsSP ! 5

DOCOL (Run time portion of
:) Save IP position

and begin executing
this definition.

l -

SP@ Put current Get the address of the
parameter stack next available
pointer onto the parameter stack
top of the parameter location. _
stack.

CsP Put address of user

variable CSP onto
top of parameter
stack.

! Store stack pointer
into CSP .

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

-.
w

(double precision value — double precision quotient)

(pronounced "sharp") performs a binary-to-ascii conversion of one digit of a double precision value into an ascii character that is placed
into a pictured numeric output string. This output string is built downward starting from one byte before PAD . The conversion proceeds
from right to left (low order digit to high order digit) with one "column" being converted each time it is executed. That is, the first time
is executed, the units digit is converted; the next, the tens digit; the next, the hundreds digit; etc.

One digit is converted each time # is executed. # uses the current BASE value as the conversion radix. The double precision value is
divided by the radix. The remainder is converted to an ascii digit; the quotient remains on the stack. <# must first be executed to set up
for #. # is used in the general form <# # #> to convert single digits. The form <# # # ... #> is used to convert as many digits as
specified. (Refer to #S for converting an entire double precision number at one time.)

A double precision input value of zero simply results in an ascii output digit of zero.

D.R is an example of a-word that uses pictured numeric output. #S is an example of a word that uses # .

* At entry - The top of the parameter stack contains an unsigned 32-bit double precision value with the high order portion in
the first stack entry and the low order portion in the second entry.

Note: # will actually oniy convert a positive double precision vaiue (i.e., oniy 31 bits). Therefore a DABS should normally
precede the <# in a pictured numeric expression to convert negative double precision values to their absolute value. SIGN
is used to display the sign.
BASE contains the radix to be used in conversion.

* At exit - The top of the parameter stack contains the quotient of the original value divided by BASE in the form of a
32-bit unsigned double precision value with the high order portion in the first stack entry and the low order portion in the
second stack entry.

Characters will be placed into memory from high to low memory starting at the beginning of PAD and working toward the end of the
dictionary. HLD points to the last character converted.

is a high level colon de finition.

Refer to<# , #>, #5, HOLD , SIGN, HLD , BASE , and PAD .
FORTH-79: The FORTH-79 equivalent for # is # .
Definition: : # (Dvalue - Dquotient)

BASE @ M/MOD ROT 9 OVER <
F 7+ THEN 30 + HOLD 3

—_
LIT Place the literal Set up to determine if
a9+ value 09H onte the remainder is greater

top of the parameter than 9. (Must convert

DOCOoL (Run time portion of stack. to alpha character if

:) Save IP and s0.)
start interpreting
this definition.
| OVER Copy the 2nd Set up for<. Put
| = parameter stack remainder “over" the 9
BASE Place the address of Set up for @ . value onto the top so comparison can be
the user variable of the parameter performed.
BASE onto the top of stack.
the parameter stack.
< Replace the top two Set up for IF by
@ Replace the address Get the current base. parameter stack leaving a true flag if
on the top of the Set up for M/MOD . entries with a true the remainder is
parameter stack with — flag (1) if the 1st greater than 9 (the
the memory contents entry > 2nd entry or character is an alpha).
of that address. a false flag (0) if -
[not.
M/MOD Divide the double Divide the value by
precision value on BASE . Leave the IF Is
the top of the quotient on the stack truth flag
parameter stack by with the remainder =07
the single precision (which will be Branch if the remainder
value below it. converted to ascii) is not greater than 9;
below it. do not convert it to
alpha.

ROT Rotate the top three Put the remainder onto

parameter stack the top of the

entries, bringing parameter stack.

the 3rd entry to the

top of the stack. 3

LIT
07H

LIT
30H

HOLD

. Place the literal

value 7 onto the top
of the parameter
stack.

Replace the top two
values on the
parameter stack with

their total.

Place the literal
value 30H onto the
top of the parameter
stack.

Replace the top two
values on the
parameter stack with
their total.

Decrement the
pointer HLD and
store the character
on the top of the
parameter string
into the memory
location pointed to
by HLD .

l

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

The remainder was
greater than 9 so
convert it to alpha
(e.g., Hex A).

Add 7 to the remainder
so it will be alpha
when ascii conversion
occurs.

This is the entry point
for the "false portion"
of the previous IF that
tested for alpha.

Set up for + .

Add 30H to the
remainder to create the
ascii character 0-9 or
A-F. (Actually any base
can be used; base 17
would allow the letter
G also.)

Move the ascii'ed
character to PAD . One
character to the left

of the previous one.

(double precision value — address\ count) # >
#> (pronounced "sharp-gqreater-than") terminates a pictured numeric conversion expression. {f> drops the double precision conversion
value left by # and replaces it with the beginning address of the converted character string and the string length (in a format suitable for
TYPE).
#> is used in the general form:

<## B

D.R is an example of a word that uses pictured numeric output.

* At entry - The top of the parameter stack contains a double precision value occupying the first and second stack entries.
HLD points to the beginning of a converted pictured numeric character string.

* At exit - The top of the parameter stack contains an address pointing to the beginning of the converted pictured numeric
character string. The second parameter stack entry contains the character count of the string.

#> is a high level colon definition.
Refer to<#, #, #5, HOLD , HLD , SIGN, and PAD .

FORTH-79: The FORTH-79 equivalent for #> is #> .

Definition: : #> (Dvalue - addr\count)
DROP DROP HLD & PAD OVER - H |
- Replace the top two Calculate the length of
parameter stack the converted character
values with the string.
DocoL (Run time portion of result of the top
:) Save IP and value subtracted
start interpreting from the 2nd value.

this definition.

| _

;S (Run time portion of
DROP Drop the 16-bit ;) Stop interpret-
entry on the top of ing this definition
the parameter stack. and return to the

l calling procedure.

DROP Drop the 16-bit Drop the double
entry on the top of precision value left
the parameter stack. over from # from the
stack.]
HLD Place the address of Set up for@ . HLD
the user variable points at the last
HLD onto the top of character converted.

the parameter stack.

@ Replace the address Pick up the beginning
on the top of the address of the
parameter stack with converted character
the memory contents string. (This is

of that address. actually the last
character converted.) __J

PAD Place the beginning Set up to calculate —1
address of the character count. PAD
output buffer onto represents the end of
the top of the the converted character
parameter stack. string (i.e., conversion

went from PAD toward
low memory).

OVER Copy the second Set up for - .
parameter stack Duplicate the beginning
value onto the top string address.
of the parameter
stack.

#S

#5 (unsigned double precision value — 0\ 0)

#5 (pronounced "sharp-5") performs a binary-to-ascii conversion of a double precision value into an ascii pictured numeric output
character string. This character string is created in memory, starting at one byte before PAD and working downward towards low
memory. The word performs a # conversion until the original double precision value is completely converted to ascii. Actually # is

called repeatedly until conversion is complete (i.e., the resulting quotient is double precision zero).

#S is used within a <# #> expression. D.R is an example of a word that uses #5 for pictured numeric output.

* At entry - The top of the parameter stack contains an unsigned 32-bit double precision value which is to be converted
from binary to ascii. The high order portion is in the first stack entry and the low order portion is in the second entry.

BASE contains the radix to be used in the conversion.

* At exit - The first and second parameter stack entries contain a double precision value of zero.

Converted ascii characters are located in memory. HLD points to the last character converted.

##S is a high level colon definition.

Refer to<# , #,# ,SIGN, HOLD , HLD , and PAD .

FORTH-79: The FORTH-79 equivalent for #5 is #S .

Definition: xS
BEGIN #

DOCOL (Run time portion of a true flag (1) if not yet completely
:) Save IP and the value is zero; converted, make the
start interpreting otherwise, replace flag 0 so the UNTIL
this definition. the value with a will keep looping.)
false flag (0).
BEGIN This is the entry point
. for the "repeat portion" UNTIL Is N
. of the BEGIN-UNTIL truth flag
. structure. =07
The remaining quotient
(not the remainder) was
Convert one digit of Convert the digit and not 0, therefore
the double precision place its ascii value conversion is not
value on the top of into memory. HLD will complete. Loop back to
the parameter stack be aimed at the beginning and continue.
into pictured character.
numeric ascii.
3S (Run time portion of
; .) Stop interpret-
OVER Copy the 2nd Set up for OR . _‘ ing this definition
parameter stack Duplicate the low order and return to the
value onto the top portion of the double calling procedure.
of the parameter precision value.
stack.
|
OVER Copy the 2nd Set up for OR .
parameter stack Duplicate the high
value onto the top order portion of the
of the parameter double precision value.
stack.
OR Replace the top two Set up for 0=. Both
parameter stack words must be 0 or a
values with the non-zero logical value
result of their will result. i.e., The
logical OR . truth flag will be
true.

(Dunsigned value - 07 0)
OVER OVER .

OR 0=

UNTIL H

1

Replace the value on
the top of the
parameter stack with

Set up for UNTIL .
Reverse the truth flag.
(i.e., If the value is

i
COMPLLE STATE: (—)
(Sequence 2)

EXECUTION STATE: (— address of specified word)
(Sequence 3)

* {pronounced “tick®™) in execution state, ' places the Parameter Field Address of a specified definition onto the top of the parameter
p p

stack. In compilation state it compiles the address into the dictionary. It is used in the form:
' nnnn
where nnnn is the name of the desired word.
Since LITERAL is used within the definition, the word exhibits two characteristics:
1. If the system is in compilation state, the address is compiled into the dictionary as a literal.

~

2. If the system is in execution state, the address is left on the top of the parameter stack.

' searches both the CONTEXT and CURRENT vocabularies. If the specified word is not found, Error Message 0 ("?") is issued and a QUIT

occurs.

-FIND is the basis of ' since it performs the necessary dictionary search.

Note that ' is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

COMPILE STATE (Sequence 2):

* At entry - No parameters.

*® At exit - The address is compiled as a literal into the definition being compiled. No parameters on the paramater stack.

EXECUTION STATE (Sequence 3):
* At entry - No parameters.
* At exit - The address of the specified word is on the top of the parameter stack.
LIKELY ERROR MESSAGES:
? pronounced "HUH?" (0) — The word in question cannot be found in the dictionary.
' is a high level colon definition.
Refer to -FIND .

FORTH-79: The FORTH-79 equivalent for ' is'.

Definition: : ' (— addr)
-FIND 0= 0 ERROR DROP [COMPILE] LITERAL ; IMMEDIATE
0 Put the constant
value 0 onto the top
of the parameter
DOCOL (Run time portion of stack.
:) Save IP and
start interpreting
this definition. 7ERROR Issue Error Message
0 ("?") and QUIT if
- the truth flag in
-FIND Search the CONTEXT] Look for a dictionary the second stack
and CURRENT match on the specified entry is true
vocabularies for word. TOS is set true (non-zerao).
Name Field match on| (1) if a match is
the next text word found; otherwise, it is
in the input stream. set to false (D).
0= Replace the value on Set up for ZERROR . T DROP Drop the top value
the top of the Leave a true flag if a from the parameter
parameter stack with match was not found. stack.
a true flag (1) if (Reverse the flag left
the value is zero; by -FIND .)
otherwise, replace
the value with a
false flag (0).
T

Set up for ?ERROR .
0 is the error message
number for "no match"
during a search.

Issue Error Message 0
("?") if no match
occurred.

NOTE: If an error

message is issued, a
QUIT will occur and
execution will cease
here.]

In this case, the
length byte of the
specified word.

[COMPILE]

LITERAL

IMMEDIATE

Force compilation of
the following
IMMEDIATE word.

If in compilation
state, compile the
value on the top of
the parameter stack
as a 16-bit literal.

If in execution
state, leave the
value on the top of
the parameter stack.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

Since LITERAL is an
IMMEDIATE word,
[COMPILE] must be
used to compile it into
the definition. (Other-
wise, it would execute
instead of being
compiled. [COMPILE] is
only used at Sequence 1
time to "compile"
LITERAL into ' and
does not exist in''s
(tick's) definition

when ' is executed at
compile time (Sequence
2).

Compile the found
address into the
dictionary

or
leave the address on
the top of the stack.

' is a compiler word
and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

« (=) (

((pronounced "left paren") is used to denote the beginning of a comment. It is used in the form:

(comment)
Note that (is a FORTH word and there fore must be separated from the comment string by at least one blank. The comment must be
terminated by a) {"rignt paren'). The terminating right parenthesis does noi have to be preceded by a blank. Comments may appear

inside or outside of a definition.

The basis of (is WORD . WORD is given the ascii value of ™" for an input delimiter parameter. WORD then keeps reading (and ignoring)
text until encountering a ")" character.

Note that (is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

* At entry - No parameters.

* At exit - No parameters.

(is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for (is (.

Definition: : (=)

29 WORD H IMMEDIATE

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

LIT Put the literal Put ascii ")" (29H)

29H value 29H onto the onto the top of the
top of the parameter stack as a delimiter
stack. for WORD.

]

WORD Read the following NOTE: Since WORD
in-line text string does not advance the
into the dictionary dictionary pointer
until a delimiter (DP), the comment is in
character, in this effect ignored by the
case a")", is system,
encountered. |

;S (Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

IMMEDIATE | Set the precedence (is a compiler word
bit of this and therefore must
definition so it execute during compil-
will be executed at ation (Sequence 2) so
compile time and not that it can compile
compiled into the other definitions.

|_definition.

(-”)
(") Return Stack (address — address)

(.") (pronounced "paren-dot-quote") is the run-time procedure compiled by ." . Its purpose is to output the text string compiled into the
dictionary by ." .

(") performs two basic functions:
1. (M) prints the character string compiled into the dictionary by ." .
2. (") increments the IP past the character string so that interpretation begins with the word foliowing the string.

An example would be the printing of the characters "ABD" via the word ." (e.g., ." ABD"). The following would be compiled into the
dictionary by .".

CFA CFA

Al lo

CFA of [CFA of
") "next definition”
Characters

Number of characters

(.") will first execute COUNT to set up the parameter stack for TYPE ; then it will increment the value on the return stack (which points
to the next definition to be interpreted) to point to the "next defmltlon's CFA".

* At entry - The top of the return stack contains the address of the length byte of the text string. (This address is normally
that of the next word to be executed but the text string is compiled "in line" and therefore immediately follows the
execution address of (.") .)

* At exit -~ The top of the return stack contains the address of the next word to interpret.
(.") is a high level colon definition.
(") may only be used inside of a colon definition.
Refer to ." .

FORTH-79: There is no FORTH-79 equivalent for (.") .

Definition: : Mm (=)

R COUNT DUP 1+ R> + >R TYPE ;

DUP Duplicate the top Aim IP at the beginning
value on the string address. Set up
parameter stack. to increment IP to aim

DOCOL (Run time portion of at the next word to be
:) Save IP and interpreted.
start interpreting
this definition.

1+ Add 1 to the string Include the string

length. length byte in the
R Copy the value on Get the address of the number of memory
the top of the string's length byte. locations to be skipped
return stack onto This is normally the over. —
the top of the address of the next
parameter stack. address to be -
interpreted. In this R> Remove the top value] Get the address of the
case, though, it is the of the return stack text string's length
address of the and place it onto byte from the return
beginning of the the top of the stack.
string. parameter stack.
COUNT Put the length of Set up for TYPE . + Replace the top two Calculate the address
the text string onto values on the of the next word to
the top of the parameter stack with interpret.
parameter stack. Put their total.
its beginning
address into the
second entry. >R Remove the top value] Put the calculated
of the parameter address back onto the
stack and place it return stack.
onto the top of the
return stack.
—
10]

TYPE

.o
wn

Output the specified
number of text
string characters to
the output device.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Using the parameters
supplied by the
previous COUNT .

11

(+ LOOP)

(+LOOP) (increment value —)

(+LOOP) (pronounced "paren-plus-loop") is the execution time (Sequence 3) procedure for +LOOP . During compile time (Sequence 2),
+LOOP compiles the CFA of (+LOOP) into the definition being created.

The purpose of (+LOOP) is to serve as the run time end of a DO +LOOP sturcture. In doing so, it performs four primary functions:
1. (+LOOP) obtains the loop increment value from the top of the parameter stack.
2. (+LOOPY) increments the loop Index by the increment value. Note that this value can be either positive or negative.

3. (+LOOP) performs a signed comparison of the newly calculated loop Index and the loop Limit.

4. (+LOOP) executes a branch back to the "DO" portion of the structure until the Index is either equal to or greater than the Limit
when incrementing by a positive value or when the Index is greater than the Limit when incrementing by a negative value.

When either of these conditions occur, the Index and Limit are dropped from the return stack and execution continues with the word
after the DO +LOOP .

(+LOOP) differs from (LOOP) only in that the increment value is provided on the top of the parameter stack instead of defaulting to a
value of 1. Therefore, the code for (+LLOOP) simply picks up the increment value from the parameter stack and jumps into the (LOOP)
routine immediately after (LOOP) defaulted to an increment value of 1. (Note that this refers to the 8080 fig-FORTH Version 1.1 and
differs from the fig-Model.)

Refer to +LOOP for a more high level description of the action of a DO +LOOP structure.
* At entry - The top of the parameter stack contains a signed 16-bit single precision increment value. Note that this value

may be negative. The top of the return stack contains the signed 16-bit Index value. The second return stack entry
contains the 16-bit signed Limit value.

* At exit to DO portion of loop - No parameter stack parameters. The return stack contains the current Index value in the
top entry and the original Limit value in the second entry.

* At exit from DO #.OOP - No parameter stack parameters. The Index and Limit values are dropped from the return
stack.

(+LOOP) is a low level code primitive.
Refer to +LOOP , DO, and (LOOP) .

FORTH-79: There is no FORTH-79 equivalent for (+LOOP) .

8080 fig-FORTH
Version 1.1

(+LOOP) Note this differs from
the fig-Model.
Pop increment value

from top of parameter
stack.

JMP XLOO1 Refer to (LOOP).

Note this is an entry
point in the code for
(LOOP) as mentioned in
description of (+LOOP) .

12

GCoDB) () (;CODE)

(;CODE) (pronounced "paren-semicolon-code") is a word normally used during Sequence 2 compilation. Its purpose is to compile the
beginning address of the assembly language code (which must physically immediately follow (;CODE)) into the Code Field of the
definition being compiled.

(;CODE) is actually the run time procedure for ;CODE . ;CODE is usually executed at Sequence 1 when defining a "parent" word. The
"parent" defining word is then executed at Sequence 2 time to create "child" definitions.

Refer to ;CODE for a complete description of this "parent"/"child" relationship and the use of ;CODE .

* At entry - No parameter stack parameters. The top of the return stack contains the address of the machine language code
to be executed. The second ward on the return stack contains the address of the procedure that control should be returned
to after execution. Note this is the reason that definitions ending in ;CODE (assembly language) do not need to be ended
with a ;.

* At exit - No parameter stack parameters. The two return stack parameters are dropped from the return stack.
{(;CODE) is a high ievei colon definition.
Refer to ;CODE .
FORTH-79: There is no FORTH-79 equivalent for (;CODE) .

Definition: : (3;CODE) (--)
{ R LATEST PFA CFA !

1

DOCOL (Run time portion of NOTE: In this case, the
:) Save IP and next IP position will
start interpreting be the beginning
this definition. address of the machine

| code to be executed.
|
R> Place the top of the i.e., Get address of
return stack onto machine code.

the top of the
parameter stack.

LATEST Put Name Field
Address of topmost
word in CURRENT
vocabulary onto the
top of the parameter
stack.

PFA Convert Name Field
Address to Parameter,
Field Address. Leave
result on top of
parameter stack.

CFA Convert Parameter
Field Address to
Code Field Address.
Leave on top of
parameter stack.

l

! Store the specified Store the beginning
value into the machine code address
specified memory into the Code Field
location. Address of the "latest"

defined word.

35S (Run time portion of NOTE: In this case, the
; -) Stop interpret- calling procedure
ing this definition returned to is the
and return to the second entry of the
calling procedure. return stack since the

machine code address
was the first.

(ABORT)

(ABORT) (all stack values —)

(ABORT) (pronounced "paren-abort") is an intermediate word used between ERROR and ABORT . It is normally executed when
WARNING is negative and simply performs an ABORT .

(ABORT) is intended to be the '"hook" for application error routines. Replacing the CFA for ABORT with that of a user defined error
routine and setting WARNING to -1 allows the user routine to "get control" when an error occurs.

* At entry - The parameter and return stacks may contain any values.

* At exit (If an ABORT was executed) - Both stacks will be cleared and the system will be set to the execution state. Refer
to ABORT .

* At exit (If an ABORT was not executed) - Both stacks are unchanged and no action was taken.
(ABORT) is a high level colon definition.
Refer to ABORT , WARNING , and ERROR .
FORTH-79: There is no FORTH-79 equivalent for (ABORT) .

Definitions : (ABORT) (--)
ABORT H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

ABORT Reset stacks, put Note: ABORT executes
system in execution QUIT so control does
state, display not really return to
starting message on the caller!
the screen.

I
;S (Run time portion of

; ») Stop interpret-
ing this definition
and return to the

calling procedure.

14

(DO)
(0O) (Limit \ Index —)

(DO) (pronounced "paren-do") is the execution time (Sequence 3) procedure for DO . During compile time (Sequence 2), DO compiles the
CFA (Code Field Address) of (DO) into the definition being created.

The purpose of (DO) is to initialize a DO-LOOP structure for execution. It does this by transferring the user supplied Limit and Index
values from the parameter stack to the return stack. The Limit and Index values can then be accessed by the run time procedures
(LOOP) and (+LOOP) .

For example:

PARAM RETURN PARAM RETURN
STACK STACK STACK STACK
Index n3 nl Index
Limit n4 n2 Limit
nl n3
nZ né
Before After
Execution Execution
Of (DO) Of (DO)

Naote that the Index is the top value both on the parameter stack and on the return stack.
Also note that when the loop completes, (LOOP) or (+LOOP) have removed the Index and Limit from the return stack.

* At entry - The top of the parameter stack contains a signed 16-bit single precision Index (or Initial) value. The second
stack entry contains a signed 16-bit single precision Limit value. (Refer to DO .)

% At exit - The two parameters, Index and Limit, have been transferred to the return stack in the same order they appeared
on the parameter stack.

(DO) is a low level code primitive.
Refer to DO, LOOP , +LOOP , (LOGP) , and (+LOOP) .

FORTH-79: There is no FORTH-79 equivalent for (DO) .

(DO)
8080 fig-FORTH
Version 1.1.

Pick up return stack

pointer.
1

|

Decrement pointer to
make room for two
more entries.

l

Save new pointer
value.

Pop Index value from
-|parameter stack.

Store it onto top of
return stack.

Pop Limit value from
parameter stack.

Store it as second
entry on return
stack.

15

(FIND)

(FIND) Successful - string addr\ NFA — PFA\ length\ true flag)
(FIND) Unsuccessful - (string addr \ NFA — false flag)

{FIND) (pronounced "paren-find") performs a dictionary search starting from a specified Name Field Address. (FIND) then lrobs for a
match on the character string pointed to by the second stack word. (FIND) will search an entire "branch™ of the vocabulary cict! V
"inwardly" toward the "trunk". The search stops when a 0 Link Field is encountered; usually, but not necessarily at the end of the FOR H
vacabulary.

* At entry - The top of the parameter stack contains a 16-bit address pointer to the length byte (i.e., the first byte) of a
Name Field in the dictionary. The second stack entry contains a pointer (NFA) to the character string to be used for
comparison. The first byte of this string contains the length of the following string.

* At exit - Successful - The top of the parameter stack contains a boolean true flag (1). The second stack entry contains the
byte length of the Name Field (with the MSB set denoting the length byte). The third stack entry contains a 16-bit address
pointer (PFA) to the Parameter Field of the "found" dictionary entry.

* At exit - Unsuccessful - The top of the parameter stack contains a boolean false (0) flag.

(FIND) is a low level code primitive.
Refer to FIND , and VOCABULARY .

FORTH-79: There is no FORTH-79 equivalent for (FIND) .

(PFINI) (FIND))

ICompare field lengths. 8080 fig-FORTH
Version 1.1
N (Variable Length
Names)
Y
(PFIN2) Pop starting Name
Lengths are equal so Field Address.
perform char by char
comparison.
(PFIN3)
Increment to end of Pop beginning
Name Field and chain to address of character
next definition. string to match on.

N Push (save)
beginning character
string address for
future comparison.

At end
of dictionary
?

Set up "found" Set up "not found" I
parameters. parameters. Pick up length byte
from dictionary Name
& Field.
Compare Name Field
length with
NEXT comparison field

length.

Are
lengths
=7

Figure (FIND)-1
High Level Flowchart of (FIND)

The lengths were not
Each box roughly corresponds to the curly bracket comments in Y equal. Go chain to
the low level flowchart. another Name Field.

16

PFIN2

Aim at next char-
acter in Name Field.

|

Aim at next char-
acter in comparison

string.
I

Compare characters
(ignoring end of
string bit (MSB)).

Are
characters

Add 5 to Name Field
Address to obtain
Parameter Field
Address.

Replace top of the
parameter stack with
calculated Parameter
Field Address.

]

Backup 1 byte in
Name Field character

string.

L.ength
field flag
set ?

Y

Pick up the length

byte.

This is the entry point
to loop back and
compare another
character.

The lengths were equal,
so perform a character
by character
comparison.

NOTE: fig-FORTH
dictionary entries have
MSB set to denote last
character of Name
Field.

PFIN3

No match, so exit from

loop.
PFIN2

No match so far so
continue looping and
look at the next
character in the Name
Field.

Have successfully

compared all characters

in the Name Field.

i.e., Found a

successful match. Set

up return parameters
{and exit.

(This will be the third
stack entry upon exit.)

Now back up through
Name Field until aiming
at length byte.

NOTE: In the fig-
FORTH dictionary, the
MSB of the length field
is set to 1.

(This will be the
second stack entry upon
exit.)

Set truth flag as

(This is the top of the

true (1). stack entry upon exit.)
DPUSH Push length onto
parameter stack.
HPUSH Push truth flag onto
stack.
NEXT

No match on that Name
Field, so increment to
the end of the current
Name Field, pick up the
link to the next
definition, loop back
and continue comparing.

Increment to end of
Name Field.

character.

Aim at next

[Get character. J

i.e., Most significant
bit set?

Increment end of
Name Field pointer
by 1 so now aiming
at Link Field.

1

Pick up link to next
dictionary entry.

i.e., Get next Name
Field Address.

End

?

dictionary

of

N
PFIN1

0 Link Field denotes

Y end of dictionary

thread.

Have reached the end of
the dictionary without

a successful comparison.
Set up "not found"
parameters and exit.

Discard address of
character string to
compare on.

17

18

Set truth flag as
false (0).

(Top of stack entry at
exit.)

Push truth flag onto
parameter stack.

(LINE)

(UINE) {line # \ screen # — beq line addr \ line length)

(LINE) (pronounced "paren-line") converts a specified line number and screen number into the disk buffer address of the specified line.
The value for the line length used is also returned. The specified screen is read into memory if necessary. (LINE) is used by .LINE to set
up parameters for TYPE .
(LINE) performs three basic functions:

1. (LINE) calculates what block the line is in within the screen.

2. (LINE) then calculates the absolute block number.

3. (LINE) then executes BLOCK and calculates the memory address of the line.

* At entry - The top of the parameter stack contains a signed 16-bit single precision value specifing the screen number to be
used. The second stack entry contains a signed 16-bit single precisicn value specifying a line within the screen.

* At exit - The top of the parameter stack contains the signed 16-bit single precision byte count of the specified line. The
second stack entry contains the 16-bit beginning memory address of the specified line. Trailing blanks are included. Use

-TRAILING to suppress trailing blanks.

(LINE) is a high level colon definition.

Refer to .LINE .

FORTH-79: There is no FORTH-79 equivalent for (LINE) .

Definition: (LINE) (line # \ screen # -- beg line addr \ line length)
SR C/L B/BUF */MOD R> B/SCR * + BLOCK + C/L
Calculate the block
number containing the
specified line.

DOCOL (Run time portion of | —_
s) Save IP and R> Remove top most Retrieve specified
start interpreting value from return screen number.
this definition. stack and place it

onto top of
parameter stack.

>R Remove the top entry| Temporarily save the
of the parameter screen number. I
stack and place it B/SCR Place the constant Put the number of
onto the top of the value named B/SC blocks per editing
return stack. onto the top of the screen onto the top of

parameter stack. the stack.
1
réalculate the relative I
block number of the * Multiply the top two Blocks per screen *
line within the screen. values on the specified screen number
parameter stack. = beginning block
— number.

C/L Place the constant Put the characters per
value named C/L line onto the top of
(40H) onto the top the stack. Set up for + Add the top two Beginning block number
of the parameter */MOD . values on the + relative block number
stack. parameter stack. within screen =

I absolute block number.

B/BUF Place the constant Put number of bytes per
value named B/BUF disk buffer onto the BLOCK Replace the block Go get the address of
onto the top of the top of the stack. Set number on the top of the calculated absolute
parameter stack. up for */MOD . the parameter stack block number.

with the beginning
memory address of

*/MOD Multiply the 2nd and (Line length * line the block. Read the
3rd parameter stack number)/number of block in from disk
values and divide bytes per buffer = if necessary.

their result by the
value on the top of
the stack. Replace
these values with
the quotient as the
top of the stack and
the remainder as the
2nd entry.

relative block number
within screen.

19

C/lL

Add the top two
values on the
parameter stack.

Place the constant
value named C/L
(40H) onto the top
of the parameter

stack.
I

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Calculate the beginning
address of the line.

Absolute block address
+ remainder from
division (i.e., byte
displacement of
specified line) =
absolute address of
specified line and
screen.

Put the line count
(length) used onto the
stack. This sets up the
count for an eventual
TYPE .

(LOOP)

(oopP) (-)

(LOOP) (pronounced "paren-loop") is the execution time (Sequence 3) procedure for LOOP . During compile time (Sequence 2), LOOP
compiles the CFA of (LOOP) into the definition being created.

The purpose of (LOOP) is to serve as the run time end of a DO-LOOP structure by performing the following functions:
1. (LOOP) increments the loop Index by 1.
2. (LOOP) performs a signed comparison on the newly caleulated loop Index and the loop Limit.

3. (LOOP) executes a branch back to the "DO" portion of the structure until the Index is either equal to or greater than the
Limit. When this condition occurs, the Index and Limit are dropped from the return stack and execution continues ahead.

(LOOP) only differs from (+LOOP) in that the increment value defaults to 1 in (LOOP) instead of the increment value being provided on
the top of the stack as for (+LOOP) .

Refer to LOOP for a more high level description of the action of a DO-LOOP structure.

* At entry - No parameter stack entries. The top of the return stack contains the 16-bit signed Index value. The second
return stack entry contains the 16-bit signed limit value.

* At exit to DO portion of loop - No parameter stack entries. The top of the return stack contains the 16-bit signed current
Index value. The second return stack entry contains the 16-bit signed original Limit value.

* At exit from DO-LOOP - No parameter stack parameters. No return stack parameters.
(LOOP) is a low level code primitive.
Refer to LOOP , DO, 1, and (+LOOP) .
FORTH-79: There is no FORTH-79 equivalent for (LOOP) .

((LOOP)) Is

~1 8080 fig-FORTH increment Y [Subtract Index from
Version 1.1. value a Limit (LIMIT-INDEX).
negative
Set increment value #?
equal to 1. N

Subtract Limit from
This is the entry point Index (INDEX-LIMIT).
for (+LOOP) . (The
specified increment
value has been popped

off of the parameter

Is
result
negative ?

BRANCH

stack.)
Index is not > to Limit
N for positive increment
Pick up return stack values, or > Limit for
pointer. neqative increment
I values
Continue looping using
Get Index off of top offset branch value
of return stack. pointed to by IP.
I (Refer to flowchart for
BRANCH).
.Increment Index by Else, clean up return
increment value. stack and exit
l DO-LOOP.
Store incremented Update return Now done with loop.
Index value back at pointer to point "Drop" Index and Limit
top of stack. past Index and from return stack.
[Limit.
Aim at Limit value
(2nd item on return Increment IP to
stack). point at next
dictionary entry
after the branch
offset.

(NUMBER)
(NUMBER) (double number \ string addr — double number\ char addr)

(NUMBER) (pronounced "paren-number") converts a string of ascii text beginning at the specified address plus 1 (e.g., the length byte or
decimal point is skipped over) into a double precision value of the radix specified in BASE . (NUMBER) is used primarily by NUMBER .

The user variable DPL is incremented to reflect the number of digits encountered to the right of the decimal point, provided that DPL
has been set to a value other than -1 {refer to NUMBER).

* At entry - The top of the parameter stack contains the 16-bit address of the ascii character string to convert. The first
byte of the character string is ignored.

The second and third entries on the parameter stack contain a 32-bit double precision value (the most significant word
being the second entry) into which the converted number is accumulated. This value should be O initially, but will be
shifted left one digit in the radix when the next digit is converted.

* At exit - The top of the parameter stack contains a 16-bit address which points to the first non-convertible character
encountered.

The second and third stack entries contain the converted 32-bit unsigned double precision value. The second stack entry
contains the high order portion of the value. The third stack entry contains the low order portion.

(NUMBER) is a high level colon definition.
Refer to NUMBER ,
FORTH-79: The FORTH-79 equivalent for (NUMBER) is CONVERT .

Definition: : (double number\ string addr — double number \ char addr)

BEGIN 1+ DUP >R ca BASE @ DIGIT
WHILE SWAP BASE @ U* DROP ROT BASE @ U*
D+ DPL @ 1+ IF 1 DPL +! THEN
R>
REPEAT R 3
|
@ Replace the address Pick up the current
on the top of the numeric conversion
parameter stack with base. Set up for
DOCOL (Run time portion of the 16-bit memory DIGIT .
:) Save IP and contents of that
start interpreting address.
this definition.
DIGIT Convert the ascii A true flag and the
BEGIN Entry point for the character in the 2nd converted number will
. following BEGIN- parameter stack be left if conversion
{ PNUML WHILE-REPEAT entry to its binary is successful; else,
structure. equivalent using the only a false flag is
value on the top of left.
— the stack as a base
1+ Increment the value First pass through--Aim value.
on the top of the past the character
parameter stack by string's length byte.
1. WHILE Is
All other passes-- truth flag
Increment to next =07
digit. Branch past the
N "repeat" portion of the
structure if conversion
DUP Duplicate the top Duplicate the address was unsuccessful (i.e.,
value on the so it can be exit from loop).
parameter stack, temporarily saved.
Conversion was
>R Remove the top entry] Temporarily save the successful, so continue
from the parameter digit address. (Will and multiply the most
stack and place it later retrieve it just significant portion.
onto the top of the before branching back
return stack. to the 1+). —
l - SWAP Swap the top two Put the most
values on the significant numeric
ca Replace the address Pick up a character to parameter stack. word onto the top of
on the top of the convert. Set up for the stack (is double
parameter stack with{ DIGIT . precision number).
the 8-bit memory NOTE: This puts digit
contents of that as the low order
address. portion of the
[multiplicand.
BASE Place the address of Set up to get base
the user variable value, BASE Place the address of Set up to get base
BASE onto the top of the user variable value.
the parameter stack. BASE onta the top of
22 | the parameter stack.
L]

@

U*

DROP

ROT

BASE

U=

DPL

Replace the address
on the top of the
parameter stack with
the 16-bit memory
contents of that
address.

Perform an unsigned
multiplication using
the top two parameter
stack entries. Leave
a double precision
product.

Drop the topmost
value from the

parameter stack.

Bring the 3rd
parameter stack
entry to the top of
the stack.

Place the address of
the user variabie
BASE onto the top of
the parameter stack.

l

Replace the address
on the top of the
parameter stack with
the 16-bit memory
contents of that
address.

Perform an unsigned
multiplication using
the top two
parameter stack
entries. Leave a
double precision
product.

Perform a double
precision addition

of two double
precision numbers on
the top of the

parameter stack.

Place the address of
the user variable

DPL onto the top of
the parameter stack.

Pick up the current
numeric conversion
base. Set up for U* .

Multiply the previously
converted digit by the
base value.

Drop the most
significant word of the
previous U¥ .

Now multiply the least
significant portion.

o2

Bring the least
significant portion of
the final double
precision number to the
top of the stack.

Set up to get base
vaiue.

Pick up the current
numeric conversion
base. Set up for U* .,

Multiply the least
significant portion of
the final double
precision number by the
base.

Add the result of the
above U* to the final
double precision
number.

Set up for IF . Ask the
question: "Was a
decimal point
encountered?"

Set up to determine if
a decimal point was
encountered by
NUMBER .

p—

@

1+

DPL

THEN

{Crm—

Replace the address
on the top of the
parameter stack with
the 16-bit memory
contents of that
address.

Add 1 to the value
on the top of the
parameter stack.

Is
truth flag
=07

Place the constant
value 1 onto the top
of the parameter

stack.
I

Place the address of
the user variable

DPL onto the top of
the parameter stack.

Increment the memory
location pointed to
by the top parameter
stack entry by the
value in the 2nd

stack entry.

Remove the top value
from the return

stack and place it
onto the top of the
parameter stack.

Pick up the contents of
DPL..

If DPL was -1 (i.e., no
decimal point), make
the truth flag 0
(false). If it was 0
(i.e., was a decimal
point), make it 1
(true).

Branch around the "true
portion" of IF
statement.

Branch if a decimal
point was not
encountered.

A decimal point was
encountered. Increment
DPL to point to one
more digit to the right

~F &

of the decimal point. |

—

Set up to increment
DPL.

Increment DPL to
reflect that one more
digit was encountered
to the right of the
decimal point.

Entry point from
“false" branch of
previous IF statement.
(i.e., No decimal
point)

Retrieve the digit
address so can pick up
next character.

REPEAT

: PNUMB2

24

Iaanch.

1

v

Remove the top value
from the return

stack and place it
onto the top of the
parameter stack.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

PNUMB1

Branch back to "begin"
portion of this
structure and continue.
(i.e., Loop back and
convert the next
character.)

Entry point from "while"
portion of this
structure.

NOTE: At this point
conversion was halted
because a
non-convertible
character was
encountered.

Retrieve the digit
address which in this
case points to the
non-convertible
character.

* (valuel \ value2 -- single product)
* (pronounced "times") multiplies two signed single precision values and replaces them with their signed single precision product.

* is simply a M* followed by a DROP to make the result a single precision value. (Note this differs from the fig-Model. The mode! uses
U* which is an unsigned multiply.)

* At entry - The top of the parameter stack contains a signed 16-bit value to be multiplied by the signed 16-bit value in the
second stack entry.

* At exit - The top of the parameter stack contains the signed 16-bit single precision product of the input multipliers.
* is a high level colon definition.
Refer to M* |
FORTH-79: The FORTH-79 equivalent for ¥ is ¥,

Definition: : % (valuel \value? -- single product)
M* DROP H

€
8080 fig-FORTH
Version 1.1

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

|

M* Multiply two signed Get an intermediate
single precision double precision
values and replace product.

them with their
double precision

product.

DROP Drop the top value Convert the product to
from the parameter single precision.
stack.

3S (Run time portion of

3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

*/
*/ (multiplier \ multiplicand \ divisor — quotient)

*/ (pronounced "times-divide") performs a multiplication and then a division of three 16-bit signed single precision values according to
the algebraic statement (valuel * value2) / value3. A 16-bit signed single precision quotient is the output of this operation.

Logically */ is the same as the sequence:
valuel value?2 * value3 /

but */ carries the result of the multiplication as a 32-bit signed double precision intermediate result. This allows greater accuracy than
if a single precision intermediate product was used.

The basis of */ is ¥*/MOD . */ drops the remainder generated by */MOD . If a remainder is desired, use */MOD .

* At entry - The parameter stack contains three 16-bit signed single precision values. The second and third stack entries
are to be multiplied together with the resulting product divided by the 16-bit signed single precision value on the top of
the parameter stack.

* At exit - The top of the parameter stack contains a 16-bit signed single precision quotient.

*/ is a high level colon definition.
Refer to */MOD .
FORTH-79: There is no FORTH-79 equivalent for */ .

Definition: : */ (multiplier\ multiplicand \ divisor -- quotient)

*/MOD SWAP DROP H

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

*/MQD Multiply two single Perform the multi-
precision values and plication, then the
divide their product division, and leave a
by a single remainder and quotient,
precision value.

I

SWAP Swap the top two Set up for DROP . Bring
values on the the remainder to the
parameter stack. top of the stack.

I

DROP Drop the top value Drop the remainder,
from the parameter leaving only the
stack. quotient.

;S (Run time portion of
; +) Stop interpret-
ing this definition
and return to the
calling procedure.

26

*/MOD

#/MOD (multiplicand \ multiplier \ divisor — remainder \ quotient)

*/MOD (pronounced "times-divide-mod") performs a multiplication and then a division of three 16-bit signed single precision values
according to the algebraic statement (valuel * value2) / value3.

—~

Both a 16-bit rigned single precision quotient and a 16-bit signed single precision remainder (hence the "MOD" in the name) are the
output of this operation.

Lagically */MOD is the same as the sequence:
valuel value2 * value3 /

but */MOD carries the result of the multiplication as a 32-bit signed double precision intermediate result. This allows greater accuracy
than if a single precision intermediate product was used.

*/MOD is arithmetically identical to */ except %/ drans the remainder.

i ne T s

* At entry - The parameter stack contains three 16-bit signed single precision values. The second and third stack entries
are to be multiplied together with the resulting product divided by the 16-bit signed single precision value on the top of
the parameter stack.

* At exit - The top of the parameter stack contains the 16-bit signed single precision quotient. The second stack entry
contains a 16-bit signed single precision remainder.

*/MOD is a high level colon definition.
Refer to */ .

FORTH-79: The FORTH-79 equivalent for */MOD is */MOD .

Definition: : */MOD (multiplicand\ multiplier\ division -- remainder\ quotient }
SR M* R> M/ H

*/MOD

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

>R Remove the top value] Set up for M*,
of the parameter Temporarily save the
stack and place it divisor on the return
onto the top of the stack.
return stack.

M* Multiply two single Perform the (valuel *
precision values and value2) portion of the
replace them with operation.
their double
precision result.

I

R> Remove the top value] Set up for M/ .
of the return stack Retrieve the divisor
and place it onto from the return stack.
the top of the
parameter stack.

M/ Divide a double Perform the division
precision value by a leaving a remainder and
single precision a quotient.
value.

;S (Run time portion of
s .) Stop interpret-
ing this definition
and return to the
calling procedure.

27

+

+ (valuel \ value2 — value)

+ (pronounced "plus") adds the top two 16-bit signed numbers on the parameter stack and replaces them with their 16-bit signed sum.
Note that generation of a carry goes unnoticed.

* At entry - The top and second entries of the parameter stack contain the signed 16-bit single precision values to be
added.

* At exit - The top of the parameter stack contains the signed 16-bit single precision sum of the two values.

+ is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for + is + .

8080 fig-FORTH

Version 1.1.
[Pop first value . J
[Pop second value.
rAdd the two values. [
HPUSH Push sum back onto top

of parameter stack.

NEXT

28

+!

£ (value \address —)

+! (pronounced "plus-store") adds the 16-bit value contained in the second parameter stack entry to the 16-bit memory word addressed via
the entry on the top of the stack.

This is a commonly used method of incrementing counters kept in memory.
HOLD is an example of a word that uses +.

* At entry - The top of the parameter stack contains the address of a 16-bit memory word to be used as an accumulator.
The second stack entry contains the signed 16-bit single precision value to be added to the word in memory.

At exit - No parameters. The word in memory contains the sum of its previous contents and the specified value.
+! is a low level code primitive.

FORTH-79: The FORTH-79 equivalent of +l is +1 .

8080 fig-FORTH

@ Version 1.1

Pop "accumulator
word" memory
address.

i—P-op increment value.J
[

[PGd low order bytes;l
!

Store low order
total into memory.

I

Add high order bytes
with carry.

Move high order
total to memory.

+—

+- (value to have sign set \ value whose sign is used — value whose sign is set)

+- (pronounced "plus-minus") negates the sign of the second stack value if the sign of the top stack value is negative. The top value is
then dropped.

The following truth table describes the osutcome of all possible combinations:

Second Top of !
Entry Stack ' Results
+ V2 +V1 r - —+VZ —————
+V2 -vi ; -2
-V2 +V1 : -V2
-V2 -1 : +V2

ABS is an example of a word that uses +- .

* At entry - The top of the parameter stack contains a signed 16-bit single precision value. The second stack entry contains
the 16-bit signed single precision value which is to have its sign bit set.

* At exit - The top of the parameter stack contains the value originally in the second stack entry. The sign of this 16-bit
signed value is set according to the truth table. The original top of stack value is dropped.

+- is a high level colon definition.
Refer to ABS , and D+- .
FORTH-79: There is no FORTH-79 equivalent for +- .

Definition: : +- (value\ signed value -- signed value)

®K F MNUS THEN ;

top of the parameter

(Run time portion of

MINUS Negate (two's
complement) the
16-bit value on the

DOCOoL (Run time portion of
:) Save IP and stack.
start interpreting
this definition.
l THEN
K Replace the value on Set up for IF . Branch .
the top of the and do not negate the
parameter stack with second value if the top
a true flag (1) if value is positive. ;S
it is less than O, ; .) Stop interpret-
else leave a false ing this definition
flag (0). and return to the
calling procedure.
IF Is
truth flag
=07

Top of parameter stack
N was positive so branch
around "true portion"
of IF structure.

Set the "second" stack
value to minus.

Entry point from "false
branch" of previous IF
structure.

+BUF

(buffer address — next buffer address \ flag)

+BUF (pronounced "plus-buff") advances the specified buffer address to the address of the next buffer.

The action of +BUF is directly related to the physical arrangement of the buffers in a FORTH system.

A system normally contains several buffers. (Refer to Figure +BUF-1.) Each buffer con

+ BUF

sists of a one word header, a data portion, and a
D)

terminator word. The header contains the biock number and an “update” fiag in the high order bit {see UPDATE). The length of the data
body is specified by the constant B/BUF . The terminator word consists of nulls and is used to flag the interpreter that the end of the
block has been reached.

These buffers are located in memory as a physically contiguous buffer array. While the buffers are physically contiguous, they are
logically treated as a "circular" array. A reference to +BUF always returns the address of the next buffer in the circular array.

* At entry - The top of the parameter stack contains the 16-bit address of the beginning of a buffer.

* At exit - The top of the parameter

that stored in PREV . The flag is true (not 0) if the returned address does not equal that in PREV .

used by BLOCK to determine when ail buffers have been scanned for the desired block number.) The second stack entry
contains the 16-bit address of the next buffer in the "logically circular” buffer array.

+BUF is a high level colon definition.

Refer to BLOCK , PREV , UPDATE , and BUFFER .

FORTH-79: There is no FORTH-79 equivalent for +BUF .

Definition:

Update bit

e

IF DROP FIRST

sBUF (buffer address — next buffer address \flag)
B/BUF 4 + + DUP LIMIT =
DUP PREV @ - H

WBiock number

LOW MEMORY

— =
Address
contained
within
FIRST .

L

+BUF causes
buffers to
be scanned
as if they
were a
circular
string.

L

Data Area
Length=B/BUF

Note: the Block
numbers and Terminator
Flags are not included
in the data area length.

Terminator Flag

BUFFER 2

I 0000

Number of buffers is
system dependent.

I

BUFFER 3

| 0000

I

BUFFER 4

I 0000

HIGH MEMORY

Address contained

| |<=

-__/

within LIMIT .

Figure +BUF -1
FORTH Buffer Structure

B/BUF

LIT
04

DUP

THEN

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the constant
value B/BUF (bytes
per buffer) on the
top of the parameter
stack.

Place the literal
value 4 onto the top
of the parameter
stack.

Add the top two
stack values and
replace them with
their signed sum.

Add the top two
stack values and
replace them with
their signed sum.

l

Duplicate the top
value on the
parameter stack.

stack contains a boolean flag which is false (0) if the returned buffer address equals
(This flag is primarily

8080 fig-FORTH
Version 1.1

—
Set up for +. B/BUF
specifies the length of

the data portion of a
buffer.

Set up for +. 4 must

be added to the buffer
length because of the
buffer's 2-byte block
number header and the 2
bytes of zeroes for a
terminator.

Compute the length of
one buffer.

Aim at the next
buffer.

Set up for =.
Duplicate the new
buffer address so it
can be compared with
LIMIT .

31

LIMIT Place the constant
value LIMIT (the
first memory
location past the
end of the buffer
array) onto the top
of the parameter

stack.
I

= Replace the top two
values on the
parameter stack with
a true flag (1) if

they are equal or a
false flag (0) if

they are not equal.

Is
truth flag
=07

DROP Drop the top value
from the parameter
stack.

FIRST Place the constant
value FIRST (the
beginning address of
the first buffer in
the buffer array)
onto the top of the
parameter stack.

THEN

o

DUP Duplicate the top
value on the
parameter stack.

PREV Place the address of
the system variable
PREV onto the top of
the parameter stack.

®

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

32

Set up for =. If the
new buffer address
equals this address,
the buffer "limit" has
been reached.

Determine if the new
buffer address has been
incremented past the
end of the buffers.

_

Test if have
incremented past the
physical end of the
buffers.

PBUF1

Branch around "true
portion" if the LIMIT
has been reached.

Drop the newly
calculated buffer
address since it points
past the end of the
buffers.

Loop back to the
beginning of the
buffers. This operation
is what makes the
contiguous buffers into
a "logically circular
string of buffers".

This is the entry point
from the "false branch"
of the previous IF .

Set up for - .
Duplicate the buffer
address so it can be
compared with that in
PREV.

Set up for @ . PREV
contains the address of
the most recently
accessed buffer.

Set up for - . Pick up
the buffer address
currently in PREV ,

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

(Run time portion of
3 +) Stop interpret-
ing this definition
and return to the
calling procedure.

Compare the new buffer
address with the most
recently accessed
buffer address. Leave a
false flag (D) if they

are equal and a true
flag (not 0) if they

are not. This flag is
primarily used by
BLOCK to determine
when all buffers have
been scanned for the
desired block number. _

+ LOOP

+.00P

COMPILE TIME: (loop address \ security check value —)
(Sequence 2)

EXECUTION TiME: { increment vaiue —)
(Sequence 3)

+LOOP (pronounced “plus-loop") is a compiler word and therefore exhibits two different sets of actions; those actions at compile time
and those at execution time.

+LOOP is used to end a DO-LOOP structure in conjunction with the word DO .

+LOOP may only be used within a colon-definition. Since +LOOP must be paired with a DO, DO leaves a 3 on the stack at compile time
(Sequence 2) and +LOOP checks for this value. Since no other conditional or looping words leave a 3 on the stack, failure to pair +LOOP
with a2 DO will cause an error condition to be signalled by ?PAIRS .

The apparent run time action (Sequence 3) of +LOOP is to increment the loop Index by the specified value and compare it with the Limit
value. This action is actually performed by (+LOOP) . If the increment value is positive, a branch back to the "loop body" of the loop
structure is executed if the Index is either larger than or equal to the Limit. If the increment value is negative, a branch back to the
"oop body" is executed if the Index is larger than the Limit. If a "loop" back is not executed, the Index and Limit are dropped from the
return stack and execution continues with the definition following +LOOP .

Note that +LOOP is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains a 16-bit single precision value used to provide compiler security. The
value 3 is left on the stack at compile time by DO . The second stack entry contains a 16-bit address specifying the entry
point of the DO portion (i.e., the beginning of the "loop body™) of the DO-LOOP structure.

* At exit - No parameters.

EXECUTION TIME (Sequence 3):

* At entry - (+LOOP) expects the top of the parameter stack to contain a 16-bit signed single precision increment value

which is added to the Index value. The Index and Limit values are expected to be on the return stack. Refer to

(+LOOP) .

* At exit - (+LOOP) drops the increment value from the parameter stack each time it is executed. It also drops the Index
and Limit values from the return stack when the DO-LCOP structure is exited.

LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) -~ This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

+LOOP is a high level colon definition.
Refer to (+LOOP) , DO, LOQOP , and (DO) .
FORTH-79: The FORTH-79 equivalent for +LOOP is +LOOP .

Definition: : +LOOP (loop address\ security check value-) (compile time parameters)
3 ?PAIRS COMPILE (+LOOP) BACK H IMMEDIATE

33

COMPLLE TIME action of +LOOP (Sequence 2): (loop address \ security check value —)

DocoL

?PAIRS

COMPILE

+LO0OP

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the constant
value 3 onto the top
of the parameter
stack.

Compare ¢l
values on the
parameter stack and
issue the specified
error message and
QUIT if the truth
flag in the second
entry is true
(non-zero)

top two

Compile the
execution address of
the following word
into the dictionary.
The word is not
executed at this

(compile) time.

(+LOOP)

BACK
A +L.LOOP with a
corresponding DO will
result in a 3 on the
stack, so check for it.

Set up for 2PAIRS . |

Issue Error Message 13H
(CONDITIONALS NOT
PAIRED) if top two
values not equal.
IMMEDIATE
NOTE: If an error
message is issued, a
QUIT will also occur
and execution will stop
here. _—

This puts (+£OO0P) into
the definition being
compiled.

EXECUTION TIME action of +LOOP (Sequence 3): (increment value —)

Refer to (+LOOP) for the RUN TIME action of +LOOP .

Execution time
portion of +LOOP .
Increment the Index
by the specified
value and test for
loop completion,

Calculate the
relative branch
offset from HERE to
the specified
address and compile
it into the
definition.

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

(+LOOP) is compiled
into the definition.

—

The address left by DO
is used to calculate a
return branch offset.
This offset is then
compiled into the
definition and
referenced by (+LOOP)
at execution time.

+LOOP is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

+ ORIGIN

+ORIGIN
COMPILE TIME (Sequence 2): (—)
EXECUTION TIME (Sequence 3): (offset -- address)

+ORIGIN (pronounced "plus-origin") is a compiler word and therefore exhibits two different sets of actions; those actions at compile time
and those at execution time.

+ORIGIN is used to obtain the address of a particular start-up parameter located within the "origin parameters".

The "ORIGIN" is a location in the FORTH system that marks the beginning of a series of parameters primarily used to initialize the
system (see COLD).

The following list of parameters, taken from the 8080 fig-FORTH Version 1.1 listing, are used to initialize the user variables:

OFFSET PARAMETER DESCRIPTION
8] SO Initial parameter stack pointer address.
2 RO Initial return stack pointer address.
4 TiB Terminal Input Buffer address.
3 WIDTH The number of characters saved in a Name Field.
8 WARNING The flag denoting error message status.
10 FENCE The address below which the dictionary cannot be forgotten.
12 DP The next available dictionary location.
14 VOC-LINK The pointer to the last chronclogically added vocabulary (FORTH at start up).
By supplying +ORIGIN with & byte offset (or word offset on word addressable machines), the address of a specific parameter can be

obtained.

COMPLLE TIME (Sequence 2):
* At entry - No parameters.
* At exit - No parameters.
EXECUTION TIME (Sequence 3}:
*# At entry - The top of the parameter stack contains a signed (best to be positive though) single precision offset vaiue.
* At exit - The top of the parameter stack contains the 16-bit address of the specified origin parameter.
+ORIGIN is a high level colon definition.
Refer to COLD and the user variables S0 , R0, TIB, WIDTH , WARNING , FENCE , DP , and VOC-LINK .
FORTH-79: There is no FORTH-79 equivalent for +ORIGIN .

Definition: : +ORIGIN (offset -- address) (execution time)
ORIGIN + H

35

COMPILLE TIME action of +ORIGIN (Sequence 2): { —)

This compile time action of +ORIGIN is shown because of the odd way the FORTH fig-Model provides the origin area address at

compilation time.

DocoL

LITERAL

Place the constant
value 0 onto the top
of the parameter
stack.

+ORIGIN

(Run time portion of
:) Save IP and

start interpreting
this definition.

Compile the value on
the top of the
parameter stack into
the definition
preceded by a LIT .

Add the top twa
stack values and
replace them with
their signed sum.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Place the ORIGIN
parameter area address
(0 in this example)
onto the top of the
parameter stack while

compiling.

Compile the ORIGIN
address into the
dictionary.

When +ORIGIN is
executed, add the value
on the top of the
parameter stack to the
origin address.

EXECUTION TIME action of +ORIGIN (Sequence 3): (offset — address)

DOCOL

LIT
ORIGIN

+ORIGIN

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the literal
value ORIGIN (i.e.,
the address of
ORIGIN in this case)
onto the top of the
parameter stack.

Add the top two
stack values and
replace them with
their signed sum.

Get the beginning
address of the Origin
Parameter Area.

Add the offset to the
beginning address to
give the address of the
desired parameter.

;S

(Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

, (value —)

, (pronounced "comma") compiles (i.e., stores) the 16-bit value on the top of the parameter stack into the next available dictionary
location and advances the dictionary pointer.

, is the primary compiler word. This is the principle means of compiling a word into the dictionary {e.g., INTERPRET uses , to compile
definitions into the dictionary).

* At entry - The top of the parameter stack contains the value to be stored into the dictionary.
* At exit - No parameters.
, is a high level colon definition.

Refer to INTERPRET .

FORTH-79: The FORTH-79 equivalent for, is,.
Definition: : ' (value --)

HERE ! 2 ALLOT ;

©

DOCOL (Run time portion of
:). Save IP and
start interpreting
this definition.

HERE Put address of next Set up for ! . —‘
available dictionary
location onto top of
parameter stack.

H Store the specified “Compile® the vaiue
value into the into the dictionary.
specified memory
location.

2 Put the constant 2 Allot 2 bytes for the
onto the top of the 8080 fig-FORTH Version
parameter stack. 1.1.

ALLOT Allot two memory Aim Dictionary Pointer
locations. (DP) past the word just

stored. _—

;S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

- (minuend\s\btrahend - difference)

- (pronounced "subtract" or "minus" in FORTH-79) is a signed single precision subtraction that subtracts the entry on the top of the stack
from the second stack entry and replaces both values with their difference.

The high level subtraction is performed by two's complementing the subtrahend and then adding the two values together.

*

At entry - The top of the parameter stack contains a signed 16-bit single precision value which is the subtrahend in the
subtraction. The second stack entry contains a signed 16-bit single precision value which is the minuend in the
subtraction.

At exit - The top of the parameter stack contains the signed 16-bit single precision difference between the two input
values.

- is a high level colon definition.

Refer to MINUS .

FORTH-79: The FORTH-79 equivalent for - is - .

Definition: : - (minuend\ subtrahend -- difference)

bDocoL

MINUS

MINUS + H

O

(Run time portion of
:) Save IP and

start interpreting
this definition.

Replace the value on Set up for +. Set up
the top of the for two's complement
parameter stack with "subtraction".

its two's complement.

Replace the top two Adding the two's
values on the top of complement of the

the parameter stack subtrahend to the

with their sum. minuend is the same as
subtracting an
uncomplemented
subtrahend from the
minuend.

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

- (=) —

--> (pronou~ned "next-block™) is used at the end of a text screen in place of ;S to force interpretation to continue on o the next
sequential soreen.

Note: It is not "legal" to continue a colon definition onto the next screen (i.e., a ; must terminate a definition before a --> is issued).

As a matter of programming style, it is often desirable to create a "load screen" which specifically loads each screen via LOAD (with
each LOAD followed by a comment describing the screen to be loaded) rather than loading multiple screens via --> . This makes it much
sasier to keep track of what is being loaded.

--> is an IMMEDIATE word since its purpose is to increment to the next screen during compilation. This means that its precedence bit is
set and it will therefore execute at compile time.

* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
USE ONLY WHEN LOADING (16H) -- This word should only be used when loading.
--> is a high level colon definition.
Refer to LOAD , and INTERPRET .

FORTH-79: --> is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

De finition: : -> (=)

2LOADING 0 IN! B/SCR BLK @ OVER MOD - BLK + H
IMMEDIATE
@ Replace the address Set up for MOD . Pick
on the top of the up the block number
parameter stack with currently being
DOCOL (Run time portion of the memory contents interpreted.
:) Save IP and of that address.
start interpreting —
this definition. |
OVER Copy the second Gst 5 copy of B/SCR —}
stack value onto the
?LOADING Issue Error Message Make sure the contents top of the parameter
16H (USE ONLY WHEN | of BLK is not 0 (i.e., stack.
LOADING) and QUIT if | input coming from
not loading. disk).
MGOD Divide the secona Get the remainder of
— 16-bit parameter the current block
1] Place the constant Set up for !. stack entry by the number divided by
value 0 onto the top entry on the top of blocks per screen. This
of the parameter the stack and is the relative block
stack. replace the two number from the
i values with the beginning of the
16-bit remainder of current screen.
IN Place the address of Set up to reset IN to the operation.
the user variable IN 0.
onto the top of the
parameter stack. - Subtract the top Set up for +. . Sub-
I 16-bit stack value tract this-remainder
from the second from B/SCR . The
! Store the specified Initialize IN to 0 so stack entry and difference is the
16-bit value into interpretation will replace the two number of blocks to the
the specified memory | begin at the first values with their beginning of the next
location. character of the block. | difference. screen.
I NOTE: The previous
B/SCR Place the constant By convention a screen B/SCR BLK @ OVER
value of the number is 1024 bytes long. The MOD - sequence is
of physical disk number of physical disk necessary because there
blocks per editing blocks (or sectors) may be more than one
screen onto the top composing a screen physical block per
of the parameter varies with each screen. Since the -->
\ga_ck. system. may occur any where on
the screen, a simple
increment to the next
BLK Place the address of Set up for MOD . BLK physical block will not
the user variable contains the block suffice. The beginning
BLK onto the top of number currently being block number of the
the parameter stack. interpreted. A zero next sequential screen
denotes terminal input. must be computed.

39

BLK

u‘;,

IMMEDIATE

Place the address of
the user variable

BLK onto the top of
the parameter stack.

Increment the
specified memory
location by the
specified value.

(Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the

definition.

Set up for +! . Aim at
BLK so it can be
incremented.

Aim BLK at the
beginning of the next
screen.

--> is a compiler word
and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile

the next screen.

-DupP

If zero: (valuel — valuel)

If non-zero: { valuel — valuel \ valuel)

-DUP (pronounced "dash-dupe™) duplicates the top of the parameter stack if its value is non-zero. For example:
0 -DUP will result in 0 being left on the stack.
102 -DUP will result in 102 102 on the stack.

* At entry - The top of the parameter stack contains a value to be duplicated.

* At exit - The value is duplicated if it is non-zero. In either case, the original value is on the top of the stack.

-DUP is a high level colon definition.

Refer to IF .

FORTH-79: The FORTH-79 equivalent for -DUP is ?2DUP ("query-dupe").

Definition: B -DUP (valuel — value 1 or value 1\ valuel)
DUP F DuUP THEN H

DOCOL (Run time portion of
:). Save IP and
start interpretin
this definition.

1

DUP Duplicate top of Duplicate value for
parameter stack. IF.

Ha Is
truth flag
=07?
Branch sround "true
portion" if value is 0.
DuUP Duplicate the top
value on the
parameter stack.
THEN Entry point from "false

. branch" of previous
. (MDUPO IF . Value was zero so

no duplication.

;S (Run time portion of
; «) Stop interpret-
ing this definition
and return to the
calling procedure.

-DUP

41

-FIND

-FIND
Successful: (— PFA\ length \ true flag)
Unsuccessful : (— false flag)

-FIND (pronounced "dash-find") reads a word from the input stream and then searches the CONTEXT and CURRENT vocabularies for a
definition whose name matches the input word.

The basis for -FIND is (FIND) .

* At entry - The next text word in the input stream (delimited by blanks) is used as the character string to search for. The
parameter stack contains no input parameters.

* At successful exit - The top of the parameter stack contains a true flag (1). The second entry contains the matching
definition's length byte. The third entry contains the matching definition's Parameter Field Address (PFA).

* At unsuccessful exit - The top of the parameter stack contains a false flag (0).
LIKELY ERROR MESSAGES:
? pronounced "HUH?" (0) -- The word in question cannot be found in the dictionary.
-FIND is a high level colon definition.

Refer to (FIND) , and WORD .

FORTH 79: The closest FORTH-79 equivalent to -FIND is FIND ,

Definition: : -FIND (- PFA\ length\ true flag)
(-- false flag)
@ Replace the 16-bit Aim at the top of the
address on the top CONTEXT vocabulary.
of the parameter Set up for (FIND) .
DOCOL (Run time portion of stack with the
:) Save IP and 16-bit contents of
start interpreting that memory
this definition. location.]
— l
BL Place the constant Set up delimiter value (FIND) Search the Search the CONTEXT
value (20H) for an for WORD . dictionary, vocabulary first.
ascii blank onto the beginning with the
top of the parameter specified address,
stack. looking for a match
I on the specified
character string.
WORD Input the next This moves the
"word" from the text character string being
stream and place the searched for to HERE . DUP Duplicate the value Duplicate the truth
character string at on the top of the flag left by (FIND) .
HERE . parameter stack. 1 = Found
I - 0 = Not Found
(The flag is duplicated
HERE Place the address of Set up for (FIND) by so that a copy of it
the next available placing the address of will remain after
dictionary location the text string being execution of the
onto the top of the searched for onto the following IF
parameter stack. stack. statement.)
l —
CONTEXT Place the address of CONTEXT contains an 0= Replace the value on Set up for IF . The
the user variable indirect pointer to the the top of the "true portion" of the IF
CONTEXT onto the top of the CONTEXT parameter stack with | statement will be
top of the parameter vocabulary. a true flag (1) if executed if no match
stack. its value is equal was found in the
to zero. Else, with CONTEXT vocabuiary.
a false flag (0), if
@ Replace the 16-bit Aim at a location it is a non-zero.
address on the top inside the CONTEXT
of the parameter VOCABULARY
stack with the definition which points
16-bit contents of to the top definition in
that memory that vocabulary.
location.
T

42

IF

HERE

LATEST

(FIND)

THEN

{(oFinL)

Is
truth flag
=07

Drop the top value
from the parameter
stack.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the Name Field
Address of the
topmost word in the

onto the top of the
parameter stack.

CURRENT vocabulary}

Search the
dictionary,
beginning with the
specified address,
looking for a match
on the specified

mnamban obsi

character string.

(Run time portion of
3) Stop interpret-
ing this definition
and return to the

calling procedure.

DFINL

The truth flag after
the D= was false (i.e.,
found match). Branch
around "true portion”
of IF-THEN structure.

No match found in the
CONTEXT vocabulary.
Try searching the

CURRENT vocabulary.

Drop the "false" truth
flag result from the
previous (FIND) .

Set up for (FIND) . Aim
at the character string
to search on.

Set up for (FIND) to
search the CURRENT
vocabulary.

Search the CURRENT
vocabulary and leave a
truth flag on the top
of the parameter
stack.

This is the entry point
for the "false" branch
of the IF-THEN
structure. (i.e., The
word was not found.)
False flag is left on
stack.

43

~TRAILING

-TRAILING

(beginning addr\ count — beginning addr \ count)

-TRAILING (pronounced "dash-trailing™ supresses trailing blanks when outputting a character string with TYPE . The input parameters
for -TRAILING are identical to those for TYPE (as set up by COUNT). Using these parameters, -TRAILING examines the character
string and reduces the character count so that trailing blanks are not output by a subsequent TYPE . -TRAILING scans backwards from

the last character towards the first character. The first non-blank character encountered stops the scan.
.LINE is an example of a word which uses -TRAILING .

* At entry - The top of the parameter stack contains the character count of the text string including any trailing blanks.
The second entry contains the true beginning address of the text string (i.e., the first character after the count byte).

* At exit - The top of the parameter stack contains the adjusted character count of the text string excluding any trailing

blanks. The second entry contains the beginning address of the text string.

-TRAILING is a high level colon definition.
Refer to COUNT , and TYPE .
FORTH-79: The FORTH-79 equivslent for -TRAILING is -TRAILING .

Definition: : -TRAILING (beginning addr\ count - beginning addr\ count)

DUP g0 DO
OVER OVER + 1 - Cm@BL -
IF LEAVE
ELSE 1 -
THEN
LLOOP H
|
OVER Copy the second
parameter stack
value onto the top
DOCOL (Run time portion of of the parameter
:) Save IP and stack.
start interpreting I
this definition.
+ Replace the top two
16-bit values on the
Set up loop top of the parameter
parameters. stack with their
16-bit total.
- .) |
DUP Duplicate the top Duplicate count. Count
value on the is used as a loop count 1 Place the constant
parameter stack. parameter and as a value 1 onto the top
character count when of the parameter
inside the loop. stack.
0 Place the constant Set zero as the Index.
value 0 onto the top (i.e., Loop count 0
of the parameter times.) - Subtract the top
stack.] stack entry from the
second stack entry
and replace the two
(DO) Move loop control This execution time values with their
characters (Index portion of DO is signed difference.
and Limit) to the compiled into this
return stack. definition by DO (at
-TRAILING 's Sequence c@a Replace the address
2). on the top of the
parameter stack with
DO This is the entry point the 8-bit memory

D

OVER

Copy the second
parameter stack
value onto the top
of the parameter

stack.
I

for the jump from the
LLOOP portion of this
DO-LOOP structure.

Add the beginning
address to the count
(or adjusted count) to
get the address of the
character to examine.

Remember: The
examination moves
"backwards".

Set up for +. Copy the
address.

contents of that

address.
I

Place the constant
value (20H) for an
ascii blank onto the
top of the parameter
stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their

signed difference.

Set up for +. Copy the
count.

Calculate the address.

Set up to subtract 1
from the address.
(i.e., True beginning
address plus count
equals one byte past
the end of the string.)

Calculate the address
of the character to
examine.

Pick up character to
examine.

Set up for comparison
(-). Will compare
character with "blank".

Is the character a
blank? Set truth flag
to non-zero if not.

]

IF

LEAVE

ELSE

THEN

D

(LOOP)

LOOP

Is
truth flag
=07

Character is a blank,
so branch around "true
portion® of IF
statement.

Character was not a
blank.

Force exit from loop
by setting loop
Limit equal to

current Index.

Exit loop leaving
address of first
non-blank character on

1
stack.

I
Igranch.

Branch around "false
portion" of IF
statement. (i.e., The
character is not a
blank).

Entry point for "false
portion" of previous IF
statement. (i.e., The
character was a blank.)

Place the constant
value 1 onto the top
of the parameter
stack.

Character was a blank. _‘
Set up to decrement

count by 1. (i.e., To
truncate a trailing

blank.)

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Decrement the string
count by 1.

Entry point for the
physical end of the
previous IF statement.

Increment the Index
value.

This execution time
portion of LOOP is

Is
Index value
=or>

Limit value
?

compiled into the
definition by LOOP .

Loop back to the DO if
Index does not equal
Limit and continue
decrementing until
encountering a
non-blank character.

If Index is = or > than
Limit, do not loop.
Drop the Index and
Limit values from the
return stack.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

45

. (value to be output —)

. (pronounced "dot") performs a binary-to-ascii conversion (pictured numeric output) on the 16-bit signed value on the top of the stack
and prints the result (followed by one space) on the output device. The sign is printed only if the value is negative. The current value in

BASE is used as the conversion radix.

NOTE: Since this is a signed conversion, problems arise when attempting to display 16-bit addresses which have their high order (sign) bit
set. The set bit is interpreted as a negative bit and the value is displayed as a 15-bit negative number. This can be avoided by using u.
which puts a zero onto the stack on top of the original value thereby making it a positive double precision value and then uses D. to print

the result.

The basis of . is D. . (The pictured numeric words; <# , #S , SIGN, and #> ; are used to actually convert the value. These are located in

D.R).

* At entry - The top of the parameter stack contains a signed 16-bit value to be converted and printed.

* At exit - No parameters.

. is a high level colon definition.

Refer to D., and D.R .

FORTH-79: The FORTH-79 equivalent for . is .

Definition:

DOoCcoL

S->D

: . (value--)

S->D D.

&

(Run time portion of
:) Save IP and

start interpreting
this definition.

Sign extend the
single precision
value on the top of
the parameter stack
into a 32-bit double
precision value.

Perform a binary-to-
ascii conversion on
the 32-bit double
precision value on
the top of the
parameter stack and
print it on the
output device.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the

calling procedure.

;=) .!!

. (pronounced "dot-quote™) is a special FORTH word that exhibits both execution and compile time traits. The purpose of the word is to
output a text string. When this string is output depends upon the state of the system when the word is executed. When execution begins,
a test is made to determine if the system is in execution or compile state.
" is used in the form:

! text string
where the terminating delimiter is a " (quote).
If the system is in execution state (i.e., ." is not inside of a definition), the text string is output immediately. If the system is in compile
state, ." behaves as a standard compiler word and therefore exhibits two separate types of behavior: compile time and execution time

behavior.

At compile time - the execution-time procedure address (that of {.")), the length of the string, and the string itself are compiled into the
Parameter Field of the definition. (Refer to (.") for a description of what this definition looks like in the dictionary.)

At execution time - the procedure (.") outputs the text string.
The maximum ailowable string length is installation dependent.
* At entry - ." must be followed by the character string to be output and delimited by " (quote).
* At exit - No parameters.
." is a high level colon definition.
.M is defined as IMMEDIATE and therefore has its precedence bit set causing it to execute during compilation.
Refer to (.") .
FORTH-79: The FORTH-79 equivalent for Mis .".

Definition: (=)

22 STATE @ it COMPILE (™ WORO HERE C@ 1+ ALLOT
ELSE WORD HERE COUNT TYPE
THEN H IMMEDIATE
NOTE: The system is in
compilation state so
compile the text string
DOCOL (Run time portion of into the definition.
:) Save IP and —
start interpreting —_—
this definition. COMPILE Put the execution This COMPILE executes
] address (CFA) of the when ." is being used
following word into within a definition
LIT |Put the literal Set up delimiter the next available (i.e., at Sequence 2).
22H value 22H onto the character { a gquotation dictionary location.
top of the parameter mark) for WORD . I
stack.
() Run time portion of (. is put into the
—_ .. The CFA of definition by the
STATE Put the address of this word will be previous COMPILE .
the user variable compiled into the NOTE: Before
STATE onto the top dictionary. completion of execution,
of the parameter (") will increment the
stack. inner interpreter pointer
I (IP) past the following
text string (at
@ Replace the address Get the STATE the Sequence 3).
on the top of the system is in to -
parameter stack with determine which portion
the memory contents of ." to execute: WORD Read the text string NOTE: WORD reads the
of that address. 0 = Execution into the dictionary. text string into the
<>0 = Compilation Store the string dictionary but does not
length followed by advance the dictionary
the string itself pointer (DP).
F Is into the next
truth flag available dictionary
=07 location.
Branch around "true
portion" and
immediately output the
text string. Do not
compile. |

47

HERE

ca

1+

ALLOT

ELSE

.{DOTAL

WORD

HERE

COUNT

TYPE

Put the address of
the next available
dictionary location
onto the top of the
parameter stack.

Replace the address
on the top of the
parameter stack with
the 8-bit memory
contents of that
address.

Increment the top
parameter stack
value by 1.

Add the value on the
top of the parameter
stack to DP (dic-
tionary pointer).

[Branch.

'l

Read the text string
into the dictionary.
Store the string
length followed by
the string itself
into the next
available dictionary
location.

I

Put the address of
the next available

dictionary location
onto the top of the
parameter stack.

Put the length of
the text string onto
the top of the
parameter stack.
Put its beginning
address into the
second entry.

Output the specified
number of text
string characters to
the output device.

—

The top of the stack
will be aiming at the
length byte.

Get string length in
preparation for
ALLOTting the
dictionary space
occupied by the text
string.

Include the length byte
in the amount of
memory to be
ALLOTted.

i.e., Allocate the
memory space already
occupied by the text

string.

Branch around "false
portion" of previous
IF .

Entry point for "false
portion" of previous IF
statement which tested
that the system was in
execution state.

NOTE: The system is

in execution state so

output the text string
immediately.

The top of the stack
will be aiming at the
length byte. Set up for
COUNT .

Set up for TYPE .

Using the parameters
supplied by COUNT .

-e
wn

IMMEDIATE

(Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

Entry point from branch
around "false portion”
of previous IF
statement.

. is a compiler word
and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

.LINE

LINE (line # \ screen # —)
.LINE (pronounced "dot-line") prints a line of text from a screen stored on disk. Trailing blanks are suppressed and not printed.
The basis of .LINE is (LINE) . The constant C/L specifies the line length.

* At entry - The top of the parameter stack contains a signed 16-bit single precision value which is the desired screen
number and the second entry contains a signed 16-bit single precision value which is the desired line number.

* At exit - No parameters.
.LINE is a high level colon definition.
Refer to (LINE) .
FORTH-79: There is no FORTH-79 equivalent for .LINE .

Definition: ¢+ J.LINE (line #\ screen # --)
| (LINE) -TRAILING TYPE H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

(LINE) Convert the
specified line and
screen numbers into
a buffer address.
Read in the
specified screen if
necessary.

-TRAILING Modify the character
count of the
specified character
string to suppress
trailing blanks.

TYPE Type onto the output
device the specified
number of characters
starting at the
specified address.

;S (Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

49

R (value \ field width —)

-R (pronounced "dot-R) performs a binary-to-ascii conversion (pictured numeric output) on the signed 16-bit value in the second stack
entry and prints the result right justified in a field whose minimum width is specified by the value on the top of the stack. For example,
if a field width of 10 is specified and only 3 characters are printed, the remainder of the field will be left padded with 7 blanks (B).

123 10 .R would result in BEB5EE5 123

Note, however, that the f{ield width parameter specifies only a minimum field width. The entire value is always printed even if it
exceeds the specified field width. No truncation occurs and no trailing blank is printed.

The current value in BASE is used as the conversion radix.

* At entry - The top of the parameter stack contains a signed 16-bit value which specified the field width of the converted
ascii string. The second stack entry contains a signed 16-bit value to be converted and printed.

* At exit - No parameters.
.R is a high level colon definition.
Refer to D.R .

FORTH-79: .R is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

Definition: : R {value\ field width)
>R $->D R D.R

DOCOoL (Run time portion of
:) Save IP and

start interpreting
this definition.

>R Remove the top value| Temporarily save field
from the parameter width.

stack and place it
onto the top of the
return stack.

.

S->D Sign extend the
single precision
value on the top of
the parameter stack
into a 32-bit double
precision value.

R> Remove the top value| Retrieve field width.
from the return
stack and place it
onto the top of the
parameter stack.

D.R Perform a
binary-to-ascii
conversion on the
specified double
precision value into
the specified field
width.

;S (Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

/ (dividend\ divisor — quotient)

/ (pronounced "divide") divides a 16-bit signed single precision value by another 16-bit signed single precision value and replaces them
with their 16-bit signed quotient. The second stack value is divided by the top stack value.

The basis of / is /MOD . /MOD leaves a quotient and remainder. / drops this reminder. This is very similar to, but opposite from MOD |
which drops the quotient.

* At entry - The top of the parameter stack contains a 16-bit signed single precision divisor. The second stack entry
contains a 16-bit signed single precision dividend.

* At exit - The top of the parameter stack contains the 16-bit signed single precision quotient.
/ is a high level colon definition.
Refer to /MOD .
FORTH-79: The FORTH-79 equivalent for /is /.

Definition: :/ (dividend\ divisor -- quotient)
/MOD SWAP DROP H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

/MOD Divide a signed Leave the quatient on
single precision the top of the stack
value by the signed with the remainder
single precision under it.

value on the top of
the parameter stack
(leaving a remainder
and quotient).

SWAP Swap the top two Set up for DROP . Get
values on the the remainder onto the
parameter stack. top of the stack.

DROP Drop the top valus Drop the remainder and
from the parameter leave the quotient.
stack.

;S (Run time portion of

; .) Stop interpret-
ing this definition
and return to the

calling procedure.

51

/MOD

/MOD (dividend \ divisor — remainder\ quotient)

/MQD (pronounced "divide-mod") divides a 16-bit signed single precision value by another 16-bit signed single precision value and replaces
them with a 16-bit signed quotient and a 16-bit signed remainder. The remainder takes its sign from the dividend.

Note that /MOD uses a single precision dividend while M/ uses a double precision dividend.
The basis of /MOD is M/ . The single precision dividend is converted to double precision and then an M/ is preformed.

* At entry - The top of the parameter stack contains a 16-bit signed single precision divisior. The second stack entry
contains a single precision 16-bit signed dividend.

* At exit - The top of the parameter stack containsthe 16-bit signed quotient. The second stack entry contains the 16-bit

signed remainder.

/MOD is a high level colon definition.

Refer to M/ .

FORTH-79: The FORTH-79 equivalent for M/ is M/ .

Definition:

DOCOL

>R

5->D

M/

52

: /MOD
>R S->D

/MOD

(Run time portion of
:) Save IP and

start interpreting
this definition.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

Sign extend the
single precision
value on the top of
the parameter stack
into a signed double
precision value.

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

Divide a signed
double precision
value by the signed
16-bit value on the
top of the parameter

stack.
|

(Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

(dividend \ divisor —- remainder\ quotient)

R> M/ 3

Get the divisor out of
the way.

Convert the single
precision dividend to
double precision.

Retrieve the divisor.

Perform the division
leaving the signed
remainder and
quotient.

0 (-0)
0 is a single precision CONSTANT value. This value is used so often that it has been made into a CONSTANT. This was done to save
compiling time. Before converting a character string into a numeric value, INTERPRET first searches both the CONTEXT and
CURRENT vocabularies. A significant amount of time can be saved if a name match can be found during the dictionary search instead of
searching both vocabularies and then converting the value.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit single precision value 0.

FORTH-79: There is no FORTH-79 equivalent for 0 .

53

0<

K (value — truth flag)

X (pronounced "zero-less-than") examines a signed value on the top of the parameter stack and replaces it with a true flag (1) if the
number is less than zero (negative) or with a false flag (0) if the number is greater than or equal to zero.

SIGN is an example of a word that uses O .
* Atentry - The top of the parameter stack contains the signed 16-bit single precision value to be examined.
* At exit - The top of the parameter stack contains a truth flag.

K is a low level code primitive.

Refer to SIGN .

FORTH-79: The FORTH-79 equivalent for X is K .

8080 fig-FORTH
Version 1.1

Get value off of top
of parameter stack.

Add it to itself.] i.e., Generate a carry
if the sign bit was set
(negative).

Set truth flag false i.e., Assume value will
(0). not be negative.

Is
carry bit
set ?

Y Set truth flag to true
(1) since value is
negative.

HPUSH Put truth flag onto top
of parameter stack.

NEXT

0= (value — truth flag)

0= (pronounced "zero-equal") examines the value at the top of the parameter stack and replaces it with a true flag (1) if the value is
equal to 0 or with a false flag (0) if the value is not equal to 0.

0= is often used to set up for an IF by complementing the truth flag so the statement's "true portion" (as opposed to the "false" or ELSE
portion) can perform the desired function. This makes for mare readable FORTH . In this instance the word NOT should be used for
clarity. NOT is defined as:

: NOT 0= 3

* At entry - The top of the parameter stack contains the signed 16-bit single precision value to be examined.
* At exit - The top of the parameter stack contains a truth flag.
0= is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for 0= is 0=.

8080 fig-FORTH
Version 1.1

Pop value off of top
of parameter stack.

Set truth flag false i.e., Assume will not
(0). equal zero.

Set truth flag to true
71y

1
\i/e

Value does equal zero.

Push truth flag onto
top of parameter
stack.

NEXT

55

OBRANCH

O0BRANCH (truth flag —)
This execution time (Sequence 3) code (pronounced "zero-branch") is compiled into a definition (Sequence 2) by IF , UNTIL , and WHILE
to perform a conditional branch. If the flag on the top of the parameter stack is 0 (false), the offset to which IP points at entry is added
to IP to cause either a forward or backward branch depending upen the value of the offset (hence the name, 0BRANCH). If the flag is
true, no branch is taken. Refer to BRANCH .

* At entry - The top of the parameter stack contains a 16-bit boolean truth flag.

* At exit - No parameters.
0BRANCH is a low level code primitive.
Refer to IF , UNTIL , WHILE , and BRANCH .

FORTH-79: There is no FORTH-79 equivalent for 0BRANCH .

(0BRANCH)
8080 fig-FORTH

Version 1.1

Pop top of parameter Get truth value.

stack.
IMP BRANCH

Go calculate branch

Is
truth flag
=07

N address and branch.
(Refer to flowchart for
BRANCH .)
Increment IP past Do not branch, continue
the offset value. on to the next
definition.
NEXT

1 (-1)

1 is a single precision CONSTANT value. This value is used so often that it has been made into a CONSTANT. This was done to save
compiling time. Before converting a character string into a numeric value, INTERPRET first searches both the CONTEXT and
CURRENT vocabularies. A significant amount of time can be saved if a name match can be found during the dictionary search instead of

searching both vocabularies and then converting the value.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit single precision value 1.

FORTH-79: There is no FORTH-79 equivalent for 1 .

57

1+

1+ (value — value+l)
1+ (pronounced “one-plus") adds 1 to the value on the top of the parameter stack.
Note: The algebraic rules of signed addition apply here.
* At entry - The top of the parameter stack contains a signed 16-bit single precision value.
* At exit - The signed 16-bit single precision value on top of the parameter stack is incremented by 1.
1+ is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for 1+ is 1+.

Definition: : 1+ (value -- valie+1)
1 + 3
DOCOL (Run time portion of

:) Save IP and
start interpreting
this definition.

1 Put the constant
value 1 onto the top
of the parameter
stack.

+ Add the top two
parameter values on
the parameter stack.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

-.
w

2 (-2)
2 is a single precision CONSTANT value. This value is used so often that it has been made into a CONSTANT. This was done to save
compiling time. Before converting a character string into a numeric value, INTERPRET first searches both the CONTEXT and
CURRENT vocabularies. A significant amount of time can be saved if a name match can be found during the dictionary search instead of
searching both vocabularies and then converting the value.

* At entry - No parameters.

% At exit - The top of the parameter stack contains the signed 16-bit single precision value 2.

FORTH-79: There is no FORTH-79 equivalent for 2 .

59

2+

2+ (value — value+2)

2+ (pronounced "two-plus") adds 2 to the 16-bit value on the top of the parameter stack.

Note: The algebraic rules of signed addition apply here.
* At entry - The top of the parameter stack contains a signed 16-bit single precision value.
* At exit - The value on top of the parameter stack is incremented by 2.

2+ is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for 2+ is 2+ .

Definition: : 2+ (value -- value+2)
2 + ;
DOCOoL (Run time portion of

2) Save IP and
start interpreting
this definition.

2 Put the constant
value 2 onto the top
of the parameter
stack.

+ Add the top two
parameter values on
the parameter stack.

;S (Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

3

3 (-3)
3 is a single precision CONSTANT value. This value is used so often that it has been made intoc a CONSTANT. This was done tc save
compiling time. Before converting a character string into a numeric value, INTERPRET first searches both the CONTEXT and
CURRENT vocabularies. A significant amount of time can be saved if a name match can be found during the dictionary search instead of
searching both vocabularies and then converting the vaiue.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit single precision value 3.

FORTH-79: There is no FORTH-79 equivalent for 3.

61

COMPLLE TIME: (—)
(Sequence 2)

EXECUTION TIME: (—)
(Sequence 3)

: (pronounced "colon") is the defining word used to create (i.e., define) a high level FORTH definition. It is used in the following format:
Specified name Body of definition
: is a defining word and therefore exhibits two different sets of action; those actions at compile time and those at run time.
The compile time (Sequence 2) action of : is:
1. To create a definition header in the dictionary for the name specified
2. To enter compile mode by setting the user variable STATE to a non-zero value (see STATE).
3. To set the CONTEXT vocabulary the same as the CURRENT vocabulary.
A colon definition is terminated with either ; or ;CODE .
The Code Address of the execution time portion of this word is compiled into the Code Field Address (CFA) of every colon definition
word. 8080 Version 1.1 fig-FORTH references this routine via the label DOCOL . The purpose of this caode is to save the current position
of the Interpreter Pointer (IP) and begin execution of the bady of this definition (i.e., thread "down" one level of threaded code).
The execution time (Sequence 3) action of DOCOL can be symbolically described in high level terms as follows:
iP@ Fetch the contents of IP . (IP points to the next CFA , i.e., "word" to execute.)
RP@! Fetch the address of the top of the return stack and store the address of the "next word to execute" on it.
-2 RP +! Decrement the return stack pointer.

w@ Fetch the contents of W. (W points to the Code Field of the definition being executed. DOCOL is the Code Field
procedure that is executing.)

2+ IP ! Increment W to point to the Parameter Field entry following the Code Field and store this address into IP. The system
has chained down one level of nesting and the Parameter Field of this new definition will now be executed.

Note that : is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.
COMPLLE TIME (Sequence 2):
* At entry - No parameters.
* At exit - No parameters.
EXECUTION TIME (Sequence 3):
* At Entry - No parameters.
* At Exit - No parameters.
LIKELY ERROR MESSAGES:
? pronounced "HUH?" (0) -- The word in question cannot be found in the dictionary.
EXECUTION ONLY (12H) -- This word must not be used while the system is in compile mode.

DEFINITION NOT FINISHED (14H) -- The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the definition.

: is itself a high level colon definition.
Refer to STATE , and VOCABULARY .

FORTH-79: The FORTH-79 equivalent for :is : .

Definition: + (=) (compile time)
?EXEC ICSP CURRENT @ CONTEXT ! CREATE] (;CODE)

Note: The (;CODE) is followed by assembly language sequence 3 time code.
IMMEDIATE

62

COMPILE TIME action of : (Sequence 2): (—)

DOCOL

7EXEC

\CSP

CURRENT

CONTEXT

CREATE

&

(Run time portion of
:) Save IP and

start interpreting
this definition.

Issue Error Message
12H {(EXECUTION
ONLY) if not

executing.

Save the stack
pointer position in
user variable CSP.
This will be checked
at end of compila-
tion and an error
message issued if
there is a

difference.

]

(;CODE)

i.e., If user variable
STATE ic not zero.
NOTE: If an error
message is issued, a
QUIT will occur and
compilation will
immediately cease.

Compiler security--
compiler errors are
often reflected by an
unbalanced stack.

 IMMEDIATE

— —_
Make CONTEXT

vocabulary equal
to CURRENT
vocabulary. >

(This is dene only
because it is a common

practice.)
—

Place the address of
the user variable

CURRENT onto the top
of the parameter

—
__‘

jstack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Place the address of
the user variable
CONTEXT onto the top
of the parameter

stack.
r

Store the specified
value into the
specified memory
location.

Create a dictionary
header for this
definition. Note
that it obtains
"name" by reading
the input data
stream.

"Start" compilation.
i.e., Set STATE to a
non-zerc value.

Pop the address off
the top of the
return stack and
place it into the
Code Field of the
word being defined.
NOTE: Aj;isnot
necessary when
(;CODE) is executed
because the {;CODE)
pops the top of the
return stack and
stores it and then
executes a j itself.
This returns control
to the procedure
which, in this case,
called : .

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

i.e., Place the address
of the run time code
portion of : into the
CF A of the word being
defined. The top of the
return stack in this
case points to DOCOL ,
the run time code for :.
This run time code
immediately follows
(;CODE) .

Note (;CODE) is
compiled into : by
sCODE .

: is a compiler word
and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

63

EXECUTION TIME action of : (Sequence 3): (—)

NOTE: This code physically immediately follows the compile time (Sequence 2) code for : .

This is a high level representation of the 8080 assembly language code in the 8080 fig-FOR TH Version 1.1 listing.

‘ DOCOL ’

(IP is already in
registers.)

Pﬂim at return stack. J RP @

Store IP on top of !
return stack. i.e., i.e., Save outer
PUSH. definition or text

interpreter position
and thread down one

level.

Aim at next -2RP

available entry on

return stack.

Update return stack +

pointer.

Increment W (was W@ 2+

already incremented Aim W at the first CFA

once by NEXT). in the parameter (body)

I of this definition.
Put this value into P!
1P.
NEXT Go execute this

definition.

.
’

COMPILE TIME : (=)
(Sequence 2)

EXECUTION TIME: (—)
(Sequence 3)

s (pronounced “semicolon") is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and
those at execution time.

; is used to terminate a : ("colon") definition.

The comi)ile time (Sequence 2) action of ; is:
1. To compile ;S (the execution time procedure of ;) into the definition being created.
2. To SMUDGE the smudge bit.

3. To place the system back into interpret mode (from compile mode) so that the next input data stream word can be interpreted.

The execution action (Sequence 3) of ; is actually that of ;5. Basically ;S "chains back" up one level of nesting and "returns control” to
the definition that "called" the definition now executing ;S .

Note that ; is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

COMPILE TIME (Sequence 2):
* At entry - No parameters.
* At exit -No parameters.
EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) — This word may only be used within a colon definition.

DEFINITION NOT FINISHED (14H) - The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the definition.

s is a high level colon definition.
Referto;S,and:.
FORTH-79: The FORTH-79 equivalent for sis ;.

(=)

Definition: : 3
l ?CSP COMPILE ;S SMUDGE [

e

65

COMPILE TIME action of ; (Sequence 2): (—)

DOCOL

7CSP

COMPILE

SMUDGE

IMMEDIATE

O

(Run time portion
of ;) Save IP and

start interpreting

this definition.

|

Issue Error Message
14H (DEFINITION
NOT FINISHED) and
QUIT if the stack
pointer position
does not match that
stored in CSP .

Compile the CFA of
the following
definition into the
dictionary.

Chain up to the
definition which
"called" this
definition.

Toggle the SMUDGE
bit in the definition
being created.

Stop compilation and
start interpreta-
tion.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

The execution time action of 3 is that of ;5.

QUIT if the parameter
stack has been left
unbalanced by some act
of compiling this
definition.

This compiles the
execution time
procedure ;S into the
definition being
compiled (at Sequence
2).

3S executes at Sequence
3, not at compile time
(Sequence 2).

: would have originally
smudged the bit. Now
"unsmudge" it to make
it a "findable"
correctly compiled
ward.

Stop compiling and set
up the system so that
it can interpret the
next input data stream
word.

; is a compiler word
and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
ather definitions.

EXECUTION TIME action of ; (Sequence 3): (—)

FCODE ;CODE

DEFINITION TIME: (—)
(Sequence 1)

EXECUTION TIME: (—)
{Sequence 2)

;CODE (pronounced "semicolon-code™) is a defining word and therefore exhibits two different sets of actions; those actions at definition
time and those at execution time.

sCODE is a Sequence 1 defining word that is used to create Sequence 2 defining words. ;CODE is used in conjunction with another
defining word (one that creates the header of the defining word being created) to create defining words ("parents") that in turn create
other words ("children").

When creating a defining word (at Sequence 1), s;CODE acts as a dividing line between the high level words that create the "child" (at
Sequence 2) and the assembly language code words that are the "child's" run time procedure (at the "child's" Sequence 3). See Figure
sCODE-1.

The function of ;CODE is very similiar to that of DOES> except ;CODE defines the beginning of a code procedure while DOES> defines
the beginning of a high level procedure.

At Sequence 1 (i.e., when creating the "parent" defining word), ;CODE first compiles the address of its run time procedure, (;CODE) ,
(which actually executes at Sequence 2 when the "child" is created) and then stops compilation.

"PARENT" "CHILD"
Sequence 1 Sequence 2 Sequence 3
A defining word Name Field Name Field
Link Field Link Field
Code Field Code Field
;CODE Compile time words Address of execution

time code procedure.

Zode level execution
time procedure.

The defining word
is created.

which creates

;CODE

Code level execution
time procedure.

Parameter Field

The defining word
is executed.

which creates

A definition is
created via the
defining word.

Figure ;CODE-1
Action of ;CODE

At Sequence 1 (i.e., when compiling the "parent" defining word), the high level words which will create the "parent" during Sequence 2
are compiled into the dictionary. ;CODE denotes the end of the "parent's" Sequence 2 compiling procedure and the beginning of the
child's" execution time procedure. Therefore, ;CODE must perform two main tasks:

1. It must first compile (;CODE) into the definition. This execution time procedure for ;CODE actually executes at Sequence 2
when the "parent" is creating the "child". Its function is to point the "child's" Code Field at the Sequence 3 code procedure that
"lives" in the "parent" definition.

2. ;CODE must then stop compilation, This is done because prior to ;CODE are high level definitions whose addresses are compiled
into the dictionary, but after ;CODE are assembler directives which must execute in order to assemble op-codes into the
dictionary. These assembler directives are not IMMEDIATE . Therefore, the system must be taken out of compile state so the
interpreter will execute these directives.

sCODE also SMUDGES the header created by whatever defining word was used to begin the definition.

Note that the Version 1.1 8080 fig-FORTH does not set CONTEXT to the ASSEMBLER vocabulary. To rectify this problem, the word
ASSEMBLER should immediately follow ;CODE .

;CODE only executes at Sequence 1. (;CODE) executes at Sequence 2. (Refer to (;CODE) J)

The end effect of ;CODE is that the dictionary definition structure of the "child" is determined by the words preceding ;CODE ; but,
when the "child" executes at Sequence 3, the code following ;CODE is executed. 61

This allows whole new families of dictionary structures and their associated run-time codes to process these structures to exist. An

example of a structure could be a graphics control table while the code following ;CODE could display the table.

Note that ;CODE is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

DEFINITION TIME (Sequence 1):

* At entry - No parameters.

* At exit - No parameters.

EXECUTION TIME (Sequence 2):

* At entry - No parameters.

* At exit - No parameters.

LIKELY ERROR MESSAGES:

DEFINITION NOT FINISHED (14H) -- The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the de finition.

;CODE is a high level colon definition.

Refer to (;CODE) , DOES> , and <BUILDS .

FORTH-79: There is no FORTH-79 equivalent for ;CODE .

Definition:

sCODE ()
?CSP

COMPILE (;CODE)
IMMEDIATE

DEFINITION TIME action of ;CODE (Sequence 1): (—)

DOCOL

7CSP

COMPILE

(;CODE)

(Run time portion of
:) Save IP and

start interpreting
this definition.

Issue error Message
14H (DEFINITION
NOT FINISHED) if
the Stack Pointer
(SP) address differs
from the value
previously stored
in CSP .,

Compile the CFA of
the following
definition into the
dictionary.

Rewrite the CF A of
the most recently
defined word to
point to the
following code
sequence.

Compile GCODE) , the |

run time portion of
sCODE , into the
dictionary where it
will be executed when
the word being created
is executed (Sequence
3).

This word is not
executed while ;CODE is
being compiled
{Sequence 1); but is
executed when ;CODE is
used to create a new
definition (Sequence
2).

[COMPILE] [SMUDGE

[COMPILE]

Force compilation of
the following
IMMEDIATE word.
Compile the CFA of
the following
definition into the
dictionary.

Set STATE to 0
(i.e., stop
compilation and
start interpreting
the following data
stream).

Toggle the "smudge™
bit in the length

bit of the Name
Field.

Since [is an
IMMEDIATE word,
[COMPILE] must be
used to compile it into
the definition during
Sequence 1. (Otherwise
it would execute

instead of being
compiled.) [COMPILE]
is only used to "compile"
[into ;CODE and does
not exist in ;CODE 's
definition when ;CODE
is executed at a later
compile time (Sequence
2).

[will be executed at a
later compile time
{Sequence 2). (The
purpose of the [in

this later compile time
is to stop Sequence 2
compilation so that the
assembler commands
which follow can be
executed to "compile"
code into the

dictionary.) _[

This is executed at
Sequence 2. It prevents
the new definition from
being "found" until the
smudge bit is toggled
with another SMUDGE
upon successful
completion of
compilation.

IMMEDIATE

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

sCODE is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

EXECUTION TIME action of ;CODE (Sequence 2): (—)

The Sequence 2 action of ;CODE is to compile a (;CODE) into the definition being compiled.

The execution time (Sequence 3) action of ;CODE is (;CODE) .

69

35 (=)

;S (pronounced "semicolon-S") is the execution time (Sequence 3) procedure compiled by ; . Its purpose, at the end of a colon definition,
is to "chain back"” to the next higher level by popping the return address of the calling procedure off of the return stack.

3S is also used to stop interpretation of a screen.
The action of ;S can be symbolically described in high level terms as follows:

RP @ Aim at the top of the return stack. (The top of the return stack contains the "return" address. i.e., The address of the
next "word" to execute located within the Parameter Field of the definition which "called" the definition this ;S is in.)

@alp: Fetch the address of the next "word" to execute and store it into IP .
2RP + Increment the return stack pointer (i.e., free up this location).

IP is all set to execute the next "word". The last thing ;S does is execute NEXT (which then executes the "next" word).

* At entry - No parameters.
* At exit - No parameters.
35 is a low level code primitive.
FORTH-79: The FORTH-79 equivalent for ;S is EXIT .

Note: This is a high level representation of the 8080 assembly language code in the 8080 fig-FORTH Version 1.1 listing.

8080 fig-FORTH
Version 1.1

Pick up return stack RP @

pointer.

Pick up top of amwp!

return stack and put i.e., Replace current
itintoIP . Interpreter Pointer

with address previously
saved when this
procedure was called.

Aim at next entry in
return stack.

1

Update return stack 2RP +!
pointer.

NEXT

70

<

< (valuel \valueZ — flag)
< {pronounced "less-than") performs a signed comparison of the top two single precision values on the parameter stack and replaces them
with a boolean truth flag. The flag is true (non-zero) if the second stack entry is less than the top stack entry (hence the name
less-than"). Otherwise the flag is false (0) if the second stack entry is equal to or greater than the top entry. Note that this is just like
an in-fix operation in which the operator has been moved outside. For example:

5¢4 (in-fix) isthe same as 5 4< (post-fix)
MAX is an example of a word which uses<.

This is a signed comparison.

* At entry - The top of the parameter stack contains a signed 16-bit single precision value to be compared with the second
entry which is also a signed 16-bit single precision value.

* At exit - The top of the parameter stack contains a true boolean flag (non-zero) if the second stack entry is less than the
top of the stack or a false boolean flag (0) if it is greater.

< is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for< is<. .

Definition: s < (valuel\value? - flag)
- (14 H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

- Subtract the top Determine if the second

stack entry from the
second stack entry
and replace the two
values with their
signed difference.

stack entry is smaller
than the first.

1.4 Replace the value on Set the truth flag to
the top of the true (1) if the second
parameter stack with entry is smaller than
a true flag (1) if the first; else, leave
it is less than 03 a false flag (0).
else, replace it
with a false flag
(0).

;S (Run time portion of

s .) Stop interpret-
ing this definition
and return to the

calling procedure.

71

<#

<# (=) (Refer to "At entry" section)
<# (pronounced "less-than-sharp") begins a double precision integer pictured numeric conversion expression.

Pictured numeric conversion converts values on the stack into ascii strings which are formatted according to picture specifications. This
is similiar in concept to the BASIC PRINT USING or COBOL PICTURE statements.

The character string is created in memory, starting one byte before PAD and working backwards toward low memory. The conversion
takes place one digit at a time starting with the one's column, then the ten's column, etc. (That is why memory is filled in a right-to-left
direction.)

The user variable HLD contains a pointer to the last converted character (see HOLD).

For example, the general structure of a pictured numeric expression is:

< # #S SIGN #>
start one multiple sign end
digit digits

Some examples are:

<# # # # #S {#> gives at least 4 digits.

< # # 2EH HOLD #S #> gives 2-decimal places.
The phrase <# #S SIGN S> is used by the word D.R .
The description of # describes the binary-to-ascii conversion process in more detail.
The specific purpose of <# is to initialize the pointer in HLD to aim at the beginning of PAD . (<# can be modified if it is desirable to
create the string elsewhere; e.g., in the memory of a memory mapped CRT display, etc.). Once executed, <# should not be used again
until a #> has been executed as this would cause converted characters to overlay previously converted characters in PAD . Also, no
words should be executed during pictured conversion which would cause the end of the dictionary, hence PAD , to change location.
NOTE: Although this word by itself requires no parameters, correct FORTH coding techniques suggest that parameters not be introducer

during the string conversion process. Therefore, pictured numeric conversion parameters should be set up prior to the execution of this
word.

* At entry - Although this word does not require any entry parameters, the top of the parameter stack should contain a
31-bit value to be converted and output (see #) with its high order portion in the first entry and the low order portion in
the second entry. (Note the 31-bit value. # correctly converts only positive values. Therefore a DABS should normally
precede the <# to convert negative double precision values to their absolute values.) If the output character string is to be
signed, an optional 16-bit signed value may be located in the third stack entry. This parameter sets up for SIGN . (Refer
to SIGN for a complete description of this parameter and how to set it up.)

* At exit - This word by itself leaves no output parameters on the stack. Refer to #> for output of the pictured numeric
conversion sequence.

<{# is a high level colon definition.

Refer to # , #>, SIGN, HLD , and HOLD .
FORTH-79: The FORTH-79 equivalent for <# is <# .
Definition: : <H (=) V

PAD HLD ! H
|
! Store the second Initialize the pointer
stack entry into the HLD with the beginning
specified memory address of PAD .
DOoCoL (Run time portion of location.
:) Save IP and l
start interpreting
this definition. ;S (Run time portion of
l 3 .) Stop interpret-
ing this definition
PAD Place the address of In 8080 fig-FORTH and return to the
the output character Version 1.1, PAD is calling procedure.

buffer PAD onto the located 68 bytes past
top of the parameter the end of the
stack. dictionary.

HLD Place the address of Set up for!.
the user variable
HLD onto the top of
the parameter stack.
72]

<BUILDS

<BULLDS

DEFINITION TIME: (—)
(Sequence 1)

EXECUTION TIME: (—)
{Sequence 3)

<BUILDS (pronounced "builds" is a defining word and therefore exhibits two different sets of actions; those actions at definition time and
those at execution time.

<BUILDS is a Sequence 1 defining word which is used to create Sequence 2 defining words. Words created by <BUILDS are then used to
create other words. e.g., <BUILDS (Sequence 1) is used to create the defining word VOCABULARY (Sequence 2) which in turn creates
vocabulary definitions such as FORTH , EDITOR , and ASSEMBLER . Such a word is then executed (Sequence 3) to set the point at which
dictionary searches start.

<BUILDS is normally used in conjunction with DOES> . When used this way, <BUILDS "builds" (hence the name) a dictionary header for
the new definition. Refer to Figure <BUILDS-1. This header is actually the definition for the constant 0. Definitions between <BUILDS
and DOES> are executed at compile time.

The words between <BUILDS and DOES> are executed at Sequence 2 time while creating a new definition. The words following DOES>
are executed at Sequence 3 time when executing the new definition. (Refer to Figure <BUILDS-1.)

The compile time (Sequence 2) action of <BUILDS is to simply "build" a dictionary header for the new definition. This header is actually
the definition for the constant 0. DOES> then overlays this header with execution time (Sequence 3) pointers for the word (refer to
DOES>). The Code Field Address is overlayed to point to the execution time code for DOES> . The first entry in the Parameter Field
(the 0) is overlayed with the address of the new definition’s execution time (Sequence 3) definitions. This is the address of the first word
following DOES> .

The action of <BUILDS and DOES> can be more easily understood by observing how the words VOCABULARY and FORTH are created and
used. VOCABULARY is created at Sequence 1 with <BUILDS and DOES> . The words following DOES> are compiled into the dictionary
at Sequence 1 but will not be executed until Sequence 3 as explained later. Then, at Sequence 2, when VOCABULARY is executed to
create a new definition (named FORTH in this example); the following happens:

1. <BUILDS creates a constant 0 header, with the first Parameter Field entry filled in with the 0 value. (This is important to note
because this 0 will be overlayed by DOES> with the address of the execution time definitions for FORTH , which in turn means
that the first Parameter Field entry in a <BUILDS-DOES> definition is not available for use.)

2. The words following <BUILDS are also executed at Sequence 2 to build (compile) the vocablulary definition.

3. The Pseudo Name Field is compiled into the definition.

4, The Vocabulary Link Field is compiled into the definition.

5. The Chronological Link Field is compiled into the definition. (<BUILDS has no Sequence 3 time action. i.e., When FORTH is
executed.)

§. After the Chronclegical Link Field ie compiled, DOES> executes. Remember this is the compile time (Sequence 2) time action
of DOES>. DOES> first overlays the Code Field of the definition being created, FORTH, with the Code Field Address of
DOES> 's execution time (Sequence 3) code.

The O in the first Parameter Field entry is overlayed with the address of the next dictionary location following DOES> . This is the
address of the execution time procedure (Sequence 3) of the example word, FORTH. The words following DOES> were compiled at
Sequence 1 into the VOCABULARY definition.

Note this distinction: The execution time (Sequence 3) procedure for the example word, FORTH, (the definition created by
VOCABULARY at Sequence 2); exists in VOCABULARY , not in FORTH. The first entry Parameter Field in FORTH points to this
execution time procedure.

When FORTH is executed at Sequence 3, its Code Field points to the execution time (Sequence 3) code for DOES> . The execution time
purpose of DOES> is to transfer control to the execution time procedure (remember DOES> is for high level definitions) for the example,
FORTH. @t does this by fetching FORTH 's execution time address from the first Parameter Field entry and placing it onto the return
stack and calling NEXT. This code also causes the address of the second Parameter Field entry to be placed onto the top of the
parameter stack.

The execution time procedure for FORTH is then executed physically in the last half of VOCABULARY , then control returns to the word
following FORTH .

DEFINITION TIME (Sequence 1):
* At entry - No parameters.

* At exit - No parameters.

3

EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
DICTIONARY FULL (2) -- The dictionary has grown into the Terminal Input Buffer.

DEFINITION NOT FINISHED (14H) -- The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the definition.

<BUILDS is a high level colon definition.
Refer to DOES> , VOCABULARY , FORTH , and ;CODE .
FORTH-79: The FORTH-79 equivalent for <BUILDS is CREATE . Refer to FORTH-79 Standard.

Definition: ¢ <BULLDS (-)
0 CONSTANT H

"PARENT" CHILD"
Sequence 1 Sequence 2 Sequence3
Name Field Name Field
Link Field Link Field
<BUILDS Code Field Code Field
<BUILDS Pointer to run time
procedure
DOES> Compiler words
High level execution
time procedure DOES>
Execution time
procedure
;S

74

The defining word
is created

which creates

The defining word
is executed

which creates

Figure <BUILDS-1

Compile Time Action of <BUILDS and DOES>

A definition is
created via the
defining word

DEFINITION TIME action of <BUILDS (Sequence 1): ()

DOCOL

CONSTANT

<BUILDS

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the constant
value 0 onto the top
of the parameter
stack.

Create a constant
definition whose
Code Field points to
the run time code
for CONSTANT and
whose first
Parameter Field
contains the
specified constant

yj.luﬁ.-_l—

(Run time portion of
3 ») Stop interpret-
ing this definition
and return to the

calling procedure.

This is just a

temporary value.

This simply builds a
definition header. The
Code Field and
Parameter Field
contents will be
overlayed by DOES> .

EXECUTION TIME action of <SBULLDS: (—)

<BUILDS simpiy creates a header for a definition and therefore has no Sequence 2 or Sequence 3 time action.

75

(valuel \ value? — flag)

1]

= (pronounced "equals") compares the top two values on the parameter stack and replaces them with a boolean flag. The flag is true (1)
if the values are equal. The flag is false (0) if the values are not equal.

EXPECT is an example of a word which uses =,

* At entry - The top of the parameter stack contains a signed 16-bit single precision value to be compared for equality with
the second stack entry, which is also a signed 16-bit single precision value.

* At exit - The top of the parameter stack contains a boolean flag. The flag is true (1) if the input values were equal and
false (0) if they were not equal.

= is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for = is =.

76

Definition: : = (valuel\value2 -- flag)
- 0= H

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

- Subtract the first Subtracting the two
stack entry from the values compares them
second stack entry for equality.
and replace the two
values with their
difference.

0= Replace the value on A zero will be on the
the top of the stack stack only if the
with a true (1) flag true values were equal.
if the value is 0= changes this 0 to a
zero. Otherwise, true flag because it is
replace it with a "true" that the values
false (0) flag. were equal.

;S (Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

>

> (valuel\ value2 — truth flag)

> (pronounced "greater-than") compares the two top-most signed 16-bit values on the parameter stack and replaces them with a truth
flag. The truth flag is set true (1) if the second value is greater than the top of the stack value and false (0) if it is less than or equal to
the top of the stack value.

At execution time, > simply swaps parameters and performs a< comparison.

* Ag entry - The top and second parameter stack entries contain the signed 16-bit single precision values to be compared.

At exit - The top of the parameter stack contains a truth flag. This flag is set true (1) if the second stack value was
greater than the top of the stack value. Otherwise, it is set false (0).

> is a high level colon definition.
Refer to <.

FORTH-79: The FORTH-79 equivalent for > is > .

Definition: : > (valuel \value2? -- flag)
| SwAP <

DOCOL (Run time portion of
:) Save IP and
start interpreting

this definition.

SWAP Swap top and second
parameter stack
vaiues.

< Replace the top two

Set up for <
comparison.

Since the two values

parameter stack
entries with a true
flag (1) if the
first entry is less
than the second
eniry or a false
flag (0) if not.

I

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

were swapped, the
logical result of this
operation is identica

to>.

>R

>R (value to be placed onto return stack —)
>R (pronounced "to-R") pops a number from the top of the parameter stack and pushes it onto the top of the return stack.

Note: Care must be taken to ensure that the return stack is restored to its original condition before returning to the calling procedure.
This is usually accomplished through the use of R> (e.g., : NEW-WORD >RR>;).

* At entry - The top of the parameter stack contains the 16-bit value to be placed onto the return stack.

* At exit - No parameter stack parameters. The top of the return stack contains the value previously on the top of the
parameter stack.

>R is a low level code primitive.
Refer to R> .

FORTH-79: The FORTH-79 equivalent for >R is >R .

8080 fig-FORTH
Version 1.1

Get value to be
placed onto return
stack.

Pick up return stack

pointer.
Make room for new i.e., Decrement stack
entry. pointer by 2.

Save new return
stack pointer.

Stuff value onto
newly calculated top
of return stack.

78

9

? (address of value to be output —)

? (pronounced "question-mark") performs a binary-to-ascii conversion on the signed 16-bit value contents of the specified memory
location and prints the result on the output device. For example, a variable name followed by ? prints the contents of that variable.

The current value in BASE is used as the conversion radix.

* At entry - The top of the parameter stack contains the memory address of the 16-bit signed value to be converted and
printed.

* At exit - No parameters.
? is a high level colon definition.

Refer to D.R .

Definition: : ? (address --)
@ . :

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

@ Replace the address Set up for .. Get
on the top of the value to be printed.
parameter stack with
the memory contents
of that iocation.

. Perform a
binary-to-ascii
conversion on the
vaiue on the top of
the stack and print
it out.

;S (Run time portion of
3 .) Stop interpret-
ing this definition
and return to.the
calling procedure.

79

?COMP

CoMP ()

?7COMP (pronounced "question-compile™ issues Error Message 11H and a QUIT (8080 fig-FORTH Version 1.1) if the system is not in
compile mode. In this case, compile mode is defined as the user variable STATE containing a non-zero value.

The standard error text for this word is "COMPILATION ONLY, USE IN DEFINITION",

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.

?2COMP is used by compiler words to ensure that the system is in compile mode. COMPILE and several of the conditional words are
examples of words which use ?COMP .

* At entry - No parameters.
* At exit - No parameters.
?COMP is a high level colon definition.

Refer to WARNING , MESSAGE , STATE , ERROR , (ABORT) , QUIT , and COMPILE .

FORTH-79: There is no FORTH-79 equivalent for 2COMP .

Definition:

DOCOL

STATE

LIT
11H

2COMP (=)
STATE @

?COMP

(Run time portion of
:) Save IP and

start interpreting
this definition.

Put address of user
variable STATE onto
the top of the
parameter stack.

l

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

]

Replace the value on
the top of the
parameter stack with
a true flag (1) if

the value is zero;
otherwise, replace
the value with a
false flag (0).

Place the literal
value 11H onto the
top of the parameter
stack.

f= 11 ?ERROR

Get the contents of
STATE .

Test what state FORTH
is in.

Place the number
corresponding to the
error message,
COMPILATION ONLY,
USE IN DEFINITION,
onto the stack.

?ERROR

Issue the specified
error message and
QUIT if the truth
flag in the second
entry is true
(non-zero).

(Run time portion of
; -) Stop interpret-
ing this definition
and return to the
calling procedure.

Issue Error Message if
not in compile mode.

Note: If an error
message is issued, a
QUIT will also occur
and execution will stop
here.

—

?2CSP

csP (=)

?CSP (pronounced "question-C-5-P") issues Error Message 14H and a QUIT if the current parameter stack pointer position does not equal
that stored in the user variable CSP .

The standard error text for this word is "DEFINITION NOT FINISHED".,

This is most often used in compiler security since an unbalanced stack often reflects a compilation error. Normally a !CSP is used to
save the stack pointer position when beginning compilation (e.g., in :) and ?CSP is used to check it when finishing compiling.

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

f WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
&.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

I
(
If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.
An example of the use of 2COMP can be found in ;CODE .

* At entry - No parameters.

* At exit - No parameters.
?CSP is a high level colon definition.

Refer to WARNING , MESSAGE , ?ERROR , STATE , (ABORT) , and QUIT .

FORTH-79: There is no FORTH-79 equivalent for ?CSP .

Definition: : ?2CSP (--)
SP@ CSP @ -

14 ?ERROR ;
|

Issued the s.pecified

7ERROR Display the error

Run time portion of
:) Save IP and

start interpreting
this definition.

DOCOL

sP@ Place the current
parameter stack
pointer onto the top
of the parameter S

stack.
Set up for @ . T

Set up for - .

CSP Place the address of
the user variable
CSP onto the top of
the parameter stack.

I

@ Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

I

- Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Set up for - .

Set the flag for
?ERROR . Compare the
contents of CSP with
the current position of
the stack pointer.

LIT Place the literal Put the value for Error
14H value 14H onto the Error Message 14H
top of the parameter | (DEFINITION NOT
stack. FINISHED) onto the

| stack.

errcr message and
QUIT if the truth
flag in the second
entry is true
(non-zero).

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

message (DEFINITION
NOT FINISHED) if the
pointers are not equal.

Note: If an error
message is issued, a
QUIT will also occur
and execution will stop
here.

a1

?ERROR

7ERROR (truth flag \ Error Message Number —)
7ERROR (pronounced "question-error") issues the specified error message and a QUIT if the truth flag is true (non-zero).

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.
FORGET is an example of a word which uses 2ERROR.

* At entry - The top of the parameter stack contains a signed 16-bit single precision message number value. The second
stack entry contains a boolean truth flag.

* At exit - No parameters.
7ERROR is a high level colon definition.
Refer to ERROR , MESSAGE , WARNING , QUIT , ABORT , and (ABORT) .

FORTH-79: There is no FORTH-79 equivalent for 7ZERROR .

Definition: ?ERROR (flag\ error message number)
SWAP IF ERROR ELSE DROP THEN H
THEN This is the entry point
. from the "true portion"
. of the IF statement.
DOCOL (Run time portion of
:) Save IP and .
start interpreting ;S (Run time portion of
this definition. ; .) Stop interpret-
ing this definition
and return to the
SWAP Swap the top two Set up for IF . Swap calling procedure.
values on the the error message
parameter stack. number and the truth
flag.
IF Is
truth flag
=07
Branch if the truth
flag was zero, i.e.,
there was no error.
ERROR Display the Truth flag was
specified error non-zero. Display an
message (based on error message and
WARNING) and QUIT .
execute QUIT .
I
{ Branch. J{(aerrR2)
Branch around the
"false portion" of the
previous IF structure.
ELSE This is the entry point

DROP

Drop the top value
from the parameter
stack.

for the "false portion"
of the IF structure.

i.e., There was no

error.

Drop the unused error
message number.

?EXEC

7EXEC (=)

?EXEC (pronounced "question-execute") issues Error Message 12H and a QUIT if the system is not in execute mode. In this case,
execution mode is defined as the user variable STATE containing a value of zero.

The standard error text for this word is "EXECUTION ONLY".

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.
: (colon) is an example of a word which uses ?EXEC.
* At entry - No parameters.
* At exit - No parameters.
?EXEC is a high level colon definition.
Refer to WARNING , STATE , ERROR , (ABORT) , and QUIT .

FORTH-79: There is no FORTH-79 equivalent for ?EXEC .

Definition: : 2EXEC (=)
STATE @ 12 ?ERROR ;

(?eXEC)

.

COCOL (Run time portion of
:) Save IP and
start interpreting
this definition.
STATE Piace the address of
the user variable
STATE onto the top
of the parameter
stack.
I
@ Replace the address Get the contents of
on the top of the STATE.
parameter stack with
the memory contents
of that address.
—
LIT Place the literal Put the number of the
12H value 12H onto the error message,
top of the parameter EXECUTION ONLY,
stack. onto the stack.
7ERROR Issue the specified Issue Error Message 12H
error message and if not in execution
QUIT if the truth mode.
flag in the second
entry is true Note: If an error
(non-zero). message is issued, a
QUIT will also occur
and execution will stop
here.
;S (Run time portion of

s .) Stop interpret-
ing this definition
and return to the

calling procedure.

a3

?LOADING

7LOADING

(=)

2LOADING {pronounced "question-loading") issues Error Message 16H and executes a QUIT if the system is not loading fram disic,

The standard error text for the word is "USE ONLY WHEN LOADING".

The system normally receives input from disk (loading) or from the terminal keyboard. The user variable BLK contains a zero if the
system is receiving input from the terminal input buffer. ?LOADING tests the contents of BLK and issues the error message if BLK
contains a zero.

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.

--> is an example of a word which uses ?2LOADING .

* At entry - No parameters.

* At exit - No parameters.

?LOADING is a high level colon definition.

Refer to 2ERROR , STATE , MESSAGE , WARNING , (ABORT) , and QUIT .

FORTH-79;: There is no FORTH-79 equivalent for 2LOADING .

Definition:

DOCOL

BLK

LIT
16H

: 7LOADING (--)

BLK @ 0=

?LOADING

(Run time portion of
:) Save IP and

start interpreting
this definition.

l

Place the address of
the user variable

BLK onto the top of
the parameter stack.

I

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the value on
the top of the
parameter stack with
a true flag (1) if

the value is zero;
otherwise, replace
the value with a
false flag (0).

Place the literal
value 16H onto the
top of the parameter
stack.

16 7ERROR ;

h—
Set up to get contents

of BLK .

Pick up the contents of
BLK . A value of zero
signifies that the
system is inputting
from the terminal. A
non-zero value reflects
the block number being
loaded.

Set the flag for
?ERROR . Make true
truth flag if BLK
contained zero (i.e.,
was inputting from
terminal).

Set up for ?ERROR.]
Place the number of the
Error Message, USE
ONLY WHEN LOADING,
onto the stack.

7ERROR

Issue the specified
error message and
QUIT if the truth
flag in the second
entry is true
(non-zero).

(Run time portion of
s ») Stop interpret-
ing this definition
and return to the
calling procedure.

Issue Error Message 16H
if not loading from the
disk.

Note: If an error
message is issued, a
QUIT will also occur
and execution will stop
here.

?PAIRS

2PAIRS (valuel \value2 —)

?PAIRS (pronounced "question-pairs") issues Error Message 13H and executes a QUIT (8080 fig-FORTH Version 1.1) if the top two 16-bit
values on the parameter stack are not equal.

The standard error text for this word is "CONDITIONALS NOT PAIRED".
This word is normally used during compilation to evaluate compilation conditionals.

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.
(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.

AGAIN is an example of a word which uses ?PAIRS .
* At entry - The first and second parameter stack entries contain 16-bit values to be compared for an equal condition.
* At exit - No parameters.

?PAIRS is a high level colon definition.

Refer to ?ERROR , WARNING , MESSAGE , STATE , (ABORT) , and QUIT .

FORTH-79: There is no FORTH-79 equivalent for ?PAIRS .

Definition: . 7PAIRS (valuel \value2 --)
- 13 ?2ERROR

|

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

—
- Subtract the top Set up for 7ERROR .
value on the A result of zero means
parameter stack from| that the twe values are
the second value on equal. Else, the value
the stack. will be not zero.
!
LIT Place the literal Set up for ZERROR .
13H value 13H onto the Put the number of the
top of the parameter error message,
stack. CONDITIONALS NOT
PAIRED, onto the
stack.
?ERROR Issue the specified Issue Error Message 13H
error message and if the two values were
QUIT if the truth not equal.
flag in the second
entry is true Note: If an error
(non-zero). message is issued, a
QUIT will also occur
and execution will stop
here.]
3S (Run time portion of

3 ») Stop interpret-
ing this definition
and return to the

calling procedure.

85

?STACK

?STACK (=)

?STACK (pronounced "guestion-stack"} checks for stack underflow and stack overflow and executes ?ERROR if either condition has
occurred.

Stack underflow generally occurs when the stack pointer "backed up" behind the initial starting location.
Stack overflow generally occurs when the stack has "grown" into the PAD area just below the end of the dictionary.

The exact determination of stack underflow and overflow is installation dependent which makes ?STACK an installation dependent
word.

The standard error text for this word is "EMPTY STACK" and "STACK OVERFLOW™".

The exact nature of the action taken when an error message is issued depends upon the contents of the user variable WARNING . (See
WARNING and MESSAGE).

If WARNING contains a 0 value, only the error message number is output and then a QUIT is performed.

If WARNING contains a positive, non-zero value, the message number is used as an offset (plus or minus) relative to Line 0 of Screen 4.

(e.g., A message number of 2 results in Line 2 of Screen 4 being displayed.) After the message is issued, a QUIT is performed.

If WARNING contains a negative value, normally -1, (ABORT) is executed. No message is output.

INTERPRET is an example of a word which uses ?STACK.

* At entry - No parameters.

* At exit - No parameters.

?STACK is a high level colon definition.

Refer to ERROR , WARNING , MESSAGE , QUIT , ABORT , and (ABORT) .

FORTH-79: There is no FORTH-79 equivalent for ?STACK .

Definition: ?7STACK (--)
SP@ S0 @ SWAP WX 1 ?ERROR SPa HERE 80 +
LK 7 ?ERROR 3
SWAP Swap the top two A SWAP is necessary
values on the because the SP@ had to
parameter stack. be performed first so
DOCOL (Run time portion of as not to affect the
:) Save IP and stack location with the
start interpreting so@.
this definition.
K Replace the top two Set truth flag for
Test for stack stack values with a ?ERROR . Note: This
underflow. true flag (1) if the is an unsigned
top of the stack's comparision. The fig-
absolute value is FORTH mode! uses <
SP@ Place the address of Set up for LK. Get the less than the second which is signed and can
the stack position current stack pointer stack entry's cause errors if an
onto the top of the value. absolute value. address is greater than
parameter stack as TFFF (H).
it was before SP@
was executed.
1 Place the constant Set up for ?ERROR .
value 1 onto the top Place the number of the
S0 Place the address of Set up for @ . SO of the parameter error message, EMPTY
the user variable SO contains the initial stack. STACK, onto the stack.
onto the top of the value of the stack
parameter stack., pointer.
7ERROR Issue the specified Issue Error Message 1
error message and if stack underflow has
€] Replace the address Fetch the initial value QUIT if the truth occurred.
on the top of the of the stack pointer. flag in the second
parameter stack with entry is true NOTE: If an error
the memory contents (non-zero). message is issued, a
of that address. . QUIT will also occur

and execution will stop
here.

sP@

LIT
80H

LIT

?ERROR

)

Place the address of
the stack position
onto the top of the
parameter stack as
it was before SP@
was executed.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the literal
value 80H onto the
top of the parameter

stack.

Add the top two
stack values and
replace them with
their signed sum.

Replace the top two
stack values with a
true flag (1) if the
top stack's absolute
value is less then
the second stack
entry's absolute
value.

Place the literal
value 7H onto the
top of the parameter
stack.

Issue the specified
error message and
QUIT if the truth
flag in the second
entry is true
(non-zero).

(Run time portion of
; -) Stop interpret-
ing this definition
and return to the
calling procedure.

Now test for stack
overflow. i.e.,
Determine if the stack
has grown to within 128
bytes past the end of
the dictionary.

—

Set up for LK. Again,
get present stack
pointer location.

Set up for +. HERE
gives the address of
the end of the
dictionary.

Set up for +. This is
the length of PAD and
the text buffer for
this installation.

Set up for LK.
Calculate the upper
most limit for the
stack.

Set the truth flag for
?ERROR . Test if
overflow has occurred.
Note the unsigned
comparison.

Set up for 2ERROR .

Put the number of the
error message, STACK
OVERFLOW, onto the

stack.

Issue Error Message 7H
if stack overflow has
occurred.

Note: If an error
message is issued, a
QUIT will also occur
and execution will stop

here.

87

?TERMINAL

?2TERMINAL (— flag)

?2TERMINAL (pronounced "question-terminal™) is an installation dependent word that is normally used tao determine if there is a character
ready to be input from a terminal.

This word is sometimes used to determine first if the break key has been pressed; then if any other key has been pressed.
INDEX is an example of a word which uses 7TERMINAL .
* At entry - No parameters.
* At exit - The top of the parameter stack contains a truth flag.
A true flag (1) indicates that a character is ready. KEY can then be used to read that character.
A false flag (0) indicates that no key has been pressed.
?TERMINAL is a low level code primitive.
FORTH-79: There is no FORTH-79 equivalent for 2TERMINAL .

(?TERMINAL)
8080 fig-FORTH

Version 1.1
IClear truth flag. J

Y

Set truth flag.

HPUSH Put flag onto top of
the stack.

NEXT

@

@ (memory address — 16-bit memory contents)
@ {pronounced "fetch") replaces the 16-bit address on the top of the parameter stack with the 16-bit memory contents of that address.
@ is the primary means in FORTH of accessing data stored in memory.
NOTE: This word "fetches" word (16 bit) values; C@ is used to fetch byte (8 bit) values.
LOAD is an example of a word which uses @.
* At entry - The top of the parameter stack contains the 16-bit address of the memory word to be fetched.
* At exit - The top of the parameter stack contains the 16-bit contents of the specified memory word.
@ is a low level code primitive.

Refer to C3F
NCITL WU .

(@)

FORTH-79: The FORTH-79 equivalent for @ is @ .

@ 8080 fig-FORTH

Version 1.1

[Ep addreés pointer. J

Pick up high order
byte of memory word.

lAim at next byte. J
|

Pick up low order
byte of memory word.

Push contents of
word onto the top of
the parameter stack.

ABORT

ABORT

()

ABORT can be considered the warm start routine for the FORTH system. ABORT resets the parameter stack, displays a start up
message, sets CONTEXT and CURRENT to FORTH , sets BASE ta DECIMAL , and issues a QUIT (which stops any compilation and starts

interpretation from the input terminal).

ABORT is commonly called by (ABORT) when WARNING is -1 and an error condition has been detected.

COLD is an example of a word which uses ABORT .

* At entry - No parameters.

* At exit - No parameters.

ABORT is a high leve!l colon definition.

Refer to (ABORT) , COLD, and QUIT .

FORTH-79: The FORTH-79 equivalent for ABORT is ABORT .

Definition:

DOCOL

DECIMAL

?STACK

CR

.CPU

"

0DH

FIG-FORTH

90

ABORT ()

SP! DECIMAL ?STACK CR .CPU

FORTH DEFINITIONS

(ABORT)

(Run time portion of
:) Save IP and

start interpreting
this definition.

Initialize the stack

pointer.
l

Set the base used in
numberic conversion
to base 10,

ssue Error Message
1 (EMPTY STACK) or
Error Message 7
(FULL STACK) if the
parameter stack is
out of bounds (i.e.,
either stack under-
flow or overflow
{respectively).

Output an ascii
carriage retum and
line feed to the
output device.

Display the CPU
Number that this
version of fig-FORTH
executes in.

|

Run time portion of
n

Compiled length of
the message to be

printed.
I

Character string to
be output.

QUIT

8080 fig-FORTH
Version 1.1

Make sure the stack is
within bounds.

Print the following ~ |
output message.

Print 13 characters
including the release
and version number.

This prints the
character string
"FIG-FORTH".

FIGREL+30H
ADOT
FIGREV+30H

FORTH

DEFINITIONS

QUIT

' FIG-FORTH 8080 VER 1.1 "

I

FIG-release Number
in ascii, ascii

"dot", and FIG-
version Number

in ascii.
|

Set CONTEXT with
the address of the
FORTH vocabulary.
(i.e., Search the
FORTH vocabulary.)

Set CURRENT equal
to CONTEXT. i.e.,
Append definitions
to the vocabulary in
CONTEXT .

Stop compiling and
start interpreting
commands from the
input terminal.

(Run time portion of
;.) Stop interpret-
ing this definition
and return to the
calling procedure.

This prints the release
and version number.
e.g., In the 8080
Version 1.1 listing it
would be "1.1".

—_—
Initialize CONTEXT to
aim at the FORTH
vocabulary.

Initialize CURRENT to
aim at the FORTH
vocabulary.

Initialize data stream
input to come from the
terminal.

Note: The above QUIT
never allows this ;S
to execute.

ABS (signed value — absolute value)

ABS

ABS (pronounced "absolute") converts a signed single precision value on the top of the parameter stack into its absolute unsigned value.

M* is an example of a word that uses ABS .

* At entry - The top of the parameter stack contains a 16-bit signed value.

* At exit - The top of the parameter stack contains a 16-bit unsigned absolute value.
ABS is a high level colon definition.
FORTH-79: The FORTH-79 equivalent for ABS is ABS .

Definition: : ABS (signed value -- absolute value)

— A
U += H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

l

DUP Duplicate the 16-bit Set up for +-.
value on the top of Duplicate original
the parameter stack. signed value.

+- Negate the 2nd stack If value is positive,
entry if the top nothing happens. If
entry is negative. negative, the value is

negated, making it
positive (i.e.,
absolute value).

-,
w

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

91

AGAIN

AGAIN

COMPILE TIME: (loop address\ 1 —)
(Sequence 2)

EXECUTION TIME: (-)

(Seguence 3)

AGAIN is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

AGAIN is used to mark the end of an infinite loop structure in the form:

BEGIN "Loop Body" AGAIN
There is no exit from a BEGIN-AGAIN loop. If an exit is necessary, another type of loop structure should be used.
BEGIN-AGAIN loop structures must always be used within a colon definition.

The compile time action (Sequence 2) of AGAIN is to compile a BRANCH into the dictionary. Secondly, it resolves the loop body entry
point address provided by BEGIN into a return branch offset used by BRANCH and stores this offset into the dictionary.

Some compiler security is provided by checking for a 1 on the top of the stack. BEGIN leaves a 1 on the stack. Since no other compiling
words leave a 1 on the stack, failure to pair an AGAIN with a BEGIN will cause an error condition to be detected by ?PAIRS . Note that
this is not foolproof.

The execution time action (Sequence 3) of AGAIN is to unconditionally branch back to its corresponding BEGIN (i.e., the beginning of the
"loop body"). AGAIN accepts no input parameters and leaves nothing on the stack.

The BRANCH , compiled into the definition at compile time, is what performs the looping.
AGAIN may only be used within a colon (:) definition.
Note that AGAIN is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

QUIT is an example of a word which uses AGAIN.

COMPLE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the 16-bit signed single precision value 1 used for compiler security.
The second stack entry contains the 16-bit entry point address of the "loop body" portion of the BEGIN-AGAIN structure.

* At exit - No parameters.
EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) -~ This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

AGAIN is a high level colon definition.
Refer to BEGIN , and BRANCH .
FORTH-79: AGAIN is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

Definition: : AGAIN (loop address\\1 --) (compile time)
1 ?PAIRS COMPILE BRANCH BACK H IMMEDIATE

92

COMPILE TIME action of AGAIN : (loop address 1 —) EXECUTION TIME action of AGAIN : (—)
(Sequence 2) (Sequence 3)

~ —

| AGAIN BEGIN Entry point to
. beginning of "loop
.\ BEGLOOP body".

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition. I"T_oop body". _l
1 Place the constant Set up for TPAIRS . o
value 1 onto the top
of the parameter | 00| s ssss-sms-secscocoomssssssocosoooosomomomoons
stack.
?PAIRS Issue Error Message An AGAIN with a BRANCH Unconditionally
13H (CONDITIONALS| corresponding BEGIN branch back to the
NOT PAIRED) and will result ina 1 left beginning of the
QUIT if the top on the top of the "loop body". BRANCH
two stack values stack. An error message is the run time
are not equal. will be issued and a portion of AGAIN .
QUIT will occur if not. Branch back to BEGIN
- using the previously
J— caleulated and stored
COMPILE Compile the Code This puts BRANCH into backwards offset.
Field Address (CFA) the definition being
of the following compiled.
definition into the
dictionary. | | meeememmsmeese--ec--c-cosm-oe-c---o-essssmoooos
i
BRANCH Run time portion of BRANCH is compiled
AGAIN . into the definition. It is
Unconditional branch not executed at compile There is no exit
based on input truth time. from a BEGIN-AGAIN
flag. loop.
BACK Caleculate the The address left by
relative branch BEGIN is used to
offset from HERE to calculate a return
the specified branch offset. This
address and compile offset is then compiled
it into the into the definition and
definition. referenced by BRANCH
at execution time.
S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.
IMMEDIATE |Set the precedence AGAIN is a compiler
bit of this word and therefore must
definition so it execute during compil-
will be executed at ation (Sequence 2) so
compile time and not that it can compile
compiled into the other definitions.
definition.

ALLOT

ALLOT

ALLOT advances the Dictionary Pointer (DP) the specified number of storage locations.
memory space in the dictionary.

(number of storage locations —)

."" is an example of a word which uses ALLOT .

* At entry - The top of the parameter stack contains a 16

be allotted.

* At exit - No parameters.

ALLOT is a high level colon definition.

Refer to DP .

FORTH-79: The FORTH-79 equivalent for ALLOT is ALLOT .

Definition:

DOCOL

DP

+

: ALLOT

DP +

ALLOT

(Run time portion of
:). Save IP and

start interpreting
this definition.

Place the address of
the user variable DP
onto the top of the
parameter stack.

Add the specified
16-bit value to the
contents of the
specified memory
location.

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

(number --)

DP is the Dictionary
Pointer.

Allot the space. i.e.,
Add the number of
locations to allot to
the next available
dictionary location
pointer,

Its primary purpose is to reserve or "allot"
The particular length of a storage location is dependent upon the address type of the processor used.

-bit signed number specifying the number of storage locations to

AND

AND (valuel \ value2 — logical result)
AND performs a bit-wise logical AND function on the top two values on the parameter stack and replaces them with their logical result.
BUFFER is an example of a word which uses AND.
% At entry - The top of stack and second entry contain the 16-bit values to be ANDed.
= At exit - The top of the stack contains the 16-bit logical result.
AND is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for AND is AND .

AND
8080 fig-FORTH
Version 1.1

I—Piop first value. J
]

lP'op second value. J
l

]XND low order bytes.J

l

AND high order
bytes.

HPUSH Push result back onto
stack.

95

B/BUF

B/BUF (— bytes per buffer)

B/BUF (pronounced "bytes-per-buffer") is a single precision CONSTANT value. This constant places the number of bytes per disk buffer
onto the top of the parameter stack. This value reflects the number of bytes transferred between mass-storage and memory by
BLOCK .

The number of buffers in a system can be determined using B/BUF by subtracting FIRST from LIMIT and then dividing the result by
B/BUF (i.e., LIMIT FIRST - B/BUF /).

(LINE) is an example of a word which uses B/BUF.
* At entry - No parameters.

*# At exit - The top of the parameter stack contains the signed 16-bit single precision value of the number of bytes per disk
buffer.

Refer to BUFFER , +BUF , BLOCK , LIMIT , and FIRST .

FORTH-79: B/BUF is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set". Note that the size of
a FORTH-79 buffer is 1024 bytes (1K).

96

B/SCR

B/SCR (— blocks per screen)

B/SCR (pronounced "blocks-per-screen') is a single precision CONSTANT value. This constant places the number of blocks per editing
screen onto the top of the parameter stack. By convention, an editing screen in FORTH contains 1024 (decimal) or 1K characters. The
screen is normally organized into 16 lines of 64 characters. The constant C/L specifies how many characters are used per editing line.
MESSAGE is an example of a word which uses B/SCR.

* At entry - No parameters.

% At exit - The top of the parameter stack contains the signed 16-bit single precision value of the number of blocks per
editing screen.

FORTH-79: There is no FORTH-79 equivalent for B/SCR .

BACK

BACK (entry point address —)

BACK is primarily used while compiling loop structure words at Sequence 2. It resolves the supplied address into a backwards (hence
BACK) branrrh offset and compiles the offset into the dictionary.

For example, during compilation (Sequence 2), DO supplies the beginning address of the "loop body" to LOOP . BACK (rcontained within
LOOP) converts this address into an offset and then compiles it for (LOOP) to use when "branching back" during execution time
(Sequence 3).
LOOP is an example of a word which uses BACK.
* At entry - The top of the parameter stack contains a 16-bit entry point address.
* At exit -No parameters.
BACK is a high level colon definition.
NOTE: Although BACK is a word used by compiler words, it is not an IMMEDIATE word itself.
Refer to DO , and LOOP .
FORTH-79: There is no FORTH-79 equivalent for BACK .

Definition: : BACK { eniry point address --)

HERE -, H

(Run time portion of
:) Save IP and

start interpreting
this definition.

DOCOL

HERE

Place the address of
the next available
dictionary location
onto the top of the.
parameter stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Store (compile) the
value on the top of
the parameter stack
into the next
available dictionary
location and advance
the dictionary

pointer.
I

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set up for - . Get the
address of where the
offset will go.

Calculate the offset.
(Offset address minus
entry point address.)

Compile the offset into
the definition.

BASE

BASE (— data address)
BASE is a user variable that contains the current number base {or radix) used for input and output numeric conversion.

HEX and DECIMAL are examples of words that set BASE . Executing HEX stores a 16 (decimal) into BASE . Executing DECIMAL stores
a 10 (decimal) into BASE .

("dot") references BASE when performing a binary-ascii conversion.
(NUMBER) references BASE when performing ascii-binary conversion.
Note that the sequence BASE ? will always result in a "10" being output no matter what base the system is in. Since this is the
correct answer, use the sequence BASE@1- . which will print a "9" for a DECIMAL base, an "F" for a HEX base, etc. Another
alternative is defining the word BASE? . : BASE? BASE @ DUP DECIMAL . BASE! ; This word will display the base in decimal
without destroying the contents of BASE .

The user variable BASE is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable BASE .
Refer to HEX , DECIMAL , (NUMBER), . , and USER .

FORTH-79: The FORTH-79 equivalent for BASE is BASE .

BEGIN

BEGIN

COMPILE TIME: (— entry point address\ 1)
(Sequence 2)

EXECUTION TIME: (—)

(Sequence 3)

BEGIN is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

BEGIN is used to mark the beginning of an indefinite, repetitive loop structure. It is used as the beginning of three types of loops in the
forms:

BEGIN "Loop Body" UNTIL

BEGIN "Loop Body" AGAIN

BEGIN "Set Conditional" WHILE "True Portion" REPEAT
A BEGIN-type loop structure must always be used within a colon definition.
BEGIN-type loops differ from DO-LOOP 's in that a BEGIN loop is not limited from its start to a specified number of passes through the
loop as is a DO-LOOP . Once started, a BEGIN-type loop may execute indefinitely; or for some structures, until a specified condition is
met.
The compile time action (Sequence 2) of BEGIN is very simple. BEGIN places the address of the next available dictionary location onto
the parameter stack. (i.e., It passes the beginning address of the "loop body" to UNTIL , REPEAT or AGAIN so that these words can

compile a return branch into their respective definitions.)

To provide compiler security, the value 1 is placed onto the top of the parameter stack so that UNTIL , AGAIN , WHILE or REPEAT can
check for it. This provides a somewhat secure (but not foolproof) method of checking for un-balanced loop structures.

The apparent run time action (Sequence 3) of BEGIN is to serve as a return entry point for the "loop back" word at the end of the
structure. (Really BEGIN does nothing because the branch which is executed is actually imbedded within the "loop back” definition.)

Note that BEGIN is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

QUIT is an example of a word which uses BEGIN.

COMPILLE TIME (Sequence 2):
* At entry - No parameters.

* At exit - The top of the parameter stack contains the 16-bit signed single precision value 1 used for compiler security.
The second stack entry contains a 16-bit address specifying the location of the first word of the "loop body".

EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) -- This word may only be used within a colon definition.
BEGIN is a high level colon definition.
Refer to UNTIL , AGAIN , WHILE , and REPEAT .
FORTH-79: The FORTH-79 equivalent for BEGIN is BEGIN .

Definition: 3 BEGIN (-- entry point address\1) (compile time)
2COMP HERE 1 3 IMMEDIATE

100

COMPILE TIME action of BEGIN (Sequence 2): (— entry point address\ 1)

DOCOL

TCOMP

HERE

IMMEDIATE

BEGIN

(Run time portion of
:) Save IP and

start interpreting
this definition.

Issue Error Message
11H (COMPILATION
ONLY, USE IN
DEFINITION) and
QUIT if not
compiling.

|

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the constant
value 1 onto the top
of the parameter

stack.
I

(Run time portion of
; «) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the

definition.

48

BEGIN must be use
within a colon
definition.

Get the location of the
beginning of the loop
body.

UNTIL AGAIN WHILE
and REPEAT all expect
1 on the top of the
stack.

BEGIN is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

EXECUTION TIME action of BEGIN (Sequence 3): (—)

There is no run time action for BEGIN .

101

BL

BL (-—20H)
BL (pronounced "B-L") is a single precision CONSTANT value. This constant places the ascii value for the character "blank" (or "space")
onto the top of the parameter stack. This value is a 20 (hex) or a 32 (decimal). Referencing a blank via the name BL makes FORTH
more readable.
B! is commonly used as a delimiter parameter for WORD . This not only makes the definition more readable, (e.g., BL WORD), but it
allows less chance of introducing a "wrong base" bug. For example, if the editing screen is in decimal base, a blank is a 32; if the base is
hex, a blank is a 20. This is sometimes a source of error.
-FIND is an example of a word which uses BL.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit single precision value of an ascii blank character.

Refer to WORD .

FORTH-79: There is no FORTH-79 equivalent for BL .

102

BLANKS (beginning address \ # of bytes to blank —)
BLANKS clears a specified region of memory to ascii blanks (20H).

BLANKS is simply a FILL with the fill character (20H) "hard coded".

BLANKS

* At entry - The top of the parameter stack contains the beginning address of the memory to fill. The second stack entry

contains the positive 16-bit number of bytes (8080 fig-FORTH version) to fill.
* At exit - No parameters.
BLANKS is a high level colon definition.

Refer to FILL .

FORTH-79: BI_ANKS is not explicitly defined by FORTH-79 but it is listed in the *FORTH-79 Referenced Word Set'.

Definition: . BLANKS (beginning address\ # --)
BL FILL 3

BLANKS

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

BL Place the value of

Set up for FILL . Set
the constant BL 20H as FILL character.
(20H) onto the top The stack now contains:
of the parameter 20H

stack. # of Bytes

Beginning Address

FILL Fill memory using Fill memory with
specified address, blanks.
iength, and fiii
character.

;S (Run time portion of

3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

103

BLK

BLK (- data address)

BLK (pronounced "B-L-K") is a user variable which contains the number of the block currently being interpreted. If BLK contains a zero,
the input data stream is from the terminal.

WORD references BLK to determine the address of the input data stream.
LOAD and --> set BLK with the mass storage block being transferred to memory.
QUIT sets BLK to 0, meaning that input is from the terminal.

The user variable BLK is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable BLK .
Refer to WORD , LOAD , -->, and USER .

FORTH-79: The FORTH-79 equivalent for BLK is BLK .

104

BLOCK

BLOCK (desired block number — data address of desired block)

BLOCK is used to access data kept in mass storage. (Since disk is the most common mass storage, further references will be to "disk"
and not "mass storage".) BLOCK is a virtual memory type access word. This means that the desired block number is renlaced with the
memory address of that block. The type of storage, the device number and other physical attributes may be treated as being transparent
to the external operation of the word. This also means that data that has been flagged as modified, but which still residzs in memory, is
written back to disk before that location is overwritten with new disk data.

BLOCK transfers data from disk to a buffer. A FORTH system normally contains several physically contiguous buffers, with the last
buffer "linked" by software (see +BUF) back to the first buffer to form a "logically circular" array of buffers. (Refer to +BUF for a
more complete description of these buffers.)

The management of these buffers falls into two separate (but related) categories; buffer-referencing and buffer-allocation/disk access.

The function of buffer-referencing management is to minimize disk accesses. BLOCK ‘s primary responsibility is to perform
buffer-referencing management, If buffer-allocation is necessary, BLOCK calls BUFFER (see BUFFER).

The basis of buffer-referencing management is to possibly save a disk access by first examining all buffers in the buffer array to
determine if the desired block is currently in memory. The search begins with the most recently referenced buffer (pointed to by the
system variable PREV), and proceeds cyclically through the buffer array until, if no match is found, it returns again to the most recently
referenced buffer. Note that although the search takes place sequentially in the direction of buffer-allocation, there is no guarantee
that the search takes place in descending order of the most recently referenced to least recently referenced buffer. This is because
there is only one referencing-pointer (PREV) and references to blocks in memory buffers may take place in any random order.

Buffer-referencing management works because references to blocks are usually concentrated within the same set (but not necessarily
numerically close range) of block numbers.

As previously described, if a newly allocated buffer has been flagged as being modified (sse UPDATE); the contents of that buffer is
written to disk and not just overlayed with the new data. An updated buffer may be forced to disk before this allocation process by using
the word FLUSH .

It is extremely important to note that the size of a buffer (i.e., the number of bytes read by BLOCK) is an arbitrarily set value. This
value is stored in the constant BfBUF . This means that while the buffer size may correspond to the sector size of the disk being used, it
does not have to. It also means that in a fig-FORTH system, BLOCK does not automatically read in a 1K byte source screen. (This is a
possible source of confusion to those switching between fig-FORTH and some FORTH, Inc., type systems. i.e. In fig-FORTH, a BLOCK is
not necessarily synonymous with a screen.)

The word R/W performs the physical device selection and data transfers. Each storage device in the system has a unique range of block
numbers assigned to it. This allows each block in the system to be unique. It is also in keeping with the virtual aspect of BLOCK in that
device selection is based solely upon block number range. (e.g., Drive 0 may contain blocks 1 through 799; while Drive 2 may contain
blocks 800 through 1199, etc.) :

This explicit addressing does pose a slight probiem, however. For exampie; it is difficuit to remember that certain data on a diskette
may reside at block 160 when the diskette is in Drive 1; but that, when the diskette is in Drive 2, that same data on the same diskette
may reside at block 560.

BLOCK solves this problem through the use of the user variable OFFSET . Immediately upon entry, the contents of OFF SET is added to
the desired block number. This allows implicit drive selection by previously setting (i.e., biasing) OFFSET to the starting block number of
the selected drive. (See DRO and DRL; Explicit block addressing may be performed by ensuring that OFFSET contains the value 0
before calling BLOCK .

(LINE) is an example of a word which uses BLOCK.

* At entry - The top of the parameter stack contains the 16-bit value specifying the desired block number. The maximum
block number range is from 0 to 32767. The most-significant bit must be 0 as this is used as the "update" flag.

At exit - The top of the parameter stack contains the 16-bit memory address of the data portion of the desired block.
BLOCK is a high level colon definition. '
Refer to BUFFER , B/BUF , UPDATE , FLUSH , OFFSET , DRO, DR1, and R/W .
FORTH-79: The FORTH-79 equivalent for BLOCK is BLOCK .

Definition: : BLOCK (block number — address)
OFFSET @ + >R PREV @ DUP @ R - DUP +

IF
BEGIN
sBUF 0= IF DROP R BUFFER DUPR 1R/W 2 - THEN
DUP@ R - DUP+ 0=
UNTIL
DUP PREV !

THEN R> DROP 2+

.o

105

106

< BLOCK ’

Calculate absolute
block number.

desired block

Buffer referencing
Management

in last buffer
re ferenced

Check next buffer to
determine if desired
block is already in

memory.

l;.im at next buffer.J

checked
?

desired

block in this

buffer
?

Buffer-allocation
Management

Desired block is not in
memory so re-allocate|
the oldest allocated
buffer after writing
its contents to disk if
its update flag was
set. Read the desired
lock from disk into
this newly allocated

=

-

Place the desired
block's data address
onto the top of the
stack.

Figure BLOCK-1

High Level Flowchart of BLOCK

DOCOL

OFFSET

(9]

>R

PREV

DUP

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the address of
the user variable
OFFSET onto the top
of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the top two
values on the
parameter stack with
their total.

'Remove the top value

of the parameter
stack and place it
onto the top of the
return stack.

Place the address of
the system variable
PREV onto the top of
the parameter stack.

Replace the address
on the top of the
parameter stack with
the: memory contents
of that address.

Duplicate the top
value on the
parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Set up for @ . OFFSET

is set by DRO or DR1 to
allow switching between
drives. (Refer to

DRO .)

Pick up the number of
blocks to offset.

Add the offset to the
desired block number.

Temporarily save the
desired block number on
the return stack.

Now determine if the
desired block number
equals that pointed
to by PREV .

Setup for@ . PREV |
contains the address of
the most recently

referenced disk buffer.

Get the address of the
most recently
referenced disk buffer.

—_—
Duplicate the block
address for future use.
(Beginning address +
BUF .)

Get the block number of]
the block pointed to by
PREV.

Set up for - . Get the
desired block number
from the return stack.

DuP

il

BEGIN

o—

+BUF

Subtract the top
stack entry from the
second stack entry
and replace the top
two values with
their signed
difference.

Duplicate the top
value on the
parameter stack.

Add the top two
stack values and
replace them with
their signed sum.

Is
truth flag
=07

Aim at the next disk
buffer.

Replace the value on
the top of the
parameter stack with
a 1l if the value is
zero; otherwise,
replace the value
with a 0.

Compare the desired
number with the most
recently referenced
block number.

Set up for +.

Duplicate the truth

flag left by comparing
desired number with the
most recently
referenced block
number.

The presence of a set
update bit in the
buffer will cause the
comparison of the two
block numbers to leave
a misleading flag.
Adding the flag to
itself strips off this
update bit (MSB), if it
was set, by causing an
overflow thus leaving a
correct flag.

—

Perform buffer-
referencing
management.

Branch if the desired
block number is equal

to the last referenced
block number. Therefare
the data is already in
memory and its address
is available.

Entry point for "UNTIL
portion” of BEGIN-
UNTIL structure.

Otherwise, scan the
other remaining disk
buffers to determine if
the desired block is

already in memory.

Chain to the next
buffer.

+BUF returns an address
and a truth flag which
is false (0) when the
returned address equals
that in PREV .

Set up for IF .
Complement the truth
flag so the "true
portion" of the IF will
be executed if the
returned address equals
that in PREV .

IF

DROP

BUFFER

DuP

R/W

Is
truth flag
=07

Drop the top value
from the parameter
stack.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Assign and place the
data area address of
the next available
buffer onto the top
of the parameter
stack. Write the
buffer to disk if

the update bit is

 set,

Duplicate the top
value on the
parameter stack.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Place the constant
value 1 onto the top
of the parameter

stack.

Perform a physical
mass storage access
and either read/
write one block of
data from/to the
device.

Place the constant
value 2 onto the top
of the parameter
stack.

Branch if the next
buffer address does not
equal that in PREVY .
i.e., All buffers have
not been examined so do
not perform disk access
yet.

Otherwise, access the
disk and read in the
desired block.

Drop the buffer address
provided by +BUF .

Set up for BUFFER . |
Get the desired
block number.

This prepares the least
recently allocated

buffer location to
receive a sector of the
desired block from disk
and stores the block
number into it. (i.e.,
perform buffer
allocation management.) |

Set up for - and R/W .
Duplicate the buffer
data address so it can
be changed later to the
buffer address.

Set up for R/W . Get
the desired block
number.

Set up for R/W.A1lon
the stack signifies a
read.

This actually performs
the read of one sector
into the previously
selected buffer
location.

Set up for -.

107

THEN

: BLOC3 y

DUP

108

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Duplicate the top
value on the
parameter stack.

[

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Duplicate the top
value on the
parameter stack.

Add the top two
stack values and
replace them with
their signed sum.

Replace the value on
the top of the
parameter stack with
a l if the value is
zero; otherwise,
replace the value
with a 1.

The data portion of a
buffer is preceded by
two bytes of block
number data. Back up
and point to the
beginmning of the

buffer. p—

This is the entry point

from the previous IF .

Now set up the condi-
tional flag for the
UNTIL by determining
if the current buffer
contains the desired
block number.

Duplicate the buffer]

address on the top of
the parameter stack.

Pick up the block
number of the buffer.

Get the desired block
number again.

Compare the desired
block number with the
current buffer's block
number.

—

Set up for +.
Duplicate the result of
the comparison.

The presence of a set
"update" bit in the
buffer will cause the
comparison of the two
block numbers to leave
a misleading flag.
Adding the flag to
itself strips off this
update bit (MSB), if it
was set, by causing an
overflow thus leaving a
correct flag.

Set up for UNTIL .

Complement the boolean

value left by +. If
the block numbers are
equal, the flag will be
0 but UNTIL will
continue looping if
given a 0; so the O
must be made a 1, and
vice versa.

UNTIL

DUP

PREV

.-

THEN

(BLoc)———=

DROP

2+

Is
truth flag
=07

Duplicate the top
value on the
parameter stack.

I

Place the address of
the system variable
PREV onto the top of
the parameter stack.

Store the specified
value on the top of
the parameter stack
into the specified
memory location.

Remove the top of
the return stack and
place it onto the

top of the parameter

stack.
|

Drop the top value
from the parameter

stack,
I

Increment the top
parameter stack
value by 2,

(Run time portion of
3 ») Stop interpret-
ing this definition
and return to the
calling procedure.

Branch back to BEGIN
portion of the loop and
examine the next buffer
to see if it contains

the desired block
number,

Upon exit from the
BEGIN-UNTIL loop, the
desired block is in
memory and its buffer
address is on the top

of the parameter stack.

Set up for future 2+.
Duplicate the buffer
address.

Set up for!. PREV
contains the address of
the most recently
referenced buffer.

Set PREV to point to
the current buffer.

If a disk access was
performed, USE will now
equal PREV .

—

This is the entry point
from the first IF in
BLOCK (i.e., The IF
just prior to the
BEGIN).

Control is passed here
if the desired block is
already in the most
recently referenced
buffer; therefore
skipping the buffer
scan and disk access.

Retrieve the desired
block number from the
return stack.

Discard it.

Increment the buffer
address by 2 to aim at
the data portion of the

buffer.

BRANCH

BRANCH (-)

This execution time (Sequence 3) code is compiled into a definition (during Sequence 2) by ELSE , AGAIN , LOOP , +LOOP , and REPEAT
to cause an unconditional branch.

NOTE: At entry IP will be aiming at an offset which is added to IP to cause either a forward or backward branch.
Also note that negative branch address can be obtained by using a "two's complement" value of the offset.
* At entry - No parameters.
* At exit - No parameters.
BRANCH is a low level code primitive.
Refer to ELSE , AGAIN , LOOP , +#1.00F , and REPEAT .

FORTH-79: There is no FORTH-79 equivalent for BRANCH .

< BRANCH ’

8080 fig-FORTH
Version 1.1

Transfer IP to work
register.

Pick up low and high 1P is aiming here.
order bytes of off-
set from dictionary.

[Add the offset. J

Replace the old IP
value with the newly
calculated value.

NEXT Execute the next word
using the newiy
calculated IP address.

109

BUFFER

BUFFER (block number — data address)

BUFFER is a buffer management word used to obtain the address of a buffer which may then be used for transfer of data from mass
storage (usually disk) to memory. BUFFER also writes the data portion of any buffers flagged as "updated" to disk.

There are two forms of buffer management in FORTH: buffer-referencing and buffer-allocation/disk access.

The buffer-referencing management is primarily the responsibility of BLOCK (see BLOCK). Buffer-referencing management keeps
track sf which buffer was most recently referenced on the supposition that it is likely that this buffer will be referenced again. If the
most-resently-referenced buffer does not contain the desired block number/data, the remaining buffers are also examined. If it is
determined that the data is not already in memory, the data must be read from disk. Before any data transfer can occur, a buffer must
be allocated. It is the purpose of BUFFER to perform and manage this allocation process.

The way in which buffers are allocated is closely related to the way buffers are logically arrayed in memory. A FORTH system normally
contains several physically contiguous buffers wtih the last buffer "linked" via +BUF back to the first buffer to form a "logically circular"
array of buffers.

A buffer address is obtained via the word +BUF . (See +BUF for a more detailed explanation of the buffer structure.) Given a buffer
address, +BUF always returns the address of the next logical buffer in the circular queue.

Buffer allocation is performed on the basis of the "oldest allocated" buffer being re-allocated for use as the "newest allocated” buffer.
(The only exception to this method is when the most recently referenced buffer, pointed to be PREV, would be overlayed. Since it is
likely that the data in this buffer will be re ferenced again, it is wise not to allocate and overlay the contents of this buffer.)

Since BUFFER uses +BUF to obtain the address of the next buffer to allocate, buffer-allocation is also "circular". This "circular"
allocation automatically causes the "oldest allocated" buffer to be used for re-allocation.

BUFFER stores the address of the next buffer to allocate (i.e., "use") into the system variable USE . Note that this is the next buffer to
allocate, not the one just allocated.

Another function of buffer is to write data which has been flagged as "updated" or changed (see UPDATE) to disk. This prevents data
which has been modified and flagged as updated from being overwritten with new data. This contributes to the virtual memory action of
BLOCK by making explicit writes to disk of modified data unnecessary.

It is extremely important to note, however, that the simple act of modifying data in a buffer will not cause it to be written back to
disk. The update flag must be set in order for this to occur.

It is also equally important to note that setting the update flag does not absolutely quarantee that data will be written to disk. This
write only occurs when a buffer is allocated. If the system is restarted, or powered off, or the desired disk is removed from the drive;
the data will not be written to the desired location. This problem is easily solved, though, by using the word FLLUSH to force all updated
buffers to be written to disk before allowing any of the conditions mentioned above to occur.

* At entry - The top of the parameter stack contains a 16-bit unsigned block number which will be assigned to the newly
allocated buffer.

* At exit - The top of the parameter stack contains the 16-bit address of the beginning address of the data portion of the
newly allocated buffer.

BUFFER is a high level colon definition.
Refer to BLOCK , +BUF , USE , PREV, and FLUSH .
FORTH-79: The FORTH-79 equivalent for BUFFER is BUFFER .
Definition: : BUFFER (block number -- address)
USE @ DUP >R
BEGIN +BUF UNTIL

USE ! R@ K IF R 2+ R @ TFFF AND 0 R/W THEN
R R PREV ! R> 2+ ;

110

BUFFER

Pick up (from USE)
the address of the
buffer to allocate.

|

Find the next buffer
to allocate,

skipping over the
most recently
referenced buffer if
necessary. Save this
address in USE .

DoCoL

USE

Is
update

flag set in
buffer being
allocated

()

Write buffer
contents to disk.

e —

Store new block
number into buffer.

DUP

I SR
Make this buffer
also the most
recently referenced.

1

i
Return address of
data portion of
buffer.

Figure BUFFER-1

High Level Flowchart of BUFFER

+BUF

BUFFER

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the address of
the system variable
USE onto the top of

Blan mmmammban abanls
ui€ paraimncier Scalr.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Duplicate the top
value on the
parameter stack.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

_A

Pick up the address of
the buffer to allocate.

-

USE contains the
address of the block
buffer to "use" (i.e.,

+ n
to allocate next).

Set up for +BUF . Get
the buffer address
contained in USE .
i.e., The address of
the buffer that is
going to be allocated. ___|

Set up for >R .
Temporarily save the

address of the buffer
to allocate.

— —_—
The following loop gets
the address of the next
buffer to allocate
while ensuring that it
is not the most
recently referenced
buffer. This will not
work on a system with

Replace the buffer
address on the top
of the parameter
stack with the
address of the next
buffer in the
logically circular
buffer array. Leave
a truth flag of O if
the address equals
that in PREV .

only one buffer.
This is the entry peint
from the UNTIL portion
of this BEGIN-UNTIL
structure.

Get the address of the
buffer which has been
allocated for the
longest amount of time,
i.e., the oldest

buffer.

111

UNTIL

USE

112

Is
truth flag
=07

Place the address of
the system variable
USE onto the top of
the parameter stack.

Store the specified
16-bit value into

the specified memory
location.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the value on
the top of the
parameter stack with
a true flag (1) if

the value is less

than zero

(negative);
otherwise, replace
the value with a
false flag (0).

Is
truth flag
=07

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

If the oldest allocated
buffer is also the mast
recently referenced
buffer (i.e., that
pointed to by PREV); a
loop back to the BEGIN
will occur. This is
because chances are
that this buffer is
likely to be referenced
again and therefore
should not be overlayed
with the new block data
from disk.

Set up for!.

Stuff USE with the
address of the next
buffer to allocate.

p—

Set up for @ . The top
of the return stack
contains the address of
the buffer that is
being allocated.

Pick up the block
number from the buffer
being allocated.

Test to see if the
update bit is set.
(Since the update bit
is the MSB, when it is
set, the word has a
negative value.)

"IF" the update flag
was set, the true
portion of the
following IF statement
writes the data
contents of the buffer
to disk.

Branch if the update
flag was not set.

Get the address of the
buffer being allocated.

2+

LIT
TFFFH

AND

R/W

THEN

D

Increment the top
parameter stack
value by 2.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Place the literal
value 7FFFH onto the
top of the parameter
stack.

Logically AND the
top two values on
the parameter stack
and replace them
with the logical

result.
l

Place the constant
value 0 onto the top
of the parameter

stack.

Perform a physical
mmass storage access
and either read/
write one block of
data from/to the

device.

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Store the specified
16-bit value into

the specified memory
location.

Set up for R/W . Aim at
the data portion of the
buffer (i.e., skip over
the block number).
L.eave the address on
the stack. 1

——

Set up for @ . Again
get the address of the
buffer being allocated.

Set up for AND . Again
pick up the block
number.

Set up for AND . 7FFFH
is a logical mask which
if ANDed will leave all
but the most

significant bit (the
update flag).

Set up for R/W . Strip
the update bit from the
block number.

Set up for R/W . A zero
input to R/W signifies
a write operation is to
occur.

Write the data portion
(the block) of the
buffer to its
appropriate block
location on disk.

This is the entry point
from the previous IF .

Control is passed here
if the contents of the
buffer was not flagged
as updated.

Set up for ! . Again
get the address of the
buffer being allocated.

Store the desired block
number (passed as an
input parameter to
BUFFER) into the
buffer being allocated.
This also clears any
set update flag.

PREV

2+

Copy the value on
the top of the
return stack onto
the top of the
parameter stack.

Place the address of
the system variable
PREV onto the top of
the parameter stack.

Store the specified
16-bit value into

the specified memory
location.

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

Increment the top
parameter stack
value by 2,

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the

calling procedure.

Again get the address
of the buffer being
allocated.

PREV contains the
address of the most
recently referenced
buffer.

Make this newly

allocated buffer also

the most recently

referenced buffer.

Remove the address of
this newly allocated
buffer from the return
stack.

Skip over the block
number and return the
beginning address of
the data portion of the
buffer.

113

C!

Ct (byte\ address —)

C! (pronounced "C-store") stores a byte (or "character"--hence "C'"-store) from the top of the stack into the specified memory location.
Word addressing computers may need further specification.

i is the word used to store 16-bit values into memory. C@ has the opposite effect of Ci .

HOLD is an example of a word which uses C!

* At entry - The top of the parameter stack contains the 16-bit address specifying the lacation the byte is to be stored into. The
second entry contains a 16-bit word. The low order 8-bits are stored into memory. The high order 8-bits are ignored.

* At exit - No parameters.
C! is a low level code primitive.
Refer to C@ , and ! .

FORTH-79: The FORTH-79 equivalent for C! is C!.

8080 fig-FORTH
Version 1.1

Pop the address into
the registers.

l

Pop the byte into a
register.

Store the byte into
memory.

114

C,

C, (single byte value —)

C, (pronounced "C-comma") stores the low arder single byte, or character (hence, "C" comma) from the top of the parameter stack into
the next available dictionary location and advances the dictionary pointer.

The word , is used to store 16-bit values.
* At entry - The low order 8-bits of the top parameter stack value contain the value to be stored into the dictionary.
* At exit - No parameters.

C, is a high level colon definition.

Refer to DP .

FORTH-79: C, is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

Definition: : C, (byte value --)
HERE Cl i ALLOT H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

I

HERE Place address of
next available
dictionary location
onto top of
parameter stack.

I

Ct Store the specified Store the byte into
8-bit value into the dictionary.
specified memory
location.

1 Place the constant

value 1 onto the top
of the parameter

stack.
T
[
ALLOT Allot one memory Aim Dictionary Pointer
location. (DP) past byte just

stored.

e
[72]

(Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

115

C/L

C/L (- characters per editing line)

C/L (pronounced "C-slash-L") is a single precision CONSTANT value. This constant places the number of characters per editing line onto

the top of the parameter stack. FORTH editing screens normally consist of 1024 (decimal) characters organized as 16 lines of 64
characters.

VLIST is an example of a word which uses C/L.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit single precision value of the number of characters per
editing line.

FORTH-79: There is no FORTH-79 equivalent for C/L .

116

Ce

C@ (address — byte)

C@ (pronounced "C-fetch") replaces an address on the top of the parameter stack with the 8-bit contents of that memory location.
Note that @ is used to fetch 16-bit values from memory.

CREATE is an example of a word which uses C@.

* At entry - The top of the parameter stack contains the 16-bit address specifying the memory location from which the byte
will be fetched.

* At exit - The low order 8-bits of the top of the parameter stack contain the 8-bit contents of the specified memory
address. The high order 8-bits of the top of the parameter stack contain zeros.

C@ is a low level code primitive.
Refer to @ .

FORTH-79: The FORTH-79 equivalent for C@ is C@ .

8080 fig-FORTH
Version 1.1

Pop address into
registers.

Pick up byte from
memory.

Zero out high order
portion of word.

HPlilSH Push fetched byte onto
stack.

NEXT

1z

CFA

CFA (Parameter Field Address — Code Field Address)

CFA (pronounced "C-F-A") converts a given Parameter Field Address (PFA) of a dictionary definition into its Code Field Address
(CFA).

The structure of the header of a FORTH definition is:

Name Field Variable length
Link Field 2 byte address pointer
Code Field 2 byte address pointer
Parameter Field Variable length

An example of the use of CFA can be found in the word (;CODE) .

* At entry - The top of the parameter stack contains the 16-bit Parameter Field Address of a FORTH definition.

* At exit - The top of the parameter stack contains the 16-bit Code Field Address of the specified FORTH definition.
CFA is a high level colon definition.
Refer to NFA , LFA, and PFA .

FORTH-79: There is no FORTH-79 equivalent for CFA . A FORTH-79 program may not address into a definition's Code Field.

Definition: : CFA {PFA - CFA)
2 -
DOCOL (Run time portion of

:) Save IP and
start interpreting
this definition.

2 Place the constant
value 2 onto the top
of the parameter

stack.

- Subtract the top Decrement the PFA by 2
stack entry from the and are now aiming at
second stack entry the CFA.

and replace the two
values with their
signed difference.

;S (Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

118

CMOVE

CMOVE (source address\ destination address\ length —)

CMOVE {pronounced "C-move") is a character (byte) oriented word which moves a character string byte-by-byte from the source address
to the destination proceeding towards high memory. Note that bytes are moved from the beginning of the string first; therefore the
destination string cannot overlap the source string. (Some versions of FORTH use the word <CMOVE (backwards CMOVE) to move
strings which overlap in this manner.)

Note, however, that if the destination address is 1 byte higher than the source address, CMOVE will have the effect of rippling the first
byte throughout the specified length of memory. This ripple effect only works for read/write memory. It will not work for write-only
memory (such as specialized video displays). This is because the byte to be moved must be read from memory.

* At entry - The top of the parameter stack contains the unsigned 16-bit length of the string to move. The second entry
contains the destination address and the third entry contains the source address.

* At exit - No parameters.
CMOVE is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for CMOVE is CMOVE .

(cmove)
8080 fig-FORTH

Version 1.1

IP—op length. J
l

Pop destination
address.

I—FE source address. ‘

[I

]
V

Pick up source
character.

Increment source
address.

I

ﬁre character. J
|

Increment
destination address.

I

Decrement length
count.

i, Count =07

NEXT

119

COLD

con (-)

COLD is the "cold-start" routine for the FORTH system. The purpose of COLD is to initialize user variables to their startup values and

then call ABORT .

COLD may be executed from the terminal. Its effect is to remove all definitions except the basic FORTH vocabulary and reset the

system.
COLD performs seven basic tasks (8080 fig-FORTH version 1.1):
1. Empties the buffers.
2. Sets disk density.
3. Initializes USE and PREV buffer pointers.
4. Selects Drive 0 as the mass storage device.
5. Disables the printer.
6. Initializes the following USER variables: S0, R0, TIB, WIDTH, WARNING, FENCE, DP, and VOC-LINK.
7. Calls ABORT.
NOTE: The exact nature of COLD is installation dependent.
* At entry - No parameters.
* At exit - No parameters.
COLD is a high level colon definition.

FORTH-79: There is no FORTH-79 equivalent for COLD .
Definition: : coLb (--) (8080 Version 1.1)

EMPTY-BUFFERS 0 DENSITY ! FIRST USE ! FIRST PREV ! DRO
0 EPRINT ! ORG+12 UP 6 + 10 CMOVE ORIG+C @ FORTH+6 !
ABORT H
(COLD } FIRST Place the value of
8080 fig-FORTH the constant FIRST
Version 1.1 onto the top of the
parameter stack.

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

I USE Place the address of
the system variable

EMPTY- Erase the contents Initialize the disk USE onto the top of

BUFFERS of all disk buffers buffers. the parameter stack.
to zero. Clear all
update bits.

0 Place the constant Set up for !.
value 0 onto the top ! Store the specified
of the parameter value into the
stack. specified memory

l location.

DENSITY Place the address DENSITY is a variable
of the user variable commonly used in FIRST Place the value of
DENSITY onto the fig-FORTH the constant FIRST
top of the parameter implementations which onta the top of the
stack. specifies whether parameter stack.

single or double
density disk drives are
in use.

H Store the specified In this case, PREV Place the address of
value into the initialize the system the system variable
specified memory for single density PREV onto the top of
location. drives. —J the parameter stack.

120

Setup for!. FIRST |

is the address of the
"first" disk buffer.
NOTE: The 8080
Version 1.1 listing uses
LIT BUF1 instead of the
constant FIRST .

Set up for!. USE is
used by buffer-
allocation management
(see BUFFER) as a
pointer to the next
buffer to allocate (or
"use™).

Initialize USE with the
address of the "first"
buffer.

Set up for!. FIRST

is the address of the
"first" disk buffer.
NOTE: The 8080 Version
1.1 listing uses LIT
BUF1 instead of the
constant FIRST .

Set up for !. PREV

is used by buffer-
accessing management
(see BLOCK) as a
pointer to the last
buffer referenced.

DRO

LIT
EPRINT

LIT
ORIG+12H

LIT
upP

LIT

10H

Store the specified
value into the
specified memory
location.

Select disk drive O
as the mass-storage
access device.

I

Place the constant
value 0 onto the top
of the parameter
stack.

i
Place the literal
value (i.e., the
address in this
case) of EPRINT
ontg the top of the
parameter stack.

Store the specified
value into the
specified memory
location.

Place the literal
value (i.e., the
address in this case)
of ORIG + 12H

onto the top of the
parameter stack.

Place the literal
value (i.e., the
address in this
case) of UP (the
beginning of the
user variable data
area) onto the top
of the parameter

|stack.

Place the literal
value 6 onto the top
of the parameter
stack.

Add the top two
stack values and
replace them with
their signed sum.

]

Place the literal
value 10 (H) onto
the top of the

parameter stack.

Initialize PREV with CMOVE
the address of the

"first" buffer.

Initialize the system
to use drive 0.

Set up for!.

EPRINT is a variable
commonly used in
fig-FORTH installations
to denote the state of
the printer.

Disable the printer.

Initialize all LIT
necessary user ORIG+0CH
variables.

Set up "arigin®

parameter for CMOVE .

ORIG + 12H is the

beginning of a string @
of values used to

initialize user

variables.

Set up for +. UP is
the beginning of the LIT

user variable data FORTH+6
area. Words located
here are referenced by
USER variables.

.-

Set up for +. The
portion of the user
area to be initialized
is 6 bytes from the

beginning.

Set up "destination”

parameter for CMOVE . ABORT

Set up "count"
parameter for CMOVE .
8 words are to be moved
(i.e., 16 bytes).

Move the specified
number of bytes from
the specified memory
origin location to

the specified memory
destination

location.

Place the literal
value (in this case,
the address) of

ORIG + OCH onto the
top of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

I

Place the literal
value (in this case
the address) of
FORTH + 6 onto the
top of the parameter
stack.

Store the specified
value into the
specified memory
location.

Initialize the
parameter and return
stacks. Issue a

start up message.
Input data from the
terminal. i.e.,
Perform a warm
start.

(Run time portion of

;) Stop interpret-
ing this definition
and return to the

Anllina nnAaandiina

Initialize the data
portion of the
following USER

variables:

50 Initial param
stack address

RO Initial return
stack address

TIB Terminal Input
Buffer Addr

WIDTH Width of
Name Field

WARNING Message dis-
play control
llFDrgetll
Boundary
DP Dictionary
Pointer
VOC-LINK Vocabulary
Chaining
Pointer

FENCE

Aim the FORTH
vocabulary link pointer
at the last (topmost)
word in the FORTH
vocabulary.

Set up for @ . This]
points to the address

of the topmost word in
the FORTH vocabuiary.

Set up for ! . Pick up
the address of the last
word in the FORTH
vocabulary.

Set up for ! . This is
the address of the
"vocabulary link field"
in the FORTH
vocabulary definition.

Initialize the FORTH
vocabulary link
pointer.

[ABORT --i.e., Perforri}
a warm start.

Bring the system up the
rest of the way.

121

COMPILE

COMPILE

COMPLLE TIME: ()
(Sequence 2)

EXECUTION TIME: (—)
{Sequence 3)

COMPILE is a "form" of a compiler word and therefore has two sets of actions; an apparent compile time action (Sequence 2) and an
execution time action (Sequence 3).

COMPILE causes the CFA of the word immediately following COMPILE (in the input data stream) to be compiled into a definition. The
CFA to be compiled is specified at Sequence 1 time when COMPILE is itself compiled into a compiler or defining word (i.e., the
"parent").

COMPILE TIME -- How this "CF A specification" occurs is quite simple. When COMPILE is encountered in the input data stream, its CFA
is automatically compiled by the Interpreter. When the word following CFA is encountered, (i.e., the "specified" word) its CFA is also
automatically compiled into the dictionary immediately following COMPILE 's CFA . Note that this is a normal compilation sequence.
There is no correlation between COMPILE and the word "to be compiled" except that the CFA of the word "to be compiled” immediately
follows the CFA of COMPILE .

EXECUTION TIME -- Since COMPILE performs compiling, it is important to keep in mind that COMPILE 's execution time (Sequence 3)
occurs at the word "to be compiled's" (i.e., the "child's") compilation time (Sequence 2).

The specified CFA is actually compiled into a definition at Sequence 2 time when the compiler/defining (the "parent™ word executes
(creates a "child") thereby executing COMPILE .

When COMPILE executes, the CFA it is to compile into the definition being compiled is physically located in the next Parameter Field
location following COMPILE 's CFA . This is also the location of the next CFA to be executed and therefore the address of this location
has been placed onto the top of the return stack by DOCOL .

COMPILE obtains this address from the return stack, uses it to fetch the specified CFA, then increments the address by 2 and returns it
to the return stack. This skips over the "specified” CFA and will cause the location following the specified CFA to be executed when
COMPLLE finishes.

An example of the use of COMPILE is the conditional branch word IF . The execution time procedure for IF is 0BRANCH . This is
specified within the source code for IF as COMPILE 0BRANCH . At Sequence 1 when IF is compiled, the CFA 's for COMPILE and
OBRANCH are compiled into IF 's definition. Later, during Sequence 2, when IF is executed, the CFA for 0BRANCH is compiled into the
"child's" Parameter Field.

This concept of specifing the name of the definition to be compiled at Sequence 1 but not actually compiling it into a definition until
Sequence 2 is called "deferred compilation".

COMPILE TIME (Sequence 2):
* At entry - No parameters hawever COMPILE must be followed by the word desired to be compiled into the dicitionary.
* At exit - No parameters.
EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
? pronounced "HUH?" (0) -- The word in question cannot be found in the dictionary.
COMPILATION ONLY (11H) - This word may only be used within a colon definition.
COMPILE is a high level colon definition.
Refer to INTERPRET , and IF .
FORTH-79: The FORTH-79 equivalent for COMPILE is COMPILE ,

Definition: : COMPILE (--) (execution time)
JCOMP >R DUP 2+ R> @ ,

122

COMPILE TIME action of COMPILE (Sequence 2): (—)

NOTE: Although COMPILE performs compilation, it has no compile time action itself. Instead, COMPILE relies upon the normal
compiler mechanism of the Interpreter to do the following:

1. The Interpreter must compile the CFA of COMPILE into the parent definition.
2. The Interpreter must compile the CFA of the definition whose CF A is to be eventually compiled into the parent definition.

Input Data Stream
to "Parent" Definition.

Parameter Field of

"Parent" Definition

CFA of COMPILE

EXECUTION TIME action of COMPILE (Sequence 3): (—)

<L)c—5

cees CO!)APILE FROG....

@ Replace the address Set up for , . Using
on the top of the the remaining address
parameter stack with on the parameter stack,

DOCOL (Run time portion of Note: This places the the memory contents pick up the contents of
:) Save IP and address of the word of that address. the "word to be
start interpreting following COMPILE onto compiled's" Code Field.
this definition. the return stack.
, Store (compile) the Store the Code Field
?2COMP Issue Error Message If an error message is value on the top of Address into the next
11H (COMPILATION issued, a QUIT will be the parameter stack available dicitionary
ONLY, USE IN executed and into the next position { HERE).
DEFINITION) and compilation will stop available dictionary i.e., COMPILE it into
QUIT if not here. location and advance the dictionary.
compiling. the dictionary
pointer.
1 |
>R Remove the top value | Get the address of the]
of the parameter word following 3S (Run time portion of
stack and place it COMPILE . ; .) Stop interpret-
onto the top of the ing this definition
return stack. and return to the
T calling procedure.
i
DuUP Duplicate the top Now have two addresses.
value on the
parameter stack.
2+ Increment the top Increment this address
parameter stack by 2. Now aiming at the
value by 2. next entry after the
word to be compiled.
This CFA is in the
dictionary so it can be
compiled; not so it can
be executed.
R> Remove the top value| Put new return address
of the return stack back onto the top of
and place it onto the return stack.
the top of the
parameter stack.

123

CONSTANT

CONSTANT

COMPILE TIME): (value —)
(Sequence 2)

EXECUTION TIME: (— value)
(Sequence 3)

CONSTANT is a defining word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

A CONSTANT in FORTH has the same effect as a constant in most other computer languages. That is, a memory location containing a
fixed value that can be referenced via a name. CONSTANT does differ from other languages in that it is active. When the constant
name is executed, the constant value is placed onto the top of the parameter stack.
The compile time action of CONSTANT is to define a named 16-bit constant in the form:

n CONSTANT ccce
where n is the constant's value and ccce is the value's assigned name (e.g., 26 CONSTANT MAX-LETTERS).

The execution time action of CONSTANT , when the named constant is referenced, is to push this 16-bit value onto the top of the
parameter stack.

It is possible to change the value of a RAM-based constant but this is extremely poor programming practice. VARIABLE should be used
if the value must change.

An example of the use of CONSTANT are the words LIMIT and FIRST . These words are used in +BUF .

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the 16-bit single precision constant value. The constant's name must
immediately follow CONSTANT in the input stream.

* At exit - No parameters.

EXECUTION TIME (Sequence 3):

* At entry - No parameters.

* At exit - The top of the parameter stack contains the previously defined 16-bit value.
LIKELY ERROR MESSAGES:
DICTIONARY FULL (2) -- The dictionary has grown into the Terminal Input Buffer.

DEFINITION NOT FINISHED (14H) — The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the definition.

CONSTANT is a high level colon definition.

Refer to VARIABLE , and +BUF .

FORTH-79: The FORTH-79 equivalent for CONSTANT is CONSTANT .
Definition: : CONSTANT (value --) (compile time)

CREATE SMUDGE y sCODE
Note: The assembly language execution time code follows the ;CODE .

124

COMPILE TIME action of CONSTANT: (value —)

EXECUTION TIME action of CONSTANT : (— value)

(Sequence 2) (Sequence 3)
I
Aim at beginning of Aim at constant value.
Parameter Field of
definition being
DOCOL (Run time portion of executed.
:) Save IP and]
start interpreting
this definition. Pick up constant
value.

CREATE Create a dictionary NOTE: The Code Field !
header for this Address will be aimed Push constant onto
word. (i.e., Length at the beginnina of the top of parameter
byte, Name Field, Parameter Field. stack.

Link Field, and Code
Field.)

SMUDGE Toggle the SMUDGE This "cancels" the
bit. previous SMUDGE done NEXT

in the previous
CREATE.

, Pop a 16-bit value This actually places
from the top of the the constant value into
parameter stack and the Parameter Field of
store it at HERE in the word.
the dictionary.

!

(;CODE) Place the address of (;CODE) places the
the following run address of the
time code portion of following dictionary
CONSTANT into the entry into the CFA .

Code Field (CFA) Therefore, the run time
of the newly created code immediately
header. Then return follows this definition.
to calling procedure.

NOTE: The execution time (Sequence 3) code for CONSTANT physically and immediately follows the ;CODE in the 8080 fig-FORTH
Version 1.1.

125

CONTEXT

CONTEXT (— data address)

CONTEXT is a user variable which contains a pointer to the vocabulary which is to be searched first.

CONTEXT is set to point to a specific vocabulary by executing that vocabulary name. For example, FORTH causes CONTEXT to be
aimed at the FORTH vocabulary. At system startup, CONTEXT is initialized to FORTH by ABORT which is called by COLLD . Note that
this means that any time an ABORT occurs CONTEXT will be aimed at the FORTH vocabulary.

The use of CONTEXT is fully explained in the description of the word VOCABULARY .

The user variable CONTEXT is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable CONTEXT .
Refer to VOCABULARY , ABORT , and USER .

FORTH-79: The FORTH-79 equivalent for CONTEXT is CONTEXT .

126

COUNT

(text string address — text address \ char count)

COUNT

COUNT replaces the address of a text string with the byte length and byte address of the text string. The first byte of the text string
must contain the string length. The text must begin at the second byte. (WORD automatically provides this format.)

BEFORE

Top of stack points here

AEREE

COUNT is often used before TYPE .

" is an example of a word which uses COUNT.

AFTER

Top of stack = 4
2nd entry points here

* At entry - The top of the parameter stack contains the address of the beginning of a text string (the length byte). This
first byte of the string must contain the length of the text (not including the length byte itself).

% At exit - The top of the parameter stack contains the length of the text string. The second entry contains the actual
beginning text address.

COUNT is a high level colon definition.

Refer to TYPE .

FORTH-79: The FORTH-79 equivalent for COUNT is COUNT .

Definition:

DOCOL

DuUP

1+

SWAP

ca

-,
wn

: COUNT

COUNT

(Run time portion of
:) Save IP and

start interpreting
this definition.

Duplicate the top of
the parameter stack.

T

[

Add 1 to the value
on the top of the
parameter stack.

l

Swap the top two
values on the
parameter stack.

Replace the address
on the top of the
parameter stack with
the byte contents of
that memory
location.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

3

Duplicate length byte
address for 1+.

Aim at the first
character of the text
string.

Bring the length byte
address to the top of
the stack to set up for
ca.

Put the text string
length onto the top of
the stack.

(text string address -- text address \.char count)
DUP 1+ SWAP CA

127

CR

CR (-)

CR (pronounced "carriage-return") is an installation dependent word which usually transmits a carriage return and a line feed to the
selected output device.

* At entry - No parameters.
* At exit - No parameters.
CR is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for CR is CR .

@ 8080 fig-FORTH

Version 1.1

Output a carriage
return.

[Output a line feed. }

128

CREATE

CREATE (-)
CREATE is a defining word used to "create" the header portion of a FORTH definition. It is used in the form:

CREATE definition name

CREATE builds a standard FORTH header. That is to say that it creates a Name Field, a Link Field, and a Code Field. Words that
directly use CREATE are classified as being "defining words".

The beginning and ending bytes of the Name Field have their high order bits set. The "smudge" bit in the Name Field is also set. The
maximum number of characters saved in the Name Field is controlled by the value stored in the user variable WIDTH.

Before creating a header, CREATE checks both the CONTEXT and CURRENT vocabularies to determine if the new definition name is
unique. If it is not, the message "ISN'T UNIQUE" is issued. The definition header is created in either case.

The Link Field is set to point to the last definition added to the vocabulary. The "eyrrent" vocabulary's "vocabulary pseudo link field"
(not to be confused with the VOC-LINK field) is changed to point to the definition being vcreated". (See VOCABULARY)

The Code Field is set to point to the Parameter Fieid which foliows the header. No

: (colon) is an example of a word which uses CREATE .
* At entry - No parameters.
* At exit - No parameters.

LIKELY ERROR MESSAGES:

DICTIONARY FULL (2) — The dictionary has grown into the Terminal Input Buffer.

CREATE is a high level colon definition.
Refer to WIDTH , VOCABULARY , CURRENT , WARNING and :.

e
LC uwia

t no Parameter Field space is allocated.

FORTH-79: In FORTH-79 the word CREATE now has the same meaning as the fig-FORTH <BUILDS . Refer to FORTH-79 Standard.

Definition: CREATE (=) (8080 Version 1.1)
-FIND
IF DROP NFA ID. 4 MESSAGE SPACE THEN
HERE DUP Ca WIDTH @ MIN 1+ ALLOT
HERE 1 - 80 TOGGLE LATEST ,

HERE Z+ , H

(CREATE)

8080 fig-FORTH
Version 1.1

Search the
dictionary for a
duplicate name and
issue an "ISN'T
UNIQUE" message if
needed. I

Allot dictionary
space for the Name
Field.

DOCOL

l -FIND
Set the beginning,
end, and smudge
bits.

Link the definition
to the previous
definition.

[

Link the definition
to the "vocabulary
link field".

]

Create the Code
Field.

Figure CREATE-1
High Level Flow Chart of CREATE

DUP AD TOGGLE
CURRENT @

(CREATE)

(Run time portion of
:) Save IP and

start interpreting
this definition.

Search both the
CONTEXT and
CURRENT vocabu-
laries for a
character match on
the next word in
the input stream

8080 fig-FORTH
Version 1.1

Check for duplicate
name and issue Error
Message & ("ISN'T
UNIQUE") if needed.

NOTE: Besides
searching for a match,
-FIND also causes the
next input stream word.
to be moved (by WORD)
to HERE -- which is
exactly where the
character string needs
to be to become the
Name Field of the
definition being
created.

F
truth

Is

=07

flag CREA1

Branch if a match was

N not found. Else, the
name of the definition
being created is a HERE
duplicate of an already
existing definition and
Error Message 4
("ISN'T UNIQUE™ is
issued. (No (ABORT)
is issued).
DUP
DROP Drop the top value Drop the Name Field
from the parameter length left by -FIND .
stack.
NFA Convert the Set up for ID. .
specified Parameter Convert the PFA C@
Field Address into (Parameter Field
the Name Field Address) left by -FIND
Address of the into the NFA (Name
specified Field Address) of the
de finition. matching definition.
ID. Output the specified Print the name of the WIDTH
Name Field onto the duplicate definition.
output device.
LIT Place the literal Set up for MESSAGE .
4H value 4 onto the top Error Message 4
of the parameter ("ISN'T UNIQUE™).
stack.
| @
MESSAGE Issue the specified Print "ISN'T UNIQUE™
error message (or 4).
relative to Line 0
of Screen 4 Is
WARNING contains a MIN
non-zero value.
Else, just issue the
message number.
SPACE Output ascii space Follow the message with
(20H) to the output a blank.
device,
THEN
. This is the entry point 1+
from the false branch
of the previous IF .
If the definition being
created was unique,
control is passed
directly here; else, ALLOT

130

"ISN'T UNIQUE"
message was issued >
and control then
passes here.

Now "create" the
definition header.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Duplicate the top
value on the
parameter stack.

Replace the address
on the top of the
parameter stack with
the 8-bit low order
memory contents of
that address.

Place the address of
the user variable
WIDTH onto the top
of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the top two
parameter stack
entries with the
smaller of the two
values.

Increment the top
parameter stack

value by 1.

Add the specified
value to the
dictionary pointer
(i.e,, reserve the
specified amount of
dictionary space).

Create the Name
Field. Set up to allow
space in the dictionary
for the Name Field.

The length byte (i.e.,
the beginning of the
name of the definition
being created) is
pointed to by HERE .

Set up for ! . This NFA
will later be stored
into the "vocabulary
link field" of the
current vocabulary
definition.

Set up for MIN. Get
the character count of
the definition name.

WIDTH contains a value
from 1 to 31 which is
used to determine how
many bytes of a
definition name are to
be used in the Name
Field.

Set up for MIN .

Set up for 1+. MIN
compares the actual
length of the

definition name with
the maximum allowable
name length and retains
the lesser of the two.
This value is then used
to set the number of
bytes in the Name

Field.]

Set up for ALLOT.
The number of bytes
allocated for the Name
Field must include one
additonal byte for the
Name Field length.

This reserves the
calculated number of
bytes in the dictionary
for the Name Field. If
WIDTH was smaller than
the actual length of

the name, the remainder
of the name will be
truncated {(overlayed)

as the rest of the
definition is created.

DUP

LIT
AOH

TOGGLE

HERE

LIT
80H

TOGGLE

LATEST

Duplicate the top
value on the
parameter stack.

Place the literal
value AOH onto the
top of the parameter
stack.

Complement the

specified memory
location with the
specified bit

pattern.
I

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the constant
value 1 onto the top
of the parameter
stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Place the literal
value 80H onto the
top of the parameter

stack.
I

Exclusive-OR the
byte at the
specified address
with the specified
bit mask.

Place the Name Field
Address of the last
definition added to
the CURRENT
vocabulary onto the
top of the parameter
stack.

Eet Name Field bits} ,

Set up for TOGGLE . |
Duplicate the address

of the beginning of the
Name Field.

Set up for TOGGLE .
The AOH is composed of
an 80H which is the
"beginning of Name
Field bit" and a 20H
which is the smudge

bit. CURRENT

This "OR's" the bit
mask into the length
byte.

Set up to eventually
TOGGLE to "end of
Name Field bit". NOTE:
The previous ALLOT
"allotted" space in the !
dictionary for the Name
Field. The address
returned by HERE now
points to the first

byte past the end of

the Name Field.

Set up for - .

Back up one byte to aim
at the last character
" in the Name Field.

HERE

Set up for TOGGLE . 2+
The 80H bit is the "end
of Name Field" flag.

This "OR's" the 80H bit
into the last Name
Field character.

Link the definition to 3S
the previous definition!

in the vocabulary

chain.

LATEST returns the |
address of the

definition that this
definition must be

linked to.

Store (compile) the
16-bit value on the
top of the parameter
stack into the next
available dictionary

location.

This creates the Link
Field for this

definition (i.e., the

Link Field is chained

to the next higher
definition in this
vocabulary). —

Link the "vocabulary
link pointer" to the
definition being
created.

Place the address of

bon ciamn uania
the user variable

of the parameter

CURRENT onto the top| "vocabulary link field"

The value in CURREI\—I?‘

points to the

in the "current"
vocabulary definition.

Lstack.
{

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

|

Store the specified
value into the
specified memory
location.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

[

Increment the top
parameter stack
value by 2.

Store (compile) the
16-bit value on the
top of the parameter
stack into the next
available dictionary
location.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the

calling procedure.

Pick up the address of
the "vocabulary link
field."

Store the previously
duplicated NF A of this
definition into the
"vocabulary link field"
(i.e., update the
vocabulary pointer so
that it now points to
the latest definition
appended to the
vocabulary.

@r
—
This is the address of

the Code Field (CFA).

LCreate the Code Fiel

Adding 2 to the CFA
points to the beginning
of the Parameter Field.

This creates the code
field. The Code Field
is left pointing to the
Parameter Field.

131

CSP

CSP (— data address)

CSP (pronounced "C-S-P" for Compiler Stack Pointer) is a user variable which is used as a temporary storage location for the stack
pointer position.

This is normally used as a compiler security check. A word such as : will execute 'CSP which stores the stack pointer position into CSP ,
before compiling a definition. Then, before the new definition is "un-smudged", ?CSP is executed. ?CSP compares the value stored in
CSP with the current stack pointer and issues an error message if the two are not equal.

The user variable CSP is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit -The top of the parameter stack contains the address of the user variable CSP .
Refer to : , !CSP, ?CSP , and USER .

FORTH-79: There is no FORTH-79 equivalent for CSP .

132

CURRENT

CURRENT (— data address)
CURRENT is a user variable that contains a pointer to the vocabulary to which definitions are "currently" being appended to.
The use of CURRENT is fully explained in the description of the word VOCABULARY .

The user variable CURRENT is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

CURRENT is set to point to a specific vocabulary by executing the word DEFINITIONS , that copies the vocabulary pointer in CONTEXT
into CURRENT . At system startup, CURRENT is initialized to FORTH by ABORT which is called by COLD . Note that this means any
time an ABORT occurs, CURRENT will be aimed at the FOR T+ vocasulary.

* At entry - No parameters.

-h

* At exit - The top of the parameter stack contains the address o
Refer to DEFINITIONS , VOCABULARY , ABORT , and USER .

FORTH-79: The FORTH-79 equivalent for CURRENT is CURRENT .

133

D+

D+ (double \ double — 32-bit sum)
D+ (pronounces "M-plus") adds the top two 32-bit signed values on the parameter stack and replaces them with their 32-bit signed sum.
Note that generation of a carry goes unnoticed.
(NUMBER) is an example of a word which uses D+ .
* At entry - The top and second words of the parameter stack contain a 32-bit signed double precision value with the signed,
most significant portion on the top of the stack. The third and fourth stack entries contain the other 32-bit number to be

added.

* At exit - The top and second stack entries of the parameter stack contain a 32-bit signed double precision sum with the
signed, most significant portion on the top of the stack.

D+ is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for D+ is D+ .

D+) e e e e e e e mammeaaa
8080 fig-FORTH
Version 1.1 HPUSH Push high order word of
32-bit result.
Aim at least i.e., Aim at fourth NEXT
significant word of entry on stack.

second 32-bit value.

Exchange IP with Save IP on the stack.
this value.

Pop high order word
of first 32-bit
value.

Pop low order word
of first 32-bit

value.

Add low order words Uses memory to register
of first and second add.

values.

Pop high order word
of second 32-bit
value.

Add low order bytes
+ carry of first and
second high order
words.

Add high order bytes
+ carry of first and
second high order
words.

Pop previously saved
IP.

Push low order word
of 32-bit result.

134

D+~

D+ (double \ single — double)

D+- (pronounced "D-plus-minus") negates the sign of the double precision value in the second and third stack entries if the sign of the top
single precision value is negative. The top value is then dropped.

The following truth table describes the outcome of all possible combinations:

SECOND ENTRY TOP OF STACK RESULT
+D2 +V1 +D2
+D2 -Vl -D2
-D2 +V1 -D2
-D2 -Vl +D?2

DABS is an example of a word that uses D+~ .
* At entry - The top of the parameter stack contains a signed 16-bit single precision value. The second stack entry contains
the signed, high-order portion of a 32-bit double precision value. The third stack entry contains the low-order portion of
this double precision value.

* At exit - The single precision value is dropped. The 32-bit double precision value is on the top of the parameter stack with
the signed high order portion on the top of the stack. The low order portion is in the second stack entry.

D+- is a high level colon definition.

FORTH-79: There is no FORTH-79 equivalent for D+- .

Definition: : D+ { double\single -- double)
1,4 IF DMINUS THEN H

DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.

14 Replace the value on Set up for IF . Branch
the top of the and do not negate the
parameter stack with second value if the top
a true flag (1) if value is positive.
the value is less
than 0 (negative);
otherwise, replace
the value with a
false flag (0).

IF Is

truth flag
=07
The top of the stack
was positive, so
branch.

DMINUS Negate (two's Set the "second™ stack
complement) the value to minus.
32-bit value on the
top of the parameter
stack.

THEN Entry point from "false

)

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

portion" of previous
IF.

D.

D. (double —)

D. (pronounced "D-dot™) performs a binary-to-ascii conversion (pictured numeric output) on the 32-bit signed double precision value on

the top of the stack and prints the result on the output device followed by one space.

The sign is only displayed if the value is negative.

D. does not pad with blanks. Use D.R if a specific minimum field length is needed.

The current value in BASE is used as the conversion radix.

The pictured numeric output words <# , #S, SIGN, and #> are used to actually perform the conversion.

is used by D. .

These are located in D.R which

* At entry - The top of the parameter stack contains a signed 32-bit double precision value to be converted and printed.

* At exit - No parameters.
D. is a high level colon definition.
Refer to D.R .

FORTH-79: The FORTH-79 equivalent for D. is D. .

Definition: : D. (double --)
0 D.R H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

0 Place the constant Set up for D.R . Put

D.R

-e
w

136

value 0 onto the top
of the parameter
stack.

Perform a
binary-to-ascii
conversion on the
specified double
precision value into
the specified field

width.
I

(Run time portion of
; .J Stop interpret-
ing this definition
and return to the
calling procedure.

field width onto the
top of the stack.
(Note: D.R does not
truncate. The value
will always be
completely printed,
even if it is larger
than the field width.
In this case, anything
is larger than the

field width. This is a
programming "trick" to
prevent padding blanks
from being appended to
the output.)

D.R

D.R (double \ field width —)
D.R (pronounced "D-dot-R") performs a binary-to-ascii conversion (pictured numeric ouput) on a signed 32-bit double precision value and

prints the result in a right justified field whose minimum width is specified by the value on the top of the stack. e.g., If a field length of
10 is specified and only 3 characters are printed the remainder of the field will be left padded with 7 blanks (B) For example:

123 0 10 D.R resultsin BbBbbEEOB123

Note, however, that D.R is rather "stupid". If a field length of 3 characters is specified but the input value is large enough to print 10
characters all ten characters will be printed. i.e., D.R does not truncate values larger than the field width. For example:

123456 O 3 D.R resultsin 123456

No trailing blank is printed. Use D. if a minimum width field is not needed.

The current value in BASE is used as the conversion radix.

The sign is only displayed if the value is negative.

The basis of D.R is # . D.R is a good example of how to set up parameters for signed pictured numeric output.
D. is an example of a word which uses D.R .

% At entry - The top of the parameter skack contains the signed 16-bit value which specifies the field width of the converted
ascii string. The second and third stack entries contain a signed 32-bit double precision value to be converted and printed
with the signed high order portion in the second stack entry and the low order portion in the third stack entry.

* At exit - No parameters.

D.R is a high level colon definition.

Refer to<# , # , SIGN , #5, and #> .

FORTH-79: The FORTH-79 equivalent for D.R is D.R .

Definition: : D.R (double\field width --)
>R SWAP OVER DABS

Q
/

#S SIGN OVER SPACES

@ <# Begin pictured]

numeric conversion.
1

Convert the double

precision value on

start interpreting the top of the

this definition. parameter stack into
l ascii.

TYPE

<

DOCOoL (Run time portion of #S
:) Save IP and

>R Remove the top value| Temporarily save field
from the parameter width. SIGN Place a minus sign
stack and place it in front of the
onto the top of the pictured numeric
return stack. text if the third

parameter stack
entry is negative.

SWAP Exchange the top two | Set up for OVER . P\ﬂ
values on the high order signed
parameter stack. portion of the value i End pictured numeric

into the second entry. conversion and set
up parameter stack
to TYPE the

OVER Duplicate the second Set up for SIGN . This converted text.
stack entry onto the puts the double I -
top of the parameter precision value back
stack. into the correct format R> Remove the top value| Retrieve field length.

while leaving the of the return stack
16-bit signed portion and place it onto
in the third entry for the top of the
SIGN to use. . parameter stack.

DABS Convert the double Set up for pictured OVER Duplicate the second Set up for - . Get the_—l
precision vaiue on numeric conversion by stack entry onto the converted text length
the top of the stack getting rid of the top of the parameter so can subtract it from
into its absolute sign. stack. specified field length.

value.

SPACES

TYPE

138

Subtract the top
stack value from the
second stack entry
and replace both of
these values with
the result.

|

Output the specified
number of spaces.

Type onto the output
device the specified
number of
characters, starting
at the specified

address.
l

(Run time portion of
3 ») Stop interpret-
ing this definition
and return to the
calling procedure.

Set up for SPACES.
Field width minus text
length equals number of
bytes to pad with
spaces.

DABS

DABS (pronounced "D-ABS" for Double ABSolute) replaces a signed 32-bit double precision number with its absolute value. That is,
negative values are made positive.

DABS (signed double value — absolute double value)

M/ is an example of a word which uses DABS .

* At entry - The top of the parameter stack contains the signed high order signed portion of a 32-bit double precision
value. The second stack entry contains the low order portion of the value.

*= At exit - The top of the parameter stack contains the high order portion of the absolute value of the original number. The
second stack entry contains the low order portion of the value.

DABS is a high level colon definition.

Refer to D+- .

—h

FORTH-79: The FORTH-79 equivalent for DABS is DABS .
Definition: : DABS (signed doubis -- abenlute double)
DUP D+- :

DABS

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

DUP Duplicate the top Set up for D+-.
16-bit value on the Duplicate the sign
parameter stack. portion of the originai

value.

D+- Negate the 32-bit If original value is
double precision positive, nothing
value in the second happens (as it is
and third stack already absolute). If
entries if the top original value is
entry is negative. negative, the sign

portion is negated,
making it positive,
i.e., absolute.

3S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

139

DECIMAL

DECIMAL (-)

DECIMAL sets the user variable BASE to 10 (decimal). This causes all numeric input and output conversions to be performed in decimal

(base 10).
Note that this is not an IMMEDIATE word.

* At entry - No parameters.

* At exit - No parameters.
DECIMAL is a high level colon definition.
Refer to (NUMBER) , and BASE .
FORTH-79: The FORTH-79 equivalent for DECIMAL is DECIMAL .

Definition: : DECIMAL (--)
0A BASE !

DECIMAL

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

LIT Place the literal

0AH value 0AH onto the
top of the parameter
stack.

BASE Place the address of

the user variable
BASE onto the top of
the parameter stack.

: Store the specified Store the literal value
value into the 0AH (10 decimal) into
specified memory BASE .
location.

;S (Run time portion of

3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

140

DEFINITIONS

DEFINITIONS is used to specify the vocabulary into which new "definitions" are to be added (hence the name "DEFINITIONS").

DEFINITIONS (—)

Vocabularies in FORTH serve to limit the scope of a name; therefore, it is necessary to be able to specify which vocabulary a given name
is to be appended. The user variable CURRENT points to the vocabulary which "currently" will have new definitions appended to it.
DEFINITIONS copies the contents of the user variable CONTEXT into CURRENT. CONTEXT points to the vocabulary which is to be
searched first when performing dictionary searches and is set to point to a specific vocabulary by stating (i.e., executing) the vocabulary
name.

For example: Suppose a vocabulary named CAMERA has previously been created via the word VOCABULARY. Executing CAMERA sets
CONTEXT to point to CAMERA (i.e, CAMERA will be searched first). Executing DEFINITIONS then copies CONTEXT into CURRENT
(i.e, new definitions will now be added to CAMERA).

Normal usage would be in the form:

CAMERA DEFINITIONS

This not only causes definitions to be added to CAMERA but also helps produce highly readable, understandable FORTH listings
describing exactly what is happening.

CREATE is the word which actually uses the data in CURRENT to append a new definition to a vocabulary. Refer to VOCABULARY for
a more extensive explanation of vocabularies and the words which support them.

* At entry - No parameters but the user variable CONTEXT must contain a pointer to the vocabulary to which new
definitions are to be added.

* At exit - No parameters.
DEFINITIONS is a high level colon definition.
Refer to VOCABULARY , CURRENT , CONTEXT , and CREATE .
FORTH-79: The FORTH-79 equivalent for DEFINITIONS is DEFINITIONS .

DEFINITIONS (--)
CONTEXT @ CURRENT !

Definition: H

|
DEFINITIONS . Store the specified
value into the

specified memory

Make CURRENT equal
to CONTEXT , i.e.,
definitions will now be

DOCOL (Run time portion of location. appended to the
:) Save IP and vocabulary pointed to
start interpreting by CONTEXT . (The
this definition. vocabulary which was
pointed to by CONTEXT
when DEFINITIONS was
CONTEXT Place the address of Set up for @ . executed.)
the user variable CONTEXT contains a
CONTEXT onto the pointer which points to
top of the the Vocabulary Link 3S (Run time portion of
parameter stack. Field of the vocabulary ;) Stop interpret-
to be searched first. ing this definition
and return to the
calling procedure.
€] Replace the address Fetch the pointer from
on the top of the CONTEXT.
parameter stack with
the memory contents
of that address.
CURRENT Place the address of CURRENT contains a
the user variable pointer which points to
CURRENT onto the the Vocabulary Link
top of the Field of the vocabulary
parameter stack. into which definitions

are to be added.

141

DIGIT

In Range - (char \ base — binary digit \ true flag)

Out of Range - (char \ base — false flag)

DIGIT converts an ascii character into its binary equivalent using the specified base value. Either the binary "digit" and a true flag are

returned or just a false flag is returned depending upon DIGIT 's success.

Validity checking is performed such that a character whose original value is less than 30H (i.e., less than ascii "0") or between 3AH and
40H inclusive (greater than ascii "9" but less than ascii "A") is automatically invalid. After conversion from ascii to binary, any "digit"
larger than the specified base is also invalid.

There is no ascii upper range validity test. The character may be whatever scale the specified base allows.

DIGIT works by first converting the ascii character to a binary value by stripping the ascii offset (30H) from the character. Then validity
checking is performed and finally the value is tested to ensure it is within the maximum base range.

(NUMBER) is an example of a word which uses DIGIT .

* At entry - The top of the parameter stack contains an unsigned 16-bit single precision value specifying the base value.

The second stack entry contains an ascii character to be converted to a digit.

* At exit (digit within range) - The top of the parameter stack contains a "true" boolean truth flag. The second stack entry

contains the binary "digit".

* At exit (out of range) - The top of the parameter stack contains a "false" boolean truth flag. No "digit" is returned.

DIGIT is a low level code primitive.

Refer to (NUMBER) .

FORTH-79: There is no FORTH-79 equivalent for DIGIT .

(olarr)

Pop base value. J

E’op ascii character. J

Subtract 30H from
the ascii character.

Is
char < "Q"
?

142

8080 fig-FORTH
Version 1.1

Test if character is in
the range of ascii 0 to
ascii 9 inclusive.

Subtracting 30H from
the character strips
the value of its ascii
offset. (e.g., A digit
value of ascii 2 is
32H, subtracting 30H
leaves 2H -- the true
digit value.)

DIGI2

Branch if subtracting
30H resulted in a
negative value. The
character was less than
ascii "0".,

DIGI1

Branch if the character
(now a digit) is within
the range of 0-9.

Subtract 7
character

from

value.

Is

digit

negative

?

Is

char > base
?

Character is not 0-9 so
now determine if it is
greater than or equal
to ascii A.

NOTE: In ascii, valid
characters range from
30H to 39H and 41H
up. Subtracting 7 from
the value "skips" over
the gap between 39H
and 41H.

N

If the digit value went
negative after
subtracting 7, the
character fell in the
range between 39H and
41H.

Character is within the
valid ascii range. Now
determine if it is
within the maximum

base range.

Set truth flag in H
to true.

HPUSH

NEXT

DIGI2

Set truth flag in H
to false.

Push digit value onto
stack.

Push truth flag onto
stack.

Push truth flag onto
stack.

143

DLITERAL

DLITERAL

COMPILE TIME: (double —)
(Sequence 2)

EXECUTION TIME: (— double)
(Sequence 3)

DLITERAL is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

DLITERAL has no effect (and does not signal an error) if not executed within a colon definition.

The compile time action (Sequence 2) of DLITERAL is to compile a dynamically calculated 32-bit value into a definition. The end result
of this compile action is the same as using LIT twice. The heart of DLITERAL is LITERAL, which in turn compiles LIT into the
definition being compiled. The INTERPRETER compiles LIT into a definition "automatically” upon encountering a 16-bit numeric value
in the input stream. However, if this numeric value is calculated dynamically during compilation, it will not exist in the input stream and
therefore some other method must be used to compile LIT and the value into the dictionary. This is done by using the word LITERAL.
Since DLITERAL is concerned with a double precision value, LITERAL is used twice.

An example of the use of DLITERALwould be in dynamically calculating a maximum limit value to be used as a parameter. This
calculation will be performed only once, at compile time, instead of each time the parameter is used. The definition would look like this:

+ xxx [#-OF-ENTRIES 2@ #-OF-PARMS 2@ D+] DLITERAL DOIT 3
[stops compilation, #-OF-ENTRIES and #-OF-PARMS contain double precision values which are fetched and then added together to
form the double precision limit value which is left on the stack.] resumes compilation and DLITERAL compiles the 32-bit limit into the
definition.
The execution time action of DLITERAL is that of LIT . That is, upon execution of each LIT , the compiled 16-bit value is placed onto
the top of the parameter stack. NOTE that DLITERAL is an IMMEDIATE word. This means that its precedence bit is set, and it will
therefore execute at compile time.

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the signed high order word of a 32-bit double precision value. The
second stack entry contains the low order portion of the value.

* At exit - No parameters.
EXECUTION TIME (Sequence 3):

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed high order word of a 32-bit double precision value previously
compiled into the dictionary. The second stack entry contains the low order portion of the value previously compiled into
the dictionary.

DLITERAL is a high level colon definition.
Refer to LITERAL , LIT,[, 1, and INTERPRET .

FORTH-79: There is no FORTH-79 equivalent for DLITERAL .

Definition: : DUTERAL (double --) (compile time)
STATE @ IF SWAP LITERAL LITERAL THEN H IMMEDIATE

144

COMPILE TIME action of DLITERAL (Sequence 2): (double —)

DOCOL

STATE

IF

SWAP

DLITERAL

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the address of
the user variable
STATE onto the top
of the parameter

stack.
I

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Is
truth flag
=07

Swap the top two
values on the
parameter stack.

LITERAL
LITERAL
Set up for @ . STATE |
contains a value which
indicates the state
FORTH is in at any one
time.
THEN

Set up for IF . Pick up
the contents of STATE .

DLIT1

e
w

Branch if not
compiling. Just skip
everything and exit.

Otherwise, this is) IMMEDIATE
compilation time, so

compile the value into

the definition.

Swap the high and low
order words of the
double precision value
so they will be in the
proper order.

EXECUTION TIME action of DLITERAL (Sequence 3): (— double)

LIT
Compiled
Value

LIT
Compiled
Value

Place the literal
compiled value onto
the top of the
parameter stack.

l

Place the literal
compiled value onto
the top of the
parameter stack.

Place the low order

portion of the 32-bit
value onto the top of
the parameter stack.

Place the high order
portion of the 32-bit
value onto the top of
the parameter stack.

Compile a LIT
followed by the
value now on top of
the stack into the
dictionary.

Compile a LIT
followed by the
value now on top of
the stack into the
dicionary.

: DLIT1

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of the preced-
ing definition so it
will be executed at
compile time and not
compiled into the
definition being
compiled.

At execution of
DLITERAL, compute the
low order portion of

the 32-bit value.

At execution of
DLITERAL, compute the
high order portion of

the 32-bit value.

Entry point from the
false branch of the
previous IF .

i.e., Was not compiling
so branch here and
exit.

DLITERAL is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

145

DMINUS

DMINUS (double — negative double)

DMINUS (pronounced "D-minus" for Double MINUS) replaces the 32-bit signed value on the top of the parameter stack with its twa's
complement.

* At entry - The top and second words of the parameter stack contain a signed 32-bit double precision value with the signed,
most significant portion on the top of the stack.

* At exit - The top and second entries of the parameter stack contain the two's complement of the given value with the
signed, most significant portion on the top of the stack.

DMINUS is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for DMINUS is DNEGATE .

(DMINUS)
8080 fig-FORTH

Version 1.1

[@ high order word. [

[Pop low order word. J

Subtract lowest
order byte from
zero.

Subtract with carry
second byte.

|

Subtract with carry
third byte.

Subtract with carry
high order byte.

Push low order 16
bits of complemented
word.

HPUSH Push high order 16 bits
of complemented word.

146

e DO

COMPILE TIME: (— loop address\ 3)
(Sequence 2)

EXECUTION TIME: (Limit\ Index =)
(Sequence 3)

DO is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution time.

DO is used to mark the beginning of a fixed repetition loop structure. This is identical in purpose to the FORTRAN DO and the BASIC
FOR statements. DO is used to create a DO-LOOP in conjunction with LOOP or +LOOP in the forms

DO "loop body" LOOP
DO "oop body" (Increment Value on stack) +LOOP
The compile time action (Sequence 2) of DO is to compile (DO) into the definition and also to leave the entry point address of the next
definition foliowing {DO) on the parameter stack {i.e., the beginning address of the "loop body" portion of the loocp.) This address is then
used at compile time by LOOP or +LOOP to generate a branch offset. To provide compiler security, the vaiue 3 is placed on the top of
the parameter stack so that LOOP or +LOOP can check for it. This provides a somewhat secure (but not foolproof) method of checking
for un-paired DO 's and LOOP 's.
The apparent execution time action (Sequence 3) of DO is actually performed by (DO) . This action is to remove the Index and Limit
values from the parameter stack and place them onto the return stack to be used as inputs to LOOP or +LOOP . The Index (also referred
to as Initial) value is incremented (or decremented) and compared with the Limit by LOOP or +L0OOP each pass through the DO-LOOP .
The loop Index is accessible within the DO-LOOP structure by using the word I.
A" DO - LOOP " structure may be used only within a colon definition.
Refer to (DO) and I for a more detailed explanation of the execution time behavior of DO .
Note that DO is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.
INDEX is an example of a word which uses DO .
COMPILE TIME (Sequence 2):
* At entry - No parameters.
%= At exit - The top of the parameter stack contains the 16-bit single precision value 3. This value is checked by LOOP or
+LOOP to provide compiler security. The second stack entry contains a 16-bit address pointing to the first definition to
be executed as the "loop body" portion of the DO-LOOP structure.
EXECUTION TIME (Sequence 3):

* At entry - The top of the parameter stack contains the 16-bit signed Index value. The second stack entry contains the
16-bit signed Limit value.

* At exit - No parameters on the parameter stack; however, the return stack now has the Index value on the top of its stack,
and the Limit value as the second entry on its stack.

LIKELY ERROR MESSAGES:

COMPILATION ONLY (11H) —- This word may only be used within a colon definition.
DO is a high level colon definition.

Refer to LOOP , (LOOP) , +LOOP , (+LOOP) ,(DO) ,and I.

FORTH-79: The FORTH-79 equivalent for DO is DO .

Definition: : DO (--loop address\ 3) (compile time)

-~ COMPILE (DO) HERE 3 ; IMMEDIATE

147

COMPILE TIME action of DO (Sequence 2): (— loop address\ 3)

DOCOL

COMPILE

(DO)

HERE

IMMEDIATE

EXECUTION TIME action of DO (Sequence 3): (Limit value \ Index value —)

(Run time portion of
:) Save IP and

start interpreting
this definition.

Compile the
execution address of
the following word
into the dictionary.
The word is not
executed at this
(compile) time.

]

Execution time
(Sequence 3) portion
of DO . Transfer the
Index and Limit
values from the
parameter stack to
the return stack.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the constant
value 3 onto the top
of the parameter

stack.
I

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of the preced-
ing definition so it
will be executed at
compile time and not
compiled into the
definition being
compiled.

This puts (DO) into the
definition being
compiled.

(DO) is compiled into
the definition during
Sequence 2.

The address of the

first word of the group
of words to be
repeatedly executed
inside of the loop is

put on the stack so
LLOOP or +LOOP can use
it.

LOOP or +LOOP expect
a3 to be on the top of
the stack.

DO is a compiler

word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

Refer to (DO) for the EXECUTION TIME action of DO .

148

DOES >

DOES>

DEFINITION TIME: (—)
(Sequence 1)

EXECUTION TIME: (second Parameter Field Address —)
(Sequence 2)

DOES> (pronounced "does") is a defining word and therefore exhibits two different sets of actions; those actions at definition time and
those at execution time.

DOES> is a Sequence 1 defining word that is used to create Sequence 2 defining words. DOES> is normally used in conjunction with
<BUILDS to create defining words ("parents") which in turn create other words ("children").

An overall explanation including examples of the use of <BUILDS and DOES> is included in the description of <BUILDS .

When creating a defining word (at Sequence 1), DOES> acts as a dividing line between the high level words that will create the "child" (at
Sequence 2) and the high level words that are the "child's" run time procedure (at the "child's" Sequence 3).

sCODE is used to create code level run time procedures. See Figure DOES>-1.

The compile time action of DOES> is to overlay the "child" definition's Code Field with the address of the execution time code for
DOES>. It also overlays the first Parameter Field location with the address of the definition following DOES> in the "parent"
definition. This is the address of the "child's" first execution time procedure. When words that are then created with this defining word
execute, the run time code of DOES> transfers control to the procedure following DOES> . (Refer to Figure DOES>-2.)

"PARENT" "CHILD"
Sequence 1 Sequence 2 Sequence 3
Name Field Name Field
Link Field Link Field
<BUN DS Code Field Code Field
<BUILDS Pointer to run time
S procedure
DOES> Compiler words
High level execution S
time procedure DOES>
Execution time
procedure
;S
The defining word The defining word A definition is
is created is executed created via the
defining word
which creates which creates

Figure DOES>-1

Compile Time Action of <BUILDS and DOES>

149

"PARENT" "CHILD"

Name Field DODOES Name Field
run time

Link Field code for Link Field
DOES>

Code Field - Code Field

Pointer to run
<BUILDS time procedure

S

Compiler words

Execution time
procedure

3S

DODOES causes the run time procedure in the "parent" defining word to be executed when the "child" executes.
The "child's" execution procedure that resides in the "parent" is executed during Sequence 3.
Figure DOES>-2

Execution Time Action of DOES>

The execution time portion of DOES> is DODOES . This code performs two primary functions:

1. It places the address of the "child's" Parameter Field (actually the second entry in the Parameter Field) onto the top of the
parameter stack so it will be available for the run time program.

2. It nests the return address of the "child" definition being executed and transfers control to the "child's" run time procedure
(which is physically defined in the "parent” defining word definition).

Note that many "children" can be created via a single "parent" defining word and all of the "children" reference the same execution time
(Sequence 3) procedure located within the "parent" definition.

In high level terms, the action of DOES> can be symbolically described as follows:

IP@ RP@ ! Push IP onto the return stack. i.e., Nest the address of the next word to be executed so the system can return after
executing the run time procedure.

-2RP + Increment the return stack pointer to point at the next available return stack location.

w@a 2+ IP! W is now aiming at the Code Field of the "child" definition. Increment it by 2 so that W points to the pointer that

aims at the run time procedure.
NEXT Execute the procedure W is indirectly pointing to.
DOES> may only be used within a colon (:) definition.

VOCABULARY is an example of a word which uses DOES> .

DEFINITION TIME:
* At entry - No parameters.
* At exit -No parameters.
EXECUTION TIME (Sequence 3 execution time of the "child™):
* At entry - The top of the parameter stack contains the 16-bit address of the second Parameter Field entry in the "child's"
definition. (Because the first Parameter Field entry was filled in by DOES> at compile time (Sequence 2), the second

entry is the first location available to the definition.)

* At exit - No parameters.

150

LIKELY ERROR MESSAGES:

DEFINITION NOT FINISHED (14H) -- The position of the parameter stack pointer is not the same as it was when this definition started
being compiled. Something is wrong with the definition.

DOES> is a high level colon definition.
Refer to <BUILDS, ;CODE , and NEXT .
FORTH-79: The FORTH-79 equivalent for DOES> is DOES> .
Definition: : NDDES> (-) (compile time)

R> LATEST PFA ! sCODE
Note: the assembly lanquage execution time code follows the ;CODE .
Note that the fig-FORTH Model version of DOES> uses the first word of the Parameter Field as a pointer to the execution time
(Sequence 3) procedure. (This sometimes causes problems because PFA returns the true PFA, while the "definition's" Parameter Field
actually begins one word later.) This problem is solved in FORTH-79. FORTH-79 DOES> does not utilize the first Parameter Field
location. Aleo note that in FORTH-79, CREATE is paired with DOES> instead of <BUILDS .

DEFINITION TIME action of DOES> : (—)

DOES> (;coDB) Run time portion of <BUILDS filled the Code
sCODE . Rewrite the

Field of the word being

CFA of the word created with the
DOCOL (Run time portion of being created to address of the run time
:) Save IP and point to the code code for CONSTANT .
start interpreting which follows. (;CODE) now overlays
this definition. that address with the

address of the run time
code for DOES> .

R> Remove the top value | NOTE: It must be Note that at compile
of the return stack remembered that DOES> time (;CODE) eventually
and place it onto is a defining word. performs the same
the top of the When DOES> is action as 35 .
parameter stack. executed, the top of the
return stack contains
the addressof the word - - cmmcm e mc e et c s s e e s s s s mme s s s -

following DOES> . The

words following DOES>

are to be executed when EXECUTION TIME action of DOES> : (addr -)
the word created by

DOES> is executed. Note: This is a very machine dependent routine. The following is
Therefore, their the 8080 fig-FORTH version 1.1 routine.
beginning address must
be obtained via the R> .
(DODOES> <BUILDS-DOES) is used
in a compiling word.
LATEST Place the Name Field | This gives the address That compiling word is
Address of the most of the definition then used to create a
recently created currently being created new definition. (e.q.,
word onto the top of by DOES> . <BUILDS-DOES> creates
the parameter stack. VOCABULARY ,
VOCABULARY then
creates FORTH .)
PFA Convert the Name Set up for!. The
Field Address on the address of the
top of the parameter execution time code for The following execution
stack into the the definition being time code for DOES> is
Parameter Field created by DOES> executed when the
Address of the same (obtained via the above definition created by
de finition. R>) must be stored the compiling word
into the first (e.g., FORTH)
Parameter Field. executes.
NOTE: Register usage
in the 8080 fig-FORTH
! Store the specified Store the address of Version 1.1 is:
value into the the definitions to
specified memory execute (when the word BC=1IP
location. being created is DE=W
executed) into that HL = Work Register

word's first Parameter
Field location.

151

152

A

Push IP (which is

[IFLD RPP

[
H:XH

|

[mov mB

1

DCX H

MOV M,C

|

[sHLD RPP

)

fnx D

IP" code in DOCOL .
——

The Code Field of a ‘

\ register).)

currently pointing at
the next definition to
interpret) onto the &
return stack. NOTE:

This portion of code is
identical to the "PUSH

Pick up the return
stack pointer.

Aim at the next
available byte in the
return stack.

Move the high order
portion of IP to the
return stack.

Aim at the next
available byte in the
return stack.

Move the low order
portion of IP to the
return stack.

Store the return stack
pointer.

Aim W at the Parameter
Field. NOTE: DE was
already incremented one
byte by NEXT . Also
note that W points to
the Code Field of the
word being executed.
Incrementing W by two
aims W at the
Parameter Field.

word created with
DOES> contains the run
time code for DOES> .
(i.e., The code being
explained right now.)
The compile time action
of DOES> is to put the
run time code address
for the word being
created in the first

location. W has been
incremented to aim at
the address in the
Parameter Field. Now
put this code address
into IP . The following
code differs from
DOCOL . XCHG put
the Parameter Field
Address into HL so that
the code address in the
Parameter Field can be
moved via HL from
memory to BC
(remember BC is the IP

Parameter Field >

[Mov c,M

[

[MoV BM

[mx H

NEXT

Move the low order
address of the run time
code for this word into
IP.

Aim at the next
Parameter Field byte.

Move the high order
address of the run time
code for this word into
P.

Aim at the next
Parameter Field byte.
NOTE: This increment
is important because
part of the run time
action of DOES> is to
place the address of the
"Parameter Field" of
the definition being
executed onto the top
of the parameter stack.

HPUSH pushes HL (the
address of the first
usable Parameter Field
location) onto the
stack.

NEXT then transfers
control to the run time
code for the definition
being executed.

DP

DP (pronounced "D-P" for Dictionary Pointer) is a user variable that contains an address pointer to the next available dictionary
location. It is initialized during system startup by COLD with data from the origin parameter area.

DP (— data address)

The word HERE places the contents of DP onto the top of the parameter stack. The words ALLOT and FORGET alter the contents of
DP.

The user variable DP is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the praocessor used. Note that the word DP is not always a user variable. The physical location of DP is installation
dependent (i.e., memory, a register, etc.).

* At entry - No parameters.

* At exit - The top of the parameter stack contains the address of the user variable DP .

Refer to COLD , HERE , ALLOT , FORGET , and USER .

FORTH-79: There is no FORTH-79 equivalent for DP .

153

DPL

DPL (— data address)

DPL {pronounced "D-P-L" for Decimal Point Location) is a user variab!= that reflacts the number of digits found to the right of a decimal
point when converting a numeric character string into a numeric vslus, [Axtually, it is relative to the last decimal point encountered.)

The words NUMBER and (NUMBER) perform this conversion. If a danimai onint is not encountered, NUMBER leaves a -1 in DPL .

INTERPRET uses the contents of DPL to determine if a numeric value is to be treated as single precision (i.e., DPL contained -1 so no
decimal point was encountered) or double precision (i.e., DPL did not contain -1 so a decimal point was encountered). Although
INTERPRET uses a decimal point only for purposes of determining precision, this does not mean that an application cannot use the value
stored in DPL to process the decimal point location.

The user variable DPL is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable DPL .
Refer to NUMBER , (NUMBER) , INTERPRET , and USER .

FORTH-79: DPL is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set". Note that DPL as
described in the Reference Word Set is used for numeric output, not input.

154

DPUSH (— value)

DPUSH

DPUSH is strictly an 8080 fig-FORTH Version 1.1 inner interpreter routine entry point.

Entry at this entry point causes the 16
contents of the HL register pair is also

Refer to NEXT .

-bit contents of the DE register pair to be pushed onto the top of the parameter stack. Then the
pushed onto the top of the parameter stack then NEXT is executed.

155

DRO DR1
DRO (-)

DRI (-)

DRO and DR1 are standard FOR TH mass storage device selection words. These words store a block number offset into the user variable
OFFSET , so that the programmer can reference a selected device as if the block numbers for that device begin with block zero.

All FORTH mass storage I/O is virtual ¥O. That is, desired information is referenced via block numbers, which to the programmer, are
synonymous to the memory address of the desired data. The type of mass storage, the hardware addresses, and the media are normally
transparent to the programmer.

Each storage device on the system has a unique range of block numbers assigned to it. This allows device selection to be based solely
won bleck number range. For example, Disk Drive 1 may contain blocks 0 through 799; while Disk Drive 2 may contain blocks 800
through 1199.

This explicit addressing does pose a slight problem, however. For instance, it is difficult to remember that certain data on a diskette

resides at block 160 when the diskette in Drive 1; but the same data resides at

BLOCK solves this problem through the use of OFFSET .
number. This allows implicit drive selection by previously setting (i.e.,
drive, Explicit drive selection may be performed by ensuring that OFF SE

The purpose of drive selection words are to fill the us
desired device. That way (for identical devices) a parti

Note that device selection words are not limited to DRO and DRI .
used to select a tape drive. Device selection words are obviously inst

* At entry - No parameters.

* At exit - No parameters.

DRQ and DR1 are high level colon definitions.

Refer to BLOCK , R/W , and OFFSET .

FORTH-79: There is no FORTH-79 equivalent for DRO or DRI .

Definition: DRO (-)
DRO-BEGBLK# OFFSET ! 3
DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.
DRO- Place the constant Setup for!. For
BEGBLK# value of DRO- this example, the
BEGBLK# (600H) starting block number
onto the top of the of Drive 0 is placed
parameter stack. onto the stack. This
constant would be
defined as
600 CONSTANT
DRO-BEGBLK#
OFFSET Place the address of Set up for ! .
the user variable
OFFSET onto the top
of the parameter
stack.
Store the specified Initialize OFFSET to
value into the the beginning block
specified memory number of the desired
location. device.
I
;S (Run time portion of
3 «) Stop interpret-
ing this definition
and return to the
156 calling procedure.

block 960 when the diskette is in Drive 2.

the contents of OFF SET is added to the desired block
biasing) OFFSET to the starting block number of the selected
T contains the value 0 before calling BLOCK .

Immediately upon entry,

er variable OFFSET with a bias value equal to the starting block number of the
cular block of data can always be referenced via the same block number.

Another common, but not standard, selection word is MTO which is
allation dependent.

DROP

DROP (value to be dropped —)
DROP discards the 16-bit value presently on the top of the parameter stack.

DROP is commonly used to discard parameters from the stack before exiting 2 word or procedure. #> is an example of a word which uses
DROP .

* At entry - The top of the parameter stack contains the 16 bit value to be discarded.
* At exit - This value has been discarded (dropped).
DROP is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for DROP is DROP .

DROP
8080 fig-FORTH
Version 1.1

l?m) top of stack. J

NEXT Do nothing with value
just popped. i.e., Drop
it.

157

DUP

DUP (value 1 — value 1 \ value 1)
DUP (pronounced "dupe") duplicates the 16-bit value presently on the top of the parameter stack.

DUP is a very commonly used word. It is usually used to make a copy of an input parameter so the original value will still be available
after an intermediate word "uses up" the input parameter.

COUNT is an example of a word which uses DUP .
* Atentry - The top of the parameter stack contains the 16-bit value to be duplicated.
* At exit - The first and second 16-bit stack values are equal.

DUP is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for DUP is DUP .

DUP
8080 fig-FORTH

Version 1.1

LPop top of stack.]

l

IF’ush it back. J
HPUSH Push same value back
again. i.e., Duplicate
it.
NEXT

ELSE

ELSE
COMPLLE TIME (Sequence 2): (offset address \ 2 — offset address \2)
EXECUTION TIME {Sequence 3): { —)
ELSE is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution time.
ELSE is used as the beginning of the "false portion" of an IF structure in the form:

IF "True Portion" ELSE "False Portion" THEN
(Beware -- this differs in form from the PASCAL IF-THEN-ELSE structure.) The use of ELSE in this type of structure is optional. If
ELSE is omitted, a false boolean input causes control to simply branch to the word immediately following the THEN . When used, ELSE
muset he located within an IF-ELSE-THEN structure. (ENDIF may be used in place of THEN B
An IF-ELSE-THEN structure must be used within a colon definition.
The compile time action (Sequence 2) of ELSE is to compile a BRANCH into the definition being compiled. (This BRANCH is what
divides the structure into two parts. After the "true portion" executes, the BRANCH is encountered and control is passed around the
"false portion" to the word immediately following the THEN .) The location following BRANCH is reserved for the branch address. This
location address is then placed on the parameter stack so that it may be later resolved by THEN. Finally, the branch offset for the
OBRANCH in the preceding IF statement is resolved by executing an ENDIF or THEN . If the ELSE is left out of the IF structure, the
terminator THEN (or ENDIF) resolves the offset.
Some compiler security is provided by checking for, and also leaving, a 2 on the top of the stack. An ELSE without a preceding IF will
probably not encounter a 2 on the top of the stack. (NOTE: During compilation, IF leaves a 2 on the top of the stack.) This is not
foolproof however. An ELSE followed by another ELSE will not be detected by checking for a 2 since ELSE also leaves a 2.
The run time action (Sequence 3) of ELSE is to prevent execution of the "true portion" of the structure from proceeding sequentially on
into the "false portion" of the structure. At compile time, the branch offset of the OBRANCH in the IF was resolved by ELSE to point to
the "false portion". A false boolean flag (0) input to the IF will cause this branch to be taken and the "false portion" will be executed.

Note that ELSE is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the 16-bit signed single precision value 2 used for compiler security.
The second stack entry contains a 16-bit address specifying the memory location where the offset is to be stored. (This
address is aiso used to compute the offset itsslf.)

* At exit - The top of the parameter stack contains the 16-bit signed single precision value 2 used for compiler security.
The second stack entry contains a 16-bit address specifying the memory location where the offset is to be stored by the
terminating THEN or ENDIF . (This address is also used to compute the offset itself.)

EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) — This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) -- There is some sort of problem with the pairing of conditionals within the definition being
compiled.

ELSE is a high level colon definition.
Refer to IF , THEN , ENDIF , and BRANCH .

FORTH-79: The FORTH-79 equivalent for ELSE is ELSE .

Definition: : ELSE (offset address\ 2 -- offset address\ 2) { compile time)
2 ?PAIRS COMPILE BRANCH HERE O , SWAP 2
COMPILE ENDIF 2 H IMMEDIATE

159

COMPLLE TIME action of ELSE (Sequence 2): (offset address\ 2 — offset address \ 2)

DocoL

?PAIRS

COMPILE

BRANCH

HERE

160

Run time portion of
:) Save IP and

start interpreting
this definition.

Place the constant
value 2 onto the top
of the parameter

stack.

Compare the top two
values on the
parameter stack and
issue Error Message
13H (CONDITIONALS
NOT PAIRED) if they
are not equal.

Compile the
execution address of
the following word
into the dictionary.
The word is not
executed at this

(compile) time.

Unconditionally
branch via the
following offset to
another definition
in the dictionary.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the constant 0
onto the top of the
parameter stack.

]

Store the value on
the top of the stack
into the next
available dictionary

location.

—

Set up for ?PAIRS .

A preceding IF will
have left a 2 on the
stack. If the IF is
missing (i.e., the 2 is
missing) issue an error
message and QUIT .

—

This puts BRANCH into]
the definition being
compiled.

BRANCH is compiled
into the definition. It is
not executed at compile
time.

Get the location that
the 0BRANCH in the IF
will branch to. i.e.,

The first word in the
"false portion".

Set up for , .

Store 0 into the
dictionary as a place
holder for the branch
offset.

p—
Now compile an ENDIF
into ELSE . The purpose
of this ENDIF is to
cause the 0BRANCH in
the IF to branch to the
"false portion" of the
structure at Sequence 3

time.
Nl —J

—V

SWAP

[COMPILE]

ENDIF

IMMEDIATE

Swap the top two
values on the
parameter stack.

Place the constant
value 2 onto the top
of the parameter

stack.
I

Force compilation of
the following
IMMEDIATE word.

Resolve the supplied
address into a
forward branch
offset and store

this offset into the
location reserved
for it.

Place the constant
value 2 onto the top
of the parameter
stack.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of the preced-
ing definition so it
will be executed at
compile time and not
compiled into the
definition being

compiled.

Set up for ENDIF .
Bring the address of
the branch offset
location of the
previous IF to the top
of the stack.

Set up for ENDIF .
ENDIF expects a 2 on
the top of the stack.

Since ENDIF is an
IMMEDIATE word,
[COMPILE] must be
used to compile it into
the definition.
[COMPILE] is only used
to compile ELSE (at
Sequence 2) and does
not exist in ELSE 's
definition when ELSE is
executed at compile
time (Sequence 2).

Set the 0BRANCH
offset in the preceding
IF to branch to and
execute the "false
portion" of the
structure. This will
execute during
Sequence 2 when ELSE
executes.

The ENDIF which
terminates this
structure also expects
a 2 to be on the top of
the stack,

ELSE is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions,

—

EXECUTION TIME action of ELSE (Sequence 3): (—)

IF Is
truth flag
=07
N
"True portion" of IF
structure.
ELSE Branch around the
"falgse portion".
BRANCH is the run AFTERTHEN
time portion of
ELSE .
After executing the
"true portion", execute
the BRANCH and skip
around the "false
portion" using the
previously calculated
and stored forward
branch offset.
G‘T\L_SE\———— This is the entry point
— branched to by the
false path of the IF
statement.
i 1 ﬂ
y
"False portion" of
IF structure.
THEN This is the entry point

the EL.SE branches to.
AFTERTHEN

161

EMIT

EMIT (character to EMIT —)

EMIT outputs the character on the top of the stack to the output device.

TYPE is an example of a word which uses EMIT .
* Atentry - The top of the parameter stack contains a 16-bit value of which the low order 8-bits are ta be output.
* At exit - No parameters.

EMIT is a high level colon definition.

Refer to OUT .

FORTH-79: The FORTH-79 equivalent for EMIT is EMIT .

Definition: : EMIT (character --)
PEMIT 1 QUT +! H

(EMIT)

8080 fig-FORTH
Version 1.1

DOCOoL (Run time portion of
:) Save IP and
start interpreting
this definition.
PEMIT Pop character off of Low level 8080
the top of the stack fig-FORTH Version 1.1
and output it. word.
1 Place the constant Set up for +!.

value 1 onto the top
of the parameter
stack.

ouT Place the address of Set up for +!.
the user variable

OUT onto the top of
the parameter stack.

+ Add the specified Increment OUT by 1.
16-bit value to the
contents of the
specified memory
location.

;S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

162

EMPTY-BUFFERS

EMPTY-BUFFERS (—)

EMPTY-BUFFERS erases the contents of all of the buffers to zero. All update bits are erased to zero. Note that the null terminating
word at the end of each buffer is also reset to zero. (Refer to +BUF for a detailed description of the buffers.)

EMPTY-BUFFERS can be used to prevent modified (and subsequently "updated" data) from being written and therefore changing data
aiready on disk.

The word is also used just after system start-up, prior to any disk accesses. This is deone because at start-up time, the buffers are
un-initialized and contain random data. It is possible that the update bit of a buffer may be randomly set on and the block number may
be a valid block number. If this happened, random data would be written over a valid block on disk whenever BUFFER first allocated
that buffer.

The name EMPTY-BUFFERS is purposely made rather cumbersome to type to prevent accidental execution because of its potentially
destructive power.

* At entry - No parameters.

* At exit - No parameters.
EMPTY-BUFFERS is a high ievel colon definition.
Refer to +BUF , UPDATE , and FLUSH .

FORTH-79: The FORTH-79 equivalent for EMPTY-BUFFERS is EMPTY-BUFFERS.

Definition: EMPTY-BUFFERS (--)
FIRST LIMIT OVER - ERASE H
ERASE Clear an area of Clear the entire buffer
memory starting with array to zeros.
the specified
DOCOL (Run time portion of location for the
:) Save IP and specified number of
start interpreting bytes.
this definition. i
l 3S (Run time portion of
FIRST Place the constant Set up for - . Get the 3) Stop interpret-
value FIRST (the starting address for ing this definition
beginning address of ERASE . and return to the
the buffer array) calling procedure.
onto the top of the
parameter stack.
LIMIT Place the constant Set up for ERASE . Get
value LIMIT (the the ending address for
first memory ERASE .
location past the
end of the buffer
array) onto the top
of the parameter
stack.
OVER Copy the second Set up for - . Copy the
parameter stack beginning address
value onto the top "over" the ending
of the parameter address and put it onto
stack. the top of the
parameter stack.
- Subtract the top Set up for ERASE .
stack entry from the Calculate the number of
second stack entry bytes to erase by
and replace the two subtracting the copy of
values with their the beginning address
signed difference. from the ending

address. This leaves
the buffer length and
beginning address still
on the stack.

163

ENCLOSE

ENCLOSE (beg string addr\ offset to 1st non-delim \ offset to 1st delim \ offset to 1st unexamined char)

ENCLOSE performs a parsing function upon a given text string. Given a beginning text address and a delimiter character, ENCLOSE
scans the text and leaves its results on the stack. These results are in the form of byte offsets from the beginning of the text address.
The parameters returned by ENCLOSE are:

1. Anoffset to the beginning of a delimited string (i.e., the first non-blank character).

2. The offset to the end of that same string.

3. The offset to the next byte to examine.

4. The original beginning address.

This primitive is normally used by WORD to parse the input data stream into individual words delimited by blanks. Note: To avoid any
confusion, the "text string" parsed by ENCLOSE is a pure character string, not characters preceded by a length byte. (Actually, WORD

creates the length byte using the offsets

returned by ENCLOSE .)

* At entry - The top of the parameter stack contains a 16-bit value of which the low order 8-bits are the delimiter
character. The second stack entry contains the 16-bit beginning address (inclusive) of the text string to be parsed.

* At exit - The general form of the parameter stack upon exit is:

Top of stack - Offset (relative to specified beginning address) to first unexamined character (i.e., character at which to
start next scan).

Second entry - Offset to the 1st delimiter after text.

Third entry - Offset to the first non-delimiter character.

Fourth entry - Beginning address of character string to parse as specified at entry.

There are three specific conditions that may arise when parsing any given character string. The following is a description of each
condition and a description of the stack upon exit from that condition:

CONDITION 1 - Scan encountered a null

character before encountering any non-delimiter characters.

Condition of stack at exit:

Top of stack - Offset to

null.

Second entry - Offset to byte following null.

Third entry - Offset to null.

Fourth entry - Beginning address of character string to examine.

CONDITION 2 - Scan enountered non-delimiter character(s) terminated by a null.

Condition of stack at exit:

Top of stack - Offset to

null.

Second entry - Offset to null.

Third entry - Offset to first non-delimiter character.

Fourth entry - Beginning address of character string to examine.

CONDITION 3 - Scan encountered non-delimiter characters terminated by a delimiter character.

Condition of stack at exit:

Top of stack - Offset of

first unexamined character.

Second entry - Offset to first delimiter after non-delimiter character(s).

Third entry - Offset to first non-delimiter character.

Fourth entry - Beginning address of character string to examine.

NOTE: The fig-FORTH 8080 Version 1
bytes.
164

-1 of ENCLOSE cannat correctly parse undelimited text strings with a length of more than 255

ENCLOSE is a low level code primitive.
Refer to WORD .

FORTH-79: There is no FORTH-79 equivalent for ENCLOSE .

[itiatization. j
[

Skip over leading
delimiter
characters.

Set return parameters

for Condition 1. l——————=» NEXT

Character string
contains at least
one non-delimiter
and non-null
character.

!
—

Examine next
character.

Isit

- Set return parameters
a delimiter

for Condition 3. ————>=>NEXT

Set return parameters

for Condition 2. ————=> NEXT

Figure ENCLOSE-1
High Level Flow Chart for ENCLOSE

NOTE: Each box roughly corresponds to a curly bracketed notation in the low level flow chart.

165

166

(ENCLOSE)

Pop delimiter
character off of
parameter stack.

[

Pop beginning
address of text to
scan off of
parameter stack.

|

Push beginning
address back again
so will be fourth
returned parameter.

Initialize offset
count and scan
address.

—=

Aim at next
character.

Increment offset
count.

Is
it a
delimiter

char
?

Push offset to first
non-delimiter
character.

1st
non-delim
char =

null
?

Increment offset
count.

8080 fig-FORTH
Version 1.1

Fourth stack entry at
exit.,

Skip over leading
delimiter characters.

Count = -1
Address = Address - 1

Skip over leading
delimiter character.

This count is the
offset to the first
non-delimiter
character. It will be
the third stack entry
at exit.

Loop until find
non-delimiter.

Got non-delimiter
character.

Third stack entry at
exit.

Encountered null before
any non-delimiter
character. Set up

return parameters for_J
Condition 1 and exit.

Push the offset to
the first character
following text onto
the top of the
parameter stack.

1

Decrement offset
count to aim at

null.
|

Push the offset to
the first character
not examined onto
the top of the
parameter stack.

In this case, text is a
null. (Second stack
entry at exit.)

In this case, it is the
null itself. (Top of
stack entry at exit.)

Aim at next
character.

Increment offset
count.

Is
this

a delim

char

Push present offset
as first delimiter
after text.

Push present offset
also as offset to
the first char not

examined.

Character string
contains at least one
non-delimiter and
non-null character.

Eixamine next charac te§

Scan for a null or
delimiter.

Null encountered in
character string before
a delimiter was
encountered. Set up
return parameters for
Condition 2 and exit.

In this case, it is a
null. (Second stack
entry at exit.)

NOTE: Null stops search
immediately so it is
also first char not
included. (Top of stack
at exit.)

V

Push present offset
as first delimiter
after text.

lIncrement offset by

1.
I

Push offset to first
character not
examined.

Encountered

non-delimiter
character(s) terminated
by a delimiter. Setup

return parameters for

nd avit

ol %3
\ Condition 3 and exit.

Second entry at exit.

Top of stack at exit.

167

END

END

COMPILE TIME (Sequence 2): (loop address\ 1 —)

EXECUTION TIME (Sequence 3): (truth flag —)

END is a compiler word and therefore exhibits two different sets of actions; those actions at compile time.and those at execution time.

Note: "END" has been replaced by UNTIL . This is because END will eventually replace ; . UNTIL is the preferred usage, but END is
still valid.

END is used to mark the end of an indefinite, conditional loop structure where repetition continues until the boolean input to END is
true.

END is used in the form:
BEGIN "Loop Body" END
(UNTIL should be used in place of END .)
BEGIN-END structures must always be used within a colon definition.
It is important to note that in using a BEGIN-END structure, the "loop body" will always be executed at least once. This is because the

exit condition is not tested "until" after the "loop body" has been executed. This is known as a "post-test" loop. If the exit condition
must be tested before "loop body" execution, the BEGIN-WHILE-REPEAT structure should be used instead.

END is actually a Sequence 1 compiling word. That is END compiles (during Sequence 1) another compiling word, UNTIL , into its
definition. Then (at Sequence 2) when END is executed, the word UNTIL does the actual compiling into the definition being created.

The apparent Sequence 2 compile time action of END is to compile a BRANCH into the dictionary. (Actually this is performed at
Sequence 2 via the UNTIL which was compiled by END at Sequence 1.) Secondly, it resolves the "loop body" entry point address provided
by BEGIN into a return branch offset used by the 0BRANCH and stores this offset into the definition.

Some compiler security is provided by checking for a 1 on the top of the stack. An END without a preceding BEGIN will probably not
encounter a 1 on the top of the stack. (During compilation, BEGIN 1 saves a 1 on the top of the stack.)

The execution time action (Sequence 3) of END is to provide a conditional repetitive branch back to the loop's corresponding BEGIN (i.e.,
the beginning of the "loop body"). The input parameter to BEGIN is a boolean flag. If this flag is false (0), control returns to the first
word in the "loop body" (just after BEGIN). If the boolean flag is true (not 0), no branch occurs and the loop is exited. That is, repetitive
looping continues "until” the exit conditional is true.

The 0BRANCH, compiled into the definition at compile time, is what controls the looping.

Note that END is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the 16-bit signed single precision value 1 used for compiler security.
The second stack entry contains the 16-bit entry point address of the "loop body" portion of the BEGIN-END structure.

* At exit - No parameters.
EXECUTION TIME (Sequence 3):

* At entry - The top of the parameter stack contains a 16-bit signed single precision boolean flag used to control the
conditional looping of the structure.

* At exit - No parameters.
LIKELY ERROR MESSAGES:
COMFLATION ONLY (11H) -~ This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

END is a high level colon definition.
Refer to UNTIL , BEGIN and 0BRANCH .
FORTH-79: The FORTH-79 equivalent for END is UNTIL .

Definition: : END (loop address\ 1 --) (compile time)
[COMPILE] UNTIL H IMMEDIATE

168

COMPILE TIME action of END (Sequence 1): (loop address \ 1 —)

DOCOL

[COMPILE]

UNTIL

IMMEDIATE

END

(Run time portion of
:) Save IP and

start interpreting
this definition.

|

Force compilation of
the following
IMMEDIATE word.

ompile a 0BRANCH
and resolve the
supplied backward
branch.

(Run time portion of
s .) Stop interpret-
ing this definition
and return to the
Icalling procedure.

Set the precedence
bit of this

de finition so it

will be executed at
compile time and not
compiled into the

de finition.

END is simply a
redefinition of UNTIL
but since UNTIL is an
IMMEDIATE word,
[COMPILE] must be
used to compile it into
the definition. (Other-
wise it would execute
instead of being
compiled.) [COMPILE]
is only used (at Sequence
1) to compile UNTIL
into END and does not
exist in END 's
definition when END is
executed at compile
time (at Sequence 2).

UNTIL will be executed
at a later compile
time (Sequence 2) when
END is executed.

END is a compiler word
and therefore must
execute during
compilation (Sequence
1) so that it can
compile UNTIL into the
definition.

EXECUTION TIME action of END (Sequence 3): (truth flag —)

Refer to UNTIL .

169

ENDIF

ENDIF
COMPILE TIME (Sequence 2): (offset address\ 2 —)
EXECUTION TIME (Sequence 3): (—)

ENDIF is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

ENDIF is used to mark the end of an IF-ENDIF or IF-ELSE-ENDIF structure. (THEN is the preferred usage, but ENDIF is still valid.)
ENDIF must be used in the form:

IF "true portion" ENDIF
OR
IF "true portion" ELSE “false portion" ENDIF

An IF-ENDIF structure must be used within a colon definition.
The compile time (Sequence 2) action of ENDIF is to compute a forward branch offset, calculated from the supplied Offset Address to

the next available memory location following ENDIF (supplied by the HERE in ENDIF) and to store that offset in the location reserved
by the previous IF or ELSE statement.

O0BRANCH This address of this cell
IF is left on the stack by IF.
OFFSET
ENDIF then stores this
OFFSET offset value.
points
to ENDIF
cell.

ENDIF

Some compiler security is provided by checking for a 2 on the top of the stack. IF and ELSE leave a 2 on the stack at compile time
(Sequence 2). Since no other conditional or looping words leave a 2 on the stack, failure to pair an ENDIF with an IF or ELSE will cause
an error condition to be detected and signaled via ?PAIRS .

The execution time (Sequence 3) action of ENDIF is to simply serve as the destination of a forward branch from a previous IF or ELSE
statement. It is just a label.

Note that ENDIF is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

COMPLE TIME (Sequence 2):
* At entry - The top of the parameter stack contains the 16-bit signed single precision value 2 used for compiler security.
The second stack entry contains a 16-bit address used to calculate the branch offset address of a previous IF or ELSE .
The second stack entry is also the memory location that offset is to be stored into.
* At exit - No parameters.
EXECUTION TIME (Sequence 3):
* At entry - No parameters.
* At exit - No parameters.
LIKEL'." ERROR MESSAGES:
COMPILATION ONLY (11H) -~ This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

ENDIF is a high level colon definition.
Refer to IF , ELSE , and THEN .
FORTH-79: The FORTH-79 equivalent for ENDIF is THEN .

Definition: : ENDIF (offset address\ 2 —-) (compile time)
7COMP 2 ?PAIRS HERE OVER - SWAP ! H IMMEDIATE

170

COMPILE TIME action of ENDIF (Sequence 2): (offset address \ 2 —)

DOoCOL

?2COMP

?PAIRS

HERE

OVER

SWAP

ENDIF

(Run time portion of
:) Save IP and
start interpreting
this definition.

]

Issue Error Message
11H (COMPILATION
ONLY, USE IN
DEFINITION) and
QUIT if not
compiling.

Place the constant
value 2 onto the top
of the parameter
stack.

Issue Error Message
13H (CONDITION-
ALS NOT PAIRED)
and QUIT if the

top two stack values
are not equal.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Copy the second
parameter stack
value onto the top
of the parameter
stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Swap the top two
values on the
parameter stack.

1

Store the specified
value into the
specified memory
location.

ENDIF must be used
within a colon
definition.

Set up for ?PAIRS .

A preceding IF or ELSE
will have left a 2 on
the stack. If there is
no 2, something is
missing; issue an error
message and QUIT .

Get the location to ——1
which the previous IF
or ELSE will branch.

Set up for - . Place
the previously supplied
offset location over

the branch destination
location.

Destination address
minus the branch
address equals the
branch offset.

Set up for !. ——‘

Store the calculated
forward branch offset
into the branch
location in the
previous IF or £LSE
statement.

IMMEDIATE

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the nrecedence
bit of the preced

ing definition so it
will be executed at
compile time and not
compiled into the
definition being
compiled.

ENDIF is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile

other definitions.

EXECUTION TIME action of ENDIF (Sequence 3): (—)

ENDIF serves as the destination of a forward branch from a
previous IF or ELSE statement. ENDIF is simply a label and has
no run time code or action.

171

ERASE

ERASE (beginning address \ # of bytes to erase —)

ERASE clears a specified region of memory to zeros (OH).
ERASE is simply a FILL with the fill character (0) "hard coded".
EMPTY-BUFFERS is an example of word which uses ER ASE.

* At entry - The top of the parameter stack contains the 16-bit single precision number of bytes to erase. The second stack
entry contains the 16-bit beginning address of the memory to erase.

* At exit - No parameters.
ERASE is a high level colon definition.
Refer to FILL .

FORTH-79: ERASE is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

Definition: + ERASE (beginning address\ # --)
0 FILL H
ERASE
DOCOL (Run time portion of

:) Save IP and
start interpreting
this definition.

0 Place the constant Set up for FILL . Set
value 0 onto the top 0 as FILL character.
of the parameter The stack now
stack. contains:
0
of bytes
beg address
FILL Fill memory using Erase memory to zeros.

specified address,
length, and fill
character.

3S (Run time portion of
3 «) Stop interpret-
ing this definition
and return to the
calling procedure.

172

ERROR

ERROR (message # — contents of IN'\ contents of BLK)

ERROR displays some type of error message, stops compilation, and restarts interpretation from the terminal.
The form of the error message to be displayed is governed by the contents of the user variable WARNING .

If WARNING contains a negative number, a (ABORT) is performed and only the standard startup message is dxsplayed Note that
(ABORT) may be modified to call a user created error routine.

If WARNING contains a zero, the message number supplied as an input parameter is simply printed as an "error number". This is often
used for non-disk installations or when a disk that does not contain the error messages is being used (e.g., "MSG # 2").

If WARNING contains a non-zero pasitive number, the input parameter is used as a line number offset relative to Line 0 of Screen 4. The
contents of this line is listed on the output device (e.g., "DICTIONARY FULL"). Note that message number 0 gives no message, just "?"
(pronounced "huh?"). Also note that the error message number may be a negative value. It will still be referenced via Line 0 of Screen 4.

The contents of IN and BLK are saved to aid in determining where and why the error occurred.

Some systems use a word called WHERE which inputs this information and displays the line and word where the error occurred.

?ERROR is an example of a word which uses ERROR .

* At entry - The top of the parameter stack contains a signed 16-bit number used as an offset in lines (either positive or
Y signed

negative) relative to Line 0 of Screen 4.

WARNING contains a positive number.

Either the number or the contents of the specified line will be displayed if

* At exit - The top of the parameter stack contains the 16-bit block number of the block being interpreted when the error
occurred (the contents of the user variable BLK). The second stack entry contains the 16-bit relative byte location of the
next word to be interpreted (the contents of the user variable IN).
determining where and what the error was.

ERROR is a high level colon definition.

Refer to MESSAGE , WARNING , IN, and BLK .

FORTH-79: There is no FORTH-79 equivalent for ERROR .

These two parameters can then be used to aid in

Definitions ERROR (message # -- IN\BLK }
WARNING @ &K 1F (ABORT) THEN
HERE COUNT TYPE *?" MESSAGE SP!
IN @ BLK @ QUIT 3
{erroR) F Ie A —
— 8080 fig-FORTH truth flag ERRO1
Version 1,1 =07
N Branch around "true
portion" of IF .
DOCOL {Run time portion of
:) Save IP and I Branch if WARNING is
start interpreting not negative.
this definition. l
(ABORT) Execute ABORT or ABORT. i.e., Restare
Examine the contents of a user defined the stack, FORTH
WARNING . routine. DEFINITIONS , print
startup message and
-] QUIT. OR -- execute a
WARNING Place the address of Set up for @ . The user defined error
the user variable contents of WARNING routine.]
WARNING onto the is used to determine
top of the parameter what ERROR action to
stack. take. THEN This is the entry point
I . for the THEN portion of
. the IF-THEN structure.
@ Replace the address Set up for 0K . Pick
on the top of the up the contents of WARNING was not
parameter stack with WARNING . negative, therefore
the memory contents list the character
of that address. string that caused the
' error and execute
MESSAGE .
1.4 Replace the top of This is supposedly a
the parameter stack test to see if WARNING
with a true flag (1) contains -1 but any
if the value is less negative number will
than 0, else leave a produce the same
false flag (0). result. |
I 173

HERE

COUNT

TYPE

.ll ?ll

MESSAGE

SP!

IN

BLK

174

Place the address of
the next available
dictionary location
onto the top of the
parameter string.

Replace the message
address on the top
of the parameter
string with its
starting address and
length.

Output the specified
rnumber of characters
starting at the
specified address to
the output device.

Output the character
string delimited by
quotes to the output

device.

Output (based on the
contents of
WARNING) either
the specified line
number { WARNING =
0) or the message on
that relative line
rnumber { WARNING =

]

Initialize the
parameter stack
pointer from SO .

Place the address of
the user variable IN
onto the top of the
parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

|

Place the address of
the user variable

BLK onto the top of
the parameter stack.

l

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

List the word that
caused the ERROR .

Set up for COUNT .
During interpretation,
words are read into
memory starting where
HERE is pointing.

Set up for TYPE .
Convert the address of
the message into the
parameters required for
TYPE .

List the character
string that could not
be interpreted.

Follow the TYPEed
character string with a
question mark.

MESSAGE uses the line
number that was the
input parameter to
ERROR . If WARNING
is 0, only the number is
listed. Otherwise, the
number is used as an
offset from line O of
screen 4.

Drop everything that is
now in the parameter
stack.

Place the contents of
IN and BLK on the
parameter stack.

Setup for@. IN
contains the location
of the next word to be
interpreted.

Place the contents of
IN onto the stack for
future reference.

Set up for @ . BLK
contains the block
number being
interpreted.

Place the contents of
BLK onto the stack for
future reference.

QUIT

Initialize the
return stack, stop
compilation, and
start interpreting
from the input
terminal.

(Run time portion of
; «) Stop interpret-
ing this definition
and return to the
calling procedure.

Stop compilation, go
back to the terminal
and wait for operator
response.

EXECUTE

EXECUTE (Code Field Address —)

EXECUTE "executes" the definition whose Code Field Address (CFA) is on the top of the parameter stack. That is, EXECUTE transfers
control to the definition whose CFA is on the top of the stack, executes that definition only, and then returns control to the next

ey

definition foliowing EXECUTE .
This is action identical in philosophy to the IBM 360/370 EX (execute) instruction.
EXECUTE is the means by which vectored execution arrays can be used in FORTH.

EXECUTE is the "heart" of INTERPRET . The dictionary is searched for each incoming word in the data stream. When the word is
found, its CFA is placed on the stack and the definition is then executed via EXECUTE .

The internal operation of EXECUTE is quite simple. The top of the stack is moved into W and then a jump indirect is performed through
W. W is then incremented to point to the Code Field of the definition being executed.

This operation is quite similar to that of NEXT except that the address of the next definition to execute comes from the top of the
parameter stack instead of from IP.

* At entry - The top of the parameter stack contains the CFA of the definition to be "executed".
* At exit - No parameters.

EXECUTE is a low level code primitive.

Refer to NEXT , and INTERPRET .

FORTH-79: There is no FORTH-79 equivalent for EXECUTE .

EXECUTE

Pop the top of the Place the CFA into W,
parameter stack into
w.

NEXT1 Jump indirect to
execute the specified
definition. Control
will return back to
where IP is pointing.
(i.e., The definition
following execute.)

175

EXPECT

EXPECT (beginning text destination address \ character count —)

EXPECT inputs characters from the terminal to the specified address until the specified count is reached or until a carriage return is

encountered.

At least one null is appended to the end of the text stream. The carriage return character is always replaced with a blank followed by a

null. The blank and null are delimiters for WORD and INTERPRET .

EXPECT checks for backspace characters. If a backspace is encountered, the loop Index is decremented so that the backspace is not

included in the character count. The backspace character is still included in the text stream.

If the backspace character was

encountered in the first character position, i.e., trying to back up past the beginning; the character (which is an ascii 08) is decremented
by 1 thereby converting it into an ascii BELL character (07). The BELL character is still included in the text stream. (The loop Index

was decremented when the backspace was encountered.)

In multitasking FORTH environments, EXPECT is the primary task switching word. i.e., Input from any one of several terminals causes

that terminal's task to become active.

QUERY is an example of a word which uses EXPECT .

* At entry - The top of the parameter stack contains a signed 16-bit single precision character count value. This value is
added to the specified address to determine the DO-LOOP Limit, so although negative values are legal, great care must be
exercised in their use. The second stack entry contains the 16-bit beginning memory address where the text stream is to

be stored.
* At exit - No parameters.
EXPECT is a high level colon definition.
Refer to QUERY .

FORTH-79: The FORTH-79 equivalent for EXPECT is EXPECT .

Definition: : EXPECT (beginning text destination address \ count --)
OVER + OVER
DO .
KEY DUP 0E +ORIGIN @ =
IF
DROP 08 OVER 1 = DUP R> 2 - + >R -
ELSE
DUP 0D = IF
LEAVE DROP BL 0O
ELSE
DUP
THEN
IC! 0TI 1+
THEN
EMIT
LOOP DROP

Move loop control
characters (Index
and Limit) to the

DOCOL (Run time portion of return stack.
¢) Save IP and
start interpreting
this definition. DO
| - s
OVER Copy the second Set up for +.
parameter stack
value onto the top
of the parameter KEY Wait for an input
stack. terminal keypress.
I Place the ascii
. value of the
+ Add the top two Set up for DO . Add character onto the
stack values and beginning address to top of the parameter
replace them with limit to calculate stack.
their signed sum. "Limit" for DO .
I
OVER Copy the second Set up "initial" value
parameter stack for DO . Put beginning
value onto the top address on the top of
of the parameter the stack.
176 stack.

This execution time
portion of DO is
compiled into the
definition by DO .

This is the entry point
for the jump from the
LOOP portion of this
DO-LOOP structure.

Read a character from
the keyboard.

Determine if the input

_character is a

backspace.

DUP

LIT
0EH

+ORIGIN

DROP

LIT

OVER

Duplicate the top
value on the
parameter stack.

Place the litera!l
value 0EH onto the
top of the parameter
stack,

Replace the offset
on the top of the
parameter stack with
the address of the
specified origin

area parameter.

|

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the top two
values on the
parameter stack with
a true flag (1) if

they are equal or a
false flag (0) if

they are not equal.

-

The character is a
Eackspace. j

Drop the top value
from the parameter

stack.
I

Place the literal
value 8 onto the top
of the parameter

stack.
I

Copy the second
parameter stack
value onto the top
of the parameter

stack.
I

Place the loop Index
onto the top of the
parameter stack.

Dup the character.

Set up for +ORIGIN .
The backspace character
value is stored 14

bytes from the
beginning (i.e.,

origin) of the FORTH
nucleus.

Aim at the backspace
character value for
this system.

Fetch the backspace
character value.

Is the character just
typed in a backspace?

Branch if the character
is NOT a backspace.

is o]

Drop the input
character.

Place an ascii
backspace character
onto the top of the
parameter stack.

Put the beginning
address onto the top of
the parameter stack.

Get the current
character address.

bupP

>R

Replace the top two
values on the
parameter stack with
a true flag (1) if

they are equal or a
false flag (0) if

they are not equal.

Duplicate the top
value on the
parameter stack.

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

Place the constant
value 2 onto the top
of the parameter
stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

I

Add the top two l
stack values and i
repiace them with |

their signed sum.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Is the current
character address equal
to the beginning
address?

—

Backspace must
"reset/backspace" the
loop Index so can still
input maximum number
of characters.

Duplicate the truth
flag result of the
previous equal.

Get the DO loop Index
value from the return
stack (i.e., current
address). (This is not

a recommended
programming technique.)

Set up for - .

Back up current address
two bytes.

Add the truth flag
result of comparing
current address with
beginning address:

0 = Not at first char
1 = At first char so
can‘t backspace

Put the adjusted DO
loop Index value back
on the return stack.

Cause a beep if tried
to backspace from the
beginning character
location.

Subtract the DUP 'ed
truth flag from the
backspace character
(previously LIT 08). If
a backspace was
attempted from the
beginning character
location the truth flag
is a 1. Leave either a
BELL or a BACKSPACE
character on the stack.

177

ELSE

&

LIT
O0DH

LEAVE

DROP

BL

178

lEranch.

Duplicate the top
value on the
parameter stack.

Place the literal
value ODH onto the
top of the parameter

stack.
|

Replace the top two
values on the
parameter stack with
a true flag (1) if

they are equal or a
false flag (0) if

they are not equal.

Is
truth flag
=07

Set Index to Limit
so that next
execution of LOOP
will cause exit from
DO-LOOP structure.

Drop the top value
from the parameter
stack.

Place the constant
value of an ascii
blank (20H) onto the
top of the parameter
stack.

Place the constant
value 0 onto the top
of the parameter
stack.

[Eranch .

This is the entry point
for the "false portion"
of the previous IF that
tested if the character
was a backspace.

The character was not a
backspace.

Duplicate the character |
on the top of the
stack.

0DH is the ascii value

for a carriage return.

Is the input character
a carriage return?

Branch if the input
character is not a
carriage return,

The input character is
a carriage return,
Replace it with a blank
and a null,

The input character was
a carriage return so

set up to exit the

loop.

Drop the duplicated
carriage return
character from the top
of the stack.

Replace the carriage
return with a blank.

Put a null onto the
stack so it will be
stored into the
character string.

Branch around the
"false portion" of the
IF structure.

ELSE

. EXPE4

DUP

THEN

- Expes)———>

1+

THEN

D>

EMIT

(LooP)

Duplicate the top
value on the
parameter stack.

Copy the loop Index
onto the top of the
parameter stack.

Store the specified
8-bit value into the
specified memory
location.

Place the constant
value 0 onto the top
of the parameter
stack,

\

Copy the loop Index
onto the top of the
parameter stack.

Increment the top
parameter stack
value by 1.

I

Store the specified
value into the
specified memory
location.

Output the ascii
character on the top
of the parameter
stack to the output

device.
L

Increment the Index

value.

This is the entry point
for the previous IF .
(i.e., the character
was not a carriage
return.)

Duplicate the
character.

This is the entry point
from the "true portion"
of the previous IF .
(i.e., the character
was a carriage return.)

—

Get the character
string address to store
the character.

Store one of the
following:

1. The character.

2. A backspace char.

3. A bell if tried to
backspace from the
beginning char
position.

4. Anull ifaC/R

was entered.

Set up to put a null at
the end of the
character string as it
now exits (even though
this may not yet be the
end).

Get the current
character address.

Point to the next
character location.

Store the null in the
next character
location.

This is the entry point
from "true portion" of
the IF which compared
for a backspace.

Echo the character back
to the terminal,
including a backspace
character or bell or
carriage return.

This execution time
portion of LOOP is
compiled into the
definition by LOOP .

LOOP

DROP

th

Is
Index value
=or>

Limit value
?

Drop the top value
from the parameter
stack.

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

Loop back if Index does
not equal Limit and
get another character.

If Index is = or > than
Limit, do not loop.
Drop the Index and
Limit values from the
return stack.

Drop the beginning
character address.

179

FENCE

FENCE (— data address)
FENCE is a user variable used in conjunction with FORGET to set a boundary past which FORGET cannot forget. This prevents the
programmer from inadvertently forgetting too much of the dictionary. FENCE is initialized at start up time by COLD with data from
the origin parameter area but its contents may be changed at any time to reflect a new dictionary structure.
The words:

'FROG FENCE !
will not allow forgetting below the named definition (in this case, FROG).

The user variable FENCE is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* Atexit - The top of the parameter stack contains the address of the user variable FENCE .
Refer to FORGET , and USER .

FORTH-79: There is no FORTH-79 equivalent for FENCE .

180

FILL

FILL (start address \ count \ fill character —)
FILL "fills" each location of a specified region of memory with a specified byte value.
Note: This word may be installation dependent on other than 8-bit machines.
This version of FILL differs from the fig-FORTH model in that it is a low level code primitive. The high level version of FILL (based on
CMOVE) works correctly when filling read/write memory. However, it will not work correctly when filling write-only memory such as
specialized video display memory. This is because the "ripple fill" used by CMOVE requires that the byte to be moved be read from
memory. This code version of FILL does not use CMOVE or "ripple fill" and therefore will work correctly when filling write-only
memory.
ERASE and BLANKS are examples of words that use FILL. .
* At entry - The top of the parameter stack contains a 16-bit value of which the low order 8-bits are the fill character. The
second stack entry contains a 16-bit unsigned "count", i.e., the number of locations to fill. The third stack entry contains
a 16-bit "starting address" (inclusive).
* At exit - No parameters.

FILL is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for FILL is FILL .

(FILL) Eill a location:.}
8080 fig-FORTH

Version 1.1

Put fill character.

into accumulator.
Eet up for fill loo%

r Store fill character
,Pop fill byte. into memory via
l index register.
1

Iima count. J |

I Increment index

L]

register.
Pop beginning I
address into index
register. lEecrement count. J

|

FILLI BEGIN function starts
here. (i.e., This is
the entry point from

the loop back to fill REPEAT function of

another location.) loop. (i.e., Go fill

another location.)
Test if filled all
locations.

Putlowordercount | 0 e eeesmemmmm ottt e s s e mmm e
into accumulator.

(geprn!

FILL2

I NEXT

OR accumulator with Note: This is an 8080

high order count. technique to test if a
16-bit value is equal
to zero.

FILL2

WHILE function of loop
is here. (i.e., Exit if

the specified amount of
memory has been
filled.)

181

FIRST

FIRST (— address.)
FIRST is a single precision CONSTANT value. This constant places the memory address of the "first" (lowest) block buffer in the buffer
array onto the top of the parameter stack. Refer to +BUF for an example of the usage of FIRST . Alse see BLOCK and BUFFER for a
description of the buffer array.
Conversely, LIMIT is the constant that reflects the upper "limit" (highest) block buffer address.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the 16-bit memory address of the first buffer in the buffer-array.

Refer to LIMIT , +BUF , BLOCK , and BUFFER .

FORTH-79: There is no FORTH-79 equivalent for FIRST .

182

FLD

FLD (— data address)
FLD (pronounced "F-L-D") is a user variable which is intended to control field length in pictured numeric output.
FLD is not currently used in the fig-FORTH model.

The user variable FLD is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable FLD .

FORTH-79: There is no FORTH-79 equivalent for FLD .

183

FLUSH

FLUSH (-)
FLUSH writes to disk all the buffers in the buffer array that have been flagged as "updated".
FLUSH is FORTH's virtual memory equivalent to "traditional" languages "write-to-disk" command.

A buffer is flagged as being "updated" when the most significant bit (i.e., the update bit) in the header portion of a buffer is set to one.
(Refer to +BUF for a detailed explanation of the buffer structure.) This update bit is set via the word UPDATE .

Flagged buffers will automatically be written to disk by BUFFER when the buffer is allocated to a new block number while executing
BLOCK . Sometimes it is desirable or even necessary to force writing of these updated buffers from memory to disk before this
re-allocation takes place.
Examples of when it is desirable to FLUSH the buffers are:

1. Before changing disks (this ensures that the updated data is written to the proper disk).

2. Before leaving FORTH.

3. Before powering down the system.

Typing FLUSH immediately after finishing editing a source screen is a good habit to develop to prevent inadvertently removing a disk
before the newly edited data is written to it.

If there are no "updated" buffers (buffers with a set update bit), FLUSH has no effect. Executing EMPTY-BUFFERS prior to executing
FLUSH means no data will be written to disk.

The basis of FLLUSH is BUFFER . The word BUFFER is contained within a DO-LOOP which is executed as many times as there are
buffers in the buffer array. BUFFER then re-allocates each buffer and writes any "updated" buffer data to disk.

Note that, within FLUSH , BUFFER re-allocates each buffer to block number 0 (8080 fig-FORTH Version 1.1). A side effect of this
operation is that a reference (with BLOCK) to a block that was in memory prior to the execution of FLUSH will cause a disk access. This
happens because the buffer allocation scheme has been re-initialized even though the data portion of the block is still in memory.

* At entry - No parameters.

* At exit - No parameters.
FLUSH is a high level colon definition.
Refer to BUFFER , +BUF , UPDATE , and BLLOCK .
FORTH-79: The FORTH-79 equivalent for FLUSH is SAVE-BUFFERS .

FLUSH (-)
NBUF 1+ 0 DO

Definition: :

0 BUFFER DROP
LLOOP H

|
0 Place the constant Set up for DO . Set the
value 0 onto the top "initial" parameter for
of the parameter DO to 0.
DOCOL (Run time portion of stack.
:) Save IP and
start interpreting
this definition. (DO) Move loop control This execution time
characters (Index portion of DO is
and Limit) to the compiled into this
Set up loop count return stack. definition by DO (at
parameters for FLUSH 's Sequence 2).
DO-LOOP .
DO This is the entry point
NBUF Place the constant Set up for DO . Get for the jump from the
value NBUF (the the number of buffers. . LOOP portion of this
number of buffers in i.e., The number of DO-LOOP structure.
the system) onto the times to loop.
top of the parameter
stack. {EFlus " one buffe:}
1+ Increment the top Set up for DO . Create 0 Place the constant Set up for BUFFER .
parameter stack the "Limit" parameter value 0 onto the top Tell BUFFER to allocate
value by 1. for DO . (The Limit of the parameter buffers to block number
must be 1 more than the stack. 0.
desired number of
184 loops.) |

BUFFER

DROP

(LOOP)

LOOP

Allocate a disk Write out any buffers
buffer to the with their update bits
specified block set.

mumber. Write the
buffer contents
(flagged as
"updated") to the

compiled into the
definition by LOOP .,

Is
Index value
=or>
Limit value
2

Loop back to the DO if
Y Index does not equal
Limit and continue
"flushing" buffers.

i.e., Loop back if all
buffers have not yet
been flushed.

If Index is = or > than
Limit, do not loop.
Drop the Index and
Limit values from the
return stack.

(Run time portion of
H .) Stan internret-

) Stop interpret
ing this definition
and return to the
calling procedure.

disk.]
Drop the top value Drop the buffer data
from the parameter address returned by
stack, BUFFER .

Increment the Index This execution time
value. portion of LOOP is

185

FORGET

FORGET (-—)

FORGET deletes definitions from the dictionary. The specified definition and all definitions following, up until the end of the dictionary,
are "forgotten".

FORGET is used in the form:

FORGET "definition name"
In the fig-FORTH version of FORGET , the programmer must ensure that the CONTEXT and CURRENT vocabularies are the same or the
error message DECLARE VOCABULARY will be issued and the FORGET will QUIT or ABORT .

FORGET searches the dictionary for the first occurrence of the specified definition name and changes DP (the Dictionary Pointer) to
point to the located definition. That definition (and all following) is "forgotten" and will be overlayed when the next new definition is
created. The CONTEXT and CURRENT vocabulary linkages are also modified to drop the forgotten definitions from the vocabulary
chain.

FORGET is a very powerful word. It is possible to forget the entire dictionary, including FORTH itself. To limit the scope of this
powerful word and to prevent accidental forgetting of important definitions, the user variable FENCE is used. FENCE is a user variable
which contains an address below which it is not possible to FORGET .

WARNING: Using FORGET in a system comprised of multiple vocabularies will probably (but not necessarily always) cause the system to
crash.

FORGET , as defined in the fig-FORTH Model, is "unaware" of any vocabularies other than the vocabulary referred to by CONTEXT and
CURRENT . As described in VOCABULARY , multiple vocabularies are logically structured like branches on a tree; but they are
physically structured as a one-dimensional linked list. The fig-FORTH Model version of FORGET simply uses "brute force" to forget a
portion of this one-dimensional dictionary from the end up to and including the specified definition. The fact that there may be
vocabulary links which now point into a "forgotten" dictionary is not taken into account. Any reference to such a vocabulary having a
"broken" chain will produce undeterminable results.

* At entry - No parameter stack entries. The word immediately following FORGET in the input data stream is the name of
the definition to be "forgotten".

* At exit - No parameters.
LIKELY ERROR MESSAGES:

PROTECTED DICTIONARY (15H) — The address of the definition being "forgotten" is less than the value stored in FENCE . Change the
value in FENCE .

DECLARE VOCABULARY (18H) - CONTEXT and CURRENT are not aiming at the same vocabularies when attempting to FORGET .
FORGET is a high level colon definition.
Refer to FENCE , and VOCABULARY .

FORTH-79: The FORTH-79 equivalent for FORGET is FORGET .

De finition: FORGET (=)
CURRENT @ CONTEXT @ - 18 ?ERROR [COMPILE] '
DUP FENCE @ < 15 ?ERROR DUP NFA DP !
LFA @ CURRENT @ ! H
1
CONTEXT [Place the address of | Setup for @ .
the user variable
CONTEXT onto the top)
DOCOL (Run time portion of of the parameter
:) Save IP and stack.
start interpreting |
this definition.
@ Replace the address Set up for - . Pick up
—_ on the top of the the address of the top
CURRENT Place the address of Set up for @ . parameter stack with of the CONTEXT
the user variable the memory contents vocabulary.
CURRENT onto the top| of that address.
of the parameter —
stack. J—
I - Replace the top two Set up for ?ZERROR .
16-bit values on the If CONTEXT equals
@ Replace the address Set up for - . Pick up parameter stack with | CURRENT , the "truth
on the top of the the address of the top their difference. flag” will be false and
parameter stack with of the CURRENT ?ERROR will not be
the memory contents vocabulary. executed.
of that address.
LIT Place the fiteral Set up for ZERROR .
18H value 18H onto the Place the error message
top of the parameter number onto the stack.
186 stack.
I

?ERROR

[COMPILE]

DuP

FENCE

LIT
15H

?ERROR

Issue Error Message
and QUIT if the
truth flag is true.

orce compilation of
the following
IMMEDATE word.

Place the Parameter
Field Address for
the definition
specified in the
input stream onto
the top of the
parameter stack.

Duplicate the top
value on the

parameter stack.

Place the address of
the user variable
FENCE onto the top

of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the top two
16-bit signed values
with a true flag (1)
if the top stack
entry is greater
than the second;
else, a false flag

(0).
|

Place the literal
value 15H onto the
top of the parameter

stack.
l

Issue Error Message
15H (IN PROTECTED
DICTIONARY) and
QUIT if truth flag

is true.

Issue an error message
and QUIT if CURRENT
and CONTEXT
vocabularies are not
equal.

Since ! is an IMMEDIATE |
word, [COMPILE] must
be used to compile it
into the definition.
(Otherwise it would
execute instead of
being compiled.
[COMPILE] is only used
at Sequence 1 time to
"compile" ' into
FORGET and does not
exist in FORGET 's
definition when
FORGET is executed

at compile time
(Sequence 2).

Get the address of the
definition to FORGET
to. A QUIT will occur
if no match is found.

Set up for < by making
a copy of the PFA .

Set up for @ .
Definitions located
below the address in
FENCE cannot be
forgotten (i.e.,
"orotected memory™.

Set up for< . Pick up
the address in FENCE .

Set up for ZERROR .

Set the truth flag to
true (1) if the specified
definition's address is
below that in FENCE .

Set up for ?ERROR .
Place the error message
number onto the stack.

Issue an error message
and QUIT if trying to
forget past FENCE .

DUP

NFA

o=

LFA

CURRENT

Duplicate the top
value on the
parameter stack.

Replace the
Parameter Field
Address (PFA) on the
top of the parameter
stack with the Name
Field Address (NFA)
of the same
definition.

l

Piace the address of
the user variable DP
onto the top of the

parameter stack.

Store the specified
value into the
specified memory
location.

Replace the
Parameter Field
Address (PFA) on the
top of the parameter
stack with the Link
Field Address (LFA)
of the same
definition.

l

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Place the address of
the user variable
CURRENT onto the
top of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Store the specified
value into the
specified memory
location.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set up for NFA by
duplicating the PFA on
the top of the stack.

Set up for ! . Get the
Name Field Address of
the specified
definition.

Setup for . DOP
contains the Dictionary
Pointer.

Store the PFA of the
specified definition
into DP thereby
"FORGETting" the
dictionary words above
the definition.

Set up for @ . The LFA
of the "forgotten" word
must be used as the
CURRENT vocabulary
pointer.

Set up for ! . Pick up
the pointer to the
CURRENT vocabulary
pointer.

Set up for @ .

Set up for ! . Pick up
the address of the
CURRENT vocabulary
pointer.

Force the CURRENT
vocabulary pointer to
equal the present
CONTEXT vocabulary. |

187

FORTH

FORTH (-)

FORTH is the name of the "vocabulary” definition for the FORTH vocabulary. The FORTH vocabulary contains all of the standard
FORTH definitions. Executing FORTH sets CONTEXT to point to the FORTH vocabulary. This will cause dictionary searches to begin
with the FORTH vocabulary. Since CONTEXT now points to FORTH » executing DEFINITIONS would then cause new definitions to be
appended to the FORTH vocabulary.

The FORTH vocabulary is the topmost vocabulary. All other vocabularies will be appended under FORTH . At cold start initialization,
the user variable VOC-LINK is initialized to point to FORTH .

The FORTH definition is created via the word VOCABULARY . VOCABULARY is a <BUILDS DOES> definition. This means that the
<BUILDS portion creates the actual FORTH definition in the dictionary at Sequence 2 time. The DOES> portion of the VOCABULARY
definition contains the definitions that will be executed when FORTH is executed at Sequence 3 time. i.e., The FORTH definition
contains a pointer to its execution time procedure which "lives" in VOCABULARY and at execution time the run time code for DOES>
transfers control to that procedure in VOCABULARY .

A more detailed explanation of vocabularies can be found in VOCABULARY . The definition FORTH is used as an example in the
descriptions of the words <BUILDS and DOES> .

* At entry - No parameters.

* At exit - No parameters.
FORTH is a high level colon definition.
Refer to VOCABULARY , CONTEXT , CURRENT , DEFINITIONS , <BUILDS y DOES> , and VOC-LINK .
FORTH-79: The FORTH-79 equivalent for FORTH is FORTH .

Definition: FORTH (--)
VOCABULARY FORTH 3 IMMEDIATE

DOCOL (Run time portion of The following code
:) Save IP and exists in the DOES>
start interpreting portion of the
this definition. VOCABULARY
definition.
DODOES Run time portion of FORTH is created by
DOES> . Transfer VOCABULARY which is 2+ Increment the top The run time code for
control to the a<BUILDS DOES> word. parameter stack DOES> places the
definitions entry by 2. Parameter Field Address
beginning at the of the definition being
following address. executed onto the top
of the parameter stack.
In this case, that is
Dovoc Run time portion of This code is defined the Pseudo Name Field.
all vocabulary within the Adding two to this
definitions. VOCABULARY gives the address of

definition executed
(called) when a
definition created
by vocabulary is

FORTH's Vocabulary
Link Field.

188

executed. CONTEXT Place the address of CONTEXT contains a
the user variable pointer which points to
CONTEXT onto the the Vocabulary Link
top of the parameter Field of the vocabulary
stack. to be searched first.
l

! Store the specified Set CONTEXT to point
value into the to the FORTH
specified memory vocabulary,
location.

;S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

HERE

HERE (— address)

HERE places the address of the next available dictionary location onto the parameter stack. The use of HERE is the proper way to
obtain the location of the end of the dictionary (e.g., DP @ on some implementations will return a wrong address).

HERE is used in such basic words as , (comma) and also in higher-level words such as ." (dot-quote).
* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the next available dictionary location.
HERE is a high level colon definition.
Refer to DP .
FORTH-79: The FORTH-79 equivalent for HERE is HERE .

Definition: : HERE (-- address)
bPa

(HERE)
8080 fig-FORTH

Version 1.1

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

|

DP Place the address of DP (Dictionary Pointer)
the user variable DP contains the address of
onto the top of the the next available
parameter stack. dictionary entry.

@ Replace the address i.e., Pick up "HERE".

on the top of the
parameter stack with
the memory contents
of that address.

3S (Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

189

HEX

HEX (=)

HEX sets the user variable BASE to 16 (decimal). This causes all numeric input and output conversions to be performed in hexidecimal
(base 16).

Note that this is not an IMMEDIATE word.
* At entry - No parameters.
* At exit - No parameters.
HEX is a high level colon definition.
Refer to (NUMBER) , and BASE .
FORTH-79: The FORTH-79 equivalent for HEX is HEX .

Definition: : HEX (--)
10 BASE ! 3

HEX

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

I

LIT Put the literal

10H value 10H onto the
top of the parameter
stack.

|

BASE Put the address of
the user variable
BASE onto the top of
the parameter stack.

|

! Store the specified Put the literal value
value into the 10H (16 decimal) into
specified memory BASE .
location.

;S (Run time portion of

5 .) Stop interpret-
ing this definition
and return to the

calling procedure.

190

HLD

HLD (— data address)

HLD (pronounced "H-L-D") is a user variable which contains the address of the last character of text placed into PAD during
binary-to-ascii pictured numeric output conversion. <# initializes HLD and HOLD references HLD during conversion.

The user variable HLD is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
% At exit - The top of the parameter stack contains the address of the user variable HLD .
Refer to <# , # , HOLD , SIGN, NUMBER , (NUMBER) , and USER .

FORTH-79: There is no FORTH-79 equivalent for HLD .

191

HOLD

HOLD (ascii char —)

HOLD stores an ascii character into the next available location in a pictured numeric output string. HOLD is used internally by # to
place each converted ascii digit into memory. Numeric punctuation (characters such as commas, decimal points, signs, dollar signs, etc.)
can also be placed in output strings via HOLD .

The address of the next available location is kept in the user variable HLD . HOLD decrements HLD before each character store. HOLD
is used within a <# #> expression. <# is used to initialize HLD to the beginning of PAD . Therefore characters are stored into memory
from high to low memory starting from one byte before the beginning of PAD working towards the end of the dictionary.

SIGN uses HOLD to place a minus sign into an output string. The description of <# and # explain the operation of pictured numeric
output.

* At entry - The top of the parameter stack contains an 8-bit value (normally an ascii character) in the low order portion of
the topmost 16-bit word. The user variable HLD contains the memory location +1 where the character is to be stored.

* At exit - No parameters. However, the character is in memory and the contents of HLD has been decremented by 1.
HOLD is a high level colon definition.
Refer to # ,<#, #>, SIGN, PAD , and HLD .

FORTH-79: The FORTH-79 equivalent far HOLD is HOLD .

Definition: : HOLD (char --)
-1 HLD +! HLD @ C! H

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

LIT Place the literal Set up for +! .
-1H value -1 onto the

top of the parameter

stack.
HLD Place the address of Set up for +!.

the user variable
HLD onto the top of
the parameter stack.

+ Add the specified Decrement HLD by 1.
16-bit value to the (i.e. Aim at the next
specified memory available string
location. location.) |

HLD Place the address of Set up for @ .]

the user variable
HLD onto the top of
the parameter stack.

@ Replace the address Set up for C!. Get
on the top of the the address to store
parameter stack with the character.

the memory contents

of that address.]
c! Store the specified Store the character
8-bit value into the into the pictured
specified memory numeric string.
location.
3S (Run time portion of

; .) Stop interpret-
ing this definition
and retumn to the

192 calling procedure.

HPUSH

HPUSH (— value)
HPUSH is strictly an 8080 fig-FORTH Version 1.1 inner interpreter routine entry point.

Entry at this entry point causes the 16-hit contents of the HL register pair to be pushed onto the top of the parameter stack before
performing NEXT .

Refer to NEXT .

193

I (- Index value)
I copies the current DO LOOP (or DO +LOOP) Index onto the top of the parameter stack.
This is analogous to the value Iin a BASIC FOR-NEXT loop of the form:
10FORI1=1TO 10
20 PRINT I
30 NEXT I
In most current FORTH implementations, the loop Index is kept on the top of the return stack. Implementation wise, this makes the code
for the word I identical to that of the word R . However, there are no restrictions against keeping the loop Index somewhere else other
than the return stack. Therefore, the word I (and not R) should always be used to obtain the current loop Index for transportability.
Conversely, the action of [is undefined outside of a DO-LOOP structure.
Note that the return stack value is copied; not removed.
LIST is an example of a word which uses I.
* At entry - No parameters.
* At exit - The top of the parameter stack contains the 16-bit loop Index value.

I is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for Iis I.

8080 fig-FORTH
Version 1.1

Pick up return stack
pointer.

Move top of return
stack into registers.

Push registers onto
parameter stack.

194

ID.

D. (Name Field Address —)
ID. (pronounced "I-D-dot") lists the Name Field of a definition.
ID. calculates the physical length of the Name Field by subtracting the Link Field Address from the Name Field Address. This length is
then used to move the Name Field text, including the length byte to PAD . The contents of the length byte (which may differ from the
actual number of characters stored in the dictionary, see WIDTH) is then used to TYPE the definition name. This may result in the
physical Name Field being typed followed by trailing blanks (e.g., A WIDTH of 3 with a length of 7 would result in the first three
characters of the name being typed followed by four blanks).
VLIST is an example of a word which uses ID. .

* At entry - The top of the parameter stack contains the Name Field Address of the Name Field to be printed.

* At exit - No parameters.
ID. is a high level colon definition.

Refer to WIDTH .

FORTH-79: There is no FORTH-79 equivalent for ID. .
Definition: : ID. (NFA--)

PAD 20 5F FILL DUP PFA LFA OVER - PAD SWAP CMOVE
PAD COUNT 1F AND TYPE SPACE 3
I
@ PFA Replace the Name Get definition's
Field Address on the Parameter Field Address
top of the parameter to set up for LFA.

DOCOL (Run time portion of stack with the
:) Save IP and Parameter Field
start interpreting Address of the same
this definition. definition.

| _

PAD Place the address of Set up beginning LFA Replace the Get Link Field Address.
the text output address for FILL . Parameter Field The first byte of the
buffer onto the top Address on the top Link Field occurs
of the parameter of the parameter immediately after the
stack. stack with the Link last byte of the Name

Field Address of the Field.
same definition.

LIT Place the literal Set up for FILL . Fill | -

20H value 20H onto the 32 (decimal) bypes of | —
top of the parameter PAD with blanks. OVER Copy the second Put Name Field Address
stack. stack value onto the onto the top of the

top of the parameter stack.
stack.

- Subtract the top Link Field Address -
stack entry from the Name Field Address =

LIT Place the literal Set up for FILL . Make second stack entry physical length of the

5FH value 5FH onto the ascii "dash" the fill and replace the two name stored in the
top of the parameter character. values with their dictionary.
stack. signed difference. —

FILL Fill the specified Fill PAD with dashes. Move the name text into
memory area with the £’AD . }
specified bytes.

PAD Place the address of Get PAD address as __‘
Calculate the physical the text output destination for CMOVE .
length of the Name buffer onto the top
Field. of the parameter
stack.

DUP Duplicate the top Duplicate the specified I
value on the Name Field Address. Set SWAP Swap the top two Set up parameters in
parameter stack. up for PFA. values on the order expected by

parameter stack. CMOVE.
195

CMOVE

PAD

COUNT

LIT
1IFH

AND

TYPE

SPACE

196

Move the specified
byte string to the
specified memory
location.

Place the address of
the text output
buffer onto the top
of the parameter
stack.

Place the text
length and beginning
text address onto
the parameter stack.

Place the literal
value 1FH onto the
top of the parameter
stack.

Logically AND the
top two values on
the parameter stack
and replace them
with the logical
result.

Output the specified
text string.

Output an ascii
space (20H)
character.

I

(Run time portion of
; -) Stop interpret-
ing this definition
and return to the
calling procedure.

Move the Name Field,
including its length
byte, to PAD . Note
that only the number of
characters physically
present in the
dictionary are moved. __|

Set up for COUNT .

Set up for TYPE . Note
that this picks up the
length byte, which may
differ from the number
of name characters
stored in the Name
Field.

Set up to strip off
MSB, precedence and
smudge bits.

Strip off unwanted
bits. All that remains
is the logical length
of the name.

"Type" the definition
name. Note: TYPE types
as many characters as
are specified in the
length byte.

IF

IF

COMPILE TIME (Sequence 2): (— offset address \2)

EXECUTION TIME {Sequence 3): { truth fiag —)

IF is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution time.

IF must be used within an IF-THEN or IF-ELSE-THEN structure. (ENDIF may be used in place of THEN if desired but THEN is the
preferred usage.) The format of these structures iss

IF "true portion" THEN
IF "true portion" ELSE "false portion" THEN
(Beware — This differs in form from the PASCAL IF-THEN-EL SE structure.)
[F-THEN and IF-ELSE-THEN structures must be used within a colon definition.
The compile time (Sequence 2) action of IF is to compile a OBRANCH into the definition and then reserve the dictionary location
following for the branch offset used as an input to OBRANCH . IF then places the address of this reserved location onto the parameter
stack so that a following ELSE or THEN statment can calculate and store its entry point offset into the reserved location. To provide

compiler security, the value 2 is placed onto the top of the parameter stack so that EL.SE or THEN (or ENDIF) can check for it. This
provides a somewhat secure (but not foolproof) method of checking for un-matched IF 's and THEN 's.

0BRANCH This address of this cell
F is left on the stack by IF.
OFFSET
ENDIF then stores this

OFF SET points offset value.

to ENDIF

cell.

ENDIF

The apparent execution time (Sequence 3) action of IF is to input a boolean flag from the top of the parameter stack and take action
based on this flag. (Actually 0BRANCH is executed at execution time.) if the fiag is true {non-zero), the "true portion" of the structure
will be executed. Note that a true flag is any non-zero value; not just a 1. If the flag is false (0), the optional ELSE ("false portion" of
the structure) will be executed if it is present. If an ELSE is not included in the structure, a false flag causes control to be passed to the
word immediately following the THEN statement.

After executing either the "true portion” or the "false portion" of the structure, control is passed to the word immediately following the
THEN statement.

Note that IF is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

COMPILE TIME (Sequence 2):

* At entry - No parameters.

* At exit - The top of the parameter stack contains the 16-bit single precision value 2. This value is checked by ELSE or
THEN to provide compiler security. The second stack entry contains the 16-bit address of the location reserved for the
O0BRANCH offset. ELSE or THEN use this address to fill in the offset.

EXECUTION TIME (Sequence 3):
* At entry - The top of the parameter stack contains a 16-bit signed boolean truth flag.
* At exit - No parameters.

LIKELY ERROR MESSAGES:

COMPILATION ONLY (11H) — This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

IF is a high level colon definition.
Refer to ELSE , ENDIF , THEN, IF , and 0BRANCH.

FORTH-79: The FORTH-79 equivalent for IF is If .

Definition: : IF (- offset address\2) (compile time)
COMPILE 0BRANCH HERE 0 , 2 H IMMEDIATE

197

COMPILE TIME action of IF (Sequence 2): (— offset address \ 2)

DOCOoL

COMPILE

0BRANCH

HERE

IMMEDIATE

198

(Run time portion of
:) Save IP and

start interpreting
this definition.

Compile the Code
Field Address (CFA)
of the following
definition into the
dictionary.

Run time portion of
IF . (Conditionally
branch based on

input truth flag.

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

Place the constant
value 0 onto the top
of the parameter
stack.

Store the value on
the top of the
parameter stack into
the next available

dictionary location.

Place the constant
value 2 onto the top
of the parameter

stack.
|

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the

definition.

This puts 0BRANCH into
the definition being
compiled at Sequence 2.

0BRANCH is compiled
into the definition. It
is not executed at

compile time (Sequence
2).]

This is the address of
the word following
O0BRANCH . It will be
filled in with the
branch offset by ELSE
or ENDIF .

Set up for, .

Store 0 into the
dictionary as a place
holder for the branch
offset.

—

ELSE or ENDIF expect a
2 to be on the top of
the stack.

IF is a compiler

word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

EXECUTION TIME action of IF (Sequence 3): (truth flag —)

0BRANCH

ELSE

)

THEN

D

Set up boolean truth
flag on top of
stack,

Is
truth flag
=07

Execute "true
portion" of IF
statement.

IBranch.

Execute the optional
"false portion" of
IF statement.

(0BRANCH is the run
time portion of IF .)

Branch around the "true
portion" using the
previously calculated
and stored forward
branch offset.

> ENDBR

This entry point may be
either the first word
following an ELSE (the
optional "false

portion") or the first
word following a THEN .

IMMEDIATE

IMMEDIATE (-)

IMMEDIATE sets the precedence bit of the most recently created definition. A definition whose precedence bit is set will be executed
"immediately" by INTERPRET even when the system is in compile state (hence the name IMMEDIATE).

This feature allows the compiler to be "extended". That is, definitions can be created to perform specific actions at compile time rather

than modifying the compiler itself. INTERPRET is the word which detects that the precedence bit is set.

It is possible to force the compilation of an IMMEDIATE definition by preceding it with [COMPILE] . (Otherwise the definition executes
instead of compiles!)

The precedence bit in fig-FORTH is the 40H bit of the Name Field's length byte. The system is defined as being in compilation state
when the user variable STATE contains a non-zero value.

BEGIN is an exampie of a compiler word {a conditional compiler in this case) which is flagged as IMMEDIATE by heing followed by the
word IMMEDIATE .

* At entry - No parameters.

* At exit - No parameters.
IMMEDIATE is a high level colon definition.
Refer to INTERPRET , [COMPILE] , LASTEST , and STATE .
FORTH-79: The FORTH-79 equivalent for IMMEDIATE is IMMEDIATE .

Definition: : IMMEDIATE (--)
LATEST 40 TOGGLE 3

IMMEDIATE

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

LATEST Place the Name Field | Get the address of the
Address of the most recently created
topmost word in the definition.

CURRENT vocabulary
onto the top of the
parameter stack.

LIT Place the literal Set up for TOGGLE.

40H

value 40H onto the
top of the parameter

stack.
I

Get the bit mask for
setting precedence bit.

TOGGLE Exclusive OR the Set the precedence bit.
byte at the Make the definition
specified address IMMEDIATE .
with the specified
bit mask.
I
;S (Run time portion of

3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

199

IN (— data address)

IN (pronounced "in") is a user variable that contains the byte offset from the beginning of the current input text buffer (whether using the
Terminal Input Buffer or a disk buffer).

IN is set to 0 by QUERY (for TIB input) and by LOAD and --> (for mass storage input), WORD then references and increments IN as
words in the buffer are moved to HERE .

The user variable IN is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable IN .
Refer to WORD , QUERY , LOAD , --> , HERE , and USER

FORTH-79: The FORTH-79 equivalent for IN is >IN (pronounced "to-in™ .

INDEX

(beginning screen number \ ending screen number —)

INDEX

INDEX prints the first line of each screen within the specified range of screens inclusively. The index listing will be terminated if any
terminal key is pressed. See ?TERMINAL .

The basis of INDEX is a DO-LOOP which contains the word .LINE . The loop Index (1) is used as an input parameter to .LINE to print
the first line of each screen within the specified range.

* At entry - The top of the parameter stack contains an unsigned 16-bit value specifying the last screen to be indexed. The
second stack entry contains an unsigned 16-bit value specifying the beginning screen number to be indexed.

* At exit - No parameters.

INDEX is a high level colon definition.

Refer to .LINE , and ?TERMINAL .

FORTH-79: INDEX is not explicitly defined by FORTH-79 but it is listed in the "FORTH-79 Referenced Word Set".

Definition:

DOCOL

LIT
OCH

EMIT

CR

1+

SWAP

INDEX (beginning screen number\ ending screen number)
0C EMIT CR 1+ SWAP
DO
CR 1 3 .R SPACE 0 I .LINE
?TERMINAL IF LEAVE THEN
LOOP 5
(Run time portion of
:) Save IP and
start interpreting
this definition.
DO
Set up the output -
device for the INDEX by .
Lt_)-utputting a formfeed._J
Place the literal Place an ascii formfeed CR
value OCH onto the character onto the top
top of the parameter of the stack.
stack.
!
Transmit the Skip the output device
character on the top to the top of the next
of the parameter page.
stack to the output
device.
l I
Output a carriage
return and linefeed
to the output
device.
LIT

Increment the top
parameter stack
value by 1.

Swap the top two
values on the
parameter stack.

3
Set up loop parameters
for the DO-LOOP .

Set up for DO loop. The
Limit parameter must
be 1 greater than the
desired number of
cycles through the
loop.

Set up for DO loop.
Swap beginning screen
number (Initial) and
ending screen number
(Limit) to put them in
the proper order for
DO.

R

SPACE

|

Move loop control
characters (Index

and Limit) to the

return stack.

Output a carriage
return and linefeed
to the output
device.

Copy the loop Index
onto the top of the
parameter stack.

Place the literal
value 3 onto the top
of the parameter

stack.
I

Output, in ascii,

the signed 16-bit
value on the top of
the parameter stack
right justified with
a specified field

width.
l

Output an ascii
blank to the output

device.
|

Place the constant
value 0 onto the top
of the parameter

stack.
|

This execution time
portion of DO is
compiled into this
definition by DO (at
ItSAMEDIATE 's Sequence
2).

This is the entry point
for the jump from the
LOOP portion of this
DO-L O0P structure.

Output the screen
number being listed,
then the first line of
that screen.

Set up for .R . Get
screen number being
printed.

Set up field width for
R.

Print the screen number
being indexed.

. -
Set up line number to

list for .L.LINE .

201

1 Copy the loop Index
onto the top of the
parameter stack.

LINE Print 2 line of text
from the specified
screen and line.

?TERMINAL |Leave a truth flag
to indicate whether
or not a terminal
key has been
pressed.

IF Is

truth flag
=07

LEAVE Make DO loop Limit
value equal to Index
value so looping
will terminate at
next occurance of
LOOP .

THEN

{ INDEX2

(LOOP) Increment the Index
value.

LOOP Is

Index value
=or>
Limit value
?
Y
;S (Run time portion of

s ») Stop interpret-
ing this definition
and return to the

calling procedure.

202

Set up for .LINE ., Get
the screen number to
list.

Print the first line of
the specified screen
onto the output device.

Quit printing if a key
has been pressed.

Set up for a possible
LEAVE . i.e., Terminate
the Index if a terminal
key has been pressed.

o)

INDEX2

Branch around LEAVE .

Terminal key was
pressed; stop indexing.

This is the entry point
for the THEN portion of

the IF-THEN structure. __|

This execution time
portion of LOOP is
compiled into the
definition by LOOP .

INDEX1

Loop back to the DO if
Index does not equal
Limit and continue
indexing.

If Index is = or > than
Limit, do not loop.
Drop the Index and
Limit values from the
return stack.

INTERPRET () INTERPRET

INTERPRET is the FORTH text interpreter, commonly referred to as the outer interpreter. (The address interpreter, NEXT , is referred
to as the inner interpreter.)

The actions of INTERPRET are very straightforward, INTERPRET interprets the text input stream. This input stream comes from the
termina)l if BLK contains 0, or from mass storage if BLK contains a block number.

INTERPRET will either execute (i.e., "interpret" in the traditional sense) or compile an input stream word depending upon the istate® of
the system (as reflected by the value stored in the user variable STATE). STATE is set to compile mode by a compiler word such as :
and reset to interpret mode by a word such as ;.

The overall logic of INTERPRET is to select the next sequential word in the input stream and search the CONTEXT then CURRENT
vocabularies for a match. If no match is found, an attempt is made to convert the "word" to a numeric value (using the current base). If
this also fails, an error message is issued.

If -FIND does find a match, the definition is either executed or compiled. Tests are made to determine if the word is IMMEDIATE or if
the system is in interpret mode. The word is EXECUTEd if either are true; otherwise, it is compiled into the dictionary.

If a match was not found but the word was successfully converted into a numeric value, DPL is examined to determine if the value is to
be treated as double or single precision. By convention, if a decimal point is encountered anywhere within a character string
representing a valid numeric value, that value is treated as being double precision. Note that the only function the decimal point serves
is as a flag to signify double precision. No "place holding" is implied. (The user variable DPL is used to loosely keep track of the decimal
point location. See DPL , and NUMBER .)

Then either DLITERAL or LITERAL is executed. These words test STATE internally and will either leave the value on the stack or
compile it depending upon the state of the system.

INTERPRET examines the parameter stack pointer to determine if it is within its maximum and minimum address limits. If not, Error
Message 1 (EMPTY STACK) or Error Message 7 (FULL STACK) is issued and a QUIT occurs.

INTERPRET is an endless BEGIN-AGAIN loop and therefore has no way to terminate execution and exit back to the definition which
wealled” it. This peculiarity is solved via the word NULL (or X).

INTERPRET is used within two definitions: QUIT and LOAD . Data stream input when executed within QUIT comes from the terminal
input buffer (TIB). Data stream input from LOAD comes from disk buffers.

It is mandatory (and automatic unless a bug occurs elsewhere) that both of these buffers are ended with an ascii “nuli® (00) character,
hence the definition name NULL . The Name Field of NULL actually contains an ascii null, so when the end of a buffer is encountered,
-FIND searches the dictionary for NULL and executes it. NULL drops the top value from the return stack and then retums to the
definition following INTERPRET ; not back to INTERPRET .

The reason why the user variable STATE contains a COH to denote compilation mode is covered in the decription of 1.

* At entry - No stack parameters but the text input must be formatted such that tokens (words) are separated by blanks.
Buffers must be terminated with ascii nulls (00).

* At exit - No parameters.
LIKELY ERROR MESSAGES:
? pronounced "HUH"? (0) - The word in question cannot be found in the dictionary and is not a number.
EMPTY STACK (1) - More values have been removed from the parameter stack than were added.
FULL STACK (7) — Too many values have been added to the parameter stack.
INTERPRET is a high level colon definition.
Refer to WORD , -FIND , NULL (or X), DPL , QUIT , LOAD, and 1.
FORTH-79: INTERPRET is not explicitly defined by FORTH-79 but it is listed in the "rORTH-79 Referenced Word Set".

Definition: : INTERPRET (-)
BEGIN
-FIND IF
STATE @ < IF
CFA ,
ELSE
CFA EXECUTE
THEN
?STACK
ELSE
HERE NUMBER DPL @ 1+ IF
[COMPILE 1 DLITERAL
ELSE
DROP [COMPILE] LITERAL
THEN
?STACK
THEN
AGAIN 205

Search for next
word in dictionary

l

W

DOocoL

BEGIN

D

-FIND

IF

Make it into
a number

Exit via NULL .

Compiling

EXECUTE
the word

Compiling?

Leave it
on stack.

INTERPRET

(Run time portion of
:) Save IP and

start interpreting
this definition.

Search both the
CONTEXT and
CURRENT vocabu-
laries for a Name
Field match with
the next word in the
input stream.

Is
truth flag
=07

Figure INTERPRET-1

High Level Flow Chart of INTERPRET .

Entry point for the
branch from the
AGAIN.

Determine if the next
input stream word
should be treated

like a definition or a
number.

Try to locate the word
in the dictionary.
Leave a true flag (1)
if found.

Branch if the word was
not found. Attempt to
treat it as a number.

The word was found in
the dictionary. Now
determine if it should
be compiled or
executed.

STATE

Place the address of
the user variable
STATE onto the top
of the parameter
stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Replace the top two
parameter stack
entries with a true
flag (1) if the

first entry is less
than the second
entry; a false flag
(0), if not.

Setup for@ . The
contents of STATE
reflect what "state"
the system is in.

For 8080 fig-FORTH
Version 1.1:
00 = Interpreting
CO0 = Compiling

Set up for< .

If the length byte (put
on the stack by -FIND)
of the definition is

less than STATE , the
word should be
compiled. This works
because a value of COH
in STATE denotes
compiling state. If the
length byte has its
precedence bit set (j.e.,
is IMMEDIATE);

it will have a value
greater than COH and
will therefore always
be executed.

CFA

ELSE

D

CFA

Is
truth flag
=07

Replace the PFA on
the top of the
parameter stack with
the CFA of that same
definition.

Store the 16-bit
value on the top of
the parameter stack
into the next
available dictionary
location.

[Branch.

Replace the PFA on
the top of the
parameter stack with
the CFA of that same
definition.

i.e., The "precedence
bit" and the "beginning
of Name Field bit"
together equal COH.
Since a name has a
length of at least 1,
the length byte will
always be at least C1H;
therefore, it will
always be greater than
COH and its definition
will always be
executed--even when
the system is in compile
state.

If STATE equals 0
{interpret state}, the
“Name Fieid bit™ and
the length together are
always larger than 0
and every definition

will be interpreted.

Branch if the word is
to be executed and not
compiled.

The word is to be
compiled.

Set up for ,. A word
is compiled by storing
its Code Field Address
(CFA) into the
dictionary.

"Compile" the named
definition.

INTE4

Have executed the "true
portion" of the IF
structure; now branch
around the "false
portion".

This is the entry point
for the "false portion"
of the previous IF .

(i.e., The word is to
be "executed"; and, not
“"compiled".)

Set up for EXECUTE .
EXECUTE expects the
CFA of the definition to
execute to be on the

top of the parameter
stack.

EXECUTE

THEN

s

?STACK

ELSE

T

HERE

i
"Execute" the
definitions whose
CFA is on the top of
the parameter stack.

Issue Error Message
1 (EMPTY STACK)
and QUIT if stack
underflow has
occurred; Error
Message 7 (FULL
STACK) and QUIT
if overflow has
occurred.

!Eranch.

v

Place the address of
the next available
dictionary location
onto the top of the
parameter stack.

I

i.e., Interpret the
command in the input
data stream.

NOTE: This is where \

words entered from the
terminal are executed
as well as non-compiled
words from LOAD
screens. Also
IMMEDIATE words

are executed here.
Including NULL

(or X) which drops the
top entry off the

return stack thereby
causing control to
return where the second
return stack entry
points and NOT to the

\ ?STACK which follows.

This is the entry point
from the ELSE portion
of the previous IF .
i.e., The word was
compiled and the
EXECUTE portion was
then branched around.

NOTE: This is the only
place during normal
execution that the
"system" checks the
stack. (The stack is
also checked if the
value is a number.) It
is possible for the
stack to get far out of
bounds before ever
reaching here.

INTES

Have executed the "true
portion" of the IF
structure because the
word was found in the
dictionary; now, branch
around the "false
portion”.

Entry point for the
"false portion" of the
previous IF structure
that tested to see if
-FIND found the word in
the dictionary.

The word is not in the
dictionary. See if it
can be converted into a
number.

HERE also points to the
length byte of the word
being interpreted

(WORD moved it to
PAD from the TIB).

205

NUMBER

DPL

@

1+

Replace the
character string
address on the top
of the parameter
stack with its
double precision
numeric value. Issue
Error Message 0 (?
pronounced HUH?)
and QUIT if con-
version is not
possible.

Place the address of
the user variable

DPL onto the top of
the parameter stack,

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Increment the top
parameter stack

Jvalue by 1.

Is
truth flag
=07

This will convert the
character string to a
number if possible. If
invalid numeric
characters are present,
a"?" will be output,
i.e., The input is
neither a valid
definition nor a valid
number.

The characters are a
numeric value.
Determine whether to
treat it as a single or
double precision value.

Set up for @ . DPL is
set by number to
reflect the character
position of an
encountered decimal
point (meaning in this
case -- double
precision). It is set

to -1 if no decimal
point is encountered.

Set up for 1+. Fetch
the contents of DPL .

Convert the contents of
DPL into a truth flag.
If no decimal point was
found, DPL is set to

-1. Adding 1 to that
makes 0 (a false flag).
Adding 1 to a

character position
results in a non-zero

true flag. 1

Branch if adding 1 to
the contents of DPL
equaled 0. i.e., No
decimal point was
found.

[COMPILE]

DLITERAL

ELSE

)

DROP

[COMPILE]

Force compilation of
the following
IMMEDIATE word.

If compiling,
compile the double
precision value on
the top of the
parameter stack into
the dictionary; if
not compiling, leave
the value on the

stack.
|

E‘anch.

Drop the top value
off the parameter
stack.

Force compilation of
the following
IMMEDIATE word.

Since DLITERAL is an
IMMEDIATE word,
[COMPILE 1 must be
used to compile it into
the definition.
(Otherwise it would
execute instead of being
compiled.) [COMPILE]
is only used to "compile"
DLITERAL into
INTERPRET

(at Sequence 1) and
does not exist in
INTERPRET's definition
when INTERPRET is
executed at compile
time (at Sequence 2).

The value is double
precision.

INTE7

Have executed the "true
portion" of the IF
structure (the value

was double precision).
Now branch around the
"false portion".

This is the entry point
for the "false portion"
of the previous IF
structure.

The value is single
precision.

The value is only
single precision, so
drop the high order
word.

Since LITERAL is an
IMMEDIATE word,
[COMPILE] must be
used to compile it into
the definition.
(Otherwise it would
execute instead of being
compiled.) [COMPILE]
is only used to "compile"
LITERAL into
INTERPRET

(at Sequence 1) and
does not exist in
INTERPRET's definition
when INTERPRET is
executed at compile
time (at Sequence 2).

LITERAL

THEN

ED—

?STACK

THEN

(nTEs }———

AGAIN

If compiling,
compile the single
precision value on
the top of the
parameter stack into
the dictionaryj; if
not compiling, leave
the value on the
stack.

Issue Error Message
1 (EMPTY STACK)
if there is a stack
underflow or Error
Message 7 (FULL
STACK) if there is
a stack overflow
and QUIT .

l—é;nch.

This is the entry point
from the previous IF
that tested if the
value was double or
singie precision.

This is the
out-of-bounds check if
the word is a number.

This is the entry point
from the ELSE that
found the word in the
dictionary. i.e., The
word was not numeric so
control branched around
the numeric processing
to this entry point.

INTERPRET is an
"infinite" loop that is
only exited by
encountering a null
character, executing
NULL and "tricking"
NEXT to cause an exit
from the routine. {See
NULL and NEXT .)

207

IP

P

IP is a pointer used by FORTH's "threading" words. It plays an important role in such words as NEXT, ;5, DOCOL (the execution time
portion of :), ete.

IP generally serves as a pointer to the next "word" (actually a CFA within the Parameter Field of a definition) to execute. NEXT jumps
indirectly "through" this pointer to execute the Code Field procedure.

IP is not a true FORTH word. It is not a variable. It is a logical entity and may be physically kept in registers or memory or whatever
depending upon the exact system implementation.

In the 8080 fig-FORTH Version 1.1, IP is contained in the register pair BC.

Refer to NEXT, :, ;S, DOES> , and EXECUTE .

208

KEY

KEY (— input value)
KEY inputs a character from the terminal and places it onto the top of the parameter stack.

NOTE: Controi is not returned from KEY until an input character is available. If processing must be performed while waiting for an
input character, ?TERMINAL may be used to determine if input data is actually present before invoking KEY.

The actual operation of the word is installation dependent.
EXPECT is an example of a word which uses KEY .
* At entry - No parameters.

At exit -The top of the parameter stack contains a 16-bit value of which the low order portion is the 8-bit value input

from the terminal.
KEY is a low level code primitive.
Refer to ZTERMINAL .

FORTH-79: The FORTH-79 equivalent for KEY is KEY .

KEY

8080 fig-FORTH
Version 1.1

Wait until an input
character is
available.

I

Read character and
place it onto top of
stack.

LATEST

LATEST (— address)

LATEST places the Name Field Address of the bottom-most word in the CURRENT vocabulary onto the top of the parameter stack.
When compiling, this bottom-most word is also the "latest" or most recently compiled definition.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the Name Field Address of the topmost word in the CURRENT
vocabulary. .

LATEST is a high level colon definition,
Refer to CURRENT , and VOCABULARY .
FORTH-79: There is no FORTH-79 equivalent for LATEST .

Definition: : LATEST (- address)
CURRENT @ @ H

LATEST

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

CURRENT Place the address of
the user variable
CURRENT onto the
top of the parameter

stack.
@ Replace the address Get the contents of
on the top of the CURRENT . CURRENT

parameter stack with points to the vocabulary
the memory contents pseudo link field.
of that address.

@ Replace the address Pick up the contents of
on the top of the the vocabulary pseudo
parameter stack with link field. The
the memory contents vocabulary pseudo link
of that address. field points to the

"latest" definition
added to the "current"
vocabulary.

S (Run time portion of

;) Stop interpret-
ing this definition
and return to the

calling procedure.

210

LEAVE

LEAVE (=)

LEAVE is used to prematurely exit a DO-LOOP. It forces termination of the loop by setting the Limit value equal to the current value nf
the Index which in turn causes an exit at the next execution of LOOP or +LOOP . The Index value remains valid and unchanged.

Note that the fact that the Index and Limit values are kept on the return stack is an installation dependent choice. (Refer to).
INDEX is an example of a word which uses LEAVE to prematurely exit a DO-LOOP structure.
* At entry - No parameter stack entries.
* At exit - No parameter stack entries.
LEAVE is a low level code primitive.
Refer to DO, LOOP , +LOOP , (LOOP) , (+LOOP) , and I .

FORTH-79: The FORTH-79 equivalent for L FEAVE is L FAVE |

8080 fig-FORTH

LEAVE Varsion 1.1

Pick up return stack Which is aiming at top
pointer. of return stack.

Pick up current
Index value.

[

Increment retumn i.e., Aim at Limit.
stack pointer by 2.

Overlay Limit with
current Index.

211

LFA

LFA (Parameter Field Address — Link Field Address)
LFA (pronounced "L-F-A") converts a given Parameter Field Address of a dictionary definition into its Link Field Address.

The structure of the header of a FORTH definition is:

Name Field Variable length
Link Field 2 byte address pointer
Code Field 2 byte address pointer
Parameter Field Variable length

An example of the use of LFA can be found in the word ID. .

* At entry - The top of the parameter stack contains the Parameter Field Address of a FORTH definition.

* At exit - The top of the parameter stack contains the 16-bit Link Field Address of the specified FORTH definition.
LFA is a high level colon definition.
Refer to NFA, CFA , and PFA .

FORTH-79: There is no FORTH-79 equivalent for LFA .

Definition: : LFA (PFA--LFA)
04 - H

LFA

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

LIT Place the literal
04H value 4 onto the top
of the parameter
stack.

- Subtract the top Decrement the PFA by 4
stack entry from the (now aiming at the Link
second stack entry Field).

and replace the two
values with their
signed difference.

;S (Run time portion of
s .) Stop interpret-
ing this definition
and return to the
calling procedure.

212

LIMIT

LIMIT (— address)

LIMIT is a single precision CONSTANT value. This constant places the memory address of the next memory location past the end of the
last or highest (hence " LIMIT ") block buffer in the buffer-array onto the top of the parameter stack. Refer to +BUF for an example of
the usage of LIMIT . Also see BLOCK and BUFFER for descriptions of the buffer-array.

Conversely, FIRST is the constant that refiects the lowest (hence " FIRST ") buffer-array address.

* At entry - No parameters.

* At exit - The top of the parameter stack contains the signed 16-bit memory address of the next memory location after the
end of the last block buffer in the buffer-array.

Refer to +BUF , BLOCK , BUFFER , and FIRST .

FORTH-79: There is no FORTH-79 equivalent for LIMIT .

213

LIST

LIST

LIST "lists" a specified screen onto the output device. The value of the constant C
editing screen line. A screen is usually divided into 16 lines of 64 characters each.

(Screen number —)

The basis of LIST is a DO-LOOP which uses the loop Index as an input to .LINE ,

TRIAD is an example of a word which uses LIST .

* At entry - The top of the parameter stack contains the unsigned 16-bit screen number to be listed.

/L (Characters per Line) determines the length of an

* At exit - No parameters on the stack. However, the user variable SCR now contains the screen number that was listed.

LIST is a high level colon definition.

Refer to C/L , and B/SCR .

FORTH-79: The FORTH-79 equivalent for LIST is LIST .

NOTE: The 8080 fig-FORTH Version 1.1 has been chan

logic of LIST according to the fig-FORTH Model.

Definition:

DOCOL

DECIMAL

CR

DupP

SCR

M SCR #

214

Duplicate the top
value on the
parameter stack.

Place the address of
the user variable

SCR onto the top of
the parameter stack.

Store the specified
16-bit value into

the specified memory
location.

|

Output the specified
character string to
the output device.

Output, in ascii,
the signed 16-bit
value onto the top
of the parameter

stack.

Duplicate the screen
number to list. Set up
for!.

SCR is used to hold the
screen number of the
last screen listed.
Editor commands then
reference SCR .

Set SCR to this screen.
—

Print the screen number
being listed.

: LIST (screen number --)
DECIMAL CR DUP SCR ! ' SCR" 10
DO
CR I3 .R SPACE I SCR @ .LINE
LOoOP CR H
(LIST) LIT
fig-FORTH 10H
Mode!
(Run time portion of
:) Save IP and 0
start interpreting
this definition.
Set BASE for decimal | Make sure system is in
numeric conversion. base 10. (DO)
Output a carriage
return and linefeed
to the output
device.
DO

@

CR

Place the literal
value 10H onto the
top of the parameter

stack.
I

Place the constant
value 0 onto the top
of the parameter

stack.

Move loop control
characters (Index

and Limit) to the

return stack.

Output a carriage
return and linefeed
to the output
device.

Copy the Loop Index
onto the top of the
parameter stack.

Place the constant
value 3 onto the top
of the parameter
stack.

ged to stop listing if a key is pressed. The following flowchart shows the main

Set up Limit value for
DO . Loop through the
DO-LOOP 16 times (i.e.,
print 16 lines).

Set up initial value
for DO loop.

This execution time
portion of DO is
compiled into this
definition by DO (at
LIST 's Sequence 2).

This is the entry point
for the jump from the
LOOP portion of this
DO-LOOP structure.

Output one line of text
preceded by the line
number.

being listed.

g3

Print the line numbej

In this case, the Loop
Index equals the line
to be printed.

Set up field width for

R.

SPACE

SCR

LINE

(LOOP)

LOOP

CR

Output, in ascii,
the signed 16-bit
value onto the top
of the parameter
stack right
justified with a
field width
specified in the
second entry.

Output an ascii
blank to the output
device.

Copy the Loop Index
onto the top of the
parameter stack.

1

Place the address of
the user variable

SCR onto the top of
the parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Print a line of text
from the specified
screen and line.

Increment the Index
value.

Is ,
Index value
=or>

Limit value
?

N

Output a carriage
return and linefeed
to the output
device.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Print the line number
being listed.

~— -
IPrint one line of the |

tcreen. j

Set up for .LINE . Get
the number of the line
to print.

Set up for @ .

Set up for .LINE . Pick
up the number of the
screen being listed.

Print one line of the
screen.

This execution time
portion of LOOP is
compiled into the
definition by LOOP .

LIST1

Loop back to the DO if
Index does not equal
Limit and continue
"listing" lines.

(ie., not yet done
listing this screen.)

If Index is = or > than
Limit, do not loop.
Drop the Index and
Limit values from the
return stack.

215

LIT

LIT (— literal value)
LIT places the 16-bit contents of the next dictionary location onto the top of the paramter stack. LIT, followed by the literal value, is
compiled into a definition by LITERAL and DLITERAL. LIT, then, is the execution time (Sequence 3) action of LITERAL and
DLITERAL .

* At entry - No stack parameters although the desired literal value must reside in the next dictionary entry.

* At exit - The top of the parameter stack contains a 16-bit value equal to that contained in the location following LIT .
LIT is a low level code primitive.

Refer to LITERAL , and DLITERAL .

FORTH-79: There is no FORTH-79 equivalent for LIT .

LIT
8080 fig-FORTH
Version 1.1
Pick up high order The IP will have been
byte of literal incremented to point to
data. the next entry after

LIT 's CFA . (In this
case, the literal
data.)

Wm IP at next byte. J Increment IP past the
literal data to aim at
the next Code Field.

Pick up low order
byte of literal
data.

Aim IP at next byte;| Increment IP past the
literal data to aim at
next Code Field.

HPUSH Push literal data onto
stack.

NOTE: In fig-FORTH,
PUSH , PUT , and NEXT
are contained in LIT .

216

LITERAL

LITERAL
COMPILE TIME (Sequence 2): (value —)
EXECUTION TIME (Sequence 3): (— value)

LITERAL is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

Although LITERAL has no effect (Sequence 2) if not used within a colon definition, it does not signal an error. The compile time action
of LITERAL is to compile a dynamically calculated 16-bit value into a definition. The end result of the compile action here is the same
as LIT. LIT is compiled into a definition "automatically" (in the Interpreter) by the presence of a 16-bit numeric value in the input
stream. However, if this numeric value is calculated dynamically during compilation, it will not exist in the input stream and therefore
some other method must be used to compile LIT and the value into the dictionary. LITERAL is this other method.

arformad only
Crmeg

RASEd. This calculation will be per only

An example of the use of LITERAL would be calculating the length of a table ta be S
BLE-LEN and #-OF-ENTRIES , when muitipiied

cnce, at compile time instead of each time the table is erased. In this example, T
together, give the number of bytes to erase. This sample definition would lock like this:

: ERASE-TABLE BEG-TABLE-ADDR [TABLE-LEN #-OF-ENTRIES *] LITERAL ERASE

[stops compilation, TABLE-LEN and #-OF -ENTRIES are multiplied, and their product is left on the stack.] resumes compilation and
LITERAL then compiles the value into the definition.

The execution time action of LITERAL is that of LIT. That is, upon execution of LIT, the 16-bit value is placed on the top of the
parameter stack.

Note that LIT is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.

COMPLE TIME (Sequence 2):

* At entry - The top of the parameter stack contains a signed 16-bit single precision value to be compiled into the
definition.

% At exit - No parameters.
EXECUTION TIME (Sequence 3):
* At entry - No parameters.

#® At exit - The top of the parameter stack contains the signed 16-bit singie precision value previously compiled into the
definition being executed.

LITERAL is a high level colon definition.
Refer to LIT, [,], and INTERPRET.
FORTH-79: The FORTH-79 equivalent for LIT is LIT .

Definition: : LITERAL (value--) (compile time)
STATE @ IF COMPILE LIT , THEN H IMMEDIATE

217

COMPILE TIME action of LITERAL (Sequence 2): (value —)

DOCOL

STATE

IF

COMPILE

LIT

218

LITERAL

(Run time portion of
:) Save IP and

start interpreting
this definition.

I

Place the address of
the user variable
STATE onto the top
of the parameter

stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Is
truth flag
=07

Put the execution
address of the
following word into
the next available
dictionary location
when the definition
which is being
created now is
later executed.

When executed, place
the signed 16-bit
value in the

following dictionary
location onto the

top of the parameter
stack.

Store (compile) the
value on the top of
the parameter stack
into the next
available dictionary
location and advance
the dictionary
pointer.

Set up for @ . STATE
contains a value which
indicates the state
FORTH is in at any one
time.

Set up for IF . Pick up
the contents of STATE .

LITE1l

Branch if not compiling
(skip everything and
simply exit).

This is compilation
time, so compile the
value into the
definition.

—_—
Compile the following
word into the
definition that LITERAL
is helping build when
LITERAL. is executed
later (at LITERAL 's
Sequence 3).

This LIT will be
compiled into a
definition when
LITERAL is executed.

Compile the dynamically
t_:a(lculated 16-bit value
into the definition so

the above LIT can
reference it at
execution time.

THEN

: LITE1l

IMMEDIATE

(Run time portion of
s .) Stop interpret-
ing this definition
and return to the
calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

Entry point from the
false branch of the
previous IF . IP was
not compiling so branch
here and exit.

LITERAL is a compiler
word and therefore must
execute during compil-
ation (Sequence 2) so
that it can compile
other definitions.

EXECUTION TIME action of LITERAL (Sequence 3): (— value)

The EXECUTION time action of LITERAL is that of LIT .

LOAD (screen number —)

LOAD

LOAD begins interpretation of the source text from the screen number specified on the top of the parameter stack. The blocks that
comprise the specified screen are read from mass storage to memory (if they are not already in the buffers} and interpreted.

L_OAD starts an entirely new interpretation level, therefore LOADs may be nested. Loading terminates upon encountering a null (0) or at
5. A null or ;S will pop back up to the previous level, and resume interpretation after the word that caused LOAD to be executed.

Note: "0 LOAD" will cause a return stack overflow and a system crash!

As a matter of programming style, it is often desirable to create a "load screen” which specifically loads each screen via LOAD (with
each LOAD followed by a comment describing the screen to be loaded) rather than loading muitiple screens via --> . This makes it much

easier to keep track of what is being loaded.

* At entry - The top of the parameter stack contains a 16-bit unsigned number specifying the screen to "load" and

interpret.
* At exit - No parameters.
LOAD is a high leve! colon definition.
Refer to --> , WORD , and INTERPRET ,

FORTH-79: The FORTH-79 equivalent for LOAD is LOAD .

Definition: : LOAD (screen number --)
BLK @ >R IN@>» 0 IN! B/SCR *
INTERPRET R> IN ! R> BLK ! H
"
DOCOL (Run time portion of
:) Save IP and
start interpreting
this definition.
| -
BLK Place the address of BLK contains the block
the user variable number currently being 0
BLK onto the top of interpreted. A zero
the parameter stack. denotes terminal input.
@ Replace the address Set up for DR . Pick up
on the top of the the contents of BLK . IN
parameter stack with
the 16-bit contents
of that address.
I
>R Remove the top value| Save the block number !
from the parameter currently being
stack and place it interpreted on the
onto the top of the return stack. This
return stack. makes nested load
screens possible.
IN Place the address of Set up for@ . IN
the user variable IN contains the offset in
onto the top of the the current block of B/SCR
parameter stack. the next word to be
interpreted.
@ Replace the address Set up for >R . Pick up
on the top of the the contents of IN .
parameter string
with the 16-bit
contents of that *
address.

Remove the top value
from the parameter
stack and place it
onto the top of the
return stack.

Place the constant
value 0 onto the top
of the parameter

stack.

Place the address of
the user variable IN
onto the top of the
parameter stack.

|

Store the specified
16-bit value into

the specified memory
location.

Place the constant
value of the number
of physical disk
blocks per editing
screen onto the top
of the parameter
stack.

Multiply the top two
16-bit values on the
top of the parameter
stack and replace
them with their
16-bit product.

Save the location of
the next word to be
input by WORD and
interpreted. This (plus
the previously saved
block number) makes
nested load screens
possible.]

Set up for!.

Initialize IN to 0 so
interpretation will
begin with the first
character of the block.

Calculate the block
number to interpret.

By convention a scre;ﬂ
is 1024 bytes long. The
number of physical disk
blocks (or sectors)
composing a screen
varies with each
system.

Multiply the number of
physical blocks per
screen by the screen
number (which was
passed as a parameter
to LOAD).

—

219

BLK

INTERPRET

IN

BLK

P

220

Place the address of
the user variable

BLK onto the top of
the parameter stack.

l

Store the specified
16-bit value into

the specified memory
location.

Execute or compile
text from the input
data stream. Input
text data from mass
storage if
necessary.

Remove the top value
from the return

stack and place it

on the top of the
parameter stack.

|

Place the address of
the user variable IN
onto the top of the
parameter stack.

Store the specified
16-bit value into

the specified memory
location.

Remove the top value
from the return

stack and place it

on the top of the
parameter stack.

Place the address of
the user variable

BLK onto the top of
the parameter stack.

I

Store the specified
16-bit value into

the specified memory
location.

F

(Run time portion of
; «) Stop interpret-
ing this definition
and return to the
calling procedure.

Set up for!.

Store the calculated
physical block number
on which to begin
interpreting.

BLK contains the block
number to begin
interpretation from.
INTERPRET will read in
and interpret this
block and all of the
other remaining blocks
on the specified
screen. Note:
INTERPRET can
execute other LOAD
commands thereby
"nesting" LOAD 's.

Retrieve the previously
saved value for IN .

Set up for !.

Restore the pointer to
the next word to be
interpreted. i.e.,
"Un-nest".

Retrieve previously
saved value of BLK .

Set up for ! .

Restore the block
number previously being
interpreted. i.e.,
"Un-nest".

LOOP

LOOP
COMPILE TIME (Sequence 2): (loop address \3 —)
EXECUTION TIME (Sequence 3): (—)

LOOP is a compiler word and therefore exhibits two different sets of actions; those actions at compile time and those at execution
time.

LOOP is used to end a DO-LOOP structure in conjunction with the word DO . The compile time action of LOOP is to compile the run
time word (LOOP) into the dictionary. Secondly, it resolves the "loop body" entry point address provided by DO into a return branch
offset used by (LOOP) and stores this offset into the dictionary. LOOP must only be used within a definition. Some compiler security is
provided by checking for a 3 on the top of the stack. Since DO leaves a 3 on the stack at compile time (Sequence 2), an un-matched DO
and LOOP will probably not have a 3 on the top of the stack and the error will be detected.

The apparent run time action (Sequence 3) of LOQOP is to increment the loop Index by one and compare this new Index value with the
Limit value. NOTE: This action is actually performed by {(LOOP) at run time. If the Index value is less than the Limit value, a branch
back to the "oop body" of the DO-LOOP structure is executed. If the Index is equal to or greater than the Limit, then both of these
values are dropped from the return stack and interpretation continues with the definition following LOOP .

DO - LOOP structures must be used within a colon definition.

Note that LOOP is an IMMEDIATE word. This means that its precedence bit is set, and it will therefore execute at compile time.

If an increment value different than 1 is needed, +LOOP should be used.

VLIST is an example of a word which uses LOOP .

COMPILE TIME (Sequence 2):

* At entry - The top of the parameter stack contains the 16-bit single precision value 3 used to provide compiler security.
(The value 3 is left on the stack at compile time by DO .) The second stack entry contains a 16-bit address specifying the
entry point of the DO portion (i.e., the beginning of the "loop body") of the DO-LOOP structure.

* At exit - No parameters,

EXECUTION TIME (Sequence 3):

* At entry - (LOOP) uses no input values from the parameter stack but does expect the Index and Limit values to be on the
return stack.

* At exit - (LOOP) drops both the Index and Limit values from the return stack when the DO-LOOP structure is exited.
(Refer to (LOOP) .)

LIKELY ERROR MESSAGES:
COMPILATION ONLY (11H) — This word may only be used within a colon definition.

CONDITIONALS NOT PAIRED (13H) — There is some sort of problem with the pairing of conditionals within the definition being
compiled.

LOORP is a high level colon definition.
Refer to (LOOP), DO, +LOOP , and (DO) .
FORTH-79: The FORTH-79 equivalent for LOOP is LOOP .

Definition: : LOOP (Loop address\ 3 --) (compile time)
3 ?PAIRS COMPILE (LOOP) BACK H IMMEDIATE

221

COMPILE TIME action of LOOP (Sequence 2): (loop address\ 3 -)

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

3 Place the constant Set up for ?PAIRS .
value 3 onto the top
of the parameter

stack.

?PAIRS Compare the top two A LOOP with a
values on the corresponding DO will
parameter stack and result in a 3 on the
issue Error Message stack. An error message
13H (CONDITION- will be issued and QUIT
ALS NOT PAIRED) will oceur if not.

if they are not
equal and QUIT .

COMPILE Compile the This puts (LOOP) into
execution address of the definition being
the following word compiled.

into the dictionary.
The word is not
executed at this
compile) time.

(LOOP) Execution time (LOOP) is compiled into
portion of LOOP , the definition. It is
Increment the Index not executed at compile
by 1 and test for time.

loop completion.

BACK Calculate the The address left by DO
relative branch is used to calculate a
offset from HERE to return branch offset.
the specified address This offset is then

and compile it into compiled into the
definition. definition and
referenced by (LOOP) at
execution time.

3S (Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

IMMEDIATE [Set the precedence LOOP is a compiler
bit of this word and therefore must
definition so it execute during compil-
will be executed at ation (Sequence 2) so
compile time and not that it can compile
compiled into the other definitions.
definition.

EXECUTION TIME action of LOOP (Sequence 3): (—)

The execution time of LOOP is actually that of (LOOP) .
222

M* (value 1 \ value 2 — double product)

M*

M* (pronounced "M-star") multiplies two signed single precision values and replaces them with their signed double precision product.

The heart of M* is U* (unsigned multiply).

multiplication of U* is performed, and lastly the sign is applied to the product.

The first part of M* determines the eventual sign of the product, then the unsigned

* At entry - The top two entries on the parameter stack contain signed 16-bit values to be multiplied together.

* At exit - The top two entries of the parameter stack contain a 32-bit signed double precision product. The top entry
contains the signed high order portion of the product.

product.

M#* is a high level colon definition.

Refer to U*,

FORTH-79: There is no FORTH-79 equivalent for M* .

Definition:

M* (value 1\ value 2\value 2 -- double produce)

OVER OVER XOR >R

DOCOL

(Run time portion of
:) Save IP and

start interpreting
this definition.

OVER

Duplicate the second
parameter stack
value onto the top
of the parameter

stack.
|

OVER

Duplicate the second
parameter stack
value onto the top
of the parameter

stack.
l

XOR

Replace the top two
16-bit values on the
parameter stack with
their logical XOR
result.

>R

Remove the top
16-bit value from
the parameter stack
and place it onto
the top of the
return stack.

ABS

Replace the 16-bit
signed value on the
top of the parameter
stack with its
absolute value.

The logical result of
the XOR follows the
sign rules of
multiplication.

—

Set up for XOR .

Set up for XOR .
(OVER OVER can be
replaced by 2DUP .)

Determine the sign of
the product and save
it.

Save the sign of the
product to be used
later.

ABS SWAP ABS

Make both values
paositive.

Set up for
multiplication by
getting rid of any
negative sign bits.

(W

SWAP

ABS

U=

D+-

R> D+~ H

Swap the top two
values on the
parameter stack.

Replace the 16-bit
signed value on the
top of the parameter
stack with its
absolute value.

Replace the top two
16-bit unsigned
values on the
parameter stack with
their unsigned

32-bit product.

Remove the top
16-bit value from
the top of the

return stack and
place it onto the

top of the parameter

stack.
I

Apply the sign of
the value on the top
of the parameter
stack to the double
precision 32-bit
value in the second
and third entries.

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the
calling procedure.

The second stack entry contains the low order portion of the

Set the second value up
for ABS.

Set up for
multiplication by
making both values
positive.

Perform the
multiplication.
-

Multiply the two values
leaving a double
precision result.

Warning: U%* does not
correctly multiply
unsigned 16-bit
numbers. It requires
positive signed

16-bit numbers to
multiply correctly.

~— -
Apply the appropriate
sign to the product.

Set up for D+-.
Retrieve the previously
calculated product
sign.

Apply the previously
calculated sign to the
product.

223

M/

M/ (double low \ double high \ divisor — remainder \ quotient)

M/ (pronounced "M-slash®) divides a 32-bit signed double precision value by a 16-bit signed single precision value and replaces them with
a 16-bit signed remainder and a 16-bit signed quotient.

The remainder takes its sign from the dividend.
Note that M/ uses a double precision dividend while /MOD uses a single precision dividend.

The heart of M/ is U/ (unsigned divide). The first part of M/ saves the signs of the dividend and divisor, then makes the inputs to U/
positive. After the division, the signs of the quotient and remainder are determined.

* At entry - The top of the parameter stack contains a 16-bit signed single precision divisor. The second and third stack
entries contain a 32-bit signed double precision dividend. The second stack entry contains the high order portion of the
dividend; the third, the low order portion.

* At exit - The top of the parameter stack contains the 16-bit signed single precision quotient. The second stack entry
contains the 16-bit signed single precision remainder.

M/ is a high level colon definition.

Refer to U/ .

FORTH-79: There is no FORTH-79 equivalent for M/ .

Definition: : M/ (double low\ double highé divisor -- remainder\ quotient)

OVER >R >R DABS ABS u/ R> R XOR +-
SWAP R> + SWAP H

| —_—
R Copy the top 16-bit Set up for U/. Get a
value from the copy of the divisor
return stack and from the return stack
DOCOL (Run time portion of place it onto the so can divide with it.
:) Save IP and top of the parameter
start interpreting stack.
this definition.
ABS Replace the 16-bit U/ requires an unsigned
Save the dividend's and signed value on the divisor.
divisor's signs. top of the parameter
stack with its
— absolute value.
OVER Duplicate the second Set up for >R . Get —
parameter stack the high order signed
value onto the top portion of the E)ivide}
of the parameter dividend.
stack. —
l U/ Divide the unsigned Perform the division
double word in the leaving the unsigned
>R Remove the top value | Save the sign of the second and third quotient on the top of
of the parameter dividend so it can parameter stack the unsigned remainder.
stack and place it later be used to sign entries by the
onto the top of the the remainder. unsigned single
return stack. precision value on
the top of the
parameter stack.
>R Remove the top value | Save the divisor so it -
of the parameter can later be used to
stack and place it sign the quotient. Calculate the
onto the top of the quatient's sign.
return stack.]
R> Remove the top value | Set up for XOR .
Convert the dividend of the return stack Retrieve the previously
and divisor into and place it onto saved divisor.
positive numbers for the top of the
u/. parameter stack.
i
DABS Replace the 32-bit U/ requires an unsigned R Copy the value on Set up for XOR . Now
signed double dividend. the top of the get a copy of the
precision value in return stack onto sign portion of the
the top two the top of the dividend.
parameter stack parameter stack.
locations with its
absolute value.

224

XOR

SWAP

SWAP

Replace the top two
16-bit values on the
top of the parameter
stack with their
logical XOR result.

Replace the sign of
the second parameter
stack entry with the
sign of the top

stack entry.

Swap the top two
values on the
parameter stack.

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

l

Replace the sign of
the second parameter
stack entry with the
sign of the top

stack entry.

Swap the top two
values on the
parameter stack.

(Run time portion of
s .) Stop interpret-
ing this definition
and return to the

calling procedure.

Determine the sign of
the quotient. The
logical result of the
XOR follows the sign
rules of division.

Apply the calculated
sign to the quotient.

Ealeulate the
‘temainder’s sian.

Put the remainder onto
the top of the stack.

Set up for + . Get the
dividend from the
return stack.

Apply the sign of the
divisor to the
remainder.

Put the signed quotient
on the top of the
stack, with the signed
remainder under it.

—

225

‘M/MOD

M/MOD (double dividend \ divisor — remainder \ double quotient)

M/MOD (pronounced "M-slash-mod") divides an unsigned double precision value by an unsigned single precision value and replaces them
with the unsigned single precision remainder and the unsigned double precision quotient.

U/ is the basis for M/MOD; but, since the output of U/ is only a single precision quotient, some special operations are necessary. In this
case, the probiem is solved in a manner similar to performing long division by hand. i.e., The high order portion of the dividend is
divided, rendering half of the quotient and a remainder. This remainder and the low order dividend are again divided, rendering the rest
of the double precision quotient and a remainder. ’

The stack activity of M/MOD is confusing enough that a step by step description of the effect of each word is necessary to properly
understand its operation:

Divisor Dividend H 0 Divisor
Dividend H Dividend L Dividend H 0 Parameter
Dividend L Dividend L Dividend H Stack
Dividend L
>R . 0 R Word
Divisor Divisor Divisor Return Stack
Quotient H Divisor Quotient H Divisor
Remainder Quotient H Divisor Remainder Parameter
Dividend L Remainder Remainder Dividend L Stack
Dividend L Dividend L
U/ R> SWAP R } Word
Divisor Quotient H } Return Stack
Quotient L Quotient H Parameter
Remainder Quotient L Stack
Remainder
u/ R> } Word
Quotient H } Return Stack

* At entry - The top of the parameter stack contains a 16-bit unsigned single precision divisior. The second and third stack
entries contain a 32-bit unsigned double precision dividend, with the high order portion of the dividend in the second stack
entry and the low order in the third.

* At exit - The top two entries of the parameter stack contain a 32-bit unsigned double precision quotient. The top entry
contains the high order portion of the quotient. The second stack entry contains the low order portion of the quotient.
The third stack entry contains the 16-bit unsigned single precision remainder.

M/MOD is a high level colon de finition.
Refer to U/ .
FORTH-79: There is no FORTH-79 equivalent for M/MOD .

Definition: : M/MOD (double dividend\ divisor -- remainder \ double quotient)
>R 0 R U/ R> SWAP >R u/ R> H

226

DocoL

>R

u/

SWAP

>R

u/

M/MOD

(Run time portion of
:) Save IP and

start interpreting
this definition.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

T
|

Place the constant
value 0 onto the top
of the parameter
stack.

Copy the top of the
return stack onto
the top of the
parameter stack.

Divide the unsigned
double word in the
second and third
parameter stack
entries by the
unsigned single
precision value on
the top of the
stack,

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

l

Swap the top two
values on the
parameter stack.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

[

Divide the unsigned
double word in the
second and third
parameter stack
entries by the
unsigned single
precision value on
the top of the
stack.

Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

l

Save the divisor on the
return stack for second
u/.

Set up for U/ . Make
high order dividend
into double precision.

Set up for U/ . Get a
copy of the divisor.

Divide the high order
dividend and leave a
single quotient and
remainder.

Get the divisor.

Set up for >R . Swap
the divisor with the
high order quotient.

Save the high order
quotient on the return
stack.

Now divide the
remainder and low order
dividend.

Put the high order
quotient back onto the
parameter stack.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

MAX

MAX (value \value — maximum value)

MAX (pronounced "max") compares the to

leaves the larger (or MAXimum).

MIN performs the opposite function of MAX .

SPACES is an exampie of a word which uses MAX .

p two 16-bit signed values on the parameter stack, drops the smaller of the two values, and

* At entry - The top of the parameter stack contains one of the 16-bit signed single precision values to be compared. The
second stack entry contains the other 16-bit signed single precision value to be compared.

* At exit - The top of the parameter stack contains the larger of the two 16-bit values.

MAX is a high level colon definition.

Refer to MIN .

FORTH-79: The FORTH-79 equivalent for MAX is MAX .

Definition:

DOCOL

OVER

OVER

IF

SWAP

THEN

D>

228

MAX (value\ value -- maximum value)

OVER OVER

MAX

(Run time portion of
:) Save IP and

start interpreting
this definition.

Duplicate the second
stack entry onto the
top of the parameter
stack.

Duplicate the second
stack entry onto the
top of the parameter

stack.

Replace the top two
parameter stack
values with a true
flag (1) if the
second stack entry
is smaller than the
top entry; else, a
false flag (0).

Is
truth flag
=07?

Swap the top two
values on the
parameter stack.

< IF SWAP THEN

Set up for<.
Duplicate the values so
they can be compared.

Set up for< . (OVER
OVER can be replaced
with 2DUP .)

—

Set up for IF . Compare
the two values so the
smaller can be dropped.

Branch around "true
portion" of IF
statement

The top stack entry is
smaller than or equal
to the second so do not
SWAP values.

Set up for DROP. The
second stack entry is

the smaller of the two
so SWAP it for DROP .

This is the entry point
for the THEN portion of
the IF-THEN structure.

DROP

DROP

Drop the top entry
on the parameter
stack.

(Run time portion of
; ») Stop interpret-
ing this definition
and return to the
calling procedure.

Drop the smaller entry
from the parameter
stack, leaving the
larger entry.

MESSAGE

MESSAGE (message number —)
MESSAGE outputs a selected message to the output device. The message can either be just a message number (if the contents of the
user variable WARNING is a 0) or it is a line ot text (if the contents of WARNING is a non-zero value).

The message number is supplied as a signed single precision value. When WARNING contains 2 1, this nurrher is used as a line offset
relative to Line 0 of Screen 4 in Drive 0. That is to say that a message number of +2 will cause Line 2 on Screen 4 o be outout. A value
of +19 will cause Line 3 of Screen 5 to be output. A value of -1 will cause Line 16 of Screen 3 to be output.

Message Number 0 will not output anything as Line 0 of Screen 4 is a comment. Note that an Error Message Number 8 input to ERROR

causes a ? ("HUH?" to be printed.

All relative message text lines are based on Line 0 of Screen 4 in Drive 0. MESSAGE adjusts its input to .LINE by what is in OFFSET so
all references are always relative to Drive 0.

Note that, while the FORTH system uses MESSAGE for error messages, its use is not restricted to that purpose. Applications may use

the word to output any manner of desired messages stored anywhere on disk.

It is a good idea to always reserve the erro
location where error messages are kept wi

message from what it "considers” to be valid error message text.

r message screens for error messages on ail disks. e.g., A data disk that has a data file in the
1l cause undetermined garbage to be displayed if an error occurs and MESSAGE outputs a

* At entry - The top of the parameter stack contains a signed 16-bit single precision message number.

* At exit - No parameters.

MESSAGE is a high level colon definition.

Refer to WARNING , ERROR , .LINE , OFFSET , and BLOCK .

FORTH-79: There is no FORTH-79 equivalent for MESSAGE .

MESSAGE
WARNING @)

Definition:

MESSAGE

(Run time portion of
:) Save IP and

start interpreting
this definition.

DOCOL

WARNING Place the address of
the user variable
WARNING onto the top,
of the stack.

(0]

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

IF Is
truth flag

=07

(#--)

F
-DUP IF
4
THEN
ELSE JMSG" .
THEN H

Set up for @ . If
WARNING contains a
zero, only the error
message number is to be
displayed.

Set up for IF . Fetch
the contents of
WARNING .

MESS1

Branch if the contents
of WARNING is 0 (i.e.,
only display the
message number).

OFFSET @

-DUP

B/SCR [/ - .LINE

WARNING contained a
non-zero value.
Display the message
line relative to Screen

l L&_Line . _J

Set up for iF . The IF
will use the message
number as a truth flag
so duplicate it so

there will be a message
number available for
the "true portion” of
the IF structure.

Duplicate the top
value on the
parameter stack only
if it is non-zero.

Is
truth flag
=07

Branch if message
number is 0 because
there is no error
message on Line 0 of
Screen 4.

—
Calculate the absolute

screen number of Screen

4 taking into account

any offset value that

may be in OFFSET .

ﬁ NOTE: This does not

calculate the screen
number where the

message resides. .LINE
erforms that function.
L_p o

229

LIT

OFFSET

B/SCR

LINE

THEN

=

230

Place the literal
value 4 onto the top
of the parameter

stack.
I

Place the user
variable OFFSET onto
the top of the
parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

I

Place the value of
the constant B/SCR
onto the top of the
parameter stack.

Divide the second
stack entry by the
top stack entry and
replace them with
their single
precision signed
quotient.

I

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed single
precision
difference.

Output a line of
text from the
specified screen and
line.

Set up for eventual - .
4 is the screen number
messages are re ferred
to.

NOTE: Message
numbers are always
relative to Drive 0 but
since BLOCK uses the
contents of OFFSET
for explicit drive

selection, we must take
that into account here.

Screen 4 is adjusted
(subtracted) by the
offset value. BLOCK
can then add back the
offset value and the
end result is still
Screen 4, Drive 0.

Set up for /. Fetch
the contents of
OFFSET .

Set up for /. B/SCR
is a constant that
reflects how many
blocks a screen
contains.

Set up for - . Divide

the value in OFFSET by

blocks per screen to
get how many screens

(the value in OFFSET is

in blocks) to adjust
"Screen 4" by.

Set up for .LINE .
Adjust Screen 4 to
reflect offset.

.LINE will convert the
message number (i.e.,
the relative line
number) into an
absolute line address
relative to Line 0 of
Screen 4 and print the
appropriate message.

This is the entry point
for the "false portion"
of the previous IF .

i.e., The message
number was 0 so no
message is printed.

ELSE

(o —

SMSG#"

THEN

=

b‘anch.

v

Output the character
string "MSG # " to
the output device.

Convert the numeric
value on the top of
the parameter stack
to ascii and output
it to the output
device.

(Run time portion of
; .) Stop interpret-
ing this definition
and return to the
calling procedure.

Branch around the
"false portion" of the
IF structure.

This is the entry point
for the "false portion"
of the previous IF that
tested WARNING .

The contents of
WARNING was 0, so
just output the message
number.

Output the message
number.

This is the entry point
from the EL.SE portion
of the previous IF
statement.

i.e., After displaying
the message, control
skips over the "false
portion" which only
outputs the message
number,

MIN (value\ value — minimum value)

MIN (pronounced "min") compares the top two 16-bit signed values on the parameter stack, drops the larger of the two values, and leaves

the smaller (or MINimum).
MAX performs the opposite function of MIN .

CREATE is an example of a word what uses MIN .

* At entry - The top of the parameter stack contains one of the 16-bit signed single precision values to be compared. The

second stack entry contains the other 16-bit signed single precision value to be compared.
* At exit - The top of the parameter stack contains the smaller of the two 16-bit signed values.
MIN is a high level colon definition.
Refer to MAX .

FORTH-79: The FORTH-79 equivalent for MIN is MIN .

Definition: : MIN (value\ value -~ minimum value)

OVER OVER > IF SWAP THEN DROP H |
MIN DROP Drop the top entry
on the parameter
stack.
DOCOL (Run time portion of I
:) Save IP and
start interpreting 3S (Run time portion of
this definition. 5 .) Stop interpret-
I ing this definition
—_— and return to the
OVER Duplicate the second Set up for > . calling procedure.
stack entry onto the Duplicate the values so
top of the parameter they can be compared.
stack.
OVER Duplicate the second Set up for > . (OVER
stack entry onto the OVER can be replaced
top of the parameter with 2DUP .)
stack. |
> Replace the top two Set up for IF . Compare
parameter stack the two values so the
values with a true larger can be dropped.
flag (1) if the
second stack entry
is greater than the
top entry; else, a
|false flag (D).
IF Is
truth flag
=07
N Branch around "true
portion" of IF
statement.
The value on the top of
the stack was smaller
or equal to the second
so do not SWAP values.
SWAP Swap the top two Set up for DROP . The
values on the second stack entry is
parameter stack. the larger of the two
so SWAP it for DROP .
THEN This is the entry point
. for the THEN portion of
@-————9 the IF-THEN structure.

Drop the larger entry
from the parameter
stack, leaving the
smaller entry.

231

MINUS

MINUS (value to be negated — two's complement)
MINUS replaces the 16-bit value on the top of the parameter stack with its two's complement.
- is an example of a word which uses MINUS .
* At entry - The top of the parameter stack contains the 16-bit single precision value to be converted.
* At exit - The top of the parameter stack contains the 16-bit single precision two's complement of the given value.
MINUS is a low leve! code primitive.

FORTH-79: The FORTH-79 equivalent for MINUS is NEGATE .

(MINUS)
8080 fig-FORTH

Version 1.1

Pop the number off
of the stack.

Complement the first
byte.

One's complement.

Complement the
second byte.
Increment the word i.e., Make into two's
by 1. complement.
HPUSH Push complemented
number onto the
parameter stack.
NEXT

232

MOD

MOD (dividend \ divisor — remainder)

MOD (pronounced "mod") divides a 16-bit signed single precision value by another 16-bit signed single precision value and replaces them
with their 16-bit signed remainder (or modulo, hence the name MOD). The remainder takes its sign from the dividend.

The basis of MOD is /MOD . /MOD leaves a quotient and remainder. MOD drops the quotient. This is very similar to / , which drops the
remainder.

* At entry - The top of the parameter stack contains the 16-bit signed single precision divisor. The second stack entry
contains the 16-bit signed single precision dividend.

* At exit - The top of the parameter stack contains the 16-bit signed single precision remainder.
MQD is a high level colon definition.
Refer to /MOD .
FORTH-79: The FORTH-79 equivalent for MOD is MOD .

Definition: H MOD (dividend \ divisor -- remainder)
/MOD DROP H

MOD

DOCOL (Run time portion of
:) Save IP and

start interpreting
this definition.

/MOD

DROP

-,
[%2]

Divide a signed
single precision
value by the signed
single precision
value on the top of
the parameter stack
(leaving a remainder
and quotient).

Drop the top value
from the parameter

stack.
I

(Run time portion of
3 ») Stop interpret-
ing this definition
and return to the

calling procedure.

Perform the division
and leave a remainder
and quotient.

Drop the quotient.
L.eave the remainder.

233

MON (pronounced "mon") exits to the system monitor (hence "MON") of the system FORTH is running on (or under). The word may have
other names (e.g., the 8080 1.1 CP/M Version uses BYE) but the function is always the same.

* At entry - No parameters.
* At exit - No parameters.
MON may be a high or low level definition depending upon the specific installation.

FORTH-79: There is no FORTH-79 equivalent for MON .

MON
8080 fig-FORTH
Version 1.1

| IMP D | 3ump to the CP/M warm

start vector.

NEXT

NEXT

NEXT is the FORTH inner interpreter. (Actually NEXT is the entry point label of the inner interpreter procedure.) This procedure is not
a part of the FORTH dictionary. Its purpose is to sequentially execute the "next" Code Field Address contained within the Parameter
Field of a compiled definition.

NEXT only sequentially "executes Code Field Addresses"; it does not of itself perform any nesting or un-nesting. Nesting is performed
via a word such as : { DOCOL actually); un-nesting is performed via a word such as ;S .

All definitions must eventually be terminated with a jump to NEXT. Code definitions must end by directly jumping to NEXT or by
performing the same function as NEXT (e.g., EXECUTE).

The action of NEXT can be symbolically described in high level terms as follows:

IP@ Fetch the contents of IP . (IP points to the next CFA , i.e., "word", to execute.)

@B w! Fetch the CFA [P is pointing to and stare it into W .

21P +! Increment IP to point to the next "word" to execute.

wa Fetch the contents of W . (W now points to the Code Field of the defintion to be executed.)

@PC! Fetch the contents of this definition's Code Field (i.e., the address to execute) and put it into the CPU's

program counter.

Refer to W, 1P, :,;S, and DOES> .

8080 fig-FORTH (NEXTL Entry point for NEXTI1.

Version 1.1
y___ {re ey
Pick up low order W now aiming at Code
\b byte of address of Field Address of word

code to executs. to be executed. {i.e.,
Push contents of DE | aiming at "Y").
onto the parameter
stack. rAim at next byte.] i.e., Pick up "Y" so
program counter will be
aiming at "Z".
HPUSH |
Pick up high order
Push contents of HL byte of address of
onto the parameter code to execute.
stack,
Go execute that
NEXT code.
PR aw!
21P +!

Pick up low order
address of W .

|

[P =1Ps1 |)

Pick up high order
address of W .

l
[F: 1P+1 J IP now aiming at next

dictionary entry.

235

NFA

NFA (Parameter Field Address —- Name Field Address)

NFA (pronounced "N-F-A") converts a given Parameter Field Address (PFA) of a dictionary definition into its Name Field Address
(NFA).

The structure of the header of a FORTH definition is:

Name Field Variable length
Link Field 2 byte address pointer
Code Field 2 byte address pointer
Parameter Field Variable length

* At entry - The top of the parameter stack contains the 16-bit Parameter Field Address of a FORTH definition.

* At exit - The top of the parameter stack contains the 16-bit Name Field Address of the specified FORTH definition.
CREATE is an example of a word that uses NFA .
NOTE: Since the fig-FORTH Name Field is a variable length, a simple subtraction cannot be used to directly calculate its beginning
:S:.ress. TRAVERSE must be used instead. The exact nature of NFA may vary from system to system because of differing word sizes,
NF A is a high level colon definition.
Refer to PFA, LFA, and CFA.

FORTH-79: There is no FORTH-79 equivalent for NFA . A FORTH-79 program may not address into a definition's Name Field.
Definition: : NFA (PFA--NFA)

5 - -1 TRAVERSE H
NFA
DocoL (Run time portion of
:) Save IP and
start interpreting
this definition.
LIT Place the literal Set up for subtraction.
05H value 5 onto the top
of the parameter
stack.
- Subtract the value Aim at the last
on the top of the character of the Name
parameter stack from| Field. Set up for
the second stack TRAVERSE .
value.
LIT Place the literal Set up for TRAVERSE .
-1 value -1 onto the This is the direction
top of the parameter indicator for
stack. TRAVERSE . The

-1 causes a search
direction from high to
low memory.

TRAVERSE Locate the opposite This will result in the
end of a Name Field beginning address of

by "traversing" the Name Field being
accross that Name left on the top of the
Field. parameter stack.

;S (Run time portion of

3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

NULL

NULL (=)

NULL (pronounced "null" and sometimes called "X") is the word that causes an exit from the endless loop in the INTERPRET procedure.
"NULL" is a pseudonym for an ascii null character (00). The actual Name Field of NULL consists of one ascii null character.

Despite its rather non-standard name, NULL is a perfectly valid definition. That is to say that as INTERPRET sequentially moves
through a buffer, compiling and interpreting as it goes, the end of the buffer will eventually be reached. By convention, all buffers must
end with a null character. When INTERPRET encounters this null character, it searches the dictionary for a Name Field match. A
match occurs when the null definition is encountered. Since NULL is a valid definition and is also IMMEDIATE , it is executed.

NULL causes an exit from INTERPRET by dropping the top address of the return stack. Then, when NULL returns, it exits not to the
level it was at (i.e., back to INTERPRET) but instead exits to one level of nesting higher (i.e., back to the definition that contained
INTERPRET -- more specifically to the definition immediately following INTERPRET .) For example, the word STATE in QUIT , or R> in
LOAD .
A large portion of the coding in NULL is devoted to checking to ensure that the system is not in compilation state if the null character
encountered is at the end of an editing screen. {it must be determined if the current buffer is the iast buffer in a screen.) This check is
performed because it is illegal to extend compilation across editing screens. Error message 12H (EXECUTION ONLY) is issued if this
condition is detected.
Note that NULL is an IMMEDIATE word. This means that its precedence bit is set and it will therefore execute at compile time.
* At entry - No parameters.
* At exit - No parameters.
LIKELY ERROR MESSAGES:
EXECUTION ONLY (12H) -- This word must not be used while the system is in compile mode.
NULL is a high level colon definition.
Refer to INTERPRET , QUIT , and LOAD .
FORTH-79: There is no FORTH-79 equivalent for NULL .
Definition: : NULL (=)
BLK @ IF
1 BLK + 0 IN! BLK @ B/SCR 1 -
AND 0= IF 7EXEC 294 DROP THEN

ELSE R> DROP
THEN H IMMEDIATE

interpreting

from disk

screen end

Still
compiling
?

ABORT

N
Drop top of retumn
stack.
3S Return to next higher
level. i.e., Level that
"called" INTERPRET .
Figure NULL-1

High Level Flowchart of NULL

237

DOCOL

BLK

IF

BLK

IN

238

NULL

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the address of
the user variable
BLK onto the top of
the parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Is
truth flag
=07

Place the constant
value 1 onto the top
of the parameter

stack.

Place the address of
the user variable

BLK onto the top of
the parameter stack.

Add the specified
16-bit value to the
contents of the
specified memory
location.

Place the constant
value 0 onto the top
of the parameter
stack.

Place the address of
the user variable IN
onto the top of the
parameter stack.

Determine if
interpreting from disk.
h—

Set up for @ . BLK
contains the block
number currently being
interpreted. 0 denotes
terminal input.

Pick up the contents of
BLK to determine where
the input stream is
coming from,

Branch if interpreting
from the terminal.

Interpretation input is
| from disk. Now
' determine if at the end
of a screen.

Set up for +! .

Set up for +! .

Set up for AND .
Increment the current
block number by 1
(i.e., if it is the

last block number in a
screen, increment it to
the beginning of the

next screen.)

Set up for ! .

Setup for!. IN
contains a pointer to
the character location
being interpreted
(relative to the
beginning of the
block).

BLK

B/SCR

AND

Store the specified
value into the
specified memory

location.

Place the address of
the user variable

BLK onto the top of
the parameter stack.

Replace the address
on the top of the
parameter stack with
the memory contents
of that address.

Place the constant
value B/SCR (blocks
per screen) onto the
top of the parameter

stack.
I

Place the constant
value 1 onto the top
of the parameter

stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Logically AND the
top two values on
the parameter stack
and replace them
with the logical
result.

Replace the value on
the top of the
parameter stack with
a true flag (1) if

the value is zero;
otherwise, replace
the value with a
false flag (0).

I

Set IN to 0. Set up to
begin interpreting from
the beginning of the
next block.

Set up for @ .

Set up for AND . Pick
up the current block
number + 1.

—_—
]

Set up for - .

Set up for - .

Set up for AND . The
purpose of subtracting
1 from the bytes per
screen is to make a
mask for the following

AND .]

This determines if the]
block number was the
end of a screen.

In this example, the
numbers not enclosed in
parenthesis are in
decimal while the
enclosed numbers are
binary.

If the block number was
11 (1011), incrementing
it by 1 gives 12

(1100). If there were &4
blocks per screen
(0100), subtracting 1
gives a mask of 3
(0011) and ANDing 12
and 3 (1100 and 0011)
gives 0. Therefore no
bits coincide, which
means the block number
was at the end of the
screen.

(This may not be the
best way to do this,

but it works.)

Set up for IF . If it
was at the end of a
screen, we want to
execute the "true
portion" of the IF .,
Therefore, the truth
flag must be reversed
via 0=,

IF Is
truth flag

=07

PEXEC Issue Error Message
12H (EXECUTION
ONLY) and QUIT

if the system is

not in EXECUTION

state.

R> Remove the top value
of the retum stack
and place it onto

the top of the
parameter stack.

DROP Remove the top
parameter stack
entry from the

parameter stack.

THEN

(o -

&ancb.

2\
=)

ELSE

-(\uLLY)

v

R> Remove the top value
of the return stack
and place it onto

the top of the
parameter stack.

DROP Drop the top

parameter stack
entry.

Branch if not at end of
a screen when
encountered null.

E\low test if compiling}

The whole purpose of
the above decisions was
to ensure that
compilation does not
extend across screen
boundaries.

Set up for DROP . Get
the top return address
from the return stack.

Drop this address
(which is the address
of ?STACK), following
EXECUTE in
INTERPRET .

This is the entry point
for the "false portion®
of the IF that checked
to see if the block
number was at the end
of a screen.

Branch around the
"false portion" of the
IF that checked to see
if interpreting from
terminal.

This is the entry point
for the "false portion"
of the IF that check if
interpreting from
terminal.

Was not at end of
screen when
encountered the null.

This is identical to
the previous R> DROP .

Actually NULL would be

more understandable if
the R> DROP 's were
factored together.

THEN

@D—

IMMEDIATE

(Run time portion of
3 .) Stop interpret-
ing this definition
and return to the

calling procedure.

Set the precedence
bit of this

definition so it

will be executed at
compile time and not
compiled into the
definition.

This is the entry point
for the ELSE branch
around the "false
portion" of the IF that
checked if the system
was in interpretaion
state.

239

NUMBER

NUMBER (address of text string — double precision value)
NUMBER uses the current base to convert a character string into a signed double precision number. The character string must begin
\[/)ch a length byte (e.g., standard "WORD" format). The position of the last decimal point encountered (if any are present) will be left in
Error Message 0 ("?") is issued if a non-convertible character is encountered.
The ascii character blank (20H) terminates the conversion process.
Note that there are only two valid non-convertible characters:

1. Decimal points, that are effectively ignored.

2. A minus sign in the first character, that is used to set the sign bit to negative.

A high level logic flowchart of NUMBER is provided as Figure NUMBER-1 so that the overall logic of the word can be more easily
grasped.

INTERPRET is an example of a word that uses NUMBER .

* At entry - The top of the parameter stack contains a 16-bit address which points to the text string to be converted. The
first byte of the text string contains the length of the following string. A decimal point may be present anywhere in the
text. The first character of the text string may be a minus sign signifying a negative number. The user variable BASE
contains the numeric conversion base.

* At exit - The signed 32-bit double precision numeric conversion value is on the top of the parameter stack with the most
significant word on the top of the stack and the least significant word as the second entry. The user variable DPL
contains a number reflecting the number of digits occurring to the right of the last encountered decimal point. A value of
-1 indicates no decimal point was encountered.

LIKELY ERROR MESSAGES:

? pronounced "HUH?" (0) -- The word in question is not a number.
NUMBER is a high level colon definition.

Refer to (NUMBER) , DPL , BASE , and WORD .

FORTH-79: The FORTH-79 equivalent for NUMBER is CONVERT .

Definition: : NUMBER (address of text string -- double value)

0 0 ROT DUP 1+ Cr 2D = DUP >R
+ -1 BEGIN
DPL ! (NUMBERY) DUP C@ BL -
WHILE
DUP C@ 2E - 0 ?ERROR 0
REPEAT

DROP R> IF DMINUS THEN H

240

BEGIN

WHILE

REPEAT

The logic boxes in this flowchart correspond roughly
to the curly brackets in the low level flowchart.

NUMBER

Setup to perform
conversion.

Determine if number
should be negative.

é

Convert the char
string until a
non-convertible char
is encountered.

Is
char a blank

Should
number be
negative ?

Make it negative.

Figure NUMBER-1

High Leve! Logic of NUMBER

DOCOL

ROT

DUP

1+

ca

LIT
2DH

NUMBER

(Run time portion of
:) Save IP and

start interpreting
this definition.

Place the constant
value 0 onto the top
of the parameter
stack.

Place the constant
value 0 onto the top
of the parameter
stack.

Rotate the top three
parameter stack
entries, bringing

the third entry to
the top of the

stack.

Duplicate the top
value on the
parameter stack.

1

Increment the top
parameter stack
value by 1.

Replace the address
on the top of the
parameter stack with
the 8-bit memory
contents of that
address.

Place the literal
value 2DH onto the
top of the parameter
stack.

Replace the top two
values on the
parameter stack with
a true flag (1) if

they are equal or a
false flag (0) if

they are not equal.

Set up to perform the
conversion.

-

Place a double
precision number with
the value of zero onto
the stack. Set up for
DIGIT within
(NUMBER) .

Bring the address of
the character string to
the top of the stack.

Duplicate the character
string address.

Aim past the character
string length byte.

Pick up the first
character in the
string.

Test to see if the
number should be
negative. Set a truth
flag reflecting the
sign.

Put an ascii minus sign
onto the top of the
stack. Set up to
determine if the
character string
represents a negative
number.

Test if the character
string is a negative
number.

241

DUP

>R

LIT
-1

BEGIN

A NUMB1

DPL

(NUMBER)

DuUP

242

Duplicate the top
value on the
parameter stack.

Remove the top value
of the parameter
stack and place it
onto the top of the
return stack.

Add the top two
stack values and
replace them with
their signed sum.

Place the literal
value -1 onto the

top of the parameter
stack.

Duplicate the truth
flag.

Temporarily save truth
flag so can tell later
on if the number is
negative.

Add the truth flag to
the character string
address. If there was a
minus sign, this will
advance the address
past it.

Normal default value to
be stored into DPL on
first pass through

loop.

Now convert the

character string. The
portion of code between
BEGIN and WHILE
converts the number and
tests for the

terminator character,
an ascii blank (20H).

Place the address of
the user variable

DPL onto the top of
the parameter stack.

Store the specified
value into the
specified memory
location.

Convert the
character string
until encountering
an unconvertible
character.

Duplicate the top
value on the
parameter stack.

Replace the address
on the top of the
parameter stack with
the 8-bit memory
contents of that
address.

N— —

This is the entry point
for the following
BEGIN-WHILE-REPEAT
structure.

DPL contains the
number of digits
encountered to the right
of the decimal point.

Store number of digits
to right of decimal
point (DPL will be
incremented by
(NUMBER)).

Duplicate the address
of the first
unconvertible
character.

Pick up the character
that could not be
converted.

BL

WHILE

DUP

Cca

LIT
2EH

Place the constant
value for an ascii
blank (20H) onto the
top of the parameter
stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Is
truth flag
=07

N—

Duplicate the top
value on the
parameter stack.

Replace the address
on the top of the
parameter stack with
the B-bit memory
contents of that
address.

Place the literal
value for an ascii
decimal point (2EH)
onto the top of the
parameter stack.

Subtract the top
stack entry from the
second stack entry
and replace the two
values with their
signed difference.

Place the constant
value 0 onto the top
of the parameter

stack.

Set up space character
to determine if at end
of string.

Character - blank =0
(false) if the
character is a space;
else is non-zero
(true).

Perform WHILE portion
of structure only if

the unconvertible
character is not a
blank.

Exit from loop and
BRANCH past the
REPEAT portion of this
structure if flag was 0
(i.e., a terminating
space was encountered).

—
At this point, the only

legal non-convertible
character is a decimal
point so test for it.
Execute ?ERROR if it
was any other
character. Else just

loop back and continue.
—

Duplicate the address
of the unconvertible
character.

Pick up the character
that could not be
converted.

po—

Put a decimal point on
the top of the stack so
can check if the

character is a decimal.

Set up for 2ERROR . Is
the character a decimal
point?

Set up to issue Error
Message 0 ("?"),

7ERROR

REPEAT

NUMB2

DROP

DMINUS

Issue the specified
error message and
QUIT if the truth
flag is true.

Place the constant
value 0 onto the top
of the parameter

stack.,

IlBranch.

v

Drop the top value
from the parameter

stack.
[

Remove the top value
from the return

stack and place it
onto the top of the

parameter stack.

Is
truth flag
=07

Convert the 32-bit
double precision
value on the top of
the stack to its
two's complement
(i.e., make it
negative).

Issue an error message
if the result of the
subtraction was not 0.
i.e., The character is
not a decimal point.
Note: If an error
message is issued, a
QUIT will also occur
and execution will stop

here.

Set up to store a 0
into DPL .

NUMB1

BRANCH back to do
"BEGIN portion" of this
structure and continue
conversion.

This is the entry point
from the WHILE portion
of the structure (i.e.,
exit from the
conversion loop).

Note: The converted
number will now occupy
the top two parameter
locations as a signed
32-bit double precision
number.

Drop the address of the
non-convertible
character.

Retrive the is-it-a
negative-number? truth
flag.

Is the number a
negative number? If so,
execute DMINUS to
make it negative.

BRANCH around the
"true portion" of the IF
statement.

A minus sign preceded
the character string to
convert, so make the
number negative.

THEN

D>

(Run time portion of
; «) Stop interpret-
ing this definition
and return to the
calling procedure.

This is the entry point
from the false branch
of the previous IF
statement which tested
to see if the number
was negative.

243

OFFSET

OFFSET (— data address)

OFFSET is a user variable that contains a block "offset" to mass-storage devices. Upon entry BLOCK adds the contents of OFFSET ta
the desired block number. This allows explicit selection of a specific device. i.e., The beginning block number of that device is stored
into OFFSET. Future block references are then "offset" by that value and automatically reference the selected device.

DRO and DR1 ("Drive 0" and "Drive 1") are device selection words that store beginning block numbers into OFFSET .

MESSAGE adjusts the block number of the message line so that the message is always relative to physical Drive 0 irregardless to the
contents of OFFSET .

OFFSET is thoroughly covered in the description of BLOCK .

The user variable OFFSET is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable OFFSET .
Refer to BLOCK , DRO , DR1 , MESSAGE , and USER .

FORTH-79: The FORTH-79 equivalent for OFFSET is OFFSET .

244

OR

OR (valuel \ value2 — logical result)

OR (pronounced "or") performs a bit-wise logical OR function on the top two values on the parameter stack and replaces them with their
logical result.

UPDATE is an example of a word which uses OR .
* At entry - The first and second parameter stack entries both contain an absolute 16-bit single precision value to be ORed.
* At exit - The top of the parameter stack contains the absolute 16-bit single precision logical result.

OR is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for OR is OR .

(OR ’
8080 fig-FORTH

Version 1,1

[E’;p first value. J
I

lgp second value. J
|

ﬁlow order byte. J
I

E]E high order byte. J

HPUSH Push result onto top of
stack.

245

ouT

OUT (— data address)

OUT is a user variable which contains a value incremented by EMIT . VLIST is the only system word that alters and references OUT .
Applications may utilize OUT for purposes of formatting lines of text but note that EMIT only increments the value. No initialization or
checking of OUT is performed by the sytem.

The user variable OUT is stored as a 16-bit single precision value. When in memory, the high and low order bytes may be switched
depending upon the processor used.

* At entry - No parameters.
* At exit - The top of the parameter stack contains the address of the user variable OUT .
Refer to EMIT , VLIST , and USER .

FORTH-79: There is no FORTH-79 equivalent for OUT .

246

OVER (value2 \ valuel — value2 \ valuel \ value2)

OVER copies the second parameter stack entry onto the top of the parameter stack.

BEFORE AFTER

Top of parameter stack —>

valuel

value2

value2

valuel

value?

OVER is a very commonly used word. The definition WORD is an example of a word that uses OVER .
* At entry - The second parameter stack entry contains the 16-bit value to be copied onto the top of the stack.

* At exit - The value at the top of the parameter stack equals the value now at the third stack entry.

OVER is a low level code primitive.

FORTH-79: The FORTH-79 equivalent for OVER is OVER .

OVER
8080 fig-FORTH
Version 1.1

l% top of stack. J
I

Pop value to be
"over"ed (second
antry).

Push second entry

back again.

DPUSH Push "old" top of stack
value.

HPUSH Push what was the
second entry onto the
top of the stack.

NEXT

OVER

247

PAD

PAD (— address)

PAD (named for scratch PAD) places the address of the text output buffer onto the top of the parameter stack. PAD does not occupy a
fixed location in memory; instead it is always a fixed offset away from the current end of the dictionary.

The PAD buffer is not a fixed length. It occupies memory between the end of the dictionary and the beginning of the user area. How
much buffer is available at any time is a factor of both the installation memory map and the current dictionary size.

PAD is referenced two ways:

1. The pictured-numeric output words create numeric output text starting one byte before PAD and working towards low
memory. (Refer to<#, #,#5,and #> .

2. Application words such as text-editor words use PAD as a text buffer; with the beginning character stored in the first byte and
the rest of the characters going towards high memory.
Low Memory High Memory
Text User

-->
Output Area

Numeric
Dictionary {—

O» 70

Conversion

* At entry - No parameters.
#* At exit - The top of the parameter stack contains the 16-bit beginning address of the PAD area.
PAD is a high level colon definition.

FORTH-79: The FORTH-79 equivalent for PAD is PAD .

Definition: : PAD (-- address)
HERE 44 + 3

DOCOL (Run time portion of
:+) Save IP and

start interpreting
this definition.

HERE Place the address of Set up for +. i.e.,
the next available Get end address +1.
dictionary location
onto the top of the
parameter stack.

LIT Place the literal Set up for +. 8080
44H value 44H onto the fig-FORTH uses offset
top of the parameter of 68 (decimal) bytes
stack. past the end of the
dictionary.
+ Add the top two Calculate absolute
stack values and address of PAD .

replace them with.
their signed sum.

3S (Run time portion of
;) Stop interpret-
ing this definition
and return to the
calling procedure.

248

PFA

PFA (Name Field Address — Parameter Field Address)

PFA (pronounced "P-F-A") converts a given Name Field Address (NFA) of a dictionary definition into its Parameter Field Address
(PFA).

The structure of the header of 2 FORTH definition is:

Name Field Variable length
Link Field 2 byte address pointer
Code Field 2 byte address pointer
Parameter Field Variable length

An