
TABLE OF CONTENTS

INTRODUCTION
MAKING THE MODIFICATIONS

SETTING UP THE GRAM KRACKER
RUNNING THE XBEA PATCH PROGRAM

OPERATING SYSTEM MODIFICATIONS
EXTENDED BASIC MODIFICATIONS.............. .

MODIFIED COMMANDS
CALL INIT
LIST
CALL LOAD
PERMANENT........................
RESEQUENCE
RES
TRACE.............................

NEW FEATURES
SCREEN AND CHARACTER COLORS
CHARACTER PATTERNS AND ERROR MESSAGES
QUIT KEY CHANGE
AUTO LOAD BYPASS
CURSOR MOVEMENT................. .

NEW COMMANDS
COPY...............................
DEL
CALL EA
MOVE
CALL PEEK6

1

4

D
cr

5
5
5
6
6
7
9
9
9
9
9
9
10
10
11

11
11

12

CALL POKEG 12

TABLE OF CONTENTS, cont

CALL PEER'V................................. 13
CALL F'OKEV 13
CALL QUITON...................... 13
CALL QUITQFF 13
XB CALLS............ 13

EDITOR/ASSEMBLER MODIFICATIONS...................... 14
SYSTEM SUPPORT 14
COSMETIC CHANGES 14
KEYBOARD INPUT MODIFICATIONS....... 14
FILENAME RECALL....................... 15
ASSEMBLER MODIFICATIONS 15
EDITOR MODIFICATIONS 16
NEW MAIN MENU SELECTIONS 16

EXTENDED BASIC......................... 16
FORMAT RAMDISK...... 16
CATALOG DISK 17

TECHNICAL INFORMATION.................... 18
GRAM O IS
GRAM 1 18
GRAM 2 .. 18
GRAM 3 19
GRAM 4 .. 19
GRAM 5 19
GRAM 6 .. 20
GRAM 7 20
CHANGING RAMDISK FORMAT 21

. . 22CHANGING CHECKSUM FOR EDITOR & ASSEMBLER LOADER

INTRODUCTION

XBEA is a set of enhancements added to version 110 of TI EXTENDED
E-fASIC and the TI EDITOR/ASSEMBLER through the use o-f a GRAM
KRACKER. These enhancements have been designed to aid the
Extended Basic and/or assembly language programmer. Also
included are modifications to the 99/4A operating system that
clear up some problems encountered with the CorComp disk
controller card, and add a true lower case character set.

The enhancements to Extended Basic include added commands to aid
in program editing, and modifications to some existing commands
to aid in program debugging. Also added is a disk catalog
routine, and commands that allow you to PEEK and POKE to all 3
kinds of memory in the computer (CPU RAM, VDP RAM, and
GRQM/GRAM). Another new command permits entering the
Editor/Assembler without having to go back to the title screen,
provided you choose the combined Extended Basic and Editor/
Assembler version. Most of the new features can only be used in
command mode.

Several improvements have been made to the Editor/Assembler
including repeating keys during filename entry, filename recall
at all prompts, and support for the MYARC ramdisk card. The
Editor and Assembler programs are now stored in GRAM for quicker
loading, and you may enter Extended Basic directly from the main
Editor/Assembler menu. There is one drawback however. All
support routines for console basic (CALL POKEV, etc.) are removed
from this version of the Editor/Assembler.

System requirements are TI 99/4A console, 32K memory, disk
controller and disk drive, version 110 of TI Extended Basic, TI
Editor/Assembler, and an 80K GRAM KRACKER. A printer is highly
recommended.

TI EXTENDED BASIC and the TI EDITOR/ASSEMBLER are copyright by
Texas Instruments.
GRAM KRACKER is a trademark of Millers Graphics.

PAGE 1

MAKING THE MODIFICATIONS

The XBEAPATCH program will make the necessary changes in your
Extended E-iasic and/or Editor/Assembler modules to enable them
with the -features described in this documentation. Before
running the XBEAPATCH program, you must prepare your GRAM KRACKER
with the necesary modules. This is not complicated, but care
must be taken to do the following steps in order. All page
numbers given are references into the GRAM KRACKER manual. The
patch program can produce two versions of the modifications, a
combined Extended Basic and Editor/Assembler, or an Extended
Basic only version. If you want the Extended Basic only version,
skip any steps marked with an asterisk (*). The XBEAPATCH
program also modifies your operating system in GRAM 0 to include
a true lower case character set. If you do not want the
operating system modifications, skip the steps marked with the
pound sign (#) and leave the OpSys/GRAM 0 switch in the OpSys
position while running the patch program.

SETTING UP THE GRAM KRACKER

1 - Save your Extended Basic (version 110 only) module to disk.
(Page 8)

2#- Save console GROM 0 to disk. (Page 12)
3*- Save your Editor/Assembler module to disk. (Page 8)
4 - Initialise the GK module space. (Page 11)
5*- Load your saved Editor/Assembler module into the GRAM

KRACKER. (Page 7)
6*- Run the E/A-MOVER program from the GRAM KRACKER utility disk

(the disk that came with your GK). (Page 24) Move the
Editor/Assembler to GRAM 7. DO NOT ADD THE BYTES AT g7FFC AS
DIRECTED BY THE MANUAL AND THE E/A-MOVER PROGRAM!

7 - Load your saved Extended Basic module into the GRAM KRACKER.
(Page 7)

8#- Load your saved console GROM O into GRAM 0 in the GK. (Page
12)

PAGE 2

RUNNING THE XBEA PATCH PROGRAM

You are now ready to run the patch program. It is loaded using
the -’LOAD MODULE’ option of the GK menu. The Devi ce. Fi 1 ename is
DSK1.XBEAPATCH, assuming that you have the patch program disk in
drive #1. The patch program will run after you press the space
bar when prompted. Once started, the only way to prematurely
exit the patch program is with the GRAM KRACKER reset switch.
After the patch program introduction screen you are asked to
select which version of the patch you want. After you make your
selection you are reminded that the GRAM KRACKER must be set up
as described in the preceeding section. The next screen will
instruct you to configure the GRAM KRACKER switches. Be sure
that all switches are set correctly before proceeding. The only
switch check made by the patch program is for the BANK 2 switch.
You are not warned if the other switches are not configured
properly. DO NOT CHANGE ANY OF THE SWITCH SETTINGS UNTIL YOU ARE
INSTRUCTED TO DO SO! If you get a ’Bank 2 not selected’ error
message and you do have the switch in the BANK 2 position it is
an indication that either you have not correctly followed the
set-up instructions or that the version of Extended Basic that
you have loaded is not compatible with these modifications. In
this case, start over with the set-up as described in the
preceeding section. If after doing this you still get the error
message you should try again using a different Extended Basic
module.
If you have selected the combined Extended Basic and
Edtior/Assemb1er version you will be instructed to place a disk
containing the EDIT1, ASSM1, and ASSM2 files into drive one. Be
sure that these are unmodified files. To be sure, use your
original E/A disk.
After the modifications are complete, restore the write protect
and exit the program. You should now save your modified
program(s) to disk. Be sure to save the modified GRAM 0 also.
If you have selected the combined Extended Basic and
Editor/Assembler version you also have to save GRAMs 1 and 2.
See pages S and 12 in the GK manual.
If you find that the new features of Extended Basic and/or the
Editor/Assembler da not work as described in the following
sections, redo the patch, starting with the GK setup. If this
does not solve the problems it is an indication that your
module(s) are not compatible with these modifications. Try again
using a different module for the patch.

PAGE

OPERATING SYSTEM MODIFICATIONS

The 99/4A operating system in GRAM 0 has been modified to include
a true lower case character set that replaces the standard small
capitals character set. The zero character has been slashed, and
the upper case 0 character has been rounded. Any program or
module that uses the standard character loader in the operating
system will now have the new character set as long as the OpSys
switch on the GRAM KRACKER is in the GRAM 0 position. Returning
the switch to the OpSys position will allow a program or module
to use the standard character set.

Some modules contain their own character sets, and therefore will
not use the new set contained in the modified operating system.
There are several programs, most notable the CorComp Disk Manager
and the Millers Graphics MG EXPLORER, that do not use the
standard character loader and as such will always load the old
character set from GRAM 0. The new character set may also cause
problems with some other programs as well. In order to provide
for true decenders on the new lower case characters, the upper
case character definitions have all been raised by one dot. If a
program re-defines only a few characters, then those characters
will appear lower on the line than the new characters. This can
be corrected by either removing the character definition lines
from the program, or changing the character definitions to raise
the re-defined characters by one dot. This will not always be
possible due to protected programs, etc., but by placing the
OpSys switch in the OpSys position the old character set will be
used.

One other modification has been made to the operating system that
corrects a problem associated with the power-up routine of the
CorComp Disk Controller. This problem affected correct handling
of file errors in the Editor/Assembler module. Although this
problem has also been corrected in the modified Editor/Assembler,
it has been included in the operating system for the times that
it may be necessary to use the Editor/Assembler module in the
cartridge slot on the GRAM KRACKER.

PAGE 4

EXTENDED BASIC MODIFICATIONS

MODIFIED COMMANDS
The -following commands, keywords, and subprograms have been
modi f i ed:

CALL INIT

In the old Extended Basic, CALL INIT loaded more data into
expansion RAM than necessary. This has been corrected.

LIST

The Extended Basic LIST routine has been modified to allow you to
specify a line length if you are listing to a device such as a
printer. The following syntax is used:
LIST "device name":line length:start line number-end line number
You can specify a line length ONLY if you also specify an output
device. A colon must follow the line length. If not included in
the LIST command, the line length is set to the default of the
specified output device. The line length can range from 1 to
255. If the length specified is outside this range, a Bad Line
Number Error is generated. This is due to the routine used to
detect the number.

CALL LOAD

This subprogram, when used to ’poke' data into RAM (ie CALL
LOAD(8192,15)), no longer checks to see if you’ve done a CALL
INIT. If used to load an assembly object code file, the CALL
INIT check is still made.

PERMANENT

This keyword, which could be used in an OPEN statement has been
deleted. This is really no loss as its’ use had no effect on a
file anyway.

crPAGE

EXTENDED BASIC MODIFICATIONS, cont...

RESEQUENCE

This command has been deleted. You must use the abbreviation RES
to renumber a program.

RES

Modifications have been made to the RES command which allow you
to resequence a portion of the program. Also, please note that
the new RES routine DOES NOT replace undefined line numbers with
32767. Any undefined line numbers in the program are left as is.
The new command format is:
RES initial line , increment , starting line - ending line
If you want to use the default values for initial line (100) and
increment (10) then you must include the two commas before
specifying the starting line. The following commands are all
1egal:
RES 20,1,10-50 Lines 10 thru 50 are renumbered. Line 10 becomes

20, and the increment is 1.
RES ,5,700-800 Lines 700 thru 800 are renumbered. Line 700

becomes 100, and the increment is 5.
RES ,,50-80 Lines 50 thru 80 are renumbered. Line 50 becomes

100 and the increment is 10.
RES 1000,,750- Lines 750 thru the last line in the program are

renumbered. Line 750 becomes 1000 and the
increment is 10.

RES ,20,-400 All lines thru 400 are renumbered. The first
program line becomes 100 and the increment is 20.

RES 20,,40 Line 40 is renumbered to 20.
RES cannot be used to move lines from one location to another
inside the program. If the new line numbers generated by the RES
would result in a line being moved, a Bad Line Number Error is
generated. A Bad Line Number Error is also given if there are no
valid program lines between starting line and ending line.

PAGE 6

EXTENDED BASIC MODIFICATIONS, cant...

TRACE

This command has been modified to allow the trace output to be
sent to any output device, such as a printer. In order to send
the TRACE to a device, you must OPEN file number 123 with the
desired output device. This MUST be done in a program line. You
must also turn the TRACE mode on, either in command mode or
within your program. For example, if the following line is in
your program,
100 OPEN #123:"PIO"
and the TRACE is turned on, then the trace output for all lines
executed after line 100 will be sent to the PIO port. All lines
executed up to and including the line containing the OPEN #123
statement will have their trace numbers printed on the video
monitor as in the usual TRACE. It is recommended that you put
the OPEN #123 statement in the first line of your program and
then use the TRACE and UNTRACE commands to turn the trace on and
off. In a nutshell, the TRACE command has been modified to look
for an open file #123 before printing the trace number on the
screen. If that file IS open, then the trace number is sent to
the device specified in the OPEN statement. This may seem to be
a backwards way of implementing this feature (as opposed to
TRACE("PIO")), but it does offer a lot of flexibility in the
trace printout. Consider the following example:
1 OPEN #123:"PIO" PRINT #123:"Trace of main program
100 ! Mai n
110 ! program
130 ! goes
140 ! here.
150 CALL EXAMPLE
160 ! More
170 ! program
180 ! here
190 END
200 SUB EXAMPLE
210 ! subprogram
220 i goes
230 i here
240 PRINT #123:

: PRINT #123: :"Trace from subprogram EXAMPLE"

"Returning to main program" :: SUBEND
As you can see, having the trace file available to your program
can be an advantage.
One disadvantage to sending the trace to a printer is the fact
that very few printers will print a line a few characters at a
time. For this reason, the trace routine will store the output
until a full print line is accumulated. Due to this, several
lines of your program will execute before their numbers are
printed. You can speed this up a little by specifying a short
record length in the OPEN #123 statement.

PAGE 7

EXTENDED BASIC MODIFICATIONS, cont...

1 OPEN #123:"PIO",VARIABLE 40
will cause the trace output to print when 40 characters have been
accumulated. (It will also only use halt the width of your
paper.) NEVER SPECIFY A RECORD LENGTH LESS THAN 9!! The results
are unpredictable if you do! While on the subject, the file
should always be opened in DISPLAY format, VARIABLE record
lengths, and in an output mode (OUTPUT, UPDATE, or APPEND).
Since UPDATE, DISPLAY, VARIABLE are the default settings, the
only time you should specify anything is if you want a record
length other than the default of the device specified in the OPEN
statement.
The trace buffer is printed whenever any of the following occurs:
The next traced line number text would exceed the record length.
The program ends.
The UNTRACE command is executed. UNTRACE does not close file
#123.
A program error is encountered.
A breakpoint is reached.
You stop the program with the BREAK (FCTN 4) key.
Since the break key will create an error if outputting to the
RS232 card, a routine has been added that waits for you to
release the break key before printing the trace buffer. This
wait routine functions if file #123 is open, whether or not the
TRACE is turned on.
If your program closes file #123 any lines executed after the
CLOSE statement will be traced to the screen. It is recommended
that you first print to file #123 before closing it to ensure
that the buffer contents are printed. Use the following line to
close the file:
PRINT #123: ::CLOSE #123
One last feature of the new TRACE routine. If the current line
being traced is not the next physical program line after the last
traced line, an asterisk is printed prior to the current line
number. This only applies if file #123 is open.

PAGE S

EXTENDED BASIC MODIFICATIONS, cant...

NEW FEATURES OF GK EXTENDED BASIC

SCREEN AND CHARACTER COLORS
The screen color has been changed to dark blue, and the character
color has been changed to white. These color changes are in
effect only while in command mode. When a program is RUN the
screen and character colors revert to black on cyan.

CHARACTER PATTERNS AND ERROR MESSAGES
The cursor is re-defined to an underline. Error messages are
changed from all upper case to upper/lower case. If the OpSys
switch on the GRAM KRACKER is in the GRAM 0 position, a new
character set with true lower case characters will be used. In
this character set the zero character is slashed and the 0
character is rounded.

QUIT KEY CHANGE
Upon entry into Extended Basic, the QUIT key (FCTN =) is
disabled. You may use CALL QUITON (see below) to re-enable the
QUIT key.

AUTO LOAD BYPASS
Upon entering Extended Basic, the attempt to run a program named
LOAD from DSK1 can now be bypassed. By holding down any
alpha-numeric key on the keyboard while entering Extended Basic,
the load attempt is bypassed. Any key includes the numeric key
pressed to select Extended Basic from the main menu screen. If
you do not wish to bypass the auto load, you must release the
menu selection key quickly.

CURSOR MOVEMENT
Additional cursor control has been added when entering or editing
a program line. These new movements are implemented by pressing
the SHIFT key along with the FCTN key and an arrow key. Pressing
FCTN-SHIFT S (left arrow) will return the cursor to the beginning
of the input line. FCTN-SHIFT D (right arrow) will position the
cursor after the last non space character in the line.
FCTN-SHIFT E (up arrow) will move the cursor up one line,
provided the cursor is not already in the first screen line of
the input. Pressing FCTN-SHIFT X (down arrow) will cause the
cursor to move down one line, provided the cursor is not already
in the last screen line of the input. These additional cursor
movement controls will also work when responding to an INPUT or
ACCEPT statement in a running Extended Basic program.

PAGE 9

EXTENDED BASIC MODIFICATIONS, cont...

NEW COMMANDS

The -following commands and subprograms have been added to
Extended Basic.

COPY

The COPY command is used to copy a program line or block o-f
program lines to any other location in the program. The format
i s:
COPY starting line - ending line , new starting line , increment
The original line or lines remain intact. The block to be copied
is defined by starting line and ending line. If either of these
numbers are ommited, the defaults are the first program line and
the last program line. However, at least one number and a dash
must be entered (you cannot omit both), and there must be at
least one valid program line between starting line and ending
line. To copy one line you must enter it as both the starting
and ending line number. If any of the above conditions are not
met, a Bad Line Number error will result.
The new starting line number defines the new line number of the
first line in the block to be copied. This number must be
entered. There is no default. The increment defines the line
number spacing of the copied lines and may be ommited. The
default is 10.
There must be sufficient space in the program for the copied
segment to fit between new starting line number and the next
program line following the location where the block will be
moved. If not, a Bad Line Number error message is generated.
This problem can be corrected by using a smaller increment, or by
using RES to open up space for the segment. A Bad Line Number
error also results if the copying process would result in a line
number higher than 32,767.
The COPY routine does not change any program references to the
copied lines. It is an exact copy of the source lines with new
line numbers. A check for sufficient memory space is made before
each line is copied. If space is not available the copying
process is halted and a Memory Full error results. PLEASE NOTE -
the COPY command copies the lines in reverse order. If the
copying process is halted due to insufficient memory space, any
uncopied lines will be at the beginning of the block.
Before the first line is copied, any open files are closed and
all variable values are lost.

PAGE 10

EXTENDED BASIC MODIFICATIONS, cant...

DEL

This new command will delete a line or group of lines -from your
Extended Basic program. The -format is:
DEL starting line - ending line
Starting line and ending line define the block of lines to be
deleted. If starting line is ommited, line deletion will begin
at the first line of the program. In this case, ending line must
be preceeded by a dash. If ending line is ommited and starting
line is followed by a dash, then program lines from starting line
through the end of the program will be deleted. At least one
valid program line must exist between starting line and ending
line. If not, a Bad Line Number error will result. If only one
number is given, without a dash, then that one line will be
deleted, if it exists. If it does not exist, a Bad Line Number
error is generated.
After the DEL command has executed any open files are closed and
all variable values are lost.

CALL EA

This call will pass computer control to the Editor/Assembler,
provided you have choosen the combined Extended Basic and
Editor/Assembler version of the patch program. Any Extended
Basic program stored in memory will be lost and any open files
are closed before the Editor/Assembler is entered.
NOTE — 32K memory expansion is required for the operation of the
Edi tor/Assembler.

MOVE

The MOVE command is used to move a program line or block of
program lines to another location in the program. The format is:
MOVE starting line - ending line , new starting line , increment
The block of lines to be moved is defined by starting line and
ending line. If either of these numbers are ommited, the
defaults are the first program line and the last program line.
However, at least one number and a dash must be entered (you
cannot omit both), and there must be at least one valid program
line between starting line and ending line. To move one line you
must enter it as both the starting and ending line number. If
any of the above conditions are not met, a E-iad Line Number error
will result.

PAGE 11

EXTENDED BASIC MODIFICATIONS, cant.

The new starting line number defines the new line number of the
first line in the moved segment. When the block is moved it will
be renumbered and all references to those lines in the program
will be changed to reflect the new line numbers. The new
starting line number MUST be entered. There is no default. The
increment defines the line number spacing of the moved lines, and
may be ommited. The default value is 10.
There must be sufficient space in the program for the moved
segment to fit between new starting line number and the next
program line fallowing the location where the block will be
moved. If not, a Bad Line Number error message is generated.
This problem can be corrected by using a smaller increment, or by
using RES to open up space for the segment. A Bad Line Number
error also results if the renumbering process would result in a
line number higher than 32,767.
Although moving lines within the program does not increase the
size of the program, this new command requires 4 bytes of program
space for each line to be moved. This memory use is temporary,
but it must be available in order to move the block. If
sufficient memory is not available a Memory Full error results
and no lines are moved. This problem can usually be worked
around by moving the block a few lines at a time.
Before the block is moved any open files are closed and any
variable values are lost.

CALL PEEKS(grom/gram address,numeric variable list)

This subprogram reads data from GROM or GRAM into the variable<s)
specified. It functions identical to the regular PEEK subprogram
except that it reads from GROM or GRAM.
GROM/GRAM addresses above 32,767 must be converted to a negative
number by subtracting 65,536 from the desired address.

CALL POKEG(gram address,value list)

This subprogram writes the data in value list to GRAM at the
specified address. It functions identical to CALL LOAD except
that it writes to GRAM. Assembly language object files cannot be
loaded with CALL POKEG. Use CALL LOAD for that. GRAM addresses
above 32,767 must be converted as described in CALL PEEKG.
NOTE - all GRAMs except 1 2 in the GRAM KRACKER are write
protected when the BANK switch is in the W/F' position. Moving
this switch to either BANK 1 or BANK 2 may cause the Extended
Basic interpreter to crash. Use POKEG with caution!

PAGE 12

EXTENDED BASIC MODIFICATIONS, cant

CALL F'EEKV <vdp address, numeric variable list)

This subprogram reads data from VDP RAM into the variable(s)
specified. It functions identical to the regular PEEK subprogram
except that it reads from VDP.
The VDP address should not exceed 16,383.

CALL POKEV(vdp address,value list)

This subprogram writes the data defined in value list to VDP RAM
at the specified address. It functions identical to CALL LOAD
except that it writes to VDP. Assembly language object files
cannot be loaded with CALL PQKEV. Use CALL LOAD for that.
The VDP address should not exceed 16,383.

CALL QUITON

Makes the QUIT (FCTN—) key functional. There are no optional
parameters. You may need to use this command before running
certain programs that use the QUIT key to end.

CALL QUITOFF

Disables the QUIT (FCTN—) key. The QUIT key is automatically
disabled when you enter Extended Basic.

XB CALLS

The new CALLs described on page 25 of the GRAM
(CALL NEW, CALL BYE, CALL CLSALL, CALL CLOCK,

KRACKER manual
CALL CLKOFF, and

CALL CAT) are also included in this modified version of Extended
Basic. The operation of these CALLs is described in the GK
manual. When executing CALL CAT, pressing the SPACE BAR will
pause the listing and pressing BREAK (FCTN 4) will abort the
catalog.

PAGE 13

EDITOR/ASSEMBLER MODIFICATIONS

SYSTEM SUPPORT

The modified version of the Editor/Assembl er no longer supports
the 99/4 computer. A 99/4A is required. All TI BASIC support
routines (CALL INIT, CALL LINK, CALL LOAD,CALL PEEK, CALL PEEKV,
CALL POKEV, and CALL CHARF'AT) have been removed from the
Editor/Assembler. If you have a program that must be run from TI
BASIC and requires these routines, you must plug an
Editor/Assembler module into the cartridge connector on the GRAM
KRACKER. If you do this, be sure to place the GRAM 1-2 switch in
the TI BASIC position.
There are some assembly language programs that
internal to the Editor/Assembler cartridge. These
not run correctly due to the re-structuring of the
Editor/Assembler module. For these programs you
Editor/Assembler cartridge.

access data
programs will
data i n the
must use your

COSMETIC CHANGES

A large portion of the Editor/Assembler modifications are purely
cosmetic and have no effect on the operation of the package. The
character and screen colors have been changed to white on dark
blue. All menu page headings have been centered and menu item
descriptions are now in upper/lower case. If the OpSys switch on
the GRAM KRACKER is in the GRAM 0 position the new character set
with true lower case characters will be used.

KEYBOARD INPUT MODIFICATIONS

Repeating keys have been added to the keyboard input routine used
at filename prompts. In addition, the ERASE (FCTN 3) key has
been activated. Pressing FCTN 3 will erase the entire input line
at these prompts. A new key and two additional cursor movement
keys have been added. Pressing CLEAR (FCTN 4) will clear the
input line from the position of the cursor to the end of the
line. Pressing FCTN-SHIFT S (left arrow) will return the cursor
to the beginning of the input line and pressing FCTN-SHIFT D
(right arrow) will place the cursor after the last character on
the line.

PAGE 14

EDITOR/ASSEMBLER MODIFICATIONS, cont...

FILENAME RECALL

When you make a menu selection that requires a filename, device
name, or option entry, your last input (up to 30 characters) at
that prompt will be recalled. If you wish to use that entry
again, just press the ENTER: key. If you want to enter a
different name, press ERASE and the input line will be cleared.
You may also edit the recalled input by using the left and right
arrow keys along with the DELETE and INSERT editing functions.
The input line recalled at all EDITOR menu page selections (Load,
Save, and Print) will be the same. (If you LOAD DSK1.EXAMPLE,
then select SAVE from the menu, DSK1.EXAMPLE will be recalled to
the input line.)
NOTE - In order for the filename recal1 feature to operate
correctly, the GRAM 1-2 / TI BASIC switch on the GRAM KRACKER
must be in the GRAM 1-2 position. If this switch is in the TI
BASIC position, meaningless characters will be recalled to the
input line. The input line can be cleared by pressing ERASE.
Also, since Grams 1 and 2 in the GRAM KRACKER are not write
protected, it may be possible for the data stored there to be
destroyed by system crashes or runaway assembly language
programs. If that happens the recalled input line may be
incorrect. Use ERASE to clear the line and then type the correct
name.

ASSEMBLER MODIFICATIONS

The Assembler programs (ASSM1, ASSM2) now load from GRAM rather
than disk. When you select Asssemble from the main Editor/
Assembler menu, the following prompt appears:

Loader switch OFF,
GRAM 1-2 enabled?’(Y/N)

Since the assembler is stored in GRAMS 1 and 2, this switch must
be in the GRAM 1-2 position. The GRAM KRACKER Loader also
occupies space in GRAM 1, so the LOADER switch must be OFF.
After you ensure that the switches are configured properly, press
the Y key and the assembler will load from GRAM. If you have not
configured the switches properly you will get a Checksum Error
when the program attempts to load the assembler. You may also
get a Checksum Error message if the data in GRAM 1 or 2 have been
damaged. Since GRAMs 1 and 2 are not write protected it is
possible for this data to be overwritten by system crashes or
runaway assembly language programs. If you get a Checksum Error
message and the GRAM KRACKER switches are properly configured you
must re-load the GRAM 1 and 2 files.
After the assembler has loaded, operation continues as usual.
The only other change that has been made to the assembler is to
the error messages. They are now in upper/lower case.

PAGE 15

EDITOR/ASSEMBLER MODIFICATIONS, cont...

EDITOR MODIFICATIONS

The editor program (EDIT1) is now loaded -from GRAM rather than
from disk. The GRAM KRACKER switches do not have to be in any
special position for the editor to load. There is a checksum
check made when the editor is loaded. If you recieve a Checksum
Error message when the program attempts to load the editor, you
must re-load the entire XBEA module.
The only other modifications to the editor are cosmetic changes
to the editor prompts.

NEW MAIN MENU SELECTIONS

& - Extended Basic

Selecting menu item 6 wi11 take you to Extended Basic. Any text
in the editor buffer will be lost. If you want the auto load
feature in XB to execute, you must release the 6 key quickly.

7 - Format RAMdisk

This feature works only if you have a Myarc 128K memory card in
your system. When you make this selection from the menu you will
be asked to verify that you want to format the RAMdisk.
Answering N to the prompt will return to the menu without doing
anything. Answering Y to the verify prompt will result in the
following calls to the Myarc RAMdisk:
CALL PART(096,000)
CALL EMDK(5)
Refer to the Myarc manual for an explaination of these calls. If
you would like a different default configuration for the RAMdisk
and print spooler, or a different default RAMdisk drive number,
see the technical section of the instructions. For an occasional
configuration that differs from the Editor/Assembler defaults,
return to Extended Basic and issue the CALLs from command mode.
If your system does not contain a Myarc RAMdisk card, selecting
this option from the menu will result in an I/O Error.

PAGE 16

EDITOR/ASSEMBLER MODIFICATIONS, cont...

8 - Catalog Disk

This menu selection will catalog to the screen any device
connected to the system that contains a "catalog" routine. The
disk controller card contains such a routine, as does the Myarc
RAMdisk and hard disk controllers. For most devices, the device
name must be -followed with a period. For example, to catalog a
disk in drive one, you would respond to the Device name prompt
with:
DSK1.

The catalog information displayed on the screen includes device
name, disk name, sectors available and used, and the file name,
size, and type for each file in the device. The scrollinq of the
listing can be paused and restarted by pressing the space bar,
and can be halted by pressing the break key (FCTN 4). After the
catalog is completed, pressing ENTER will return you to the main
Editor/Assembler menu.

PAGE 17

TECHNICAL INFORMATION

The information presented in this section is intended as an aid
to those persons interested in making further modifications to
the XBEA system. Each GRAM will be discussed separately, with
important memory locations and unused memory space noted. All
memory locations sire referenced in hexadecimal, prefaced by the >
symbol. You may use the Memory Editor provided in the GRAM
KRACKER to make changes if you wish. It is suggested that you
save the modified program to disk with the SAVE MODULE or SAVE
CONSOLE function of the GRAM KRACKER. See the GRAM KRACKER
manual for details on these operations.

GRAM 0

>0724 thru >072A contains the pattern for the zero character (7
bytes)
>07FD thru >0303 contains the pattern for the uppercase 0
character (7 bytes)
The new lower case character set is stored beginning at >1800.
There are 1,792 free bytes of memory in GRAM 0, from >1900 thru
>1FFF.

GRAM 1

The entire memory contents of GRAM 1 are used to store a portion
of the assembler program.

GRAM 2

The remainder of the assembler program resides from >4000 thru
>5207.
There are 3,276 free bytes of memory from >5208 thru >5ED3.
The section of GRAM 2 from >5ED4 thru >5FFF is used by the
Editor/Assembl er to store input lines for recall.

PAGE 18

TECHNICAL INFORMATION, cant...

GRAM 3

The majority of GRAM 3 is used by the Extended E-tasic interpreter.
Important memory locations are described below. Numbers in
parentheses represent the value stored at the location<s).
>635C thru >6363 <>00,>00,>00,>00,>00,>7E,>7E)
This is the character pattern for the cursor used in Extended
Basic.
>693A 004)
This is the screen color for command mode in Extended Basic.
>6948 OFO)
This is the character color for command mode in Extended Basic.
The first hex digit OF) represents the foreground color, the
second hex digit (>0) represents the background color.
>7785 007)
This is the screen color for RUN mode in Extended Basic.
>7789 010)
This is the character color for RUN mode in Extended Basic. The
first hex digit Ol) represents the foreground color, the second
hex digit OO) represents the background color.
There are 2 free bytes of memory in GRAM 3, >77FE and >77FF.
Locations >7800 thru >7FFF are used to store a portion of the
Editor program.

GRAM 4

The majority of GRAM 4 is used by the Extended Basic interpreter.
There are 10 free bytes of memory in GRAM 4 from >97F6 thru
>97FF. Locations >9800 thru >9FFF are used to store a portion of
the Editor program.

GRAM 5

The majority of GRAM Sis used by the Extended Basic interpreter.
There are 511 free bytes of memory from >B601 thru >B7FF and 256
free bytes of memory from >BF00 thru >BFFF in GRAM 5. Locations
>B800 thru >BEFF are used to store the remainder of the Editor
program.

PAGE 19

TECHNICAL INFORMATION, cant

GRAM 6

GRAM 6 contains the remainder of the Extended Basic interpreter
and most of the cade far additional Extended Basic features.
Important memory locations are described below. Numbers in
parentheses represent the value stared at the location(s).
>0123 (>B6)
Changing this location to >00 will prevent the QUIT key from
being disabled upon entry into Extended Basic.
>0789 (>00,>00)
This is the end of the link table used by subprogram calls in
Extended Basic.
There are 1,773 free bytes of memory in GRAM 6 from >D8FB thru
>DFE7. Locations >DFES thru >DFFF contain a branch table for
routines called from other GRAMs. Do not change any values in
this area.

GRAM 7 — C^\u VStVD,) -“\v a U 3 w -

The Editor/Assembler module is stored in GRAM 7. Important
memory locations are described below. Numbers in parentheses
represent the value stored at the location(s).
>E52C (>F4)
This is the character color byte. The first hex digit <>F)
represents the foreground color, the second hex digit 04)
represents the background color.
>E537 OF4)
This byte determines the screen color for the Editor/Assembler
module functions and the screen and text color for the Editor
program. The first hex digit OF) represents the character color
in the Editor. The second hex digit 04) represents the screen
color for both the Editor and the Editor/Assembler module
functions.
>EB79 thru >EB80 008,>0C,>FE,>FF,>FE,>0C,>08,>00)
This is the pattern for the arrow used to mark certain menu
selecti ons.
There are 2,609 free bytes of memory in GRAM 7, from >F5CE thru
>FFFF.

PAGE 20

TECHNICAL INFORMATION, cant...

CHANGING THE RAMDISK FORMAT

As described in the section on the Editar/Assembler, the Format
RAMdisk menu selection mimics the following commands in Extended
Basi c.
CALL PART(096,000)
CALL EMDK(5)
If your Myarc RAMdisk card has memory greater than 128K or you
prefer a different format than above, you can change the
def aults.
The RAMdisk allocation number (096) is stored at >F312 thru
>F314.
The print spool allocation number (000) is stored at >F318 thru
>F31A.
The RAMdisk drive number (5) is stored at >F324.
Use the memory editor in the GRAM KRACKER to change these
locations to the desired values. Be sure to change them in the
ASCII mode. Both the RAMdisk and print spooler allocation
numbers must occupy 3 bytes. NOTE - No error checking is done in
the format routine with the exception of checking for the
existence of the Myarc card. Before changing the numbers in the
locations described above make sure those numbers will work
without error in the Extended Basic CALL statements.
After making the changes, re-save the program to disk with the
Save Module function of the GRAM KRACKER.

PAGE 21

CHANGING THE CHECKSUM FOR THE EDITOR AND ASSEMBLER LOADER

TECHNICAL INFORMATION, cant...

If you make any changes to the Editor or Assembler programs it
will be necessary to change the checksum byte for the program
modified. Also, it is passible that TI produced different
versions of those programs. If so, your Editor or Assembler may
not load without error after installing the XBEA modifications.
To change the checksum for the editor follow these instructions
to the letter !
IE - Using the GRAM KRACKER memory editor, change the byte at

GRAM location >F4DB from >83 to >E3.
2E - Exit from the memory editor and enter the Editor/Assembler.
3E - Select Edit (1) from the main menu, then select Edit (2)

from the Editor menu.
4E - When the Checksum Error message appears, leave the

Editor/Assemb1er and enter the GRAM KRACKER memory editor.
5E - Replace the >E3 byte at GRAM location >F4DB with >83.
6E - Note the value <1 byte) at CPU memory location >E300.
7E — Change the byte at GRAM location >F513 to the value found at

CPU 1ocat i on >E300.

To change the checksum for the assembler, do the following.
1A - Repeat steps IE and 2E above, then continue with step 2A.
2A - Select Assemble (2) from the main menu. Configure the GRAM

KRACKER switches correctly (LOADER OFF, GRAM i~2 enabled)
and press the Y key.

3A - Repeat steps 4E, 5E, and 6E above, then continue with step
4A.

4A - Change the byte at GRAM location >E66F to the value found at
CPU location >E300.

After making the changes, re-save the program to disk with the
Save Module function of the GRAM KRACKER.

PAGE

