THE Bugger

RS232 Debugger For The MYARC 9440
(C) 1989 T and J Software
Written By Jim Lohmeyer

Documentation by Jim Lohmeyer
Edited by Tom Freeman

INTROGDUCTION

THE Bugger is an RS232 debugging system designed on and for
the MYARC 9640 computer, and will run in either the GPL
gimulation, or MDOS modes. Great care has been taken to ensure
that it is fully self-contained so it will neither write to any
memory locations outside of its own boundaries, nor corrupt any
other resource it borrows from the operating system during the
course of its operations. It 1is for this reason that
input/output the debugger handles 1is routed through the RS232
port to an external terminal. By implementing this I/0 scheme,
the program to be debugged will have access to all of the
operating system's resources, including the host keyboard and
screen, other than the RS232/2 port.

The Bugger is also a fully intelligent debugger in the sense
that it knows, at all times, which mode the computer is running
in (TI simulation or MDOS) and how the program has the memory
mapped. By keeping a tab on the status of the operating
conditions, THE Bugger is not confused by a program that switches
the operating mode or juggles the memory map. However, it is
possible for an executing program to map out THE Bugger during
normal operating conditions, so the user should take care not to
do so by accident. [Ed. Note: In MDOS, if THE Bugger precedes
the program being debugged, then it resides entirely in execution
page 0 and cannot be mapped out.]

THE Bugger is bagsed upon RSARUG V3.0. which was used in the
development of the TI 99/8 and MYARC 9640 computer operating
systems, but was never released. However, through extensive
modifications, revisions, bug fixes, and additions, less than 30%
of the original code survives intact. In form and syntax 1t 13
much like TI's DEBUG and other debuggers based on it. The
egsential difference between them and THE Bugger is that the host
screen (used by the program being debugged) is NOT uwsed by THE
Bugger either to input commands or display the information
requested. Rather they are routed through the RS232/2 port to
and from a terminal or another computer. thus not corrupting the
host screen, changing VDP registers etc. Several important
enhancements have also been added, in particular the ability to
set permanent breakpoints and to single step several instructions
at ecnce, rather than just one, with one command.

THE Dugger debugging system PAGE 1

THE Bugger is a joint effort between the author and T and J
software to bring quality developmental products to the 9640
market. The author would also like to recognize Mr. Lou Philips
for his support of this project, and for approaching T and J
Software on the development of such a product.

Special cables may be required for use with THE Bugger. For
instructions on this and changing terminal protocola, please see
the Appendix on p. 20

For more information or questions, please contact:
T & J Software

515 Alma Real Drive
Pacific Palisades, CA 90272

THE Bugger debugging system PAGE 2

CONTENTS

INTRCDUCTION
CONTENTS
LOADING
LOADING IN MDOS
LOADING IN TI MODE
THE COMMAND LINE
COMMANDS
A —— INPUT ASCII TO MEMORY
B -— SET/RELEASE BREAKPOINT
C —— CRU INSPECT/CHANGE
D —— DISASSEMBLE INTC OPCODES
E ~-- EXECUTE TASK
F —— FIND WORD/BYTE EQUAL
K -~ FIND WORD/BYTE NOT EQUAL
M —-- MEMORY INSPECT/CHANGE
N —— MOVE BLOCK
P —-- COMPARE BLOCKS
R —— RTWP VECTOR INSPECT/CHANGE
S -~ SINGLE STEP
T -- DISASSEMBLE AS DATA
W —— WORKSPACE INSPECT/CHANGE
X,Y¥.,2, —— BIAS VALUES
. — DECIMAL TO HEX CONVERSION
., —— HEX TO DECIMAL CONVERSION
; — HEX ARITHMETIC
= — FIND ASCII STRING
@ --— MEMORY MAPPER
/ — RESET THE Bugger
"R — RESET 9640
"B - SPECIAL BREAKPOINT
“C - PERMANENT BREAKPOINT
“T — VDP STATUS REGISTERS
“U - VDP STATUS REGISTERS — DYNAMIC
“Y — WRITE TO VDP REGISTER
SWITCH CPTIONS
“E — COMPUTER MODE
“L - LINE LENGTH
“P - PRINTER OUTPUT
S - DUMP STATUS
‘W - DUMP WORKSPACE
"D - DUMP DISASSEMELY
APPENDIX 1 - CONSTRUCTION OF A NULL MODEM CABLE
APPENDIX 2 - CHANGING THE BAUD RATE

THE Bugger debugging system PAGE 3

LOADING

THE Bugger can be loaded from either of the two 2640
enviromments. Loading procedures will vary greatly in different
circumstances and are described Dbelow. The disk provided
contains the following files:

BUGDOS

BUGGER

BUGGERS6

BUGGERA \

BUGGERC “ In order to fit on an S35D disk. these files have
BUGGERE / been compressed intc a single file BUGGERARC
BUGGERLOW/

LOADING IN MDCS

The simplest method of loading THE Bugger in any environment
is to load it by it=elf for poking around the operating system to
find secrets and fix bugs. The file named BUGDOS has been
provided for this purpose. Simply type devicename.BUGDOS from
the MDOS command line, and the title screen will appear on your

terminal or remote computer running a terminal emulator
thenceforth referred to collectively as "terminal"). If the
terminal is not running, the computer will appear to leck up and
in fact will have to be restarted with CTRL-SHIFT-SHIFT. Note

that the title screen also declares the address range used by THE
Bugger. This information will be useful when vyou are actually
debugging programs.

To actually debug vyour program (henceforth referred to as
the "task"), THE Bugger and the task will need to reside in the
computer simultaneously. Furthermore since the disk supplied
contains only DIS/FIX 80 object code for use with debugging
tasks, and MDOS will accept only memory image files, a little
preparation is necessary. The simplest method 1s to wuse Paul
Charleton's LINK program (a fairware program) or any other
suitable program that assembles object code into MDOS image
files. T.TNK requirea puraly relocatable object code. so you must
write your program without any AORG's - the file BUGGER provided
is also relocatable. Thus you would load THE Bugger, then your
object code, and then (in LINK) type @devicename.OUTPUTFILE. You
now have a MDOS image file suitable for loading, that will start
immediately with THE Bugger and allow you to take contrel of the
task.

You can also load THE Bugger after the task but you would
then have to program the task to branch to the beginning of THE
Bugger. In addition you would lose the advantage of being able
to use the BIAS command to easily start and find addresses in the
task (see pages 12 and 14 for explanations on how to do this).
Furthermore, many programs use buffer areags outside of, and
usually following, the address range of the program, sco loading
THE Bugger after the task cculd be dangerous as well.

Another method of using THE Bugger with your task i1z to
leave a block at least >17EA in length at the beginning, with the
first instruction being a branch to the area after the block, and

THE Bugger debugging system PAGE 4

then LINKing it without THE Bugger. You can then run it alone,
and if there is a problem. quit it., locad BUGDOS over it (it will
only overwrite the block}) and then debug. You can make the task
quit without running by replacing the first branch with BELWP
@>0000 (0420 0000, if you sector edit the MDOS image file).

All things considered, LINKing THE Bugger and the task
together is much easier.

LOADING IN TI MODE

In TI (GPL) mode the usual method of loading will be via E/A
Cption 3. THE. Bugger c¢an be loaded before or after the task,
which should contain only relocatable code or AORG code which
does not interfere with the loading of THE Bugger. The file to
use is BUGGER. The program name for entry is BUGGER. You will
then see the title screen with the address range for THE Bugger,
and can begin to debug the task. Note that the task should not
auto—start or you will not able to enter THE Bugger.

If the task fills toco much of the available space for
relocatable programs (>A000 to >FFFF) or occupies, along with any
possible buffers, at least part of sach of the three 8K blocks
beginning at »>AQ00, >C000, and >EQ0C then you may use the file
BUGGER6, which AORG's at >6000. Entry is still wvia defined
address BUGGER.

For use with Extended Basic, four files are provided on the
disk: BUGGERA, BUGGERC, BUGEERE, and BUGGERLOW (they have been
archived and compressed intoc one file BUGGERARC using Barry
Boone's Archiver 3.02 - vyou will have to reverse the process
first). These are uncompressed cbject code files, suitable for
loading in XB, and which ACRG at »AC00, >C000, >E000 and RORG
regpectively. Use of one of these files should enable you to
load almeost any XB assembly program that you write. If your
asgsembly code is relocatable you can use BUGGERA, which should
leave plenty of room for the XB program at the top of high
memory. If your code ACORGs in high memory, BUGGERLOW will fit
inte the available low memcry space. BUGGERC and BUGGERE are
provided for unusual situations, but be careful with BUGGERE
since it leaves little room for the ¥XB program at the top of high
memory {(if the XB program serves only to load the assembly code
then there will be no difficulty). Of course these files are
loaded via the usual CALL INIT :: CALL LOAD("DSK1.TASK) :: <CALL
LOAD ("DSK1.BUGGERA") :: CALL LINK({("BUGGER")} etc. that are
oublined in Lhe XB manual, and will not be reiterated here.

THE Bugger debugging system PAGE S

THE COMMAND LINE

THE Bugger uses one letter commands to perform cperations.

Some punctuation marks are also used, in addition to the control
key together with a character. The latter will be dencted with a
preceding the character, e.g. "R. The commands may be followed
by up to three parameters labeled P1, P2, and P3, and if so0, as
So00n as you type the command letter, without the return Key, a
space and Pl= will follow the command letter on the terminal

screen. The parameters may be followed by a special terminator
character to alter the command's function, and are listed with
each command. The spacebar will take you from one parameter to

the next, assuming multiple parameter commands, and the return
key will begin execution of the command. ~. (Ctrl period) will
abort most commands, as well as abort displays before they are
finished. In all fellowing examples, < and > will refer to user
input. For example:

<D> P1=<20090><{space> P2={4000>(return>

would indicate that you typed D, then Pl= appeared on the screen.
You then typed 2000 and pressed the space bar, following which P2
appeared on the screen. After that you typed 4000 and pressed
the return key. This would disassemble a block of memory from
22000 to >4000. When you finished the two inputs only D Pl1l=2000
P2=4000 would appear.

Please note that all numbers input by the user in THE Bugger
must be in hex notation, buf that you do not need-to (indeed must
not) type the > character usually used to denote hex. If you
make a mistake in inputting a number vyou cannot backspace.
However only the last four characters input are used by THE
Bugger, so just keep typing until you get what vyou want. For
example if after Pl= you type 1234AB78, THE Bugger will set Pl
equal to AB78. If you type less than four characters, THE Bugger
will insert leading 0's to make a total of four, e.g. 1A will be
set by the program to >001A.

In the functions allowing inspection/changing with one

parameter input, a "-" will back up to the previous address, and
the gpace bar will advance to the next.-

THE Bugger debugging system PAGE &

COMMANDS

A -- INPUT ASCII TO MEMORY

Examples: <A> P1=<A000space> P2=<AQQ0E<retura>
or <A> P1=CA000><gpace> PZ=<{return>

Allows for typing of ASCII text from the spéecified address
in Pl to the address in P2 (in the first example, 14
characters from >A000 to »A0CD inclusive). As you reach the
limit of characters on one line (16), the cursor will jump
to the next and display the current address, however you may
just continue typing continucusly. If you type <return>
only for P2 (as in the second example), then the input will
be transferred to memory beginning at Pl wuntil it is
terminated by °. (control period). If the address range Iis
terminated by V then the transfer is to VDP memory. (¥cu
can see text typed on the screen by using V and the locatian
of the screen image table.) [Ed. DNote: For those familiar
with DEBUG, there is no 6 termination, since the program
rung in MDOS as well as GPL mode, and there is no GROM in
MDOS.] '

B —-—- SET/RELEASE BREAKPOINT

Examples: P1=<29A4>{return>
or Pl=<{return>
or P1=(28A43{~>
or Pl=(->

Sets or releases breakpoints at the address specified in P1.
If the address is terminated by <return> then the breakpoint
is set, if by a <-> then it is cancelled. 1If no address 1is
specified in Pl then <return> will list all breakpoints
currently active, and <-> will release all breakpoints. The
list of current breakpoints carries the following prefixes:

"N*" — nnrmal breakpeint

"g" — gpecial breakpeoint

"P" - permanent breakpoint
{(for explanation of special and permanent breakpoints, see
page 17). These are one-word breakpoints and can be set
consecutively.

The B command sets pnormal breakpoints, that is execution of
the task will halt at the first breakpoint it reaches, and
the breakpoint will he releaged. You will see on the screen
the work "break" plus information from any switch options
that have been turned on (see page 20 for these). As you
use THE Bugger. be sure that there is always at least one
breakpoint active before vyou set the task running, or you
will not be able to take control again.

Note that the task halts before execution of the instruction
at the specified address, although that instruction is
listed (if disassembly is turned on).

THE Bugger debugging system PAGE 7

C -- CRU INSPECT/CHANGE
Example: <C> P1=<1100>}<return>

Reads the contiguous 16 bits starting at the base address
speciried by Pl (e.g. >1100, the disk contreller card).
The bits are displayed in hex, and you may change them if
you wish by typing the appropriate hex number. <J<return>
will exit the command. [Ed. Note: The author's coriginal
intent was for the <{space> termination to advance the CRU
bits displayed to the next 16, however this may not work
properly]

D -- DISASSEMBLE INTO OPCODES

Examples: <D> Pl=<A000>{space> P2=<A020><return’>
or <D> P1=<A000>{return>

Will disassemble memcry starting at the address specified in
Pl to the address in P2. The address of the start of each
instruction, as well as the contents of that address are
listed before the opcode. If only Pl 1is given, the
disassembly starts at that address, and continues one
instruction at a time while the space bar is being pressed,
and ends when the return key is pressed. For termination of
the block disassembly before it is finished, press
(control period). ‘

E -- EXECUTE TASK

Examples: <E> Pl=<return>
or <E> P1={1BEA><return>

Begins execution of the task using the RTWP vectors, which
have been set using the R command. Be sure to set them
before using the E command the first time, as they have
arbitrary values when THE Bugger is entered the first time.
You may specify the entry address by inputting it before
pressing <return>. However the WP vector will not be set
correctly unless the task does 1t right at the beginning.
If you change the entry address from that present in the R
command, be careful that the WP is still the same. Note
that when the tagk is halted with a breakpoint, the PC
(program counter) 1is correct, so that you may use the E
command without P1 to continue after inspecting whatever you
wish.

THE Bugger debugging system PAGE B

F -

FIND WORD/BYTE EQUAL

Examples: <F> P1=(A000> P2=<{B0O00> P3=<(4142Z>{return>
or <E> P1=<(A000> P2=<(B000> P3=<K41>{~>

Searches from the address in Pl to the address in P2 for the
hex number (word in first example, byte in second example)
gpecified in P3. <return’> as terminator will search on even
addresses for the word value in P3 and <-> will search at
each address, odd or even, for the byte value in P3. All
matches will be listed, so if the address range is large and
the number of matches is also, then the first will scroll
off the screen.

FIND WORD/BYTE NOT EQUAL

Examples: <K> Pl-(AOOO)QP2=<BDOO> P3=<4142>{return>
or <K> P1=<(AQ00> PZ2=~<B000> PI=<41><{—->

operates exactly like the F command except that it lists all
addresses and their contents that do not match. Since in
most cases there will be a large number of ‘'non-matches,”
the 1list may be very large. In this command ~. dees not

appear to stop the display - you will just have to wait for
it to end.

THE Bugger debugging system PAGE 9

M -=- MEMORY INSPECT/CHANGE

Examples: <{M> P1l=<C000> P2=<CL00>{return>
or <(M> Pl=<{C000>return>

Lists all memory contents from the address in Pl to the
address in P2 in a block display, with the number of words
per line dependent on the line length set by THE Bugger for
the terminal. Or, as in the gecond example, dislays the
memory content of the address in Pl and allows you to change
it or accept its present wvalue. In the latter case THE
Bugger will display, for example:

Co00= 5252
You may then press <return> to accept the value and go on to
another command, <space> toc accept the value and go on to
the next address where the contents will be similarly
displayed, <-> to accept the wvalue and back up to the
previoug addrezaz, or input a new wvaluce and then terminate
with <return>, <space>, or <-> to exit., go on. or back up.
In the last three cases you would see, for example:

M P1=C0O00
C000= 3252 <3151 Xreturn>

or
M P1=C000
CO0O= 35252 <5131>{s3pace>
C002= 5353 (7>
or

M P1-C000 _
CO00= 5252 <5151>->
BFFE= 5050 <7>
{where 7 would represent your next input).

The M command is one of the most useful in THE Bugger. since
in debugging the task you may find that you need to change a
value at a given location, or you may find that an
instruction was wrong and you can then actually change it
(if vyou can determine what the hex value would be) without
changing the source code and reassembling.

You may inspect or change VDP addresses in exactly the same

way by appending a V to the address, except that only byte
values are given.

THE Bugge+ debugging system PAGE 10

S —-—

SINGLE 5TEP

Example: <S> Pl=<return>

or <8> Pl=<6>{return>

or <S> Pl=JIC000>X -=>

or <S> PL=<DO00><+>
Causes THE Bugger to single step using the special
capabilities of the 9640, and is one of the most powerful
commands of the program. If <return> 1is pressed without
input for Pl then THE Bugger will step a single instruction.
If a number is input for P1 and <return> pressed then THE
Bugger will single slep that number of instructioens. TIf the
input for P1 is terminated with a <-> then Pl becomes the
address to single step to, and if it is terminated with a
¢+> then single stepping will proceed until the contents of
address P1 are altered from the current state. Note that
because single stepping is done at an exceedingly slow rate,
it is dangerous to single step through VDP routines and the
operating system of the computer.

In all cases, as each instruction is stepped through, the
word ‘“step” is written to the screen and then additional
information is displayed if any or all of the three switches
*5, *W, and "D have been turned on. FPlease see page 20 for
an explanation of what is displayed.

There is one case in which you cannot single step. If you
have stopped at a permanent breakpoint, then THE Bugger's
gpecial code {an XOP} is ready to go back into the address
pointed to by the PC. Since the S command also uses that
location, the single stepping cannot be done and if you try,
execubtion will in fact proceed until the next breakpoint.

DISASSEMBLE AS DATA

Examples: <T> P1=<A000<space> P2=<{A020>{return>
or <T> P1=<{A000>return>

Functions exactly as does the D command, only the
disassembly is one word of DATA.

THE Bugger debugging system PAGE 13

W —— WORKSPACE INSPECT/CHANGE

Examples: <W> Pl=<return>
cr <W> Pl=<3pace>
cr {W> PLl=<AXreturn:>
or {W> Pl=<A>{space>

Will display and allow changing of the workspace registers.
It Pl= is followed by <return> all sixteen registers of the
WP pointed to by the R command and their values are
displayed. If <{space> is used then each register beginning
with RO is displayed and you are allowed to change 1it.
{space> will take you to the next register whether or not
there has been new input, and <return> exits the command.
If <-> 1is pressed after a register is displayed or changed
the previous register is displayed. You may also enter a
register number (in hex., single digit) and then that
register is displayed immediately. Subesequently the command
behaves as if you had started with RO.

X.Y,Z, - BIAS VALUES

Examples: <X> A000 <1BEA><return>
or <¥> 1000 <2000 >Creturn>
or <2> 0040 <3000><return>

X, Y, and Z are optional bias wvalues that can be set
independently. The previous value is digplayed first (note
the defaults above, set by THE Bugger) and you are then
given the option to change it, or accept the present wvalue.
If the bias letter is appended to any hex value, e.g.
<0000X>, input for a parameter, THE Bugger will set the
value of the parameter to the sum of X and the input value.
For example. using the values listed above, if yYou type
0000X for Pl= then THE Bugger sets P1=1BEA. or if vou type
1234Y for P2 then THE Bugger sets P2=3234.

As explained under the R command, this can be particularly
useful 1if you have a list file with all relocatable
addresses on it, as the beginning of your program will begin
with address 0000. In the example above, X was set to 1BEA
because the length of THE Bugger is 17EA bytes, and in MDOS
it begins at 0400 if loaded first.

THE Bugger debugging system PAGE 14

-- DECIMAL TO HEX CONVERSION

Example: <.> <512>return>
terminal will display =0200 on the same line

simply converts the decimal number input into a four digit
hex number and displays it. Whole numbers from O to 65535
can be input, but not negative numbers. If a number larger
than 65535 is input. which would result in a hex number with
5 or more places, only the last four are displayed.

There is a minor bug in THE Bugger in that Pl= should Dbe
displayed after you input . but it isn't.

-— HEX TO DECIMAL CONVERSION

Example: <,> P1=<0200>return>
terminal will display 512 on the next line

Converts the number input into P1 (one to four digits) into
a decimal number and displays it. In this case, numbers
from >8000 to >FFFF are displayed as negative decimal
numbers. :

-- HEX ARITHMETIC

Example: <;> P1=<{1234~> P2=<{567>{return>
terminal will display:
H1=1234 H2=567
H1+H2=179R
H1-H2=0CCD
H1*H2=0062 S6EC
H1/H2=0003 Remainder=01FF

displays the four major mathematical functions using the
values input for Pl and P2.

THE Bugger debugging system PAGE 13

= -- FIND ASCII STRING

I\R -

Example: <=> P1=<A0CO0> P2=<(B0O00>
Enter String to Find (30 char max)
{yocur string><return>

Searches for an ASCII string of up to 30 characters,
starting with the address in Pl and ending with that in P2.
It will list only the first match, or inform you that it is
not found. THE Bugger begins the search at each address in

the range Pl to P2, so that if the string begins with the
adddress at P2, then a match 18 made.

MEMORY MAPPER

Example: <@8> Pl=<CEF> P2={(6>return)
or <@> Pl=<return>

Maps the physical page number in Pl into the execution page
number in P2. If <return> only is pressed for Pl then the
current page map 1is displayed (eight coxccocution page
numbers). A minor bug has occurred in that the execution
pages are sometimes listed as 10 to 17 rather than 01 to 07.

You must be very careful not to map out the page(s) in which
THE Bugger is contained, or the computer will freeze up.
However it does allow you to investigate all the physical

pages of the 9640, by mapping them into an unused execution
page.

RESET THE BUGGER

Displays the title screen and re—-initializes the RS232 card.

RESET 9640
Resets the computer by performing a BLWP @0.

THE Bugger debugging system PAGE 16

~g -

AC_

SPECIAL BREAKPOINT

Examples: <"B> P1l=<{29R4>return>
or < B> Pl=<(return>
or <°“BY P1-<29A4><{ >
or <"B> Pi=<{->

Functions like the normal! Dbreakpoint ({(B). only after
breaking to output the word '"hreak" and any data signalled
by the switch options it does not return to the command
line, but keeps on executing the task, and the breakpoint is

cleared. Pressing <return>, <-2> or <{data’>{-~> function to

list all the breakpoints., clear all the ©breakpoints, or
clear one breakpoint, as with the B command. If a
breakpeoint of one type i3 set at a given address , it must
be cleared before using another type at that address, or the
first type will remain.

PERMANENT BREAKPOINT

Examples: ("C> Pl=<29A4><return>
or <"C» Pl={return>
or < C> Pl=<29A4><->
or £<"C>» Pl=l{-> -

Functions like the normal breakpoint, but will remain 1in
memcry and not be reset atter 1t 18 executed. THE Bugger
takes great care to ensure that a permanent breakpoint will
be removed from the task long enough for the original
instruction to be executed when an E command is performed
directly after a permanent breakpeint. Pressing <return>,
<{-> or <data>{-> function to list all the breakpoints, clear
all the breakpoints, or clear cne breakpoint, as with the B
command. If a breakpoint of one type 1s set at a given
address |, it must be cleared before using another type at
that address, or the first type will remain.

This command 1is especially wuseful when vyou wish to

repeatedly examine data after the same address in the task,
but under different circumstances.

THE Bugger debugging system PAGE 17

A.-lr_

Ny -

Ay -

VOP STATIUS REGISTERS
Example: <"T> Pl=<return>

Displays the contents of the nine VDP status registers.

VDP STATUS REGISTERS - DYNAMIC
Example: <{"U> Pl=<{6>{return>

Dynamically displays the contents of the VDP status register
contained in F1.

WRITE TO VDP REGISTER
Example: <"V> Pl=(XXYY>return>

Writes the value YY to the VDP register XX

THE Bugger debugging system PAGE 18

AE -

AL -

SWITCH GQPTIONS

The following ‘“switches” which in each case toggle between
two modes, are available at any time. Default mode 1is OFF
in all cases.

COMPUTER MCDE

Toggles the computer Dbetween MDOS and TI modes and maps
itself accordingly to accomodate the mode switch.

LINE LENGTH

Toggles the length of the output line between 40 (OFF) and
80 {ON) columns to accomodate differsnt terminals or
computers.

PRINTER CUTPUT

This option is not available. 1In order teo print your output
vou should use the terminal to log to disk or printer. If
"L is toggled to 80 columns, the output will be in neat 80
column format, even if your terminal screen is 40 columns
and does not appear even. In any case most output 13 less
than 40 columns, except rfor memory dumps.

THE Bugger debugging system PAGE 19

~g -

Aw_

D -

DUMP STATUS

Toggles the display of the wvalues of WS, PC, and ST, as well
as symbols "disassembling"” the value of the {irst 6 bits of
the status register. These are:

- Legical greater than

— Arithmetic greater than

— Equal

- Carry

QOverflow

— 0dd parity

Note that for a breakpoint, the listed values for WP and ST
are those prior to execution of the instruction at the
breakpoint {the PC indicates the address of the
instruction). TFor single stepping they are listed tLtwice,
both Dbefore and after execution of the instruction. Thus
you will see on the second line the PC after the instruction
and the new (possibly changed} values of WS and ST.

oMt

DUMP WORKSPACE

If ON dumps display of the values of the workspace registers
{(pointed to by the WS of the R command). A slight bug is
present here in that in the case of single stepping the
values prior to execution of the instruction are listed but

not after. You can still inspect the WS after the step by

entering the W command without parameters.

DUMP DISASSEMBLY

When this switch i1is O©ON, disassembly of the current
instruction that has just been single stepped, or the next
instruction to be carried out after a breakpoint has been
executed, 1s displayed to the terminal, as iz the address
and its contents (first one, if the instruction takes two or
three words). NOTE: each time vou execute the D command
this switch is turned off!

THE Bugger debuéjing system PAGE 20

APPENDIX 1 - CONSTRUCTION OF A NULL MODEM CABLE

The author used a TI99/4A runniag FAST-TERM at 2400 haud and
even parity as a terminal during the writing and debugging of
this program. [Ed. Note: TELCO was tested and worked at 7EL.
We were unable to get MASS TRANSFER to work because of inability
to change parity] To connect your terminal's port, or the seccnd
computer's RS232/1 port to the host computer's (the one running
THE Bugger) RS232/2 port you will need a special cable. If vyou
have a modem cable and TI's RS232 Y cable/splitter ycu should be
able just to connect the modem cable to the RS232/2 plug of the Y
cable (which for some strange reascon is labelled "PORT 1" on
ours!). Thisgs worked in our system. You may not want to disable
your modem c¢able however, so we are inecluding the correct pin
connections to make a dedicated cable, Please note that the
information in the TI RS232 manual is incorrect.

Terminal or. computer Computer with

with term. emulator THE Bugger
1 1
2 16
3 14
1 19
7 7
20 13

APPENDIX 2 — CHANGING THE BAUD RATE

To. change the baud rate for THE Bugger's output, find the
following code near the beginning of the program: 4B0O 0008 0000.
The 0008 occurs at byte >D0 of sector 1 of BUGDOS, b. >6C of s5. 2
in BUGGER and BUGGER6, and b. >1A of 5. »4 in the uncompressed XB
files. Change the 0008 according to the following table:

BAUD RATE CHANGE TO
110 0000
3a0 00062
600 0004

1200 0006
2400 0008
4800 000A
9600 000C
19200 O0OOE

Note that if you make a change in an uncompressed file you must
change the 7 to an 8 before the checksum at the end of the line.

THE . Bugger debugging system PAGE 21

T And J Software - LIMITED WARRANTY

T and J Software warrants THE Bugger Ver. 1, which it
manufactures, to be free from defects in materials and
workmanship for a period of 20 days from the dete of purchase.

During the 90 day warranty period T and J Software will replace

any defective product at no additional charge, provided the
product is returned, shipping prepaid, to T and J Software. The
Purchaser is responsible for insuring any product so returned and
assumes the risk of loss during shipping.
Ship to:

T and J Software

515 Alma Real Drive

Pacific Palisades, CA 20272

WARRANTY COVERAGE - THE Bugger praogram is warranted
against defective material and workmanship. THIS WARRANTY
IS vOID 'IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR

OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

REPLACEMENT AFTER WARRANTY - After the 920 day Warranty
pericd bas expired you mavy return any original defective
diskette, along with a check far $4.00 to cover shipping and
diskette costs, and we will replace it.

