
 

GenLINK 

v1.00 

 

Reference guide. 

(C) Copyright 1989 

J. Paul Charlton 

ALL RIGHTS RESERVED 



 



 

CONTENTS 

   Page 

Introduction ....................................................................................................1 

Overview ........................................................................................................1 

Using GenLINK .............................................................................................2 

Creating a Control file ...................................................................................3 

Commonly used commands: 

ADD ...................................................................................................4 

DEBUG ..............................................................................................4 

LIBREF ..............................................................................................5 

SAVEALL .........................................................................................5 

General commands: 

COMMENTS .....................................................................................7 

EXIT ..................................................................................................7 

HELP..................................................................................................7 

MDOS ................................................................................................7 

Commands for building fragmented images: 

BLOCK ..............................................................................................8 

CLEAR ..............................................................................................9 

COPY .................................................................................................10 

PAGES ...............................................................................................10 

PSAVE ...............................................................................................12 

RESET ...............................................................................................13 



 

Commands which provide special information: 

EVAL .................................................................................................14 

LIST ...................................................................................................14 

STATUS ............................................................................................14 

SYMTAB ...........................................................................................15 

UNDEF ..............................................................................................15 

Linker expressions .........................................................................................16 

Object file format ...........................................................................................17 

Library file format..........................................................................................21 

Image file format............................................................................................23 

Debug file format ...........................................................................................25 

Example control file (MDOS image) .............................................................26 

Example control file (4A image) ...................................................................27 

LIB_4A ..........................................................................................................A.1 

LIB_MDOS....................................................................................................B.1 



INTRODUCTION 

GenLINK is useful for any person who wants to create programs in image format for 

MDOS or the TI-99/4a.  It is also useful for people who wish to create GPL programs in 

image format. 

GenLINK is a program which translates "Tagged Object" files into "Program Image" 

files. 

GenLINK's primary features are: 

 

1) runs from MDOS 

2) no restrictions on size of image programs 

3) can be run both as a batch file and interactively 

4) can be used to create "SYSTEM/SYS" style program images. 

5) will create symbol files for a symbolic debugger 

6) complex equations using REF/DEF symbols can be used instead of hard-coded 

constants. 

7) can resolve REF symbols from tagged object library files. 

8) can build program images which aren't contiguous in memory. 

9) includes libraries for MDOS and TI-99/4a programmers. 

10) can be used to create program overlays which load at common address, will 

resolve REF/DEF between modules at the same address. 

11) REF/DEF symbols can have be up to 31 characters in length. 

 

OVERVIEW 

GenLINK uses five different types of files during the course of its execution, these will 

be described briefly now. 

"LINK" is the MDOS program file which reads the control file (or keyboard input), 

tagged object files, tagged object libraries and creates the program image output files. 

Control file (or keyboard input), this file contains commands which must be executed by 

GenLINK in order to create the program images files from the tagged object files and the 

tagged object libraries.  A control file (if keyboard input is not used) must be created by 

the user using a standard text editor which saves files in Dis/Var 80 format. 

Tagged Object file(s), this type of file is usually created by an assembler (or compiler) 

and contains all of the information needed to build a part of the program image file.  It 

may include information to be passed on to a symbolic debugger.  

Tagged Object library(s), this type of file is a collection of tagged object files which have 

been placed into one larger file via a Librarian program (such as GenLIB.) It generally 

contains many simple, often-used, subroutines.  This file also has an index which enables 

GenLINK to quickly load only the sections which are needed to include referenced sub-

programs.  GenLINK comes with two predefined libraries, "LIB_MDOS" with routines 

useful to MDOS programmers, and "LIB_4A" with routines useful to TI-99/4a 

programmers. 

Debugger symbol file, this type of file contains information needed by a symbolic 

debugger.  It has records for different types of symbols with line numbers and filenames 

for each symbol. 



 GenLINK v1.00 2 

USING GenLINK 

GenLINK is executed from an MDOS command line or from within an MDOS batch file.  

You must perform the following actions before using GenLINK: 

First, MDOS must be able to find the file "LINK" somewhere in your current command 

path (set with the "PATH" command in MDOS.) 

Second, you must create all tagged object files which are to be included in the resultant 

program image file. 

Third, GenLINK must be able to write to the program image and (optional) debugger 

symbol files.  This means that your destination disk can not be write protected, and that it 

must have enough free sectors to allow the files to be written. 

Recommended (optional), you should create a Dis/Var 80 control file for the linker. 

Continuing with the assumption that the previous conditions have been met, GenLINK is 

invoked from MDOS with the following command format: 

LINK [control_file]   (brackets indicate optional items) 

If no control file was specified, GenLINK will prompt you for keyboard input.  

Otherwise, it will read one line at a time from the control file and process each line as if it 

had been typed from the keyboard. 



 GenLINK v1.00 3 

CREATING A CONTROL FILE 

Control files may be created with any editor which can save files in a Dis/Var 80 format.  

You may have one command per line in the file, and you may have comment lines.  Each 

line in the control file must begin with a non-blank character for GenLINK to recognize it 

as a valid command. 

Control files are most useful when you want to run the linker in a completely automatic 

mode, from a batch file, or as part of an update batch file created by GenMAKE. 

"EXIT" must be the last command executed in the control file for completely automatic 

operation.  If GenLINK does not find an "EXIT" command before it finds the end of the 

control file, it will prompt you for keyboard input. 



 GenLINK v1.00 4 

Commonly used commands: 

 

ADD 

syntax: ADD object_filename 

This is the command you will probably use the most. 

The first function performed by the ADD command is to read the RORG length header 

from the object file.  ADD then checks all defined memory blocks, in the order that the 

memory blocks were defined, and uses the first memory block it finds which has enough 

room for the RORG part of the object file.  (You really don't need to worry about 

memory blocks if you are building simple MDOS programs, since GenLINK defines a 

default memory block which is suitable for most of your needs.  Memory blocks are 

explained in the section on "fragmented images".) 

After finding a memory block with enough room, the ADD command loads the entire 

object file into memory, and builds tables for all REF, DEF, FILE, and DEBUG symbols 

defined in the file.  No REF symbols from other object modules are resolved yet.  If there 

is an error during the execution of the ADD command, the tables of all symbols which 

had already been found in the file are flushed. 

Once the ADD command successfully loads the file, it copies all of the newly defined 

symbols into tables which hold globally defined symbols during the link process.  ADD 

then goes through the table of new DEF symbols, and checks to see if any of them would 

resolve outstanding REF symbols from any previously loaded module. 

You will generally want to load the object file with a program's entry point first.  The 

object file with the entry point must be small enough to fit in the first defined memory 

block, and the first word(s) of data in the object file must be executable instructions for 

the program's entry point (This is not applicable for GRAM and ROM image files.) 

 

DEBUG 

syntax: DEBUG debug_filename 

The DEBUG command causes GenLINK to make a file containing all of the DEBUG and 

FILE symbols which were defined in previously loaded object modules. 



 GenLINK v1.00 5 

 

LIBREF 

syntax: LIBREF library_filename 

The LIBREF command causes GenLINK to search for the name of each unresolved REF 

symbol (from its global REF table) in the index of the specified library file.  If the symbol 

is found in the index of the library file, the portion of the library file which contains the 

symbol will be loaded in the manner described in the ADD command. 

The LIBREF will search the index of the specified library until it recognizes that no 

symbol in the REF table is in the index. GenLINK will attempt to resolve REFs generated 

in loading part of the library by continuing to search the library index. 

 

SAVEALL 

syntax: SAVEALL image_filename[,type] 

The SAVEALL command directs GenLINK to save all currently defined memory blocks, 

starting with the first memory block, to a sequence of files whose names begin with the 

specified image filename. 

Each memory block will be saved to a separate image filename. If the amount of space 

used in any memory block is larger than the maximum file length for the image type 

specified, the block will be broken into smaller blocks which are all at least as small as 

the maximum allowed file length for that image type. MDOS fast-image format is the 

default for the SAVEALL command. GRAM image files are also fragmented at points 

where they would cross an 8k-byte boundary address. 

The sequence of filenames generated by the SAVEALL command as it executes begins 

with the provided image filename.  If there is more than one file in the sequence, each 

filename after the first file is generated by adding one to the ASCII value of the last 

character in the previous filename in the sequence.  This sequence is not compatible with 

the sequence used by GRAM image files.  (The proper sequence for GRAM image files 

may be generated by specifying the first filename to be "<filename>0", then renaming 

"<filename>0" to "<filename>" once the SAVEALL command is complete.  This rename 

process may be done automatically in the control file by using the MDOS command of 

GenLINK.) 



 GenLINK v1.00 6 

The "types" recognized by SAVEALL are:  

 

0,1 MDOS fast-ram image. 

 max length = >3DFA, flag byte = 'F' 

 

2,3 MDOS slow-ram image. 

 max length = >3DFA, flag byte = 'G' 

 

4,5 TI-99/4A program image. 

 max length = >1FFA, flag byte = >00 | >FF 

 

6,7 GRAM program image. 

 max length = >2000, flag byte = >01..>08 

 

8,9 TI-99/4A rom bank 0 at >6000 

 max length = >2000, flag byte = >09 

 

10,11 TI-99/4A rom bank 1 at >6000 

 max length = >2000, flag byte = >0A 

 

12,13 TI-99/4A 4k rom bank at >6000 (like Mini-Memory cart) 

 max length = >1000, flag byte = >0B 



 GenLINK v1.00 7 

General Commands: 

 

COMMENTS 

syntax: *<any text you want until end of line> 

Any line whose first character is an asterisk, "*", is ignored by GenLINK.  COMMENTS 

are useful for documenting various part of a control file, so that you can remember later 

on why you did things in a certain way.  COMMENTS are also useful for explaining the 

logic of what you did to someone you will never meet, if you plan to distribute your 

control files to other people. 

 

EXIT 

syntax: EXIT 

The EXIT command causes GenLINK to return to MDOS. 

 

HELP 

syntax: HELP 

The HELP command provides a list of all commands recognized by GenLINK, and a 

brief summary of the correct syntax for the command. 

 

MDOS 

syntax: MDOS <mdos command string> 

The MDOS command allows you to execute any internal command of the Command 

Line Interpreter.  Functions such as DIR and DEL are most commonly used in this 

manner.  



 GenLINK v1.00 8 

Commands for building fragmented images: 

 

BLOCK 

syntax: BLOCK <start address>,<end address> 

The BLOCK command is used to define disjoint areas of memory where object files may 

be loaded.  It is most useful for defining memory overlays, or images programs which 

make use of all available memory on the TI-99/4A. 

The most common use of this (TI-99/4A programmers) is the following two lines: 

BLOCK >A000,>FFD8 

BLOCK >2000,>4000 

These two lines set up an object code environment which allows you to use all of the 32k 

expansion memory for your image code.  

Both the start_address and the end_address specified in the BLOCK command are 32-bit 

linker expressions.  The BLOCK command only uses the least significant 16-bits of any 

linker expression as the boundaries for the block. 

You are allowed to specify a block which overlaps other blocks you have defined.  Users 

of GenLINK are invited to figure out some use for this capability. 

Use of the BLOCK command in conjunction with the PAGE command allows you to 

easily define overlay code with REF/DEF symbols to other overlays at the same address 

(see examples.)  

You must define a BLOCK for each range of addresses you plan to load with AORG 

code, so that the SAVEALL command knows to create an image of the memory 

containing the AORG code. 

Blocks are prioritized for loading in the order you define the blocks. 

You may view your current block definitions with the STATUS command. 



 GenLINK v1.00 9 

 

CLEAR 

syntax: CLEAR 

The CLEAR command is used to erase all of your current block definitions. It is most 

useful when you are building program overlays which reside at the same range of 

memory addresses. 

For overlays, you'll need to use the PAGES command. The examples for overlays are 

included with the PAGES command.  

Also, at times (not very often), you will have an application in which you want to save 

the blocks in a different order than that in which you defined them, or you may want to 

save areas of memory which weren't loaded because of your initial block definitions. 

For these applications, you will want to redefine the block definitions between the load 

and save steps.  The CLEAR command lets you accomplish this by erasing all of your 

current block definitions, so that you can define new ones. 

The sequence of commands you might want to use is: 

BLOCK a,b 

BLOCK c,d 

ADD   file 

ADD   file 

CLEAR 

BLOCK e,f 

BLOCK g,h 

SAVEALL 

The ADD command will only load code into the area defined by the ranges [a-b] and [c-

d].  The SAVEALL command will save memory in the range [e-f] as image file(s), then 

will save memory in the range [g-h] as image file(s).  The program entry point should be 

at address "e". 

This command is most useful when you don't wish to place your program's entry point at 

the beginning of the program.  You can do the following in such a situation: 

BLOCK a,b 

ADD   file 

CLEAR 

BLOCK ENTRY,b 

BLOCK a,ENTRY 

The previous procedure will cause the ENTRY address of the program to be the first 

address in the first image saved for the program. 

 

COPY 

syntax: COPY <source>,<dest>,<length> 



 GenLINK v1.00 10 

In the COPY command, each of the specified values are 32-bit linker expressions.  Only 

the least significant 16 bits of the "length" value are used as a byte count. 

The source address specified is the address of the first byte of data to copy.  The 

destination address is the address where the first byte copied is to be placed.  The 

specified length is the number of bytes to be copied. 

The COPY command correctly copies overlapping source and destination regions (which 

unfortunately means that it can't be used to "fill" memory with a byte pattern.) 

You will probably not need to use source or destination addresses larger than 16-bits 

unless you understand how to use more than 64k while you are building overlays, or you 

want to build "SYSTEM/SYS" style program images. 

 

PAGES 

syntax: PAGES p0[,p1..p7] 

The PAGES command is useful for building overlays and programs which are larger than 

64k.  Each page contains 8k bytes, and you can not specify more than eight pages (64k 

bytes) for loading with one PAGES command.  Each page is specified with a linker 

expression, and the value of the linker expression can not exceed the number of memory 

pages free in MDOS at the time the linker is run. 

Pages assigned in the list following the PAGES command are located at the following 

addresses: 

1st page in list:        >0000 

2nd page in list:        >2000 

3rd page in list:        >4000 

4th page in list:        >6000 

5th page in list:        >8000 

6th page in list:        >A000 

7th page in list:        >C000 

8th page in list:        >E000 

You may declare any of the 8 pages to be "undefined" if you leave its place in the list 

empty.  GenLINK will detect any attempt to load object code into an "undefined" page 

and report an error to you. 

EXAMPLE: suppose you want to write a program which consists of one 8k header 

page, at address >0000 (which should have the common subroutines and 

code to call subroutines in various overlays), and three 16k overlay 

sections which get mapped in at >2000 before they get used.  The size of 

the entire program is 7 pages (56k).  You could link the program as 

follows: 

* 

* load header section 

* 

PAGES 0, 

BLOCK >0400,>2000 

ADD   HEADER-OBJ 

* 



 GenLINK v1.00 11 

* load the first overlay (at >2000) 

* 

PAGES ,1,2 

BLOCK >2000,>6000 

ADD   OVERLAY1-OBJ 

* 

* load the second overlay (at >2000) 

* 

PAGES ,3,4 

BLOCK >2000,>6000 

ADD   OVERLAY2-OBJ 

* 

* load the third overlay (at >2000) 

* 

PAGES ,5,6 

BLOCK >2000,>6000 

ADD   OVERLAY3-OBJ 

* 

* now to save it all as one linked chain 

* map it in with a PAGES command, then 

* declare a BLOCK which includes all of the data 

* which needs to be saved 

* 

PAGES 0,1,2,3,4,5,6, 

BLOCK >0400,>E000 

SAVEALL 

* 

* 

* 



 GenLINK v1.00 12 

In the preceding example, all REF/DEF symbols are resolved, regardless of which section 

they were defined in and which section(s) they were used in. 

 

PSAVE 

syntax: PSAVE image_filename,[type],[start],[stop] 

PSAVE is a variation of the SAVEALL command which only saves one program 

segment at a time.  You, as a programmer, are in control of how large each segment is 

and in what order they are to be loaded from disk.  PSAVE also allows you to save 

SYSTEM/SYS style program images. 

Each of the three optional parameters is a 32-bit linker expression.  The length of an 

image saved with the PSAVE command, Stop minus Start, can not exceed the maximum 

length allowed for the Type specified. 

 

The "types" recognized by PSAVE are:  

 

0 MDOS fast-ram image, not last in chain of images. 

 max length = >3DFA, flag byte = 'F' 

 

1 MDOS fast-ram image, last in chain of images. 

 max length = >3DFA, flag byte = 'F' 

 

2 MDOS slow-ram image, not last in chain of images. 

 max length = >3DFA, flag byte = 'G' 

 

3 MDOS slow-ram image, last in chain of images. 

 max length = >3DFA, flag byte = 'G' 

 

4 TI-99/4A program image, not last in chain of images. 

 max length = >1FFA, flag byte = >FF 

 

5 TI-99/4A program image, last in chain of images. 

 max length = >1FFA, flag byte = >00 

 

6 GRAM program image, not last in chain of images. 

 max length = >2000, flag byte = >01..>08 

 

7 GRAM program image, last in chain of images. 

 max length = >2000, flag byte = >01..>08 

 

8 TI-99/4A rom bank 0 at >6000, not last in chain of images. 

 max length = >2000, flag byte = >09 

 

9 TI-99/4A rom bank 0 at >6000, last in chain of images. 

 max length = >2000, flag byte = >09 

 



 GenLINK v1.00 13 

10 TI-99/4A rom bank 1 at >6000, not last in chain of images. 

 max length = >2000, flag byte = >0A 

 

11 TI-99/4A rom bank 1 at >6000, last in chain of images. 

 max length = >2000, flag byte = >0A 

 

12 TI-99/4A 4k rom bank at >6000 (like Mini-Memory cart), 

 not last in chain of images. 

 max length = >1000, flag byte = >0B 

 

13 TI-99/4A 4k rom bank at >6000 (like Mini-Memory cart), 

 last in chain of images. 

 max length = >1000, flag byte = >0B 

 

14 Program image of any length, no header added to data, 

 like SYSTEM/SYS, but there are certainly other uses. 

 A 90k byte SYSTEM/SYS is saved with a command like: 

 

 PSAVE "SYSTEM/SYS",14,>00000,>16500 

 

RESET 

syntax: RESET 

The RESET command causes GenLINK to re-initialize all of its internal tables and 

REF/DEF symbol information, as if GenLINK had just been freshly loaded by MDOS.  

This is useful if you wish to create several different programs with the same linker 

control file. 



 GenLINK v1.00 14 

Commands which provide special information: 

 

EVAL 

syntax: EVAL linker-expression 

The EVAL command simply prints out the value of the linker expression you specified.  

This is most useful for displaying the values of various symbols in the DEF table.  It is 

also useful for calculating the size of various parts of the program (if you subtract the 

ending address from the beginning address of the segment.) 

 

LIST 

syntax: LIST list-filename 

This command opens the specified list file, and all subsequent output which GenLINK 

displays on the screen is also echoed into the list file for later inspection by you. 

 

STATUS 

syntax: STATUS 

The STATUS command lists information about usage of all memory blocks defined with 

the BLOCK command since the last CLEAR command was issued, as well as how much 

space is left in the block with the most remaining space.  It also tells you how many 

symbols there are in the global DEF table. 

For each currently defined block of memory, the STATUS command lists the following 

information: 

 

1) Start address of block 

2) First free address in block for more data. 

3) Last address in block 



 GenLINK v1.00 15 

 

SYMTAB 

syntax: SYMTAB 

The SYMTAB command causes GenLINK to display the value and name of each symbol 

in the global DEF table. 

 

UNDEF 

syntax: UNDEF 

The UNDEF command causes GenLINK to display the address and name of each symbol 

in the global REF table.  You would use this command to determine which REFs have 

not yet been resolved. 



 GenLINK v1.00 16 

Linker expressions 

Many commands in GenLINK which use numeric parameters will allow you to use a 

"linker expression" to specify the numeric value. 

A linker expression always returns a 32-bit value and has the following form: 

[value [operator value] ... [operator value]] 

All linker expressions are evaluated from left to right.  The expression: "1+2*5" has a 

value of 15, not 11. 

If the linker expression is null, a value of zero will be returned. 

The following are the valid "value" fields in a linker expression: 

 

 DEF symbol: name from global DEF table 

 Hex constant: ">hex digits", range: >0000 to >ffffffff 

 Decimal constant: "decimal digits", range: 0 to 65535 

The following operators can be used in a linker expression: "+" (addition), "-" 

subtraction, "*" (multiply two 16-bit values), "/" (divide a 32-bit value by a 16-bit value 

with a 16-bit result.) 



 GenLINK v1.00 17 

Object file format 

The first character in an object file must be an identifier tag, which must be >01 to 

indicate compressed object code or "0" to indicate uncompressed object code.  Each byte 

in uncompressed object code requires two hex digits to indicate its value, while each byte 

in compressed object code is used "as-is" with no extra interpretation. 

GenLINK recognizes the following tags: 

(items in curly brackets may be compressed or uncompressed values, all other items must 

be single-byte characters in the object file.) 

 

>01 | "0" {2 byte length} <8 char identifier> 

The 2 byte length indicates the number of RORG memory locations 

which must be reserved for the object file.  It is also used to determine if 

there is enough room in defined memory blocks to allow the object file to 

be completely loaded. 

These tags are invalid if they are found at any point in the object file 

after the first byte. 

 

start_address = first_free_address, 

  in block with sufficient space 

 

first_free_address = start_address + round_to_word(length) 

 

linker_data_pointer = start_address 

 

"1" | "2" {2 byte auto-start address} 

These tags are ignored by the linker since auto-start addresses are 

only useful for a dynamic object code loader. 



 GenLINK v1.00 18 

"3" {2 byte relocatable REF chain header} <symbol> 

"4" {2 byte absolute    REF chain header} <symbol> 

These tags are used to define symbols which are to be resolved from 

other object modules.  Each REF symbol in a file must be placed into the 

object file as a linked-list of addresses, the data at each address in the 

object file must contain a pointer to the next location which needs to be 

patched when the REF is resolved. The last location to be patched must 

have a value of >0000 in the object file. 

The following algorithm is used to resolve REFerenced symbols: 

location = header 

while (location != 0) 

do { 

 temp = *location; 

 *location = DEF symbol value; 

 location = temp 

} 

The "symbol" used in the REF may have one of two forms, depending 

on the number of characters in the symbol name. 

If the symbol name has six or fewer characters, it must be entered into 

the object file in a field six characters wide, padded on the right with 

spaces if it is shorter than six characters to start with. 

If the symbol name has seven to thirty-one characters, it must be 

entered into the object file as <length><characters>, where <length> is a 

single character with a value of >07 to >1f.  

"5" {2 byte relocatable address} <symbol> 

"6" {2 byte absolute    address} <symbol> 

These tags are used to define symbols for use in other object modules.  

The 2 byte address specified is used as the value of the symbol. 

The symbol's name must be constructed as described under tag "3" 

and "4". 

"7" | "8"      {2 byte checksum} 

These two tags are ignored by GenLINK. 



 GenLINK v1.00 19 

"9" {2 byte absolute    program counter} 

"A" {2 byte relocatable program counter} 

These two tags are used to specify the address at which subsequent 

data in the object file will begin loading. 

 

"9": linker_data_pointer = value 

"A": linker_data_pointer = value + start_addr 

"B" {2 byte absolute    data word} 

"C" {2 byte relocatable data word} 

round_to_word(linker_data_pointer); 

if (tag == "B") 

 *linker_data_pointer = data 

else 

 *linker_data_pointer = data + linker_data_pointer  

linker_data_pointer += 2; 

"D" {single byte value} 

*linker_data_pointer++ = byte; 

"F" 

This tag cause GenLINK to stop processing of tags in the current 

record of the object file, and skip to the first byte in the next record. 

"G" {line #}{file #}{reloc address}{type}<name> 

"H" {line #}{file #}{abs   address}{type}<name> 

The line number (2 bytes) following these tags should be the line 

number within the source code which corresponds to the address (2 bytes) 

specified with the tag.  This information will be placed into the debugger 

symbol file with the DEBUG command. 

The file number (2 bytes) following these tags should be the same as 

the file number specified with a file record in the same object file.  The 

file number is altered before sending this information to the debugger 

symbol file, so that it does not conflict with files by the same number in 

other object modules. 

The "type" field (2 bytes) is passed directly to the debugger symbol 

file.  GenASM only produces type ">0000" symbols, which indicates that 

a simple data address corresponds to the name. 

A compiler would want to produce line records which don't 

correspond to any particular data item, these could be specified with a type 

of ">0001" and a blank name field.  (Interpretation of the "type" field is 

left to the debugger, a debugger for a compiler might want different types 

to be specified for various data, such as FLOAT, DOUBLE, STRING, 

char *, etc.) 

The name field consists of one character with a value of >01 to >1f 

for a length, followed by the number of characters indicated in the length 

character. 

"I" {file #}<file name> 

The file number (2 bytes) will be used by a debugger to determine the 

filename of symbols with the same file number.  The file number is altered 



 GenLINK v1.00 20 

before sending this information to the debugger symbol file, so that it does 

not conflict with files by the same number in other object modules. 

The name field consists of one character with a value of >01 to >1f 

for a length, followed by the number of characters indicated in the length 

character. 

":" 

Loading of an object module is complete when GenLINK encounters 

this tag as the first character within an object record. 



 GenLINK v1.00 21 

Library file format: 

 

Each library file has three major parts: 

1) object code sections 

2) hashed symbol index 

3) free space list 

The first record (record 0) of a library file has the following format: 

": " <14 byte id> hash[31] next_free[1] line_count[1] 

 

The line count (2 bytes) indicates how many contiguous unused lines there are in the 

library file, starting with the next record (record 1). 

The next_free pointer (2 bytes) is the record number of the next record in the free-space 

management list, this is used when the librarian is searching for a free block with enough 

space to add a new object file to the library.  If the next_free pointer is zero, there are no 

more records in the free space list.  

The hash array contains 31 pointers (2 bytes each) which are the record numbers of the 

first index record in a hashed list of symbols.  The index into the hash array is calculated 

by taking the sum of all characters in a symbol MOD 31.  Any pointer with a value of 

zero indicates a hash list with no symbols in it. 

 

Records in the hash list have the following form: 

": " next_hash_record { object_pointer symbol_name } 

(The portion in squiggly brackets can be repeated many times in the record.) 

The "next_hash_record" is a pointer (2 byte record number) to the next record which 

contains symbols in the current hash list.  If the pointer is zero, the current record is the 

end of the hash list. 

The "object_pointer" is a 2 byte record number which specifies the first record of the 

object module which will resolve the following symbol name.  If the object_pointer is 

zero, there are no more symbols to be examined in the current hash record. 

The name field consists of one character with a value of >01 to >1f for a length, followed 

by the number of characters indicated in the length character.  If the length of the symbol 

is even, the symbol name will be followed by a single pad character so that the next 

symbol section starts on an even byte boundary within the hash record. 

Records in the free space list have the following format: 

": "<74 garbage characters> next_free[1] line_count[1] 

The line count (2 bytes) indicates how many contiguous unused lines there are in the 

library file, starting with the next record in the library file. 

The next_free pointer (2 bytes) is the record number of the next record in the free-space 

management list, this is used when the librarian is searching for a free block with enough 

space to add a new object file to the library.  If the next_free pointer is zero, there are no 

more records in the free space list. 

An object code section in the library file has the exact same format as a normal object 

file, it must begin with a >01 or "0" tag, and end with a record whose first character is ":".  

After finding a symbol in the library file, GenLINK loads the indicated object section as 

if it were a standalone object file. 



 GenLINK v1.00 22 

Image file format: 

The headers for the various "types" of images produced by GenLINK have the following 

formats: 

 

0 "P" "F" <length> <load address> 

 max length = >3DFA. 

 

1 >00 "F" <length> <load address> 

 max length = >3DFA. 

 

2 "P" "G" <length> <load address> 

 max length = >3DFA. 

 

3 >00 "G" <length> <load address> 

 max length = >3DFA. 

 

4 >FF >FF <length> <load address> 

 max length = >1FFA. 

 

5 >00 >00 <length> <load address> 

 max length = >1FFA. 

 

6 >FF >01..>08 <length> <load address> 

 max length = >2000. The 2nd byte is (load address / 8192) + >01. 

 

7 >00 >01..>08 <length> <load address> 

 max length = >2000. The 2nd byte is (load address / 8192) + >01. 

 

8 >FF >09 <length> <load address> 

 max length = >2000. 

 

9 >00 >09 <length> <load address> 

 max length = >2000. 



 GenLINK v1.00 23 

10 >FF >0A <length> <load address> 

 max length = >2000. 

 

11 >00 >0A <length> <load address> 

 max length = >2000. 

 

12 >FF >0B <length> <load address> 

 max length = >1000. 

 

13 >00 >0B <length> <load address> 

 max length = >1000. 

 

14 NO HEADER. 



 GenLINK v1.00 24 

Debug file format: 

 

lines with symbol records 

null line 

lines with file records 

end of file 

Symbol records in the debug file have the following format: 

address,line #,file #,type,namlen(byte),symbol_name[namlen] 

 

File records in the debug file have the following format: 

file #,namlen(byte),file_name[namlen] 



 GenLINK v1.00 25 

Example control file (MDOS image): 

 

* 

* linker control file for Picture Transfer 

* 

ADD PIC 

ADD UTIL 

ADD USE 

ADD SETSCR 

ADD DISPLAY 

ADD GSHOW 

ADD GSAVE 

ADD SETWIN 

ADD MSAVE 

* 

STATUS 

* 

SAVEALL PICT 

* 

EXIT 

* 



 GenLINK v1.00 26 

Example control file (4A image): 

 

* 

* linker control file for  Fast-Term 

* 

* Fast-Term only loads in high 24k bank 

* 

BLOCK >A000,>FFD8 

* 

* load it 

* 

ADD FAST-TERMO 

* 

* check memory usage 

* 

STATUS 

* 

* display the length of Fast-Term 

* 

EVAL SLAST-SFIRST 

* 

* now to define a block which only contains 

* relevant code (since Fast-Term loads some 

* extra info after the end of the actual image) 

* 

CLEAR 

BLOCK SFIRST,SLAST 

* 

* save it as a 4A image file...type 4 

* 

SAVEALL UTIL1,4 

* 

EXIT 

* 



 GenASM v1.00 A.1 

Appendix A 

 

LIB_4A 

LIB_4A is a library file containing subroutines and equates useful to programmers 

writing GPL (TI-99/4a) mode assembly language programs.  These subroutines should be 

REFerenced from within your assembly language source programs. 

These routines can be included in your program image files by GenLINK with the 

following procedure: 

 

ADD <your object files> 

LIBREF LIB_4A 

SAVE your_name,4 

EXIT 

The following pages describe the equates and subroutines which are defined by LIB_4A. 

SYSTEM EQUATES 

 

GPLWS >83E0 workspace registers for GPL interpreter 

 

GRMWA >9C02 set address, port to GRAM/GROM chips 

GRMRA >9802 get address, port from GRAM/GROM chips 

GRMWD >9C00 set data, port to GRAM memory 

GRMRD >9800 get data, port from GRAM/GROM memory 

PAD >8300 address of high-speed memory in 4A console 

SOUND >8400 set data, port for sound chip 

SPCHRD >9000 get data, port from speech synthesizer 

SPCHWD >9400 set data, port to speech synthesizer 

 

VDPWA >8C02 set address, port to VDP chip 

VDSTA >8802 get status, port from VDP chip 

VDPWD >8C00 set data, port to VDP ram. 

VDPRD >8800 get data, port from VDP ram. 

 

SCAN  >000E address of built-in key scan routine. 



 GenASM v1.00 A.2 

UTLREG 

This is a 32 byte area, initialized to zero in LIB_4A, which is used as registers in the 

subroutines VSBR, VSBW, VMBR, VMBW, VWTR, GPLLNK, XMLLNK, KSCAN 

and KSCANC. 

You can override the DEFinition in LIB_4A by DEFining "UTLREG" within your own 

object modules.  The most common reason for overriding the default in LIB_4A is to 

force the registers to locate in PAD ram, to increase performance of the VDP access 

routines. 

VDP ACCESS SUBROUTINES 

You may leave interrupts on while you call any of the following VDP access subroutines. 

The routines turn off interrupts as needed, then restore your interrupt mask before they 

return to you. 

All of VDP access routines REFerence "UTLREG" as an external symbol.  "UTLREG" is 

defined in LIB_4A as a block of 32 bytes initialized to zero.  For performance reasons, 

you may want to override the definition of "UTLREG" provided in LIB_4A by DEFining 

"UTLREG" within one of your object modules (you would generally DEFine it to be in 

PAD ram if you wanted better performance.) 

 

VSBR read single byte from VDP ram 

VSBW write single byte to VDP ram 

VMBR read multiple bytes from VDP ram 

VMBW write multiple bytes to VDP ram 

VWTR write to VDP register 

The preceding routines perform the functions described in the TI Editor Assembler 

manual. 

In addition to the preceding entry points, LIB_4A defines another routine, "VSETAD" 

which should not be REFerenced or DEFined within your code. 



 GenASM v1.00 A.3 

GPLLNK 

LIB_4A defines a GPLLNK subroutine which functions as described in the TI Editor 

Assembler manual.  It can be called from any program image, and it will restore the 

GROMs to their original state before returning to you. 

XMLLNK 

LIB_4A defines an XMLLNK subroutine which functions as described in the TI Editor 

Assembler manual, with the exception that the CIF (Convert Integer to Floating point) 

routine is not provided as an XML subroutine. 



 GenASM v1.00 A.4 

KSCAN 

KSCAN functions as described in the TI Editor Assembler manual. 

KSCANC 

KSCANC is a key scan routine unique to LIB_4A. On a TI-99/4A console, it provides 

you with a "CRU" key scan routine which can be called while interrupts are enabled 

(KSCANC will not function on a GENEVE computer.) 

You call KSCANC exactly as you would KSCAN.  KSCANC does not have the full 

flexibility of KSCAN, only one scan mode is provided, and only codes defined in the 

following table will be returned. 

 

Column 1: normal keycode. 

Column 2: keycode when "shift" is also pressed. 

Column 3: keycode when "control" is also pressed. 

Column 4: keycode when "function" is also pressed. 

Column 5: keycode when "function" and "shift" are also pressed. 

 

 

 

 

Keycap 1 2 3 4 5 

 

1 '1' '!' >B1 >83 >F3 

2 '2' '@' >B2 >84 >D3 

3 '3' '#' >B3 >87 >DB 

4 '4' '$' >B4 >82 >E3 

5 '5' '%' >B5 >8E >EB 

6 '6' '^' >B6 >8C >EC 

7 '7' '&' >B7 >81 >E4 

8 '8' '*' >1E >86 >DC 

9 '9' '(' >1F >8F >D4 

0 '0' ')' >B0 >BC >F4 

= '=' '+' >85 >85 >85 



 GenASM v1.00 A.5 

Q 'q' 'Q' >11 >C5 >F1 

W 'w' 'W' >17 '~' >D1 

E 'e' 'E' >05 >8B >D9 

R 'r' 'R' >12 '[' >E1 

T 't' 'T' >14 ']' >E9 

Y 'y' 'Y' >19 >C6 >ED 

U 'u' 'U' >15 '_' >E5 

I 'i' 'I' >09 '?' >DD 

O 'o' 'O' >0F "'" >D5 

P 'p' 'P' >10 '"' >F5 

/ '/' '-' >BB >8A >F7 

 

A 'a' 'A' >01 '|' >F3 

S 's' 'S' >13 >88 >D3 

D 'd' 'D' >04 >89 >DB 

F 'f' 'F' >06 '{' >E3 

G 'g' 'G' >07 '}' >EB 

H 'h' 'H' >08 >BF >EE 

J 'j' 'J' >0A >C0 >E6 

K 'k' 'K' >0B >C1 >DE 

L 'l' 'L' >0C >C2 >D6 

; ';' ':' >1C >8D >F6 

<ENTER> >0D >0D >0D >0D >0D 

 

Z 'z' 'Z' >1A '\\' >F0 

X 'x' 'X' >18 >8A >D0 

C 'c' 'C' >03 '`' >D8 

V 'v' 'V' >16 >7F >E0 

B 'b' 'B' >02 >BE >E8 

N 'n' 'N' >0E >C3 >EF 

M 'm' 'M' >0D >C4 >E7 

, ',' '<' >00 >B8 >DF 

. '.' '>' >1B >B9 >D7 

 

<SPACE> >20 >20 >20 >20 >20 

ALPHA-LOCK causes keycodes in the range 'a'..'z' to be converted to the range 'A'..'Z'. 

Like KSCAN, KSCANC returns the keycode at >8375, and returns the status flag at 

>837C if a new key has been pressed. 



 GenASM v1.00 A.6 

DEVICE DRIVER ACCESS ROUTINES 

DSRLNK 

DSRLNK functions as described the TI Editor Assembler manual.  

DSRGO 

DSRGO is a routine to similar in function to DSRLNK, but enhances performance of 

your programs.  Each time you call DSRLNK, it searches all of the ROMs in order until 

it finds the device you specified in your PAB.  This search on every call to DSRLNK can 

add a lot of extra time to the i/o routines in your program, slowing your program down.  

To use DSRGO, you must call DSRLNK once, to OPEN the device, then save some 

variables which DSRLNK provides for use with DSRGO.  On subsequent device access 

you would call DSRGO, with a pointer to the saved variables from the initial DSRLNK, 

and avoid the extra search on all device access subsequent to the DSRLNK. 

DSRLNK provides the following variables for use with DSRGO: 

 

DSRCRU cru address of peripheral 

DSREND pointer to end of device name in PAB 

DSRENT address of entry point to DSR ROM 

DSRLEN length of device name in PAB 

DSRSTA pointer to status byte in PAB 

DSRVER version number of DSR routine at entry point 

 

DSRREG register block shared by DSRGO and DSRLNK 

None of the previous symbols should be DEFined in your programs if you plan to use 

DSRLNK or DSRGO. 

 

* 

* usage example of DSRLNK and DSRGO, including definition of 

* "save" area for DSRGO parameters. 

* 

 REF DSRLNK,DSRGO 

 REF DSRCRU,DSREND,DSRENT 

 REF DSRLEN,DSRSTA,DSRVER 

 REF VMBW,VSBW 

* 

* open the device in the PAB 

* 

 LI R0,VDPPAB address of PAB in VDP ram 

 LI R1,NEWPAB initial PAB in CPU ram 

 LI R2,PABLEN length of PAB 

 BLWP @VMBW copy PAB to VDP ram 

* 

 AI R0,9 offset of name in PAB 

 MOV R0,@>8356 for DSRLNK 

* 



 GenASM v1.00 A.7 

 BLWP @DSRLNK 

 DATA 8    normal device access 

* 

 JEQ ERROR i/o error 

* 

* save the DSRGO variables in the proper order 

* 

 MOV @DSRCRU,@PABSAV+0 

 MOV @DSRENT,@PABSAV+2 

 MOV @DSRLEN,@PABSAV+4 

 MOV @DSREND,@PABSAV+6 

 MOV @DSRVER,@PABSAV+8 

 MOV @DSRSTA,@PABSAV+10 

* 

* on all subsequent access for this PAB, we can now use DSRGO 

* as follows: 

* 

 LI R0,VDPPAB address of PAB opcode in VDP 

 LI R1,>0200 READ opcode in high byte 

 BLWP @VSBW put the READ opcode into the PAB 

* 

 BLWP @DSRGO 

 DATA PABSAV pointer to saved variables 

 JEQ ERROR i/o error 

* 

* ... more of your code, using DSRGO with READs and WRITEs can 

*  easily enhance your programs by a factor of two 

* ... 

* 

PABSAV BSS 12 6 variables to save 

* 

NEWPAB DATA >0014,>0000 

 DATA >5050,>0000 

 DATA NAMLEN 

PABNAM TEXT 'DSK1.EXAMPLE' 

NAMLEN EQU $-PABNAM 

PABLEN EQU $-NEWPAB 

* 

 END 

* 



 GenASM v1.00 B.1 

Appendix B 

LIB_MD is a library file containing subroutines and equates useful to programmers 

writing MDOS mode assembly language programs.  These subroutines should be 

REFerenced from within your assembly language source programs. 

These routines can be included in your program image files by GenLINK with the 

following procedure: 

 

 ADD <your object files> 

 LIBREF LIB_MD 

 SAVE your_name,4 

 EXIT 

The following pages describe the equates and subroutines which are defined by LIB_MD.   



 GenASM v1.00 B.2 

GETENV 

Translate a character list in your task header into a useful string.  The resulting string will 

be preceded by a length byte, and is terminated with a NULL (>00) byte.  The pointer 

you pass to GETENV for the string is the address of the first character in the string, 

immediately after the length byte.  See task information in the GenREF manual for 

information on which character lists are predefined for your use. 

 

 LI R0,HEADER  pointer to head of environment string 

 LI R1,STRING  address of buffer to put string into 

 MOVB @MAXLEN,@-1(R1) length of buffer 

 BL @GETENV  uses R0 to R6 

* 

* ... 

* 

STRLEN DATA 0 

STRING BSS BUFLEN 

 BYTE >00 

MAXLEN BYTE MAXLEN 



 GenASM v1.00 B.3 

SETENV 

     Translate a string in your program to a character list in your task's header.  Useful to 

change drive assignments (used by the PARSE filename function of MDOS), current 

directories on block devices (also used by the PARSE filename function of MDOS), and 

to pass a command string to a spawned task.  See task information in the GenREF manual 

for information on character lists which are used by MDOS functions. The string you 

pass to this subroutine must be preceded by a length byte, and must be terminated with a 

NULL (>00) character.  If the string you pass is shorter than the list which is currently in 

use by MDOS, the list will be truncated and the extra nodes in the list will be added to the 

free-list for later use by MDOS. 

 

 LI R0,HEADER pointer to head of environment string 

 LI R1,STRING address of string to put into char list 

 BL @SETENV uses R0 to R6 

* 

* ... 

* 

STRLEN DATA LENGTH 

STRING TEXT 'This is an example' 

 BYTE >00 

LENGTH EQU $-STRING 



 GenASM v1.00 B.4 

EMIT (subroutine) 

EMITF (printer flag) 

     The EMIT subroutine writes a single character to the screen using the MDOS 

WRITETTY video function, it will also echo the character to the printer if EMITF is zero 

and the control-P flag in your task header is set (see the GenREF manual for more 

information on the control-P and control-S flags.) EMIT will suspend execution of your 

program if the control-S flag in your task header is set (you program will be restarted 

when the control-S flag is cleared by MDOS.) 

The character to be written to the screen must be in the high byte of your R0. 

EMIT uses a workspace at >F060, the values of registers R0-R2,R13-R15 in this 

workspace are altered by use of EMIT. (make sure that calling EMIT doesn't alter any 

values your program needs to have saved.) 

 

 LI R0,>1A00 clear screen code, in high byte 

 BLWP @EMIT 



 GenASM v1.00 B.5 

PRINT (subroutine) 

The PRINT subroutine writes a NULL terminated string to the screen using the MDOS 

WRITETTY video function, it will also echo the string to the printer if the control-P flag 

in your task header is set (see the GenREF manual for more information on the control-P 

and control-S flags.) PRINTF will suspend execution of your program if the control-S 

flag in your task header is set (you program will be restarted when the control-S flag is 

cleared by MDOS.) 

The string to be written to the screen must immediately follow the call to PRINT. 

PRINT uses a workspace at >F060, the values of registers R0-R2,R13-R15 in this 

workspace are altered by use of PRINT. (make sure that calling PRINT doesn't alter any 

values your program needs to have saved.) 

 

 BLWP @PRINT send a string to screen 

 TEXT 'Sample string' 

 BYTE 0 

 * 

 * ... 

 * 

 


