
GenASM

v1.00

Reference guide.

(C) Copyright 1989

J. Paul Charlton

ALL RIGHTS RESERVED

CONTENTS

 Page

Introduction ..1

Overview ..1

Using GenASM ..2

Control flags

 Commonly used flags ..3

 Less common flags ..3

Source code format ..4

Symbols..5

Mnemonics

 opcodes ..6

 LST ..6

 LWP ...6

 MPYS ...6

 DIVS ..7

Pseudo opcodes ..7

User defined macros ..7

Assembler directives ..8

XREF ..9

DXOP ..9

Conditional assembly ...10

Using MACROS ..12

Expressions ..15

Syntax ..15

Constants ..16

Error reporting ...17

Examples

 PRINT macro ...18

 DXOP macro ..20

INTRODUCTION

The GenASM assembler is a powerful one-pass macro assembler for 9995 assembly

source code.

The primary purpose of this manual is to describe the differences between the GenASM

assembler which runs in MDOS mode and the TI-99/4 assembler which runs in GPL

mode. This is intended to be a supplement to the TI manual for the TI-99/4 assembler.

The TI manual (TI part #1035984-2) and reference card (TI part #1035988-1) can still be

ordered from Texas Instruments, Inc. at the phone number 1-800-TI-CARES.

Features unique to the GenASM assembler:

one-pass, increases speed

macros, can increase productivity

conditional assembly, can increase productivity

symbolic debugger support can save endless headaches

9995 opcodes, allows full use of the Geneve hardware

detailed error messages, save much time, good learning tool

OVERVIEW

GenASM uses four types of files during the course of its execution, all of these will be

described briefly below.

"ASM" and "ASN" are the MDOS program files which read the assembly language

source files and translate them into the resulting tagged object file.

Assembly source files are files in a Dis/Var [1..254] file format (Dis/Var 80 is most

common) which contain assembly language source code. These files can be read by

GenASM under either of two conditions: 1) the source file was specified on the MDOS

command line, 2) the source file was referenced with a COPY directive within the initial

source file.

Tagged object files are files created by GenASM in Dis/Fix 80 file format. More

information on these files can be found in the GenLINK reference guide.

List files are files created by GenASM in Dis/Var 80 format which contain error

messages as well as any other information you directed GenASM to list out (cross-

reference symbol lists, etc.)

 GenASM v1.00 2

USING GenASM

GenASM is executed from an MDOS command line or from within an MDOS batch file.

You must perform the following actions before using GenASM:

First, MDOS must be able to find the files "ASM" and "ASN" in the same directory

somewhere in your current search path (set with the "PATH" command in MDOS.)

Second, you must create the primary source file and any source files included with a

COPY directive during the assembly process.

Third, GenASM must be able to write to the tagged object file specified on the command

line. This means that your destination disk must not be write protected, and that it must

have enough free sectors to allow the tagged object file to be completely written.

Continuing with the assumption that the three previous conditions have been met,

GenASM is invoked from MDOS with the following command: GENASM

source_file,object_file,[list_file],[flags][=macro_string]

Items between square brackets are optional.

 GenASM v1.00 3

CONTROL FLAGS

GenASM recognizes several flags which you can use to modify the behavior of

GenASM.

COMMONLY USED FLAGS

"R"or "r" This flag causes GenASM to define symbols R0..R15 with values 0..15 as

"register symbols".

"C" or "c" This flag causes GenASM to generate compressed object code (These files

take less disk space. For more information on compressed object code, see

the GenLINK reference guide.)

LESS COMMON FLAGS

"O" or "o" This flag causes GenASM to produce tagged object files compatible with

the TI-99/4 object code loader. This option has the following

implications:

 REF and DEF symbols are limited to 6 characters in length.

 8-bit values may be expanded to 16-bit words when object code is

generated.

 The value used in a BYTE or TEXT directive must be defined at a point

earlier during the assembly process.

 debugger information is not written to the object file.

"G" or "g" This flag causes GenASM to write debugger symbol and file records into

the object file. This flag is ignored if the "O" flag was specified.

"S" or "s" This flag causes GenASM to write information about each symbol in the

global symbol table to the list file.

"U" or "u" This flag causes GenASM to print the names of all symbols which were

defined in the source file, but not used anywhere within the source file.

"X" or "x" This flag causes GenASM to write a cross reference for all symbols in the

global symbol table, except register symbols, to the list file.

"Y" or "y" This flag causes GenASM to write a cross reference for all symbols in the

global symbol table, including register symbols, to the list file. (It is

highly recommended that you use the "X" flag or the XREF directive to

create a usable cross reference listing.)

 GenASM v1.00 4

SOURCE CODE FORMAT

Each source line is either a comment or a statement. Comment lines must begin with an

asterisk "*" or semicolon ";" or must be completely blank.

Statements can have the following forms:

symbol

symbol mnemonic

symbol mnemonic operands

mnemonic

mnemonic operands

A sequence of two or more spaces in a source line is treated as a single space. A

semicolon always represents the end of a statement when it is not enclosed as part of a

character string within quote delimiters.

 GenASM v1.00 5

SYMBOLS

Symbols recognized by GenASM are allowed to have has many as 31 characters from the

following characters:

!"#$'.0123456789:<=>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]_

`abcdefghijklmnopqrstuvwxyz{}~

The first character of a symbol may not be among the following three characters:

>#'

There are four classes of symbols used by GenASM:

"$" This single character symbol returns the current address.

local: Any symbol beginning with the ":" character is a local symbol. Local

symbols are not listed in symbol table or cross-reference listings. The

names of any local symbols are erased whenever GenASM defines a new

global symbol. These are used to reduce the number of symbols in list

files and debug tables. In general, one would use these to avoid listing

unimportant symbol names, such as labels used inside of subroutines for

jump instructions.

global: Symbols which will show up in listing files, and in debug tables. You

generally will only want to define the entry points of subroutines and data

addresses with global symbols.

register: Use of the "R" flag on the command line defines 16 register symbols with

the names R0..R15. The only difference between register symbols and

other global symbols is that they are not listed when a cross reference

listing is obtained with the "X" flag.

 GenASM v1.00 6

MNEMONICS

OPCODES

GenASM recognizes all 9900 opcodes with the syntax described in the TI manual.

OPCODES

GenASM recognizes the 9995 microprocessor enhancements to the 9900 instruction set.

These are described in the following paragraphs.

LST

syntax: LST register

object format: >008r

The Load_STatus instruction causes the contents of the specified register to be copied

into the processor status register. All 16 bits of the processor status register are modified.

LWP

syntax: LWP register

object format: >009r

The Load_Workspace_Pointer causes the contents of the specified register to be copied

into the workspace pointer register on the processor.

MPYS

syntax: MPYS general_address

object format: #0000 0001 11tt rrrr

The MultiPlY_Signed instruction takes one signed 16 bit number from R0 and another

signed 16 bit number from the address specified in the operand field of the instruction,

then places the 32 bit product into R0 (most significant 16 bits) and R1 (least significant

16 bits.) The results of this instruction are compared to zero and L>, A>, and EQ status

bits are set accordingly.

 GenASM v1.00 7

DIVS

syntax: DIVS general_address

object format: #0000 0001 10tt rrrr

The DIVide_Signed instruction uses R0 (most significant 16 bits) and R1 (least

significant 16 bits) as a 32 bit signed dividend for the divide operation, and the 16 bit

signed number from the address specified in the operand as the divisor. If the quotient

can't be expressed as a signed 16 bit number, the overflow status bit is set and the divide

is aborted.

Otherwise, R0 is loaded with the 16 bit signed quotient from the division and R1 is

loaded with a signed remainder. The sign of the remainder is the same as the sign of the

initial 32 bit dividend, and the magnitude of the remainder is less than the magnitude of

the divisor.

PSEUDO OPCODES

GenASM recognizes the following two mnemonics as pseudo opcodes:

 NOP same as "JMP $+2"

 RT same as "B *R11"

USER DEFINED MACROS

Any symbol which appears after a MAC directive may be used in the mnemonic field of

any subsequent line in the source code. User defined macros are invoked with the

following format:

[!0] macro_name [!1]...[,!9]

A macro invocation can have one label and up to nine operands (separated by commas.)

Further information on macros can be found in the section of this manual entitled

"USING MACROS".

 GenASM v1.00 8

ASSEMBLER DIRECTIVES

Macro directives:

These are discussed in the section of this manual entitled "USING_MACROS"

Conditional assembly directives:

These are discussed in the section of this manual entitled "CONDITIONAL

ASSEMBLY"

Directives which affect the current address:

 AORG sets PC to previous AORG value

 AORG expression PC = new AORG value

 DORG sets PC to previous DORG value

 DORG expression PC = new DORG value

 RORG sets PC to previous RORG value

 RORG expression PC = new RORG value

Any label on the line with AORG,DORG,RORG is assigned the new value of the

program counter.

 BES expression New PC = Old PC + expression

 BSS expression New PC = Old PC + expression

symbol BES expression New PC = Old PC + expression;

 symbol = New PC

symbol BSS expression New PC = Old PC + expression;

 symbol = Old PC

 EVEN New PC = (Old PC + 1) & >fffe

symbol EVEN New PC = (Old PC + 1) & >fffe;

 symbol = New PC

Miscellaneous directives:

 DEF symbol_list DEFines the symbols into object code for

linking.

 REF symbol_list Places symbols into object code for the

linker to resolve.

 END Discontinues assembly process.

 END symbol Discontinues assembly process, "symbol" is

defined as an auto-start entry point for the

object code.

symbol EQU expression The symbol is assigned the expression's

value.

 GenASM v1.00 9

Unused directives:

 UNL ignored

 LIST ignored

 TITL ignored

 PAGE ignored

The following directives use text strings. The first non-blank character in the string is

used as a delimiter, using it twice in a row will place it into the string. (Most people will

use double quote marks, but any non-blank character is allowed by GenASM.)

 COPY text_string include another file

 TEXT text_string place string into object code

 IDT text_string place 1st 8 characters of the string into the

identifier field in the first record of the

object file. (the default is the current time of

day.)

 OBJT text_string place the string into the object file as a

comment

Examples:

 COPY "include1"

 COPY +include1+

XREF DIRECTIVE

syntax: XREF symbol_list

The XREF directive causes all symbols in the list to be cross-referenced if a list file was

specified (this is more selective than the "X" or "Y" flags.)

This is VERY useful when you want to find out where only a few symbols are used in the

source code without taking the time to print an entire cross-reference listing.

DXOP DIRECTIVE

syntax: DXOP xop_name,xop_number

The DXOP directive is not recognized by GenASM. If you wish to use the DXOP

directive for compatibility with older source code, please refer to the DXOP macro

described in the example section of this manual.

 GenASM v1.00 10

CONDITIONAL ASSEMBLY

You will want to use conditional assembly directives when you are developing several

slightly different versions of the same program. An example you may want to use if you

are developing a program to run in both MDOS and GPL mode would be:

 IF MDOS

 TEXT "MDOS version"

 ELSE

 TEXT "GPL version"

 FI

Conditional assembly is also useful for including extra code for help in debugging a new

application. By simply changing one equate (or defining a macro to look at the

command-line option string) before re-assembling the file, you can turn off all of the

debugging code, and not have it appear in the resulting object code.

Debugging code can be included as follows:

 IF DEBUG

 PRINT "routine #1 ok"

 FI

Conditional assembly directives:

 IF expression ;expr != 0

 IFEQ expression ;expr == 0

 IFGE expression ;expr >= 0

 IFGT expression ;expr > 0

 IFLE expression ;expr <= 0

 IFLT expression ;expr < 0

 IFNE expression ;expr != 0

 IFS string1,string2 ;string1 == string2

 IFNS string1,string2 ;string1 != string2

 IFGS string1,string2 ;string1 > string2

 IFLS string1,string2 ;string1 < string2

 ELSE

 FI

 GenASM v1.00 11

Two forms of conditional directives are allowed:

 IFxx

 ...condition true lines

 FI

 IFxx

 ...condition true lines

 ELSE

 ...condition false lines

 FI

Conditionals may be nested to a depth of 32,764 levels (who would want to?)

A label on an ELSE or FI directive is treated as if it were on the previous line, and is

treated as one of the conditional lines of code.

ie:

symbol ELSE

is the same as:

symbol equ $

 ELSE

 GenASM v1.00 12

USING MACROS

GenASM supports the use of user defined macros in your source code. User defined

macros allow you to define a single identifier (the "macro name") which represents many

lines of code (the "macro body"). When GenASM later encounters the macro name in

your source code, it will assemble all of the lines of code found in the macro body.

A good set of macro definitions can be used to enhance your productivity on assembly

language programming projects.

You can pass parameters to the macro body whenever the macro is invoked in your

source code. Within the body of the macro, these parameters can be referenced by their

position in the line during the macro call. The label on a macro call is referred to as "!0",

the first and subsequent operands are referred to as "!<digit[1..9]>".

Defining a macro:
A macro is defined with the following sequence of lines in your source code:

 MAC macro_symbol "macro_symbol" is defined as a macro

 ...macro body these lines are the macro definition

 MEND exit the macro definition

Example:

 MAC ASCIIZ ;ASCII string, null terminated

 TEXT !1 ;first parameter is the string

 BYTE 0 ;NULL termination

 MEND

The line

 ASCIIZ "Hi there!"

in your source code would generate object code for the following lines of code:

 TEXT "Hi there!"

 BYTE 0

 GenASM v1.00 13

Macro strings

The GenASM macro processor recognizes several special macro strings which can

appear at any point within the body of a macro. If GenASM detects the name of any of

these macro strings anywhere (even inside of quoted strings) in a macro body when it is

expanding the macro, it will substitute any text associated with the string into the macro

body at that point. The names of all macro strings have the form "!<char>".

Names of macro strings:

!0.!9 These ten names represent positional parameters provided when the macro

is invoked. Any of these parameters not defined in a call to the macro will

be a NULL string. Any parameters in the macro call which aren't

referenced in the macro body are ignored.

!N This is a 4 character numeric string with the current macro invocation

number. <used to generate unique labels>.

 ie: "m!Nx" would be a unique string such as "m0001x" or "m0010x",

if this was the 10th macro invoked.

!D 8 character date string "mm-dd-yy"

!T 8 character time string "hh:mm:ss"

!S The string of all characters following an "=" in the command flags passed

to the assembler from the command line.

!- This is a NULL string.

!! A single character string "!". Used to obtain a "!" inside of a string in a

macro body.

All other characters preceded by a "!" are discarded.

The following lines of code would generate an ASCII string with the date and time of

assembly if they were encountered during the expansion of a macro:

 MAC EXAMPLE

 TEXT "Assembled on !D,"

 TEXT "At !T."

 MEND

 GenASM v1.00 14

Macro substring operations:

You may break macro strings into substrings with an index operation of the form:

!<char>[start,len]

IE:

!D[0,2]

Will return a 2 character string which contains the current day of the month, extracted

from the 8 character macro string containing the current date.

Any character positions specified for the substring which weren't defined in the initial

parameter string are filled with spaces.

IE:

!D[3,8]

Will return the string "dd-yy ", with three trailing spaces, since the date string didn't

contain all of the characters specified with the substring operation.

Macro nesting:

Any macro may be called from within the body of another macro during the expansion

process. Macros may be nested to a depth of 16 levels.

Any macro may call itself, recursively, though you must provide a means to terminate the

nesting.

Example:

 MAC RECURSIVE

 IF !1

 DATA !1

 RECURSIVE (!1)-1

 FI

 MEND

Try "RECURSIVE 10" to see what results you get...

 GenASM v1.00 15

EXPRESSIONS

The following table is a list of all expression constructs recognized by GenASM, note

that parenthesis may be used to change the evaluation order of an expression.

Syntax

expression: term1(term2)

term1: term

term2: aterm value must be 1..15, no forward references

allowed

term: rterm RORG value

 aterm AORG value

rterm: rsymbol symbol with relative (RORG) value

or (rterm) up to 16 nested levels of "()" are allowed

or aterm + rterm the two terms are added

or rterm + aterm the two terms are added

or rterm - aterm the 2nd term is subtracted from the first term

or aterm - -rterm the 2nd term is added to the first term.

aterm: constant

or asymbol symbol with absolute value

or -aterm

or (aterm) up to 16 nested levels of "()" are allowed

or aterm * aterm the two terms are multiplied

or aterm / aterm the 1st term is divided by the 2nd term

or aterm + aterm the two terms are added

or rterm + -rterm the 2nd term is subtracted from the first term

or rterm - rterm the 2nd term is subtracted from the first term

or aterm - aterm the 2nd term is subtracted from the first term

or term % term remainder of 1st term divided by 2nd term

or term ^ term the 1st term is left-shifted 2nd term bits

or term & term bitwise "and" of the two terms

or term | term bitwise inclusive "or" of the two terms

All terms in parenthesis are evaluated before other terms, normal evaluation proceeds

from left-to-right unless parenthesis are used.

 GenASM v1.00 16

Constants

GenASM recognizes four different types of constants in your source code. They are

allowed to have the following forms:

binary: #binary_digits 01

decimal: decimal_digits 0123456789

hex: >hex_digits 0123456789ABCDEFabcdef

character: 'chars' >01..>ff,

 "''" produces "'" within the constant

 GenASM v1.00 17

ERROR REPORTING

Error messages from GenASM are written to your screen and to any list file you may

have specified.

GenASM provides a highly descriptive message for each error it encounters in your

source code. For each error, GenASM provides you with the statement number, the

filename, and the line within the file on which the error occurred. It also tells you exactly

what was wrong with the line (no generic message like "SYNTAX ERROR".)

You should find GenASM's error reports to be helpful and instructive. They should

provide you with a good aid for learning the proper syntax of assembly language

programs.

 GenASM v1.00 18

EXAMPLE: PRINT macro

*

* generally useful PRINT macro (for debugging)

*

 MAC PRINT

*

* define the label first, so that we can jump to the print statement

*

 EVEN

 EQU $

*

* MDOS print routine

*

 IF MDOS

*

 LI R0,WRTTTY

 LI R1,:PSTR!N

 CLR R2

 XOP @VIDEO,0

 JMP :PSJ!N

*

:PSTR!N TEXT !1

 BYTE >0D,>0A,0

*

* make sure that VIDEO is defined

*

 IFEQ VIDEO

VIDEO DATA 6

 FI

*

 EVEN

:PSJ!N EQU $

 GenASM v1.00 19

*

* GPL mode simple-minded print, only to top screen line, for debugging

*

 ELSE

*

 CLR R0

 LI R1,:PSTR!N

 LI R2,:PLEN!N

 BLWP @VMBW

 JMP :PSJ!N

*

:PSTR!N TEXT !1

:PLEN!N EQU $-:PSTR!N

*

 EVEN

:PSJ!N EQU $

*

* end of print macro

*

 FI

 MEND

 GenASM v1.00 20

EXAMPLE: DXOP macro

*

* DXOP macro, defines another macro with appropriate name

*

* format: DXOP name,#

*

 MAC DXOP

*

* define a macro with the user's names

*

 MAC !1

*

* items with a double "!" are hidden until the inner macro is called, since "!!"

* becomes "!" when the DXOP macro itself is called

*

!!0 XOP !!1,!2

*

* end the user's new macro the "!-" is a null string which hides the MEND from

* the DXOP macro.

*

 !-MEND

*

* end the DXOP macro expansion

*

 MEND

*

