
 HOW TO BUILD YOUR PC JOYSTICK ADAPTER

I.1 Principle

The drag with TI joysticks is that they only return up/down/left/right yes or
no information, which limitates possible moves to 8 directions. PC joysticks
on the other hand are analog, i.e. they have two variable resistors, one in the
vertical axis, one in the horizontal axis. The worth of these resistors tells
how far the joystick was pushed.

Unfortunately such joysticks can't be used with the TI99...unless you add an
adapter board. The principle of this board is to convert the value of the
joystick resistor into a time: this is achieved by a chip called 74LS221. This
chip contains two "one-shots", i.e. circuits that, once triggered issue a pulse
whose length is depending upon an external capacitor and an external resistor.
You probably already understood that the resistor will be the joystick itself.
The pulses (one for vertical excursion, one for horizontal) are then fed into
the joystick port: all the TI has to do is to time them, which is easily
achieved by an assembly language driver.

This leaves 3 available connections in the joystick port, that we can use to
return joystick buttons status: right, you can now have 3-buttons joysticks!

The adapter board could be powered by a small battery, but I found easier to
modify the joystick port, so that the two currently unused pins (#1 and 6) now
provide ground and +5 Volts respectively. This console modification is really
very easy to do and results in a much more convenient board, thus I think it's
worth doing it.

I.2 Circuit description

Please refer to the TI-Artist drawing called "SCHEME" while reading this.
Note that this scheme describes a board designed for use with a single
joystick. When using two joystick just mentally duplicate it and replace:
P7 by P2, J4 by J12, J3 by J11, J6 by J13, J1 by J9, J2 by J10, J7 by J14.

In the description below, P1-P9 refer to the joystick port within the console
and J1-J15 to the joystick 15-pins connector.

In this scheme, the +5V power is supplied by the console via P6, whereas P1 is
connected to the console ground. You may use a battery instead but you still
need a common ground connection with the console.

When the software tests the joystick, P2 (or P7) shifts from High to Low,
which blocks T1. The basis of T2 can now be driven by R1 and T2 becomes
passing. (This amplification circuitry is required since pressing a key drags
so much current that the interface board would not be triggered if a key is
pressed).

This has 2 effects: the 3 joystick buttons are now connected to ground, via D1
and J4 (or J12). The diode is required to avoid interference with keyboard
scanning. When button 1 is pressed the ground appears on J2 (or J10) and is
feeded into P4 (i.e. "joystick fire"). Button 2 connects J7 (or J14) to ground,
feeding it into P9 (i.e. "joystick right"). Finally button 3 is feeded into P3
(i.e."joystick up"), unfortunately, having a 2-buttons joystick I don't know
which joystick pins are used by this button. You'll have to check it yourself.

Second, the Low signal triggers both "one-shots" in the 74LS221, via their
non-A entries. Note that B and non-Clear ports are held High via R2.

The length of the first half-chip pulse is determined by C1, R3 and the
joystick vertical resistor, accessed via J6 (or J13). The output Q is used to
drive T3 via R5 and make it passing. This connects ground to P8 (i.e.
"joystick down") via R6, which is required to avoid interferences with the
keyboard.

Similarly, the second half-chip pulse is determined by C2, R4 and the joystick
horizontal resistor, accessed via J3 (or J11). The pulse is feeded into T4 by
R7, which connects P5 (i.e. "joystick down") to ground, via R8.

The other end of both joystick resistors are connected to +5V via J1 (or J9).
Note that R3 and R4 are required to avoid a null resistivity when the joystick
is pushed fully up/left.

Note: this scheme is valid for joystick resistor varying from 0 to 150 KOhms.
If yours have different values, you may have to play with C1/C2 and R3/R4 until
you get pulses of suitable length. Use option 2 of the calibration program to
determine optimal values.

II.1 Parts needed

For each joystick you need:

- 1 74LS221 chip
- 5 transistors such as BC238
- 2 capacitors (100 to 150 uF, depending on your joystick)
- 1 diode, such as BA318
- 1 resistor of 10 KOhm
- 5 resistors of 1 KOhm
- 2 resistors of 100 Ohm
(optionally 1 LED)

All this should cost less than $5

In addition, you need connectors:
- 1 female 9 holes connector for the console joystick port.
- 1 female 15 holes connector for the joystick plug.
- You may decide to install a second joystick connector so that you can plug
in two independent joysticks, instead of having a common plug. In this case,
wire the first connector so that it accepts a two-joysticks plug (using pins 9
to 14) and wire the second connector in parallel, as joystick 2 but using pins
1 to 8 (see summary below).

Each connector costs $2 to $3.

As you see, the most expensive part is the joystick(s) itself. Cheap joysticks
cost about $15, but more sophisticated joysticks can cost $$$.
Make sure the one you buy is an analog joystick!

FILES TO BE FOUND ON THIS DISTRIBUTION DISK

BUILD/DOC A F'web Writer file describing the PC joystick adapter and how
 to build it
SCHEME_P A TI-Artist drawn electronic schematic of the adapter.
SCHEME_C

CALIBRATE An extended basic program (and a DF80 assembly subprogram) to be
JOY-CAL/O used once the board has been built. It modifies the driver so
 that it fits with your joystick and adapter characteristics.

PC-JOY/DRV A DF80 driver file to use PC joysticks with Extended Basic or
 assembly programs.
JOY-SPRITE A DF80 file for automatic linking of sprites to joysticks, to be
 used in Extended Basic.

ART/DRV A special driver for TI-Artist version I.
ART+/DRV A special driver for TI-Artist Plus!
ART/SETUP An extended Basic calibration program for these drivers.
ART/OLD The original driver used by TI-Artist I (for TI joysticks).

PC-JOY/DOC A F'web Writer file explaining how to use the various programs.

Last update October 1995. Thierry Nouspikel

 PC JOYSTICK SOFTWARE

I. DRIVER

This is the file called PC-JOY/DRV, a DF80 file that can be used both with
extended basic and with assembly programs. A special loading "trick" prevents
the REFs to cause errors when loaded from extended basic.

I.1 Extended Basic interface

Load the driver with CALL INIT :: CALL LOAD("DSKx.PC-JOY/DRV")
You can then call four different subroutines:

I.1.1 Position mode

This subprogram is intended to map joystick position to screen, it
thus returns vertical values from 1 to 192 and horizontal values from 1 to 256.

 CALL LINK("JPOS",joynb,vert,horiz,fire)

Joynb is the joystick number 1 or 2. You may use -1/-2 to modify vert range.
 Other values issue a 'bad value' error.

Vert is a number between 1 and 192.
 Or between 1 and 256 with negative joystick number.

Horiz us a number between 1 and 256.

Fire is an optional parameter, returning fire buttons status.
 This is a number between -64 and +64. See JFIRE subprogram for details.

I.1.2 Speed mode

This subprogram is intended to translate joystick position into a speed, a
strength, etc. Thus both vertical and horizontal values range from -128 to 127.

Since it may be difficult to precisely center the joystick (in order to get
null speed) a small area, around central position returns 0 even if the
joystick is not perfectly centered.

 CALL LINK("JSPEED",joynb,vert,horiz,fire)

Joynb is the joystick number 1 or 2. Using negative numbers (-1/-2) disables
 the central "stillstand" area: 0 is only returned when the joystick is
 perfectly centered.

Vert is a number between -128 and 127. The 0 value is returned when the
 joystick is close to center, even if it's not exactly centered.

Horiz is a number between -128 and 127. Here also a small area returns 0
 (unless a negative joystick number was used).

Fire is an optional parameter, returning fire buttons status.
 This is a number between -64 and +64. See JFIRE subprogram for details.

I.1.3 Crude values

This subprogram just returns crude timing values. Their range thus depends on
the characteristics of your joystick and interface board. Therefore I would not
recommend using this routine for anything else than test purposes.

 CALL LINK("JTIME",joynb,vert,horiz)

joynb is the joystick number 1 or 2.

Vert is the crude timing value for the vertical axis.

Horiz is the crude timing value for the horizontal axis.

I.1.3 Fire buttons

This subprogram is intended to quickly test fire buttons status on both
joysticks at once (although it could well be used with a single joystick).

 CALL LINK("JFIRE",Fire1,Fire2)

Fire1 is the fire buttons status for joystick 1.

Fire2 is the status for joystick 2.

The status is coined by adding up the following values:
 1 for button 1
 2 for button 2
 4 for button 3

Thus, pressing all buttons together returns 7 (1+2+4), whereas none returns 0.

In addition these values can be modified by using some keyboard keys, this is
especially useful if your joystick has only one button.
Provided at least one button is pressed the following values are added:
 8 for <fctn> key
 16 for <shift> key
 32 for <ctrl> key

Thus <shift>button1 is 17, whereas <ctrl><shift>button2 is 50, etc.

If the status is identical to what it was the last time you tested it (with
either JFIRE, JPOS or JSPEED) its value is negated. This way your program can
react only to new events and ignore hold down buttons. This is reminiscent of
the 'key_status' parameter in CALL KEY.

I.2 Assembly language interface

Load the file DSKx.PC-JOY/DRV as an ed/assm option 3 file. You can then REFer
to the four subprograms below.

You may want to overwrite the extended basic interfacing routines to save
space, this is achieved by beginning the next loaded file with a BSS -xxx
which causes the loader to step backwards. Caution: this only works if the file
is larger than the value in BSS, but small enough to fit in the same part of
the memory expansion.

The reason why there is only one file for extended basic and assembly is to
have the same calibration values with both languages.

I.2.1 Position mode

R0 must contain joystick number 1 or 2. Negate it to modify the vertical range.
Caution: no range checking is performed: illegal values may mess up the TI.

 BLWP @AJPOS

R1 now contains the vertical value from 0 to >BF (or to >FF if R0 was negative)
R2 now contains the horizontal value from 0 to >FF.

I.2.2 Speed mode

R0 must contain joystick number 1 or 2. Negate if to ignore central quiet area.
Caution: no range checking is performed: illegal values may mess up the TI.

 BLWP @AJSPED (only one 'E')

R1 now contains the vertical value, from >FF80 to >007F.
R2 now contains the horizontal value, from >FF80 to >007F.

I.2.3 Crude values

R0 must contain joystick number 1 or 2 (negative values are equivalent).
Caution: no range checking is performed: illegal values may mess up the TI.

 BLWP @AJTIME

R1 now contains the vertical timing value.
R2 now contains the horizontal timing value.

I.2.4 Fire buttons

R0 must contain joystick number 1 or 2 (negative values are equivalent).
Caution: no range checking is performed: illegal values may mess up the TI.

 BLWP @AJFIRE

R3 now contains the button status, from 0 (none) to 64.
Note that negative values are never returned, this is only available from
extended basic.

I.2.5 Extra labels

Some more labels are DEFined for use by the sprite-linking and calibration
routines. You may just ignore them. These are:
GETJNB (gets and check joystick number)
JPOINT (points at joystick parameters)
FLTINT (converts floating point to integer)
JPARAM (joystick calibration parameters pointer)

In addition, the extended basic routines are also DEFined, don't branch to them
since they only work when called from extended basic.

II. SPRITE LINKING

One of the most frequent applications of a joystick is to direct a sprite
onscreen. This could be achieved by a control loop alternating links to JPOS
(or JSPEED) and CALL SPRITEs. However this is a slow method, furthermore while
updating the sprite position the program can't do anything else. The file
JOY-SPRITE/O contains routines that automatically link one or more sprites to a
joystick, in either position or speed mode (but not both). The link is
achieved via the interrupt routine (just like sprite auto-motion), thus once
the link is established your program can do almost anything else.

These routines require the PC-joystick driver to be loaded. An internal
REFerence solving routine has been included to ensure linking with the driver's
routines:

CALL INIT :: CALL LOAD("DSKx.PC-JOY/DRV") :: CALL LOAD("DSKx.JOY-SPRITE/O")

II.1 Position mode

This subprogram establishes a link in position mode between a joystick and
(upto) 28 sprites.

 CALL LINK("J2SPOS",joynb,spritenb,vertoff,horizoff)

Joynb is joystick number (1 or 2)
Spritenb is sprite number: 1 to 28 replaces any previous link by this one
 -1 to -28 adds this sprite to previously linked ones
 0 cancels any link for both joysticks.
Vertoff is vertical offset between joystick and sprite positions.
Horizoff is horizontal offset. This way, if you have several sprites linked to
the same joystick, they don't need to overlap.

Example:
 CALL SPRITE(#1, etc ,#2, etc)! display sprites 1 and 2.
 CALL LINK("J2SPOS",1,1,0,0) ! links sprite 1 to joystick 1.
 CALL LINK("J2SPOS",1,-2,8,0) ! adds sprite 2, one char below sprite 1.

II.2 Speed mode

This subprogram establishes a link in speed mode between a joystick and (upto)
28 sprites.

 CALL LINK("J2SPED",joynb,spritenb,vfactor,hfactor)

Joynb is joystick number (1 or 2). Negative values (-1,-2) allow for screen
 borders trespassing.
Spritenb is sprite number: 1 to 28 replaces any previous link with this one.
 -1 to -28 adds this sprite to previously linked ones.
 0 cancels any link for both joysticks.
Vfactor is speed factor in the vertical direction (1 to 255).
Hfactor is speed factor in the horizontal direction (1 to 255).

By playing with speed factors you can have sprites responding differently to
the same joystick position: a low factor means a sprite will move slowly,
whereas high factors make it move fast.

Example:
 CALL SPRITE(#1, etc, #2, etc) ! display sprites 1 and 2
 CALL LINK("J2SPED",1,1,10,10) ! link sprite 1, slow speed, check borders
 CALL LINK("J2SPED",-1,-2,100,100) ! add sprite 2, fast, passing borders.

II.3 Application notes

- You can have one joystick in speed mode and one in position mode, but for a
 given joystick all sprites must be linked in the same mode (the last call
 decides which).

- Normally sprite position is updated every second interrupt in order not to
 slow extended basic execution too much. You can have it updated at a
 different rate: a higher value means that sprites will move less often and
 may appear to move "stepwise". A lower value ensures a smooth move but may
 delay extended basic execution. Of course, sprite speed is also affected,
 requiring speed factors adjustments.

 CALL LINK("CYCLES",cyclenb)

 Cyclenb indicates how often updates must be done: 1 means at each interrupt,
 2 means every second interrupt, etc. Note that values above 50 are not
 allowed.

II.4. Assembly language

These routines are meant for use from extended basic, however you can use the
interrupt routine from assembly if you feel so. To create links use:
 BLWP @AJTOS
With R0 containing cycles number (1=update at each interrupt, 2=at every 2nd...)
R1 containing a pointer to a sprite list for joystick 1,
R2 containing a pointer to a sprite list for joystick 2.

List format:
 DATA flag 0=position mode, >FFFF= speed mode
 BYTE spritenb sprite number (1 to 32)
 BYTE vertical vertical offset or speed factor
 BYTE horizontal horizontal offset or speed factor
 ... repeat these 2 bytes for as many sprites as you like
 BYTE 0 end of list mark.

You should then allow for interrupts in a frequently executed location:
 LIMI 2
 LIMI 0

To cancel a list, use 0 as first sprite number. To cancel any link just
 CLR @>83C4 clear the interrupt routine hook.

III. CALIBRATION

This program you typically use only once: when you finished building your
interface board, or adapted a new joystick to it.
It analyses your joystick characteristics and adapts the driver file to them.

The best way to use it is to run the extended basic program CALIBRATION.

Note that the first lines of this program contains the filenames and locations
of the different assembly routines (driver, sprite linking and calibration).
Make sure these are correct, or update them if necessary.

From main menu select one of the following options:

1. Select joystick

Select joystick number: 1 or 2. Then press enter.

2. Crude values

This displays crude joystick timing values. You should make sure that the range
of values is at least 256 in order to allow for any value in speed or position
mode. Actually it is better if the range is slightly greater then 256.

If this is not the case you can modify your interface board in two ways:
- increase the capacitors C1 (vertical) or C2 (horizontal): this changes the
 slope of the response curve.
- increase the resistors R3 (vertical) or R4 (horizontal): this adds an offset
 to the response curve.

Practically, increase the resistor if the minimal value is returned by joystick
positions other than extreme left/up. Otherwise play with the capacitors.

Note that resistors add up when placed serially (one after the other) whereas
capacitors add up when placed in parallel.

3. Calibration

Follow the indications displayed on screen: place and hold your joystick in the
required position, then press any key.

Note that you can invert up/down or left/right but you cannot invert the
horizontal axis with the vertical one.

When asked to press and hold a fire button, you may decide not to obey (for
instance if you have less than 3 buttons): in this case the button is
considered as not implemented.

4. Test position mode

Move the joystick and check the values (obtained with "JPOS"). Make sure they
are in the indicated range. Repeat calibration if this is note the case.
A white square is also displayed to demonstrate joystick to sprite linking.

Once you made up your mind, press any key to return to the main menu.

5. Test speed mode

Move the joystick and check the values (obtained with "JSPEED"). Make sure they
are in the indicated range. Recalibrate if this is not the case.

To demonstrate automatic sprite linking two sprites are displayed: a white one
that moves very slowly and does not pass screen borders and a red one that
moves very fast and crosses border.
You may modify the speed factors for these sprites by editing the values of
FAST and SLOW in the first lines of the program.

Press any key to return to the main menu.

6. Test buttons

Press buttons alone, together or in combination with the keyboard keys <fctn>,
<shift> and <ctrl>. Check that the returned values match what is expected. Note
that a value is negated after a while to indicate that no change occurred.

Buttons can also be tested with options 4 and 5, but only for the currently
selected joystick, whereas this option allows for testing on both sticks.

7. Save calibration

Once happy with the results, you can save calibration by updating the driver
file. Just enter the filename and press enter.
The currently used driver is proposed as default, but you may decide to keep it
intact and to save calibration into another file. In this case, this file
should already contain a copy of the driver, since only the first records are
modified.

0. Exit program

You're asked for confirmation if option 3 was executed but not option 7.

III.2 Direct access

In case you would like to write your own calibration program (although I don't
see why) this is how to access the assembly routine:

 CALL INIT :: CALL LOAD("DSKx.JOY-CAL/O")

 CALL LINK("JCAL",joynb,param)
Joynb is joystick number 1 or 2.
Param is the parameter to update:
 0 reset all parameters
 1 fully up
 2 fully down
 3 fully left
 4 fully right, perform range calculations
 5 centered up
 6 centered down
 7 centered left
 8 centered right, perform range calculations
 9 button 1
 10 button 2
 11 button 3

Note that params 4 and 8 perform calculations, thus if you call parameters 5 to
7 you must then call param 8. Similarly, if you change params 1 to 3, you must
then call params 4 AND 8.

 CALL LINK("JCAL",-1,R1$,R2$,R3$,R4$)
This returns calibration and calculation results in the form of four DF80
records that should be copied into the driver file, as records 1 to 4. Note
that record 0 should be left intact.

III.3 Access from assembly

 BLWP @AJCAL
with joystick number (1 or 2) in R0
and parameter number (0 to 11) in R1

No provision is made to create DF80 records, this is only available with
extended basic.

IV. TI-ARTIST DRIVER

These subroutine files are provided to allow for use of the PC joystick with
TI-Artist version 1 and TI-Artist Plus!

IV.1 Using PC joysticks with TI-Artist version I

While in TI-Artist select option C, then number 2 (load external DSR) and enter
DSKx.ART/DRV as a filename. This is a memory image DF80 file containing a
special driver for PC-joysticks. Unfortunately the ridiculously small amount of
memory reserved for such drivers did not allow me to implement a sophisticated
driver, this is the best I could pack in less than 256 bytes! (Note there are a
few garbage characters at the end of the prompt, these are calibration data not
bugs!).

You can toggle between position mode and speed mode by briefly pressing Fctn-M

While in speed mode, Fctn-; toggles TI-joystick emulation on/off. When on your
PC joystick can be used just as a TI joystick in slow motion.

Fctn = can be used to exit TI-Artist (unless is was disabled).

Fire button 1 emulates the <enter> key.
The exception is in "Drawing" mode: pressing (and holding) button 1 results in
drawing points, whereas pressing <enter> enters/exits continuous drawing (i.e.
toggles pen up/down).
N.B. In "Point" mode, button 1 must be released before a new point can be
drawn, contrarily to what happens in "drawing" mode.

Fire button 2 emulates the spacebar.

IV.2 Using PC joysticks with TI-artist Plus!

Load the driver DSKx.ART+/DRV while in main menu.

Then Fctn-L (Location) selects position mode,
and Fctn-M (Motion) selects speed mode.
While in speed mode, Fctn-; toggles TI-joystick emulation on/off. When on your
PC joystick can be used just as a TI joystick in slow motion.

Fire buttons 1 and 2 emulates <enter> and <space> as explained above.

IV.3 Calibration

Due to the small size of these drivers, the usual calibration program does not
apply. Instead you should run the extended basic program ART/SETUP.

When started the program fetches current values from the driver specified in
line 110. The driver type (Artist I or Artist Plus!) is determined
automatically and remain fixed until the end of the program.

From the main menu, you can choose among the following options:

1. Position mode

Here you see the pre-defined values for horizontal and vertical timing ranges.
You can modify these values and see what it gives with TI-Artist. The principle
is that, if the cursor doesn't reach the right/bottom border of the screen,
then you should decrease the corresponding range value.

2. Speed mode

Here you see the limits of the central, neutral area in the four directions.
You can modify them, keeping in mind that right must be greater than left and
down greater than up.

3. Default mode

This determines which mode is used when loading the driver.
You can modify this by selecting 1 or 2. Remember that you can always switch
mode during TI-Artist execution, by pressing Fctn-M / Fctn-L.

4. Quit key

This determines whether the <quit> key will be active.
If you're afraid to press it by mistake, disable it with 0.
If you like the idea to quickly quit TI-Artist I, enable it with 1.
This option is not available for TI-Artist Plus!

5. Joystick number

This selects the joystick to use with TI-Artist.
Enter its number (1 or 2).

6. Save setup

The new values can now be saved into the driver file. Enter the file name (the
default driver is proposed, but you can enter any filename).
Entering an empty line returns to main menu, otherwise the driver file is
updated (or created of necessary).

0. Exit program

If the setup was modified and not saved you are asked if you really want to
exit. Enter "Y" to exit, "N" to return to main menu.
No confirmation is required if the driver was saved.

V. Copyrights 1995

Interface board designed Thierry Nouspikel
Software created by 10 Paumiere CH-1231 Geneva Switzerland
Manual written Email: nouspike@cmu.unige.ch

None of the above is copyrighted, you can thus freely copy and distribute it to
anybody. Just don't sell anything since all is available from me for free!

II.2 Connectors wiring summary

Adapter board Console port Joystick plug (Second joystick plug)
------------- ------------ ------------- ----------------------
Ground P1
T1' basis (joy 2) P2
 P3 ? (both buttons 3) ? (button 3 on joy 2)
 P4 J2 + J10 J2
R8 (joy 1) + R8' (joy 2) P5
+5V P6 J1 + J9 J1
T1 basis (joy 1) P7
R6 (joy 1) + R6' (joy 2) P8
 P9 J7 + J14 J7
R4 (joy 1) J3
R4' (joy 2) J11 J3
R3 (joy 1) J6
R3' (joy 2) J13 J6
D1 (joy 1) J4
D1' (joy 2) J12 J4

II.3 Building the board

The circuit is so simple that you would not even need to etch a PCB for it,
nevertheless it's cleaner so may be it's worth doing it... it's up to you.
On my part, I etched a 6x6 cm board, handling 2 joysticks and fitting exactly
in a small 6x6 cm box I had at hand. It plugs directly into the console port.

I would advise you to use sockets for the 74LS221, so that you can easily
change it, if you suspect it has been damaged with time.

The buttons connections don't need to be etched: you can just place a wire
between joystick and console connectors.

The LED is optional, I just added it for the fun of seeing which joystick is
currently accessed, if any.

You may have to modify capacitors values after you checked your board with the
calibration program. It may even be necessary to add up two capacitors (for
instance 100 uF and 10 uF) by placing them in parallel. When designing your
PCB, plane pads for extra capacitors, just in case.

In case you decide for a 4.5 V battery (and switch), remember that you still
need a common ground with the console. For instance you could pass a piece of
wire through the PEB cable port (make a little notch in the console wall, so
that you can still connect the cable). The wire can be fixed to one of the
small screws you see in this port.

However I would advice you to modify you console so that ground and +5V are
available through the currently unused pins of the joystick port. This only
takes a few minutes and avoids the burden of a battery, not to mention the fact
that it may be used by future devices connected to the joystick port (such as a
paddle for instance).

II.4 Modifying the joystick port

- Unplug your TI99, wait for a couple of minutes, turn it upside down and remove
the 7 screws so that you can lift the bottom plate.

- Remove the screws and the two metal clamps the hold the motherboard shell.
You don't need to remove screws on the PEB connector side: just slightly lift
the metal shell and keep it open with a piece of rubber (such as a pencil
eraser).

- Now inspect the joystick port connections, it should look so:

 +---------+
 !connector!
----------+---------+---+ <-- board edge
 !
 + o o o ! 6 7 8 9
 oo x o o o o ! 1 2 3 4 5
 o!
 ooo o o !
 oo + o !
 !

- You will note that pin 1 (the one I marked with an x) is very close to the
surrounding ground "fill-in". It is thus very easy to create a little bridge of
solder in order to connect that pin to ground. Just one thing: before
soldering, use a knife to locally scratch the insulating paint over the ground.

- Using a 1.5 cm insulated wire, connect the two pads I marked with a +. This
brings +5V to pin 6. Make sure you don't accidentally connect any additional
pad with +5V !

- Close the metal shell, replace screws and clamps. Place back the console
bottom and its screws.

- Turn power on and check voltage between pins 1 and 6: you should read a value
of +5V or more.

- That's it. How long did it take? Probably around 10 minutes, right?

 Th.N. June 1995

