

 DISCLAIMER OF WARRANTY

 THOMSON SOFTWARE(D.I.P.) does not warrant the contents of this
 manual to be totally accurate. The information contained in this
 manual about the TI disk operating system has been thoroughly
 researched and is believed to be correct. If you notice an error
 in the manual please bring it to my attention and I will publish a
 correction.

 The user assumes complete responsibility for any decisions made
 or action taken based on information obtained from this program.
 THOMSON SOFTWARE(D.I.P.) reserves the right to revise this
 publication and make changes to the program. When changes or
 modifications are made, persons on record at THOMSON
 SOFTWARE(D.I.P.) that have registered copies will be offered the
 opportunity to acquire these changes.

 MAKE SURE THE ALPHA LOCK KEY IS DEPRESSED BEFORE TRYING TO EXECUTE
 COMMANDS!!!!

 1. Loading DISK + AID with Extended Basic

 To load DISK+AID from EXTENDED BASIC, plug in the XB command
 module. Place the disk containing DISK+AID in drive number 1.
 Select EXTENDED BASIC. The program will automatically load and
 run. Load time is pretty fast utilizing the speed loader
 provided. The program cannot be loaded in XB any other way.

 2. Loading DISK + AID with Mini-Memory

 Plug in MINI-MEMORY and reinitialize memory. Next select the
 load and run option of MINI-MEMORY. The file name is DISK+AID-O.
 The program will load and run automatically.

 3. Loading DISK + AID with Editor/Assembler

 Plug in EDITOR/ASSEMLBER and select the load and run option.
 The filename to load is DISK+AID-O. The program will load and run
 automatically.

 The first screen you will have is the credit/title screen.
 Press any key to continue. The next screen you will have will be
 the WARNING screen that informs you of the dangers of using a
 single sectoring program.

 The MAIN MENU screen displays all of the options available to
 you for operating DISK+AID. All commands are executed using a
 single keystroke entry process.

 At the top of the screen is the status line. The status line
 displays the following items:

 --Extreme left, last memory area accessed.

 --Next is the disk drive number you are working with.

 --Current sector number or memory address.

 *** WARNING ***

 BE SURE YOU HAVE THE SECTOR AND DISK NUMBER YOU WANT TO READ OR
 WRITE ENTERED BEFORE EXECUTING THE READ OR WRITE SECTOR
 COMMAND.

 --The Caret indicates whether the screen will update after each
 command. If the caret is present the screen will update. If not
 the screen will not update.

 --The last part will display the last command you executed. Not
 all commands are displayed. If the cursor is flashing here, you
 are in the command mode.

 O-SELECTING AN OUTPUT DEVICE

 This command lets you enter an output device name for storing
 files on disk or getting printouts.

 A-ALTER SECTOR OR MEMORY

 This command lets you alter any sector or memory block in
 either ASCII or HEX. Use the arrow keys to position the cursor
 where you want it.

 B-BACK SECTOR

 This command subtracts 1 from the current sector number
 displayed on the status line.

 C-VIEWING CPU MEMORY

 This command lets you view a 256 byte block of CPU memory.

 D-SCREEN DUMP

 This command will take the contents of the screen and dump them
 to the device you specified enter in the select output device
 command. The screen dump will work on any valid device except
 cassette.

 E-COMPARING SECTORS

 This command will enable you to compare sectors of a disk on one
 drive or two drives.

 F-FORWARD SECTOR NUMBER

 This command adds one to the sector number displayed on the
 status line.

 G-VIEWING GROM MEMORY

 This command lets you view a 256 byte block of GROM memory.

 H-CHANGING MEMORY ADDRESS

 This command allows you to manually change the memory address
 you will be viewing. With a C,G, or V on the status line, you can
 enter the address next accessed.

 I-DISPLAYING SCREEN BUFFER

 This command allows you to recall the ASCII or HEX screen that
 was last read in from memory or disk.

 M-MOVING A SECTOR

 This command lets you move up to 35 sectors at a time from one
 place on a disk to another or from one disk to another disk.

 N-SECTOR NUMBER

 This command will lets you manually enter the sector number you
 wish. The entry mode works the same as a pocket calculator.

 P-PRINTING SECTORS

 This command lets you print out one sector or a range of
 sectors. The printout is sent to the device name you selected with
 the select output device command. To prematurely stop the printing
 loop press FCTN 4.

 Q-QUITING THE PROGRAM

 Press "Q" to quit and go back to the TI title screen.

 R-READ SECTOR

 This command lets you read the sector pointed to by the disk
 number and sector number displayed on the status line.

 S-SEARCH STRING

 This command lets you search for a string up to 40 characters in
 length in either ASCII or HEX. You can also specify the start and
 stop sector number. To prematurely stop the search press FCTN 4.
 With the caret displayed on the status line you can view each
 sector while its searched. With the caret off the screen will not
 be updated.

 T-TOGGLE BETWEEN ASCII AND HEX

 This command lets you toggle the current display between ASCII
 and HEX.

 U-UPDATING SCREEN DISPLAY

 This command lets you turn the screen update on or off. See
 other commands for uses.

 V-VIEW VDP MEMORY

 This command lets you view a 256 byte block of VDP memory.

 FCTN W (~)-WRITING A SECTOR TO A DISK

 *** WARNING ***

 IF YOU ARE WRITING A SECTOR TO A DISK BE VERY CAREFUL THAT YOU ARE
 WRITING WHAT YOU WANT WHERE YOU WANT IT. THIS PROGRAM HAS THE
 POTENTIAL OF DESTROYING DATA AND INFORMATION ON A DISK IF THE USER
 IS NOT FULLY AWARE OF WHAT THEY ARE DOING !!!!

 This command lets you write the a sector of information to disk.
 Make sure the disk number and sector number on the status line are
 correct before using this command.

 FCTN C (`)-CURRENT CPU MEMORY ADDRESS

 This command lets you view the current address you are pointing
 to in CPU memory.

 FCTN G (})-CURRENT GROM MEMORY ADDRESS

 This command lets you view the current address you are pointing
 to in GROM memory.

 FCTN Z (\)-CURRENT VDP MEMORY ADDRESS

 This command lets you view the current address you are pointing
 to in VDP memory.

 FCTN T (])-TOGGLE STATUS LINE

 This command toggles the middle of the status line between the
 sector number and the memory address of the area pointed to by the
 letter on the left side of the status line.

 FCTN I (?)-MAIN MENU

 This command is your help command. Use it to refresh your memory
 as to the valid commands and what they do.

 FCTN P (")-Mapping Sectors

 This command lets you map sector zero or a directory sector. See
 the section on disk layout for more information.
 Any time you map a sector you can also use the screen dump
 feature to make a permanent record.

 1,2,3,4-SELECTING DISK DRIVES

 Pressing 1,2,3 or 4 simply changes the disk drive number as
 indicated on the status line.

 FCTN 9 (BACK)-MEMORY BACK PAGE

 This command will enable you to page back through memory in 256
 byte blocks. The letter on the status line is the memory area you
 will be back paging thru.

 >-NUMBER BASE CONVERSIONS

 This command lets you convert 4 digit HEX numbers to 4 digit
 decimal numbers and vice-versa. The main purpose for this routine
 is to make converting sector numbers easier.

 LAYOUT OF SECTOR 0

 ** WARNING **

 ALTERING SOME INFORMATION COULD CAUSE THE DISK CONTROLLER TO NOT
 BE ABLE TO ACCESS THE DATA. IT PAYS TO KEEP TRACK OF ANY CHANGES
 YOU MAKE TO INFORMATION ON THE DISKETTE SO YOU CAN RESTORE IT TO
 IT'S ORIGINAL CONDITION.

 The first thing I'm going to talk about concerning the
 disk layout will be what is in SECTOR 0. But before I go on, a
 couple of notes. First of all, whenever you encounter the symbol >
 this means hexadecimal (hex). Secondly each sector on the disk is
 divided up into >FF addresses. This corresponds to 256 bytes of
 storage per sector. In fact as far as the computer is concerned,
 the disk is nothing more than an extension of memory. The disk
 controller ROM takes care of dividing up the information to be
 stored on the disk and writes it to the disk. As the disk
 controller is doing its job writing to or reading from the disk,
 it has complete control over the computer. Only after it is done
 with its job does it return control to your program.

 When reading about sector 0 refer to figure 1-1. This is a
 picture layout of what the sector looks like.

 --
 |>00->09 |>0A->0B |>0C |>0D->0F |>10 |
 |DISK |TOTAL |NUMBER OF|ASCII |ASCII "P"|
 |NAME |NUMBER OF|SECTORS |VALUE |OR " " |
 | |SECTORS |PER TRACK|FOR "DSK"| |
 --

 |>11 |>12 |>13 |>14->37 |>38->FF|
 |NUMBER OF|NUMBER |DENSITY|RESERVED |BIT MAP|
 |TRACKS |OF SIDES| |FOR FUTURE| |
 |PER SIDE | | |ALLOCATION| |

 FIGURE 1-1

 Each of the blocks in figure 1-1 represents BYTES on the disk
 in sector 0. I am using hexadecimal numbers because that is the
 way DISK + AID displays sector information.

 Bytes >00->09

 These ten bytes contain the name that you assign to the disk
 when you initialize it with DISK MANAGER command module. The disk
 name is used by the computer for identification purposes if you
 ask for the disk by name. Other than that, there is no use for the
 disk name.

 Bytes >0A->0B

 These 2 bytes contain the value for the total number of sectors
 on the disk. If you see >0168 in these 2 bytes that means there
 are a total of 360 sectors on the disk. If you saw the number
 >02D0 this would mean there are a total of 720 sectors on the
 disk. This happens to correspond to the number of sectors on a
 double sided single density disk. All that is needed to figure out
 the numbers of sectors is to simply convert the hex number on the
 disk to a decimal number. The decimal number is the number of
 sectors on the disk.

 Byte >0C

 This byte indicates the number of sectors per track. TI-DOS
 supports only 9 sectors per track.

 Bytes >0D->0F

 These bytes are the only bytes outside the disk name that I
 have seen are checked by DISK MANAGER. Byte >0D contains the value
 >44 which is a "D". Byte >0E contains the value >53 which is an
 "S". Byte >0F contains the value >4B which is a "K". These 3 bytes
 are like a flag to DISK MANAGER in telling it whether the disk is
 initialized or not. If you change these bytes to anything other
 than "DSK" and try and do anything with DISK MANAGER you will get
 a "DISK NOT INITIALIZED" message.

 Byte >10
 This byte contains the value >50 or >20. These values
 correspond to whether the disk is PROPRIETARY or NONPROPRIETARY.
 If you see a >50 in this byte it means it is PROPRIETARY. If you
 see a >20 or any other number for that matter it is
 NONPROPRIETARY. When you try and copy a disk using DISK MANAGER
 it checks to see if this byte is set to >50 or not. If not, it
 will let you copy the disk. If it's set you cannot copy the disk
 with DISK MANAGER.

 There are disk copiers on the market today that will not check
 to see if a disk is proprietary. The copier will make a complete
 copy of a proprietary disk. Changing this byte to any value other
 then >50 or >20 seems to have no effect on the disk controller.
 The disk can be copied as if it was nonproprietary. It appears
 the DISK MANAGER only checks to see if >50 is in that location.
 Any other value and it doesn't seem to care. Before you initialize
 a new disk, press FCTN X 10 times in a row and then proceed to
 initialize the disk. It will be proprietary from being copied by
 DISK MANAGER.

 Byte >11

 This byte contains the value for the number of tracks per side
 on a disk. Normally using TI-DOS you can select either >23 or >28
 tracks per side. Changing this value seems to have no effect on
 disk operation. To find out the exact tracks per side in decimal,
 convert the hex number to decimal.

 Byte >12

 This byte contains the number of sides on the disk. TI-DOS
 supports double sided disks so the value in this byte could be
 >01 or >02 depending on the type of system the disk was
 initialized on. Changing this value to any value other than the
 allowed >01 or >02 seems to have no effect with normal disk
 operation.

 Byte >13

 This byte contains the density information about the disk. If
 the value is >01 the disk is single density. If the value is >02
 the disk is double density. TI-DOS does not support double
 density. There are third party systems on the market that will
 support double density, however, so it is possible that you could
 run into a disk that has either value in it.

 Bytes >14->37

 These bytes are reserved for future expansion.

 Bytes >38->FF

 These 199 bytes are used for the BIT MAP. When you write to a
 disk the disk controller checks this area to see what sectors are
 available and what sectors are not.

 Each byte in this area represents 8 sectors in use. That breaks
 down to 1 sector in use for every bit that is set. The first byte
 is for sectors >000->007. If the first bit is set that means
 sector 0 is in use. If bit 3 is set that means that sector 3 is
 in use. The way the byte is read is from right to left. In other
 words you read it backwards. The table is read from left to right
 the same way you would read a book. For example in the first byte
 if these bits are set, 0011 1111, this would mean the sectors
 >000->005 would be in use. In the second byte if these
 bits are set, 0110 1100, this would mean that the following sectors
 would be in use: >00A,>00B,>00D,>00E.

 When the disk controller is instructed to write something to
 the disk, it must first read in this table to determine which
 sectors can be written to. As it writes to those sectors it will
 keep track of which ones it actually uses for the particular file.
 When it closes the file it will write the newly revised bit map
 back out into sector 0. Be careful if you alter the bit map. If
 you reset a bit that was supposed to be set and write it back out
 to sector 0, and you write to that diskette you may write over
 part of another file as that sector is flagged as being
 available.

 LAYOUT OF SECTOR 1

 Sector 1 contains an alphabetized list of all the files on the
 disk. Every time you add a file the controller reads this list and
 finds out where the file name would fit in alphabetically. The
 controller always expects this sector to be in alphabetical order
 so it does not resort the list each time it accesses it.

 Changing the order of the information in this sector can have
 an effect on the way the disk controller accesses the disk. An

 example being, if you have a program on a disk called "LOAD" and
 it is not listed in alphabetical order with the rest of the
 programs, say it is further down the list then an "L" should be,
 Extended Basic will not automatically load the program in like it
 is supposed to.

 Each of the file allocation blocks is 2 bytes long. If a disk
 had 4 programs on it this is the way Sector 1 would look:
 >0002000300040005. You will notice that the 2 byte numbers start
 with a >0002. This is because the first directory sector starts in
 sector >002. The second directory sector starts in sector >003 and
 so on.

 LAYOUT OF DIRECTORY SECTORS

 The next area of the disk I am going to cover is the
 "DIRECTORY SECTOR". These sectors contain information about a
 file that is just as important as SECTOR 0 is to the whole disk.
 The directory sector contains all the information that the
 controller needs to know about the file. Figure 1-2 is a picture
 of how a directory sector is laid out.

 |>00->09 |>0A->0B |>0C |>0D |>0E->0F |
 |FILENAME|RESERVED |FILE |NUMBER |NUMBER OF|
 | |FOR FUTURE|STATUS|OF LOGICAL|SECTORS |
 | |USE |FLAGS |RECORDS |ALLOCATED|
 | | | |PER SECTOR| |

 |>10 |>11 |>12->13 |>14->1B |>1C->FF|
 |EOF |LOGICAL|NUMBER OF|RESERVED|DATA |
 |OFFSET|RECORD |RECORDS |FOR |CHAIN |
 | |SIZE IN|ALLOCATED|FUTURE |POINTER|
 | |BYTES | |USE | |

 FIGURE 1-2

 Each of the blocks in figure 1-2 represent bytes on the disk in
 every directory sector. I will be explaining each of the blocks
 in detail, concentrating on the blocks that have the most to do
 with how the disk controller finds the location of all the
 information pertaining to any one particular file.

 Bytes >00->09
 These bytes contain the name you assign to the file. The file
 name is assigned when the file is created.

 Byte >0A->0B
 These bytes are reserved for future expansion.

 Byte >0C
 This byte is broken down into 6 pieces. Each particular piece
 has a certain meaning as discussed below.

 BIT # DESCRIPTION
 ----- -----------
 0 This bit indicates the type of file:
 0 = Data type file
 1 = Program type file

 1 This bit indicates whether the file is
 ASCII(display) or BINARY(internal):
 0 = ASCII file (display)
 1 = BINARY file (internal)

 2 Reserved for future data type expansion.

 3 This is the PROTECT flag. When you use the DISK
 MANAGER module and want to modify file protection,
 this is the flag you are setting or resetting.
 0 = Not protected
 1 = Protected

 4-6 Reserved for future expansion.

 7 This bit indicates what type of records the file is
 written in. This will show the records as being
 FIXED or VARIABLE.
 0 = Fixed length records
 1 = Variable length records

 Byte >0D
 This byte contains the number of logical records per sector for
 fixed length records only. If you have a FIXED 80 record format,
 each sector will have a maximum of 3 records with 16 bytes unused.
 If the file is a program or variable type file this byte will be
 >00.

 Bytes >0E->0F
 These 2 bytes contain the number of data sectors for the file.

 Byte >10
 This byte contains the end of file offset for variable length
 record files and program files. The value in this byte points to
 the last valid byte of data in the last sector of the file. The
 last sector of the file is listed in the sector fragment table.
 The sector fragment table will be covered in a later section. The
 sector is flagged as being in use in the bit map in sector 0, even
 though the sector is not full.

 Byte >11
 This byte contains the size of the record in bytes. For example
 a fixed 80 record would have a value of >50 in this byte. If the
 record is a variable length record, the number indicated here will
 be the maximum allowable record size. For example let's take a
 TI-WRITER which is DISPLAY/VARIABLE 80. The value in this byte
 would be >50. If you change this byte, the disk controller will
 not know the record size and thus return a error code indicating a
 file mismatch.

 Bytes >12->13
 These 2 bytes contain the number of records in a file. If the
 record length is fixed, the disk controller will calculate how
 many records will fit in a sector and how many data sectors are
 allocated for the file. From this it calculates the number of
 records it has written to the disk.

 In the case of variable length records, the disk controller
 calculates how many records it has actually written out and places
 that value here. One thing different about this sector is that the
 2 bytes are reversed. Normally you would read 2 bytes like >0050
 to mean decimal 80. What the disk controller does is take these 2
 bytes and reverse them. What you have now is >5000. To the disk
 controller this means decimal 80.

 Bytes >14->1B
 These 2 bytes have been reserved for future use.

 Bytes >1C->FF
 These 233 bytes form what is known as the file data chain
 pointer block. This is the only place that the controller has to
 look up the information needed to find all the sectors that
 make up the file. If you have a lot of patience and determination
 you may be able to put this block back together again.

 The way this table breaks down is: each block of 3 bytes
 indicates the beginning sector and the offset value for the last
 sector. The 3 byte blocks break down in an unconventional way
 that I am going to describe here. First of all you don't read
 the bytes from right to left. By referring to figure 1-3 while you
 read you should be able to get a pretty good picture of how the
 blocks are broken down and the sectors calculated.

 BYTE 1 BYTE 2 BYTE 3
 --------- --------- ---------
 | D1 | D2 | | D3 | D4 | | D5 | D6 |
 --------- --------- ---------

 FIRST FILE SECTOR

 | D4 | D1 | D2 |

 SECTOR COUNT OFFSET

 | D5 | D6 | D3 |

 FIGURE 1-3

 The first thing that you have to do when figuring out the 3
 byte block is to rearrange the hex digits, (D#), as shown above.
 In our example I will use the 3 byte fragment >E24001. This
 breaks down to >E2 >40 >01. When the digits are rearranged you
 will have >0E2 and >014. The first value >0E2 is the first sector
 in the fragment. The second value >014 is added to the first value
 to give you an ending value of >0F6. This is the last sector in
 this fragment.

 For files that have more than one cluster the algorithm for
 figuring each of the clusters beginning and ending sectors is a
 little more involved. Let's take a file that has 4 clusters in it.
 For an example I will use a file that has a file data chain
 pointer table broken down as follows: >6E000073A0007F7001A66002.
 In the 3 byte sections it would look like this:

 1st 3 bytes = >6E >00 >00
 2nd 3 bytes = >73 >A0 >00
 3rd 3 bytes = >7F >70 >01
 4th 3 bytes = >A6 >60 >02

 For this table you would figure the first cluster the same way
 as you did before. In this case the first fragment will start at
 >06E with an offset of >000. So, the first and last sectors in the
 fragment would be >06E.

 The second set of 3 bytes breaks down to a starting sector
 value of >073 and an offset of >00A. This is where all
 similarities between calculating the first cluster and the
 remaining clusters end.

 The next step is to subtract the offset value in the first
 cluster from the offset value in the second cluster.

 Second cluster offset = >00A
 First cluster offset = ->000

 >00A

 Now subtract 1 from the answer, >00A, which leaves you with
 >009. Add this value to the cluster starting sector of >073.
 You will end up with >07C. This is the last sector in the second
 cluster.

 When the digits are rearranged in the 3rd cluster you end up
 with a starting sector of >07F. The calculated offset will be
 >017. Subtract the value of the 2nd cluster offset from the value
 of the 3rd sector offset:

 Third cluster offset = >017
 Second cluster offset = ->00A

 >00D

 Subtract 1 from the >00D which leaves you with >00C. Add this
 value to >07F and you end up with >08C. The >08C is the last
 sector in the 3rd cluster of the table.

 The 4th cluster breaks down to a start sector of >0A6 and an
 offset of >026. When you plug the values in for the offset
 calculation:

 Forth cluster offset = >026
 Third cluster offset = ->017

 >00F

 you end up with an offset of >00F as seen above. Subtract 1 from
 >00F to give you >00E. Add >00E to >0A6 to get the value of the
 last sector in the cluster, >0B4.

 As you can see, calculating the file data chain pointer table
 can be a real challenge. For one cluster, it's not too bad but for
 multiple clusters it can get pretty confusing keeping everything
 straight.

 If you would like the full 46 page manual which includes a 4
 pages section on recovering lost data and a much more detailed
 overview of using DISK+AID, send $5.00 to cover printing and
 mailing costs to:
 THOMSON SOFTWARE(D.I.P.)
 3507 MURL
 MUSKEGON, MI 49442

