

JLiFE's NEWSIEtter

The Wimipeg $9 \exists / 4$ User Group is a mon-profit grganization formed by Eomputer hobbyists far users of the Texas Instruments ge/4A Home computer and compatables. The content af this publiation does not necessarily represent the view of the Winnipeg $93 / 4$ User Group.

$$
\begin{aligned}
\text { Next General Meeting - } & \text { Date : September 4th, } 198 E \\
& \text { Tine : } 7: 00 \text { F.M. } \\
& \text { Flace: Winnipeg Gentennial Library } \\
& 15 t \text { Flogr, Assembly Foumi }
\end{aligned}
$$

Egetutive 19BE:

Fresident:
Treasurer:
Newsletter Editor, Eor:
and User Frograms Librarian: Mike Swiridenko $772-8565$
Contributing Editor:
Faul Degner
58E-E889
Inter-Group Representative and Newsletter Fublisher:
Asst. Newsletter Futlisher:
Systems Eo-Ordinator:
EduEational ©o-Drdinatar:
Fublic Domain Librarian:
B2z Henderson Hwy.
Module Librarian:
Mailing_Address:

Jim Bainard $334-5987$

Eill Quinn 837-7758

Dave Weod 895-7067
Hank: Derkson
Fick Lumsden 253-0794
Sheldion ItsEoviにh 633-0835
Gordon Firhards EEB-4894

Feter Giauld 889-5505
NEWSLETTEF: EDITEF:

WINNIFEG $9 Э / 4$ USEFS GEOUF
F.D.B. 1715

WINNIFEG, MANITOEA
EANADA, FOE zzE

EDITORIAL COMMENTS:

Well sumer is, just around the corner! (If you don't believe me go to the nearest corner and have a look.) This ueans that our club's neetings vill break for the season and return again in Septerber. The executive vishes to infor the club's meabership that the fall meetings, due to declining membership, will be held in the smaller lover level meeting room of the Hpg . Fublic Library. The executive would also like to ask the membership if they would like to continue the formal meetings or if the our club should formally disband. Discussion of the future of our club vill be held during this month's neating. One suggestion raised at previous executive meetings vas that the club should continue until the end of the year.

To make for light sumber reading this month's neusletter will be rather brief. Check out hints and Tips for TI-HRITER transliteration comands. Helpfile vill discuss the XBasic randor statement, For th DO loops, and Asseubler Jump inst tructions. Flease read miscellania for more club information. Have a decent sumer! See you all again on the fall!

If you have a reviey, user hints, or helpful programing tips, get then to me for the next neusletter. The deadline that I have set for subrissions is one veek before the date of the group's eefting. Thanks go to all who have subuitted items for this issue of our newsletter.

MISCELLANIA:

Misceilaneous news and reminders.
1.) As discussed in coments, the fall meeting will be held in the lower level meeting roon of the Library.
2.) The menber written library is to be terainated. Lack of input into this library have contributed to this decision. Most of the progras in this library will be turned over to the public donain library, pending release by duthors.
3.) Thanks goes to Mark Gibson of the MAD HUG users group for passing along PILOT and documentation to our group. We look forvard to further trade. PILOT is another FREEWARE language originally designed for couputer Assisted Instruction (CAI).
4.) FREEWARE... I have recently completed a CRIBBAGE progran and uish to have it distributed as FREEHARE. The progras is in Extended Basic and requires the 32 K meexp. It features onlof of counting eessages, as vell as a cheat function. If you are interested Mail the nevsletter editor, Mike Swiridenko, at the address on the cover of this neusletter. Send a single diskette, maler, and appropriate return postage.
5.) Welcome to our miling list:
the METRO-JAYEJN MICRO-CDAPUTER USERS GROUP
the GREATEE : - 4NDO 93'ERS USEF'S GROUF

HELPFUL HINTS AND TIPS!
 (FOR THE USERS, BY THE USERS!)

This columin features tips brought to ay attention fros aembers of this group, other user group's newsletters, and various other sources. WarNinga These hints and tips are to be used at your oun risk!

FAST-TERH:

To use the XModen file transfer of this progran press FCTN CTRL N to specify a filename for the UF/DONN load operation. After having specified the file, press FCtN CTRL x to activate the Xhodel file transfer routine. Follou the instructions and you should have no prublens.

Xhoden is a file transfer protocol that was developed for the transfer of data betueen aicrocomputers. Xhoden provides error checking, of transmitted data, by means of a CRC (Cyclic Redundancy Code) value. Data is transitted in fixed size blocks, each with their oun CRL value. The CRC value is basically the sull of the bits in the transmitted data.

To check for transuission errors, the bits of the transfered data are sumed and compared to the CRC value sent with the data. If the sum of the bits in the received data dǘs not atch the transitted CRC value then data is assuled to have been lost during transwission, and a retransis 55 ion is requested. If the sum and CRC values do not match after several retries the transfer is aborted. Faulty transfers can be caused by noisy phone lines, veak noder signals, or other harduare errors.

TI-HRITER

The following transliteration comands were taken from an article by David Reed in Volune NO. 60173 N0. 2 of the 99/4a National Assistance Group newsletter.

Using the transliterate comand, you can set certain characters on the keyboard 50 that whenever these characters are encountered the printer will be set in a certain typestyle. The follouing are examples of sone transliterate comands you could use.

NAME	COHMAND ON	COMHAND OFF
EMPHASIIED	.TL 123:27,69	. TL 125:27,70
DOUBLE STRIKE	. TL 91:27,71	. TL 93:27,72
SUPERSCRIPT	. TL 62:27,83,0	.TL 94:27,84
SUBSCRIPT	. TL 60:27,83,1	.IL 94:27,84
ITALICS	. IL 33:27,52	. IL 63:27,53
EMFHASIZED ON AND [- BLE STRIKE	. TL 123:27,69 .TL $91: 27,71$. TL 125:27,70

Using the transliterate conands above, if you vant to print in EMPHASIZED, you vould type a "f" before the text you vant printed is enphasized then for at the document. When it is printed all of the text following the "f" will be emphasized. The pryill not te printed. These typestyles stay set until they are turned off or changed by another comeand, or the printer is turned off.

Sobe of theise typestyles can be conbined and other 5 cannot. Check your printer manual for those which can be contined.

aSSEMBLY LANGUAGE

The following is a simple subroutine that will give a BAD RESPONSE TONE when called. To call this routine use the statement- $B C$ eHONK HOME CLR RO

MOV	R0. 97837 C	CLEAR THE STATUS B
BLHP	9GFLLNK	BRANCH AND LINK TO THE GPL LIBRARY.
datía	>003E	DFFSET TO BAD RESFONSE TONE S/R.
CLE	R0	
M. 3	9)B3CE, RO	LOOF TO SEE If Sr.nd mr: FINISHED.
LIMI	2	ENABLE/DISABLE
LIMI	0	
CI	R0, 0	15 E-4: - 4 -?
JNE	HK!	NO- ESOM: TO WAIT
RT		RETURN TO CALLIMG ROUTIN

PROGRAMMING HELP FILE:

Abstract

The purpose of this culumis to presant tarhniques; and information that will be useful in the uriting of programs for the TI-g9/4A home conputer. If you can provide some prgraming insight that aight be u5eful to sosecns, please feel fret to pass it on to le and I'll get it into the next nevsletter.

BASIC/EX-BASIC:

This month I will discuss the use of the RANDMIIE statenent and the RND function.
In uriting programs that play games or perform simulations one must usually incorporate an element of unpredictabilify. A gave which plays the sate every tive quickly losés its chal enge. Real life events are very rarely predictatie. Can you predict the weather, or when your car will break doun? Statistics use probabilities of an event, determined by past outcones of the event, to predict the future behavior of an event. The prediction of the behavior of an event is usually stated in teras of the percentage of past events the expected event has happened. In all likely-hood if an event has occured 30% of the tive in the past it will continue to occur 30% of the time in the future. Thus an event is said to have a 30% chance of occurring in the near future.

To generate the ociurence of an unpredictable event a randor number generator is used. Ta © XBASIC RND function generates a randon numer less than une but greater than or equal to zero. it. $0-.9939 . .$. fri. can be used to generate the outcone of an event being simulated. If an event has a 30% likely hood of happening the progranear can get a randul value and compare it to .3 . If the randol value is less than or equal to 3 then the predicted event is said to have happened. If the randon value is greater than 3 then the event is not said to have happened.

For exanple:
The probability of rain is said to be 50 z on a cloudy day. A portion of a progran to simulate weather way look like this:

100 CLOUDY $=-1$
200 RAIN = (CLOUDY AND (RND (0.5))
300 IF RAIN THEN PRINT "IT IS CLOUDY AND RAINING"
400 if CLOUDY AY: NOT RAIN THEN PRINT "IT IS CLOUDY AND NOT RAINING"
500 IF NOT CLC': THEN PRINT 'SUNNY HEATHER TDDAY"
How does a computer get a randon number? A randon nuber is simply a series of math transformations involving the digits of a large seed number. The transformations typically involve dividing the seed number by a large prive number and then dividing the rellainder by a power of ten to get a decinal fraction. To generate the next randou number the remainder of the prine number division is multiplied by a second prime number and is used as a new seed for the next randor number. Because the old seed is used to generate a new seed the random nubers generated vill repeat if you festore the seed to its initial value. In this way you vill be able to get the random nubers generated to start over.

To change the initial seed of the II XBasic random nubber generator the RANDOMIZE statement is used. To get a randor sed value use RANDOMIZ by its self. To set the seed to a specific number place the number after RANDOHIZE. ie- RANDOMILE 32767.

The numbers generated by the RND function are not truly randou since they way be started over by restoring the initial seed value; hovever, they are often goodenough for the progranaing applications discussed.

ASSEMBLY: :
There are no assembly equivalent to TI-X/Basic's IF-THEN-ELSE or FOR-NEXT, sterents, instead branching by the use of JUMF statements is used.

To use the JUMP staterents properly they must follou statenents wich set the status register bits. The status register is where the status of the result of a data operation is placed. The status of an data operation is defermined by comparing two data values. Depending if a data value is less than, greater than or equal to another value appropriate status bits vill be set in the status register. Error in an operation vill also be signaled in the overflow, carry, or parity status bits. Wher a JUMP instruction is executed the status register is be checked to deteraine if the JUMF is to be taken. If no JUMP is to be ade i's JUMP instruction is ignored and the next instruction is executed. Because of this condition checking a ane instruction is similar to an IF-THEN statenent (ie- IF TRUE THEN 100).
a JUff statelent consists of a specific Jump memonic and a destination label. The label in this statement eust be within a +256 and -254 byte range frow the locat: $\mathbf{j r}$ of the instruction. The label wist be within this range because of the internal and relative nature of the instructions. The juff aneminics reflect the nature of the condition that must exist before the jump uill occur for example: Joc label - vill cause a a-b; to 'latel' when the carry bit in the status register is set; otherwise, the next instruction is executed, other wion menonics are:

JE日 ... Junp if equal.
: H Jump if not equal.
J6i ... Jump if greater than.
JLT ... Jump if less than.
JOP ... Jump if odd parity.
JN: ... Jump if no carty:
Jh.... Jump if no overllow.
JhF ... Jump vithout regard to status register: :
By the use of the various JUMF instructions, latels, and instructions which affect the status register, looping and IF-THEN-ELSE type operations way be perforned easily in assently language prograns. Happy progranaing!

FORTH:

In TI-Basic you would use a for/NEXT statements to perform an iterative loopa in forth there is a similar statenent. This discussion explains how the Forth stament is written.

An example of a forth iterative loog is as fullous:
: EXAMFLE 100 DO SOMETHING LOOF ;
This is an example of a user defined Forth word wich contains a loop. This loop will execute the word 'SGMETHING' exactly ten ties. The starting value of the index is 0 , then liniting value is 10 . These values are taken from the stack before the loop is executed. The words between the keywords 00 and LOOF will be executed each tive the lia repeats. The loop vill execute once before it compares the andex to the linit. If the the index value is LESS :-min the liciting value it is incremented by one, and the loop vill repeat. At the end of each iteration the index 15 again tested, If the index is equal the lielt value the loop will end and exection will continue vith any vords following LOOF.

To alter the stef value of the index you would change the loop to look like the following:
100 DO SOKETHING 2 +LOO
Notice that $\angle 00 F$ has become $+\angle D O F$. This indicates that the step size is to be taken fron the stack. In the case of the example the stepsize is 2. The step value eust be place inediately before the +LOOP keyword. To step in a negative direction use a negative step value. There are other looping key vords that are part of forth but 1 will leave the discovery of those to the enthusiastic reader.

CURIOSITIES AND PASTIMES

This colum features a monthly BRAIN TWISTER for your intellectual entertainment. This month's puzzie is called "Ganbler's Payoff".

Seven men sat at a gatbling table' and agreed that wenever a player lost a gate, he vould double the money of each of the other players - that is, he was to give the other players each as auch money as they then had in their pockets.

They played seven games and each lost a gane in turn. Dddly, when they had finished, each man had exactiy the
same amount - $\$ 32$ - in fis pocket.
Hou auch money dideach man have before he sat down to play?
(Hint: if you urite a progran to solve this you should use an array.)
SOLUTION TO: "The Monkey and the Pulley."
We find the age of the monkey to be $1 / 1 / 2$ years, and the mother to be $21 / 2$ years, the monkey therefore veighing 2 1/2 1bs., and the weight the same. The rope veighed $1 / 1 / 4 \mathrm{lbs}$. , or $20 \mathrm{oz}$. ; and, as a foot of rope weighed $402 .$, the length of the rope vas 5 ft .

```
100 EALL ELEAF:
105 FRINT "STEFFING SOUNDS"::: ::
110 FOF }X=500 TO 1000 STEF 10
120 EALL SOUND(50, X,0,X-300,0,X+300,0)
130 NEXT X
140 EALL SDUND(1000,110,30)
15O FOF X=130 TO 1000 STEF 30
```



```
170 NEXT X
180 EALL SDUND(1000,110,30)
1GO GOTO 110
200 END
100 EALL ELEAF
110 DEF MODSE(N)=1+INT(N-5E#INT(N/SE))
120 DIM N(5E)
130 FEEAD NTS,SFD,VL
140 FEEF=4
150 ! FEMOVE ! FROM 2こO FOF: DFTIDNAL WAIT EETWEEN FEFETITIDNS.
1EO WAIT=1
170 ENT=0
18O FFINT "MEMFHIS EITY BLUES"
1GO FFINT : : : "WFG 'Э`/4A USEF'S GFOUF"
200 PFINT : : : : : : : : : :""
21O FOF I=1 TD NTS
2%O FEAD N(I)
200 EALL SDUND(SFD,N(I),VL)
240 NEXT I
250 !EALL SDUND(WAIT,110,30)
2EO ENT=ENT+1
270 IF ENT.FEF THEN END
28O FOF: I=1 TO NTS
200 EALL SOUND(SFD,N(I),VL,N(MODEE(I+2O)),VL)
OO NEXT I
310 GOTO 250
320 DATA 5E,330,0
3 3 0 ~ D A T A ~ 1 E 5 , 2 0 8 , 2 4 7 , 2 7 7 , 2 5 4 , 2 7 7 , 2 4 7 , 2 0 8 ~
340 DATA 220,277,330,370,352,370,350,277
350 DATA 1E5,208,247,277,254,277,247,208
3EO DATA 247,311,370,415,440,415,370,311
370 DATA 220,277,330,370,302,370,330,277
3BO DATA 1E5,208,220,233,247,233,220,208
300 DATA 1E5,208,220,233,247,233,220,208
```


NEW'SLETEFE ED, TEH
DUPG $99 / 4$ VISER'S EROUP PO 2. 17,5 NIINIPEE, MANITUBA CMADOA R3

236

