
H

g■Irm................e........dro....rmr-.. ,-.... ..• -...- -. --. -..—..-

'.."s, 	y 	••■•
... 	S, 	' N.........
•■• 	1.,....." 	..-

.... 	C.:■:'''' 	Iv' - ----, 	 -...

-- 	w-1.51
. 	

-.. --
r•fr 	- 	---,-, t 	_ 	:7.3....

	

y 	■•••" -N.....e2.:.- 	. 	0 	'''..
P 	\::"

	

•••• 	.f:.....,1 .., /"C• 	X 	%
. 	(.1"/ °".."../...-..,. 	pl

.....=-:•"4"

.... 	— 	•17.* 9
.... S .

- 	2650...;:e 	• 	 - 	•,.... ,....

	

.... 	 ". ..
....

"" ''
....

-........

..... 9 —

	

1
E rt

s•.... 	1 1
,7 "--.7 '

	

.......

'1

i

.....

..,

i

.

MARCH 1985

Joe Macmurchie made the comment to me that the 99/4A
doesn't use assembly language but really uses utility language.
This was in reference to the constant use of utility routines
in assembly language. Becouse of this high use of utilities
and because the modules that run user written assembly
language programs have their own utilities and loaders, it is
often confusing and difficult for a person learning assembly
language to figure out the differing requirements of the
modules.

Most utilities are loaded into directly addressable
memory from memory mapped areas in GROM. When you go
CALL INIT with XBASIC the utilites are loaded at the bottom
of low memory $2000 up and the pointers are set. With E/A
the utilities are loaded at $2000 up and a reference definit-
ion table is loaded at the top of low memory $3FFF down. With
MINI MEMORY the utilities are in ram between $6000 and $7000
and when initalized a reference definition table is loaded
at $7FFF down. With both E/A and MINI MEYORY pointers
are reset upon initalization. Both E/A and MINI MEMORY have
a REF DEF table upon initalization. XBASIC has only a DEF
table and it is empty on initalizatian.

In all 3 modules when CALL LOAD("Filename") is used
a subprogram is used to load the file program and put any
defined routine names and entry points into the DEF table
for later use by CALL LINK. The pointer to the table is
adjusted for the additional entries. With CALL LINK a search
is made from the begining of the DEF table to the pointer
position. If the routine name is found control is passed
to it, if it is not found an error message is issued. After
a program is loaded and it's name is entered in the DEF

i table if CALL INIT is used you will not be able to link to
the program. The program is still in memory and the name is
still in the DEF table but the pointer to the end of the DEF
table has been reset. If you poke the original value of
the pointer back in the program can be linked to again.

The main problems with writing assembly language programs
to run with the 3 modules is that their loaders are nct
compatible, and that some of the utilities avaible for one
module are not avaible for another one. The loader in all
modules can be accessed with a CALL LOAD. In the E/A and
MINI MEMORY modules, LOADER is also a utility which can be
run from your assembly language program. These differ form
the XBASIC loader in their relocatible code space, their
speed, their ability to use a REF DEF table, and to be able
to load compressed object code.

The relocatable space for the 3 modules is approx.
XBASIC 82000 to $3FFF
E/A $2000 to $3FFF and $A000 to $FFFF
MINI MEMORY $2000 to $3FFF and $A000 to $FFF and $7000 to
$7FFF

MINIMEMORY and E/A loaders are fast. XBASIC'S loader is
slow. In each module the utility VPqBW is stored in a different
place. With E/A and MINI MEMORY the loader looks up that
place in the REF table . The program just says REF VMBW and
the loader substitutes the real address of VMBW when it loads
the program. With XBASIC you must specify where the utility
is loeated with VMBW EQU SXXXX . This means that all programs
written for XBASIC that use utilitys must be converted to run
with E/A or MINI MEMORY and viceaversa.

The fact that XBASIC is "missing" DSRLNK and GPLLNK
utilities makes for a little less fun as well. Not that long
ago (Im still learning) I wrote a fairly large assembly
language routine that did string handling and search and modify
for a crossword program written in XBASIC. I developed
and tested the program with the E/A . When I went to substitute
XBASIC EQU's for E/A DEF's I found there was not a DSRLNK
utility in XBASIC.

TI probably did these things to XBASIC for good reasons
but it sure puts an added burden on the programer. The best
way around these hassels is to not use any of the TI utilities
or the REF feature of the loaders. You write (Or borrow)
your own library of utilities and include their source code
with your application's source code. This is what was done
with TI DEBUG, and one version will load in all three modul,:s.

The other day I was modifing-the above mentioned
crossword program to include clues to the words. The program
was written over a year ago and at the time I was not aware
of loop counter naming conventions. I used loop counters
with descriptive names such as DELAY, COUNT, ROW, COL or i used
temporary variable names like T1,T2.T3. The advantage of using
standard loop counters like I, J, K, L is that anytime you see
one of these you know it is in a loop and if used anywhere else
it is in a different loop. If you see COL it could be a loop

counter or maybe it refers to a sprite position or some other
variable. It isn't immediatly apparent that it is a loop
counter. Anyway today i always use I, J, K, L etc.

So Im modifing this program and all is going well until
I add this loop to input the clues. I use a multi statement
line that starts with FOR I=1 TO 150 . When run I get
SYNTAX ERROR IN 592 (the line in question). I don,t see
anything wrong so I do my usual trick of making a single
multi statement line into a multi line group. The idea is
to find the exact cause of the syntax error. The error still
occurs on 592 FOR I=1 TO 150 . Im using a widget. I save
off plug XBASIC directly into the consol and reload, the
problem remains. I figure maybe I typed some invisible
characters so I type in a line 1 FOR I=1 TO 150 :: NEXT I .
I run it and line 1 works but I still get the error in 592 .
Time to put it on the printer and find out how I messed up
the original program. I saw my problem on the first page.
To speed up the start of the program i had declared all my
variables and call routines and turned the prescan off.
No where in the original program had I used I as a variable.
I added it to the prescan list and it now works fine. This
all took two hours to find.

A historical note for those interested. Back in the
old days 1960's BASIC allowed only a single character for
a variable name. No DELAY just D . By convention it was
decided to use I, J, K, L for the loop counters. I for the
outer loop J for next in K for next again etc.

So I have just suggested that you accomidate your advanced
1980 computer to 1960's hardware and software technoligy.

Here is a little comparison of the capabilities of FORTH
and XBASIC while both are in graphics mode.

FORTH 	XBASIC
USER DEFINABLE CHARACTERS 	 256 	112

TOTAL NUMBER OF SPRITES
	

32 	28

DEFINABLE CHARACTERS WITH
	

256
ALL SPRITES 4 1\1AGNIFIED AND UNIQUE

So XBASIC gives you 112 characters OR 28 4 magnified sprites.
Forth offers 256 characters AND 32 4 magnified sprites.

In FORTH you can three times the graphics twenty times
as fast. What language will you use for your next game?

	Page 1
	Page 2
	Page 3

