
grrftr....w.,....-w.o.......o.r.......ow..e..r.w....fter -  

o.  c--....... N 	N
..... 	 I y 4%, 

N 	..t. .."‘ 	.N....... 	N N 
N C. '''' V 	'...... 	N 

, N • 	'-'- '1. & 	• 
••-...0-7,11, 	 t N

c  

........ 1,7,. ?.. T 	\*. 

, •.....2. 
R 	° N ....  

..... 	e..........OKI 
I 	

A p A . . 

** (l~' _ %  

	

--. 	..., 

01., 0 4 p 	 N 	 2 ,... 7.°  9 9 'IC'  * 
..... 	* 	..... 	 P., W.. 4...., 	 ? , N

E 
N •■..., 

..... ..... --... 	R ci.1 - 
— 	— 	 — ;..----...-- 

.0 	 "0 

OCTOBER 1984 

STRING FUNCTIONS IN BASIC AND X-BASIC: 
A string is a variable consisting of a bunch of characters 'strung' 

together . 123 is a numeric value ( one hundred twenty three ) "123" is a 
string value character 49 "1" and character 50 "2" and character 51 "3" . 
The character numbers mentioned are ASCII characters a standard used by 
computers so the can exchange information these character codes are in appendix 
III-1 of your TI 99/4A USERS REFERENCE GUIDE . 
Strings can be defined simply by a statement A$="A" 
They can also be defined like A$=CHR$(65) ! 65 is the ASCII code for capital A 
Here is a break down of the various string 'functions' then are in the USERS 
REFERENCE GUIDE between pages 11-99 and 11-103 

ASC( strino-expression ) This converts a single character into its ASCII code 
and puts that code into a numeric variable . For instance CODE=ASC("A") 
would make CODE=65 . 

CHR$ ( numeric expression ) does the reverse of ASC , it takes a number 
between 0 and 255 and converts it to a single character with the code of 
the numeric expression . For example STRING$=CHR$(65) makes STRING$="A" 

LEN( string-expression ) This function puts the number of characters in 
the string into a variable . LENGTHSTRING=LEN("123456789") would make 
LENGTHSTRING=9 ! You can use a variable name interchanaably with a 
literial string statement . You can substitute "123456789" for ONETONINE$ 
and vice-versa . 

POS(string1,string2,num-expression) Finds the first occurence of string in 
strinq1 . It starts looking at the location specified in the numeric expression 
and looks to the end of the string. If it dosent find a match it puts a 0 into 
your variable else it puts the location of the start of the match into your 
variable . 
STR1$="123456789" 
STR2$="456" 
POS2IN1=POS(STR1$.STR2$,1) would make POS2IN1=4 
POS2IN1=POS(STR1$,STR2$;5) would make POS2IN1=0 ! no match 

SEG$(string,num1,num2) This makes the specified string up from a segment 
of the original string . The segment starts a the character numl charac-
ters into the string and end at the character num2 characters into the 
string . 	PART$=SES$("123456789",3,4) would make PART$="3456" it starts 
at the third character and is made of the next 4 characters including the 
third one . PART$=SEG$("123456789",5,2) would make PART$="56" . 

STR$(numeric-expression ) This converts the number specified into a string 
A$=STR$(1984) makes A$="1984" . 

VAL( string-expression ) This converts a character string into a numeric value 
the character string must be one that can be converted or an error will be pro-
duced . For example A=ASC("123") 

There is another important symbol used with strings this is the & sign 
this means CONCATINATION Just think of it meaning AND or + 

	

A$="123456789" or A$="12345"4x"6789" 	are equivalint . 

Here is a short program that takes your name as an input (firstname/last-t 
name) and converts it from one string into two . 

100 INPUT " firstname (space) lastname ":FULLNAME$ 
110 SPACELOCATION=POS(FULLNAME$,CHR$(32),1) 
120 FIRSTNAMES=SEGS(FULLNAME$,1;SPACELOCATION-1) 
130 LASTNAMES=SEGS(FULLNAME$,SPACELOCATION+1,20) 
140 PRINT "First name is "&""""&FIF=:1 -NAME$&"""" 
150 PRINT "Last name is "&""""&LASTNAME$&"""" 
160 PRINT 
170 GOTO 100 

1'4 

E 

5 



ASSEMBLY LANGUAGE BASICS : 

First a basic program 
100 FOR I=1 TO 10000 
110 CALL CLEAR 
120 NEXT I 
130 END 

* Starts loop sets counter to 1 . 
* Goes to clear rountine . 
* increments counter & checks for end of loop . 
* End of program . 

In Ed/Assm 9900 Assembly Language the program would be . 
0001 	 CLR R3 	 * Starts loop and 
0002 ILOOP AI 	R3,1 	 * Increments counter by one . 
0003 	 BL @CLEAR 	* Goes to clear routine . 
0004 	 CI 	R3,10000 	* Checks for end of loop 
0005 	 JNE ILOOP 	* Next loop if not done . 
0006 END 	 * End of program . 

The BASIC program can be typed in and run . The Assembly Language program 
while correct will not run without additional supporting segments . The sub-
program CLEAR has not been defined and no method for getting into or out of this 
program has been provided . 

The R3 refered to in line 1,2 and 4 of the program is REGISTER 3 . The 
computer has 16 active registers form RO to R15 . A register is a location in 
memory in which is contained a value . The value can be a number or a character 
or another location in memory . It is not necessarry to know where the 
registers are located in order to use them . The computer keeps track of where 
they are . 

Line 0001 CLR R3 ( clear register 3 ) is equivalent to LI R3,0 ( load 
immediate register 3 with 0 ) Both of these put a 0 into register 3 . We 
don't know where register 3 is but we know it has a 0 in it . 

Line 0002 ILOOP AI R3,1 	ILOOP is a label ( when the program is loaded 
into memory the location that the instruction AI R3,1 is put into will be 
substituted for the label whenever it is ref ered to . If AI R3,1 where loaded 
into >D000 then 	line 0005 	JNE ILOOP whould in effect become JNE >D000 
the assembler uses labels to make your program easier to understand . ) 
AI R3,1 ( add immediate to register 3 1 . If register • contained a 0 before 
this instruction it will now contain a 1 . 

Line 0003 BL @CLEAR ( Branch and link at label CLEAR ) This is a jump 
to a subprogram . Again CLEAR is a label which is the location of the start of 
a subprogram which clears the screen E it dosent exist yet we have to write it 
) BL .  @CLEAR can be thought of as CALL CLEAR or GOSUB line XXXX in BASIC . 
The program will do the subprogram CLEAR return and continue with the next pro-
gram statement. 

Line 0004 CI R3.10000 ( Compare immediate value in register 3  with 10000 
) This instruction sets various pointers in another register called the STATUS 
register depending if the value in R3=10000 or not . ( Again you don't need to 
know where the status register is , the computer knows . ) 

Line 0005 JNE ILOOP ( Jump not equal to ILOOP ) This tests the status 
register and if the equal test bit has not been set ( If R3<>10000 ) the program 
jumps back to location ILOOP else it continues to the next instruction . In the 
case of this non working program this was the last instruction , the assembly 
line END is something called an ASSEMBLER DIRECTIVE . It is used to let the 
assembler know it is at the end of the SOURCE CODE listing and to stop making 
OBJECT CODE , but the directive does not itself produce any object code . 
SOURCE CODE is the assembly language program that you type in the ASSEMBLER 
reads it and produces a file of OBJECT CODE which the LOADER loads into the 
computer for running. 

Because this program is not made to return to the program that called it 
the computer will look at the locations after the program and try to do the 
instructions that are there > Whatever is in memory after our program isjust 
garbage from our viewpoint but nobody told the computer so it wallows in the 
garbage and pigs out into never-never-land . It locks up ( You would probably 
have to shut if off ) 

You will find this to be a popular past time during program development ! 
I will now try to explain the following REF DEF ECU 
The ED/ASSM loader will support external REFerences . The X-BASIC loader 

will not . That is why you go VMBR ECU >2114 in X-BASIC 	and REF VMBR with 
the ED/ASSM . 

When your program is loaded into memory all REFerences to label VMBR in 
X-BASIC are replaced with >2114 . With MINIMEM and ED/ASSM you can use external 
REFerences . You go REF VMBR in your program and when your program is loaded 
into memory the LOADER look in a TABLE for the ECU addresses , the loader in 
effect does VMBR ECU >xxxx and that value replaces every VMBR .  label as 
your program is loaded . All that this does is put the start point of a 
subprogram called VMBR into your program whereever you had the label VMBR. 

when you write a program you need to give it a name so that you can 
link to it to run it. This is done with the DEFine directive in the 
manner DEF START and a the start of your program line 0001 in this case 
you would add your program name as a label 
0001 START CLR. R3 

This tells the LOADER to put the label START into the REFerence table and 
to put the entry point of the program there as well . 

Now to stay out of never-never-land after the program is done we want to 
return to where we were before we linked to the program. When we first enter a 
program the computer saves our return address in register 11 . It also saves 
some other important stuff in other registers . It is a good idea when you 
enter a program to save jthe registers in the condition that they are in . You 
do this by switching to your own set of registers and using them until you are 
ready to return. When ready to return you restore the original registers and 
branch to the location in register 11 . 



0001 
0002 

Here is a complete program for use with ED/ASSM 

REF 	VSBW 	 * Makes avaible a utility loaded by ED/ASSM . 
DEF 	CLLOOP 	* Enter from basic with CALL LINK("CLLOOP") 

0003 SAVRTN DATA >0000 	* Return address buffer . 
►004 MYREGS BSS >20 	 * My registers use these to preserve environment 
0005 STATUS EQU >837C 	* Address Of status bytes . 
0006 
0007 CLLOOP MOV R11,@SAVRTN 	* Save return address . 
0008 LWPI MYREGS 	* Use my own registers . 
0009 * 	Environment is set now entering main program segment . 
0010 CLR R3 	 * Starts loop and 
0011 ILOOP AI R3.1 	 * Increments counter by one . 
0012 BL @CLEAR 	* Goes to clear routine . 
0017 CI R3.10000 	* Checks for end of loop 
0014 JNE ILOOP 	* Next loop if not done . 
0015 * 	End of main program prepare for return to calling program . 
0016 CLR RO 	 * Prepare to return . 
0017 MOV RO,@STATUS 	* Indicate no errors in status . 
0018 RT * Same as 	B *R11 	Return to calling program . 
0019 
0020 * 	This is the end of the main program . 
0021 * 	Here is the subprogram CLEAR . 
0022 CLEAR CLR RO 	 * Holds VDP address to be written to . 
0023 LI R1,>2000 	* Left byte HEX 20 (Blank) 	is value to write . 
0024 JLOOP BLWP @VSBW 	* GOSUB VDP single byte write . This routine is 
0025 * created and loaded by ED/ASSM cartridge . 
0026 AI R0,1 	 * Add 1 to VDP address value . 
0027 CI 80,768 	* Check if the screen has been cleared ( there 
0028 * are 768 locations to clear on the screen ) 
0029 JLT JLOOP 	* If not done do JLOOP again 
0030 RT * Return to main program same as 	B 	*R11 
0031 END * This is an assembler directive to stop assembly 

0014 END * End of program . 

SCREEN DUMP FROM EXTENDED BASIC . 
After your program draws its screen enter the line 

xxxx RUN "DSK1.XBSCNDMP2" 
Naturalv you call the program XBSCNDMP2 

100 REM LAZYMANS SIDEWAYS SCREEN DUMP X-BASIC TONY BIGRAS OCT 6 1984 ! GEMINI 10 
110 DIM PAT$(145) 	! Holds printer ready character codes . 
120 A$="84C2A6E195D3B7F" 
130 OPEN #1:"PIO.CR" 
140 PRINT #1:CHR$(27)&"A"&CHR$(7)! set linefeed to 7/72 
150 FOR 1=32 TO 1 STEP -1 ! Start to read screen send 32 lines to printer . 
160 PRINT #1:CHR$(27)&"K"gcCHR$(192)&CHR$(0);! Graphics mode 192 bytes to come. 
170 FOR J=1 TO 24 
180 CALL GCHAR(J,I,A) 	! Read values from the screen into A . 
190 IF LEN(PAT$(A)))-1 THEN 260 ! Dont get patern again. 
200 IF (A<32)+(A>143)THEN PAT$(A)=00000000" 	GOTO 260 
210 CALL CHARPAT(A,AA$) 
220 FOR K=2 TO 16 STEP 2 ! Calculate the printer codes . 
230 C(K/2)=POS(A$.SEG$(AA$,K-1,1),1)+POS(A$,SEG$(AA$,K,1),1)*16 
240 NEXT K 
250 PATS(A)=CHRS(C(1))&CHR$(C(2))&CHR$(C(3))&CHR$(C(4))&CHR$(C(5))&CHR$(C(6))&CH 
RS(C(7))&CHR$(C(8)) 
260 OUTS=OUT$84PAT$(A) 
270 NEXT J 
280 PRINT #1:OUT$ 	OUTS="" 	! Output to printer and reset OUT$ 
290 PRINT #1:CHR$(13)&CHR$(10) 	! 	Carriage return and linefeed . 
300 NEXT I ! 	Do next line 
310 PRINT #1:CHR$(27)&"@" 	! 	Reset print to nornal modes 
320 CLOSE #1 
330 END 

For sale : Expansion box, 2 drives ,separatly or together 
as a package . 
Johan 479-7503 


	Page 1
	Page 2
	Page 3

