“r—— iy o’ —_:' ~-r - ~"
TN Y]
- o~)
~o My e v v %— =
~ Gy - ~
‘os/- 1 _‘ﬂ‘ A~ =
~ WU - '| ~
~ A o;u" T \.‘ s
~ VTN ~ o0 ﬂ'_‘
~oa T = *
e 1 PP
3 o P RN = e~
A TN T [
“‘Vl-~ Y
~ -~ -, ~ 9 9 L‘- -~ s
fad A A A \\ B { s Ay
- hat B n
~ :h o ~ R ‘\' } ~
~ ~ PPN . i~
~ ~ ST 4
- ~
MAY 84

363 3 R I 33 3036 36 36 36 6 3696 3636 36 9 3 36 9 9 36 96 36 36 36 3030 36 3 36 69 36 36 3636 96 36 9 25 36 3636 36 36 96 96 96 3¢ 36 3 3¢ 6 49 3

PROGRAM CONTEST:

A NEW PROGRAM CONTEST CONCEPT. THE PROGRAM NUST
BE WRITTEN IN CONSOL BASIC AND BE NO LARGER THAN 20
PROGRAM LINES LONG. THE PROGRAMS MAY BE ON ANY SUBJECT
AND CONTENT IS ENTIRELY UP TO YOU. PROGRAMS WILL BE
JUDGED ON PERFORMANCE, ORIGINALITY, AND COMPACTNESS,
PLEASE CONTACT ME FOR DETAILS.

I AM NOW EQUIPED WITH A MODEM AND RS232 CARD AND
MAY BE REACHED AT 383 3946,

Tony Bigras

F 33 3336 636 396 36330 3696 36 309 30 3696 96 36 96 6 6 3636 396 96 36 3 36 36 96 96 30 36 96 9 36 96 36 9 36 3596 36 3 36 36 36 36 96 96 3¢ 36 3¢

CHALLENGE : FOR EXTENDED BASIC USERS

THE TASK : CLEAR THE SCREEN AND DISPLAY AN X OF *'s
ON THE SCREEN IN A 9 x 9 AREA.

RESTRICTIONS : YOU MUST USE ONLY 1 PROGRAM LINE,
YOU MAY NOT USE EXTRA MEMORY IN ANY WAY.

THE VERSION WITH THE SMALLEST SIZE (after running) WILL
BE JUDGED THE BEST.

I INVITE MEMBERS TO SUBMIT TASKS THAT THEY HAVE WRITTEN
ON ONE LINE . THESE WILL BE PRESENTED AS A CHALLENGE IN
FUTURE NEWS LETTERS.
BRING YOUR SOLUTIONS TO THE TASK TO THE NEXT MEETING.

36 3 36 36 H 36 36 36 36 036 36 30 6 36 36 36 36 6 36 36 3 3 36 36 96 36 36 30 36 36 36 36 96 38 36 36 96 96 36 3096 6 3 36 96 96 3 3 3696 3 36 3 96 2 3¢ %3¢

IF YOU ARE INTERESTED IN THE ARTICLE IN THE CURRENT ISSUE
OF SCIENTIFIC AMERICAN ON COMPUTER RECREATIONS A "MEMORY
ARRAY REDCODE SIMULATOR" IS AVAIBLE FOR YOUR USE, JUST
GIVE ME A CALL.

H I 36 36 36 3 B 6 36 3 636 36 36 I3 30 36 363 99 96 3636 36 96 3630 96 96 3 26 3 96 30 30 3 36 96 36 3 36 36 30 26 3 36 36 9 36 3 26 36 3 3 36

VI 29 MEMBERSHIF LIET

APRIL 15 1284

E RIS ER RS EE PSSP SR CIEETEEFE LS ETSREIELEEIOIEOIEETEEETSESEERKE S

STEVE McCUAIG ¥ DO & HAZEL TUFFORD
Z149 PARLDOW FL X I1Z3-40248 QUADRA ST
YICTORIA RC ¥ VICTORIA BC WBX 4EX
478-120% ¥ 472558
X
LS R ES S ST EESES LTSRS RO SRS REEEECESTEFTEECESEIPCEICERECEECETEEEETEFEE S
JOE. TERRY.RICK.CHRIS MACMURCHIE X BRIAN ATWELL
447s DENSMORE RD X 1615 HOLLYWOOD CRESCENT
FR #I VICTORIA BC VB8X IX1 X YICTORIA BC VGE 1HB
A7F=-TEH0E ¥ SRE-005
X
KERKEKAKEKRK KKK KK KRR KA KKK AR KA KKK KKK KKK KA KKK KKK KKK AR KA RKKK KK
TOM SWIRSKI ¥ ROEBERT SORENSON
123469 FINLAYSON ST . . Z2E8 SERVICE ST
VICTORIA BC VBT 2VS ’ ¥ VICTORIA RC VEBF 4M7
ZB4-4457 ‘ | SRZ-&H7F0
%
2SS LSS 2RSSR PSRRI SR SRS RSN IO SR ES R ER RN ICEETELETEEERETTORE ST
JaHAN VAN IMSCHOOT X NICE SHEMDIN
100 YIARDUCT AVE WEST X 16471 GARMET RD
VICTORIA BC V88X X3 X VICTORIA RC VYBF ZC7
479-7507% X 212007
¥
KRKKKEKKKKK KA KKK KKK KRE KK KKK E KKK KKK KK AKERKKAE KKK KKK KRR KKK KKK KKK
HEREBERT A STARE X STEVE HOLLAND
188 ATEINS AVE X 2602 FPEATT RD
VICTORIA BC VPR 2I4 X VICTORIA RC VIR ZITH
PRI X 474-1F7%
¥
***********ﬁ**K************k*#k*f*******#************kk****?****k*******f*
RFUSS WATSON * TED SIERMACHESEY % MARE SHARE
470% BARROW RD X #2 222° VICTOR 8T
RR #2 VICTORIA RC VPR 3SE4 X VICTORIA EC
4783-7495 * ERE-0512
X
AEKKKKEKE KRR EKAKKKE KK KRR KKK AR KRR KKK KKK KRR K
TONY EIGRAS ¥ STEFHERN MILLS
&44 BELTOM AVE X &P0 MARLISA PL
VICTORIA EC X VICTORIA BC
TEI-I%4s X 474-1947
X
REKRKEAKKKAKLEKERKEA KK KKR KKK KRR KAKRKE KR KKK KRR AR AR R KRR KKK R KX
FAY GALLAGHER kS RICHARD NICOLSON
4290 HAFFY YALLEY RD X 1297 DERBY RD
YICTORIA RC X YICTORIA BC VBF 187
478-74&60 X IR4-02ET7
X
S S S FEECRESE LSS EEEEEIC LSS EEC SRS ELFES TS T T E R PR PEIE ST CEESEEC TP AR EER LTS
WALTER.LLITA ROLOFS X BARRY YIVIAN
7212 PATTERSON RD ¥ 82850 MORESEY FKE TRCE
SAANICHTON RBC YOS5 1MO X SIDMNEY EBC WL 4A/%9
HEL-FAEE * HEH-LTET
%
P T ST RS ESSE LSS EEL S ESEELEFECTETELEF ST ST ELEEE R ERY S
MICHAEL EGRERTS X
BOoX 1724

17 ALBERTA DRIVE
MACHEMZIE EC YOJ ZC0

DT TR0

BORB WILLL INHNGAMZ MIKE SEYMOUR

*

10322 8T. DAVID ST. X B315 BEXLEY TERC

VICTORIA BC W88 4Y7 ¥ SIDNEY RC V8L 1M3Z
X

=R0-7798 ; ETE-TIOS
X
KEKKERERE KRR KK AR KKK KKK KKK KKK KKK KA KKK A KKK KK KKK KKK KKK AR KRR KRR KRR KKK KKK
ALLEN B FAGE * STEVE RAYNER
139 ST LAWRENCE ST X T41 BERWICK ST
YICTORIA BC VBY 1X9 X VICTORIA BC V8V 108
EB2-I77S X TR2-1828
X
REEKEERKEKKE KKK KKK KA KKK KKK KKK KRR KKK KRR KRR KKK KKK KKK KKK E KK KRR KRR KKK KKK K
JOHN STEIN X FICHARD McCREA
#I09 528 DALLAS RD * 216 885 DUNSMUIR RD
VICTORIA BC VBE 1RS “ ¥ VICTORIA BC VY96 &W6
IBI-8I8R X I84-14688
X
KEKKKKE KK AR KK KKK KRR KK KA KKK KKK KK KKK KKK KK AR KKK KKK KKK KKK KRR KRR KK KKK KKK K
VIC WAGER * ALAN SORENSEN
4184 BUCKINGHAM FL , - % . 3228 SERVICE ST
VICTORIA X VICTORIA
477-8995 X H5O0-4790
X
KEKKKKKRKKKKKKKKKR KKK KKK KKARKKKKKKR KR KK KK KKK KKK KKK AKKKRK KK KR KKK KK KK KK
DEREK HAMLET X JOHN WYNN
2377 CENTRAL AVE X
VICTDRIA ¥
X

K**ka*ﬁ*****#*****#******K#**#**#***K#*******#*?M.iij¥*{;f*Y¥*¥**¥¥¥**¥#¥
\ Al '—-\ -/

EOETH HINTE: BY JOHAM VAN IMSCHOOT u7g.(}mlﬂw»am:0 0ﬂ~v£¢'

ulﬁ 1 Co v*; LJJ [A !‘

R S AN
TI AMD Wyvoowe FORTH for the TIZ24/4: SR €

Some hints for absclute beginners:

For TI Forth: Unless vou kEnow what vou are doing, you ars advised not to edit
tne svetem disk. At least, edit a copy, not vowr original. {(Actuallv as there is
at least one error on the system disk, it does need to be edited.)

Alseo. do MOT use disks which have non-Forth materisl on them. liks Rasic
D OQrAMS . The reason 12 that TI FORTH is capabhle of writing onto any
?Dr%at+nd diskette it i= given, it iagnaores the dizk catalogus, and wites
wherever 1t itself wishes.
I+, on purpose or accidentally, vou have changed anv screen or information
browqh in bv the editor., forth will when lmading an other screen automaticall-y
lace the modified screen on the dizkette.

2

1f VoL Aare :dr9+u1, however, vyou can look at the material on any diskette using
T FRORTH, For edxample. vou could look perhams at soms of the wordes stored
onoan adventurs ﬂl:‘:++° to zee what itemz vyouw hadn’ L run acoross yat.

DR ovou are worriesd, vou can tape the wite-protect notch temporarily.

As a general rule, whenever vyouw wish to load new matsrial into Forth, or
“irzh to look at new screens. vou should emphy the buffers with the EMPTY-RUEFERS
command., This iz ezpecially s=o when vou are wsing more than one diszkette., with
difterent material on each one. If screen 20 15 resident i memory, f3r evample
and vou wish to bripg in =scrsEen 20 from another diskettes vou cannot do so
without some preparation.

The =asiest and surest way 135 EMPTY-BUFFERE. but that is not always useable,
F1INCE vou may wish to keep some of the buffer contents and not others. Suppose
vou had screens 20 and Z1 from one diskette, and now wanted 21 from another.
but vou want to keep screen 20 from the first in memory. There iz a wavy to do
thizs: there is & user variable inm the svstem which is called FREV. This
variakble stoaress the buffer location in RAM of the most recently used scrsen or

r

block, The first two bvtes of =2ach scr2en bhuwffer contain in the +first byte an
update flag, and in the =econd the screen number. (For Wvocove Forth there 1s
additionally a device offset contained inm this numbesr,. which tells whether the

nas on CE1, DEEL, DEEZ, or DEEI.
+ wou give the command HEX FREY @ U. the addrsss of the last accessead
fer is printed out in hexadecimal. { B retrieves the variable value,
and e primts the number ouwt as amn unsign=2d number!.
Thus FREY & & U, will print out the first two bviss of the buffer giving vou
the screen number. We are interested in changing the scre=en number, let’'sz say.
Then all we need do is n FREV & | where n is the new screser number. {This does
not included possibly needed offzets 1n the case of Wyvoovel) In this command,
the ! does the storing {like a poke!) to the value (az an address) placed on the
stack bv the 3. Im this command the n is the new scr=en number. Mow that
sZre2n haz a new number, thouagh the material is =till the =ame. It iz however
considersd non-updated matsrial becausze the update flag hasn’t been set along
with the =screen number. The first bit wf the first two bvtes of the buffer must
be a 1 to show 1t has been upndate: only then will the FLUSH command cause it bo
bz saved to disk. {The automatic replacement policy when new screens are
brought in, could ther also save it, and wouldn’t otherwise.) AN =xample of
making the latest screen have a new number that is upndated:
HEX 28020 FREY @ | DECIMAL will cause scrzen number 22 (in decimal} to be the
number of the latest screen, and the 8 marks it as updated.:
An easier way to cause the latest screen to be updated iz to use the command
LIFDATE . fAn sasy wav Lo cause & soreen Lo be the latest acceszsed is to edit it
LIST it. a= in 20 LIST. Then the PREY wariable will contain its addreszs.

Once vou get on to it, it is not reallv all that complicated once vouw play
with it a few times, znd is worth getting to know if vou're going to be using
Faorth, And to revert to owr previous example of wanting to bring in the new
screen 21 without 2mptving the buffers: we simply do 21 LIST, for example,
followed by O FREV 2 ! (TFFF in hex iz better., but harder toc enter).

Actual v anv number without the update flag should do, but it is Sest fo use a
number that isn’t possible. (In TI Forth, Ois a possible screen number only if
yvou reset the DIZSK_LO variable) Mow vyou can bring in the new screen 21.

In general, it is best to start an editing session, or a loading ses 510nM.,
with EMFTY-BLFFERS., It is alsc a good command to use attesr fooling arcund: I
accidentally destrovyed one screen without knowing it. All I had dome was look
at some screens in an editor. then switched to amother diskette, but I must have

S
accidentally hit a kev in the editor tvping omn the screen contents, or changing
them i(the editor shouldr®+ update otherwise), and thus unbeknownst to me, the
soreen was considered updated. and automatically rewritten to disk.

Unfortunately., the disk was by then a different one. and the screen did not
belong on it. In the process it took the place of one that did!

éo uszer bewars--though the auvtomatic zcreesn replacement svstem {almost a
virtual memory svstem) has definite advantages, it has decided disadvantages in
its oresent simplistic format. I+ screens were identifisd by diskette as well
as bv screen number. this oroblem would bhe relisved.

For the not guite beginner [7ve got ancother hint, concerning Drogramming 20
FORTH. Although FORTH is totally interactive, and each piece of the program can
be independently tested. making for greater ease in program develcpment, thers
is one tremendous drawback. In Forth mozst parameters to routines are passed on
the data stack. Thizs stack 1s available to 11 routines. Much of Forth code iz
concerned with manmipulating the order of the data on this stack, and retrieving
it from this stack. This particular code is unmreadable in the sense that 1t
offers no clue as to what is geoing on. The code itself must carefullv be worked
out., in many ways like doing & puzzle: how do I get the 4th item to add with
the 2nd., then compare it to the Zd., sort of thing.... The lesson is, hkeep vour
routimes short. and the parameters to them as f=2w as possible. Thrze should be
the highest number to consider as a general rule, and even that is too much. Of
coursa, it is the natwsa2 of the routine which decides how many parametsrs 1t
needs. =0 k2ep the routines short. {They are that way also more flexible.)
YVariables are useful for items which need to be remembered and used at various
times in the program. Variables use up memory space: stacked parameters do not.
Finallv, 3till in regard to stack manipulation, it is very i1mportant not only te
check that a routine uses up its parameters properly, but that it alzo leaves on
the stack onlv thoszse i1tems which it should leave, sven 1+ that is none. Check
gach branch of the routine. I+ the routine leaves “pollution®™ on the stack. the
routine it=elf may function properly, but the polluted stack will preobably
affect other routines further on adverzely. especially if the polluting routine
was & nested onea. That sort of bug can be hard to trace down. (I speak from
experience, since I am somewhat careless at complete testing!). The fact that
For+th passes parameterz on a common stack gives it some of its speed, and zaves
memory, but it also greatly complicates the writing, testing, and maintenance of
FORTH code. and is mvy biggest complaint about 1. I+ vouw do not place comments
in vour FORTH programs, vou will not recall what is going on with the code two
weeks after vou wrote 1t. To be wise, at least nlace thes befors and aftter
paramaters for each routine in a comment after the routine name (as iz standard

=

practic=l. It is not =asy to tell from the code what parameters arz rzguiread,

or even how many. {The latter would be obviogus say. in Pascal, or Extended
Basic.) So. to repeat. be careful with stack manmnipulations—— thev ars the
souwrce of most of the bugs. FIMALLY, & guite dangerous, and haclkv., stack

marnipulation. iz that of temporarily storing data on the return stackh. This
appears to be standard FORTH practice, but can get wvow into a lot of trouble,
%0 should be done with caution.

Other than that, I have no areat hints for beginning FORTH users. It is
the best language presently available on the TI for simply plaving with the
machime, and exploring its features. interactiwvely. Though it is to my mind far
from satisfactory as a language, it may well be the best we currently have
for the Tl (excent for those who have the F-Code periphersl). Certainlv both
L.OGO and ZXTENDED B&A&SIC are praferable from a readability, and a learning
wiewnoint, but neither of those offer much in the way of speed. and both limit

one’s access to the machine. Therefore FORTH haz 2 definite place in our
library of languages. It is much eazier to usze than Assembly Languags,., vet will
allow the user to accomplish most anvything he would wish. To those willing to

explore the mysteries of the TI9?/ 44: =0 FORTH !

AR KKK AR KA R AR KRR KA R KRR KA KA R KRR AR KA KA R AR K KRR KKK KK KE KKK KKK R KKK KK

THE F-FUZILE
2ntended
basic

FRREEKK
¥1 &2 ZIx
¥4 5 L%
X7 8 %
AEXEA KX
[} v
TONY EBIGRAS

100 RDIM TILE(D) ¥ make array for tiles.
110 RANDOMIZE

120 CALL MAGNIFY{(Z2) X set sprite size for dblsize i used sprites for the tiles.

Z0 RANDOM&="97I8154542137845262387 1944625847 183462754 1 42725778

140 RANDOM$S=RANDOM$%" 245070184956 145927BI54F21B87 4451598724 1849354672
130 RANDOMS$=RANDOM®"I51 7548020436287 1F74RF461 35280467452 2198756554321"
160 RANDOME=RAMNDOM$%" 7418520472784 956173147R425804B1T5497BF 174324650

¥ make one big string with the scrambled patterns for the puzzles.

170 MOVES=-1 ¥ this gets incremented before it iz first displaved.
180 X{1) ,X(2), X4Z) =72 X
190 X (4 X (5) ,X{5)=89 ¥ =ets the X and Y coordinates for the sprites

200 XY, X(B).qu‘ 1053 % that are used to displav the tiles.

21O YL, Y(4),Y(T)=105 X
220 YD), Y(5),Y(Br=121
DITOOYITYLYAL) Y IPI=1TT K

240 Call. CLEAR
250 DISFLAY AT{(Z24,5)BEEF: "release alpha-lock®

¥ both the arrow keys and the joysticks are usable 1+ alpha-lock is up!

260 CALL COLDR(14,16,72

270 CALL CHAR(14Z, "0000000000000000FFFFFFFFFFFFFEFF™)
¥ sets game color and initizalizes character patterns.
¥ all values have been initialized %

220 FOR T=72 TO 112 STEF 3 X

2P0 CAlL HCHAR(1+T/8, 14,147,486 X draws a &xé white rectangles on the screen.
SO0 NELT T *

Z10 CALL HOHARIZ, 14,142, 45) X
Z20 CAaLL HCHAR (16, 14,142,587 ¥ draws a red border arocund the rectangle.
TEO CALL WCHAR(?,»-.lWM.B) ¥
B0 CHELL VCHAR (R, 20, 142, 2) X

TEG FOR T=1 TO 2 :: CALL SFPRITE (#T,T+48,2,240,100):1: NEXT T
Ten CALL EFFITE(#?.143.9qZ4U,‘UU)

ey

YA
80
ERO
400
L1

420

430

440

q&0

&0
&7

HB0

¥ sets sprite patterns to 1 thru 8 and a solid and holds them off screen.

JUMEBLE$=SEG$ (RANDOMS, (INT (RNDX20) +1) %9-8, 9)
FOR T=1 TQ 9

TILE(T =VAL (SEGS (JUMELES, T, 1))

IF TILE(T)=9 THEN BLANE=T

NEXT T

¥ randomly selects pzeudo-random patern from RANDOME and loads the pattern
¥ into the TILE(D) arrav.

FOR T=1 TO @ :: CALL LOCATE(HTILE(T) X(T),¥Y(T))s: NEXT T

¥ puts the sprites on the screen in scrambled pattern.

GOSUR &0 ¥ start game enter play loop at end of loop to put MOVES on screen
CaLl JOYSTE{(1.KE,.S) X call JDYS%H to scan inmput from keys and from soysticks.

¥ JOYSTE converts jovstick input to zall key(l,k,s) output.

IF Z=0 THEN 440 % if no input then ask for input again.

IF E=18 THEM MOVES=-1

GOTO 270 % if fire button is hit or key G is hit

¥ then the plaver wants to end game or pick a different pattern., or both.

IF R0 ARND RO X2 AND =D AND KOS THEN 440 ¥ if invalid key then ask again.

IF K5 THEN 520 ¥ if input is not down then next check.

IF BLANE X6 THEN 440 % if down move not legal at this time then ask again.
TEMF=ELANE+Z ¥ TEMF = new position of sprite #9 sclid.

LOSUER &&0 ¥ go move the tile.

IF B0 THEN E40 %

IF BLANME<4 THEN 440 % szame as above euwcept in up direction.
TEMF=RBLANK~Z *
GOSUE 450 X

IF RAXE THEN 200 ¥
IF BLANE=Z OR EBLAME=& OR BLAME=9 THERN 440 %
TEMP=BLAME+1 *

X

BOSLE &50

1
-

zame but to the right.

IF T THEM &40 X
IF BLANK=1 OFR BLANK OR BLAME=T THEM 440 ¥
TEMF=BLANE -1 X
BOSUE 460 X

it
S

same but to the left.

GOTO 440 ¥ this 1s the end of the play loop start over again.
GOTO &30 ¥ this is left over from program development!
TILE(BLAMED =TILE(TEMF) % this is wher=z the tile oet moved around.

TILE(TEHF) =9 ¥ have to keep track of what was and what will be.

Chakl LOCATE (#TILE(BLAMED (X (BLAMEY , Y (BLANKY Y12 CALL LOCATE (#TILE(TEMR) , X (TEMF

CTEMEY oy ELANE=TEMF

¥ moving sorites around and ks2eping track of wher the blank tile iz now.

é?b MOVES=MOVES+1 :: DISFLAY AT{4,11):"MOVES" ; MOVES ¥ this is where we came to
700 CALL SOUND(40,1400,1,4000,5, 2000, 15) ¥ enter the play loop from
T1o RETURN ¥ line 430

¥ this shows moves makes noisze and return from whence it came.

FI0 SUR JOYSTEA(SIDE,.KEY,.STATUS)

7I0 CALL JOYST(SIDE, X,V

740 IF X=0 AND Y=0 THEN STATUS=O :: GOTO 840
750 STATUS=1

this is where kev and
jovstick input come in
and become output that

740 IF X=0 AND Y=4 THEN KEY=S5 :: GOTO 840 works like a

770 IF X=4 AND Y=4 THEN KEY=4& :: GOTO B840 call kev(l,k.s) statment
780 IF X=4 AND Y=0Q THEN KEY=3 :: GOTO 840

790 IF X=4 AND Y=-4 THEN KEY=14 :: GATO 84 i already know how it
BOO IF X=0 AND Y=-4 THEN KEY=(C :: GOTO 840 works but you can figure

810 IF X=-4 AMD Y=-4 THEM KEY=15 :: G6OTO 840
820 IF X=-4 AND Y=0 THEN KEY=Z2 GOTO 840

B8IZ0 IF X=-4 AND Y=4 THEN KEY=4 :: GOTO 340 <
840 CALL KEY(SIDE,k,S8):: IF S=0 THEN 870

B850 IF SIDE=1 THEN KEY=K :1: STATUS=S

8560 IF SIDE=R THEN KEY=E :: STATUS=S :: IF KEY=18 THEN HKEY=11
870 SUBEND .

it out for vyourself or
give me a call i+ vou
have any guestions about
this program I83-I944

a s (] s

AERKEKEKEKKKKKRKKRK KKK A KA KK KA KKK KKK KKK KK KKK K KKK KL K KE KKK KKK RIKRA KK AKX KE A KK KKK

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

