
,^N ,

,, t 	:t_—:\ --. 'N... 	•, ,

	

.... 	 „.

	

..... C... -- 	1,.. ----, 	
,

I's"- 	
I 	--Th ,.......

N \v- 1. Jam, 	C 	
;I ,

-- -- C''' . 	T 	, ...•

	

'...-le.:„.„4„:7 	,„,,. 	..,.....„
......,.....•...

	

..... 	RI 	\-...........

	

..,„ .:_.:.. 	

,

,
__77,9 9 \7,- 	_ 	_ 	-,......„ 	- •" E

N, "-•,. 	J , ,
._ R 11% .r. "" ,

, c..,

, 	, 	:-. 3,

W 	E

MAY 84

PROGRAM CONTEST:

A NEW PROGRAM CONTEST CONCEPT. THE PROGRAM C:UST
BE WRITTEN IN CONSOL BASIC AND BE NO' LARGER THAN 20
PROGRAM LINES LONG. THE PROGRAMS MAY BE ON ANY SUBJECT
AND CONTENT IS ENTIRELY UP TO YOU. PROGRAMS WILL BE
JUDGED ON PERFORMANCE, ORIGINALITY, AND COMPACTNESS.
PLEASE CONTACT ME FOR DETAILS.

I AM NOW EQUIPED WITH A MODEM AND RS232 CARD AND
MAY BE REACHED AT 3833946.

Tony Bigras

CHALLENGE : FOR EXTENDED BASIC USERS

THE TASK : CLEAR THE SCREEN AND DISPLAY AN X OF "s
ON THE SCREEN IN A 9 x 9 AREA.

RESTRICTIONS : YOU MOST USE ONLY 1 PROGRAM LINE,
YOU MAY NOT USE EXTRA MEMORY IN ANY WAY.

THE VERSION WITH THE SMALLEST SIZE (after running) WILL
BE JUDGED THE BEST.

I INVITE MEMBERS TO SUBMIT TASKS THAT THEY HAVE WRITTEN
ON ONE LINE . THESE WILL BE PRESENTED AS A CHALLENGE IN
FUTURE NEWS LETTERS.
BRING YOUR SOLUTIONS TO THE TASK TO THE NEXT MEETING.

IF YOU ARE INTERESTED IN THE ARTICLE IN THE CURRENT ISSUE
OF SCIENTIFIC AMERICAN ON COMPUTER RECREATIONS A "MEMORY
ARRAY REDCODE SIMULATOR" IS AVAIBLE FOR YOUR USE, JUST
GIVE ME A CALL.

41-###########################**#######################*#####*#

VI 99 MEMBERSHIP LIST

APRIL 15 1984

**
STEVE McCUAIG
	

DON & HAZEL TUFFORD
3109 PARLOW PL 	 313-4026 QUADRA ST
VICTORIA BC
	

VICTORIA BC vex 4E3
478-1305
	

479-9565

**
JOE.TERRY.RICK.CHRIS MACMURCHIE 	* 	BRIAN ATWELL
4476 DENSMORE RD 	 1615 HOLLYWOOD CRESCENT
RR #3 VICTORIA BC VBX 3X1 	 VICTORIA BC V8S 1H8
479-7605 	 595-0096

*
**

TOM SWIRSKI 	 ROBERT SORENSON
1369 FINLAYSON ST
	

3223 SERVICE ST
VICTORIA BC V8T 2V5
	

VICTORIA BC V8P 4M7
384-4457
	

592-6790

**
JOHAN VAN IMSCHOOT
	 * 	NICK SHEMDIN

100 VIADUCT AVE WEST
	

1631 GARNET RD
VICTORIA BC VBX 3X3
	

VICTORIA BC V8P 3C7
479-7503
	

721-2003

**
HERBERT A STARK
	

STEVE HOLLAND
188 ATKINS AVE
	

2602 PEATT RD
VICTORIA BC V9B 2Z8
	

VICTORIA BC V98 3T8
474-1933

**
RUSS WATSON 	 TED SIERMACHESKY & MARG SHARE
4709 BARROW RD
	

#2 2229 VICTOR ST
RR #2 VICTORIA BC V9B 584
	

VICTORIA BC
479-7495
	

592-0612

*** ******************* *************** ******************* **************** **
TONY BIGRAS
	 STEPHEN MILLS

644 BELTON AVE
	

690 MARLISA PL
VICTORIA BC
	

VICTORIA BC
383-3946
	

474-1947

**
RAY GALLAGHER
	 RICHARD NICOLSON

4290 HAPPY VALLEY RD
	

1297 DERBY RD
VICTORIA BC
	

VICTORIA BC V8P 187
478-7460
	

384-0237

**
WALTER.LITA ROLOFS
	 BARRY VIVIAN

7912 PATTERSON RD
	

8850 MORESBY PK TRCE
SAANICHTON BC VOS IMO
	 SIDNEY BC V9L 4A9

652-94 -, F
	 656-1727

**
MICHAEL EGBERTS
BOX 1784
12 ALBERTA DRIVE
MACKENZIE BC Y0,7 2C0
997-7906

:4(

BOB WILLLINHNGANZ 	 MIKE SEYMOUR
1039 ST. DAVID ST. 	 8515 BEXLEY TERC
VICTORIA BC V8S 4Y7 	 SIDNEY BC Vet_ 1M3
592-7798 	 656-7705

*
**

ALLEN B PAGE 	 STEVE RAYNER
139 ST LAWRENCE ST 	 341 BERWICK ST
VICTORIA BC V8V 1X9 	 VICTORIA BC V8V IC8
382-7778 	 382-1828

*
**

JOHN STEIN 	 RICHARD McCREA
#309 628 DALLAS RD 	 216 885 DUNSMUIR RD
VICTORIA BC V8B 1B5 	 VICTORIA BC V9A 6W6
383-8382 	 386-1688

*
**

VIC WAGER 	 ALAN SORENSEN
4184 BUCKINGHAM PL 	 -* 	3228 SERVICE ST
VICTORIA 	 VICTORIA
477-8995 	 592-6790

*
**

DEREK HAMLET 	 JOHN WYNN
2373 CENTRAL AVE
VICTORIA
595-2569

A***1(***

FORTH HINTS: BY JOHAN VAN IMSCHOOT 	MIL are-ici-Niktc,...:0 VW2i-J(7

cb214-

TI AND Wvcove FORTH for the TI994/A:

Some hints for absolute beginners:

For TI Forth: Unless You know what you are doing, you are advised not to edit
the system disk. At least, edit a cmpy, not your original. r='Ic.tuallv as there is
at least one error on the syst em disk. it does need to be edited.)

Also. do NOT use disks which have non-Forth material on them. like Basic
programs. The reason is that TI FORTH is capable of writing onto any
formatted diskette it is given, it ignores the disk catalogue, and writes
wherever it itself wishes.

If, on purpose or accidentally, you have changed any screen or information
brought in bv the editor, forth will when loading an other screen automatically
place the modified screen on the diskette.
If you are careful, however, you can look at the material on any diskette using
TI FORTH. For example. you could look perhaps at some of the words stored
on 	adventure diskette. to see what items you hadn't run accross yet.

you are worried, you can tape the write-protect notch temporarily.
As a general rule, whenever you wish to load new material into Forth, or

wish to look at new screens, you should empty the buffers with the EMPTY-BUFFERS
command. This is especially so when you are using more than one diskette. with
different material on each one. 	If screen 20 is resident in memory, for example
and you wish to bring in screen 20 from another diskette vou cannot do so
without some preparation.

The easiest and surest way is EMPTY-BUFFERS, but that is not always useable,

since you may wish to keeo some of the buffer contents and not others. Suppose
you had screens 20 and 21 from one diskette, and now wanted 21 from another.

but You want to keep screen 20 from the first in memory. There is a wav to do

this: there is a user variable in the system which is called PREY. This

variable stores the buffer location in RAM of the most recently used screen or

block. The first two bytes of each screen buff er contain in the first byte an

update flag, and in the second the screen number. 	(For Wvcove Forth there is

additionally a device offset contained in this number, which tells whether the
screen bg5lono=. on CS1, DSK1. DSK2. or DSK3.

Thus, if you give the command HEX PREY @ U. the address of the last accessed
screen buffer is printed out in hexadecimal. 	(ID retrieves the variable value,
and U. prints the number out as an unsigned number).

Thus PREY @ @ U. will print out the first two bytes of the buffer giving you

the screen number. We are interested in changing the screen number, let's say.

Then all we need do is n PREY @ ! where n is the new screen number. 	(This does

not included possibly needed offsets in the case of Wycove:) In this command,

the ! does the storing (like a poke) to the value (as an address) placed on the
stack by the 9. In this command the n is the new screen number. Now that

screen has a new number, though the material is still the same. It is however
considered non-updated material because the update flag hasn't been set along

with the screen number. The first bit of the first two bytes of the buffer must

be a 1 to show it has been update; only then will the FLUSH command cause it to
be saved to disk. 	(The automatic replacement policy when new screens are

brought in, could then also save it, and wouldn't otherwise.) An example of
making the latest screen have a new number that is itodated:

HEX S020 PREY @ ! DECIMAL will cause screen number 32 (in decimal) to be the

number of the latest screen, and the S marks it as updated.'

An easier way to cause the latest screen to be updated is to use the command

UPDATE . An easy way to cause a screen to be the latest accessed is to edit it
LIST it. as in 20 LIST. Then the PREY variable will contain its address.

Once you get on to it, it is not really all that complicated once you play

with it a few times, and is worth getting to know if you're going to be using
Forth. And to revert to our previous example of wanting to bring in the new

screen 21 without emptying the buffers: we simply do 21 LIST, for example,

followed by 0 PREY ID ! (7FFF in hex is better, but harder to enter).

Actually any number without the update flag should do, but it is bet to use a

number that isn't possible. (In TI Forth, 0 is a possible screen number only if
you reset the DISK_LO variable) Now you can bring in the new screen

In general, it is best to start an editing session, or a loading session,
with EMPTY-BUFFERS. It is also a good command to use after fooling around: I
accidentallv destroyed one screen without knowing it. All I had done was look

at some screens in an editor. then switched to another diskette, but I must have

accidentally hit a key in the editor typing on the screen contents, or changing

them (the editor 	 !iodate otherwise), and thus unbeknownst to me, the

screen was considered updated, and automatically rewritten to disk.

Unfortunately, the disk was by then a different one, and the screen did not

belong on it. 	In the process it took the place of one that did!
So user beware--though the automatic screen replacement system (almost a

virtual memory .;vstPm) has definite advantages, it has decided disadvantages in

its present simplistic format. 	If screens were identified by diskette as well

as by screen number, this problem would be relieved.

For the not Quite beginner I've got another hint, concerning programming in

FORTH. Although FORTH is totally interactive, and each piece of the program can

be independently tested, making for greater ease in program development, there

is one tremendous drawback. 	In Forth most parameters to routines are passed on

the data stack. This stack is available to all routines. Much of Forth code iE
concerned with manipulating the order of the data on this stack, and retrieving

it from this stack. This particular code is unreadable in the sense that it

offers no clue as to what is going on. The code itself must carefully be worked

out, in many ways like doing a puzzle; how do I get the 4th item to add with

the 2nd, then compare it to the 3d, sort of thing.... 	The lesson is, keep your

routines short, and the parameters to them as few as possible. Three should be
the highest number to consider as a general rule, and even that is too much. Of

course, it is the nature of the routine which decides how many parameters it

needs, so keep the routines short. 	(They are that way also more flexible.)

Variables are useful for items which need to be remembered and used at various

times in the program. Variables use up memory space; stacked parameters do not.

Finally, still in regard to stack manipulation, it is very important not only to

check that a routine uses up its parameters properly, but that it also leaves on

the stack only those items which it should leave, even if that is none. Check

each branch of the routine. If the routine leaves 'pollution' on the stack, the

routine itself may function properly, but the polluted stack will probably

affect other routines further on adversely, especially if the polluting routine
was a nested one. That sort of bug can be hard to trace down, (I speak from

experience, since I am somewhat careless at complete testing!). 	The fact that

Forth passes parameters on a common stack gives it some of its speed, and saves

memory, but it also greatly complicates the writing, testing, and maintenance of

FORTH code, and is me biggest complaint about it. If you do not place comments

in your FORTH programs, you will not recall what is aping on with the code two
weeks after You wrote it. To. be wise, at least place the before and after

Parameters for each routine in a comment after the routine name (as is standard

practice). It is not easy to tell from the code what parameters are required,

or even how many. (The latter would be obvious say, in Pascal, or Extended

Basic.) 	So, to repeat, be careful with stack manipulations-- they are the

source of most of the bugs. 	FINALLY, a quite dangerous, and hackv. stack
manipulation, is that of temporarily storing data on the return stack. This

appears to be standard FORTH practice, but can get you into a lot of trouble,

so should be done with caution.

Other than that, I have no great hints for beginning FORTH users. It is
the best language presently available on the TI for simply playing with the

machine, and exploring its features, interactively. Though it is to my mind far

from satisfactory as a language, it may well be the best we currently have

for the TI (except for those who have the P-Code peripheral). Certainly both

LOGO and EXTENDED BASIC are preferable from a readability, and a learning

viewooint, but neither of those offer much in the way of speed, and both limit

one's access to the machine. Therefore FORTH has a definite place in our

library of languages. It is much easier to use than Assembly Language, yet will
allow the user to accomplish most anything he would wish. To those willing to

explore the mysteries of the TI99/4A: GO FORTH !

**** 	-**
THE 9-PUZZLE

extended
basic

1 2 3
4 5 6
*7 8 *

by
TONY BIGRAS

100 DIM TILE(9) 	* make array fOr tiles.
110 RANDOMIZE
120 CALL MAGNIFY(2) * set sprite size for dblsize i used sprites for the tiles.

130 RANDOMS="973815642137845962337194623491836275416235798"
140 RANDOMS=RANDOMW263751349361459278356921974631598724184975672"
150 RANDOMS=RANDOMW351764892345628719748961352996745321987654721"
160 RANDOMS=RANDOMW741852963238495617714796258248175697891747265"

* make one big string with the scrambled patterns for the puzzles.

170 MOVES=-1 	 * this gets incremented before it is first displayed.

180
190
200
210
220
230

x(1),x(2),x(3).73 *
X(4),X(5),X(6)=89 *
X(7),X(8),X(9)=105 *
Y(1),Y(4),Y(7)=105 *
Y(2),Y(5),Y(8)=121 *
Y(3),Y(6),Y(9)=137 *

sets the X and Y coordinates for the sprites
that are used to display the tiles.

240 CALL CLEAR
250 DISPLAY AT(24.5)BEEP:firelease aloha-lock"

* both the arrow keys and the joysticks are usable if alpha-lock is up!

260 CALL COLOR(14,16,7)
270 CALL CHAR(142,"000000000000000OFFFFFFFFFFFFFFFF")

* sets game color and initializes character patterns.
* all values have been initialized *

280 FOR T=72 TO 112 STEP 8
290 CALL HCHAR(1+1- 18,14,143,6) * draws a 6x6 white rectangle on the screen.
300 NEXT T

310 CALL HCHAR(9,14,142,6)
320 CALL HCHAR(16,14,142,6) 	* draws a red border around the rectangle.
770 CALL YCHAR(9,17,142,8)
340 CALL VCHAR(9,20,142,8)

350 FOR T=1 TO 8 :: CALL SPRITE(#T,T+48,2,240,100):: NEXT T
360 CALL SPRITE(#9.147,9,240,100)

, * sets sprite patterns to 1 thru 8 and a solid and holds them off screen.

770 jUMBLE$=SEGS(RANDOM$OINT(RND*20)+1)*9-8,9)
380 FOR T=1 TO 9
390 TILE(T)=VAL(SEGS(JUMBLE$,T,1))
400 IF TILE(T)=9 THEN BLANK=T
410 NEXT T

* randomly selects pseudo-random patern from RANDOM$ and loads the pattern
* into the TILE() array.

420 FOR T=1 TO 9 :: CALL LOCATE(*TILE(T),X(T),Y(T)):: NEXT T

* puts the sprites on the screen in scrambled pattern.

430 GOSUB 690 * start game enter play loop at end of loop to put MOVES on screen

440 CALL JOYSTK(1,K,S) * call JOYSTK to scan input from keys and from Joysticks.

* JOYSTK converts joystick input to call key(1,k,$) output.

450 IF S=0 THEN 440 * if no input then ask for input again.

460 IF K=18 THEN MOVES=-1 	GOTO 370 * if fire button is hit or key Q is hit

* then the player wants to end game or pick a different pattern, or both.

470 IF K<>0 AND K<>2 AND K<>: AND K<>5 THEN 440 * if invalid key then ask again.

480 IF K<>5 THEN 520 	* if input is not down then next check.
490 IF BLANK>6 THEN 440 * if down move not legal at this time then ask again.
500 TEMP=BLANK+3 	* TEMP = new position of sprite #9 solid.
510 GOSUB 660 	 * go move the tile.

520 IF K<>0 THEN 560
570 IF BLANK<4 THEN 440 * same as above except in up direction.
540 TEMP=BLANK-7
550 GOSUB 640

560 IF K<>2 THEN 600
570 IF BLANK=3 OR BLANK=6 OR BLANK=9 THEN 440 * same but to the right.
580 TEMP=BLANK+1

GOSUB 440

600 IF K<>7 THEN 440
610 IF BLANK=1 OR BLANK=4 OR BLANK=7 THEN 440 * same but to the left.
620 TEMP=BLANK-1

GOSUB 660

640 GOTO 440
	

* this is the end of the play loop start over again.

650 GOTO 650 	 * this is left over from program development!

660 TILE(BLANK)=TILE(TEMP) * this is where the tile get moved around.
670 TILE(TEMP)=9 	 * have to keep track of what was and what will be

680 CALL LOCATEATILE(BLANK).X(BLANK),Y(BLANK)):: CALL LOCATE(#TILE(TEMP).X(TEMP
Y(TEMP):;: FLANK=TEMP

* moving sprites around and keeping track of wher the blank tile is now.

690 MOVES=MOVES+1 :: DISPLAY AT(4,11):"MOVES";MOVES
	

* this is where we came to
700 CALL SOHND(40,1400.1,4000,5,3000,15)

	
* enter the play loop from

'710 RETURN
	

* line 430

* this shows moves makes noise and return from whence it came.

720 SUB JOySTk(SIDE.FEY.STATUS)
730 CALL JOYST(SIDE.X,Y)
740 IF X=0 AND Y=0 THEN STATUS=0 	GOTO 840
750 STATUS=1
760 IF X=0 AND Y=4 THEN FEY=5 	GOTO 840
770 IF X=4 AND Y=4 THEN FEY=6 	GOTO 840
780 IF X=4 AND Y=0 THEN KEY=3 	GOTO 840
790 IF X=4 AND Y=-4 THEN KEY=14 	GOTO 840
800 IF X=0 AND Y=-4 THEN KEY=0 	GOTO 840
810 IF X=-4 AND Y=-4 THEN FEY=15 	GOTO 840
820 IF X=-4 AND Y=0 THEN E EY=2 	GOTO 840
830 IF X=-4 AND Y=4 THEN KEY=4 	GOTO 840
840 CALL FEY(SIDE.E,S):: IF S=0 THEN 870
850 IF SIDE=1 THEN KEY=K :: STATUS=S
860 IF SIDE=2 THEN FEY=f 	STATUS=S :: IF K
870 SUBEND

*
* this is where key and
* joystick input come in
* and become output that
* works like a
* call key(1,k,$) statment
*
* i already know how it
* works but you can figure
* it out for yourself or
* give me a call if you
* have any questions about
* this program 383-3946

EY=18 THEN KEY=11

**

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

