UFSTATE UPSTATE UPSTATE UPSTATE UPSTATE UFPSTATE UPSTATE UPSTATE UPSTATE UPSTATE

OUR NEXT MEETING will be on Friday.
AUGUST 19, 1987 at 7:30 pm

FLACE: KEY EANKN BLDG.

a

SW corner of Rt. 20 and Rt. 15

THE SEPTEMBER MEETING will be on Friday.
SEPTEMBER 14, 1983 at 7:30 pm

PLACE: MEY BANK BLDG.

4]

SW corner of Rt. 20 and Rt. 15

August’s meeting will include Jon Daggett on dimensioned arrays

UPSTATE 99/4A USERS GROUP
F.0. BOX 13522
ALBANY, N.Y. 12212

voL I, NO. & AUBUST, 1987

SOFTWARE REVIEW

hre you loacking (or o game where you don’t have to shoot them hefore they
zhuot cou” 1 have just the games for you. T1’s A-MAZE~ING and Milton Hradley’s
CONNECT FOUF. Two very easy to learn games. Hoth are simple enough for young
children to play, vet challenging enough for any adult. Eoth are either one or
two player gemes. 1 feel that this is a real plus, as there are times when you
want to play but have no one to play with., Let’s take a loabl at each of them.

A-MAZE-IMG is just that, a maze game. But not just a simple maze., there are

aver 5,000 possible variations, including dangerous cats, delicious cheese, and
nhetacles or mousehales to qad or hinder your escape. In this game you are a
monce tryrog to fiod your way out. Watch out for those cats.

With the various options you can create a maze on almost any skill level.
thth the one player option you can play against yaurself, the clock or the cats.
Against yourself you can play a number of games trying to better your score each
time. You can either worl to find youwr way out or eat all ten pieces nf cheese
befor e pon Jeave. fon ran have & simple ar comprleyx maze, viaible or lnviasible,
vy th monseholes or obstacles, and a fast or slow mouse. [hen there are thase
dangerous cats. There can be from zero to two cats. Their speed ranges from slow
to lightenming. they can be either dumb or smart (they almost seem to know right
where you are) and either standard or pouncing. with varing pouncing frequencys.
In the two player mode vou have all the one player options an also the option to
play either E‘CDmDEtitiVﬁ or cooperative game.

To me A-MAZE-ING 15 moure than just a game. It can be a learning toal as well
as & game. It requires reascning, and memory skills to play the game. As =a
mother of small children this is an important feature in this game. I have only
cne complaint with this game, the mouse is too small. Sometimes when he is in a
corner he 1s almost impossible to see.

CONNECT FOUR is a game of stategy for one or two players. You play it almost
the same way the origional connect four is played. You try to place four check-—
ers in & row horizontally, vertically., or diagonally before your opponent does.
Try to develope a winning strategy with this mind teasing game.

With the one player option you choose the shill level of your opponent.
Hovice (being the least challenging) the degree of skill progressing to Master
(the most challenging).

When you select two players you have more options to choose from. You can
play a Basic game, Drop Out. or play with a Wild Spot. In the basic game you
compete to be the first to get four checkers in a row on a regular playing
board. In Drop Out you have the option to drop one of your checkers out the bot-
toum anstesd of dropping cne down the top, bot beware 1§ upon doing this you both
connect four your opponent wins. vith the wild spot you play a regular game
except that somewhere on the board 15 a wild spot that can be used by either
player to connect hi1s four checkers.

The guestion is, where do you put your checker and where will your opponent
put hie? bho will COMHECT FOUR first™ 1 only wish that you could play Draop Out
with the one player option, maybe then I could beat the computer in maore than
juet the Fovice level.

PFoth of these games ere excellent for both children and adults and are
thought proveoling games. You have to use you head not just have a fast wrist to
vin 1n these games.

Sally Lane

MIMNXI MEMORKRY

This article is for those of you who didn't take my advice and bought
the Mini-Memory anyway. If you are like most pecple, you haven’t gotten any-—
where with it yet either! Frogramming Assembly language with the Mini-Memery's
Mini-Assembly is actually harder than using the larger Editor/Assembler system.
You have fewer Op-Codes and also the naming of your program is much more
complex. In this article, I will attempt to help you with some of these
common praoblems.

Naming your program is perhaps the most difficult to comprehend. With the
"big" assembler you just DEFine your start name in your source code, and that's
all there is to it! With the Mini-Assembler. you must go through a long process
to name your program. Here is a step by step method of naming your program.

1) Type in your program (do not put in the END command yet)

2) Make sure to write down the memory location where your pragram started
) Type in AORG >701E (this is the pointer to the REF/DEF table)

4) Subtract 8 from the number in >701E (ex. >70EB - B8 = Y70EQ)

Type in DATA >(the number you just came up with from above)
You have just changed the start of the REF/DEF table

6) Type in AORG >(the same above number)
You are now at the new beginning of the REF/DEF table

7) Enter you program name. Thia MUST be & characters in length. I1f shorter
than & characters, you must pad with spaces. You use the TEXT Op-Code for
this. (ex. TEXT "START)

8) Now type in DATA >(where your program starts)

?) Finally you can type in END. which tells you of any unresolved references.,
and then exits the assembler.

1) Run your program using the RUN option in the Mini-Memory

Sounds confusing enough, doesn’t it! (It is)

But, don"t give up. After doing it once, it will become an easy process.
Rasically what you are doing is entering the starting memory location of your
program into the REF/DEF table. Just prior to this location is your start name
(remember, it must be 6 characters long). The reason for subtracting 8 from the
he) number at >701E is because you are adding a new program to the list. 1f you
were just changing the name of a program, you could heep the REF/DEF table where
it 1s and just change the name using the TEXT Op~Code.

Things to remember:
- Memory location »701E "points" to the start of the REF/DEF table.
To look at this location you use AORG >701E. To change the contents of
this pointer, you use DATA 3 (the new number).
note! when subtracting 8 to add a new program name., remember that you are
subtracting in HEX. (base 16)

— Write down the starting memory location of your program when you go to type
it in. (It could be hard to find later)

- iJse single quotes (') not double quotes (").
- If you have any problems, don "t call me... Buy an Editor/Assembler.

Jon Daggett

SOF TWARE REVIEW

After what seemed to be many days of impatient waiting by the mail box, our
DISY FIXER from Mavarone Industries finally arrived. This assembly language
program requires 32V memory expansion, at least 1 disk drive and the Editor/As-—
csembler cartridge. It’s cost was $29.95 and in my opinion is worth every penny.

I opened the paclage not really knowing what to expect to find. Inside was
a dislk and a small 10 page instruction book. After just a few minutes of
reading the manual, and playing around with the program, I realized it’s full
potential.

This program allows you to read or write from a disk by individual sectors.
This may not sound lile much, but until now, the only way to access the disk
drive was in ane of the normal Open, Close, Save or Load ways. Also this allows
vou to change any byte on any sector of your disk,

Great' FEHut what is 1t good for. UWell, have you ever had a "frazzled"
disF” This is a disl which you were using, and all of a sudden, it wouldn’t let
you at your programs' You can repair your disk with this pragram, and not lose
the 1nformation on vour disk!

How a little bit about how it woarks. Anyone buying the Disk—-Fixer should
have some knowledge of the computer and disy handling. The manual provided
tells you how to use the program and has some useful information., but it is up
to you to really find out what it can do for you.

Sectors O and 1 are referred to as the CONTROL TRACK af the disk. This
cantsins the diskette name, and available space left on the disk, an alpha-
betical pointer list of your files, and also whether or not the disk is
protected.

Sectaors 2 through 22 contain the directory entries for each file. This
tells you the File Mame, the File Type, the File Size, and the Record Length of
each file, This also contains the sectors used for this file, and the length of
each fraction of a file. The appendix of the manual describes this in more
detail. One thing I would lik¥e to add though, that the manual doesn’t mention.
I¥ you run into problems finding the starting sector of your file, you may have
to looy at the 2nd nibble of the 2nd hyte of the T byte BLOCY LINE in the

directery entry. This contains the overflow 1f the sector number is greater
than “FF.
The program is easy to use and very user—friendly. But beware... You can

cause permanent damage to a disk if you do not Vnow what you are doing. You are
actually altering pieces of a disk.

The praogram is a lot like the debugger. It uses ane letter commands,
followed by any information needed for the operation. Commands provided are as
follows:

Wirite sector

AYlter data

D)isplay buffer

M)odi fy RAM

Hielp

Muit

The Help command gi1ves you the above list and how to use them so you don't
have to VFeep refering to the manual

. In less than an hour, we learned some interesting things that this program
can do for us. For example, if you have a disk which you are unable to back-up
try looking on sector O byte “0010, 1f you Arlter >00190 to >2028, you may find
some interesting results.

Also for those of you who accidently protected an undebugged Extended Rasic
program and need to get a Bug out, you may try finding the first word of the
prog-am on the disk. This word is a two’s compliment number. Try changing this
number from a negative number to a positive number?!? (A knowledge of two’s
compliment numbers and hex is recommended to be able to do this)

As 1 mentioned earlier. this program is very powerful and useful. but be
cereful because you could really mess up a disy with this if vyou don™t really
vnderstand it. The program comes on an uncopyable disk. (but that can be FIXED)

Those of you who are 1nterested in seeing how this works, bring your disks
in tn the neut meetina. and T wll answer any nquestions about this program.

Hinmts From Hemnr sy

Welcome to the first installment of an advice column for TI 99 users. No, it's
not an advice column of the "Dear Abby" type. but rather lilke the *Hints from
Heloise® type seen in some newspapers. The aobject is to provide hints. tricks,
short-cuts., etc. for use with your Tl 99, We'll start off with items I°ve picked
up in a variety of places. After that we'd.like to see reader input to this
column. Send us your favorite hints, tricks, and/or short-cuts that you think
would benefit 99-users, and we’ll share them with other readers. The more reader
input. we get, the better Lthis column should be. Wlth the realization that our
club membership changes continuously, occasionally we®ll repeat the more popular
and/or useful items. Join in and share'

Item 1: TI BASIC doesn’t have a "SIZE" command lilke EXTENDED BASIC. but you
can still get a gqood idea of how much memory is left in TI RASIC with a simple
algorithm. Fub the following two linrs at the front of your program:

1 MEM=MEM+8
2 GOSsuE t

Now RUN the program. When you get a "MEMORY FULL'" message, type the following
imperative command:

FRINT MEM
The computer will print out a number that is the number of remaining free
bytes. This number will in general be accurate to within a few hundred bytes.
(NOTE: Pe sure to delete lines 1 and 2 before using your program.)

Item 2@ In TI's Basic interpreter its much more efficient to multiply than
to divide. You can use this information to speed up programs that do lots of
calculations in FOR-NEXT loops. For example! dividing a number by 2 takez 4.9
milli-seconds, but multiplying by 0.5 (an equivalent operation) tales onliv 2.6
milli-seconds. You can use this trick anywhere. When it comes to FOR-NEXT
loops, you need one more piece of data. It takes 10.6 mili-seconds to invert a
typical non-integer number (like 17.632) and to store the results as a varia-
ble. For such a number you save 4.3 milli-seconds if vou multiply by the reci-
procal instead of dividing by the number. Therefore if your FOR-NEXT loop will
execute more than twice, you'll save time by inverting a constant outside the
loop and multiplying by that rather than by dividing by the original constant.
Loops of 100, 200 or 1000 could result in considerable time savings at a rate
of 4.3 milli-seconds per loop per calculation for non-integer constants.

ITEM =: Do you sometimes feel like you need more than four lines for a
statement in consocle BASIC? Due to a flaw in the 99/4A BASIC interpreter, you
can. Suppose you wanted to print this statement on your screen: There are
tim2s when I wish that I could put more than four lines into statements that
I an using in TI RASIC programs. Type in:

100 PRINT “"There are times w

hen i wish that i could put

more than four lines into st

atements that i am using in"
You notice that the computer will not accept anything past the last (").
However if you edit the line by typing 100 and hitting FCTN-X and then ship to
the end of the line you can continue to type until the end of the fifth line.
You can do the same thing again for a sixth line. (NOTE: The fourth line must
be Full for this to work; that is you must type to the end of the fourth, or
fifth, line if you wish to expand it by editing.

Mile Henry

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

