tidin

TIHOME PRICE LIST.

TIHOME MEMBERSHIP (English) £12.00
TIHOME MEMBERSHIP (Foreign) £ 18.00
Back copies of Tidings £ 1.50
Programs (supply your own tape) per program £ 1.00
Listing of programs £ 1.00
Instructions on the use of the PRK module £ . 50
Pin out/in diagrams £ . 50
Errors in Extended Basic £. 50
Book : Beginners Basic $£ 2.53$

II HOM:
 tidings

 TIHOME is not affilizted vitb Texas Instruments in

 TIHOME is not affilizted vitb Texas Instruments in any way and is supported only by ite mbecribers. any way and is supported only by ite mbecribers. TIA1ngsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingsTIdingeTIdings']

CONTENTS.

Random Lines	Mike O'Regan
Letters	
Babbling Brooks	Peter Brooks
T I News	Robin Frowd
Rambles	Stephon Shaw
Close Routine	Paul Dicks

EDITORIAL

A great many of the phone calls I get are because members cannot make their cassette recorders work. I include in this issue a list of the things I have come accross that cause cassette recorders not to work. I hope it will be of some use to you.

I am pleased to say that there aro a groat many more county contacts published at the end of this edition of Tidings. If you think there is a large gap on the map, and you live in the middle of it, why don't you think of becoming a county contact. Who know, you may meet someone with the answer to your current problew.

Now the price of the 99/4』 has reached $\mathbf{5 1 4 9}$ the membership of TIHOME increases by leaps and bounds. Current membership is 700 and cowating. I trust that all the nev members find the information that the older members are able to give to be of value. New members may not realise that older members had to pay $£ 748$ for their 99/4. T I have only recently become sensible when it comes to pricing.

If you have any problems trying to locate T I hardware or software, don't ring me, ring Robert Batts, T I, Manton Lane, Bedford., tel:- 02. 346-7466. I am sure he will be pleased to help you.

I enclose a copy of the TIHOME software catalogue in this edition of Tidings, because it strikes me that some of my older friends may not have seen it.

TIHOME Wishes all its subscribers a Merry Christmas and a very Happy Computing New year. May all you glitches be little ones. If they are not, give us a ring!

1. Check the distance between the cassette and the T.V. The longer the distance the better.
2. Stick to short tapes. Nothing longer than C60. Better stick to program tapes from Smiths.
3. Fast forward and rewind occasionally. Tapes get stuck if you only keep playing the same piece again and again.
4. Check the plug in the back of the 99/4A. Put a matchbox under it to stop the weight pulling down.
5. If you run on batteries -- don't. Always work on the maine.
6. We have had trouble with Ferguson.
7. We have used a Marantz C190 and have never had any trouble.
8. Cassettes with a manual record level are better.
9. Recorders with a manual tone control are better. Computers like treble not bass.
10. Check your 3.4mm plugs. You may find that the T I ones are not the correct length.
11. Check your Alpha Lock key is down. The cassette recorder does not recognise lower case characters.
12. CS1 is the only cassette that will read and write programs.
13. If your motor will not work, check the possibility that the polarity needs to be reversed.
14. Check that you have good connections by pushing the plug in the back of the console. See 4 above.
15. Don't forget to clean your record heads. Dirty heads make dirty data. Remember GIGO. Garbage IN Garbage OUT.

Any more problems
ring me:
Paul
01.640 .7503

29th Noverber, 1982.
Mr. M.C. England,
4 Pinetree Close,
Bernton,
Northwich,
Cheshire.
Dear Mr. Dieks,
In TI Home you said that it would be better to address Texas Instruments through the magazine rather than direct contact, OK then, I hope you will be able to publish this letter in the next issue.

Dear Mr. Frowd,
This weekend (27.12.82) my son and I decided to visit the Northern Computer fair at Belle View, Manchester.

We set off early with great expectations to Manchester and after a tortuous journey through the outskirts and an hour long queue we were finally inside.

On purchasing an Exhibition guide we scanned the contents for Texas Suppliers. At last we found one (which turned out to be the only one out of nearly 100 exhibiting stalls). This was Home and Business Computers of Manchester. The "Write up" promised "Howe and Business Computers will have on show the TI99/4A with full speach capability. You can see ond hear the machine in use" - "General education and special education software is available and includes packages for games, personal management" - "The TI home computer with speech synthesiser can be seen teaching children from four years old how to program using TI logo".

Great we thought, speech synthesis 32 K RAM, peripheral box and even possibly disc drive demonstration, mini memory etc. here we come. This is the reason we came, demonstrations, queries and even possible purchase.

After fighting my way through the mass of people in front of the stall (My Godi I thought, all these people taking an interest in the Texas). I reach the demonstration desk, where was the Texas now?

On Hearing the stand I had heard a loud voice, audible over the general noise. "One plus so and so equals etc." Good I thought at least Texas is making itself heard. I looked around. The voice had been coming from a vic computer a few stands away.

At first there was no sign of the Texas on the stand. A vic - 20 was nightdriving with group of amaized spectators looking on. An Atari was blasting away at a space game - but where was the Texas? I looked again, and there tucked away behind the Atari was the Texas. The none existant speech synthesiser must have got a sore throat. I looked again, "Oh dear", the Texas must be 111 it was tucked up in bed - no I looked again and it was sitting there - silent - unworking and unloved.
"What about the Texas?" I asked the stall holder, "What about it" he said, "Well have you Kunchman?" I enquired, "Sorry sold out" he replied, "Now Madam about the vic-20, we are offering etc. A bit non plussed we walked on. Ahout five stands
further down, we spied a Texas working - or at least with the Texas logo on the screen. "Ny God" I thought again there's an epidemic of them. Two of them in a space of 50 yards. "Do you sell Texas software" I enquired, "Sorry no, we are selling the stand it's on" was the reply, "The Texas is on loan."

Well at least he had the thing working. We walked around for about an hour hopefully to spot another Texas amongst the dozens of vies, dragons, acorn's. BEC etc. but alas no.

After this time I thought I would tackle stall 410 again. The people were still ooing and ahing at the Vic and Atari. The Texas however was still tucked up in bed. "Have you Space Invaders for the Texas"I enquired, "Sorry sold out" was the reply. (Actually we have it but my idea $w=s$ to at least get it on the screen and show the other poor people how good Texas Graphics are compared with the rest). "Well what about"? :- and I went trough the list of Texas module he had on display for sale. By the end of it the poor old Texas in bed had turned a deathly green and starter to sweat. "Sorry ,sold out" was the reply. The Texas stopped sweating "Well how about Winging it?" I said, "Sorry sold out". "Star Trek", "Sorry sold out", By this time the colour had returned to the Texas and it had turned over and returned to it's slumbers. A faint sigh coming from the non existent synthesised In a last valiant attempt I asked. "How are sales of Texas going", "Very well was the reply". "I could sell HUNDREDS if I could get my hands on them". Now madam about this vic-20. We departed from the stand and do you know on turning round a little further on, catching a fleeting glimpse of the disappearing Texas it wasn't in bed at all but standing in the shadow of the Atari by its side and for all the world I could have sworn that above the hum of voices in the hall I could hear faint sobs coming from the non existant speech synthesiser, perhaps it was missing the four year olds.

The story however has a happy yet sad ending, happy for us, sad for Texas.
We had left my wife and daughter in Altrincham shopping (better sense than us).
We originally bought our Texas from Boots. They have now stopped selling it in preference to the Dragon, Vic and 2X81. However, they still had some Texas command modules left and we bought a chess module for $\mathbf{\varepsilon} 20.00$ and Tombstone city for £12.50, not bad, and they still had some left. So to any of 'TI Home' Readers get a long to your local Boots and see what is left - you might be lucky.

Now come on Texas, I don't know what you and your merry men are thinking Robin but for goodness sake do some thing.

If a shop can sell in his words 'Hundreds' and can't get any what's the matter? Someone somewhere wants a swift kick in the derriere. Why is it at the stow - an ideal opportunity before Christmas - that the place was inundated with every other computer but no Texas. You have missed the Christmas boat - for goodness sake don't miss the next, - or I and others will be the processes of a system which does not exist anymore. I could go on about why is it the best or one of the best selling in the States, why don't you advertise on the T.V. etc. but I am sure you take my point. If you need another sales executive down there at Texas 1 am available - at a price - but available. I have already persuaded three reocie on the merits of a Texas system and they have bought one - that three up on you. Don't let them - and the rest of us down.

Yours sincerely,

by
Mike O Regan

NEW FORMAT

Qs there have been a few complaints about the tegibitity of RANDOH DOIS atier it has been anolomopita IWICE I an trying a number of expertiments.
stantone 1 is to try the wholta column on tite WORIDS SMAI.lEST UQRD-PROCLSSOR. InIs I\% arliten on \rightarrow CHQRP DP 1 SAD and CF 150 Plotieneprinter, wich, in cast Where is sumotre aut thopen who hasni seen the write-ltaps, inses a miniatua ball-point pen to write -ach separate character in adrition la sraving high-resoltition graphics! The aytus is copithit aif frintirig 'n NINE DIFFIRENI GIZIS in all lour dimections. This is suritten in the smaliazt size and the ifile in in SI2E 6. it cen also print in grect, mat or blue, by rotciting The pens.

The forgoram, athich 1 haue called PiCownivf, merns in abous 7 get bytes It prints up 1036 charautert per lime (g mura than my II program).

The ritaRp AAEIC allows a! f charactens, rescept double at.ootes 10 be ENILRed. the tength ot acoppiable tiring may atso tre timenaluned (defguit is 10 chara) up to 88 chars fiem siring, which
as ine PC 15AD Mas only $2 K$ of RAM, I have had to rechior the number of Iatotures of this program to the bare essamilats, whiot are.

1. WRITE., text - up to 25 lings before elither frintout or ditif to lape. Tha mathina allows upper and Iower oasi (with oaps lock, if mequireds.
2. READ. book the text vith line: numbered lo facilitate ridilifig.
3. EDII. : lisited to whole line neplaoement, by calfing up the requifect ilne by number. Note. that atteapts to 昭ITE Ifnes bilch exceted 36 char results In the line belrg stortened to ihe mearest thole word, with an oustibla varning and display of the *horlened line.
4. PRINT.. IInished iexif with doubte tine spaolng for lestbility. 5. SAUF.. 10 ape, which is a very *Imple Cone Itnes procedirre.
5. LOAD. . "rom tape -- jusi as a imple.
4.B. The realiy neat feature of Ithis system ls that ary procedurn dy be intarruptad at any tima (by the Priak key) withuut losing - Ilhar program or data. This oflowi, for instanoc, lext to he intersperced with itiles in c bisger type sizn.

SPACE LASER BUGS

```
    If you keyed in tim nlof litile
acme SPACE LA:;tkS elmon Lompuner t
Nigeo Games-Now) yon may have teen
c lilile giffid when you found it
had one or two bugs. incoce was
also a |fitle mattar of ro rumming
Insiructions. ! wonder how thy
cuthor {gh Programs?) managed to
qet a lieting on what appears io be
a SINLLAIP IX PRINIIR. Anyway,
Tor thuse who Jitht ,gort the bug?,
thr following may be of nome help.
Qfaen she loltowirg lirigs:
2!月ks shualy he BrnSS tic.
```



```
MASB CK.CK INH(RHH*.S)+!
lras+ry the lolluwiny liragz.
9%% 11-9OV ? THIN 3BP
375 5O-PO+3
1月15 1F PO&-32 !fIN IATM
1日16 P0.f% 3
These chan.t:z will enutwle the gome
to be rlay*A, tut silil toms
rxplain wh: rutes. However,
'i shoult be a nice litile exercise
to sort aum crin aiser your awn
mules:
```


WEARING SPECS

collowing up siffrtid shatis

end wearing speces，when 1 got sone rathor strunger reating spets e few autitis eud：I fount that they yere not saitnd to wiewing the acreen，so I houa tapt my previous nair ：：pecially for ina iob． With thaie 1 gan bee every foul on the suresn，whith it not posatite ath my new gres．

ExBas SPEED

1 Oarmot underitand thy the
fdea it oround that Extas is ilow．
＇t may run variout BENCHIESTS at a ：lower speed than II BASIC，but 1 have found that many programs arlaten in II BAGIC run quite a bil rasier In ExBas，essectally such functions as Coll HCHARSUCHAR． also the faollity of being able to by－pass the PRE－SCON makes prognams takeoll shat mach faster． Howrver，I have fotand the call SAy tratesents，espectally when dealing yin number：or alngle alpha charaovers to be qualie a bit stovar than the fPEECH EDIIOR Hodule．

BARGAIN BASEMENT

```
    Whara la tha curpent irand of
prlce tlazhlng golng to endi
Puraly the continuling fall in the
prtee of the 99/4a oannos do much
for lis lamge, esmecially among
those tho have pald duite a bit
wore wishln a matier of vecks.
Far a shori perind it vas pazsible
to buy at CURRY'S lor $199,
leas the Bje lexas cash refinnd,
tass CURRYS own offer of i50 morin
af solteare. Mow l see a lirm
edvertlsing in PCW to supply the
99/4a for |l35, lesa the If money-
baok ojfer. Thaw J.sit las!!!
```


TI SOF TWARE OFFER

Thank: to ROBJN FROWI: IIrod ofler of SOFIHARE for PUBLISHED PROKRTMS I now have iwn new aodules to add to my growing collection. '23:1 as the lasi coumi - can cnyone top that?). As a eatter of finterest there is only DN: Alf (93/4a), wish the other 22 puenly divided beqween Lif and ACH (preflx for 99\%A7) which originared In tholland.

I am a bit oonoarned by the new trend to produce aodules wich will not operatt on the $99 / 4$. The nem Hord-Pracsssor, for Irstance). Also worrying it the trend towards cheaper CAROS (lor
 nusi the EROM modules aliogether? On the other hand, I have iwo sotules which WItL NOI RLEN ON fte 99/4a. Jot oniy will thay not pun, they are not even recosmised by the ta console c: being plugged In!

$$
99 / 4 \cup .99 / 4 a
$$

La a long-1 lime g9r4 owner, 1 am nat urally interested in comparing :t with the mower machline. So far ay experlences yith the ta have sone llitie to persuade ae that !t is a vastly supertor mactine ta its older brotier. the muchvaunted keyboard is not all it is cracket up to be, in my opintion. 'i seams that not mucti inoughi has been it en to the SHIFI and FiNCIION keys. ! ralisa that the a has quite a fer are
functinas, but the character ellocation belween SHIFI and

Also, the actual spacing of the keys secas to be morn eramped. the atip-in label ahouk the top line is no real substitute for the full ountlays wifich are one of the better features of tha 49f4, even compared with olher makus. For Imsiance, 1 am curnantly dolng some researon lotio alternailueg to the OLLRIY keyhoard layout. This maket on ouerlay, (ar Kayoaps) eseential, and it would be diffleult to fit caps to the ta kays. Another drawback so the da to the quallity of the SCREEN display. Have yet to see c display which even approaction the NISC display which let from sy $99 / 4$ SKANTIC combination 4and that includer the disploys on the II Stand at the PCH SHOWI)

MORE ON PRINTERS

With the denlan of the ll Thermal Printer and it: reptaument be Ing (as ufial) too expersitie, ' have been looking arpurat to sea it ibere are any raasonable eluernatives. the liny printer wich has prorduced thit colism has a BIG EROTHER, avaliable Irom IGMDY for blis sorry abous the pound - isnj. This can probabiy be ctiaohad to the 39r4 ibrough an RS 232 Interfoce eincitantaliy, Joes anyone know il the naw il Drinter neets a separate :nterfaoeit. what I done krow is how to auctes tha plotiling mout ines through If BASIC.

POCKET COMPUTERS

Woe that I have fimishet this column, 1 an quite impressed by the facllisy of proctucing is on a Pocker Complater. Some may *ay that to call the SIARRP PC 1508 a. POCKEI Computer is siratiohing aore than the inay inationy as, wen it is atiactied to tis printer II would lak a rathen targe poachers pocket so accomodate 1t! My PC 1509 is jast the tast of a tonglsh lina of programmobin poekil devices, wilch saried with the hamble SIMCLAIR ENTERPRISE. This wns lollowed by a if 38, a mumber of CASIOs, two SHARP PC izils cone of wheh 1 itill have) and two Mehiettlackarn itck. However, the PC 1598 is the tirst one suable af any form of worderacesating. cor those of vou wo have not yet irled a Mond-fracestor, and do all your orliling either long-hand or on a conventional typertiser, the aduantages of a PORTARLE word-processor may not be imatiately obvious. It is quite somathing nat only io be able to orite anywhare, independant of malrin power, buil I also find that ualng a worderpectator aids the flow of thought in a way which Is hard to descrtbe if you have not experlenued it.

Anyway, it is quite fascinating to tee the liny bail-paint pen chuntering away at a rate of knots. Cutie apart frow using the system for writing, 1 lind 1 am us lng it in the offlce more and aore <l am a looal government oflicerl. In my depariment ve get a large
mumber of ad-hoe daia hardiling Jobs Which have iraditionaliy been dare manualiy, fargely becaus suat Jobs mere ihought io be ipo iriulal andzor on ofl. Same of these jobs have been wers ilae-consuming end, if they Involued repeated calculations, vera zubjeot to many errars, fither in the marus ertps or typeorititen aopying. Although I haut repeatidiy zhown thes a packat oomputer is o valuable tool for woh jobs, i *illi have great difliculty irying 10 persuade my oolieasues that we nhould be taling more oduantage of the NEL TECYHOLOGY. I

Personal compuiting is a very 501/1aRY DCCUPAIIONII

GEMINI MARKETING

[^0]Dear PCT,
First the buttering up. Congratulations on your new magazine. It is an excellent informative one. Second the 'battering'. I must take sides with your writer J. Davies in your September issue in defence of the Texas T1 99/4A. When I saw the article on the Texas v Atari, I thought "at last a magazine that is going to take notice of the much maligned Texas". Not so however. Why is it that you and other magazines do not come down on the side of the Texas model. I have had it described to me as a "Rolls Royce" among computers, which I agree.

In your article comparing the 99/4A and the Atari you do not mention that Atari is made from and looks like a cheap bit of plastic, and as far as the buzz when they keys are touched - more like a very inaudible squeak of a dying mouse. The Texas however is very sturdily built, is extremely pleasing to the eye, has proper keys and is easy to edit.

Also lets have mentioned that in total the price of nearly f 300 for the Atari against the Texas $£ 200-£ 225$ including tape recorder. A price difference of some $£ 70-£ 80$ and please correct your fact file at the back, the price of the Texas should read $£ 199$.

The Texas programs are not difficult to load from a tape recorder but are very simple and easy.

Lastly how about being the first magazine to print a Texas programme, there is a dearth of them. It would ensure a regular purchase. I hope you can print this letter in its entirity to give people a chance to buy a good computer which I am reliably informed is now selling like hot cakes.

Yours faithfully,

M. C. England.

Editor's reply: So the battle for the Texas continues: It is very difficult when writing a review not to offend somebody, however carefully you consider the arguments. I will admit that the Texas has been much maligned by the computer press and a lot of this ill feeling stems from the first couple of abortive launches of the computer during which it received quite a pasting. I would disagree with your comments on Atari, but everybody is entitled to opinions.

The review couldn't have been too anti-Texas because I have received a letter from a reader who, after reading the review, went out and bought a Texas. Suffice to say that whatever the good or bad points of a machine there will always be somebody somewhere who thinks it is the best.

Salleh Chemat,
87, Chancel Row, Hyde Park Flats, Sheffield S2 SLD, S. Yorkshire.

ADVERT ISEMENT

1. TI EXTENDED BASIC (Brand new)	£60. 00	
2. TI INVADERS (also new)	$£ 12.00$	
3. Cable lead to cassette recorder	E 6. 00	
4.	Book: Programming Basic for the	
	TI computer by Herbert D. Peckham	E 8. 00

All 4 items for $£ 84.00$
add $\frac{1.50}{f 85}-\frac{50}{50}$ for postage and packing
Reason for selling - badly need the money, Cheque made payable to S. B. CHE'MAT.

3 BACK ISSUES OF 99^{\prime} ER MAGAZINE. VOLUME NO. 1 NUMBERS 2, 3, 4, 5. £2.95 each plus postage.

Immaculate Condition.
CRAYFORD 521429
れ********

Dear Paul,
Thank you very much for the back copies of 'Tidings'. As a new member of II HOME who has read the last five issues 'at a sitting'. I feel obliged to put pen to paper and say a few words of thanks.

It is obvious that 'tidings' exists due mainly to the considerable effort of a small band of contributors who naturally wish to see their ranks added to and need feedback to the effect that their efforts are worthwhile and appreciated.

I'm afraid I'm not likely to be able to contribute anything of great value but will try a scribble to see what comes out of it. I most certainly can however say a hearty thank you and echo many of the sentiments which I've recently read on TI's pricing policy and availability. The latter has been my major hobby horse. I've been trying in vain for eighteen months to find an 'Editor/Assembler' and this week have been simultaneously informed by TI that 'there should be no problem with availability' while told by every supplier I've phoned (U.K. wide) that it is 'impossible to obtain from TI'.

The main reason I purchased a '99' two years ago, in preference to ome of the many more competitively priced units, was that I use TI kit in my office/ daily work. This allows me the luxury of access at weekends and holiday periods to an 810 printer. Another of TI's 'hiding light under bushels' was painfully experienced. Much trial and error was needed to build up the knowledge on such essentials as 'form feed' (Print $\neq \mathrm{x}$: CHR \$ (12)) or line feed (Print $\neq x$: CHR \$ (13)) or even the appropriate OPEN statement to enable a 99 to print 132 character lines in place of the default 80, and many more. The RS 232 booklet was quaintly silent on such matters. I appreciate that TI would not have envisaged that many 99 users would have access to an 810 but surely the RS 232 manual should contain some reference to the use of a printer and appropriate examples of TI Basic commands and statements!

This reticence is consistent with TI's marketing policy which remains silent on the 99^{\prime} s potential for use as a small businees machine. I have found it to be an excellent tool for this purpose despite a complete lack of commercial software. As an example I currently run a Vehicle Repairs and Maintenance Report for a 150 vehicle fleet on a ingle disk which contains the program (insufficiently User Friendly to be much use to anyone else I fear) and twenty two items of data per vehicle. The report produce 18 'branch' reports with 'branch' totals and calculates m.p.g. and pence p. mile per vehicle and average per branch.

Before acquiring my 99 and embarking on the learning curve I was quoted $\mathbf{f} 2500$ by a sof tware house to write such a programe - sobering thought, eh:

May I please have copies of volume one issues 1-6. I know these were not as large as volume two and may be cheaper but as I only sent E. each for those received (sub divided by 12 oops) I'm also sending $£ 1$. each for volume one and happily looking forward to the postman's delivery.

> Keep up the good work
> Yours gratefully
> Wynne
F.W. GRIFFITHS

$\mathbf{B a b}_{\mathbf{b}} \mathbf{l i n g}_{\mathbf{B r}} \mathbf{B o}_{\mathbf{o}} \mathbf{k}_{\mathbf{s}}$

By the time jow read this it will probably be 1983, so bolated Meriy Christras and Happy New Iear to all! Fou probably won't be in a ift otate to appreciate all the fine things in this isaue of Tidinge for good couple of reeze (alcoholio poisoning, Jon know) so I 111 have a fortnight's breathing apace befor gotting back down to 'hading' - witing. In fact I apond vo much time writing for Tidinge those ding that I have hardly any time left for rriting origanal prograts (wy excuse for not having mbitted anything to the popular magi). Part-way through seribing thie issue of BB I manged to lay my ntick fingers on a reel of photoprocese ribbon, and i hope that it vill improve the legibility of BB when it ia reduotion-photocopied. The original doean't look that good, though, so I have my doubte.

A lot has been happening in the lat tro month - II dropping their prices and giving thet E 50 -back schome a try, for oxample - moh of mich wam left out of lant isbue'g BB because of lack of time to prepare anything. Some of what you reed thit lasue therefore actually happened an long ago an septerber 19821

1983 lookn eet to be the gear that pricen fall lower than anyone dreaned they oould. The Japanese are walting in the wing with goodiee at pricet wich will pin jour earw back - hov about a full plotter for around $\mathcal{c} 90$ i - and if that makes other micromanufeotwers look to their laurel that is no bad thing. I oontinually harp on about the faot that Britain is the high-priced duping ground for many companion; with any Iuck (and if thare is any justioe) that hould ohange in '83. Look out for cheap dink driven - and I don't Just mean Unole Clive'a - with very high density atorege, and for video dink (see olsewhere), an these are due to be launched shortiy with the Read/Urite vernions wading in the wing (probably with the Japaneael). Why an I so orer-the-zoon about Fideo diake ? Beeause II roke uy and produced a controller which onn be used rith one - the Ploneer ayston - and wisely chose a laser-based aysten to go vith. Phililpa and Pioneer ary the poople to watoh in the coning yearm in thia field.

Britaln in apparently now the 'most oomputeravare' oountry in the world, vith more pertonal computera per capita than even the Aericane. Without wishing to thump the tub, it'a about time someone recognised that owr potential lien with the Future, and got off their backides and dil momething oonorete wout it. Meaber of TIHONR and other lite groupe have done it; now all we need is for the politicians and menicer mandgonent to vake up and de likerise. If the decision-takers don't follow us, there'
a. very real riak that the projected 'Golden ags' will never be resched.

On to sort interesting thinge. Thankyou for jour letters - If you haren't had an answer yot then I probably haren't received it! - and because no-one specifically said that their comenta vere for Soapboz I havan't quoted from any of then. Sane have said that I can quote them on eertain subjecta, and a short piece on what they have to sas about Pidinge, Software, TI, and Prices, appeara elashere (Open quotes).

1 word about the deliberate 'errors' which I have included in the past. The general. Iden ras to tose in a bit of nonsonse anonget the oorrect information (sone aight bay It was the other way about) juet to see if anyone notually rasd and understood onough to point out the nonsonse. As it happens, the accidontal arrors wers picked ap, but not the deliberate ones! Deliberate errors therefore are out. Thoy vere probably too contrived anyway, but they are conmon occurrence in certain forme of Kiths, where the suthor of a thesis on what might be terned 'riddien' will throw in a rogue statemont or two, just to see if those propounding solutions REALLI understand the problene.

Last isave I dished out soas quirks with regard to BEAlese comments and tho use of ". for PP output. I have aince tried"." on a 44 with no auccesse, so it looks as though it may be restrioted to $4 \mathrm{~m}_{\mathrm{g}}$, and mayb not all of those either. In the mantime, personal commanication with STBPRBM SRAY (Stockport and 'Rambles' author) and PBrER FRILIIPS (Glamev) has olicited so moch opecifio information with regard to the RFMlean commente that I have reduced both thelr results and m own researchen to a set of general gaidelines about how and where conmente can mont usefully be enployed. Those appear elsevhore (Basic Comente). In the meantime, another bug has reared its heads the failure of POS to fuction correctly under certaln circumatancea. It ocure men the length of '景tring 1 ' (in which you ar looking far posilble occurrence of 'string 2', starting at position P) is in excess of 127 charactare. If the length of etring \mid Is 127 ar leas, POS function normally. If it is exactly 128, then a valu of sero is always returned, regardione of atarting position (P), and if it is 129 or orer, the starting value will have to be set to 128 if the first ocourrence lies after the 127 th charactar. This only came to 11 ght when I wal atteapting som initial input routines to create a 'header' and 'painter' tring for a aimple data managenent systea. I usod a Iinor trick with IMPUF - specifying null input prompt - wich girea you a full 4×28 character input (umally jou ither lose opace to any input proapt, or if you
 - and found that subsquent decoding wouldn't work (the total string length was usually around 200 characters, achieved through auccessive IRPuFe and concatenation) when using POS to searah for an asterisk field meparator. The aimple answer in: don't use pOS on atring whose content is more than 127 characters.

Stephen has also pointed out an 'ineractitude' in my reviev of Extended BASIC V110 in issue 4: ueing On BREAK you do not necessarily get stuok with an unBREAKable program, requiring a general reset (PCTH $=$ or $S_{A} f(Q)$ to get unstuck. If your routine has a halt for ingut (ACCBPY or IHFUR) then you oan BREAX in the normal way.

Stephen has also been giving me some answerm to my querten over CALL FEEK and gearching for progran listings. Since buying the Mint-memory module sone of that information han been underlinde, with the result that the oloude of uncertainty have largely blown avay, to be repleced by fust mists of uncertainty.

It appeare that CALL PREX and CALL LOAD can only addrean CPU RAM; that ia, memory which is directly addresseble by the central processor. The sdditional memory provided by nodules like Mint-tenory and by peripherala like the Expantion Memory are also CPU
 your prograna and the oyston's own variablea are otored in VDP RAM, under the oontrol of the fidee display processor. In orier to execute your program therefore the CPJ bas to addreas the VDP's RiA as though it were a peripheral, like the Thermal Printer, through the CRU (Comundeationt Register Untt - I have also heard it called a Control Register Onit). The CPV usea just tro bytes of ite 256 in order to carry this out. Further detaile ar not jot arailable.

Hearsay USA

To find out about the origin of thi 1 ten, read the section on conputer magasine.

As Sol Libes describes hiv artiole in BITB (Oot 82) as Fewn and Speculation, I take no responsibility for the acouraoy of the following items. I haven't quoted verbatia either, in order not to enter the tricky field of oopyright infringenent:

1. The mericans have had 'Read-Only' diska for a nuber of years now they are in the process of being reloased over here. Som systems are mechanical (they require a stylus to be in contact with the surface of the diak) and as such are subject to very rapid wear and tear. One systen's manufacturer's have said that aftar 30 playn, their diak is worn out. Other ayatean do not involve a physical contact with the diak aurface - they are dencribed as 'optical' disks - and use a combination of laner technology and 'pita' burned into the surface of plastic-coated disk to store oncrious quantities of information. Howerer, they are atill 'Read-Only' you cannot record on then yourselves. Iot. For this reeson, video-caseste aystena have not been unduly threatened (although early mystena here vere also 'Road-Only') but Sol'e infornation is that the 'Read/Write' diak is on its way here. Next year,
a 'Write-Once' systen is expected (no yrices) which will make use of special orasable optieal diske to store some $10,000 \mathrm{Mb}$ (negabytes - 1024K). Theae disks will operate a little like PROHs (programable Read-Only monorien), chipe which can be programited, but which, if you make one boo-boe, cannot be rewritten. Iou have to use a fresh one. Gren if this sounde like nothing to get excited about to jou, be advised: it is.
2. The Aecricana call then 'Flat Panel'. We call then 'Flat Soreen'. Whatever you call them, the first of a new range of TVa are on their way. Uncle clive Sinclair ia due to launch his first flat-screen TY soon (should have been this lutum, but now nay not be until March '83) for around f50. It was to have been the subjeot of a secial Science Watch, only, ahen, I lost ny reforences. Hovever, Uncle Clive vas only jumt ahead of the pack. Other manufacturers have been experimenting with different eysteras; Uncle Clive's is true CRT (cathode ray tube, like in the ususl TV), wile some of the comptition is based on different prinaiples. For oxample, 'Tomorrer' Morld' have already shom two eystene, one involving lasers and soanning nirrore, the other involving gas discharge tubea (an normous soreen designed for masa andiences, not the howe). Other inolude LCD (Iiquid crystal diode) panels, electroluninescent soreens, and 'gas plasme' thich any/eay not be similar to gas dibcharge. IbM and jes good old TI have danonatrated large flat panel diaplaye, but they are not expected to Inolude then in mioro-computer systom in the near future. Some companios are, though; Sharp have a 320×240 pixel eleotroluminescence (:) displey whth bubble manory and built-in moder with of course computer for bout $\$ 2800$ to $\$ 8200$ (perbaps a little expenaive for the home conputer ond ?). Siemens clain to have a $2 \mathbf{f}^{\prime \prime}$ thick 28×80 character plasma diaplay - vord processing on the train, maybe 1 Even as I write, Epaon, makera of printera (I think the mx80 is ourrently putting on TI olothes). heve launched a neat little peckge with proper QUEETY reyboard, built-in printer and wicro-cessette, and $4 \times 20^{\prime}$ window' moreen of LCD pixele, all for ahout 2400. I paid more than double that for my syten, and that was without printer or eassettel Admittedly the facilities cannot compare with current, CRT-based, tystens, but it's a IIrat stop in the right direction. Ion have to look ahoad, to when the 'child has come of age, to see the potential. Unole Clive has been working with ICL on a flatscren terminal for the mind environment (look at the adrantages: low pover requirement, saaller, lighter, and probably easior to maintain - jou cen carry then about (lot more madily) which is rumourad to be colour an voll, and to top it all, clive is also launching another, business, icro nert year, which will apparently feature a full-sised flat screen with built-in Microdrives (seo also below) for ebout f350. I can see an awful lot of hone buyers going for that one!
3. Rempaber Josephson Junotion ? Science Vatoh isaue 3 ? Nell, IBM have just started pilot produotion on a facility for a anufacturing euch devices. They nay be due to be used in ultra-fast IBM machines in sbout 5 feare time.
4. Even floppy diake are coaling in for a little redesignige; the $5 f^{\prime \prime}$ sjatons are being challenged by nov, highor density, $3^{\prime \prime}$ versions. ofton oalled aioro-floppies, these say jot be thesselves ohallenged by Fideo (and audio!) disk systens. One company, Ledek, eladin their micro-ploppiea can hold around 500 t in deuble-sided, doubledensity fornat. Compare that rith the TI single-sided, eingle-denaity of g2K or so. endok are apparently aiking $\$ 899$ for a trin-aicrodrive oystom (offoring 1 Mb), but eren at I mrite, Sony are launching their nicro-drive, $3 \frac{1}{2}$ " meten with aingleelded, aingle-denaity capacity of about 219K. Double-denatty is about 43ak. The coot for the double-dendty systea would be $\mathrm{C235}$, but you have to add to that the cont of a controller to auit the particular syotan with which the drive would be used. Thet could otill conpare very well with the current cont of fI driven and controller; hoverer, for me the prise is still not compotitire enough. Sinclair's mierodriven may only offer 100 K and hag have an oxtrenely long accose time (3 secs) probably because they are not true diakn, but the price is far more reslistic. If anjone doubta that, look at it thie may. Suppose the choapest oar you could buy was c10,000, but jour finances vould only allow jou to apend 63,500 maximu, and you heard that a porfeatly acceptable oar wan going to be produced for $\mathbf{1 2 , 5 0 0 \text { . Would you }}$ scrimp and alave for three joars te buy one of the $\mathrm{E} 10,000$ nachines 9 or would you ruah out and buy the cheaper model and make do rith the minor deficiencien if yon'd ecrimy and sare, then you're the type of custoner who vas made for firns tho obarge unjustifiably-high prices. it praeont, for most micron the cost of buying a printer, disk drires and controller, or ane of the other nore esoterio peripherala, in far higher for omoh individual item than the cont of the conputer itenif. If you mocept the car ocmparison, then a trailer for your oar would cost you betreen 2 and 5 tima as muak an the car. Sinclair in probably the only manofacturer whe 1s mating both his acmputera AID hi.e peripherals cheap. Cue soone crany manufacturer prioing hie wioro at c 3000 en that hie printer (C 400) and diake (c700) afr cheaper than his nierol
5. The floppy diak eaga gots taken a atep further. Syquent Technology have produced a $3.9^{\prime \prime}, 6.38 \mathrm{Mb}$ hard disk which is renovable. If you know something about disks, then there are two very interesting facte therel Not only that, but two driven can be mounted in the space occtipied by one 5i" drive.
6. It seane that PI are expeoted te introduce shortly an 8 bit portable miero, wh th a 1×40 character display for about $\$ 250$, and a coupatible 4 colour printer will also be arailable. (I've Just bean reading about Sharp's lateet brain-children, one of whoh is a colour printer for ces to go whth nat, 64 I sioro for c175). I have no further detaile on TI'e asohine.
7. 1 quick post-acript te the flat-acrean info: Sony have a gan plama display vith

1024 : 524 pixel a (compare that with our 192×256), sining to market a full product incorporating it next year (' $\theta 3$). Apple, toe, are reportedly working on a flat-bereon -based micro.
8. Finally, one of my favorite topics. The Ford Motor Company are sad to be voridic on a 'cockpit' ocmputer with display to agist in the control of function in Ford vehicles. The computer mill provide navigation oyster tied to a comunioationa stellite, displaying map with the vehicle' location pinpointed on it. You may hate seen a rent Fomorion'o Yorld item on Japanese by tom which involves a monitor and transparent overlaje, with the computer providing 'track' of where you have been. This kind of thing is what I have been predicting for the lat three yearn (each year I get the de te wrongs) - it's gie to see the seeds beginning te grovel
 to being able to HUV one program from another, and how 'visit ne of vast Adventure frocrams had rocoded-into the distance, as all variable would be cleared, thu data could net be paged from one program to another. S stephen tolls wo r that it could be possible to trans for a one data in this simple funhor. You ode the data jo u van te pain - i.e., current level in the Adventure, item currently carried, te. - oo that it can be parsed off as string (e) of hexadecimal digits. Thus 127 m eight represent level 1, Hocus 2. carrying 15 items, and 7 lives remaining. Ion then use this string to redefine one (or more) of the neor-definable character. When the program ham been loaded, the data oas be retrieved using CALL CHABPAT, and decoded.

I can see only one minor flat with this, although I haven't jet tested it out. Back in the early days I presented a 'loading monitor' which on d bled you to monitor the cling of a program from CSI by watching the user-definable oharaotere being redefined by the incoming program... As 1 haven't had tine to test thin out, does anyone fancy trying their hand ? Tou'll need Extended BasIC and either caseetten and/ or dicks. Stephen had tried a simple program (2-3 lInes) using disk e and it had worked, bat what about a $5 \mathbb{K}$ program, and dove the presence of disk system alter the storage locution for any incoming program ? ill offering gratefully received (and acknowledged).

Other Nome

Hothorlende TI-ownor Bill van Kerkoorle (he sped up the 3D plotter - issue 4) hae mitten to me, offering to provide articles (in Dutch, 1 think, which I would translate before publishing) so sometime early in the Kef lear we may have another contributor,
another vievpoint. I have an article already which I will attampt to translato and then aubit to Bill for eritical appraial of ny handiworis. If I manage to make e faix job of it (tranalating a foreign languge into jour ovn tongue is unually easier than the other may about), it could open the door for many more Dutch contributione; at prosent we are limited to those proyded by knglish-mpaking contributors who have takan the tise (and not inconoiderable offort) to translete their articio(v) - Paul Karis has anall advantage in that he is involved with the running of a Language School - and it aunt be seid that the connand of the Baglish language ohown by mot Buropeans in far greater than our comand of their languag (e). Baglish is cospulsory second languge in just about overy Europesin oountry, and in mang other countries around the vorld.

Dave Eerltt of Hoddeadon rrote to me in mid-Septomber with some queries which I have pased on to II for their commenta (thoy may have presented nomething in the last isave). One of Dave's proposalo van that the 99s might be used in confunction vith a Fideo recorder to produce professionally-acrolling titien and graphien for home produations perhap unperimpoing them on exioting inaget - or uning the recorder to save ploasing patterns produced by the Designs progrse (isave b). Ay takera In addition, has anjono mankgei te obtain 'direct' Tideotsound - i.e., without the PLL modulator - on their Fideo recorder: ? If you have any thoughte on the matter, send then in, and I will peas then on to Dave and publish ther in the next convenient isaue of Tidinge.

量SIC Comanents

The general concluaion that I have to draw frem the information I bave about theae 'REMIese compente' is that the 'quoted' variety (see leter) are probably the ony ones worth woing, and the boet place to we then in wen tranaferring control from one part of a progrea to another. The "unquoted" variety, of whiah there are two sub-apecies, are so mempr-consumag, and so arward to implement, that thej are just worth noting and nothing norw. Nevertholenc, resmarching into thie particular phenomenon has been very interesting, and has given an ingight into certain of the computer'e operatione.

There are basically two kinds of non-BEM coment in II BASIC: those which oan be placed rithin quotes directly after the lant deatination lino number in a jump comand, and those which aut confori to the requirementa for numerie variablea. This second category can be anb-dirided into twe further groupa: those wich can employ vorde coinciding with 'Renerved Yords', and those which can't.

I have claseilied these as QUOTED (Q) and WRQUOTBD, VARIABLS formata 1 and 2 (01, 02). Stephen' information if that Q typee ume far lesn neaory than $01 / 02$, and in fact oan in mone circumetances use lese memory than equivalent nems. Q typea appear to be usable
only after deatination line numbers in jump command - specifically after the LiST line nuber in a statement. U1/U2 typen oan also be placed in ainilar positions - subject to their oun requirements - and can be used elsewhere; for example in PRACB, UFTRACR, BREAK, URBREAK, RESTORE with Iine number, $E R D, S H C F$, and even in some CALLs.

Q types eimply require the comment to be placed within quotes, thus:

1000 GOTO 500° JOMP TO RE-ENTRI POINT"
whereas $\mathrm{U} / \mathrm{U} 2$ types are ollghtly different:

1000 GOTO $500+$ JOMP $+\mathrm{P} 0+\mathrm{RB}-\mathrm{EFTRI}+\mathrm{POIFT}$

In this second cane, JURP, $T O, R R, B N T H I$, and FOIN: art all incorporated into the variable 1ist - this can be oisply checked by ontering such a ine (doesn't have to be syntactically correct - you don't nesd lins 500) and when the 'program' orashes, typing
PRIET JUKP(O)
wherenpon NAM CONPLICT vill appear, becaue the uac of JUMP(0) implies a numerio array,
 as TMO variables: this \mathcal{L} bacause the two words are separated by a ralid mathenatical operator: " -". Another reason for avoidinc $01 / 02$ types is this: the use of the division aign (/) will lead to orror or varning messagen as a realt of the syaten evaluating diviaion of sero by sero (MOMBER TOO BiG). While this is not a problem rith GOTO, it could be in cortain circuratance:

CALJ CHAR (98+01/U2-BXAMPLE,"*)

Additionally, a form of comment may be added to tho ond of the definition string in CALL CHAR statements, being either tacked onto the end of (inimum) 16 her digit atring (which then makes it incompatible with Extended BASIC) in an 'oxplicit' atring i.e.:

```
CALL CHAR (90, "010204080102040日FOR EXAMPLE LIKE THIS")
```

or concatenated with a similar limitation thus:

CALL CHAR (98, A8 * OR LITKE THIS")

Hote that 4δ MUST contain at least 16 hex digits for this to wori without orashing. You may perhape see now why Q types are favoured

The BASIC interpreter appears to have conflicting set of operational rules: for example, Q type comente can be added after destination line numbers because the interpreter doea not aearch further than the line number giren - it way agsume that because the syntar allowe nothing further, thon there ic no point mearohing further - jet no coments can be added after the cloaing bracket of the argument list for a call - where no additional data can be used anyway - becauce the interpreter examines anything of ter the bracket and denounces it an an error.

I say 'appeare' to have conflicting set of mulen, beoause I suspect that the BASIC Interproter (in TI BASIC) may in fact be geared to use a facility currently only asaociated vith Bxtended BASIC = multi-statement limen. With multi-statement linea, there is little point searching after a GONO instruction for further commands to axecute, as anythine following such a comand (on the aame atatement line) will never be oxecutod, unlese the destination line nuber form part of a conditional expression like IF... "THEs and the additional comande follov tisa but not BISR. (This doesn't explain vhy you can put a coment after the BLSE lis numbr, as if multi-statenents were supported, further comande could exint after ELSE.)

After other comande, though, a miti-statenent facility mould allow further comands to be oxecuted:

CALL CLEAR : : $4=10$: GCSUB 1000

Of further interest is the fact that yon can prepare and list (but not RUN) Extended BasIC progran completo with double colon atatement separatore (see also Mik O'Began's Rando Dote in issue 3) wing TI BASIC. Bofore Jou begin licking your lipa, however, such prograns are coded differently from TRUB Ertended BASIC multi-atatenent programa. I SAVBd auch a TI BASIC-areated program, and then OLDed it back into Bxtended BASIC. The double colons were treated like PRIMT separatora (in Rxtended BASIC this means placing apace
 becones:

CALL CLEAR : $: 4=10:$: GOSUB 1000
and von't RON under Bxtended BASIC either!

Open Quotes

Here are a fer quotes taken from lettors I have received.
"I have given up getting 99er because of very late deliveries from MPI and demande for extra cash...Tidings is nov the only cource of information on the TI 99/4.....Iou can quote no on PI pricing polioy and their abygal diatribution to dealerg...I have just bought a cheas module and find that all the key controls are given only for the 41 . It vouldn't have coat much to give those for the 4 also. The packaging too is not as good or as conveniant as it used to be....

Poter M. Phillips, Glasgow.

Nov on to the rest of Babbling Brooks' usual garbage dunp. The EaSIC and Matha articlen are continuing, an is the Three Dimensional Noughts it Crosite (you can't bave everythingl) and Science Watoh looke at a high-speed train eyeten for the USA. Homone'g becn woved sufficiently to write to Sompor, so I'm going to jwp on the Predictionw bandvagon and sound off about Changing Tmes. (I would prebably have done that anyrayl).

If Jon fanoy looking ahead with Tidings, Babbling Brooks has plans for some nev items for igas. If you have anything jou rant to say abcut anything undar the Sun thon nov is the tine to get writing. I want to begin a forun for information erchange on different peripherals - Speach, for example. Has anybody been playing with SAY and SPGET and done sonething intereating ? Urite in if you have. Con you mak your 99 sing vith TBII ? Do you fancy making muaio with Kike O'Regan or going Rambing with Stephen Shaw ? Have jou organised a local 99 group, and if so, whet have jou baen doing ? Do jox think that Jou can do a better job of introducing BASIC to beginnere 7 Ho aro all ams (funny looking lot, oh ?) and eager for jour contribution. at the end of 1983 i want to be able to sit back and relax and read aomeone elae' brain dup in Tidinge. Blow the dust off your thinicing caps and sharpen your typowriter, eapecially you girls: wo know yon're out there...

If anybody lives in the oxford ares, well, never wind, drop me a lino anywey, and the sane goes for anjbody else (don't forget to sign jour anonymoun lettera): send it all to:

Fote Brooke, c/0 68 Kelburne Road, Cowley, Oxford 0×4 3SH.

If you don't have accese to a typerriter but you'd like to contribute, send me neatlywritten contribution and I will type it out for you. If jou'd like any help with an articie get in touch and will see what can be done. We're only after you for your minds...

Recently I took delivery of ancther module from Science Studio (Cxford) - run by one of our members, Chris Foole, - the much-vaunted Mini-ifemory. I was actually in the shop when the delivery was made, so I know how long the module sat around on the shelves; 1.9., not at all. Why should I want to know that, the uninitiated might ask. Because the module has a battery on board which keeps your precious data stored on it even after you have switched the console off and pulled the module out of the machine, that's why. A flat battery means no retention of data, and the battery is not 'guaranteed' to hold its charge for a definite period, so don't entrugt the details of your Swiss account to it :

The module came in one of the new-style boxes, together with a cassette in a protective plastic vallet, documentation for the 'Line-by-line Assembler' - of which more later, the fini-memory manual with a sheet detailing one correction, and a large chunk of yuk fellow plastic to hold everything in place.

Avid readers of this garb. .er..section of Tidings might have noticed a certain animosity expressed by we towards TI's pricing, and although I was given a very reasonable price by Science Studio, it was still a good $\Sigma 20$ above what I would consider the FAKIMUM price for this item. My reasons for buying the module are purely mercenary: I hops to develop a number of frograms which vould otherwise not be possible, and sell them for pots of money. If I can find the time. If I can find my brain. As it happens, the module has left me with that vaguely dissatisfied feeling which you get when you lose 5Cp and find 4912 p. Allow me to give you my verbatim impressions (or are they ad hoc impressions ?) covering the 24 hours since I picked the module up.

First impression: Erool, drool, machine code within my grasp at last, heh, heh, heh! Second impression: Utter confusion as I try to taks everything in at once. Third impression: Irritation as I start to uncover all the typos (printing errors) which look as though they hnve been custon-designed to trap the unwary. Cr thick, as in my case. Further irritation as I find the little things it can do and the bizger things it can't. Exhaustion at 2.30 a.m., with concomitant typing errors (on my part) adding to the generally blue atmosphere. Final capitulation to sleep at 3 a.m.

Up with the lark next morning, hung-over and bleary-eyed, but now with an inkling of the intellectual challenge ahead coupled with not a little anticipation.

Two things have immediately forced themselves to the front of my excuse for a brain: a decent ploting facility (I have a go/4, not a 4A-you lucky people!) and ferhaps a disassembler fa what ? the non-machine code buffs might exclaim. Nell it sort of, you know, undoes what an assembler does...cue verbose article on Assembler...). I managed to write one (on and off in two years, mostly off) for another 16 bitter from Digico (in octal yet!) which could disassemble parer tape input into 64 recognised instructions, all in less than 590 words, with output to a teletype, and I think that there are about 70 - odd instructions which can be implemented on the TMS90C0 system (in 10 formats, compared with only 5 for the Digico), so...

Returning once more to plain English, I am beginning to see what a drawback the old 4 a might be, especially as I understand that there are no plans to offer 4 owners a plug-in replacement VDF to match the $4 A s$. (Author demonstrates peeved expression to sheet of A4.) I have managed to obtain a sketchy idea of what lies where in memory, although I haven't yet worked out where the locations for redefining the user-definable characters are; any attempt so far has trespassed on an area of memory obviously used as a store for loops under execution or something equally esoteric, as any program mannges to end before it should. If you get my drift.

A number of things seew geared to the TI animal called Expmem (Ramus Dearus Americanus Dinosaurus) - cue re-run of peeved expression - but all in all I'd say it was better than a kick in the teeth, mind you, almost anything's better than a kick in the teeth....

In addition, you would appear to need the manual fram the Assembler/Editor command module box - manuals wi thout accompanying GROMs have been notoriously elusive in the past, as some members have found when tryjng to find out whether Extended BASIC was the right one for them - as well as being experienced in programming in assembler already, which seems a bit of a raw deal. Mind you, other manufacturers do that: they publish opcodes and memonics for their respective processors without telling you how to use them - you're supposed to have found that out for yourself.

As usual, some functions are restricted to cassettes and others to disks, which is BCRI: G, and there is no facility for hard copy (i.e., printing), but it might be possible to tweak the Line-by-line Assembler which is supplied on cassette with the module. There is also a program called Lines on the cassette which is a demo for the high sfeed, high resolution full-screen plotting facility CliLY available to 4 A owners. I believe I saw a version of this running curing the FCN show recently and it looked quite good.

The module has two facilities: Easy Bug, and Fini-iemory. Easy Eug allows you to look at or modify RAM contents (both VIF and CFU) and to execute machine code routines. It
also allows you to look at and modify CRO bits - a rather hayy area which has to do with Input/output ($1 / 0$) operations. There is also a facility for loading from and saving to CS1 only. If you want to load a machine code progran into the module fran cassette, you do it using L in Easy Bug. You can spocify start and finish addresses for aaving the program (it will load back into those ame locations), but as the manual points out, if you want to make sure you don't lose anything, it's probably better to save the whole 4 K .

If you want to load the LINES or the Line-By-line assembler (LBLA) programa from a cassette (I monder how you'd copy it to disk ?) you have to load it using Easy Bug. If you want to uge LBLA, you appear to have to exit Easy Bug and return to the title pege, selecting, Mini-Memory (Mí) from the subsequent menu. This presents you with 3 further options: LOAD AND RUN; RUN; and RE-INITIALISE. LOAD AND RUN worke, yes, you've guessed it, not with cassette atorage, but with disks. Quote from the handbook:-

[^1]The RON option allows you to either run a machine code routine, like LINES, specifying it by name, or to use the LBLA, which is probably the most useful item. Where rould MN be vithout this cassette-based afterthought? Depending upon wether you want to begin writing a new machine code routine or continue with writing one already stored, so you specify NEL or OLD. The difference between the two is that NEW clearg the symbol table (a sort of variable list) firgt. There is a 9 page memory available mich can hold what you type in the $\mathrm{L} B \mathrm{BLA}$ and you can scroll at epeed backwarda and forwards through it. Once you exit the LBLA all the 'english-like' information disappeare though, so you shouldn't rely on the LBLA alone for writing the routines. There is no facility for hard copy either, so pencil and paper are essentials.

Having written your program, you cannot run it under lBLA unlebs you give it a name firat (you can't call it up from TI EASIC either until you name it), which ia a little fidcly and one would bave thought that the LBLA should have been capable of doing that automatically for you.

The JBLA allows you to enter your machine code in the form of MNENOIICS: i.e., englishlike versions of the instruction codes. For example, $I_{i} I \mathrm{RC},>0200$ means load the following value (hex 020C, or decimal/denary 512) intc register Ro. Much more intelligible than 0200 0200. The LBLA will translate the semi-english comands into ' 9900 ' opcodes for you as you enter each line, checking labels and incorporating thes into a table,
checking comands and syntax, even converting decimal/denary values into hex. That's a rather confusing bit: the addresses are presented to you in hex, but the default number base for entry is denary, with her entry requiring a special TI symbol "S" to indicate hex. Thus the above example could also have been written LI RO, 512.

- There are a number of facilities which are implemented, enabling you to look at the symbol table, change current address, enter DATA, and TEKT, and so on. Fairly vergatile, I think, and moderately-well documented in the separate LBLA manual.

Where TI have really come up trumps (makes a change!) is that, unlike every other home and personal computer manufacturer I know, they bave made available the addresses of routines (utilities) and details of their ontry requirements to perform a wole host of very complex things, from reading/writing to the acreen to evaluating trig and log functions on floating point numbers, which is VEFY useful and most unusual. Other micro producers tend to keep very tight-lipped about what their routines do and where they reside in ROH. You usually have to wait until some third party provides you with such information in the form of an independantly-produced publication - more often than not a skimpy, over-priced book.

On top of this, a fev extes subprograms have been provided for use in TI BASIC programe; these are INIT, LOAD, LINK, FEEK, FEEKV, IOKEV, and CHARPAT. I have listed these at the end with brief details of what they do. Some of them have already been covered in a previous reviev of Ertended BASIC in Tidings. PEEK and LCAD work like FEEK and FOKE on CFU RAM while PEEXV and FOKEV do the same for VDP RAM. I'm still not too clear on the exact distinction between VDP and CFU RAN: only directly addrese its own RAM, and has to address VDP RAF as though it were one of the peripherals, using the CRU, and TI BASIC programs are stored in VDP RAM hence the slow operation. If anybody knows that fust ain't so, I'm all ears.

You can SAVE and CLD TI EASIC programs and data to MM (response is very fast concared with cassettes - I don't have disks yet so I can't make a comparison there) with about 4 K capacity 30 large files are out. This is probably the most powerful espect of the module, in that you can store data on the module in small quantities and access it anywhere that you happen to have a co console and TV. You don't need cassettos and leads, you don't need disks. (To do any thing 'serious', of course, you DO need those things!)

Eack to English again. If you're contemplating making the quantum loap from EASIC to 9900 Assembler Language, then be prepared for a great deal of mental gymastics. This subjeat ie not really for the faint-hearted - but don't let that put you off. I would strongly recommend that $\overline{\text { EFFCRE }}$ you buy you should try anc get a copy of the dreaded

Assembler/Editor manual if at all possible (you may end up buying THAT module instead). Othervise this module will be of little use to you. Its manual $\operatorname{LOESN} T$ give you a course in machine code programming, it doesn't even irovide you with a list of opcodes and memonics. I am sorely tempted to try and present an introduction to 9900 assembler early next year (1083), but it would need someone to take over a section of Tidings to free me to do it (hint, hint). It currently takes about a month to prepare a BB article, and about two weeks to write it, which leaves me two weeks to catch my breath before plunging in again.

I did contrive a short machine code routine to urite 'Rello Mother' to the gareen a few times (resulting in 'Hello Motherrrrrrrrrrrrrrr...') just for fun, but while it functioned fine on my NTSC 4, it wouldn't run without crashing on the PAL 4 belonging to the Rove family in Caford. Cue deluge of error sheets for future MM manuals ?

The third option, RE-INITIALISE, allows you to clear the module's RAM of TI BASIC data or program(s) and optionally any aseembler language programs as well. The odd thing is that, elsewhere, the manual says you cannot mix TI BASIC and assembler language together in the module's RAM. You apparently need the Expangion RAM (q. F.) to aid you in that endeavour. (Interesting how one module seems to require $£ 375$ of other modules and peripherals in order to even partly utilise some of its carabilities!).

All in all I suppose the module has something for everybody, with the greatest possibilities opening up for those prepared to invest the greatest amounta of folding atuff. Perhaps the best market for it is for those who want to extend their language experience without dropping BASIC; mixing BASIC and Assembler is a recognisable step on the road to becoming a fully-fledged machine code programmer and to a better understanding of the working of any computer.

Here are brief details of thoee extra calla:

INIT : initialises CPU memory for Assembly Language routines. Erases all proframs and data from the HM . There are no parameters.

ICAD() : loads 'assembly language object files' - machine code programs - into CFU memory, or can act like FCKE on other machines. Farameters are either a string expresaion (object-filenme) e.f., "DSKl.ibN" or acrireas(es) and value (s). For example, CALL $\operatorname{LCAD}(32 C C O, 1, C, 7,6, " ", 16381,7,221)$ is the seme ns this series of FCKBs:
 : : FCKE 16382,221

LIIK () : passes control and optionally a list of parameters from TI BASIC to a machine code program. Requires a 'pragram-name' e.g. LINES or FLOMKY, which you must have previously entered in a 'REF/DEF' table on board the module, and an optional list of parameters - string or numeric variables or expressions. If a variable is passed and altered by the machine code its value in the calling program is also altered. Values resulting from expressions hovever cannot be passed back from machine code to calling program. Zntire arrays can be passed by name with one command, which is very powerful. In addition, you can opectfy that any variable passing data should not be altered by the machine code program.

PEEK () : reads the contents of specified address(es) in CPU memory into specified variable(s). For example, CLll PEEK ($3000, \mathrm{~A}, \mathrm{~B}, \mathrm{C},{ }^{n n}, 7196, \mathrm{D}$) is the same ns:
$A=\operatorname{PEEK}(3000):: B=\operatorname{FEEK}(3001):: C=\operatorname{FEEK}(3002):: D=\operatorname{PEEK}(7196)$

FEEKV () : does the same for VDP memory.

FOKEV () : acts like FCKE on other machines for VDP memory; i.e., the opfosite of PEEKV. It is similar to part of the multi-faceted LCAD subprogram. If you are unfamiliar with PEEKing and FOKEing, try this: memory on computers is organised like one gigantic street. Each memory location is like a house on that street: it has a unique address. Each house has a number of occupants: in this cose, there is provision for 8 occupants at a time. Sometimes they are all away, sometimes they are all present. These occupants are a littie odd: each one has an age, and never grows any older. The first one ia 1 , the second is 2 , the third is 4 , the fourth is 8 , fifth 16 , sixth 32 , seventh 64 and the eighth is 128 . Whenever we attempt to decide who is at home we count not heads, but ages, which lets us see exactly who's in and who's out. When we PEEK an address, we rip the roof off and tot up ages. Lepending on who's in, we'll get a value of between 0 and 255 ($1+2+4+8+16+$ $32+64+128$). Being precocious, we occasionally like to change who's there and who isn't, by FOKEing a fresh group of eight occupants to a given address. FCKE 16384,128 replaces all at no. 16304 with one 128 year old, and boots everybody else out. How's that for a bedtime story ?

CHANAT(): returns the 16 digit herstring currently defining the character(s) specified by ASCII code. The opposite of CALL CHAR.
26.

I currently buy about 10 micro mags a month, so I thought I'd pass on a few highly personal coments to you, dear reader, in case it helps you make a choice between two equally gaudy (and equally expensive) front covers. The list is not arranged in any particular order, and does not include any of the 'trade' rags, which I don't get.

Fersonal Computing Today Konthly 65p

My newsagent put me on to this one - he thinks I'm interested in computera - so I've been getting it regularly (no comments). It has had a few programs and letters from our members (notably Nike O'Regan, who, together with Stephen Shaw has been opening the $h \pm$ therto closed doors of some of the more popular mags). It is mostly a software mag, with a few articles on programming technique and hints and tips. If you're into doing conversions of other folks' sof tware, this is quite a good one, but beware of the usual copyright pitfalla. It hasn't been around to really eatablish a name for itgelf yet (beginning its career with no less than wheE different names in one issue!) but if the reference aection is anything to go by, it atill needs to pull its socks up. I noticed that the reference sheet on the $T I$ stated that there were no languages other than TI BASIC available, so I wrote to them, but they haven't done anything about it. Maybe they're waiting for the 'horge'a mouth' version, in which case TI why aren't you supporting your product ?

Fopular Computing Neekly Neekly 35p

This cheeky publication scores with me because it has such a short lead time compared with the monthlies (about $2-3$ weeks compared with $3-4$ months) which gives it an edge when it comes to latest developmenta. At 35 p a week it ain't cheap, but it recently underwent a face-lift and should now offer a little better value for money. It has the usual reviews and odd bits of software for some of the most popular micros and a very irritating habit of sticking in totally incomprehensible strif-cartcons. They just got rid of one by popular demand and promptly replaced it with another. You can't win.

Computer \& Video Games Konthly 75p

This mag came out dedicated mostly to arcado games and how to play them well, but it came in for a lot of criticism for ita habit of obscuring those listings it did publish by overprinting with colour pictures - not very clever. Stephen Shaw has had a
couple of his programs published, and also acts I believe as unpaid software reviewer. This mag is slowly evolving, publishing articles about games programming techniques, but alas it is going to be dropfed frommy list after Christmas because other, more pressing demands are being made on my funds and I cannot justify buying a mag which only marginally covers my fields of interest (even though Stephen says that the editor is pro-TI - sorry!).

Your Computer Monthly 60p

This mag covers a wide variety of topics, including calculator programming, and has some software (I vaguely remember it carrying a routine for the $T I$, but I don't have an issue to hand) and a fow technical articles which cover my interesta.

Fractical Computing
Monthly $80 p$

Cne of the heavy mob, PC have maintained a strong lead in content over just about all the oppoaition, with the posaible exception of fersonal Computer Horld (and of a mag which 'died' a year or so ago - Computer Age - and which was a brilliant publication. It carried little software, but was a veritable goldmine of information about every topic under the sun: computers and art with Brian Reffin-Smith, micros and trade unions, medical micros, whole volumes of information on other languages like FORTH, etc. Haybe that's why it died: it didn't churn out junk software and shallow articles.). PC carry comprehensive reference lista of machines, peripherals, software, and devote large sections to specialiat suojects, as well as setting aside regular pages for all the popular machines and even for machine code buffe. Some of its articles have a high Maths bias - you need to have a fair bit under your belt to keep up - but otherwise I find it very valuable.

Fersonal Computer Norld Nonthly 75p

I have a bias towards this magazine because they published my letters in the early days and even a calculator program - for which they paid well - and they atill give me an airing from time to time. (Mike O^{\prime} Regan has also had success here: he has had a calculator program published, and even as I write his TEEFEETEXFRO has been presented in the December issue - with an out-of-date remark from kaggie Burton - which should please Mike as he has been waiting for a response from them for ages:) The mag publishes articlea covering all my main interests as well as pushing out a moderate amount of software, and it carries a massive Euy $\&$ Sell section compared with others, as well as details of most of the micros on the market. Both it and Fractical Computing run regular Berchtests (detailed reviews) of every machine going, which ie another reas on
for my buying both of these. They have a very cheeky item called CGIF CHAT which sails so close to the wind that you'd expect them to be imersed in lawsuits as a result. The general tone of the mag is very informal, but not so loose that it offends. Apart from all that, they published the first letter I ever had published anywhere, which commands a certain loyalty:

Electronics \& Conputing Monthly Konthly 70p

This mag has oodles of technical information and projects, and as I stand in almost religious ave of anyone who can put two components together and pick up BBC2, this particular publication is the only electronics-biassed one I get. It has relegated its software to mostly $z \times 81$ prograns produced by youngsters, but it is interisting for me also because it covers topics outside the immediate computer field (like Flat Screen TVs, for example).

MicroComputer Frintout Monthly 95p

Probably the deareat mag on the market, this one began life devoted almost exclusively to Commodore products (pets, etc.) but has since become a very professional all-rounder. It has informative articles on database management (not the mini-computer kind) and on things like how a diek system works. Its software is invariably accompanied by very detailed articles, but it does have one flaw. There is this contributor called 'Tomm', and if I see him write about how useless a function 'FCS' is again, I'm going to take time out to correct his misapprehension.

Computing Today
Monthly $\quad 75 \mathrm{p}$

Back in the early days (i.e., my early days, circa 1978) I used to get CT, but stopped because it wasn't very good value for money. In the intervening years they have much improved its content, and I recently started taking it again. They take the trouble to try and stancardise on listing formats, and to tell you which characters do what.

Computer Answers ?Bimonthly 75p

This is the mag which has supplanted C\&VG, and if aubsequent issuea are all as facked with information as the first (realistically not a likely prospect) this will be a very gocd buy indeed, rivalling the extinat Computer Age in quality and content, Alas, it seems that the road to success thege days is pavod with a high adverts-to-editcrial content with games software. I hope it survives.

There are other mags which I pick uf from time to time out of interogt. For example, I ised to buy which Computer? until I realiged that they scarcely seemed to acknculedge the existence of micres under $\mathrm{C} 3 C C C$. Microdecision, monthly at ECp, is another which I have bought - the November issue had on interview with van-watcher vr Lesmond Norris (whese son has a 4 A and to whem I have issued an invitation through the retailer to join our august company, but without response) - but it is largely a business, rather than hotbyist, mag. Which Micro \& Software Reviev is also a business rag, but I have Ficked it up on od occasions in order to have an article as reference. It's bimonthly, price 85 p, but 1 seem to remember that it is going monthly shortly.

I have recently picked up two American mags: Popular Computing, monthly at Cl .85 , which had a fascinating article on high resolation graphics; and Eyte, of ten quoted as the 'bible' of micros in the Stetes - monthly, priced also £1.85. For that sum, though, Byte offers you a massive 530 pages (compared with about 250 fram Fersonal Computer World) although I'm not sure of the advert-to-editorial ratio. It had a number of articles of interest to ae - industrial robotics, speech synthesia as two eramples, but the real treasure was a pot-pourri of items from one Sol Libes. His section is called Bytelines and is described as News and Speculation about Fersonal Computing. I am fasaing on some of his pieces elsewhere in Babbling Erooks. I just might consider getting this one regularly... His article is presented as 4 column of about 4-5 words wide on each page for a number of fages. Critics of Nike O'Regan's format take note:

The only other publication I take regularly is Science Digest - a sort of American Tomorrow's World but much more gensible (and of ten more up-to-date tool). That's a monthly - at $\{1.50$ it too ain't cheap - but it has a wealth of items covering a massive range of scientific subjedts as well as articles with a distinctly artistic flavour (meaning of the Arts, not of Art. They ran a series of 'windows' into the social practices of other cultures, some of which were a little eye-opening. Did you know that in the States the practice of cooking and eating human placenta is on the increase ? Tuk!).

I also read Scientific American (resident in the medical library at my hospital) and occasionally liature, and Norld Medicine, but these last two are unlikely to be of any interest to you, dear reader!

So now you know where much of the material for aabbling Erooks comes from, and why my turnaround for letters is often so slow - I'm busy reading!!

In the last isaus, we briefly looked at the Immediate Mode; LET: Variables - Humeric and String; PRINT and FRIFI Separators - and the use of FRINT : : : : : : to ecroll the screen contents; Line Numbers and Stateronts; LIST; RUS; and RES (EQUENCE).

Befor continuing, I think it might be good idea to depart from BASIC for a vhile, and look at the functions on the keyboard - like Editing - so that either we can clear up any blind spota which jon may have had, or ve can avoid any blind apots in the future as wo progress to other Iunctions.

Almost imediately we run into difficulties (at lonst, I do). There are at least three different versions of the Texas at large in TIHOME, which is why some of you have beon experisncing diffioulties when it comes to running software from the library, or when trying to run routines presented in this Babble from me.

The thres versions that I have come acrosa ars i) the anrly FISC $99 / 4$, which produces American TT Elgnals and needs a apeoially-adapted monitor in order to work. It has some facilities which other 99s lack, and until recently I thought that these were of only minor importance, until I cane aoross a progran in the disk-based library which uses not CSi but CS2 to both write and read datay if) the later, alightlymodified, PAl $99 / 4$, which uses a modulator to enable the owner to make use of his domestic TV ; and 1ii) the latest $99 / 4 \mathrm{~A}$, which also has a modulator and can be used with domestic IVa.

The principle difference is of course the keyboard. $4 A$ owners have the kind of keyboard which just about every machine should have (note that I say 'kind of' - the way that the unit is implemented on the 4A leaves a great deal to be desired:) a eo-called 'proper' QUERTI keyboard. Hoverer, this nev keyboard possesses keys and functions which are not available on the $99 / 4 a$, which makes life difficult for me as I don't possess a 44: Not only do 4AB possess oxtra keys, their rango of velid variable namea is also greater than on the $4 s$, and at the time of writing I have bean told by paul that it is possible, using the CONFROL key, to make use of 'single key' entry of reserved vords, acmething like the kind of thing avallable on the Sinclair machines. More detaile should be availabls long before jou get to read this:

There are other differences - there is an automatic repsat function on $4 A$ keys which 18 lacking on the othere, and I underatand that the SEIFT key doesn't have a keycode as it does on the 48 , which mucks up on of the programe I aubuitted to the library:

In addition, there is the PUNCTION key, which has taken on many of the functions previously performed by Shift - including, to wy utter bevilderment, the selection of 'normal' 2WERTY characters like quotes and the question mark!

Editing

In TI BASIC, there are two occasion on which you can 'edit' - i.e., insert, delete, re-write - a line of instructions (bearing in mind that a line can often mean 3 or 4 screen lines!). The firat is in the so-called IMMEDIATE mode (the one in which you write programs and enter then) and the second occurn during the execution of an INPUT Instruction wile a program is ruming (ve'll doal vith INPUT later in this artiole).

The simple editing functions allow you to move left or right over (without deleting) a line or lines, to erase the whole line (vhich could mean 4 screen lines), to delete characters one at a time, or to insert characters one at tine into an oriofing line. These functions are arailable in both Imediate and Run modes. Slightly different functions, like Shift (or Function) B and X can also be ueod in both modes: they have slightly different effects depending upon the situation in which they are used. For erample, while erecuting an INPUF instruction or while typing instruction in Immediate mode, these two 'Up' and 'Down' keys can substitute for BNTER. If you have a program already ontered, then typing an existing line nunber and pressing op or Down will call that etatement onto the screen, and it can be odited. (Typing 'sdit' and the line number has the same effect). If yon subsequently pross op or Dow, then amy numered atatement lying elther above or below the axisting one will be called into the diaplay ready to be edited. To get out of this 'mode', you simply press Enter.

Here are the equivalent editing keys on both 4s and 4a:

Key	29/4	99/44	Effect
CLEAR/BREAK	Shift C	FCTH 4	Ignore entry/Interrupt program
DELETE	Shift F	FCTH 1	Delete character lying under cureor
INSERT	Shift G	FCTH 2	Insert character lying under cursor
ERASE	Shift T	FCTH 3	Delete entire line
LEPT arrow	Shift 5	FCTN S	Move to ieft over inne
RIGH'T arrow	Shift D	PCTM D	Kove to right over line
UP arrow	Shift E	FCTN E	Enter and move to lower line no. if editing
DOWN arrow	Shift X	PCTN	Enter and move to higher line no. If editing

32.

On the 4 a there is a standard overlay which contains details of the editing keys, while on 4As there is s gtrip vinch is inserted in the guides above the keyboard.

To try and demonstrate all of the main editing functions (ercept Enter and its alter ogos), aritch jour machine on and solect TI BASIC. As usual, if anything is to be entered at the keyboard it vill appear 'indented' on these pages; jou type in a line fron this page, check it, and then presa Enter (unless told othervise). Because we are going to be using the oditing functions, you will need a way of distinguighing betreen data to be typed in, and instructions about which editing keys to press. What I will do ia to use a double oblique (//) to separate data from editing kejs, and hope that no confusion arises.

POR EXAMPLA //Shift T (FCTN 3)

That ghow the Erase function.

HOTHER //use Shift s (FCTM) until the cursor is as far left as it will go, then prese Shift G (PCTM 2)

PRIAT "HELLO //follow "HELLO with a space. The line should now read PRINT "HBLLO MOHER . How prese Shift D (FCTN D) until the cureor lies to the right of the R in MOTHER.
: "HELLO SON" : : : : / /now use Shift S (FCTN S) to move to the loft until the cursor lian over the colon after ...SON . Press Shift P (PCTH 1) until all the colons have been deleted.

The line should now look like: PRINT "GELLO MOTHER" : "HELLO SON"

That has shom the effects of INSERT, DELETR, LEFT, RIGHT, and ERASE. Now presa Shift C (FCTR 4) and notice that the line moven up the scresn, but is not executed - the 99 ham ignored the ingtruction! You can fill the screon rith text this way, none of which vill be acted upon by the computer - should you feel so inclined.

Right, back to BASIC. So far, we'vo looked at ways of storing and retrieving data, and of getting the computer to do it automatically if we store the storing/retrieving ingtructions (i.e., Write a program!). Remember that the PRINT instruction doesn't alter the contents of the variablos that it places on the scresn - it just copies them out.

There is a parallel comand called DISPLAY, which is a limited form of PRIET; DISFLAY can only fut information on the screen, wile PRINT can be addad to, allowing it to print information not only to the scraen, but also to cassettes (filing), a printsr, a disk system (filing), speech synthsaiser, and so on.

The way that PRINT is implemented on the 99 s maks the acreen behave like a glase teletype' - that is, you can't type over information already placed on the scren, and the printing alrays begins at the bottom of the sereen, scrolling up any current infomation, line bf line, as the botton line is filled. There are rays round thite (aquivalent to the PRIFT AT command found on other machines), and we will look at thsm later in the series.

PRIFT is not restricted to printing out numeric and string variables; it can print the solution to an oquation, whether using numerio variables, or numbers themelves:

PRIFI 2*3 $+4 * 5$

or:-

$$
\begin{aligned}
& A=12.3 \\
& B=32.1 \\
& \text { PRIFI } \quad A^{* B}+A-B+7
\end{aligned}
$$

and so on. In the axample program which was given last issue, the variables were aseigned values (numbers or mords were stored in then) actually in the progras. Jaing that sy $日 t e m$, if you wanted to use different numbers or words, you'd need to stop the progres and alter nome of the lines. This is not very convenient, especially if you vanted to change the values in in equation and then calculate the result:

This is where INPUT comes in. INPUT tells the computor to atop and wait until ENTER, or UP or DOWN (discuseed previously) is pressed (and an we shall see, sometimss that inn't always true!) before continulng with a program. When the computer stope to wait for an entry, it behaves a little like it does in the Immsdiate mode: the cursor appears, flashing on and off, you have around 4 screen lines in which to type your entry, and the sditing keys allow you to alter what you type in, should you make a miatake (although Shift C (FCTN 4) functions in this case to interrupt tho program and return to Immediate mode). Jhen you use INFUT, you can specify which variable is to be asaigned whatever you type in; if you used INPUT As, then once you'd typed your entry and preased Enter (or UP or Lown), the computer mould have atored what you'd typed in As, and then gone on to the next instruction to be carried out. If you typed nothing, then a 'null atring'
would have bean 'stored' in AS' - which means that AS rould contain nothing at all - a good way of 'clearing' 4ϕ or riping it clean, or emptying it. There are one or two thing to watch out for here: if you use any quotes (") in your typing, you must make sure that they match up - typing "BERT would cause an error, because you need another quot. - "BERT" before the computer will accept what you have typed, This is all part of aomething called INPUT VALIDATION - some of which can be carried out by the computer automatically, as we shall cee, and some of which has to be done by you in the programe that you rrite. Also, if you use a comm (,) in your entry, be very careful to begin and end the WHOLE entry with quoten. The comma has a special meaning during INFUT; it ia posaible to enter information to be assigned to more than one variable in an INPUT, and the cosma acta as instruction to the computer to atore anything lying before comma into the first variable, and to store anything lying after it (and before any other commas) in a second variable. For oxample, INPUT A\$, H , rill require you to separate jour entries into two parts, separated by a comm, thum: BRRPR,WEEDON , where BERT will be stored in A8, and WEEDON will be stored in B $\$$. This form of INPUT can save a little epace as it replaces INFOT A\$ as one intruction and INPOT E\$ as another.

So far we've locked at entry of strings (words); when it comes to nubers, the rulea are a little different. If the computer oame across the inatruction IfPUT A in ite progras, it rould stop, as usual, and wait for you to make an ontry and presa Enter. However, if you make no entry, but juet press Enter, the computer will come back with an error message, and will present the INFUT egain. Where entering numbers is concerned, the computer needs aomething to be typed (and it is fussy over just what you can type) before it will carry on. For entry of numbera, there is the same restriction over the use of commas as with entering words, but there is the added restriction that only certain keyb may be preseed, and in a certain order. Those keys are: the '.', + , , the digits 0 to 9 , and the E. The E atands for 'times 10 to the power of' and is expladned in the Matha article in $V 2.6$ Tidings. Valid entries are, for example:
$\begin{array}{lllllllllllll}15 & -20.87 & +.6 & -.004 & -0.45 & 1.23 & 1 . & 1 E 6 & -2 E 3 & 4 E 17 & 4 E-17 & -5 E-26 & 1.23 E 24\end{array}$
and so on. Unacceptable formats vould be:
$-1-1$..23 1.2. E4.5 EE. -9 and so on, The manual gives full details.

On many machines you can enter numeric variables andor expressions (equations) and the system will evaluate them and assign the results to whatever variables are specified in the INPUT. Not so the 99s, which are very restrictive about what they will and will not accept.

IFFUT actualiy le a very powerful function, and it has other properties which va vill
look at in more detail. At a simple level, then, let us wite a short routine to work out the reciprocal of a given number (that means the result of dividing 1 by that given number - gee the Maths articles!). What will we need ? Well, obviousiy an INPUT statement first, to asoign the entry to a variable. Then ve'd need to calculate the reciprocal and print it out - as ve can get PRINT to do botb things for us, we'll use just that statement.

1 INFUT N
2 PRINT $1 / \mathrm{H}$

RUN

When the cursor appears, type $10 C 0$ and press Enter. The computer will respond with . 001 and DONE. It can get a bit boring typing RUN every time, so let wintroduce a useful (and much-maligned) command: GO TO (ar GOTO). Thin command tells the computer to go to a particular line gumber and continue processing from there; to save us having to type RUN every time, wo could have the progran loop round to atatement number 1 each time it has printed the ansver. Add anothex statemont, then:

3 GOTO 1

This will keep the program running for over (unless we make apectacular mistake!) until Shift C (FCTN 4) is pressed (BREAK).

Hov if you are the curious type, you may bave vondered why a question mark appears when the INPUT is erecuted. This is called 'prompt' and is provided freo of charge by the computer (helpful, isn't it ?) to remind you that you are about to enter some data.

The 'prompt' hovever, can bo very helpful indeed, especially if you can expand it jourself to gire more information. Surprise, surprise, you can! Retype statement 1:

1 INFUT "ENTER A NUNEER" : N

Yote that a colon must present betveen your prompt and the variable to which the entry will be asaigned. In addition, the prompt can be another variable, but it must be in string format, but we will cover that later in the series.

RUN

This time the computer prompts you in more detail; you may find that the cursor lies a little too close to the prompt for comfort - you might need to enter apace in the 36.

for

2-11]UtETE spechatstis TI-99'ers

TEXAS ORIGINATED SOFTHARE MODULES- T199/4 and TI99/4A

TI INVADERS
A-MAZE-ING
TOMBSTDNE CITY ATTACK
YAHTZEE
MUNCHMAN
number magic HANGMAN
EARLY READING HOPIE BUDGET SPEECH EDITOR EXTCNDED BASIC EDITOR/ASSEMBLER* TEXT FORMATTER*
ADVENTURE \& PIRATE\% with full operational instructions.
£ 16.95 (A) E20.95(A) c20.95(A) ع20.95(A) £20.95(A) 224.95(A) [12.75(A) ع20.95(A) £24.95(A) \&20.95(B) £16.95(A) 269.00 (C) 275.00(c) 149:95(日) ع33.75(日)

MIND CHALLENGES SOCCOR
ZERD ZAP
HUSTLE
blackjack/poker EEGINNING GRAMMAR ADD/SUBTRACT 1 ADD/SUBTRACT 2 PERSONAL REPORTS TERMINAL EMULATOR 2 MINI MEMORY \%

VIDEO GAMES 1
CONNECT FOUR
WUMPUS
BLASTO
CARS WRRS CHESS
PRE-SCHOOL FUN
mulviplication
MUSIC MAKER
PERSONAL RECORDS
STATISTICS
TI-LOCO
*REQUIRES DISCS
\%MODULE \& CASSETTE
VAT INCLUDED IN ALL PRICES

ADVENTURE LANO\％ THE COUNT\％ GHOST TOWN\％ STRANGE DOYSSEY\％ GOLDEN VOYAGE\％ MISSIDA IMPOSSIDLE O MYSTERY FUN HOUSE\％ SAVAGE ISLAND $1+2 \%$
£20．95（A）VOODOO CASTLE\％ £20．95（A）PYRAMIO OF DODM\％ £20．95（A）OLDIES／GOODIES 2
$120.95(\mathrm{~A})$
$120.95(A)$
f． $8.25(\mathrm{~A})$ 120．95（A） E20．95（A） \＆20．95（A） £20．95（A） 124．95（8） \％REDUIRE aDVENT＇／pirate mod＇ PROGRAPIIING AIDS 1 £ E．25（B） TEACHYOURSELF BASIC \＆B．25（B） －－w－－EXTENDED BASIC \＆B．25（B） PERSDNAL FINANCE
\＆ $0.25(\mathrm{~A})$ MARKET SIFIULATION
\＆ $8.25(A)$ OLDIES／GOODIES 1
\＆8．25（A）

TEXAS ORIGINATED SOFTWARE DISKETTES－TI99／4 and TI99／4A

INVENTORY
PRDGRAMMING AIDS 2
PROGRAMMING AIDS 3
TEXT FOMMATTER
INVDICING
PASCAL EDITOR
PASCAL LINKER
PASCAL COPIPILER
PIATHS LIBRARY
ELECT／ENG LIBRARY
struct／eng library
MAILING LIST
£49．95（5）
$1.16 .95(A)$
£16．95（A）
449．95（3）
£49．95（B）
249．95（d）
667．50（B）
〔79．95（E）
ع24．95（A）
$124.95(\mathrm{~A})$
£24．95（A）
C49．95（B）

OTHER SOURCES CASSETTE SOFTWARE（BASIC）－T199／4 and TI99／4A

GAMES TAPE 1
GAMES TAPE 3
HAUNTED HOUSE FRUIT MACHINE PLANET LANDER／LIFE WUMPUS
日LACKJACK
\＆1．75（A）GAMES TAPE 2
\＆ $4.95(A)$ D＇s \＆X＇s／MASTERMIND
c $3.95(\mathrm{~A})$
\＆ $5.95(\mathrm{~A})$ MAZE／TOWERS DF HANOI
ع $5.95(A)$
\＆ $5.95($ A $)$ RDULETTE／CRAPS
\＆4．95（A）FOUR IN A ROW
\＆4．95（A）TEN PIN 日DULING
f． $5.95(A)$ NIM \＆ $0^{\prime} S+X^{\prime} s$
\＆5．95（A）
［ $4.95(\mathrm{~A})$
f． $5.95(\mathrm{~A})$
\＆ $7.95(\mathrm{~A})$
\＆ $4.95(\mathrm{~A})$

TEXAS TI99/4A HARDUARE (**\&50 HANDBACK TI99/4A**)

TI99/4A COMPUTER PERIPHERAL BOX DISC DRIVE (INT) RS232 CARD
PASCAL P CODE CARD CASSETTE CABLE

)	SPEECH SYNTHESISER	
ع137.75(F)	DISC CONTROLLER	¢127.35(E)
c238.95(F)	DISC DRIVE (EXT)	¢ 317.00
¢103.49(E)	32K RAM CARD	¢119.39(E)
¢159.22(E)	MATRIX PRINTER	¢363.78(0)
C.9.15(A)	JOYSTICKS PAIR	119.49 (C)

PERIPHERAL EXPANSION BOX SUPER VALUE COMEINATIONS *****
OPTION 1: EXPANSION BOX, 32K RAM ©249.00(D)
OPTION 2: EXPANSION BOX, RS232 CARD................. £235.00(D)
OPTION 3: EXPANSION BOX, 32K RAM, RS232 CARD...... £345.00(D)
OPTION 4: EXPANSION BOX, RS232 CARD, 32 K RAM CARD MATRIX PRINTER.................................. $6695.00(G)$
OPTION 5: EXPANSION BOX, RS232 INTERFACE CARD.... MATRIX PRINTER..................................
OPTION 6: EXPANSION BOX, 32K RAM, LOGO MODULE.... £315.00(D) OPTION 7: EXPANSION BOX, 32K RAM, DISC CONTROLLER INTERNAL DISC DRIVE............................... OPTION 8: EXPANSION BOX, 32K RAM, DISC CONTRDLLER INTERNAL DISC, PASCAL P CODE CARD....... £599.00(G)

ع745.00(G) OPTION 9: EXPANSION BOX, 32K RAM, DISC CONTROLLER INTERNAL DISC, EDITOR/ASSEMBLER MODULE. C675.00(G) ALL PRICES INCLUDE VAT
CERTAIN ITEMS ARE IN SHORT SUPPLY AND ARE OFFERED SUBJECT **TO AVAILABILITY. ORDERS WITH 20\% DEPOSİT ARE TAKEN FOR ** **THESE ITEMS. IN DRDER TO SECURE THE SPECIAL TI HOME PRICE** **OFFERED TO YOU, PLEASE MENTION TI HOME UUHEN YOU ORDER. ** WE HOLD A WIDE RANGE OF BOOKS AND ACCESSORIES, SAE FOR LISTS,
*****TERMS CHEQUE/CASH/ACCESS PLEASE UITH ORDER************** CARRIAGE CODE:

$(F)=\{2.50$. $(G)=$ E6.50. PLEASE ADO CARRIAGE TO ORDER VALUE.'

CHRISTMAS ORDERS ARE EEING TAKEN. £50 HANDBACK TI99 CLOSES 31 JAN 83.
A. B. \& C. COMPUTERS.

11 brackstone roas. ST AUSTELL CORNWALL Tel St Ausell (0725) 84833 Tel: Newquay (06373) 6 B35
Persohal tallers welcome

tems

 anames

24 houa
ANSAROME POB
ACCESS ARDEAS
prompt atring to space things out a little. Try entering a few numbers to se how the computer reacts; throw in a fev incorrect entriea to see what happens.

As an example of how 'Priendly' the computer can be, provided the programmer makes it 80, try this short program:

1 INPUT "PIEASE ENTER YOUR FIRST NAME *: NX
2 PRIET "THAYRYCD " ; N\$
3 INPUT "NOW PLEASE ENTER YOUR AGE IN YEARS ": Y
4 PRINT "THANKYOU,": N\$;" NOW I RNOW WHO YOU ARR AND HCW OLD YOU ARE"

When you run this short routine, notice how stupid the computer is; it can't tell if you enter somebody else's name, or if you lie about your age. This is a anall example of how computers are only as intelligent (and as eapable of taking over the world) as their programmer 1s:

The above routine doesn't make any use of I, the age variable. Jae your imagination to write some more lines to make the computer respond with "YOU ARE"; ; "YEARS OLD", or to print "BELLO, 305 YEAR OLD SPLCDGE" if you enter SPLODGE and 305 an your INFUTa.

Where would you place a Goto instruction to make the program continually loop back to Ine 1 ? Try it and ees if you have understood the instructions properly. What happens if you elter line 3 to make I into Y, and then alter every other occurrence of into Y\% ? Remember the difference between the way in which numbers and vorda are printed out ?

The screen must be fairly cluttered by now, and it would be aice to be able to wipe it clean every so often. You'd think that there would be n 'wipe' command, and you'd be right. On the 99. it is CALL CLBAR.

CALL CLEAB

You can also incorporate it in programs - it needs a line to itself - and in this case we'd really like to insert it before line 1 . If you remember, RES can be used to make room for more lines, so we RES to allow jou to enter 1 CALL CLEAR - I leave it up to you to decide how that should be done. The manual and $V 2.5$ of Tidinge show you hov.

Next isnue we'll look at further INFUT VALIDATION uaing an IF command.

Continuing the logarithaic brain-storm...

Asd beginning with an apology. Specifically designed to confuse you, the line:

- PRIMT (5^2) $\wedge 3$

Is the same as $5^{2} * 5^{2} \cdot 5^{2}$. was included by acoident. It formed part of an early explanation which was unfortunately not crossed out in the original, and I failed to pick it up when prool-reading prior to mbaitting to ridinge. Ooopa!

Anyway, on with the strain. I threatenad lat time to involve you in the intricaciea of NAPIERTAN logarithme, 60 here we are. Punnily enough, thece legerithas may just be what you need to underline sone of the points about BRIGGSILR logs which we have elready looked at. Instesd of being based on something siaple like 10 (as Briggalan loge are), mapierian logs ($\log _{0}$ or ln normally, but on the 99 g 10 written ad LOG) are based on the number 2.718281828 for reasona beit known to Jahn Napier or saneone who know more about hie than I do. Rapierian loge are the onew nost commonly found on oalculatort which boant loge, and on most computers, which seom a little daft, as we shall see, as the converaion from one to another doen't take great deal of extra rork. It is very likely that Fapierian logm can be derired from a peculier function in maths known an a series; for oxample, one series can be used to find the SINE of an angle in radians (!) and surprise, aurprise, guese rhat: most computore vich have a sige function use the dreaded radians. A future opisode in this thriliing saga rill be devoted to reminding you about SINEs and the like, and will delvo a little into the use of mefies to generate such functions. The mysterious radian (and their relationship to degrees, plus another measurenent: gradians) will be explained in that future article!

Back to Napier. To aes the difforence betreen Hapierian and Briggaian loge, look at the following table, where the loge for a range of numbers are given:

Number	Briegs	Rapier
.0001	-4	-9.210340372
.001	-3	-6.907755279
.01	-2	-4.605170186
.1	-1	-2.302585093

42.

Huaber	Briggo	
1	0	
10	1	0
100	2	2.302585093
1000	3	4.605170186
10000	4	6.907755279

If jou cant your mind back (or better atill, look at a copy of fosue 5 explained that the anti-log (in other worde, the table in which you find out what number is represented by a particular legarithy) of a log could be found by raising the 'base' to the power of the log. Thus the anti-log, bace 10 , of 1.5 in $10^{1.5}$. In the case of fapiorian logs, the base is 2.718281828 , so that the anti-log, base 2.718281828 , of agy, 1.5, is $2.718281828^{1.5}$. As the base is such an unvieldy number to keop writing dovn, and as mathematicians are esentially a lazy bunch (as are scientista generally), as atandard the letter 's' ie used to mprement 2.7182818 ...yamn... (it edght halp you to understand that,if you think of the BASIC statement: LET $B=2.718281828$; on the other hand it just Eight help jou to understand the BLSIC statement insteadl) - hence, log. for Fapierian loge and $\log _{10}$ or Just log. For Briggainn (exoept on the 99 of course. Here Log means
 that is provided on the 99 in the shap of the EXP funotion (1.0., EXP (1.5)). To remind you, anti-log base 10 are vritten on the 99a an $10 \wedge$ number; e.g., $10 \wedge 1.5$.

I hope that you can bee wh I chose to deal with Briggaian loge first; explaining that 100 * 100 is 10000 using Briggeian loge is so much oasier then uaing Fapierian: 1,0, , uaing Briggeian, $=2+2=4$, and $10^{4}=10000$, whereas with Napierian, $4.605170186+$ $4.605170186=9.210340372$, and $2.718281828^{9.210340372}$ is 10000 puff, puff. (Look at the earlier table for comparison). of course, if you choose your numbert carefully, even Hapierian can look easy:

Humber	Briges	Hapier
.0183156389	-1.737177928	-4
.0497870684	-1.302883446	-3
.1353352832	-0.8685889638	-2
.3678794412	-0.4342944819	-1
1	0	0
2.718281828	0.4342944819	1
7.389056099	0.8685889638	2
20.08553692	1.302883446	3
54.59815003	1.737177928	4

If you are confused, follow the explanations through slowiy and carefully. You will undoubtedly need issues 4 and 5, as they sot the ball rolling in thia direction and unless you have those to refer back to, you won't make much headway.

Going back to those two tables, if you look at the Brigge colum in the first table, and the Napier column in the second, jou will see that they are all integers, running from -4 to +4 . What is obvious in the first table is that as the Eriggs value increases by 1 each tise, the nurber in the Number column increases by a factor of 10 (the base). I.e., adding one to the logarith is equivalent to multiplying by 10 . For eranple, $-4+1=-3$, and $.0001=10=.001$; or $1+1=2$, and $10 * 10=100$. That in not so obvious in the second table is that as the Napier colun value increases by 1 , so the number in the Number colum inoreanes by factor of 2.718281828: for example, as the Hapier value rises from 2 to 3, so 7.38905609 is multipled by 2.718281828 to become 20.08553692 (in each example, the nuitiplying factor is the base).

It aight be worth underlintng one or two points heres

$$
\begin{array}{ll}
\text { 1. } x * x=x^{2} & x * x=x=x^{3} \\
2.1 / x=x^{-1} & 1 / x^{2}=x^{-2}
\end{array}
$$

3. Any value raised to the pover of 1 stays the same value: $\mathbf{x}^{\prime}=\mathbf{x}$
4. 4 ry value raised to the porer 0 is $1: x^{0}=1$
5. Any value, \bar{P}, raised to the power P, thus: V^{P}, is the equivalant of the antilogarithn, base V, of P. Thus if the base $=15$, then the anti-logarithm, base 15, of $5,=15^{5}$. If the base $=7.22$, then anti-log base 7.22 of $3.5=7.22^{3.5}$.
6. Whether you use Briggaian or Napierian loge, the results are alway the same, give or take a slight difference due to internal calculation errors on the machine used. For example, the simple equation: $2.5 * 3.5=8.75$. Vsing Brigge, this in $\log (2.5)+\log (3.5)$, wich is then anti-logged by raising 10 to the pover of that sum - i.e., $0.3979400087+0.5440680444=0.942008053$. Then, $10^{0.942008053}$ is 8.75 . Now with Napiertan logs: $0.9162907319+1.252762968=$ 2.1690537 , and e $e^{2.1690537}$ (remember ' θ ' ?) is also 8.75. The internal errors mentioned above are caused by circuastancea like this: divide 1 by 3. The answer vill be $0.3333333 \ldots$ or 0.3333 recurring (mich means that you could go on and on vith the 3 s). If you multiplied 0.33333 recurring back up to 1 by multiplying by 3 , the answer would be $0.999999 \ldots$ or 0.9999 recurring, and not 1 . In binary, the numbering syster which all oowputers ue internally, there are olnilar areas
in vhich errors occur. To try and ovarcome this fault in the mathe systen, there is a custom that 'rounding up' is porformed on fractional numbera like 0.99999 recurring: the convention is that all fractione onding in 5 or more are rounded up to the nert unit, while 4 and belov are rounded down to the previous unit. In english, then:
5.4 rounds down to become 5; 0.999 rounds up to become 1. You vork from the far right to the laft: than 1.23456789 succesively becomes 1.2345679 as the 9 is rounded up, and the 8 then becomen a $9,1.234568$ as the 9 in again rounded up, and the 7 becomea an 8 , 1.23457 se the 8 is rounded up and the 6 beccoes a $7,1.2346$ an the 7 is rounded up, and the 5 becomea $6,1.235$ as the 6 is rounded up and the 4 becomes a $5,1.24$ an the 5 is rounded up and the 3 becomes a then 1.2 , as the 4 is rounded DOWN, not affecting the 2 , and oventually 1 , as the 2 is rounded down, not affecting the 1 . So eventually 1.23456789 rounde up to 1 , if you were rounding to just the integer. Had the number been something like 1.467 then the result rould have been 2. Can you see why ?

Back to making the pointe again:

7. Ion can only have logs of positive, non-sero, numbers, and you can also only have bases wich are positive and non-sero. Iou cannot have a base of 1 , either. You can have bases which lie either side of $1: 0.5$ or 1.2 , but never eractly t. Here's vhy.

If you look closely (again) at the tablen, youray begin to see a relationship between the Briggsian log of a number and the Fapierian \log of that same number. There are two wayt of describing the relationship: oither Briggaian loge are alvays Napierian logs divided by 2.302585093, or Kapierian loga are alwaya Briggaian logo divided by 0.43429--44819. (The first number is the reciprocel of the second, in case you wert vondering!)

You might also be interested to learn that 2.302585093 happens to be LOG(10) - 1.e., the Mapierian log of the base of Briggsian logs. There is therefore an equation which will cover the conversion of Napierian logs to Briggsian loga; it is:

$$
\text { Briggsian } \log (x)=\text { Napierian } \log (x) / \text { Napierian } \log (10)
$$

If you have issue 5 to hand, examine the definition of BLOG, the apecially-created Briggeian log function. (Remember that Hapierian loga aro called LCG on the 99s). This equation le very similar to the 'general' equation which can be used to give a logarithm to any base (except those listed earlier: negative values, and or 1).

```
Anybase log(x)=Napierian log(x)/Napierian log(base)
```

The important thing to look at here is the divisor: Napierian log(base). I have already shown (I hope) that you cannot have logarithma of 0 or negative numbers. Note that you always get 0 if you take the log, to any base, of 1 . If you specify a base of 1 , therefore, the above part of the equation, Napierian $\log (b a s e)$, vill evaluate to 0 , which means that you will ond up dividing by 0 .

Technically, the result of dividing any number by 0 is regarded as being 'undefined' in other verds, nobody really knove the answer for oertain. It is likely to be infinity; but as that is an atstract value and canot be proved to exiat ueing etandard matha, it is something which we will not concern ouraolves with further.

Switch on Jour computer, and select TI BASIC - where we will experinent a little. To remind jou, where something is to be keyed into the conputer, I will indent the IIne on the page. Haring checked that you have copiod the line or, preas ENTER to get the computar to respond. Begin by putting in our BLog definition from last issue; if you recall, we put it in as a DEP statement using a line number so that form of 'progran' was produced. This 'progran' can then be RON, and the BLOG function is then tenporarily incorporated into the list of functions available on the computer. Note that If Jou NEI, BIB, or reset the computer to the title page by whatever means, you will wipe out the BLOG function.

$$
100 \operatorname{DEF} \operatorname{BLOG}(x)=\operatorname{LOG}(X) / \operatorname{LOG}(10)
$$

ROW

The new function should now be rasdy to use in the so-called IMMEDIATE mode (so-called because the computer will act inmediately on whatever jou give it to do, instead of storing instructions for later execution). Check with:

PRINT BLOG (1000)

The answer ahould be 3. If you get anything else, you must have made a mistake when keying in the dafinition. If you are $\angle B S O L U T E L I$ sure jou didn't make a mistake, then panio becane there is something drastically wrong with your machine :

Now let's give the computer the equivalent enti-log function. For $L O G$ it is EKP on the 99:; we'll call ours BXB for BLCG anti-log.

110 DEF $\operatorname{EXB}(X)=10 \wedge X$

RUN

Check that it works on with:

```
PRINT BLOG(t000), EXB(3)
```

You should get 3 and 1000 . There in another way that the FiB function could have been written: EXP (X LOG (10)). Yon eight try that and see if it is true.

Nov let us try and include a logarithm function which will permit us to obtain the logarithm to any base of amer, and ito associated anti-logarithe. We have s alight problem in that TI BASIC will not let you spoify two parameters in tho DBF statement, but re can get round that with a little thought. Add the following two lines to our 'program':

```
\(120 \mathrm{DEF} \operatorname{ALOG}(\mathrm{I})=\operatorname{LOG}(\mathrm{X}) / \operatorname{LOG}(\mathrm{B})\)
130 D FF EXA(X) \(=\mathrm{BAX}\)
```

ROM

In 120 , the definition will expect variable. B, to be present, whin will already have been assigned the base of the Iogarithin mich we want. Therefore,
$y=10$

PRIMT ALOO (100)

Mil first amaig 10 to B (making the base 10 , and equal to on r BLOG function therefore) so that the subsequent PRIFT instruction will give 2. Try:

$$
B=20
$$

FRI III ALOG(400)

What is the answer, and why ?

I have also given the anti-log, EXt, so that once B has been assigned s base, you can experiment with ALOG and Ext to obtain loge and antilogs to any base. Try using a range of based (don't forget to assign the value to B before using flaG or try using the bases I have said cannot be used: ie., 0,1 , and a negative number. With a base of 1 , you should get WARIIRG NUMBER TOO BIG Yhenever you use AlG, but because
of the vay in wioh gix has beon implemented, you won't got such an orror message vhen using a base of 1 there, as 1 raised to any power is always 1 . Had the function beon inplomented an $\operatorname{EXP}(I$ * LOG(B)) then again no error message rould be produced. Can you ses why ?

If you are having problems with understanding how the DEF funotion has been used to creste these ortra functions, a future artiole in the Beginnerw' BASIC serien should help to unravel some of the mystery, unlese you find that the explanation given by iI in the handbook is sufficient.

I have only been able to gloss over most of the more intricate facets of logarithme ifre what are their practical applicatione - beonuse it is Tery unikely that you will find jourselves uning them on daily basim; hoverer, if you do have any queries, please don't hesitate to write in to the address given elsewhere, and I vill do my bent to confuse you still further!

Ne工t issue I fill deal vith technique for finding the base of a logarithe, giren that no-one vriten in with inguperable difficultien over issue 5'a attenpts at lucidity.

THREE - DIMENSIONAL NOUCHTS \& CROSSES

The artificially-intelligent etory on artificial intelligence continues...

The latter part of the last episode was witten in some haste, in order that the explanstion should not occupy too many pages. Having dimped the cursory explanation of the exiatence of Uinning Lines on you, in this issue I will attempt to expend on the subject. I'a trying to make sure that the whole eeries DOESN'T last 5 years for this section is thrown open to you, dear reader (bath of you), for you to present an explanation of one of your programs, or of the theory behind s game or serious application. After this short series on Thres-dimensional Noughte at Croseea (3DOX0) is finished (hopefully next issue, when the final pointa will be explained, and a full listing given, together vith outline explanation) I have no immediate plans to follow 1t up with othello or whatever, although somsthing may appear between nov and feb 83. The space will be yours, if you choose to fill it.

More On Yinning Lines And Tho Lineaun frray

The Winning Line Coordinate Sequence Array (WlCS array) is one which holds the 76 ooordinats sequences (on acale 1-64, for each of the four positions which comprise a 'winning line'), each coordinate being exprassed as s pair of digita ($01-64$), so that each winning line, in coordinate terme, is 8 digits (4 pairs) long. The eequences of 4 are 'ordered' in two directionm:
A. Laterally, in that the firat digit pairs in any group of 4 are those with the higheat Linkage Values (see last two issues) - except where all the linkago values are the same - for example, look at Table 4 (1), where the first element of the array is 23420461. Decoding this in pairs of digits gives 23, 42, 04, and 61. If you look at p31 of Tidings V2.5, there are two corresponding 'maps' of the playing boards. The lower map shovs the positions, the upper shows the linkage valne for each poaition. Position 23 (underneath 19) has a linkage value of 7, as does 42, 04, and 61. This vinning line sequence is one of the four 7777 types which run diagonally acrose and through the boarda. As no one position has a higher linkage value than iti companions in thia type, the position sequance $(23,42,04,61)$ is ordered in a way LEAST likely to be spotted by a human player looking for patterns in the computer's choice of moves. If the sequence was $04,23,42,61$, the human opponent might readily notice the pattern as it built up. (The peychology of this game is sonething -1se!)

The same rule of thumb is applied to element 76 of Table 4 (1): 18191720, (or 17, 18, 19. 20 if you hadn't spotted the sequance) where the ilnkage value sequence is 4444.
B. Longitudinally, in that there are three main types of laterally-ordered linkage value sequences:-7777, 7744, and 4444, and the longtudinal ordering places the four which are 7777 firet in the array. The nert 48 (which are 7744) follow them in no particular order, and the 24 which are type 4444 bring up the rear. Tidings V2.4 gives the formula $3^{*} N^{2}+6 * N+4$ as calculating the total number of possiblo vinning lines for a threo-dimensional $N^{* N} N^{\prime}$ board. In this case $\mathrm{H}=4$, giving $48+24+4$; there are $3 * \mathrm{~N}^{2}$ of the 7744 type, 67 N of the 4444, and four of the 7777 type. For $N=5$ the pattern changes, becoming far more complex. We nead not concern ourselves with that here.

The nore pattern-conscious among you aight have apotted the faot that each of the vicSe can be generated (in a pro-ecranbled sequence) from an initial value and an increment. It is fanter though to have the sequence all ready for decoding, rather than have to calculate it each time. Those with grester experience of programming might also recognise that the coordinate sequences can be fored in more compressed manner using ASCII codse ($0-255$, whereas ve only need a range of $1-76$ marimus) and they WOULD have been, only TI BASIC doenn't have the facility for foKging the requisite values into place - but that's another atory! I'm vorking on a tool using the Minimemory to correct that waste of apace, altering the program so that it can run in lesm RAM and still u*o TI BASIC and no modules or memory expansion.

The Linesum Array is an array vhich parallels the WLCS array - the element numbers correspond, and the Linesum array holds the totale of the move ralues contained in a rinning line sequence, generated during a game. That mouthful juat means that element 1 of the Linesum array holds the sum of the move values for positions 04,23 , 42, and 61 (Iidinge V2.5 gave details about move values - a value of 1 for the computer's moves, and of 4 for the opponent's moves). If the opponent had won a game by ocoupying the poaitions 29, 30,31 , and 32 ($1.0 .$, the ecrambled winning line sequence recorded in element 74 of the wLCS array - see Table 4 (i)), then element 74 of the Linesum array would contain the value $16-1 . \theta .$, four opponent's moves $=4 \times 4=16$. Unfortunately, the principle behind this is very simplo, but oxtremely complex, and difficult to fully explain in only a fex vorde. We haven't yet come to the most difficult part the Update Pointer Array - but we vill do (you have to take the rough vith the er.. rough).

So, to try and clarify thinga: what happens when a human plajer maksa a move ? Well, firat the move han to be 'validated' - the computer searches the boarda for the position, and then checks to see if it is empty. If it is, the opponent's move is accepted.

It then ham to search through all the possible rinning line sequences to find those which involve that position - there rill be either 4 or 7 of them to find (see Tidinge V2.5) and then add the move value (in this case 4 for the opponent) to the corresponding elements of the Linesum array.

Por example, if I move into position rov 1, column i, level i, (i.e., on scale 1 64,is 01), then the computer will add 4 to the contenta of Linesumaray elements $4,(22,43,01,64), 29,(01,16,06,11), 35,(01,52,18,35), 37,(01,61,21,41)$, $43,(01,04,02,03), 48,(01,13,05,09)$ and $51,(01,49,17,33)$ 1.e., 7 elaments. (Look at Elementa $4,29,35,37,43,48$, and 51 in Table 4 (1).)

The computer then has to deoide how to rempond. It begins by selecting values from the strategy sequence (see Tidings $\nabla 2.5$) one st a time, and then running through all 76 elements of the Linemum array, comparing the contents of each olement with the strategg value, until perhaps it finds a match. (The strategy nequence is arranged so that if no match is found for any etrategy value, the game is automatically drawn, as all the winning lines have been blocked without a win occurringl). Let's asy, for the gak of argument, that it found no match at all for strategy values 16 and 3, but did find a match for strategy value 12 with slement 1 of the Linesumarray. Now, andue of 12 means that the winning line of four position contains 3 moves by me, and the fourth position is empty (for the remoning bohind this you will need to read v2.5 Tidings). This is a dangerous position for the conputer, as it means that unleas it blocks we, I can move into the mpty position on my next nove and rin. The computer obriously nesds to occupy that eopty poaition. But were is it $?$ The VICS array holde the answer. As the match occurred rith eloment 1 of the Linesum array, then we need to look in element 1 of the WLCS array, where the four positiona corresponding to that line are atored. The sequence held in VLCS is 23, 42, 04, and 61 (see Table 4 (1)). All the computer has to do is to decide which is the empty poeition. It does this by decoding the 23420461 into pairs of digits, and then using these to address the corresponding screen locatione, until it finds the empty position, into which it then moves, thus successfully blocking ay attempted win.

The ordered sequence of position in each element of the HICS array performs another function: it dictates which positions the computer looks at first, and thus which position is eventually moved into. If a match had been found which required the computer to choose between 3 empty positions, it would in fact choose the first empty position that its searches unearthed. If the sequence type was 7744 for example, vith the occupied position being a $4-t y p e$, the computer vould begin decoding and searching from the first position in the sequence - which is type-7 here - and which is empty and thus occupiablef then the computer would reapond vith strong type-7 move,

What takes the time in this initial varsion is the searching through all 76 vinning line sequences in order to find the 4 or 7 which have the same position in them as the one which the opponent has chosen (this esarching also has to be done when the computer has made its move!), and thon incrementing the parallel Linesum array elements.

It vould be nuch quicker (by a factor of 40 or more) if we could go DIRECTLI to the 4 or 7 olements of the Linesum array and increment them by the requialte value. This would require a series of 'pointers', answering the question: 'if I move into position 9. which Linesm array elements do I need to increment ${ }^{\prime \prime}$. The list of pointers (4 for the 4-type, 7 for the 7 -type) could be held in an array, each element address being the same as the board pooition for which it is acting as a pointar list. Thus there would be 64 elements, each containing a gequence or digit pairs (so that no confusion can arise - at loast for the computer!); Table 4 (ii) gives ouch an array, called an Update Pointer array or just Update arraj. If you look at element in that array, you will see an enormous number: 04293537434851 . Decode it, in pairs, and you get 04, 29, 35, 37, 43, 48, 51. Nov where bave jou seen that before ? Look at the top of the previous page and rork down until jou find the list of Linesure elements to be incremented as a result of moving into poaition 1 on the boards.

Although the Update array looks very complex, it is in faot generated froa the ULCS array itaelf. In the development program I wrote for this eection (and vich is even more involved than this onel), ajaple loop ran through from the first digit pair in the firat olement of the VLCS array through to the last digit pair in the last olement. It used the digit pair as the address for the Update array, and the VICS olement address as the number to be incorporated in the list of pointers for that element of the Update array.

It might help to make thinga a little clearer if I run through the same sequence of operations as the development routine did.

Beginning with the firet decoded digit pair in WLCS array element 1, we get 23. So, Update array element 23 bas 01 (the coded version of 1) incorporated in ita list of pointers. If jou look at the 23 rdelement of Table 4 (ii), Jou will ase that the firet digit pair is indeed 01. Back to Table 4 (i) egain: the second digit pair in element 1 is 42. Look at element 42 in Table 4 (i1) - and you will find 01 appears there. And so it goes on. The next pair gives $C 4$, and element 4 of Table 4 (11) has 01 coded into its list. Look at the very last digit pair in olement 76 of Table 4 (i): it is 20. Look at element 20 in Table 4 (ii), and at the ond of the list of pointers is 76.

Next igeue should see the end of this article; you can heave a sigh of relief!:

（1i）

Elemant Contents

1 10，	
E 2145% \％	
32 E 4 tar	E 0，\％os
4 9131394－4FE	
5124066	F 10 ger
	Se dedeloters
$7 \quad 10$－	$3 \mathrm{gotav1}$－
$819+76$	4114053
3 164956t	$41128 \bigcirc 5$
1015060	
1114266	$4 \% 4081+180 こ ゙$
$12 \mathrm{ElC54}$	
1301360400	458501
14 ご4EだG	
$15 \mathrm{JQ4456}$	4% 9\％\％\％
150	48 2406T0
$1 \overrightarrow{1}$ ¢c，	
16 リヒ5E2	5034164
	5124415
20 E5E日G\％	
21985	＝1345EG：
	＝1 10010
54 Onges，	E 2400
$3513 \% 5$	
Et 909111513こう	515054
	$\bar{\square} 1+305$
E 1140543	184
24 3507	
30 15\％5¢04	
$311045 c 4$	
SE 2ctart	

This glance into the inture is in two parts: this tive a look at what tonorrov's nev sachine ought to have an standard, and nart time a highly-personal viev of the proposed Golden age and a poseible path to it.

Changing rimes: Part I

It's not all that long ago that aicromenthusiaste foll over themselves to get a look at the latest machinn possessing a mopping 8 F or so of Vegr RiM, usually oosting a good c400. Some of them had to load their operating syatems (language etc., from tape or diek, and colour 9 Well, everybody knew that colour vould cost an arm and a leg, and as for sound, woll...

Hoy far back do you think that is if 10 years $?$ In fact, it's only about 4 . The wicro market has changed drematically over the last fav years, with predictinns about the market direation and rate of hardware change being beaten again and again. Predictions about the social offects and the speed of implementation of some facilitien have gone the other vay, es ferer and fover nev application are actually made use of. You might know the kind of thing: "We bave the tochnology FOW to do so-and-mo, but, political and -conomio considerations....".

When I bought my ETSC $99 / 4$ (with ite om apecially-modified colour TV), it cost c695 for the console and 2300 for the TV. If Binatone are true to their word, a 16 K , colour and sound, micro for donestic uase should be avallable in January for about f50. As the price of semory continually drope, and its apoed inoreases, we are moeing 8 bit machines offering fast, 128 K nystems for very low prices. Looking at what in aoming up seon, how sight apecify the functione of asy the nert TI computer (ignoring the iters in the pipeline now)?

For a start, the proceasor. The 99s are 16 bit, and that meoma to be reasonable type to continue with, although most other 16 bitters give you far more directly-addressable memory than the TMS 9900 does. What about aecondary processors ? The ones that handle display, input/output, and Bo on ? Wo great change there, I suspect. Memory ? Judging by current trends, 128 K yould seem to be the minimum (1.e., 128K Usor RAM, not total RuM/RON). Colour ? Tes, and more than is currently offered. Perhaps 1024 coloura, and 128 shades of grey ? Sound ? Built-in apeech synthesis would appear to be a likelihood, with use of a dedicated sound synthesis ohip to ensble you to outperform vitravoz. External atorage ? Currently this is either to tape or disk, with the expense of disk rushing most omers to tape. Perhaps built-in micro-floppies with 1 Kb density, or oven

CKOS RAM packs (maybe the $1288+$ Uear RAM would be CMCS ?). There is a tentative move in this direction. Other peripherals: the keyboard, Ath full QWERTY layout (FROFERLY laid out!), separate numeric keypad and separate cursor controllar - probably a stick or ball control - in fact the whol keyboard separated fron the main console, and not necessarily by cables!; colour printer/plotter, able to reproduce faithfully the leage on the scresn, or to produce bar-code listings; a flat-sereen display unit, vith builtin light pen OR touch-sensitive sereen; a BUILT-IA RS232C (or later improvement) with modem, for netvorking; perhepe even amall robotic arm (or leg) - your anit could then cling to, or hop round after, you as you moved about.

The whole thing might come as aingle package, for about c500. Included with the hardware would be numbe of softuare items. For start, compiled and interpreted BASIC, Forth, Pascal, Asaembler, Disassembler, perhaps LOGO, LISP, and other Artificial Intell1gence langunges. Perhaps also Program Generator, for thoge who want the fun of olectronic filing without the brainstrain of vriting suites to implement it: On top of that, e firmware (permanently-resident in ROM) vord procesmor. After all, most households have typewriter; wh neglect that area in the home, when it is one of the areas gatting attention in the of fice \boldsymbol{i} The editing facilities already offered on moat machines for progran editing are a large step tovards word processing...

Iou never knov, the current bubling experiments with 3D TV just aight find their way into the micro world in 12 months time...

Science Yatch

This isaue the subject brings together many of the principles which have been presented in broad outline in previous iesuea. The subjeot is called PLANETRAN, sid it has been around aince about 1954. Technical problems kept it on the draving board until just recently, when wicro-chip technology appeared to be able to solve wost of the problems.

Planetran already exists in lesm-ambitious forn both in this country and in Japan. We haven't jet coined a term for it here, other than 'Maglev', which really deacribes the principle behind its operation. You can induce electromagnetic repulsion betweon a coil and a magnet if sufficiently-atrong magnetic field can be produced in the coil. To date thia is achieved by maring use of the phenomenon of aperconductivity, where cooling the coil to around $-270^{\circ} \mathrm{C}$ produces aituation where the electrical reaistance to the passage of current drops to sero. Recent discoveries are leading to the 'engineering' of such superconductors so that they will operate at much higher temperatures, reducing the need for bulky coolant apparatus.

In Japan they have taken the principle of magnetic levitation and putato use in a
research project which has produced a 325 mph train, a sped more than double our fastest rail-riding best.

The Asericang, however, who take anjone's beating thew as a personal challenge, are locking to put everybody else in the shade with a 3,000 to $6,00 C \mathrm{mph}$ underground system, running fron East to Vest coast. The plans involve depressurising the tunel to reduce wind friction, and placing micromlectronic sensora at regular intervala to sense any undue awaying in the rehicle, which would then be corrected by relay stations aituated at intervals along the tunnel. It seem that the eway problem has been tho one holding the ayaten back: in 1957 there was no technology amall enough and cheap enough to do the job. By 1969, though, wen the firat micro-electronic componenta began to be made, the solution to the problem began to take shape.

The proponent of this systen is one Dr Robert M Salter of the Rand Corporation, and it appears that many of his colleaguen shar his belief. It is no longer in the realm of Sefence Fiction. The system would operate with an acceleration of about 0.3G, so that passengers would, with the assistance of specially-ngineered, gimballed, sests, fsel only about 5% heavier. Pail-safe mechanioms are proposed, to allow emergeney stopping, and there rould be life-support eyatems aboard, as well as emergency orits in the tunnel walls. Mind you, with a depressurised tunnel, it wouldn't be good idea to hang about for long!

Magnetic propulsion offers many advantages over other forms of travel. Traditional railway systems are reaching the end of their usefulness; they are slow, expensive, largely polluting, and by their nature are prone to mechanical failure due to ercesaive wear. Air travel is also expensive and polluting, as weli as rastoful of onergy, and often the daft situstion arisen where more time is apent waiting at either ond of a fourney than is actually apent flying betwen two places:

Ferhaps the thought of travelling at 3,000 mph underground doesn't appeal to jou, but then, the thougt of travelling at 25 mph didn't appeal to our Victorian forekears, and the idea of travelling through air at 500 mph would have given them heart-failure.

Don't expect this type of transport to be available next year hovever. The projected appearance is apparently in about $15-20$ yeara' time...

Yostseript

Volue 2 Issue 5 of Tidings plumetted through the letterbox while I wan atill producing this Babble, and both it and iasus 4 contain so many things worth commenting on that I'm spoilt for choice! Shining above overything elat though are two articles which I have been waiting eagerly for for agea: those by Masars Harding and Hutton. If nobody beats a path to their doors there is something badiy rrong with the world. I have seon Gary's program and it is firat rate; I am trying to persuade him to vrite a series on desembly Language frograming for the Nev Foar: watch this space...

If TI have their eyen open while reading Tidings, then Eric Button's article should send then reaching for their Re-thinking Caps. I know that one of the companien which have adrertised in Fidings are cutting prices down to sise, but oren they would be hard put to aatch c 94 for a 32 K RAM erpansion (and just think: produced on a large scale, such an expanaion could begin to approach the morn realistic pricea which other folke pay for their memory add-ons!).

Some of the points raised in this Babbla have either beon raised in issue 5 or oren partly-answered; I don't have the tine or the energy to retype $B B$ to take this into account!

For those who like to vear their finger-onde dom, I have included a program listing, which, if jou are tenaoious enough, will give you the fastest plot in the west vhen you run it. If you like more than on of everything, then add the modification given at the bottom of the listing. The reaulting 3D plot should show you just what you can do given decent graphice-handling and 3 hours of typingl I'm vorking on veraion of mearly plotters which will do all the work for meimilar to Stephon Shav's Save-A-Sketah) but using the Minimerory module.

Finaliy, if you don't have the time or confidence to put youraelf up as a contact for TI owners in your area, maybe you'd prefer to act as akind of tutor for those members who are still struggling up the elippery path to programing proficiency ? Why not offer your help either through Tidinge or through Pal Dicks ? You might find that al though YOU think you're a beginner, the REAL beginners would give their ey teeth for the experience you have gained already. Why not pass on some of your experience; a vord to the rise to beginner could eave then weeke of effort, and you will aluays learn a thing or two yourself: Being a 'contact' for your area just might turn out to be the best thing you over did...

Fete Brooks
$1 \because$ テE Tーロ
110 ATH A

 1 ID IHTH FOEGEEFGGHE4E11，E：11，

 31E 20F1 06FGFF： 9.12246126461

 FF IIFF ！日FF IOFF，B，S，IMFEEGFEFISFE

E4 IATH ZFFFIFFFFFFFFCFF，

 10日म： 1 ，玉二

 310 IHTH 11 MOUERFFF OUFF ：

 01010，E，EG，FEFFFFFFFFFFFFFE，\vec{B}

$4 E 0$ CHLL ELEFF
430 IFLL TLFEEN： 9
440 EALL HCHAF 1，1，31，FEG

$4 E 0$ EEHL HSOETE
4F GHLL GHFF：I：FX
4 GO GLL HEHFFiF＋S，IO
490 NEXT I
500 GOTD 510

II NEWS

Let me start by apologising for missing the last exciting edition of TIDINGS, here at $T I$ everything is go, with the considerable increase in demand for the $\mathrm{TI}-99 / 4 \mathrm{~A}$ we are all very busy.

I shall start this newsletter by answering some of the points that arose in October's edition of TIHOME. Firstly Mr Dicks (I always need to be polite to him!) refered to GROM serial numbers in his editorial. Sorry Paul but you have it wrong, LTA and ATA refer to the site of manufacture e.g. L(TA) is Lubbock and $\Lambda(T A)$ is Almelo in Holland. Further $T I$ Invaders was released long after the introduction of the TI-99/4A, and anyway users should not see any differences between the 4 and $4 A$ on this game. The only difference that very few of you will see applies to those of you who own a NTSC TI-99/4A, since you will have a longer screen size.

Under Dorse Dialect by Jeff Freeman, there was a section relating to TI Servicing. This story of woe prompted me to see sorrowful Sid of the Service section, deep in the bowels of TI. Sid said "Oh dear, let me check on this immediately". True to his word sid reported back. "Well", he said, "it would appear that we received Mr Freeman's computer at 9.24 dm 19th August and despatched it 27 th August $2.19 \mathrm{pm} "$. At this stage Sorrowful Sid broke down with remorse "I am so sorry, we had the computer for 8 days and not 5 , but Ted the technician's aged aunt (the one with the money) was
 difficulty, to calm sid down by telling him that I am sure that the nice Mr Freeman would understand. As for sending his computer back covered in Foam Chips (SIC), that was a mistake and our apologies for it.

Now onto new products. In January we will be launching a new module, called PARSEC, it is a high speed arcade type game and I believe it is the best we have produced to date. PARSEC is similar to Defender as sold for ATARI, although I think the graphics are better. Judging by the reaction of the people here in the office once seen you cannot put it down. PARSEC is also the first game to include speech, not your standard boring male voice either, but a sultry females voice. It is worth pointing out that the Speech Synthesizer is not required to run PARSEC, but if used will make the game even more enjoyable.

I am pleased to see some new contributors to TIDINGS, but I feel sure that there are out there some budding authors still to put in an appearance. I am sure that TIHOME would be pleased to here from some of the less experienced computer users. Also, it is good that four brave lads have come forward as local contacts, anyone in their areas, get in contact with them, and I am sure there must be a few more out there who are willing to start local clubs etc. Get in contact with THOME, it is to your advantage.

I understand from Paul Dicks that membership is booming, sales of the TI-99/4A have increased dramatically and we are now sold out for the rest of the year!

Finally my congratulations to paul on the new style of TIDINGS, I think it is excellent.

Have a merry Christmas and a happy New Year.

ROBIN FROWD
Texas Instruments Ltd
by
Stephen shat

Greetings and welcome to Rambles. A little shorter than usual this issue - the 'press date' is shorter, as we catch up on the issue date, and not many of you have been asking me questions

There is a lot of good news elsewhere in TIDINGS so it remains for me to give a little assistance to those of you who have just bought your first computer and are meeting with those frustrating problems we have all met with.

TAPE RECORDERS:

I recently had a phone call from a TI owner who had tried an awful lot of recorders- and none would work. The problem was the REMOTE CONTROL operation. 'With many recorders sold in the UK it is necessary to reverse the polarity of the remote lead - and TI include with the cassette cable two small adaptors for this purpose (one for COl and one for ©S2). Use one of these for trouble free operation - do not do as a second TI owner did and discard them!

There are differences between recorders in the ease with which you can load tapes recorded by other people - almost all will allow you to load your own programs with greater or lesser difficulty

In my own experience the BOOTS CR325 is outstanding in its performance with the 99/4A, while the cheaper LLOYD V182 does a very good job too (but is built a little less strongly!).

ALPHA/CAPS KEY: At the left of the keyboard is a key which switches from small letters to large letters - in the down position the computer will print the larger letters. This seems to be causing a little problem with several owners.

When you are keying in or loading a program, you should keep this key in the DONN position. It is usually essential to keep it DON while RUNNING a program, but there is one important exception - see next page....

JOYSTICKS: Then the program uses JOYSTICKS you must keep
the ALPHA/CAPS key in the UP position - otherwise they do not work well: Ne have heard of several owners returning joysticks to their dealers as 'not working' when all that has been wrong is the position of the ALPHA/CAP key!

RUNnING THIRD PARTY PROGRAIIS:
With the best tape recorders there is no problem, but with the intermediate tape recorders - probably the majority held by 99/4A owners - you will find you will have to increase the volume setting to load a third party program. The volume range at which the program will load may also be reduced.

For those few 3rd party programs which come with DATA FILES (the tape runs and stops several times to load them) there is also a problem of one or more files being missed - this usually gives an error message such as BAD VALUB - which is not quickly associated with loading problems! This difficulty usually means the volume is a tiny bit too low.

PROGRAM DEBUGGING

While receiving a lot of comments on the programs in Computer \& Video Games, some have experienced no problems while for others the programs just will not run!

Bear in mind the earlier note about the ALPHA/CAPS key! It is VERY easy to make an error in keying in a program - and spotting a missing comma or bracket may not be so easy. Much harder to spot are letter 0^{\prime} s used instead of figure zero's or letter I's instead of number 1 's.

The 99/4A has some good features for helping to spot errors but when the error is many lines away from the line producing the error message, you have to understand the program and the computer!

A recent problem reported to me involved a program which when RUN gave the error message:

DATA ERROR IN xxx
The owner found $x \times x$ to be in a FOR-NEXT loop, so adjusted the TO NNN number downwards, and found the program ran OK - but an error occurred elsewhere- BAD ARGUMENT in.....

The SHITAX of this new line was OK - so what was going wrong?

See next page for next enthralling episode (can you guess?)

Whenever an error message is generated, the orogram is halted but all the variables retain their values until you edit a oroeram line.

By looking at these variables you can work out what went wrong. In this case, the FOR-NEXT loop which had been adjusted was loading DATA into an array RA(n), and the BAD ARGUNONT line was using the function VAL (RA (n)).

First step: type in PRINT R\&(n) - the result was a single
line scroll - eg R\&(n) was a nul string, resulting in the bad argument (You cannot VaL("i))。
The next step was to look at all the data items, and see to what variable the last data item appeared to be READ to - in this case $2 \not 又(15)$ - which was NUL.

Now we had to trace the SIZE of the problem- by stepping back a few DATA items and telling the computer to print the variable we thought should have been loaded with that string - this time there was a result - but not the expected one: The computer printed the PRCVIOUS data item - which told us that ONE comma had been omitted in one of the DATA lines - so back to do a careful check of that section.

If the DATA section had been very large we could have checked 'anticipated' values for a series of variables, to see when we had the anticipated answer - and when the answer was wrong.
(This does require a careful check, both of data items, and of READ statements, which are usually in a FOR-NEXT loopl).

So - if you have a problem with a program, as well as checking every comma in every line, the computer CaN help you to find your mistake. In the above example the action taken at first (assuming a magazine print error) only served to obscure the real problem - a DATA ERROR should lead you immediately to check your DATA lines, using the above procedure.

Magazines make some mistakes of course - but the chances are that its your typing! As you develop a knowledge of your computer you NILL learn how to spot and correct some mafazine printing errors (there aren't riAAT any:).
ffer: If a program bug really stimps you, send me a cassette of what ou have, together with return postage (don't send the cassette case!) 1d I'll have a look at it for you. If not a 99'er prog, olense send re original listing, hay take a while to reply. It is really npossible to debug a rrogram by letter, and not very easy by phoned
 dom!

Lots and lots of serious errors reyorted in the sditor/ Assembler …anal - llease may we have a list of what you have TI?

Thornemail in an advanced stage of reparing
to launch programs for the $37 / 4 \mathrm{~A}-\neq \mathrm{kn}$ w of at least one program they have bought.

99'er marazine now lonthty - lovely aq- do get it.
99'er reports it IS jossible to upgrade a $39 / 4$ to
the same graphics as the $99 / 4 \mathrm{~A}$ - how about it TI?

SCRZEN D' 1
If jou wish to save a screenfull of information or graphics, how do you do it?
You could use CALL GGHAA and then save the variables to a tape filebut it is both slow and uses an awful lot of tape -and you cannot (normally) verify tape data files.
If your screen contains redefined characters you may not have enough tape to save the definitions (assuming the use of gaLL CHARPAT - 3xt zasic).
So how ?
Using a disk system for the data files is a lot faster - but still not especially fast.
You could mrite a program which saves the data to the program (using either mini-nemory or ext.bas with 32 k ram.) This is certainly faster, but all those CALL CHAR lines take up a great leal of memory. It is ok if you are not redefining the charactersthen all you have is 24 'PaINT' lines to overwrite.
You can do wonders with Assembly language of course, and such a utility could fit into the mini-Menory - but the MMM has zasIC utilities which come in very handy: Below you will find an examplethe program on the LEFT saves the screen to the Mivin, the program on the right reads it out - and in between you can power down and remove the Rim.
Tape storage is possible using the 'L' and 'S' options of EASYBUG on the $\mathrm{H} . \mathrm{M}$ - the files CAN be verified and load quite quickly. These examples also save definitions. Gan you follow these prograns?:-
LOAD (FOR MMM) DISPLAY:

LOAD MinM

'I', j) ; ? ?

You turind the Jese rather guiccly then:
Those listinrs rere not as bod as they look-
CALL I AEV reads values from VDP RAL- that is wiere the 30 adif coriont arid ciamoter \ddagger efini inus aro sept - ad ir "I ?A3IS, ala, jour jonerwe
 In this grogran it is used to lonk at opy kat in tie Sini wenory :urule.
 into SPU RAM.

The format is SALL PEAK (ODORY LOCATION, TALUE,VALUA, TALIEA. etc)
The first value is that in the momory location, the second value is that in the next highest memory location and so on.
Although not used here, you can also sylit the commands by using a nul string eg

BALL PEAK (LOCATION ONE,VALUE,VALUE, "" , IOCATION THO, TALUB)
So lets have a look at those two listinfs (and see what is wrorg with them:) :
LOAD: CALL INIT clears the SPU RAlf and ensures you don't trip over anything already there.
Lines 1010 to 1040 look at the screen comtents, details of which are in VDP RAM at locations 0 to 767 (32×24) with 0 at top left and 767 at bottom right. The values stored in these locations are the ABCII CODE plus 96 (eg A is 161).
I have used several locations in each sALI for greater speed. The CAL工 LOAD places these values into the MiNi GPU RANi - the actual address used is not important so long as the address used is actially IN the Min: (locations 29672 to 32767 - ALL numbers used here are decimal). Heing glaced the values into lhm they will stay there even when you switch off - until you initialise or reolace thom. They can be saver to taje- with verify filaction. So- we have read the screen and slaced it into ii.f. . Now lines 1050 to 1000 read the character definitiors Eron VDP N. and , lace them into din.
Thararter leinimtions ior djuI 32 to 36 are 引eld in nenory lucetions 1224 to 1535. Jach charactər keinnition tatos up 8 bytes. he can infer that the 'lower case" characters are initially derived as trus are not defined. hen you define a character over 96, ties detirition
 location dsed in cinaracter deminitions is trus 2040.

Sow the information is in lim it cen be recalled to tio soran by reversing tae or mess - reading midit and sacing the values in IDP RAlri * - cortinued...

The DISPLAY groeram does just this - moving values from one location to the other, to recreate the screen. I have first transferred the character definitions and then placed the characters onto the screen.
HOTB A- In this example if you have used characters $97 \& 98$ you may notice something odd. In normal use memory location 1536 up is used for the VALUE STACK (eg variables), and if you define extra characters with CALL CHAR the value stack is automatically moved up to make room for the extra definitions.
In this case we have only moved the definitions to this area of memory - we have not instructed the conputer that the value stack starts at a higher address - so it carries on using 1536 up - messing up our definitions for Chars. 97 \& 98 .

You could get round this by forcing the stack higher by using: FOR $T=97$ to 159

CALL CHAR(T, "O")
NEXT T
before you move the data from Min to VDP.
NOTE B- If you do not have redefined characters you need only transfer VDP addresses 0 to 750.
If characters ARB defined you need only transfer the data for the redefined characters - ASCII 32 is in 1024 to 1031 etc up.
NOTE G - The programs given take 25 seconds to recreate the screen, which is the same as using CALI CHAR for every character and then using 24 'print' sta由ements. This way is much easier to save redefined characters.
NOTE D- Once in DIM the data can be quiclely saved to cassette using the BASY BUG commands 'S' and 'L' for locations (hex) 7000 to 7 FFF. You will be able to use the tape-verify option, nnd not much tape is used.

This example is given to show you something the Nimis capable of it is not the best solution to every problem:
Here is another program to try
with the MMM - can you do this any faster in any other way? (Use a stopwatch:).

SHORT ONE:-
 (For mmm)

1010 CHLL CLEAF
$110 \mathrm{FDF} \mathrm{T}=0 \mathrm{TO}$ PES ETEF 33
1EO CHLL FDKEUCT, EO
1.30 TETT T

140 ETTD 140

If you have a problem, let me know - enclose an SAE for a reply and allow plenty of tume for a reply! The most persistent or more interesting problems will get a mertion in RAMBLES at some future date.

NB: No daytime callers or phone calls - not in! If a phone call is urgent please ring after $7.30 \mathrm{p} . \mathrm{m}$. (not idednesdays). I do not keep a stock of programs for sale, so cannot sell you any if you call - mail order only!
Address: 10 Alstone Road, STOCKPORT, Gheshire, SK4 5AH
(PLEASB use the Post Code- letters are subject to ereat delay if you dont. Also -PLEASE let ne have your name and address in CAPITALS - I've been unable to read some recent post.).
Don't forget - the mail gets pretty slow around Christmas.
TIHOME is always happy to receive new contributors:

PRODUCT
R3VIZ

I have recently purchased an INMAC 'suspension copyholder' -this is like an Anglepoise lamp, which clamps to your desk or table, but instead of a lamp there is an adjustiable platen to hold your copy (eg magazine).
I have found it of very great use in entering prograns $\&$ data, as the magazine etc can be placed just where you want it.

Available by mail order at $£ 29$ plus carriage plus vat it is not cheap - but very useful if you do a lot of entering. INMAC are at Runcorm and keep giving their catalogue away with various computer mags.

GRIME: Vatch out for modules offered for sale without manuals. Watch out for modules ofiered for sale with a piece of chain attached.
Sad to say, after the theft of hand controllers at PCW, Computer Sujermarket have sulfered the loss of an Bxtended Easic module - which was chained to the display stand! Now, as the module is rarer than gold, they cannot demonstrate my programs. If you are in the North West and want to see some of the programs I offer call in to Computer Supermarket.

TI: There was once a large multinational company with a profit figure larfer than you can inagine, who invented lots of good things. They made a computer,overpriced it, and then to encourage sales offered a rebate. Pity they didn't nake sure there were adequate gupplies first. Result- frustrated buyers (yotential) and dealers. No ExBas, No printer - hmmm...

NBWS HOT FROM NA．ZRIGA：

The following news is from private sources and is not confirmed with TI：
NET TI COMPUTER next year based on 99000 CPU，＇compatible with 99／4A peripherals and software＇，and with features comparable to the IBM PC－initial launch date June 83 （but note TI usually run very very late on their launch dates，and it may take longer to cross the Nater－if it does．）．
PRICE will of course be a bit higher－but not more than double the 99／4A price．
Believe it－or don＇t－but it is possible．
News of $7500099 / 4 \mathrm{~A}$ sales in the States in just ONS MONTH！

FAST EXTANDED BASTG：The extra soeed of the language is only aoparent in running a reasonable size program，and does not show in BECCrTESTs－of particular note is the speed of line transfers， and the much faster screen handling．Note that it should be a tiny bit faster with the 32 k RAM．
Could someone with the 32 k Alid Version 110 please resolve this by running a fairly lengthy promram and checking the times in TI BASLC，in EXTZNDED BASIC 110，and same with 32 K RAM．

EX－BAS：－

Hore news from America of a variation in firmware which is causing problems in programs with Sprites moving upwards or downwards－
BxBas version 110 contains a new subroutine which keeps track of the number of sorites in use．
Normally when a Sprite moves downwards off screen it is still considered＇active＇and movenent from bottom to too is smooth－ even though you cannot see the sprite for some of the time．
It is apparent that in some versions of BXas 110 this is not the case－the＇off screen＇section is no longer considered as an active area，and sprites＇suddenly＇appear，just as they do at screen left． This has been causing problems in programs where：
i）A sprite is started from＇off screen＇－it will actually start in a different location than intended
ii）Sprites move vertically with different rates－there can be timing differences in the promram execution．
So－if you need a fully transportable program you can no longer start a sprite in the invisible off－screen area，nor can you rely on vertical timing．
Apparently only SOME Vnllo modules behave this way．please would TI inform us if this applies to EARLY releases or to the CURRENT release．
In 110 only is affected．Vn 100 doesn＇t keen count of sprites．

Special Thanks to Mike O'Regan for the Joystick Cure in last TIHONE. Anyone with Graphics talent out there- how about a LOGO for TIHOME, for TIDINGS and for a T*Shirt (who can alford sweat shirts?).
Narm welcome GARY - PLEASE would you write lots about Assembly language for us BASTC programmers? NB: A dissassembler in the USA is listed at USम月95.....
NO news from TI in last TIHOME.... too busy looking for stock probably...

Vith so much discussion of TI's arices, here are some comparisonsof discount prices in the USA and in the UK.

Prices aivertised in the USA JO HOT include Sales Tax - Prices quoted in UK ads usually IncLijJs T. A.T.
TI have to pay SUSTOMS JUTY on their imports, and there is also the cost of actually lying the producte in.
Consider: In terms of engineering the TI product camot be compared with any other. True their firmware is rather poor.... but the product is made both to last, and to perform well.
Compare the TV display of a JRAGON to a $99 / 4 \mathrm{~A}$.
Take a good hard look at a 'cheap' 32 k expansion and TI's 32 k expansion - methods of construction are quite different.
I'm not defending TI's strange pricing policy on modules - but the hardware prices at least are not the rip-off they once were.

With reference to my mention in last issue of the International 79/4 Users Group - still waiting to hear anything new from them, including my order for software.

My Nov 82 issue of 99 er was posted over a month late, so we can assume that everyone connected with the $99 / 4$ over there is becoming quite swamped with work (75,000 orders per month: Now).
No doubt Paul is also becoming busy with lots of new members. He is probably too polite to say so, but please - be patient

New programs in -but not reviewed and hence not yet for saleinclude a version of FROGGER (E9, ExBas) and some simulations of parachuting and hang gliding - these are subject to what I suspect may be lengthy negotiation and wont be cheap. MAY have news for next TIDINGS.

Permission almost granted to issue on tape translated programs from Computer \& Video Games - news next issue perhaps.

NB: ADS IN TTHOME: There have been delays in publication in the past (now improving) and it has not been possible to estimate when an ad. is going out! IF you have a current catalogue from me which shows a higher price than is advertised in the CHRRENT TIHOLIE, please mention tihome and send the advertised price.
Catalogue prices take precedence over ads in JARLIFR tihome's.
$+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+\cdots+-+-+-+-+-+-+-+-+-+-+-+-$
As this is a long way from pare 1 and you may not have seen
my address yet - 10 Alston Road, STOCKPORT, Cheshire, SK4 5AH
You MUST use the post code!
If you NEED to ring, please do so after 7 pm and not on 'Wednesdays. Ta.
As I seem to be spending my every waking hour recording tapes, a reply to a letter may take a day or so (and please send an SAE!).
However if you have a problem please write - interesting or recurrent problems will receive an honorable mention in TIDTNGS.

I have a mountain of software to review, another mountain 'in transit' (including an Assembly Language 'Asteroids' for the mini-nem), contracts to negotiate, dealers to supplyhelp: why don't days have 30 hours....
A second (UK) source confirms the new TI computer next year.

On which note I must take my leave and abandon this ms to the postal services to assist your editor in the early production of this copy of TIDINGS.
Happy New Year - and Happy Computing.

The following programs are available by waIL ORDER ONLT from: Stephen Shaw, 10 Alstone Road, STOCKPORT, Cheshire, SK4 5aH.
Prices include pkp and are valid to 31.3 .83 . UK orders only-sorry.

łeluterware presents
BLUEGRASS SWEEPSTAKES

1st - ROCKY
2nd - INVICTUS
3rd - OLD PAINT

"You pays your money and you takes your chances" Turn your $\$ 1000$ into a million in this 9 race game for 1 to 8 players. Go for the "big bucks" in the Sweepstakes Race Excellent graphics make this an enduring family favorite (great for parties, too).
(BASIC only)
BLUEGRASS SWEEPSTAKES.... $\leqslant 6$
ppd.

NETY:

IN TI BASIC

from Kuhl Software

$$
\mathrm{e} 6.00
$$

Simple lo-res animation.
You vs your computer in a fishing contest - 3 types of fish, 5 baits, 5 locations.
After selecting your choice of combination you just watch your rod and press ' B ' fhen the fish nibbles the bait. Suitable for younçer owners, not unsuitable for older ones.
Good jrozranming. food demo prog.

Mr. \& Mrs. S. Shaw 10 Alstone Road STOCKPORT
Cheshire SK4 5AH

Coming Soon: At last:
Progrems from UNT:2BE SORTAARE Reported as On Their Nay...
crossulis- numeric scrabble
SMASH- Program compactor and later on

DISPLAY ZNHANCEAKT jackage. Possibly available Jan 83?

ERODUCT NENS:
STARSHIP PBGASUS: A revised version has been issued from 12.11.82, with improved chances of survival. .YINGING IT: A revised version has been issued since 11.11 .82 with an improved display for Game 1, and slightly easier weather.
If you have Vnl and would lice the new versions, return your tape with £2. If not bourht direct please state where ourchased.
An extra 'Hints' sheet has also come in for WINGING IT (11.11.82)just send an SAE if you'd like it but not version 2.

ALL OF THE PROGRAMS ON THIS PAGE ARE AVAILABLE BY HAIL ORDER

ONLY from: Stephen Shaw

10 Alstone Road
STOMKPORT
Cheshire
SK4 5AH

A large illustrated cataloege with over 90 itms of software is yours for just
22p in stamps.
(Please USE the post code:) (Your address in CAPITALS please:) LOTS of new programs since last TIDINGS -

Here are some of the more
interesting new ones:

Hewterware PRESENTS UP PERISCOPE

* mpoatairt

Prices given in last TIHOWS were stated as valid to 30.1 .83. I regret that due to continuing falls in exchange rates those prices will now only be valid to 31st December 1982.
Wenbers of THHOw may order at those prices to 30.12 .82 , although I shall be increasing catalogue prices before then. Sorry!

I have had a telephone call to say programs from FFF SOFTMARE are on vay - may be in next issue.

ADVENTURE PROGRAMS in EXTZNDED BASIC - both require 32 k EXPAIISION RAM: Both by Jam Pincus from Data Systems:
MAD SCIENTIST - rescue the daughter before dad blows the (large) house up. A simple adventure suitable for begimers - on tape \&8-00 STONEVILLE MANOR- A more advanced adventure with lots of things you have to do - you can't just wander around with this one: A big program so DISK ONLY for \& $10-00$

From MIKE O'REGAN in EXTENDED BASIC we have a word PROCESSOR for the THERMAL PRINTER (NOT the dot-matrix printer) on tape For \& 8-00
and with Dave Hamilton a simple but original and entertaining game PEN RHE IIG - trap the pig in one of the pens, as he bounces off (sometimes through...) your walls. Nith invisible wall optiond Recommended for family fun and only
$\varepsilon 4-00$ on tape. ($\begin{gathered}T \\ \text { BASIC }\end{gathered}$

$\left[\begin{array}{l}\square \\ \hline\end{array}\right.$ \qquad

Hidden Statements In Extended Basic

Recently we have found some Interstlong Ihings when using the Extended Gasic with the 99/4A console. For nstance. Iny this:

10 FOR A 11 TO 100
20 PRINT A
30 NEXT A
Lei's count the keystrokes ...39. Now type LIST. What we get is an exact echo of the program we typed In above. Now let's try something a litle different. Type In the following: for the purpose of the indicatlon of when to bold down the conirol key and lype a letter, we will use the following symbol: "@". This would mean If you see @C. you would hold down the conirol key whlle depressing the letter C on the keyboard.)

10 @L (enter)
20 @: (enter)
$30 @ V$ lenter)
Now type LIST. Your screen should read:

> 10 FOR
> 20 PRINT
> 30 NEXT

Now let's take this series a step further. This time let's use our old friend the REM character (!) and type the following: (Don't forge (when you see the @you musi depress the control key as well as the key indicaled.l

10! @L $\wedge=100$ (enter)
20! @: A lenter)
30!@VA (enter)
Now lype LIST. As you can sec. you now have our original program on your sereen proceded with (!). the REM statement. If we were to remove the (!) REM statement elther manually or by using a program to do so(this can be done with

"TI informs us that this was not their original intention for these furctions."

a disk system only), and type RUN. the programwould execute In the same way that our original program did.

Although Tl informs us that ihis was not thelr origlnal Intention for these funcilons. and that they do not recommend this type of programming method, we have used it in several programs and find it to work qulle well.

For your convenience we have fisted sll of the hidden statements and the keys to make them operate.

Try working with this yourself. If you And anyother uses we missed. please let us know.

1 (TO)	2 (STET)	3 (.)	4 (:)
5 (:)	6 (1)	7 (1)	B (OPTION)
9 (OPEN)	0 (THEN)	$=$ (CALL ${ }^{\text {a }}$)	Q (UNTRACE)
W (READ)	E (GO)	R (INIUT)	T(RESTORE)
Y IDELETE)	U (RANDOMIZE)	1 (DEF)	O (UNBREAK)
P(tRACE)	(IAND)	A (ELSE)	S (DATA)
$\mathrm{D}(\mathrm{FF})$	F(GOTO)	G (GOSUL3)	H (RETURN)
U IDIM)	K IENDI	L (FOR)	: IPRINTI
K (REM)	X ISTOP)	c (!)	V (NEXT)
U ! : ${ }^{\text {l }}$	N IIBREAK)	M (LET)	$\geqslant(\mathrm{ON} \mid$

CLOSE ROTJTINE。
I am delighted to report that many more members have offered to become county contacts.

The list, at the moment, is thus:-
NOTTINGHAISHIRE
Mike o'Regan, 130 Stapleford Lane, Toton, Beeston, Notts, NG9 6GB Tel:-06.076-5482

OXFORDSHIRE
Peter Brooks, 68 Kelburne Road, Cowley, Oxford, $0 \times 43 \mathrm{SH}$.
STRATHCLYDE
Peter Phillips, 16 Lomond Road, Bearsden, Glasgow, G61 1BA.
LANCASHIRE
Gerry Howard, Briarcross Cottage, 72 Watilng Street, Assetside, Bury, BL8 32W

LINCOLNSHIRE
B \& A O'Reilly, 38 Regent Ave, Birchmood, Lincoln, LN6 OPQ.
SOUTH LONDON
Peter Wallis, 8 Abbey Grove, Abbey Wood, London, SE2 9EX.
Co DURHAM
I G Haszeldine, 59 Hundens Lane, Darlington, Co Durham, DLl lJJ.
EAST LONDON
Alec Stanley, 4 Victoria Court, Victoria Road, S. Woodftrd, London, Tel:-01.530-6248 E18 1LH.

ESSEX
B E Bailey, Haldane M111, Althorne, Essex, CM3 6BX.
Tel:- 06.217-40189
NORTH LONDON
Arieh Yacobi, 56 Winchester Road, Kenton, Harrow, Middx, HA3 9PE.
DORSET
Jeff Freeman, Cutlers, Abbey Road, Sherborne, Dorset, DT9 3LE.
DYFED
Tim Cairaes, Caedy Crib, Talybont, Nr Aberystwith, Dyfed, SY24 5EZ
KENT
G Tapp, 48 Mangravet Ave, Maidstone, Kent, ME15 9BG
WEST MIDLANDS
N Clemons, 45 Seagrave Road, Coventry, Midlands
HEREFORD \& WORCESTER
M A Morris, 32 Eastwood Drive, Kidderminster, Wores, DYlO 3AW.
GIOUCESTER
R Wright, 8 Linden Road, Gloucesterg Glos, GLl SHD.
EAST SUSSEX
C Scally, 40 Barrhill Avenue, Patcham, Brightong E Sussex. Tel:-02.735-03268

If you have any problems, ring your local county contact; or ring me on 01.640-7503 after 7 p. is. in the evening. 1 will try to help you.

Best wishes and God bless

Happy Christmas and a Good New Year

Paul Dicks

Published:- TIHOME, 157 B1shopsford Road, Morden, Surrey. Printed:- SECRETARY BIRDS, 19 Coombe Road, New Malden, Surrey.

[^0]: ! have Jusi had a letier fran (aember7) MJ SEALHRD from Cornwall.

 He iella ge that he ordered
 three programs from 6EMINI, who aduartiae extanalively that they siock 99/4a ofitware. You must have esen Chopin - LES ETUBES ato. Pry SEAMARD telis me that not only did the Niol RECEIUE the software he ordered, but several phone calle to GEMINI have eatablistied the fact that they have NO SOFIWARE for the 99×4 IN SIOCK. I have Just phoned GEMINI, who aid that thay havent got 99/4a proyrams In arock Yeli!! but mould have. a ome MEXY HEEKII J aeem io have ha ard that seteotion irom Crioping before.

[^1]: "The LOAD AND RUN option allows you to load and execute assembly language programs developed with the EDITOR/ASSENBIER package and stored on diakette." Grrrrr!:

