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Proof. For 0 < q < 1, 

1= ~~ P(a)= la= M(n)n 

o E s aE S Dn (q Dn (q) k=(k q 

M(n) 
Thus, Dn(q) = k )q k, for 0 < q < 1. For polynomial functions, this can only 

k =Ok 
happen if they are identical. 

As mentioned earlier, we do not know of a simple formula for the numbers k k) It 
would also be interesting to know if these numbers arise in other contexts. 

R EFER ENCE 

1. Curtis Cooper, Geometric series and a probability problem, Amer. Math. Monthly 93 (1986), 
126-127. 
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The concept of a finite-state machine is important in a discrete mathematics course 
because of its role in the study of formal languages. Typical textbook examples often 
have just a few states and inputs: for example, parity check machines and binary 
adders. It is desirable to have a few more-complex examples to present to the student 
as supplementary material; at the same time, such examples should be on a fairly 
elementary level. One such example, Think-A-Dot, was discussed in detail in [1]. The 
example that we discuss here is the game of Quatrainment [2], which may be 
implemented on a variety of home computers, but which may equally well be played 
on ordinary graph paper. It may be completely analyzed using such elementary tools 
as: mathematical modeling, Boolean matrices, modulo 2 arithmetic, and algorithms. It 
is also interesting as an example of matrix theory over a finite field. 

One begins playing Quatrainment by placing a random pattern of X's in each of 
two 4-by-4 grids called A and B. For example: 

11x x x x Ix LJKZ 
A B 

FIGURE 1 
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The object of the game is to modify the pattern of A, using a finite sequence of 
moves, so that it matches the pattern of B. Each move is made by selecting one of the 
16 cells of A, which we label from 0 to 15, starting with the upper left comer, as 
indicated in FIGURE 2. 

4 5 6 i7 

8 9 10 11 FIGURE 2 

12 13 14 15 

Each cell of A has one of two states: it is marked by an X, or else it is blank. Since 
there are 4 corner cells, 4 center cells, and 8 edge cells, there are three types of moves, 
which are defined by the following rules: 

If a corner cell is selected, then reverse the states of the six cells in the triangle at 
that cell (FIGURE 3a). 

If a center cell is selected, then reverse its state as well as the states of its four 
neighbors (FIGURE 3b). 

If an edge cell is selected, then reverse the states of its three neighbors (FIGURE 3c). 

1X1 1 1rlSltl |f 1t 

Choosing Cell 0 Choosing Cell 5 Choosing Cell 1 

FIGURE 3a FIGURE 3b FIGURE 3c 

In addition, we could suppose that the game is played on a computer and that the 
computer keeps track of the elapsed time as well as the number of moves. The task 
should be accomplished in minimum time using the least number of moves. We show 
below that there is always a unique solution using a minimum number of moves. 

The Finite State Machine and Its Matrix Representation 

As a finite state machine, each cell of A is either blank or is marked with an X, so A is 
capable of having 216 distinct states. Each of these states may be represented as a 
4-by-4 matrix of O's and l's; an entry 1 occupies the position of each cell that is 
marked with an X, and an entry 0 occupies the position of a blank cell. Thus the set 
of states is just the set Y of 4-by-4 matrices with entries 0 or 1. The inputs of the 
finite state machine are the cell numbers I = {0, 1, 2,..., 15), and for each state S and 
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input k E I, the next state fk(S) is the state derived from S by selecting the input cell 
k e L. For example, if k = 0 and if S is the state A of FIGURE 1, then 

01 I 1 0 i I 
r-- 

s = -_ and fo(S)= 2--). 

0 1 0 1 0 1 0 1 

We may define output functions, if desired, to be identical with the next-state 
functions. 

We further note that the next-state functions can be described in terms of matrix 
addition. For example, associated with the moves that correspond to cell choices 0, 5, 1 
of FIGURE 3, we have matrices 

I 110~ (0 I I 0 0 1 0 
1 0 0 M 1 0 0 10 0 0 0 

0 00 0 0) 0 0 0 00 0 

Similarly we have a matrix Mk for each k E I. If we add the entries of matrices using 
modulo 2 arithmetic, then we have 

fk(S) = S+ Mk, forall k E I and S E SY. 

Using the fact that matrix addition is both associative and commutative, two facts are 
now evident: 

(fk0fk)(S)=S+Mk+Mk=S, sofkofk=id, (1) 

where id is the identity function on 9", and 

(fkofj)(S)=S+Mj+Mk=S+Mk+Mj=(fjofk)(S), sofkofj=fjofk. (2) 

Thus the semigroup l* of the machine consisting of all finite input sequences is 
actually a commutative group in which each input element is its own inverse. Also, 
associated with each word k1 k2 ... E 1* is the matrix 

h(klk2 .. 
kn)=Mkl+Mk2+ ' +Mk,5 

and this formula defines an isomorphism of 1* with the additive subgroup (or linear 
subspace) Xf of SY that is generated by the selection matrices M0o M1,..., M15. 

A Solution Algorithm 

In terms of finite state machines, the object of Quatrainment may be rephrased as 
follows. Given two states A and B, determine a sequence- k1 k2 ... kn of inputs such 
that (fkn ?. . .' fk o fk,)(A) = B. A solution algorithm exists if we can find a set of 
input sequences, each of which will change the state of just one chosen cell. By 
rotation and reflection, it suffices to obtain a sequence that will change the state of just 
one corner cell, center cell, or edge cell. For example, starting with the zero-matrix 
state, we can change the state of cell 0 by the sequence of moves indicated below in 
(3). Similarly, the sequence (4) will change the state of cell 5, and the sequence (5) 
will change the state of cell 1. 



32 MATHEMATICS MAGAZINE 

0 0 0 0 1 1 I 0 1 010 1 0 0 0 
o o o o fo I Io 0 0 O 1 0o O 1 0 1 
( 0 0 0 1 0 0 0 1 1 0 0 11 8 0 

(3) 
1 0 0 0 1 0 0 ( 0 0 0 

AS 0 0 0 1 fl 1 0 0 0 0 fl 4 0 0 0 0 

O O O O O 0 1 0 0 0 O O 
0 1 0 0 0 1 0 1 0 0 O O 

(0 000 0 1 1 1 I1 1 O 0 1 
0 0 0 O A O O 1 1 A I I 0 1 A I 0 1 0 
0 0 O O 0 00 1 1 0 1 1 1 1 

0 00 0 0 0 00 0 0 00 0 0 0 0~ 

f7 1 0 0 0 f9 1 1 0 0 fl2 O 1 0 0 
-> ~ ~~~I-> I4 O 1 1 0 1 0 0 0 0 1 0 0 () 

0 0 0 O 0 1 0 0 1 0 1 0 

fli3 O 1 0 0 

(000 O O 11 1 1 0 \ 001 10 /10 0 O 
O ? ? ? fo 11 i o ol 

A 
11 1 1 

ol 

A 1l 1 0 11 
o o o o 1 o O ?I 11 0 ? ?I 1 o o 11 

O O O O 0O O 0 01 0 O 0 01 0 O 0 01 

10 1 0 0 10 1 0 0 10 1 0 O0 

A4 1l 0 0 1 A 8 lo O O fl f30 0 0 1 5 
1? o o 1 1? 1 o 1 1? o o 1 

5 

0 O O 0 1 0 0 01 0 O 1 0/ 

10 1 0 0 10 1 0 O0 
fi 4 00 o o lf5l o o 0 0 

1? o 1 1 1? o o ?l 

0O 1 1 11 0o o o o 

The above input sequences are most easfly remembered in terms of the patterns 
indicated in FIGURE 4. If we select the six cells checked in FIGURE 4a, we change the 
state of only cell 0. Similarly, FIGURE 4b indicates the cell choices needed to change 
the state of only cell 5, and Figure 4c gives the choices needed to change only cell 1. 

Thus a solution always exists. Simply change the state of each cell of A that does 
not match the corresponding cell of B by using a finite sequence of inputs as indicated 
by the above patterns, and the task is done. However, if we are required to change 
several cells of A, then in all likelihood some of the input choices will be made several 
firnes; buit this is nnt necessarv, because, eacb innput choice, is1 its own groupn inverse. 
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M X UX X 

_.___ _- _ P _ ___ 

Change a Corner Change a Center Change an Edge 

FIGURE 4a FIGURE 4b FIGURE 4c 

Thus, each input need be used just once or not at all, and so there should be a solution 
which uses at most 16 moves. 

A Minimal Algorithm 

Let us look again at our initial example, where 

1 1 0 1) O 1 1 1) A ~ ~ l and B(( i A = 1 1 1 1 
n 1 0 

0 1 0 1 1 1 0 1 

Given two such states, we construct the matrix M according to the following rule: an 
entry of M is 0 if the corresponding entries of A and B are the same, otherwise it is 1. 
In other words, M = A + B. Since entry addition is modulo 2, this means that 
A + M = B. In our example: 

M= ( 0 1 1 
0 1 0 1. 
1 0 0 0 

The question now is this: Do there exist distinct inputs 0 < k1 < k2 < * < k, < 15 
such that M = Mkl + Mk2+ . * +M k? In the terminology of vector spaces, do 
MO M1, .. ., M15 form a basis for S?? The answer is yes. Above we saw how to express 
each of the standard basis matrices EO E 1,..., E15 in terms of MO M1,..., M15, 
where Ek has a 1 in cell k and all of its other entries are zero. Thus MO, M1,..., M15 
generate all of tY; and the linear dimension of S? over the field of integers modulo 2 is 
16, so they form a basis for tY. Since they do form a basis, each such M E Y" is 
expressible uniquely as a sum of at most 16 of the selection matrices MO, M1,. . ., M15. 
Thus there is a unique solution having a minimum number of moves. In the above 
example, it is not difficult to verify that 

M= MO + Ml + M3+ M4+ M7 + M9 + M1o + M12. 

Unfortunately, from a practical point of view, in order to express an M as a unique 
sum of the matrices MO, M1,..., M15, one must either solve a 16-by-16 linear system, 
or one must make a chart like those of FIGURE 4 for each entry of A that must be 
changed and then determine from these charts which cell choices must be made an 
odd number of times. Both of these procedures are time consuming; keep in mind that 
the object of the game is to do the task in as few moves as possible and in minimal 
time. Therefore, it is still a challenging game for humans. 
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Some Modifications 

We may try to play games with the game itself either by generalizing it to a larger 
(even higher-dimensional) grid, or by modifying the effect of the various cell choices. 
If we keep the same grid, there are two obvious cell choice modifications that may be 
made: 

(a) Make an edge cell selection reverse the states of the selected cell as well as its 
three neighbors; for example, for cell 1 we would have 

1 1 1 0 )1 0 1 0 

m = I ? ? ) instead of Mi( = 8 o 

(b) Make the corner and center cell selections behave in the chess-board way that 
the edge cell selections behave, that is, do not change the states of two 
neighboring cells. 

For example, for cells 0 and 5, we would have 

1 0 1 0 1 1 1 0 

M= | ? 8 ) instead of Mo= A 1 

and 

0 1 0 0 O 1 0 0 

M5 = | l 0 |instead of M5= i Y 4 
Unfortunately neither of these modified games is solvable in general because in 

neither case is the subspace -0 of S? equal to all of sY. Thus there will exist states A 
and B so that A + B = M 0 X, hence M will not be obtainable by any finite 
sequence of cell choices; it is a nice exercise for the reader to find such states. Here 
are the reasons for the claim. 

In modification (a), it is easily verified that 

MO+M3=M4+M7 MO+M12=ml+M 

M3 + M15= M2 + M14, M12 + M15 = M8 + M11 

so that # is generated by the 12 matrices M2, M3,.., M12, M3; and these are 
linearly independent, so the dimension of 4 is 12. 

In modification (b), it is easily seen that 

M5 + Mio = M2 + M7 + M8 + M13 

M6 + M9 = Ml + M4 + M1l+ M14 

so, for example, M5 and M6 can be eliminated to obtain a basis for A; in this case 
the dimension of # is 14. 
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