
i

TI
Forth

instruction Manual
2nd les edition

This document originally prepared in 1983 by
Leslie O’Hagan

Leon Tietz

John T. Yantis

—Edited and Expanded by Lee Stewart (2012 & 2013)

ii

Dedication
This diskette-based Forth Language system for the Texas Instruments TI-99/4A Home Computer
was adapted by Leon Tietz and Leslie O’Hagan of the TI Corporate Engineering Center from Ed
Ferguson’s TMS9900 implementation of the Forth Interest Group (FIG) standard kernel. This
system was placed in the public domain “as is” by Texas Instruments on December 21, 1983, by
sending one copy of this TI Forth Instruction Manual and the TI Forth System diskette to each of
the TI-recognized TI-99/4A Home Computer User Groups as of that date. There were no more
copies made, and none are available from Texas Instruments. TI Forth had not undergone the
testing and evaluation normally given a product which is intended for distribution at the time TI
withdrew from the Home Computer market. Although both the diskette and this manual may
contain errors and omissions, TI Forth for the TI-99/4A Home Computer will not be supported
by TI in any way, shape, form or fashion. What is contained in this manual and on the
accompanying TI Forth System diskette is all that exists of this system, and is its sole reference.

Texas Instruments Incorporated (hereinafter “TI”) hereby relinquishes any and all proprietary
claims to the software language known as “TI Forth” to the public for free use thereof, without
reservations on the part of TI. It should be understood that the TI Forth software language is not
subject to any warranties of fitness, either express or implied, by TI, and TI makes no
representations as to the fitness of the TI Forth software language for any intended application by
the user. Any use of the TI Forth software language is specifically at the discretion of the user
who assumes the entire responsibility for such use.

iii

Table of Contents

Dedication...iii
1 Introduction..1

 1.1 Editor’s Note—1st LES Edition..2
 1.2 Editor’s Note—2nd LES Edition..3
 1.3 Starting Forth..3

2 Getting Started..5
 2.1 Stack Manipulation...6
 2.2 Arithmetic and Logical Operations ..6
 2.3 Comparison Operations ...7
 2.4 Memory Access Operations ...7
 2.5 Control Structures ..8
 2.6 Input and Output to/from the Terminal ..9
 2.7 Numeric Formatting ...10
 2.8 Disk-Related Words..10
 2.9 Defining Words...11
 2.10 Miscellaneous Words..11

3 How to Use the Forth Editor...13
 3.1 Forth Screen Layout Caveat..14
 3.2 The Two TI Forth Editors...14
 3.3 Editing Instructions...14
 3.4 Changing Foreground/Background Colors of 64-Col Editor...16

4 Memory Maps...17
 4.1 VDP Memory Map...17
 4.2 CPU Memory..18
 4.3 CPU RAM Pad...19
 4.4 Low Memory Expansion...20
 4.5 High Memory Expansion..20

5 System Synonyms and Miscellaneous Utilities...21
 5.1 System Synonyms...21

 5.1.1 VDP RAM Read/Write...22
 5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK......................................23
 5.1.3 VDP Write-Only Registers...24
 5.1.4 VDP RAM Single-Byte Logical Operations...24

 5.2 Disk Utilities...24
 5.2.1 Disk Formatting Utility...25
 5.2.2 Disk and Screen Copying Utilities..25

 5.3 Listing Utilities...27
 5.4 Debugging..27

 5.4.1 Dump Information to Terminal...27
 5.4.2 Tracing Word Execution...28
 5.4.3 Recursion..29

iv

 5.5 Random Numbers...29
 5.6 Miscellaneous Instructions..30

6 An Introduction to Graphics..31
 6.1 Graphics Modes..31
 6.2 Forth Graphics Words...32
 6.3 Color Changes..32
 6.4 Placing Characters on the Screen..33
 6.5 Defining New Characters..34
 6.6 Sprites...35

 6.6.1 Magnification..35
 6.6.2 Sprite Initialization...36
 6.6.3 Using Sprites in Bit-Map Mode..37
 6.6.4 Creating Sprites...37
 6.6.5 Sprite Automotion...39
 6.6.6 Distance and Coincidences between Sprites...40
 6.6.7 Deleting Sprites...41

 6.7 Multicolor Graphics..42
 6.8 Using Joysticks...42
 6.9 Dot Graphics...44
 6.10 Special Sounds..45
 6.11 Constants and Variables Used in Graphics Programming...46

7 The Floating Point Support Package...47
 7.1 Floating Point Stack Manipulation..47
 7.2 Floating Point Fetch and Store..48
 7.3 Floating Point Conversion Words...48
 7.4 Floating Point Number Entry..48
 7.5 Floating Point Arithmetic..48
 7.6 Floating Point Comparison Words..49
 7.7 Formatting and Printing Floating Point Numbers...49
 7.8 Transcendental Functions...50
 7.9 Interface to the Floating Point Routines..50

8 Access to File I/O Using TI-99/4A Device Service Routines...52
 8.1 The Peripheral Access Block (PAB)...52
 8.2 File Setup and I/O Variables...53
 8.3 File Attribute Words...54
 8.4 Words that Perform File I/O...55
 8.5 Alternate Input and Output...59
 8.6 File I/O Example 1: Relative Disk File..60
 8.7 File I/O Example 2: Sequential RS232 File...61

9 The TI Forth 9900 Assembler...62
 9.1 TMS9900 Assembly Mnemonics..62
 9.2 Forth’s Workspace Registers..63
 9.3 Loading and Using the Assembler..63
 9.4 TI Forth Assembler Addressing Modes..64

v

 9.4.1 Workspace Register Addressing...64
 9.4.2 Symbolic Memory Addressing...65
 9.4.3 Workspace Register Indirect Addressing..65
 9.4.4 Workspace Register Indirect Auto-increment Addressing..65
 9.4.5 Indexed Memory Addressing..65
 9.4.6 Addressing Mode Words for Special Registers...66

 9.5 Handling the Forth Stacks...66
 9.6 Structured Assembler Constructs..67
 9.7 Assembler Jump Tokens...67
 9.8 Assembly Example for Structured Constructs...67
 9.9 Assembly Example Using ;CODE..68
 9.10 Using CODE and ;CODE without the Assembler...70

 9.10.1 CODE without the Assembler...70
 9.10.2 ;CODE without the Assembler..71

10 Interrupt Service Routines (ISRs)...72
 10.1 Installing a Forth Language Interrupt Service Routine..72
 10.2 An Example of an Interrupt Service Routine..73
 10.3 Installing the ISR..73
 10.4 Some Additional Thoughts Concerning the Use of ISRs..74

11 Potpourri...75
 11.1 BSAVE and BLOAD..75

 11.1.1 Customizing How TI Forth Boots Up...76
 11.1.2 An Overlay System with BSAVE/BLOAD...77
 11.1.3 An Easier Overlay System in Source Code...78

 11.2 Conditional Loads...79
 11.3 Memory Resident Messages...80
 11.4 CRU Words..80

12 TI Forth Dictionary Entry Structure..81
 12.1 Link Field...81
 12.2 Name Field..81
 12.3 Code Field...82
 12.4 Parameter Field...83

 Appendix A ASCII Keycodes (Sequential Order)..84
 Appendix B ASCII Keycodes (Keyboard Order)...86
 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth..................................88
 Appendix D The TI Forth Glossary...96

 D.1 Explanation of Some Terms and Abbreviations...96
 D.2 TI Forth Word Descriptions...97

 Appendix E User Variables in TI Forth...162
 E.1 TI Forth User Variables (Address Offset Order)..162
 E.2 TI Forth User Variables (Variable Name Order)..164

 Appendix F TI Forth Load Option Directory...166
 F.1 Option: -SYNONYMS..166
 F.2 Option: -EDITOR (40-Column Editor)..166

vi

 F.3 Option: -COPY..166
 F.4 Option: -DUMP...166
 F.5 Option: -TRACE..167
 F.6 Option: -FLOAT..167
 F.7 Option: -TEXT..167
 F.8 Option: -GRAPH1...167
 F.9 Option: -MULTI..168
 F.10 Option: -GRAPH2...168
 F.11 Option: -SPLIT..168
 F.12 Option: -VDPMODES...168
 F.13 Option: -GRAPH...168
 F.14 Option: -FILE..169
 F.15 Option: -PRINT...169
 F.16 Option: -CODE..169
 F.17 Option: -ASSEMBLER...169
 F.18 Option: -64SUPPORT (64-Column Editor)...170
 F.19 Option: -BSAVE..170
 F.20 Option: -CRU..170

 Appendix G Assembly Source for CODEd Words..171
 Appendix H Error Messages..177
 Appendix I Contents of the TI Forth Diskette..179
 Appendix J TI Forth Bugs..204
 Appendix K Diskette Format Details...206

 K.1 Volume Information Block (VIB)..206
 K.2 File Descriptor Index Record (FDIR)...207
 K.3 File Descriptor Record (FDR)..207
 K.4 Comparison of TI Forth and TI File System Layouts on the Same Disk........................208

 K.4.1 TI Forth System Disk...209
 K.4.2 TI Forth Work Disk..211

 Appendix L TI Forth System for Larger Disks..212
 L.1 Larger System Disk..212
 L.2 Larger Work Disk...213
 L.3 Updating Disk Utilities for Larger Disks..213

 Appendix M Notes on Radix-100 Notation..217
 Appendix N Adding True Lowercase Character Sets...218

 N.1 True Lowercase for Text and Graphics Modes..218
 N.2 True Lowercase for Bitmap mode..220

 Appendix O TMS9900 Assembly Source Code for TI Forth...222
 O.1 DRIVER—Part 1 of FORTHSAVE...222
 O.2 ASMSRC—Part 2 of FORTHSAVE..240
 O.3 BOOT—FORTH..273
 O.4 Generating TI Forth from Source Code..278
 O.5 FSAVE Assembly Source Code...279

vii

viii

1 Introduction 1

1 Introduction
The Forth language was invented in 1969 by Charles Moore and has continually gained
acceptance. The last several years have shown a dramatic increase in this language’s following
due to the excellent compatibility between Forth and mini- and microcomputers. Forth is a
threaded interpretive language that occupies little memory, yet, maintains an execution speed
within a factor of two of assembly language for most applications. It has been used for such
diverse applications as radio telescope control to the creation of word processing systems. The
Forth Interest Group (FIG) is dedicated to the standardization and proliferation of the Forth
language. TI Forth is an extension of the fig-Forth dialect of the language. The fig-Forth
language is in the public domain. Nearly every currently available mini- and microcomputer has
a Forth system available on it, although some of these are not similar to the FIG version of the
language.

The address for the Forth Interest Group is:

Forth Interest Group
P. O. BOX 1105
San Carlos, CA 94070

This document will cover some of the fundamentals of Forth and then show how the language has
been extended to provide easy access to the diverse features of the TI-99/4A Computer. The
novice Forth programmer is advised to seek additional information from such publications as:

Starting FORTH (1st Ed.)
by Leo Brodie
published by Prentice Hall

Using FORTH
by Forth Inc.

Invitation to FORTH
by Katzan
published by Petrocelli Books

In order to utilize all the capabilities of the TI-99/4A, it is necessary to understand its
architecture. It is recommended that the user who wants to use Forth for graphics, music, access
to Disk Manager functions or files have a working knowledge of this architecture. This
information is available in the Editor/Assembler Manual accompanying the Editor/Assembler
Command Module. All the capabilities addressed in that document are possible in Forth and
most have been provided by easy-to-use Forth words that are documented in this manual.

Forth is designed around a virtual machine with a stack architecture. There are two stacks: The
first is referred to variously as the data stack, parameter stack or stack. The second is the return
stack. The act of programming in Forth is the act of defining procedures called “words”, which
are defined in terms of other more basic words. The Forth programmer continues to do this until
a single word becomes the application desired. Since a Forth word must exist before it can be
referenced, a bottom up programming discipline is enforced. The language is structured and
contains no GOTO statements. Successful Forth programming is best achieved by designing top
down and programming bottom up.

2 1 Introduction

Bottom-up programming is inconvenient in most languages due to the difficulty in generating
drivers to adequately test each of the routines as they are created. This difficulty is so severe that
bottom-up programming is usually abandoned. In Forth, however, each routine can be tested
interactively from the console and it will execute identically to the environment of being called
by another routine. Words take their parameters from the stack and place the results on the stack.
To test a word, the programmer can type numbers at the console. These are put on the stack by
the Forth system. Typing the word to be tested causes it to be executed and when complete, the
stack contents can be examined. By writing only relatively small routines (words) all the
boundary conditions of the routine can easily be tested. Once the word is tested (debugged) it can
be used confidently in subsequent word definitions.

The Forth stack is 16 bits wide. [Editor’s Note: In Forth, a 16-bit value is known as a cell;
hence, the stack is one cell wide.] When multi-precision values are stored on the stack they are
always stored with the most significant part most accessible. The width of the return stack is
implementation dependent as it must contain addresses so that words can be nested to many
levels. The return stack in TI Forth is 16 bits wide.

Disk drives in TI Forth are numbered starting with 0 and are abbreviated with “DR” preceding
the drive number: DR0, DR1, etc. Other TI languages (TI BASIC, TI Extended BASIC, TI
Assembler, etc.) and software refer to disk drives starting with 1 and the abbreviation “DSK”
preceding the disk (drive) number: DSK1, DSK2, etc. From this you can see that DR0 and
DSK1 refer to the same disk drive. When referring to the disk drives by device names, they will
always be DSK1, …, such as part of a complete file reference, e.g., DSK1.MYFILE.

Keyboard key names in this document will be offset with “<>” and set in the italicized font of the
following examples: <ENTER>, <CTRL+V>, <FCTN+4>, <BREAK> and <CLEAR>. Incidentally, the
last three key names listed refer to the same key.

 1.1 Editor’s Note—1st LES Edition

The source for this document was a series of sixteen files named A, B, C, …, P in TI-Writer
format, which I had purchased from the MANNERS (Mid-Atlantic Ninety-NinERS) TI Users
Group shortly after TI put TI Forth into the public domain. I do not know who deserves the
credit for originating these files; but, it was always my understanding they came from TI and that
the printed document we all received with the TI Forth system was prepared in and printed from
TI Writer. However, the A ‒ P files have differences from the printed document. I have
attempted to correct those differences; but, I have also taken the liberty of elaborating on the
original in an effort to make it easier to understand and to correct known bugs. I have added a
new chapter, “12 TI Forth Dictionary Entry Structure” and three new appendices, “J TI Forth
Bugs”, “K Diskette Format Details” and “L TI Forth System for Larger Disks”.

Though I have been careful with my additional coding, as with anything else in this document,
you assume responsibility for any use you make of it. Please, feel free to contact me with
comments and corrections at lee@stewkitt.com.

—Lee Stewart
February, 2012
Silver Run, MD

1 Introduction 3

 1.2 Editor’s Note—2nd LES Edition

This second edition includes numerous corrections to the first edition as well as many additions:

• A note of explanation in § 7.7 on output of exponential format.

• A better explanation of the status (“screen offset”) and flag/status bytes in § 8.4 .

• A much expanded Chapter 9 “The TI Forth 9900 Assembler”, including § 9.10 that
explains how to translate to machine code from assembly code words defined with CODE
and ;CODE .

• Some corrections and additions to Appendix G “Assembly Source for CODEd Words”.

• More bugs corrected in Appendix J .

• A discussion in a new Appendix M “Notes on Radix-100 Notation” of the notation
used for floating-point numbers in the TI-99/4A.

• A new Appendix N “Adding True Lowercase Character Sets”.

• Appendix O “TMS9900 Assembly Source Code for TI Forth” annotates the source
code and discusses how to build the TI Forth system from scratch.

—Lee Stewart
May, 2013

Silver Run, MD

 1.3 Starting Forth

To operate the TI Forth System, you must have the following equipment:

TI-99/4A Console
Monitor
Memory Expansion
Disk Controller
1 (or more) Disk Drives
Editor/Assembler Module
RS232 Interface (optional)
Printer (optional)

See the manuals accompanying each item for proper assembly of the TI-99/4A system.

To begin, power up the system. The TI Color-Bar screen should appear on your monitor. (If it
does not, power down and recheck all connections.) Press any key to continue. A new screen
will appear displaying a choice between TI BASIC and the Editor/Assembler. To use Forth,
select the Editor/Assembler.

On the next screen choose the LOAD AND RUN option. The computer will ask for a FILE NAME.
After placing your TI Forth System disk in the first drive, type “DSK1.FORTH” and press
<ENTER>.

The TI Forth welcome screen will display a list of load options (or elective blocks). Each option
loads all routines necessary to perform a particular group of tasks:

4 1.3 Starting Forth

Load Option Loads Forth Words Necessary to: Chapter

-SYNONYMS Perform VDP reads and writes. Random number generators and
the disk formatting routine are also loaded.

5

-EDITOR Run the regular, 40-column TI Forth editor. 3

-COPY Copy Forth screens1 and Forth disks. String store routines are also
loaded.

5

-DUMP Execute DUMP and VLIST. 5

-TRACE Trace the execution of Forth words. 5

-FLOAT Use floating-point arithmetic. 7

-VDPMODES Change display screen to any of the 6 available VDP modes. 6

-TEXT Change display screen to Text mode. 6

-GRAPH1 Change display screen to Graphics mode. 6

-MULTI Change display screen to Multicolor mode. 6

-GRAPH2 Change display screen to Graphics2 (bit-map) mode. 6

-SPLIT Change display screen to either of the two Split modes. 6

-FILE Utilize the file I/O capabilities of the TI-99/4A. 8

-PRINT Send output to an RS232 device. 8

-64SUPPORT Run the 64-column TI Forth editor. 3

-CODE Write assembly code in hexadecimal. 9

-ASSEMBLER Write routines in TI Forth Assembler. 9

-GRAPH Utilize the graphics capabilities of the TI-99/4A. 6

-BSAVE Save dictionary overlays to diskette. 11

-CRU Access the Forth equivalents of TI-Assembler mnemonics: LDCR,
STCR, SBO, SBZ and TB.

11

To load a particular package, simply type its name exactly as it appears in the list. For example,
to load the graphics package, type -GRAPH and press <ENTER>. You may load more than one
package at a time.

The list of load options may be displayed at any time by typing the word MENU and pressing
<ENTER>. See Appendix F for a detailed list of what each option loads.

1 A Forth screen is also called a block and consists of 16 lines of 64 characters for a total of 1024 characters. When a
Forth screen is loaded from disk, 1024 characters are copied from the disk into a VDP RAM buffer. This is
explained in more detail later in this document.

2 Getting Started 5

2 Getting Started
This chapter will familiarize you with the most common words (instructions) in the Forth Interest
Group version of Forth (fig-Forth). The purpose is to permit those users that have at least an
elementary knowledge of some Forth dialect to easily begin to use TI Forth. Those with no Forth
experience should begin by reading a book such as Starting FORTH, (1st Ed.) by Leo Brodie.
Appendix C is designed to be used with this particular text and lists differences between the Forth
language described in the book (poly-Forth) and TI Forth.

A word in Forth is any sequence of characters delimited by blanks or a carriage return (<ENTER>).
In this document, all Forth words will be set in a bold mono-spaced font that distinguishes the
digit ‘0’ from the capital letter ‘O’ and will always be followed by a blank, even when
punctuation such as a period or a comma follows. For example, DUP is such a Forth word and is
shown also at the end of this sentence to demonstrate this practice: DUP . This obviously looks
odd; but, this notation is necessary to avoid ambiguity when discussing Forth words because
many of them either end in or, in fact, are such punctuation marks themselves. For example, the
following, space-delimited character strings are all Forth words:

. : , ' ! ; C, C! ;CODE ? ." !"

The following convention will be used when referring to the stack in Forth:

(n1 n2 --- n3)

This diagram shows the stack contents before and after the execution of a word. In this case the
stack contains two values, n1 and n2, before execution of a word. The execution is denoted by
“---” and the stack contents after execution is n3. The most accessible stack element is always on
the right. In this example, n2 is more accessible than n1. There may be values on the stack that are
less accessible than n1 but these are unaffected by the execution of the word in question.

The return stack may also be indicated beside the parameter stack (the stack) with a preceding
“R:”, especially when both stacks are involved, as follows:

(n ---) (R: --- n)

In addition, the following symbols are used as operands for clarity:

SOME SYMBOLS USED IN THIS DOCUMENT

n, n1 , ... 16-bit signed numbers

d, d1 , ... 32-bit signed double numbers

u 16-bit unsigned number

ud 32-bit unsigned double number

addr, addr1 , ... memory addresses

b 8-bit byte (in right half of word)

c 7-bit character (in right end of word)

flag Boolean flag (0 = false, non-0 = true)

| separates alternate results

6 2 Getting Started

 2.1 Stack Manipulation

The following are the most common stack manipulation words:

DUP (n --- n n) Duplicate top of stack

DROP (n ---) Discard top of stack

SWAP (n1 n2 --- n2 n1) Exchange top two stack items

OVER (n1 n2 --- n1 n2 n1) Make copy of second item on top

ROT (n1 n2 n3 --- n2 n3 n1) Rotate third item to top

-DUP (n --- n n | n) Duplicate only if non-zero

>R2 (n ---) (R: --- n) Move top item on stack to return stack

R> (--- n) (R: n ---) Move top item on return stack to stack

R (--- n) (R: n --- n) Copy top item of return stack to stack

 2.2 Arithmetic and Logical Operations

The following are the most common arithmetic and logical operations:

+ (n1 n2 --- n3) Add

D+ (d1 d2 --- d3) Add double precision numbers

- (n1 n2 --- n3) Subtract (n1 - n2)

1+ (n1 --- n2) Increment by 1

2+ (n1 --- n2) Increment by 2

1- (n1 --- n2) Decrement by 1

2- (n1 --- n2) Decrement by 2

* (n1 n2 --- n3) Multiply

/ (n1 n2 --- n3) Divide (n1 / n2)

MOD (n1 n2 --- n3) Modulo (remainder from n1 / n2)

/MOD (n1 n2 --- rem quot) Divide giving remainder & quotient

*/MOD (n1 n2 n3 --- rem quot) n1 * n2 / n3 with 32 bit intermediate

*/ (n1 n2 n3 --- n4) Like */MOD but giving quot only

2 >R and R> must be used with caution as they may interfere with the normal address stacking mechanism of Forth.
Make sure that each >R in your program has an R> to match it in the same word definition.

2 Getting Started 7

U* (ud1 u1 --- ud2) Unsigned * with double product

U/ (u1 u2 --- urem uquot) Unsigned / with remainder

MAX (n1 n2 --- n1 | n2) Maximum

MIN (n1 n2 --- n1 | n2) Minimum

ABS (n --- |n|) Absolute value

DABS (d --- |d|) Absolute value of 32-bit number

MINUS (n1 --- n2) Leave two’s complement

DMINUS (d1 --- d2) Leave two’s complement of 32-bits

AND (n1 n2 --- n3) Bitwise logical AND n3

OR (n1 n2 --- n3) Bitwise logical OR n3

XOR (n1 n2 --- n3) Bitwise logical exclusive OR n3

SWPB (n1 --- n2) Swap the bytes of n1 producing n2

SRC (n1 n2 --- n3) Shift n1 right circular n2 bits giving n3

SRL (n1 n2 --- n3) Shift n1 right logical n2 bits giving n3

SRA (n1 n2 --- n3) Shift n1 right arithmetic n2 bits giving n3

SLA (n1 n2 --- n3) Shift n1 left arithmetic n2 bits giving n3

 2.3 Comparison Operations

The following are the most common comparisons:

< (n1 n2 --- flag) True if n1 less than n2 (signed)

= (n1 n2 --- flag) True if top two numbers are equal

> (n1 n2 --- flag) True if n1 greater than n2

0< (n --- flag) True if top number is negative

0= (n --- flag) True if top number is 0 (i.e. NOT)

U< (u1 u2 --- flag) Unsigned integer compare

 2.4 Memory Access Operations

The following operations are used to inspect and modify memory locations anywhere in the
computer:

@ (addr --- n) Replace word address by its contents

! (n addr ---) Store n at address (store a word)

8 2.4 Memory Access Operations

C@ (addr --- b) Fetch the byte at addr

C! (b addr ---) Store b at address (store a byte)

? (addr ---) Print the contents of address

+! (n addr ---) Add n to contents of address

CMOVE (from_addr to_addr u ---) Block move u bytes.

FILL (addr u b ---) Fill u bytes with b beginning at addr

ERASE (addr u ---) Fill u bytes beginning at addr with 0s

BLANKS (addr u ---) Fill u bytes with blanks beginning at addr

 2.5 Control Structures

The following sets of words are used to implement control structures in Forth. They are used to
create all looping and conditional structures. These structures may be nested to any depth. If
they are nested improperly an error message will be generated at compile time and the word
definition will be aborted.

DO … LOOP DO sets up a loop with a loop counter. The stack
contains the first and final values of the loop counter.
The loop is executed at least once. LOOP causes a
return to the word following DO unless termination is
reached.

DO (end+1 start ---)

I (--- n) Used between DO and LOOP. Places value of loop
counter on stack.

J (--- n) Used when DO LOOPs are nested. Places value of next
outer loop counter on the stack.

LEAVE (---) Causes loop to terminate at next LOOP or +LOOP.

DO … +LOOP DO as above. +LOOP adds top stack value to loop
counter (index)DO (end+1 start ---)

+LOOP (n ---)

IF … ENDIF IF tests the top of stack and if non-zero (true), the
words between IF and ENDIF are executed. Otherwise,
they are skipped and execution resumes after ENDIF.

IF (flag ---)

IF … ELSE … ENDIF IF tests the top of stack and if non-zero (true), the
words between IF and ELSE are executed. If the top of
the stack is zero (false), the words between ELSE and
ENDIF are executed. Execution then continues after
ENDIF .

IF (flag ---)

THEN May be used as a synonym for ENDIF .

BEGIN … UNTIL Loop which executes the words between BEGIN and

2 Getting Started 9

UNTIL until the top of stack when tested by UNTIL is
non-zero (true).

UNTIL (flag ---)

END May be used as a synonym for UNTIL .

BEGIN … AGAIN Creates an infinite loop continually re-executing the
words between BEGIN and AGAIN3.

BEGIN … WHILE … REPEAT Executes words between BEGIN and WHILE leaving
flag which is tested by WHILE. If flag is non-zero
(true), executes words between WHILE and REPEAT ,
then jumps back to BEGIN. If flag is zero (false),
continues execution after the REPEAT .

WHILE (flag ---)

CASE
n1 OF … ENDOF

n2 OF … ENDOF

…
nm OF … ENDOF

…
ENDCASE

Looks for a number (n1, n2, …, nm) matching n. If there
is a match, executes the code between the OF … ENDOF
set that immediately follows the matching number,
proceeding then to the code following ENDCASE . If
there is no match, the code after the last ENDOF is
executed, with ENDCASE dropping n from the stack.
Execution then continues after ENDCASE . Code after
the last ENDOF may use n, which is still available; but,
it must not consume n. Otherwise, ENDCASE will drop
whatever was under n, adversely affecting program
logic and possibly causing a stack underflow.

CASE (n ---)

 2.6 Input and Output to/from the Terminal

The most common type of terminal input is simply to enter a number at the terminal. This
number will be placed on the stack. The number which is input will be converted according to
the number base stored at BASE . BASE is also used during numeric output.

DECIMAL (---) Sets the base to Decimal (Base 10)

HEX (---) Sets the base to Hexadecimal (Base 16)

BASE (--- addr) System variable containing number base. To set some
base (e.g., Octal) use the following sequence: 8 BASE !

. (n ---) Print a signed number

U. (u ---) Print an unsigned number

.R (n1 n2 ---) Print n1 right-justified in field of width n2

D. (d ---) Print double-precision number

D.R (d n ---) Print double-precision number right-justified in field of
width n

CR (---) Perform a Carriage Return/Line Feed

3 This loop may be exited by executing R> DROP one level below.

10 2.6 Input and Output to/from the Terminal

SPACE (---) Type 1 space

SPACES (n ---) Type n spaces

." (---) Print a string terminated by "

TYPE (addr n ---) Type n characters from addr to terminal

COUNT (addr --- addr+1 n) Move string length from addr to stack

?TERMINAL (--- flag) Test if <BREAK> (<CLEAR> on TI-99/4A) pressed

?KEY (--- n) Read keyboard. If no key pressed, n = 0 else n = ASCII
keycode.

KEY (--- c) Wait for a keystroke and put its ASCII value on the stack.

EMIT (c ---) Type character from stack to terminal

EXPECT (addr n ---) Read n characters (or until CR) from terminal to addr

WORD (c ---) Read one word from input stream delimited by c

 2.7 Numeric Formatting

Advanced numeric formatting control is possible with the following words:

NUMBER (addr --- d) Convert string at addr to d number

<# (---) Start output string conversion

(d1 --- d2) Convert next, least-significant digit of d1 leaving d2

#S (d --- 0 0) Convert all significant digits from right to left

SIGN (n d --- d) Insert sign of n into number

#> (d --- addr u) Terminate conversion, ready for TYPE

HOLD (c ---) Insert ASCII character c into string

 2.8 Disk-Related Words

The following words assist in maintaining source code on disk as well as implementing the Forth
virtual memory capability:

LIST (n ---) List screen n to terminal

LOAD (n ---) Compile or execute screen n

BLOCK (n --- addr) Leave address of block n, reading it from disk if
necessary

B/BUF (--- n) Constant giving disk block size in bytes

BLK (--- addr) User variable containing current block number
(contains 0 for terminal input)

2 Getting Started 11

SCR (--- addr) User variable containing screen number most
recently referenced by LIST or EDIT

UPDATE (---) Mark last buffer accessed as updated

FLUSH (---) Write all updated buffers to disk

EMPTY-BUFFERS (---) Erase all buffers

 2.9 Defining Words

The following are defining words. They are used not only to create new Forth words but in the
case of <BUILDS … DOES> and <BUILDS … ;CODE to create new defining words.

: xxx (---) Begin colon definition of xxx

; (---) End colon definition

VARIABLE xxx (n ---) Create variable with initial value n

xxx (--- addr) Returns address when executed

CONSTANT xxx (n ---) Create constant with value n

xxx (--- n) Returns n when executed

CODE xxx (---) Begin definition of assembly language primitive
named xxx

<BUILDS … ;CODE Create new defining word with execution-time
assembly/machine code routine

<BUILDS … DOES> Create new defining word with execution-time
high level Forth routine

 2.10 Miscellaneous Words

The following words are relatively common but don’t fit well in any of the above categories:

CONTEXT (--- addr) Leave address of pointer to context vocabulary
(searched first)

CURRENT (--- addr) Leave address of pointer to current vocabulary (new
definitions placed there)

FORTH (---) Set CONTEXT to main Forth vocabulary

DEFINITIONS (---) Set CURRENT to CONTEXT

VOCABULARY xxx (---) Define new vocabulary

((---) Begin comment. Terminated by)

FORGET xxx (---) Forget all definitions back to and including xxx

ABORT (---) Error termination

12 2.10 Miscellaneous Words

' xxx (--- addr) Leave address of xxx . If compiling compile address.
(tick)

HERE (--- addr) Leaves address of next unused byte in the dictionary

PAD (--- addr) Leaves address of scratch area

IN (--- addr) User variable containing offset into input buffer

SP@ (--- addr) Leaves address of top stack item

ALLOT (n ---) Leave n-byte gap in dictionary

, (n ---) Compile n into the dictionary (comma)

Several Forth screens on the TI Forth System disk serve special purposes. Forth screen 0 must
not be modified because it is used by the disk Device Service Routine (DSR) to locate the object
code of the Forth kernel. Forth screen 3 is the BOOT screen (see BOOT in Appendix D), and Forth
screens 4 and 5 contain error messages used by several Forth words. Any disk placed in drive 0
(DR0) must contain a copy of Forth screens 4 and 5.

Many additional words are available in TI Forth. The user should consult the remaining chapters
in this manual as well as the glossary (Appendix D) and Appendix F for a complete description.
Most of these words are disk-resident and must be loaded by the user via the load options, which
are viewable by typing MENU , before they become available.

3 How to Use the Forth Editor 13

3 How to Use the Forth Editor
Words introduced in this chapter:

CLEAR FLUSH

ED@ TEXT

EDIT WHERE

In the Forth language, programs are divided into screens or blocks. Each Forth screen is 16 lines
of 64 characters and has a number associated with it. A TI-99/4A disk holds 90 Forth screens
(numbered 0 – 89), however, Forth screen 0 is special and is usually not used. A program may
occupy as many Forth screens as necessary.

You must read Chapter 5, “System Synonyms and Miscellaneous Utilities” and correctly format
your data disk before using the editor. Disks initialized by the disk manager are acceptable.
After loading Forth from the System disk, place the System disk in DR1 (2nd drive) and your
Forth disk in DR0 (1st drive). It is necessary to copy Forth screens 4 and 5 from the Forth System
disk onto your Forth disk. These screens contain the error messages. If you have a two-drive
system, see the instructions for SCOPY and SMOVE in Chapter 5 for directions on how to do this.

If you have a one-drive system, however, this procedure is more complicated. The following
diagram illustrates the process used to copy parts of a Forth disk or an entire Forth disk with a
one drive system.

START: With original diskette in your drive and type:

FLUSH

LOOP: Type these lines:

 scr BLOCK DROP UPDATE

 •
up to 5 screens because the system
has 5 disk buffers

 •

 •

scr BLOCK DROP UPDATE

Switch to backup diskette and type:

FLUSH

Go back to LOOP if you need to copy more screens.

Now you are ready to begin editing your Forth disk.

CAUTION: Do not edit your System disk. It is a hybrid disk containing both TI-99/4A files and
Forth screens. Editing the disk may destroy its integrity!

14 3.1 Forth Screen Layout Caveat

 3.1 Forth Screen Layout Caveat

As indicated above, Forth screens are laid out in 16 lines of 64 characters each. However, you
should be aware that the lines have no actual delimiters, i.e., there are no carriage-return or line-
feed characters at the end of a Forth-screen line. This means that one line wraps around to the
next line with no intervening white-space such that a word ending on one line will be
concatenated with a word that starts on the next line if there is no intervening space. This will
usually be nonsense to the system and generate an error message when the screen is loaded,
indicating that the unintended word has not been defined. Worse, it can result in an unintended
existing word such as -DUP instead of - DUP or +LOOP instead of + LOOP .

 3.2 The Two TI Forth Editors

There are two Forth editors available on the TI Forth System disk. The first, which is loaded by
-EDITOR, operates in TEXT mode. It will be referred to as the 40-column editor 4. Each Forth
screen is displayed in two halves (left and right) in normal sized characters.

The second, which is loaded by -64SUPPORT, operates in bit map mode. It allows you to view
an entire Forth screen at once; however, the characters are very small. It will be referred to as the
64-column editor.

Only one editor may be in memory at any time. Load whichever you prefer. Editing instructions
are identical for each.

 3.3 Editing Instructions

Initialization fills each Forth screen with non-printable characters. These characters appear as
solid white squares on the terminal when you are using the 40-column editor and as unidentifiable
characters in the 64-column editor. A Forth screen must be filled with blanks before it can be
used. Typing a Forth screen number and CLEAR will fill a Forth screen with blanks.

 1 CLEAR

will prepare Forth screen 1 for use by the editor.

You may begin writing on Forth screen 1 or on any Forth screen you wish. To bring a Forth
screen from the disk into the editor, type the Forth screen number followed by the word EDIT.

 1 EDIT

The above instruction will bring the contents of Forth screen 1 into view. If you did not CLEAR
the screen before entering the editor, the screen will appear to be a block of undefined characters.
You must exit the editor temporarily and clear the screen on the disk before you can write to it.
To exit the editor, press the <BACK> (<FCTN+9>) function key on your keyboard. To clear the
screen, type the screen number and the word CLEAR .

To re-enter the editor, you do not have to type 1 EDIT again. A special Forth word,

 ED@

4 The 40-column Forth editor may only be used when the computer is in TEXT mode (see Chapter 6). For example,
if the 40-column editor is loaded, don’t type EDIT while you are in SPLIT or SPLIT2 mode.

3 How to Use the Forth Editor 15

will return you to the last screen you were editing.

Upon entering the editor, the cursor is located in column 1 of line 0. It is customary to use line 0
for a comment describing the contents of that screen. Type a comment that says “PRACTICE
SCREEN” or something to that effect. Do not forget that all comments must begin with a “(”5
and end with a “)”.

If you are using the 40-column editor, you have probably noticed that only 35 columns (of the 64
available columns) are visible on your terminal. To see the rest of the screen, type any characters
on line 1 until you reach the right margin. Now type a few more characters. Notice that the
screen is now displaying columns 30 – 64. Press <ENTER> to move to the beginning of the next
line.

The function keys on your keyboard each perform a special editing function.

key function

<FCTN+S>, (←) moves the cursor one position to the left.

<FCTN+D>, (→) moves the cursor one position to the right.

<FCTN+E>, (↑) moves the cursor up one position.

<FCTN+X>, (↓) moves the cursor down one position.

<DELETE> (<FCTN+1>) deletes the character on which the cursor is placed.

<INSERT> (<FCTN+2>) inserts a space to the left of the cursor moving the rest of the line right
one space. Characters may be lost off the end of the line.

<AID> (<FCTN+7>) erases from the cursor to the end of a line and saves the erased
characters in PAD. They may be placed at the beginning of a new line
by pressing <REDO>. <REDO> inserts a line just above where the cursor
is and places the contents of PAD there.

<BEGIN> (<FCTN+5>) 40-column editor: moves the cursor 29 positions to the right if the
cursor is on the left half of a Forth screen. Otherwise, it moves the
cursor 29 positions to the left. This key can be used to toggle between
the left and right half of a screen.

64-column editor: places the cursor in the upper left corner

<ERASE> (<FCTN+3>)
<REDO> (<FCTN+8>)

are used in combination to pick up lines and move them elsewhere on
the screen. <ERASE> picks up one line while erasing it from view.
<REDO> inserts this line just above the line on which the cursor is
placed. Both ERASE and <REDO> may be used repeatedly to erase
several lines from view or to insert multiple copies of a line.

<CTRL+8> will insert a blank line just above the line the cursor is on.

<CTRL+V> will tab forward by words.

<FCTN+V> will tab backwards by words.

5 The left parenthesis must be followed by at least 1 space. Press <ENTER> to move to the next line.

16 3.3 Editing Instructions

Experiment with these features until you feel you understand each of their functions. Erase the
line you typed from the screen and type a sample program for practice.

The Forth editor allows you to move forward or backward a screen without leaving the editor.
Pressing <CLEAR> (<FCTN+4>) will read in the succeeding screen. Pressing <PROCEED>
(<FCTN+6>) will read in the preceding screen.

If an error occurs during a LOAD command, typing the word WHERE will bring you back into the
editor and place the cursor at the exact point the error occurred.

The word FLUSH is used to force the disk buffers that contain data no longer consistent with the
copy on disk to be written to the disk. Use this word at the end of an editing session to be certain
your changes are written to the disk.

One last note about Forth screens: Though your word definitions can span more than one screen,
you should try to insure that any given word is defined on a single screen. This aids in clarity and
the good Forth-programming practice of keeping word definitions short.

 3.4 Changing Foreground/Background Colors of 64-Col Editor

The white-on-black color scheme of the 64-column editor can be changed to whatever
foreground/background pair you would like by changing system screen 54, where GRAPHICS2 is
defined. A more pleasant combination is black on gray. To effect that, change the color table fill
value 0F0 (white on transparent) on line 6 to 010 (black on transparent) and 0F1 (white on black)
on line 13 to 0FE (white on gray)—the left byte doesn't matter except in text mode.

You can also change the default colors for text mode to something other than white on dark blue
when typing TEXT after leaving the 64-column editor by changing 0F4 on line 9 of system screen
51 to another color pair, with the foreground color in the left byte and the background color in the
right byte, e.g., 01E for black on gray.

4 Memory Maps 17

4 Memory Maps
The following diagrams illustrate the memory allocation in the TI-99/4A system. For more
detailed information, see the Editor/Assembler Manual.6

The VDP memory can be configured in many ways by the user. The TI Forth system provides
the ability to set up this memory for each of the VDP’s 4 modes of operation (Text, Graphics,
Multicolor and Graphics2). The allocation of memory for these modes is shown on the VDP
Memory Map. The first three modes are shown on the left half of the figure, the Graphics2 mode
on the right half. The area at 03C0h is used by the transcendental functions in all modes for a
rollout area. If transcendentals are used during Graphics2 (bit-map) mode, this portion of the
color table must be saved by the user before using the transcendental function and restored
afterward. Note that the VDP RAM is accessed from the 9900 only through a memory mapped
port and is not directly in the processor’s address space.

The only CPU RAM on a true 16-bit data bus is in the console at 8300h. Because this is the
fastest RAM in the system, the Forth Workspace and the most frequently executed code of the
interpreter are placed in this area to maximize the speed of the TI Forth system. The use of the
remainder of the RAM in this area is dictated by the TI-99/4A’s resident operating system.

The 32K byte memory expansion is divided into an 8K piece at 2000h and a 24K piece at A000h.
The small piece contains BIOS and utility support for TI Forth as well as 5K of disk buffers, the
Return Stack, and the User Variable area. The large piece of this RAM contains the dictionary,
the Parameter Stack and the Terminal Input Buffer.

 4.1 VDP Memory Map

Address Address

0000h

02FFh

Graphics & Multicolor
Screen Image Table

bytes: 300h

Text
Mode
Screen
Image
Table
3C0h

Bit Map Color Table 1800h 0000h

0300h
037Fh

Sprite Attribute List
80h

0380h
039Fh

Color Table 20h

03A0h
03BFh

Unused 20h

03C0h
03DFh

VDP Rollout Area 20h [Transcendental function use: Save/restore
memory to avoid bitmap corruption.]

03E0h
045Fh

Stack for VSPTR 80h

6 Hexadecimal (base 16) notation for integers in this manual is indicated when a string of 1 ‒ 4 hexadecimal digits
(0 ‒ 9, A ‒ F) is followed by ‘h’. For example, 2F0Eh is a hexadecimal integer equivalent in value to decimal
integer 12046 and Ah is decimal 10. The ‘h’ is never typed into the Forth terminal or on Forth screens. It is used in
this manual only to avoid confusion. The notation used in the Editor/Assembler Manual (use of a preceding ‘>’
instead of a trailing ‘h’) is only used in Chapter 9 for the conventional assembler examples, where it is required as
input to the Editor/Assembler module.

18 4.1 VDP Memory Map

Address Address

0460h
077Fh

PABS etc. 320h

0780h
07FFh

Sprite Motion Table 80h

0800h

0BFFh

Pattern Descriptor Table
Sprite Descriptor Table
0 – 127 400h

0C00h
0FFFh

128 – 255 400h

1000h
13FFh

Forth’s Disk Buffer
(4 sectors) 400h

1400h Unused 21D8h 17FFh

Bit Map Screen Image Table
300h

1800h
1AFFh

PABS etc. C0h 1B00h
1BFFhStack for VSPTR 40h

Forth’s Disk Buffer (4 sectors)
400h

1C00h
1FFFh

35D7h Bit Map Pattern Descriptor Table
1800h

2000h
37FFh35D8h Disk Buffering Region for 3

Simultaneous Disk Files
A28h Sprite Attribute List

80h
3800h
387Fh

Sprite Attribute Descriptors (Optional
& based at 3800h) 15Ah

3880h
39D9h

3FFFh
Disk Buffer Region for 2 Disk Files

626h
39DAh
3FFFh

 4.2 CPU Memory

Address

0000h
1FFFh

Console ROM

2000h
3FFFh

Low Memory Expansion
Loader, Your Program, REF/DEF Table

4000h
5FFFh

Peripheral ROMs for DSRs

6000h
7FFFh

Unavailable—ROM in Command Modules

8000h
9FFFh

Memory-mapped Devices for VDP, GROM, SOUND, SPEECH. CPU RAM at
8300h ‒ 83FFh

A000h

FFFFh

High Memory Expansion
Your Program

4 Memory Maps 19

 4.3 CPU RAM Pad

Address7

8300h
831Fh

Forth’s Workspace

8320h
832Dh

‒FREE‒ Eh

832Eh
8347h

Forth’s Inner Interpreter, etc.

8348h
8349h

‒FREE‒ 2

834Ah
8351h

FAC (Floating Point Accumulator)

8354h Floating Point Error

8355h Floating Point String↔Number Conversion Options
use these 3 bytes8356h

8357h
Subroutine Pointer for DSRs

835Ch
8363h

ARG (Floating Point Argument Register)

836Eh
836Fh

VSPTR (Value Stack Pointer)

8370h
8371h

Highest Available Address of VDP RAM

8372h Least Significant Byte of Data Stack Pointer

8373h Least Significant Byte of Subroutine Stack Pointer

8374h Keyboard Number to be Scanned

8375h ASCII Keycode Detected by Scan Routine

8376h Joystick Y-status

8377h Joystick X-status

8379h VDP Interrupt Timer

837Ah Number of Sprites that can be in Automotion

837Bh VDP Status Byte Bit 08 On during VDP Interrupt
Bit 1 On when 5 Sprites on a Line
Bit 2 On when Sprite Coincidence
Bits 3-7 Number of 5th Sprite on a Line

837Ch GPL Status Byte Bit 0 High Bit
Bit 1 Greater than Bit
Bit 2 On when Keystroke Detected (COND)
Bit 3 Carry Bit
Bit 4 Overflow Bit

837Dh VDP Character Buffer

837Eh Current Screen Row Pointer

837Fh Current Screen Column Pointer

8380h Default Subroutine Stack

83A0h Default Data Stack

7 Locations omitted are not used by Forth, but may be used by system routines.

8 Bit 0 = high order bit.

20 4.3 CPU RAM Pad

Address

83C0h
83C2h

83C4h
83CAh
83CCh
83CEh
83D0h
83D4h
83D6h
83D8h
83DAh

Random Number Seed (Begin Interrupt Workspace)
Flag Bit 0 Disable All of the Following

Bit 1 Disable Sprite Motion
Bit 2 Disable Auto Sound
Bit 3 Disable System Reset Key (Quit)

Link to ISR Hook
Console Keyboard Debonce
Sound List Pointer (VDP RAM)
Sound List Initiation (set to 01h) & Countdown Byte
Search Pointers for GROM & ROM
Contents of VDP Register 1
Screen Timeout Counter
Return Address Saved by Scan Routine
Player Number Used by Scan Routine

83E0h
83FFh

Begin GPL Workspace

 4.4 Low Memory Expansion

2000h
200Fh

XML Vectors
0010h bytes

2010h
3423h

Forth Disk Buffers
1414h

3424h
397Fh

99/4 Support for Forth
055Ch

3980h
39FFh

User Variable Area
0080h

3A00h
3CD9h

Assembler Support
020Ah

3CDAh

3FFFh

↑
↑

Return Stack 0326h

 4.5 High Memory Expansion

A000h
BC7Fh

Resident Forth Vocabulary
1C80h

BC80h

FF9Fh

User Dictionary Space
↓
↓

4320h
↑
↑

Parameter Stack

FFA0h
FFF1h

Terminal Input Buffer
0052h

5 System Synonyms and Miscellaneous Utilities 21

5 System Synonyms and Miscellane-
ous Utilities

Words introduced in this chapter:

!" MYSELF UNTRACE

.S RANDOMIZE VAND

: (traceable) RND VFILL

CLS RNDW VLIST

DISK-HEAD SCOPY VMBR

DSRLNK SEED VMBW

DTEST SMOVE VOR

DUMP TRACE VSBR

FORMAT-DISK TRIAD VSBW

FORTH-COPY TRIADS VWTR

GPLLNK TROFF VXOR

INDEX TRON VMLLNK

Several utilities are available to give you simple access to many resources of the TI-99/4A Home
Computer. These are defined as system synonyms.

Also included in this chapter are several disk utilities, special trace routines, random number
generators and a special routine that allows recursion.

The descriptions that follow in tabular form include the abbreviation “instr” for “instruction”.

 5.1 System Synonyms

The system synonyms are loaded by typing the TI Forth MENU option, -SYNONYMS . These
utilities allow you to

• change the display;

• access the Device Service Routines for peripheral devices such as RS232 interfaces and
disk drives;

• link your program to GPL and Assembler routines; and

• perform operations on VDP memory locations.

22 5.1 System Synonyms

 5.1.1 VDP RAM Read/Write

The first group of instructions enables you to read from and write to VDP RAM. Each of the
following Forth words implements the Editor/Assembler utility with the same name.

VSBW (b vaddr ---)

Writes a single byte to VDP RAM. It requires 2 parameters on the stack: a byte b to be
written and a VDP address vaddr.

base byte vaddr instr
HEX A3 380 VSBW

The above line, when interpreted will change the base to hexadecimal, push A3h and
380h onto the stack and, when VSBW executes, places the value A3h into VDP address
380h.

VMBW (addr vaddr count ---)

Writes multiple bytes to VDP RAM. You must first place on the stack a source address
at which the bytes to be written are located. This must be followed by a VDP address (or
destination) and the number of bytes to be written.

base addr vaddr count instr

HEX PAD 808 4 VMBW

reads 4 bytes from PAD and writes them into VDP RAM beginning at 808h.

VSBR (vaddr --- byte)

Reads a single byte from VDP RAM and places it on the stack. A VDP address is the
only parameter required.

base vaddr instr
HEX 781 VSBR

places the contents of VDP address 781h on the stack.

VMBR (vaddr addr count ---)

Reads multiple bytes from VDP and places them at a specified address. You must
specify the VDP source address, a destination address and a byte count.

base vaddr addr count instr
HEX 300 PAD 20 VMBR

reads 32 bytes beginning at 300h and stores them into PAD.

VFILL (vaddr count byte ---)

If you wish to fill a group of consecutive VDP memory locations with a particular byte, a
VFILL instruction is available. You must specify a beginning VDP address, a count and
the byte you wish to write into each location.

5 System Synonyms and Miscellaneous Utilities 23

base vaddr count byte instr
HEX 300 20 0 VFILL

fills 32 (20h) locations, starting at 300h, with zeroes.

 5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK

The next group of instructions allows you to implement the Editor/Assembler instructions
GPLLNK, XMLLNK and DSRLNK. To assist the user, the Forth instructions have the same
names as the Editor/Assembler utilities. Consult the Editor/Assembler Manual for more details.

GPLLNK (addr ---)

Allows you to link your program to Graphics Programming Language (GPL) routines.
You must place on the stack the address of the GPL routine to which you wish to link.

base addr instr
HEX 16 GPLLNK

branches to the GPL routine located at 16h which loads the standard character set into
VDP RAM. It then returns to your program.

XMLLNK (addr ---)

Allows you to link a Forth program to a routine in ROM or to branch to a routine located
in the Memory Expansion unit. The instruction expects to find a ROM address on the
stack.

base addr instr
HEX 800 XMLLNK

accesses the Floating Point multiplication routine, located in ROM at 800h, and returns to
your program.

DSRLNK (---)

Links a Forth program to any Device Service Routine (DSR) in ROM. Before this
instruction is used, a Peripheral Access Block (PAB) must be set up in VDP RAM. A
PAB contains information about the file to be accessed. See the Editor/Assembler
Manual and Chapter 8 of this manual for additional setup information. DSRLNK needs no
parameters on the stack.

The Editor/Assembler version of DSRLNK also allows linkage with a subroutine, but the
TI Forth version does not. If you need this functionality, you might define the following
word in decimal mode (BASE contains Ah):

: DSRLNK-SP 10 14 SYSTEM ;

See the Editor/Assembler Manual for details on this form of the call to the DSRLNK
utility. You will also need to consult the DSR’s specifications because this form of
access is at a lower level, with each subroutine often requiring information that differs
from the PAB set up for DSRLNK.

24 5.1 System Synonyms

 5.1.3 VDP Write-Only Registers

The VDP contains 8 special write-only registers. In the Editor/Assembler, a VWTR instruction is
used to write values into these registers. The Forth word VWTR implements this instruction.

VWTR (b n ---)

VWTR requires 2 parameters; a byte b to be written and a VDP register number n.

base b n instr

HEX F5 7 VWTR

The above instruction writes F5h into VDP write only register number 7. This particular
register controls the foreground and background colors in text mode. Executing the above
instruction will change the foreground color to white and the background color to light
blue.

 5.1.4 VDP RAM Single-Byte Logical Operations

VAND , VOR and VXOR (b vaddr ---)

The Forth instructions VAND , VOR and VXOR greatly simplify the task of performing a
logical operation on a single byte in VDP RAM. Normally, 3 programming steps would
be required: a read from VDP RAM, an operation, and a write back into VDP RAM. The
above instructions get the job done in a single step. Each of these words requires 2
parameters, a byte b to be used as the second operand and the VDP address vaddr at
which to perform the operation. The result of the operation is placed back into vaddr.

base b vaddr instr

HEX F0 804 VAND

HEX F0 804 VOR

HEX F0 804 VXOR

Each of the above instructions reads the byte stored at 804h in VDP RAM, performs an
AND, OR or XOR on that byte and F0h, and places the result back into VDP RAM at
804h.

 5.2 Disk Utilities

The TI Forth system was designed to be used with 90 screens per disk, i.e., with 90 KB, single-
sided, single-density (SSSD) disks. The system easily scales up to other disk formats 9, except for
some of the disk utilities in this section: FORTH-COPY , DTEST , DISK-HEAD and FORMAT-DISK
are hardwired to use 90 KB disks. FORTH-COPY and DTEST require minor changes in the word

9 See Appendix K for a detailed discussion of disk format.

5 System Synonyms and Miscellaneous Utilities 25

definitions to change the 90-screen limit per disk (See Forth screen 39). Changing DISK-HEAD to
work is a lot more complicated! It requires low-level knowledge of the format of TI disks to
modify its definition (See Forth screen 40). FORMAT-DISK is part of the resident TI Forth
vocabulary, making it wiser to use other means of formatting disks rather than attempting to re-
write the definition for this word, but see Appendix L.

 5.2.1 Disk Formatting Utility

FORMAT-DISK (n ---)

FORMAT-DISK is one of the system utilities loaded by the -SYNONYMS option. Any disk
that you wish to use with the Forth system must first be properly formatted. Place the
disk in a disk drive and place the number of that disk drive on the stack. TI Forth
numbers disk drives beginning with 0, therefore, if the new disk is in the first drive, put a
0 on the stack, etc. Next, type FORMAT-DISK .

0 FORMAT-DISK

will initialize the disk in DR0, thus preparing it for use by the Forth system. Disks
initialized by the TI Disk Manager are properly formatted and may be used.
FORMAT-DISK assumes 90 KB, SSSD TI disks.

 5.2.2 Disk and Screen Copying Utilities

The disk and screen copying utilities are loaded by the -COPY option.

DISK-HEAD (---)

The TI Forth System disk, or any disk which contains a copy of Forth screens 0 thru 19 of
the System disk, may be copied with the TI Disk Manager. Any other disk may be
copied with the TI Disk Manager only after a special header has been written on it by the
TI Forth word DISK-HEAD . Please note that you must reset the value of the user variable
DISK_LO to zero before using DISK-HEAD . This word writes the volume name
“FORTH” on the disk and creates a single file named “SCREENS” of type
“DIS/FIX128”, i.e., display-type, 128-byte, fixed-length records. The file is set up to fill
all available space on the disk.

Any Forth disk (system or screens-only), which can be copied by the TI Disk Manager, can also
be accessed from TI BASIC. If you access a Forth disk that contains the Forth kernel, the only
file you should access is named “SYS-SCRNS” and record 0 of the file will be located on line 4
of screen 19. Records of length = 128 bytes will proceed thru record 565, which is located on
line 14 of screen 89. Record 566 then wraps to line 4 of screen 1. The file ends with record 623
located on line 6 of screen 8.

A Forth disk which does not contain the kernel may also be accessed by TI BASIC, but the
location of the records will be different. The file created by DISK-HEAD above, named
“SCREENS”, will begin on line 8 of screen 8 and continue thru record 651 located on line 14 of
screen 89. Record 652 begins on line 12 of screen 0 and the file ends with record 713 on line 6 of
screen 8.

26 5.2 Disk Utilities

FORTH-COPY (---)

To copy an entire 90 KB, SSSD Forth disk without using the TI Disk Manager, you must
place the new disk in DR0 and the source disk in DR1. Typing FORTH-COPY will copy
the entire contents of the disk in DR1 onto the disk in DR0. Please note that you must
reset the value of the user variable DISK_LO to zero before using FORTH-COPY . This
will allow you to copy screen 0. This is accomplished by executing the following
instruction:

0 DISK_LO !

Using FORTH-COPY to copy Forth disks that have higher capacity than 90 KB, e.g., 180
KB or 360 KB, requires rewriting the definition of FORTH-COPY , as well as changing
DISK_SIZE and DISK_HI to accommodate the new disk sizes (see Appendix L).

SCOPY (scr1 scr2 ---)

You can copy the contents of a single Forth screen from one screen location to another
without destroying the original copy by using the SCOPY instruction. A source screen
number scr1 and a destination screen number scr2 must be specified.

base scr1 scr2 instr
DECIMAL 5 17 SCOPY

will write the contents of screen 5 over the contents of screen 17 without erasing screen 5.
The old contents of screen 17 will be destroyed.

SMOVE (scr1 scr2 count ---)

The SMOVE instruction acts as a multiple SCOPY. It allows you to copy a group of Forth
screens with a single instruction. You must designate a beginning source screen, a
beginning destination screen, and the number of screens you wish to copy. When using
SMOVE, overlapping screen ranges may be used without user concern. The order of the
copy is adjusted so that the entire group of screens is moved intact.

base scr1 scr2 count instr

DECIMAL 11 36 7 SMOVE

will copy screens 11 - 17 over screens 36 - 42 without erasing screens 11 - 17.

Both the SCOPY and SMOVE instructions can be used to copy screens from one disk drive to
another. Assuming that DISK_SIZE (a user variable which contains the number of screens per
disk) is at its default value of 90, screens 0 - 89 are contained on the disk in DR0, screens 90 -179
are located on the disk in DR1, etc. Note: To copy screens from one disk drive to another, you
must reset the user variable DISK_HI. If you are using two disk drives, its value must be 180
(2 ∙ 90). This is accomplished by executing the following instruction:

180 DISK_HI !

Therefore, to copy screen 6 on DR0 to screen 20 on DR1, you would type:

base scr1 scr2 instr
DECIMAL 6 110 SCOPY

5 System Synonyms and Miscellaneous Utilities 27

The SMOVE instruction is handled in the same manner. Simply use an offset of DISK_SIZE to
specify which disk drives you wish to copy to and from.

DTEST (---)

If you have reason to suspect that a 90 KB, SSSD disk has a bad sector or is in some way
damaged, a non-destructive disk test is available. The DTEST instruction will attempt to
read each screen from the disk in DR0. Please note that you must reset the value of the
user variable DISK_LO to zero before using DTEST . A screen number will be displayed
on your monitor as each screen is read. If execution stops before screen 89 is reached, the
problem lies in the last screen displayed. To correct the problem, CLEAR that screen and
write to it again. This correction will work if the disk surface is intact and if the
formatting information has not been damaged. DTEST can be rewritten to accommodate
more capacious disks (see FORTH-COPY above and Appendix L).

 5.3 Listing Utilities

There are three words on the TI Forth System disk (loaded by the -PRINT option) which make
listing information from a Forth disk very simple.

TRIAD (scr ---)

The first, called TRIAD, requires a Forth screen number on the stack. When executed, it
will print to an RS232 device the three screens which contain the specified screen,
beginning with a screen number evenly divisible by three. Screens that contain non-
printable information will be skipped. If your RS232 printer is not on Port 1 and set at
9600 Baud, you must modify the word SWCH on your System disk.

TRIADS (scr1 scr2 ---)

The second instruction, called TRIADS, may be thought of as a multiple TRIAD. It
expects a beginning and an ending screen number on the stack. TRIADS performs as
many TRIADS as necessary to cover the specified range of screens.

INDEX (scr1 scr2 ---)

The INDEX instruction allows you to list to your terminal line 0 (the comment line) of
each of a specified range of screens. INDEX expects a beginning and an ending screen
number on the stack. If you wish to temporarily stop the flow of output in order to read it
before it scrolls off the screen, simply press any key. Press any key to start up again.
Press <BREAK> (<CLEAR> or <FCTN+4>) to exit execution prematurely.

 5.4 Debugging

 5.4.1 Dump Information to Terminal

Choosing the -DUMP option loads three useful TI Forth words for getting information for
debugging purposes.

28 5.4 Debugging

VLIST (---)

The Forth word VLIST lists to your terminal the names of all words currently defined in
the CONTEXT vocabulary. This instruction requires no parameters and may be halted and
started again by pressing any key as with INDEX in the previous section.

DUMP (addr count ---)

The DUMP instruction allows you to list portions of memory to your terminal. DUMP
requires two parameters: an address and a byte count. For example,

base addr count instr
HEX 2F26 100 DUMP

will list 256 (100h) bytes of memory beginning at address 2F26h to your terminal. Press
any key to temporarily stop execution in order to read the information before it scrolls off
the screen. Press any key to continue. To exit this routine permanently, press <BREAK>.

.S (---)

The Forth word .S allows you to view the parameter stack contents. It may be placed
inside a colon definition or executed directly from the keyboard. The word SP! should be
typed before executing a routine that contains .S . This will clear any garbage from the
stack. The | symbol is printed to represent the bottom of the stack. The number
appearing farthest from the | is the most accessible stack element.

 5.4.2 Tracing Word Execution

This section is based on the following article available at www.forth.org :

Paul van der Eijk. 1981. Tracing Colon-Definitions. Forth Dimensions 3: 58.

A special set of instructions allows you to trace the execution of any colon definition. Executing
the TRACE instruction will cause all following colon definitions to be compiled in such a way that
they can be traced. In other words, the Forth word : takes on a new meaning. To stop compiling
under the TRACE option, type UNTRACE. When you have finished debugging, recompile the
routine under the UNTRACE option.

After instructions have been compiled under the TRACE option, you can trace their execution by
typing the word TRON before using the instruction. TRON activates the trace. If you wish to
execute the same instruction without the trace, type TROFF before using the instruction.

The actual trace will print the word being traced, along with the stack contents, each time the
word is encountered. This shows you what numbers are on the stack just before the traced word
is executed. The | symbol is used to represent the bottom of the stack. The number printed
closest to the | is the least accessible while the number farthest from the | is the most accessible
number on the stack. Here is a sample TRACE session:

DECIMAL
TRACE ok (compile next definition with TRACE option)
: CUBE DUP DUP * * ; (routine to be traced)
UNTRACE OK (don’t compile next definition with TRACE option)
: TEST CUBE ROT CUBE ROT CUBE ; ok
TRON ok (want to execute with a TRACE)

5 System Synonyms and Miscellaneous Utilities 29

5 6 7 TEST (put parameters on stack and execute TEST)
CUBE (TRACE begins)
| 5 6 7 (stack contents upon entering CUBE)
CUBE
| 6 343 5 (stack contents upon entering CUBE)
CUBE
| 343 125 6 ok

 5.4.3 Recursion

Normally, a Forth word cannot call itself before the definition has been compiled through to a ;
because the SMUDGE bit is set. To allow recursion, TI Forth includes the special word MYSELF .

MYSELF (---)

The MYSELF instruction places the CFA of the word currently being compiled into its own
definition thus allowing a word to call itself.

The following, more complex, TRACE example uses a recursive factorial routine for illustration:

DECIMAL ok
TRACE ok (compile following definition under TRACE option)
: FACT DUP 1 > IF DUP 1 - MYSELF * ENDIF ; ok
UNTRACE ok
TRON ok
5 FACT (put parameter on stack and execute FACT)
FACT (TRACE begins)
| 5
FACT
| 5 4
FACT
| 5 4 3
FACT
| 5 4 3 2
FACT
| 5 4 3 2 1 ok
.S (check final stack contents)
| 120 ok

Each time the traced FACT routine calls itself, a TRACE is executed.

 5.5 Random Numbers

Two different random number functions are available in TI Forth.

RND (n1 --- n2)

The first, RND , generates a positive random integer between 0 and a specified range n1.

base n1 instr
DECIMAL 13 RND

will place on the stack an integer greater than or equal to 0 and less than 13.

30 5.5 Random Numbers

RNDW (--- n)

The second random number function, RNDW , generates a random word (2 bytes). No
range is specified for RNDW .

RNDW

will place on the stack a number from 0 to FFFFh.

RANDOMIZE (---)

To guarantee a different sequence of random numbers each time a program is run, the
RANDOMIZE instruction must be used. RANDOMIZE places an unknown seed into the
random number generator.

SEED (n ---)

To place a known seed into the random number generator, the SEED instruction is used.
You must specify the seed value.

4 SEED

will place the value 4 into the random number generator seed location.

 5.6 Miscellaneous Instructions

!" (addr ---)

This word is loaded by the -COPY option to be used by DISK-HEAD , but is available for
your use. It stores a string at a specified address, but does not store the character count,
which you would need to use TYPE . !" expects to find an address on the stack and must
be followed by a string terminated with a " . The following instruction places the string
“HOW ARE YOU?” at address PAD :

PAD !" HOW ARE YOU?"

CLS (---)

CLS is loaded by the -SYNONYMS option. Use this word to clear the display screen. CLS
clears the display screen by filling the screen image table with blanks. The screen image
table runs from SCRN_START to SCRN_END . CLS may be used inside a colon definition
or directly from the keyboard. CLS will not clear bit-map displays or sprites.

6 An Introduction to Graphics 31

6 An Introduction to Graphics

Words introduced in this chapter:

#MOTION GRAPHICS SPLIT2

BEEP GRAPHICS2 SPRCOL

CHAR HCHAR SPRDIST

CHARPAT HONK SPRDISTXY

COINC JOYST SPRGET

COINCALL LINE SPRITE

COINCXY MAGNIFY SPRPAT

COLOR MCHAR SPRPUT

DELALL MINIT SSDT

DELSPR MOTION TEXT

DOT MULTI UNDRAW

DRAW SCREEN VCHAR

DTOG SPCHAR

GCHAR SPLIT

 6.1 Graphics Modes

The TI Home Computer possesses a broad range of graphics capabilities. Four screen modes are
available to the user:

1) Text Mode—Standard ASCII characters are available, and new characters may be
defined. All characters have the same foreground and background color. The screen is
40 columns by 24 lines. Text mode is used by the Forth 40-column screen editor.

2) Graphics Mode—Standard ASCII characters are available, and new characters may be
defined. Each character set may have its own foreground and background color.

3) Multicolor Mode—The screen is 64 columns by 48 rows. Each standard character
position is now 4 smaller boxes which can each have a different color. ASCII characters
are not available and new characters cannot be defined.

4) Bit-Map Mode (Graphics2)—This mode is available only on the TI-99/4A. Bit-map
mode allows you to set any pixel on the screen and to change its color within the limits
permitted by the 9918a. The screen is 256 columns by 192 rows. Graphics2 mode is
used by the 64-column editor.

Sprites (moving graphics) are available in all modes except text. The sprite automotion feature is
not available in graphics2, split, or split2 modes.

Two unique graphics modes have been created by using graphics2 mode in a non-standard way.
Split and split2 modes allow you to display text while creating bit-map graphics. Split mode sets
the top two thirds of the screen in graphics2 mode and places text on the last third. Split2 sets the

32 6.1 Graphics Modes

top one sixth of the screen as a text window and the rest in graphics2 mode. These modes
provide an interactive bit map graphics setting. That is, you can type bit map instructions and
watch them execute without changing modes.

You may place the computer in the above modes by executing one of the following instructions:

TEXT (---)

GRAPHICS (---)

MULTI (---)

GRAPHICS2 (---)

SPLIT (---)

SPLIT2 (---)

 6.2 Forth Graphics Words

Many Forth words have been defined to make graphics handling much easier for the user. As
many words are mentioned, an annotation will appear underneath them denoting which of the
modes they may be used in (T G M B). These denote text, graphics, multicolor and bit-mapped
(graphics2, split, split2) modes, respectively.

In several instruction examples, a base (HEX or DECIMAL) is specified. This does not mean that
you must be in a particular base in order to use the instruction. It merely illustrates that some
instructions are more easily written in hexadecimal than in decimal. It also avoids ambiguity.

 6.3 Color Changes

The simplest graphics operations involve altering the color of the screen and of character sets.
There are 32 character sets (0 – 31), each containing 8 characters. For example, character set 0
consists of characters 0 – 7, character set 1 consists of characters 8 – 15, etc. Sixteen colors are
available on the TI Home Computer.

Color
Hex

Value Color
Hex

Value

transparent 0 medium red 8

black 1 light red 9

medium green 2 dark yellow A

light green 3 light yellow B

dark blue 4 dark green C

light blue 5 magenta D

dark red 6 gray E

cyan 7 white F

6 An Introduction to Graphics 33

SCREEN (color ---)

The Forth word SCREEN following one of the above table values will change the screen
color to that value. The following example changes the screen to light yellow:

base color instr

HEX B SCREEN or

DECIMAL 11 SCREEN

 (G)

For text mode, the color of the foreground also needs to be set and should be different
from the background color so that text is visible. The foreground color must be in the
leftmost 4 bits of the byte passed to SCREEN . It is easier to compose the byte in
hexadecimal than decimal because each half of the byte is one hexadecimal digit. To set
the foreground to black (1) and the background to light yellow (Bh), the following
sequence will do the trick:

HEX 1B SCREEN

COLOR (fg bg charset ---)

The foreground and background colors of a character set may also be easily changed:

base fg bg charset instr

HEX 4 D 1A COLOR or

DECIMAL 4 13 26 COLOR

 (G)

The above instruction will change character set 26 (characters 208 ‒ 215) to have a
foreground color of dark blue and a background color of magenta.

 6.4 Placing Characters on the Screen

HCHAR (col row count char ---)

To print a character anywhere on the screen and optionally repeat it horizontally, the
HCHAR instruction is used. You must specify a starting column and row position as well
as the number of repetitions and the ASCII code of the character you wish to print.

Keep in mind that both rows and columns are numbered from zero !!!

For example,

base col row count char instr

HEX A 11 5B 2A HCHAR or

DECIMAL 10 17 91 42 HCHAR

 (T G)

34 6.4 Placing Characters on the Screen

will print a stream of 91 *s, starting at column 10 row 17, that will wrap from right to left
on the screen.

VCHAR (col row count char ---)

To print a vertical stream of characters, the word VCHAR is used in the same format as
HCHAR . These characters will wrap from the bottom of the screen to the top.

GCHAR (col row --- char)

The Forth word GCHAR will return on the stack the ASCII code of the character currently
at any position on the screen. If the above HCHAR instruction were executed and followed
by

base col row instr

HEX F 11 GCHAR or

DECIMAL 15 17 GCHAR

 (T G)

2Ah or 42 would be left on the stack.

 6.5 Defining New Characters

Each character in graphics mode is 8 x 8 pixels in size. Each row makes up one byte of the
8-byte character definition. Each set bit (1) takes on the foreground color while the others remain
the background color.

In text mode, characters are defined in the same way, but only the left 6 bits of each row are
displayed on the screen.

For example,

←Displayed in Text mode

←Displayed in Graphics mode

0 1 2 3 4 5 6 7

0

1

2 Each Black square
represents a set bit.3

4

5

6

7

6 An Introduction to Graphics 35

this character is defined:

3C66h DBE7h E7DBh 663Ch

Rows 0 ‒ 1 2 ‒ 3 4 ‒ 5 6 ‒ 7

CHAR (n1 n2 n3 n4 char ---)

The Forth word CHAR is used to create new characters. To assign the above pattern to
character number 123, you would type

base n1 n2 n3 n4 char instr

HEX 3C66 DBE7 E7DB 663C 7B CHAR or

DECIMAL 15426 56295 59355 26172 123 CHAR

 (T G)

As you can see, it is more natural to use this instruction in HEX than in DECIMAL .

CHARPAT (char --- n1 n2 n3 n4)

To define another character to look like character 65 (“A”), for example, you must first
find out what the pattern code for “A” is. To accomplish this, use the CHARPAT
instruction. This instruction leaves the character definition on the stack in the proper
order for a CHAR instruction. Study this line of code:

HEX 41 CHARPAT 7E CHAR or

DECIMAL 65 CHARPAT 126 CHAR

 (T G)

The above instructions place on the stack the character pattern for “A” and assigns the
pattern to character 126. Now both character 65 and 126 have the same shape.

 6.6 Sprites

Sprites are moving graphics that can be displayed on the screen independently and/or on top of
other characters. Thirty-two sprites are available.

 6.6.1 Magnification

Sprites may be defined in 4 different sizes or magnifications:

Magnification
Factor

Description

0 Causes all sprites to be single size and unmagnified. Each
sprite is defined only by the character specified and occupies
one character position on the screen.

36 6.6 Sprites

Magnification
Factor

Description

1 Causes all sprites to be single size and magnified. Each sprite
is defined only by the character specified, but this character
expands to fill 4 screen positions.

2 Causes all sprites to be double size and unmagnified. Each
sprite is defined by the character specified along with the next
3 characters. The first character number must be divisible by
4. This character becomes the upper left quarter of the sprite,
the next characters are the lower left, upper right, lower right
respectively. The sprite fills 4 screen positions.

3 Causes all sprites to be double size and magnified. Each sprite
is defined by 4 characters as above, but each character is
expanded to occupy 4 screen positions. The sprite fills 16
positions.

The default magnification is 0.

MAGNIFY (n ---)

To alter sprite magnification, use the Forth word MAGNIFY .

n instr

2 MAGNIFY

 (G M B)

will change all sprites to double size and unmagnified.

 6.6.2 Sprite Initialization

SSDT (vaddr ---)

Before you begin defining sprites, you must execute the Forth word SSDT which roughly
translates, “set Sprite Descriptor Table.” Before executing this instruction, the computer
must be set into the VDP mode you wish to use with sprites. Recall that sprites are not
available in text mode.

You have a choice of overlapping your sprite character definitions with the standard
characters in the Pattern Descriptor Table (see VDP Memory Map in Chapter 4) or
moving the Sprite Descriptor Table elsewhere in memory. This move is highly
recommended to avoid confusion. 2000h is usually a good location, but any available 2K
(800h) boundary will do.

6 An Introduction to Graphics 37

base vaddr instr

HEX 2000 SSDT or

DECIMAL 8192 SSDT

 (G M B)

will move the Sprite Descriptor Table to 2000h. Use the value 800h with the SSDT
instruction if you do not want to move the Descriptor Table.

Note: Whether or not you choose to move the table, you must execute this instruction
before you can use sprites in your program!!!

 6.6.3 Using Sprites in Bit-Map Mode

SATR (--- vaddr)

When using sprites in any of the bit-map modes (graphics2, split, split2), a little extra
work is required. After entering the desired VDP mode, the location of the Sprite
Attribute List must be changed to 3800h as follows.

HEX 3800 ' SATR !10

The base address of the Sprite Descriptor Table must also be changed using the SSDT instruction.
It will be based at the same address as the Sprite Attribute List (3800h), but only a few character
numbers will be available for sprite patterns. SPCHAR may only be used to define patterns
16 ‒ 58. (See following section for information on SPCHAR.)

3800h Sprite Attribute List

 0080h

3880h Sprite Patterns 16-58

 (based at 3800h)

39D9h 015Ah

 6.6.4 Creating Sprites

The first task involved in creating sprites is to define the characters you will use to make them.
These definitions will be stored in the Sprite Descriptor Table mentioned in the above section.

SPCHAR (n1 n2 n3 n4 char ---)

A word identical in format to CHAR is used to store sprite character patterns. If you are
using a magnification factor of 2 or 3, do not forget that you must define 4 consecutive
characters for each sprite. In this case, the character # of the first character must be a
multiple of 4.

10 Bug fix: See Appendix J.

38 6.6 Sprites

base n1 n2 n3 n4 char instr

HEX OFOF 2424 FOFO 4242 0 SPCHAR or

DECIMAL 3855 9252 61680 8770 0 SPCHAR

 (G M B)

defines character 0 in the Sprite Descriptor Table. If your Pattern and Sprite Descriptor
Tables overlap, use character numbers below 127 with caution.

SPRITE (dotcol dotrow color char spr ---)

To define a sprite, you must specify the dot column and dot row at which its upper left
corner will be located, its color, a character number and a sprite number (0 ‒ 31).

base dotcol dotrow color char spr instr

HEX 6B 4C 5 10 1 SPRITE or

DECIMAL 107 76 5 16 1 SPRITE

 (G M B)

defines sprite #1 to be located at column 107 and row 76, to be light blue and to begin
with character 16. Its size will depend on the magnification factor.

Once a sprite has been created, changing its pattern, color or location is trivial.

SPRPAT (char spr ---)

base char spr instr

HEX 14 1 SPRPAT or

DECIMAL 20 1 SPRPAT

 (G M B)

will change the pattern of sprite #1 to character number 20.

SPRCOL (color spr ---)

base color spr instr

HEX C 2 SPRCOL or

DECIMAL 12 2 SPRCOL

 (G M B)

will change the color of sprite #2 to dark green.

SPRPUT (dotcol dotrow spr ---)

6 An Introduction to Graphics 39

base dotcol dotrow spr instr

HEX 28 4F 1 SPRPUT or

DECIMAL 40 79 1 SPRPUT

 (G M B)

will place sprite #1 at column 40 and row 79.

 6.6.5 Sprite Automotion

In graphics or multicolor mode, sprites may be set in automotion. That is, having assigned them
horizontal and vertical velocities and set them in motion, they will continue moving with no
further instruction. Sprite automotion is only available in graphics and multicolor modes.

Velocities from 0 to 7Fh are positive velocities (down for vertical and right for horizontal), and
from FFh to 80h are taken as two’s complement negative velocities.

MOTION (xvel yvel spr ---)

base xvel yvel spr instr

HEX FC 6 1 MOTION or

DECIMAL -4 6 1 MOTION

 (G M)

will assign sprite #1 a horizontal velocity of -4 and a vertical velocity of 6, but will not
actually set them into motion.

#MOTION (n ---)

After you assign each sprite you want to use a velocity, you must execute the word
#MOTION to set the sprites in motion. #MOTION expects to find on the stack the highest
sprite number you are using + 1.

n instr

6 #MOTION

 (G M)

will set sprites #0 ‒ #5 in motion.

n instr

0 #MOTION

will stop all sprite automotion, but motion will resume when another #MOTION
instruction is executed.

SPRGET (spr --- dotcol dotrow)

Once a sprite is in motion, you may wish to find out its horizontal and vertical position on
the screen at a given time.

40 6.6 Sprites

spr instr

2 SPRGET

 (G M B)

will return on the stack the horizontal position of sprite #2 underneath the vertical
position. The sprite does not have to be in automotion to use this instruction.

 6.6.6 Distance and Coincidences between Sprites

It is possible to determine the distance d between two sprites or between a sprite and a point on
the screen. This capability comes in handy when writing game programs. The actual value
returned by each of the Forth words, SPRDIST and SPRDISTXY , is d2. Distance d is the
hypotenuse of the right triangle formed by joining the line segments, d, x2 – x1 (the horizontal
x-distance difference in dot columns) and y2 - y1 (the vertical y-distance difference in dot rows).
The squared distance between the two sprites or the sprite and screen point is calculated by
squaring the x-distance difference and adding that to the square of the the y-distance difference,
i.e., d2 = (x2 - x1)

2 + (y2 – y1)
2.

SPRDIST (spr1 spr2 --- n)

spr1 spr2 instr

2 4 SPRDIST

 (G M B)

returns on the stack the square of the distance between sprite #2 and sprite #4.

SPRDISTXY (dotcol dotrow spr --- n)

base dotcol dotrow spr instr

DECIMAL 65 21 5 SPRDISTXY

 (G M B)

returns the square of the distance between sprite #5 and the point (65,21).

A coincidence occurs when two sprites become positioned directly on top of one another. That
is, their upper left corners reside at the same point. Because this condition rarely occurs when
sprites are in automotion you can set a tolerance limit for coincidence detection. For example, a
tolerance of 3 would report a coincidence whenever the two sprites upper left corners came
within 3 dot positions of each other.

COINC (spr1 spr2 tol --- flag)

To find a coincidence between two sprites, the Forth word COINC is used.

spr1 spr2 tol instr

7 9 2 COINC

 (G M B)

6 An Introduction to Graphics 41

will detect a coincidence between sprites #7 and #9 if their upper left corners passed
within 2 dot positions of each other. If a coincidence is found, a true flag is left on the
stack. If not, a false flag is left.

COINCXY (dotcol dotrow spr tol --- flag)

Detecting a coincidence between a sprite and a point is similar.

base dotcol dotrow spr tol instr

DECIMAL 63 29 8 3 COINCXY

 (G M B)

will detect a coincidence between sprite #8 and the point (63,29) with a tolerance of 3. A
true or false flag will again be left on the stack.

Both of the above instructions will detect a coincidence between non-visible parts of the sprites.
That is, you may not be able to see the coincidence.

COINCALL (--- flag)

Another instruction is used to detect only visible coincidences. It, however, will not
detect coincidences between a select two sprites, but will return a true flag when any two
sprites collide. This instruction is COINCALL , and requires no arguments.

 6.6.7 Deleting Sprites

As you might have noticed, sprites do not go away when you clear the rest of the screen with
CLS . Special instructions must be used to remove sprites from the display,

DELSPR (spr ---)

spr instr

2 DELSPR

 (G M B)

will remove sprite #2 from the screen by altering its description in the sprite Attribute
List (see VDP Memory Map in Chapter 4). It does not remove the velocity of sprite #2
from the Sprite Motion Table, nor does it alter the number of sprites the computer thinks
it is dealing with. In other words, if you were to redefine sprite #2, it would immediately
begin moving with whatever speed the old sprite #2 had.

DELALL (---)
DELALL

(G M B)

on the other hand, will remove all sprites from the screen, and from memory. DELALL
needs no parameters. Only the Sprite Descriptor Table will remain intact after this
instruction is executed.

42 6.7 Multicolor Graphics

 6.7 Multicolor Graphics

Multicolor mode allows you to display kaleidoscopic graphics. Each character position on the
screen consists of 4 smaller squares which can each be a different color. A cluster of these
characters produces a kaleidoscope when the colors are changed rapidly.

MINIT (---)

After entering multicolor mode, it is necessary to initialize the screen. The MINIT
instruction will accomplish this. It needs no parameters.

When in multicolor mode, the columns are numbered 0 ‒ 63 and rows are numbered
0 ‒ 47. A multicolor character is ¼ the size of a standard character; therefore more of
them fit across and down the screen.

MCHAR (color col row ---)

To define a multicolor character, you must specify a color and a position (column, row)
and then execute the word MCHAR :

base color col row instr

HEX B 1A 2C MCHAR or

DECIMAL 11 26 44 MCHAR

The above instruction will place a light yellow square at (26,44).

To change a character’s color, simply define a different color MCHAR with the same
position. In other words, cover the existing character.

 6.8 Using Joysticks

JOYST (n1 --- char n2 n3)

The JOYST instruction allows you to use joysticks in your Forth program. JOYST
requires only one parameter, viz., a keyboard number n1. The keyboard number tells the
computer which joystick or which side of the keyboard to scan for input. When keyboard
#1 is specified (n1 = 1), both joystick #1 and the left side of the keyboard are scanned.
When keyboard #2 is specified (n1 = 2), joystick #2 and the right side of the keyboard are
scanned. A “Key Pad” exists on each side of the keyboard and may be used in place of
joysticks. Map directions (N, S, E, W, NE, etc.) are used on the diagrams below to
indicate the corresponding display-screen directions (up, down, right, left, diagonally-up-
and-right, etc.) The following diagrams show which keys have which function.

6 An Introduction to Graphics 43

When Joystick #1 is specified, these
keys on the left side of the keyboard are
valid

The function of each key is indicated
below the key and is followed by the
character code returned as char on the
stack.

Fire-18 NW-4 N-5 NE-6

 W-2 E-3

 SW-15 S-0 SE-14

When Joystick #2 is specified, these
keys on the right side of the keyboard
are valid

The function of each key is indicated
below the key and is followed by the
character code returned as char on the
stack.

Fire-18 NW-4 N-5 NE-6

 W-2 E-3

 SW-15 S-0 SE-14

The JOYST instruction returns 3 numbers on the stack: a character code char on the
bottom of the stack, an x-joystick status n2 and a y-joystick status n3 on top of the stack.
The joystick positions are illustrated in the diagram that follows.

FCh equals decimal 252. The capital letters and ‘,’ separated by ‘ |’ indicate which keys
on the left and right side of the keyboard return these values. Note: The character value
of all fire buttons is 18 (12h).

If no key is pressed, the returned values will be a character code of 255 (FFh), and the
current x- and y-joystick positions. If a valid key is pressed, the character code of that
key will be returned along with its translated directional meaning (see diagram).

If an illegal key is pressed, three zeroes will be returned. If the fire button is pressed, a
character code of 18 (12h) along with two zeroes will be returned.

If you are using JOYST in a loop, do not forget to DROP or otherwise use the three
numbers left on the stack before calling JOYST again. A stack overflow will likely result
if you do not.

44 6.8 Using Joysticks

 6.9 Dot Graphics

High resolution (dot) graphics are available in graphics2, split and split2 modes. In graphics2
mode, it is possible to independently define each of the 49152 pixels on the screen. Split and
split2 modes allow you to define the upper two thirds or the lower five sixths of the pixels.

Three dot drawing modes are available:

DRAW (---)

plots dots in the ‘on’ state.

UNDRAW (---)

plots dots in the ‘off’ state.

Joystick positions and values

6 An Introduction to Graphics 45

DTOG (---)

toggles dots between the ‘on’ and ‘off’ state. If the dot is ‘on’, DTOG will turn it ‘off’ and
vice versa.

DMODE (--- addr)

The value of a variable called DMODE controls which drawing mode you are in. If DMODE
= 0, you are in DRAW mode. If DMODE = 1, you are in UNDRAW mode, and if DMODE = 2,
you are in DTOG mode.

DOT (dotcol dotrow---)

To actually plot a dot on the screen, the DOT instruction is used. You must specify the dot
column and dot row of the pixel you wish to plot:

base dotcol dotrow instr

DECIMAL 34 12 DOT

will plot or unplot, depending on the value of DMODE , a dot at position (34,12).

DCOLOR (--- addr)

The default color for dots is white on transparent. The screen color default is black. To
alter the foreground and background color of the dots you plot, you must modify the
value of the variable DCOLOR . The value of DCOLOR should be two hexadecimal digits
where the first digit specifies the foreground color and the second specifies a background
color. Why do you need a background color for a dot? There is a simple explanation.
Each dot represents one bit of a byte in memory. Any bit in the byte that is turned ‘on’
displays the foreground color while the others take on the background color. Usually,
you would specify the background color to be transparent.

LINE (dotcol1 dotrow1 dotcol2 dotrow2 ---)

The Forth instruction LINE allows you to easily plot a line between any two points on the
bit-map portion of the screen. You must specify a dot column and a dot row for each of
the two points.

base dotcol1 dotrow1 dotcol2 dotrow2 instr

DECIMAL 23 12 56 78 LINE

The above instruction will plot a line from left to right between (23,12) and (56,78). The
line instruction calls DOT to plot each point therefore, you must preset DMODE and
DCOLOR before using LINE .

 6.10 Special Sounds

Two special sounds can be used to enhance your graphics application. To use these noises in
your program, simply type the name of the sound you want to hear. No parameters are needed.

BEEP (---)

The first is called BEEP and produces a pleasant high pitched sound.

46 6.10 Special Sounds

HONK (---)

The other, called HONK , produces a less pleasant low tone.

 6.11 Constants and Variables Used in Graphics
Programming

The following constants and variables are defined in the graphics routines. The value of
COLTAB , PDT , SATR , SMTN and SPDTAB must be changed if you are operating in graphics2, split
or split2 mode. See the VDP Memory Map in Chapter 4.

name type description default

COLTAB constant VDP address of Color Table 380h

DMODE variable Dot graphics drawing mode 0

PDT constant VDP address of Pattern Descriptor Table 800h

SATR constant VDP address of Sprite Attribute Table 300h

SMTN constant VDP address of Sprite Motion Table 780h

SPDTAB constant VDP address of Sprite Descriptor Table 800h

7 The Floating Point Support Package 47

7 The Floating Point Support Package
Words introduced in this chapter:

>ARG FO< FMUL

>F FO= FOVER

>FAC F< FSUB

?FLERR F= FSWAP

ATN F> INT

COS F@ LOG

EXP FAC->S PI

F! FAC> S->F

F* FAC>ARG S->FAC

F+ FADD SETFL

F- FDIV SIN

F->S FDUP SQR

F. FF. TAN

F.R FF.R VAL

F/ FLERR

The floating point package is designed to make it easy to use the Radix 100 floating point
package available in ROM in the TI-99/4A console. Normal use of these routines does not
require the user to understand the implementation. For those users desiring to improve the
efficiency of these operations by optimizing the code for this implementation, the details are
given in the latter portion of this chapter.

 7.1 Floating Point Stack Manipulation

The floating point numbers in the TI-99/4A occupy 4 16-bit words11 (8 bytes) each. In order to
simplify stack manipulations with these numbers, the following stack manipulation words are
presented:

FDUP (f --- f f)

FDROP (f ---)

FOVER (f1 f2 --- f1 f2 f1)

FSWAP (f1 f2 --- f2 f1)

11 This use of the term “word” here is different from a Forth word. It refers to the largest memory unit the TMS9900
CPU can address. It is equal to 2 bytes or 16 bits.

48 7.2 Floating Point Fetch and Store

 7.2 Floating Point Fetch and Store

Floating point numbers can be stored and fetched by using

F! (f addr ---)

F@ (addr --- f)

The user must ensure that adequate storage is allocated for these numbers (e.g., 0 VARIABLE
nnnn 6 ALLOT could be used. VARIABLE allots 2 bytes.)

 7.3 Floating Point Conversion Words

The following words put floating point numbers on the stack so that the above operations can be
used:

S->F (n --- f)

A 16-bit number can be converted to floating point by using S->F . It functions by
replacing the 16-bit number on the stack by a floating point number of equal value.

F->S (f --- n)

This is the inverse of S->F . It starts with a floating point number on the stack and leaves
a 16-bit integer.

 7.4 Floating Point Number Entry

In addition, the word

>F (--- f)

can be used from the console or in a colon definition to convert a string of characters to a
floating point number. Note that >F is independent of the current value of BASE .

The string is always terminated by a blank or carriage return. The following are
examples:

>F 123 or 123 S->F

>F 123.46

>F -123.46

>F 1.23E-006

>F 9.88E+091

>F 0 or 0 S->F

 7.5 Floating Point Arithmetic

Floating point arithmetic can now be performed on the stack just as it is with integers. The four
arithmetic operators are:

F+ (f1 f2 --- f3)

7 The Floating Point Support Package 49

F- (f1 f2 --- f3) Puts on the stack the result (f3) of f1 – f2.

F* (f1 f2 --- f3) Puts on the stack the result (f3) of f1 x f2.

F/ (f1 f2 --- f3) Puts on the stack the result (f3) of f1 / f2.

PI (--- f)

The word PI is a constant available to place 3.141592653590 on the stack.

 7.6 Floating Point Comparison Words

Comparisons between floating point numbers and testing against zero are provided by the
following words. They are used just like their 16-bit counterparts except that the numbers tested
are floating point.

F0< (f --- flag) flag is true if f on stack is negative
F0= (f --- flag) flag is true if f on stack is zero
F> (f1 f2 --- flag) flag is true if f1 > f2

F= (f1 f2 --- flag) flag is true if f1 = f2

F< (f1 f2 --- flag) flag is true if f1 < f2

 7.7 Formatting and Printing Floating Point Numbers

F. (f ---)

The word F. is used to print the floating point number on the top of the stack to the
terminal. The format used is identical to that used by BASIC:

1) Integers representable exactly are printed without a trailing decimal,

2) Fixed point format is used for numbers in range and

3) Exponential format (scientific notation) is used for very large or very small
numbers.

F.R (f n ---)

If the floating point numbers are to be output in a table the word F.R can be used to right
justify it in a field of width n where n is a 16-bit word added to the top of the stack for
this purpose.

Two additional words are used for more specific formatting:

FF. (f n1 n2 ---)

FF. requires two integers on the stack above the floating point number f. They control
the maximum number of digits (n1) to convert and the number of digits (n2) following the
decimal point.

FF.R (f n1 n2 n3 ---)

FF.R adds the printing field width (n3), in which the output is right justified. As for
FF. , n1 is the maximum number of digits to convert and n2 is the number of digits
following the decimal point.

50 7.7 Formatting and Printing Floating Point Numbers

Editor’s Note: It should be noted that the exponential format of the output string allows for just
two digits for the power of ten. It is puzzling that TI did this because the exponent can be as high
as 127 and as low as -128. This means that perfectly legitimate three-digit exponents appear as
“**” in the output!

 7.8 Transcendental Functions

The following transcendental functions are also available:

INT (f1 --- f2) Returns largest integer not larger than input

^ (f1 f2 --- f3) f3 is f1 raised to the f2 power

SQR (f1 --- f2) f2 is the square root of f1

EXP (f1 --- f2) f2 is e (2.71828...) raised to the f1 power

LOG (f1 --- f2) f2 is the natural log of f1

COS (f1 --- f2) f2 is the cosine of f1 (in radians)

SIN (f1 --- f2) f2 is the sin of f1 (in radians)

TAN (f1 --- f2) f2 is the tangent of f1 (in radians)

ATN (f1 --- f2) f2 is the arctangent (in radians) of f1

Caution! A conflict exists when using transcendentals and floating point prints while in
bit-map mode. The contents of the VDP Rollout Area (3C0h ‒ 3DFh) must be saved
before transcendentals or floating point prints are executed and restored upon completion.

Note: The transcendentals also use the area known as the stack for the value stack
pointer, VSPTR (See VDP Memory Map in Chapter 4). This area is pointed to by 836Eh
(VSPTR).

 7.9 Interface to the Floating Point Routines

The remainder of this chapter will address the interface to the floating point routines in the
console in greater detail and is not necessary for most floating point operations.

The floating point routines use two memory locations in the console CPU RAM as floating point
registers. They are called FAC (for floating point accumulator) and ARG (for argument register).
Forth has two constants with these same names that can be used to access these locations directly:

FAC (--- addr) constant that puts the address of FAC on the stack.

ARG (--- addr) constant that puts the address of ARG on the stack.

The words >FAC and >ARG move floating point data from the stack to these locations.

>FAC (f ---) moves f to FAC.

>ARG (f ---) moves f to ARG.

FAC> (--- f) is used to move data from FAC to the stack.

7 The Floating Point Support Package 51

SETFL (f1 f2 ---)

Each of the binary floating point operations requires that two numbers be moved from the
stack to FAC and ARG. SETFL does this by calling >FAC and >ARG to place f2 in FAC
and f1 in ARG.

The words FADD , FSUB , FMUL and FDIV each use the values in FAC and ARG and leave the
result in FAC as they perform the floating point arithmetic functions.

FADD (---)

FSUB (---)

FMUL (---)

FDIV (---)

When conversion from 16-bit integer to floating point is performed by S->F , it is done in the
FAC. If the user does not desire the result to be copied from FAC to the stack, the word S->FAC
can be used instead:

S->FAC (n ---)

S->FAC moves a 16-bit integer (n) to the FAC, where it converts it to a floating point
number.

Several miscellaneous words include:

FAC->S (--- n) converts the contents of FAC to a 16-bit integer on the stack.

FAC>ARG (---) copies the contents of FAC to ARG.

VAL (---)

VAL converts a string at PAD to a floating point number in FAC. VAL expects the first
byte at PAD to be the character count. There must not be any leading spaces in the
string.

FLERR (--- n)

FLERR is used to fetch the contents of the floating point error register (8354h) to the
stack. See the Editor/Assembler Manual for more information.

?FLERR (---)

?FLERR issues an appropriate error message if the last floating point operation resulted in
an error.

52 8 Access to File I/O Using TI-99/4A Device Service Routines

8 Access to File I/O Using TI-99/4A
Device Service Routines

Words introduced in this chapter:

APPND INPT RLTV

CHAR-CNT! INTRNL RSTR

CHAR-CNT@ LD SCRTCH12

CHK-STAT N-LEN! SET-PAB

CLR-STAT OPN SQNTL

CLSE OUTPT STAT

DLT PAB-ADDR SV

DOI/O PAB-BUF SWCH

DSPLY PAB-VBUF UNSWCH

F-D" PABS UPDT

FILE PUT-FLAG VRBL

FXD RD WRT

GET-FLAG REC-LEN

I/OMD REC-NO

This chapter will explain the means by which different types of data files native to the TI-99/4A
are accessed with TI Forth. To further illustrate the material, two commented examples have
been included in this chapter. The first (§ 8.6) demonstrates the use of a relative disk file and the
second (§ 8.7) a sequential RS232 file.

A group of Forth words has been included in this version of TI Forth to permit a Forth program to
reference common data with BASIC or Assembly Language programs. These words implement
the file system described in the TI BASIC Manual and the Editor/Assembler Manual. Note that
the diskette on which you received your TI Forth system is not a standard diskette and that you
should perform file I/O to/from disks only if they are initialized by the Disk Manager and do not
contain Forth screens.

 8.1 The Peripheral Access Block (PAB)

Before any file access can be achieved, a Peripheral Access Block (PAB) must be set up that
describes the device and file to be accessed. Most of the words in this chapter are designed to
make manipulation of the PAB as easy as possible.

A PAB consists of 10 bytes of VDP RAM plus as many bytes as the device name to be accessed.
An area of VDP RAM has been reserved for this purpose (consult the VDP Memory Map in
Chapter 4). The user variable PABS points to the beginning of this region. Do not use the first 2

12 SCRTCH , though defined in TI Forth, was never implemented in any DSR for the TI-99/4A. Its use will result in a
file I/O error.

8 Access to File I/O Using TI-99/4A Device Service Routines 53

bytes of this area as they are used by Forth in its Forth-style disk access. Adequate space is
provided for many PABs in this area. More information on the details of a PAB are available in
the Editor/Assembler Manual, page 293ff. The following diagram illustrates the structure of a
PAB:

Byte 0 Byte 1

I/O Opcode Flag/Status

Bytes 2 & 3

Data Buffer Address in VDP

Byte 4 Byte 5

Logical Record Length Character Count

Bytes 6 & 7

Record Number

Byte 8 Byte 9

Screen Offset Name Length

Byte 10+

File Descriptor

•
•
•

 8.2 File Setup and I/O Variables

All Device Service Routines (DSRs) on the TI-99/4A expect to perform data transfers to/from the
VDP RAM. Since Forth is using CPU RAM it means that the data will be moved twice in the
process of reading or writing a file. Three variables are defined in the file I/O words to keep track
of these memory areas.

PAB-ADDR (--- addr)

Holds address in VDP RAM of first byte of the PAB.

PAB-BUF (--- addr)

Holds address in CPU RAM of first byte in Forth’s memory where allocation has been
made for this buffer.

PAB-VBUF (--- addr)

Holds address in VDP RAM of the first byte of a region of adequate length to store data
temporally while it is transferred between the file and Forth. The area of VDP RAM
which is used for this purpose is labeled “Unused” on the VDP Memory Map in Chapter
4. If working in bit-map mode, be cautious where PAB-VBUF is placed.

54 8.2 File Setup and I/O Variables

FILE (vaddr1 addr vaddr2 ---)

The word FILE is a defining word and permits you to create a word which is the name by
which the file will be known. A decision must be made as to the location of each of the
buffers before the word FILE may be used. The values to be used for those locations are
contained in the above variables and are placed on the stack in the above order followed
by FILE and the file name (not necessarily the device name). For example:

Using The Defining Word, FILE

0 VARIABLE MY-BUF 78 ALLOT (Create 80 character buffer)

PABS @ 10 + (PAB starts 10 bytes into region for
PABS: PAB-ADDR)

MY-BUF (Location of PAB-BUF)

6000 (A free area for PAB-VBUF)

FILE JOE (Whenever the word JOE is executed,
the file I/O variables, PAB-ADDR ,
PAB-BUF , PAB-VBUF , will be set as
defined here.)

JOE (Use the word before using any other
file I/O words)

SET-PAB (---)

The word that creates the PAB skeleton is SET-PAB . It creates a PAB at the address
shown in PAB-ADDR and zeroes it except for the buffer address slot. Into this it places the
contents of the variable PAB-VBUF .

 8.3 File Attribute Words

Files on the TI-99/4A have various characteristics that are indicated by keywords. The following
table describes the available options. The example in the back of the chapter will be helpful in
that it shows at what time in the procedure these words are used. Use only the attributes which
apply to your file and ignore the others. Remember, if you are using multiple files, then the file
referenced is the file whose name word was most recently executed.

Options From

Attribute Type BASIC Forth Description

File Type SEQUENTIAL SQNTL* Records may only be accessed in
sequential order

 RELATIVE RLTV Accessed in sequential or random order.
Records must be of fixed length

Record Type FIXED FXD* All records in the file are the same length

 VARIABLE VRBL Records in the same file may have
different lengths

8 Access to File I/O Using TI-99/4A Device Service Routines 55

Options From

Attribute Type BASIC Forth Description

Data Type DISPLAY DSPLY* File contains printable or displayable
characters

 INTERNAL INTRNL File contains data in machine or binary
format

Mode of
Operation

 INPUT INPT File contents can be read from but not
written to

 OUTPUT OUTPT File contents can be written to but not
read from

 UPDATE UPDT* File contents can be written to and read
from

 APPEND APPND Data may be added to end of file but
cannot be read

* Default if attribute is not specified

REC-LEN (b ---)

To specify the record length for a file, the desired length byte b should be on the stack
when the word REC-LEN is executed. The length will be placed in the current PAB.

F-D" (---)

Every file must have a name to specify the device and file to be accessed. This is
performed with the F-D" word which enters the File Description in the PAB. F-D" must
be followed by a string describing the file and terminated by a " mark. Here are a few
examples of the use of F-D" :

F-D" RS232.BA=9600"

F-D" DSK2.FILE-ABC"

 8.4 Words that Perform File I/O

The actual I/O operations are performed by the following words. The table gives the usual
BASIC keyword associated with the corresponding Forth word. Here, as in the previous table,
the Forth words are spelled differently than the BASIC words to avoid conflict with one or more
existing Forth words.

From BASIC From Forth DSR Opcode

OPEN OPN 0

CLOSE CLSE 1

READ RD 2

WRITE WRT 3

RESTORE RSTR 4

56 8.4 Words that Perform File I/O

From BASIC From Forth DSR Opcode

LOAD LD 5

SAVE SV 6

DELETE DLT 7

SCRATCH SCRTCH13 8

STATUS STAT 9

OPN (---)

opens the file specified by the currently selected PAB, which is pointed to by PAB-ADDR .

CLSE (---)

closes the file whose PAB is pointed to by PAB-ADDR .

REC-NO (n ---)

Before using the RD , WRT and SCRTCH14 instructions with a relative file, you must place
the desired, zero-based record number n into the PAB. To do this, place the record
number n on the stack and execute the word REC-NO . If your file is Sequential, you need
not do this.

RD (--- n)

The RD instruction will transfer the contents of the next record from the current file into
your PAB-BUF and leave a character count n on the stack.

WRT (n ---)

takes a character count n from the stack and moves that number of characters from the
PAB-BUF to the current file.

RSTR (n ---)

takes a record number n from the stack and repositions (restores) a relative file to that
record for the next access.

SCRTCH15 (n ---)

is used to remove a relative record. It requires a record number n on the stack.

LD (n ---)

used to load a program file of maximum n bytes into VDP RAM at the address specified
in PAB-VBUF . OPN and CLSE need not be used.

SV (n ---)

used to save n bytes of a program file from VDP RAM at the address specified in
PAB-VBUF . OPN and CLSE need not be used.

13 See footnote 12, page 52.

14 idem

15 idem

8 Access to File I/O Using TI-99/4A Device Service Routines 57

DLT (---)

is used to delete the file whose PAB is pointed to by PAB-ADDR .

STAT (--- b)

returns the status byte b (PAB+8, labeled “Screen Offset” in the PAB diagram above) of
the current device/file from the PAB pointed to by PAB-ADDR after calling the DSR’s
STATUS opcode (9), which actually gets the status and writes it to PAB+8. Incidentally,
the term “Screen Offset” for PAB+8 is from its use by the cassette interface, which must
put prompts on the screen, to get the offset of screen characters with respect to their
normal ASCII values. The table below, excerpted from the Editor/Assembler Manual, p.
298, shows the meaning of each bit of the status byte:

Status Byte Information When Value is

Bit 1 0

0 File does not exist. File exists. If device is a printer or
similar, always 0.

1 Protected file. Unprotected file.

2 Reserved for future use. Always 0.

3 INTERNAL data type. DISPLAY data type or program file.

4 Program file. Data file.

5 VARIABLE record length. FIXED record length.

6 At physical end of peripheral. No
more data can be written.

Not at physical end of peripheral.
Always 0 when file not open.

7 End of file (EOF). Can be written if
open in APPEND, OUTPUT or
UPDATE modes. Reading will
cause an error.

Not EOF. Always 0 when file not
open.

The words that follow are available for the advanced user and their utility can be worked out by
examining their definitions on Forth screen 68ff. They are lower-level words that are used in the
definitions of the above file I/O words.

GET-FLAG (--- b)

retrieves to the stack the flag/status byte b from the current PAB. The high-order 3 bits
are used for DSR error return, except for “bad device name”. With the “bad device
name” error, this error return will be 0; but, the GPL status byte (837Ch) will have the
COND bit set (20h). The low-order 5 bits are set by routines that set the file type prior to
calling OPN , which reads these bits. See table below for the meaning of each bit of the
flag/status byte:

58 8.4 Words that Perform File I/O

Flag/Status Byte of PAB (Byte 1)
Bits Contents Meaning

0‒2 Error Code 0 = no error. Error codes are decoded in table below.

3 Record Type 0 = fixed-length records; 1 = variable-length records.

4 Data Type 0 = DISPLAY; 1 = INTERNAL.

5‒6 Mode of Operation 0 = UPDATE; 1 = OUTPUT; 2 = INPUT; 3 = APPEND.

7 File Type 0 = sequential file; 1 = relative file.

Error Codes in Bits 0‒2 of Flag/Status Byte of PAB
Error
Code Meaning

0 No error unless bit 2 of status byte at address 837Ch is set (then, bad
device name).

1 Device is write protected.

2 Bad OPEN attribute such as incorrect file type, incorrect record length,
incorrect I/O mode or no records in a relative record file.

3 Illegal operation; i.e., an operation not supported on the peripheral or a
conflict with the OPEN attributes.

4 Out of table or buffer space on the device.

5 Attempt to read past the end of file. When this error occurs, the file is
closed. Also given for non-extant records in a relative record file.

6 Device error. Covers all hard device errors such as parity and bad
medium errors.

7 File error such as program/data file mismatch, non-existing file opened
in INPUT mode, etc.

PUT-FLAG (b ---)

writes the flag/status byte b on the stack to the current PAB to clear the error bits and set
the file type prior to calling OPN . See table after GET-FLAG for the meaning of each bit.

CLR-STAT (---)

clears the error code in bits 0‒2 of the flag/status byte of the current PAB.

CHK-STAT (---)

checks the error code in bits 0‒2 of the flag/status byte of the current PAB. If it is not 0,
an appropriate error message is printed.

I/OMD (--- b)

gets the flag/status byte b of the current PAB, clears the I/O mode bits (5 & 6) and leaves
it on the stack in preparation for setting the I/O mode with an I/O word.

8 Access to File I/O Using TI-99/4A Device Service Routines 59

CHAR-CNT! (n ---)

stores the character count n in the current PAB prior to a write operation. CHAR-CNT! is
used by WRT .

CHAR-CNT@ (--- n)

retrieves the character count n from the current PAB of the last read operation. It is used
by RD .

N-LEN! (b ---)

stores in the current PAB the length byte b of the file descriptor associated with the
current PAB. For “DSK1.MYFILE”, this would be 11.

DOI/O (n ---)

executes the DSRLNK word with the I/O opcode n on the stack. The current PAB must be
updated with the information required by opcode n before executing DOI/O . See Section
18.2.1 of the Editor/Assembler Manual for details or consult the definitions on Forth
screen 68ff. of the I/O words, OPN , CLSE , RD , WRT , RSTR , SCRTCH16 , LD , SV , DLT
and STAT , all of which use this low-level word in their definitions.

Examples of file I/O in use are available on Forth screen 72ff., which defines the Alternate I/O
capabilities for printing to the RS232 interface.

 8.5 Alternate Input and Output

When using alternate input or output devices, the 1-byte buffer in VDP memory must be the byte
immediately preceding the PAB for ALTIN or ALTOUT .

The words

SWCH (---) and

UNSWCH (---)

make it possible to send output that would normally go to the monitor to an RS232
printer. For example, the LIST instruction normally outputs to the monitor. By typing

 SWCH 45 LIST UNSWCH

you can list Forth screen 45 to the printer. If your RS232 printer is not on port 1 and set at 9600
baud, you must modify the word SWCH on your system disk.

The user variables

ALTIN (--- vaddr) and

ALTOUT (--- vaddr)

contain values which point to the current input and output devices. The value of ALTIN
is 0 if input is coming from the keyboard, else its value is a pointer to the VDP address
where the PAB for the alternate input device is located. The value of ALTOUT is 0 if the
output is going to the monitor. Otherwise, it contains a pointer to the PAB of the
alternate output device.

16 See footnote 12, page 52.

60 8.6 File I/O Example 1: Relative Disk File

 8.6 File I/O Example 1: Relative Disk File

Instruction Comment

HEX Change number base to hexadecimal
0 VARIABLE BUFR 3E ALLOT Create space for a 64 byte buffer which will be the PAB-BUF
PABS @ A + PAB starts 10 bytes into PABS . This will be the PAB-ADDR
BUFR 1700 Place the PAB-BUF and PAB-VBUF on stack in preparation

for FILE
FILE TESTFIL Associates the name TESTFIL with these three parameters
TESTFIL File name must be executed before using any other File I/O

words
SET-PAB Create PAB skeleton
RLTV Make TESTFIL a relative file
DSPLY Records will contain printable information
40 REC-LEN Record length is 64 (40h) bytes
F-D" DSK2.TEST" Will create the file descriptor “DSK2.TEST” in the PAB for

TESTFIL .

OPN Open the file. This will create the file on disk unless it
already exists.

To write more than one record to the file, it is necessary to write a procedure. This routine may
be composed on a Forth screen beforehand and loaded at this time.

: FIL-WRT TESTDATA TESTDATA is assumed to be the beginning memory address
of the information to be written to the file

 10 0 DO Want to write 16 (10h) records
 DUP Duplicate address
 BUFR 40 CMOVE Move 64 bytes of information into the PAB-BUF
 I REC-NO Place record number into PAB
 40 WRT Write one 64-byte record to the disk
 40 + Increment address for next record
 LOOP DROP Clear stack

; End definition

FIL-WRT Execute writing procedure
4 REC-NO RD Choose a record number to read (4 is chosen here) to verify

correct output. A byte count will be left on the stack and the
read information will be in BUFR

BUFR 40 DUMP Print out the read information to the monitor. (DUMP
routines must be loaded)

CLSE Close the file

8 Access to File I/O Using TI-99/4A Device Service Routines 61

 8.7 File I/O Example 2: Sequential RS232 File

Instruction Comment

HEX Change number base to hexadecimal
0 VARIABLE MY-BUF 4E ALLOT Create a 80 character PAB-BUF
PABS @ 30 + Skip all previous PAB. This will be the PAB-ADDR
MY-BUF 1900 Place the PAB-BUF and PAB-VBUF on stack in

preparation for FILE
FILE PRNTR Associates the name PRNTR with these three parameters
PRNTR File name must be executed before using any other File

I/O words
SET-PAB Create a PAB skeleton
DSPLY PRNTR will contain printable information
SQNTL PRNTR may be accessed only in sequential order
VRBL Records may have variable lengths
50 REC-LEN Maximum record length is 80 char.
F-D" RS232.BA=9600" PRNTR will be an RS232 file. Baud rate = 9600.
OPN Open the file

A procedure is necessary to write more than one record to a file. A file-write routine may be
composed on a Forth screen beforehand and loaded at this time. The following is a simple
example:

: PRNT FILE-INFO FILE-INFO is assumed to be the beginning memory
address of the information to be sent to the printer

 20 0 DO Will write 32 records
 DUP Duplicate address
 MYBUF 50 CMOVE Move 80 characters from FILE-INFO to MY-BUF
 50 WRT Write one record to printer
 50 + Increment address on stack
 LOOP DROP Clear stack
; End definition

PRNT Execute write program
CLSE Close the file called PRNTR

62 9 The TI Forth 9900 Assembler

9 The TI Forth 9900 Assembler

The assembler supplied with your TI Forth system is typical of assemblers supplied with fig-
Forth systems. It provides the capability of using all of the opcodes of the TMS9900 as well as
the ability to use structured assembly instructions. It uses no labels. The complete Forth
language is available to the user to assist in macro type assembly, if desired. The assembler uses
the standard Forth convention of Reverse Polish Notation for each instruction. For example the
instruction to add register 1 to register 2 is:

 1 2 A,

As can be seen in the above example, the ‘add’ instruction mnemonic is followed by a comma.
Every opcode in this Forth assembler is followed by a comma. The significance is that when the
opcode is reached during the assembly process, the instruction is compiled into the dictionary.
The comma is a reminder of this compile operation. It also serves to assist in differentiating
assembler words from the rest of the words in the TI Forth language. A complete list of Forth-
style instruction mnemonics is given in the next section.

 9.1 TMS9900 Assembly Mnemonics

A, JEQ, RSET,
AB, JGT, RTWP,
ABS, JH, S,
AI, JHE, SB,
ANDI, JL, SBO,
B, JLE, SBZ,
BL, JLT, SETO,
BLWP, JMP, SLA,
C, JNC, SOC,
CB, JNE, SOCB,
CI, JNO, SRA,
CKOF, JOC, SRC,
CKON, JOP, SRL,
CLR, LDCR, STCR,
COC, LI, STST,
CZC, LIMI, STWP,
DEC, LREX, SWPB,
DECT, LWPI, SZC,
DIV, MOV, SZCB,
IDLE, MOVB, TB,
INC, MPY, X,
INCT, NEG, XOP,
INV, ORI, XOR,

9 The TI Forth 9900 Assembler 63

These words are available when the assembler is loaded. Only the word C, conflicts with the
existing Forth vocabulary.

Most assembly code in Forth will probably use Forth’s workspace registers. The following table
describes the register allocation. The user may use registers 0 through 7 for any purpose. They
are used as temporary registers only within Forth words which are themselves written in
TMS9900 assembly code.

 9.2 Forth’s Workspace Registers

Register
Name

Usage

0

1

2

3 These registers are available. They are used only within Forth
words written in CODE .4

5

6

7

UP Points to base of User Variable area

SP Parameter Stack Pointer

W Inner Interpreter current Word pointer

11 Linkage for subroutines in CODE routines

12 Used for CRU instructions

IP Interpretive Pointer

RP Return Stack Pointer

NEXT Points to the next instruction fetch routine

 9.3 Loading and Using the Assembler

The TI Forth TMS9900 Assembler is located on Forth screens 75 ‒ 82 and is loaded by typing the
menu word -ASSEMBLER . Loading the assembler first ensures that CODE and ;CODE are in the
dictionary and loads Forth screen 74 if they are not. When the assembler is loaded, it is loaded
into the Assembler vocabulary. To use the assembler, it must be the context vocabulary, which
may be effected by typing ASSEMBLER or by using the words CODE or ;CODE , each of which
makes Assembler the context vocabulary. After defining words that use CODE or ;CODE , it is
advisable to execute FORTH to restore the context vocabulary to Forth, unless such use is
immediately followed by : (beginning a colon definition), which restores the context vocabulary
to the current vocabulary (usually Forth). The important point is that Forth must be the context
vocabulary before the Forth word C, is intended because C, is the only Assembler vocabulary
word that conflicts with a Forth vocabulary word of the same name.

64 9.3 Loading and Using the Assembler

Assembly definitions either begin with CODE or end with ;CODE . Each are followed by
assembly mnemonics or the machine-code equivalent. CODE is used in the following way:

CODE EXAMPLE <assembly mnemonics>

This defines a Forth word named EXAMPLE with an execution procedure defined by the assembly
mnemonics that follow EXAMPLE . The assembly code should end with NEXT, so the TI Forth
interpreter can get to the next word in the input stream. There are several examples using CODE
in the sections that follow.

;CODE is used with <BUILDS to create the execution procedure of a new defining word very
much like the word DOES> except that ;CODE does not cause the PFA of newly defined words to
be left on the stack for the consumption of the code following ;CODE as is the case with DOES> .
;CODE is used as follows:

: DEF-WRD <BUILDS … ;CODE <assembly mnemonics>

Just as with CODE , assembly code following ;CODE should end with NEXT, . Later when the
newly created defining word DEF-WRD is executed in the following form, a new word is defined:

DEF-WRD TEST

This will create the word TEST which has as its execution procedure the code following ;CODE .
An example using ;CODE is shown in § 9.9 .

 9.4 TI Forth Assembler Addressing Modes

We will now introduce those words that permit this assembler to perform the various addressing
modes of which the TMS9900 is capable. Each of the remaining examples will show both the
Forth assembler code for various instructions and the more conventional method of coding the
same instructions.

The word NEXT, is defined as (see § 9.4.6 for definition of *NEXT)

: NEXT, *NEXT B, ;

and is equivalent to the following assembly code:

B *R15

 9.4.1 Workspace Register Addressing

The registers in the Forth code below are referenced directly by number:

Forth Conventional Assembler

CODE EX1 DEF EX1

1 2 A, EX1 A R1,R2

3 INC, INC R3

3 FFFC ANDI, ANDI R3,>FFFC

NEXT, B *R15

9 The TI Forth 9900 Assembler 65

 9.4.2 Symbolic Memory Addressing

Symbolic addressing is done with the @() word. It is used after the address.

Forth Conventional Assembler

0 VARIABLE VAR1 VAR1 BSS 2

5 VARIABLE VAR2 VAR2 DATA 5

CODE EX2 DEF EX2

VAR2 @() 1 MOV, EX2 MOV @VAR2,R1

1 2 SRC, SRC R1,2

1 VAR1 @() S, S R1,@VAR1

VAR2 @() VAR1 @() SOC, SOC @VAR2,@VAR1

NEXT, B *R15

 9.4.3 Workspace Register Indirect Addressing

Workspace Register Indirect addressing is done with the *? word. It is used after the register
number to which it pertains.

Forth Conventional Assembler

HEX 2000 CONSTANT XRAM XRAM EQU >2000

CODE EX3 DEF EX3

1 XRAM LI, EX3 LI R1,XRAM

1 *? 2 MOV, MOV *R1,R2

NEXT, B *R15

 9.4.4 Workspace Register Indirect Auto-increment Addressing

Workspace Register Indirect Auto-increment addressing is done with the *?+ word. It is also
used after the register to which it pertains.

Forth Conventional Assembler

HEX 2000 CONSTANT XRAM XRAM EQU >2000

CODE EX4 DEF EX4

1 XRAM LI, EX4 LI R1,XRAM

1 *?+ 2 MOV, MOV *R1+,R2

NEXT, B *R15

 9.4.5 Indexed Memory Addressing

The final addressing type is Indexed Memory addressing. This is performed with the @(?) word
used after the Index and register as shown below:

66 9.4 TI Forth Assembler Addressing Modes

Forth Conventional Assembler

HEX 2000 CONSTANT XRAM XRAM EQU >2000

CODE EX5 DEF EX5

XRAM 1 @(?) 2 MOV, EX5 MOV @XRAM(R1),R2

DECIMAL

XRAM 22 + 2 @(?) MOV @XRAM+22(R2),@XRAM+26(R2)

 XRAM 26 + 2 @(?) MOV,

NEXT, B *R15

 9.4.6 Addressing Mode Words for Special Registers

In order to make addressing modes easier for the W , RP , IP , SP , UP and NEXT registers, the
following words are available and eliminate the need to enter the register name separately:

Register
Address Indirect Indexed

Indirect
Auto-increment

W *W @(W) *W+
RP *RP @(RP) *RP+

IP *IP @(IP) *IP+

SP *SP @(SP) *SP+

UP *UP @(UP) *UP+

NEXT *NEXT @(NEXT) *NEXT+

 9.5 Handling the Forth Stacks

Both the parameter stack and the return stack grow downward in memory. This means that
removing a cell from the top of either stack requires incrementing the stack pointer after
consuming the cell’s value. Conversely, adding a cell requires decrementing the stack pointer.
The Forth Assembler word *SP+ references the contents of the top cell of the parameter stack and
then increments the stack pointer SP to reduce the size of the stack by one cell. The following
code copies the contents of the stack’s top cell to register 0 and reduces the stack by one cell:

*SP+ 0 MOV,

The following code adds a cell to the top of the stack and copies the contents of register 1 to the
new cell:

SP DECT,

1 *SP MOV,

The same procedures obtain for the return stack using *RP+ , RP and *RP ; but, be very careful if
you must manipulate the return stack.

9 The TI Forth 9900 Assembler 67

 9.6 Structured Assembler Constructs

This assembler also permits the user to write structured code, i.e., code that does not use labels.
This is done in a manner very similar to the way that Forth implements conditional constructs.
The major difference is that rather than taking a value from the stack and using it as a true/false
flag, the processor’s condition register is used to determine whether or not to jump. The
following structured constructs are implemented:

IF, … ENDIF,

IF, … ELSE, … ENDIF,

BEGIN, … UNTIL,

BEGIN, … AGAIN,

BEGIN, … WHILE, … REPEAT,

The three conditional words in the previous list (IF, , UNTIL, and WHILE,) must each be
preceded by one of the jump tokens in the next section.

 9.7 Assembler Jump Tokens

Token Comment Conventional
Assembler Used

Machine Code
Generated

EQ True if = JNE 1600h

GT True if signed > JGT $+1 JMP 1501h 1000h

GTE True if signed > or = JLT 1100h

H True if unsigned > JLE 1200h

HE True if unsigned > or = JL 1A00h

L True if unsigned < JHE 1400h

LE True if unsigned < or = JH 1B00h

LT True if signed < JLT $+1 JMP 1100h 1000h

LTE True if signed < or = JGT 1500h

NC True if No Carry JOC 1800h

NE True if equal bit not set JEQ 1300h

NO True if No overflow JNO $+1 JMP 1901h 1000h

NP True if Not odd Parity JOP 1C00h

OC True if Carry bit is set JNC 1700h

OO True if Overflow JNO 1900h

OP True if Odd Parity JOP $+1 JMP 1C00h 1000h

 9.8 Assembly Example for Structured Constructs

The following example is designed to show how these jump tokens and structured constructs are
used:

68 9.8 Assembly Example for Structured Constructs

Forth Conventional Assembler

(GENERALIZED SHIFTER) * GENERALIZED SHIFTER

CODE SHIFT DEF SHIFT

*SP+ 0 MOV, SHIFT MOV *SP+,RO

NE IF, JEQ L3

 *SP 1 MOV, MOV *SP,R1

 0 ABS, ABS R0

 GTE IF, JLT L1

 1 0 SLA, SLA R1,0

 ELSE, JMP L2

 1 0 SRL, L1 SRL R1,0

 ENDIF,

 1 *SP MOV, L2 MOV R1,*SP

 ENDIF,

NEXT, L3 B *R15

One word of caution is in order. The structured constructs shown above do not check to ensure
that the jump target is within range (+127, -128 words). This will be a problem only with very
large assembly language definitions and will violate the Forth philosophy of small, easily
understood words.

 9.9 Assembly Example Using ;CODE

Before giving an example of defining a TI Forth defining word with ;CODE , an explanation of
why you might want to use it in the first place is in order.

The defining words that are part of the TI Forth kernel are : (paired with ;), VARIABLE ,
CONSTANT , USER , VOCABULARY , <BUILDS (paired with DOES> or ;CODE [not in the kernel])
and CREATE . The defining words CODE and ;CODE are defined on the system disk and must be
loaded with -CODE or -ASSEMBLER to be used. Of course, Most words you would ever need to
define can be created with the first three (: , VARIABLE and CONSTANT). However, you too can
use <BUILDS and CREATE , the same words used for defining most of the above, for the
eventuality that these do not suffice.

In TI Forth, it is not useful to use CREATE on the command line unless you really know what you
are doing because it creates a dictionary header in which the smudge bit is set and the code field
points at the parameter field with no storage allotted for it. This means that the parameter field
must be allotted with executable code (or the code field changed to point to some) and the
smudge bit must be reset so a dictionary search can find the word. The same discussion obtains
for <BUILDS except for the smudge bit because <BUILDS is defined in TI Forth as

: <BUILDS CREATE SMUDGE ; (SMUDGE toggles the smudge bit.)

This situation is made easier by using <BUILDS , DOES> and ;CODE within colon definitions as

: NEW_DEFINING_WORD <BUILDS … DOES> … ;

9 The TI Forth 9900 Assembler 69

or

: NEW_DEFINING_WORD <BUILDS … ;CODE …

You simply replace the first “…” with words you want to execute when NEW_DEFINING_WORD is
compiling a new word, e.g., to reserve space for and store a value in the first cell of the parameter
field using , . You then replace the second “…” with code to be executed when the new word
actually executes. It will be this code to which the code field of the new word will point.

Here, now, is an example of the use of ;CODE in the definition of a defining word, i.e., a word
that creates new words:

CONSTANT is a TI Forth word that defines a word, the value of which is pushed to the stack when
the word is executed.

9 CONSTANT XXX

defines the word XXX with 9 in its parameter field and the address of the execution code of
CONSTANT in its code field. TI Forth defines CONSTANT in high-level Forth essentially as

: CONSTANT <BUILDS , DOES> @ ;

Using ;CODE , it could also be defined with Assembler code as

: CONSTANT Start colon definition of CONSTANT .
<BUILDS CONSTANT will create a dictionary header for the word

appearing after it in the input stream when CONSTANT is
executed. The new word’s CFA will point to the address
immediately following the CFA. This will be the new word’s
PFA, but no space will be allocated for the PFA.

, Expects a number on the stack, which it will store at the PFA of
the new word, allocating space for it.

;CODE The new word’s CFA will be changed to point to machine code
that follows ;CODE here in CONSTANT . The following machine
code is what will run when the new word is executed:

SP DECT, Make space on the stack.
*W *SP MOV, Copy current (newly defined) word’s parameter field contents to

the stack. [W (R10) contains the current word’s PFA.]
NEXT, Return to the interpreter.

which, once you know the machine code, can be coded without the Assembler loaded as

HEX

: CONSTANT <BUILDS , ;CODE 0649 , C65A , 045F ,

For CONSTANT , the first, high-level definition is easier to understand. They are both the same
length. They both create words of the same length. However, there may come a time when only
Assembler will do your bidding and ;CODE offers that facility.

70 9.10 Using CODE and ;CODE without the Assembler

 9.10 Using CODE and ;CODE without the Assembler

TI Forth words using CODE or ;CODE can be written without the 2250-byte overhead of the TI
Forth Assembler by using the machine code equivalent to assembly code. The editor may well
write a TI Forth program soon to do the dirty work; but, for now you must endure the painful
procedure below to get the job done. Until you have tested and debugged your work, it is
probably best to work with one Forth word at a time on a Forth screen.

1. Write, test and debug your Forth word using the TI Forth Assembler. Here, we'll use
EX5 from § 9.4.5 for the CODE example and CONSTANT (renamed CONST2 to avoid
confusion) from § 9.9 for the ;CODE example.

2. Ensure that the TI Forth Assembler is loaded.

3. Ensure that the dump routines are loaded by executing -DUMP .

4. Load the screen that contains the definition of your Forth word and continue with (5) in
the appropriate section below.

 9.10.1 CODE without the Assembler

Refer to the example in § 9.4.5 for the following:

5. Use ' to find the PFA of EX5 and dump from the PFA to the end of the word:
HERE ' EX5 SWAP OVER - DUMP

will dump this to the screen:
E42C C0A1 2000 C8A2 2016
E434 201A 045F .._
ok

The column at the left indicates the addresses in RAM where the hexadecimal cells to the
right are located. The 8-character, right-hand column is their ASCII representation.

6. The last cell should be 045Fh, corresponding to the NEXT, instruction.

7. Write the high-level part of the word (CODE EX5) followed by the machine code after
EX5 using the dump above to compile the hexadecimal value for each cell with , starting
with the first cell (parameter field) and ending with 045Fh as follows:

HEX
CODE EX5 C0A1 , 2000 , C8A2 , 2016 , 201A , 045F ,

8. If all the code was assembly code, you're done. Otherwise, you need to replace values
that can vary from one load to the next, such as variables, named constants and dictionary
entries, with the high-level code used in the word's assembly language definition. In the
above example, the constant XRAM was used, so we need to replace the value 2000h with
the reference that put it there. In this case XRAM is used three times to get the cells with
2000h, 2016h and 201Ah. We need to replace the 2000h with XRAM , the 2016h with
XRAM 16 + and the 201Ah with XRAM 1A + to get

HEX
CODE EX5 C0A1 , XRAM , C8A2 , XRAM 16 + , XRAM 1A + , 045F ,

which can now be entered on a Forth screen to be loaded with only CODE in the dictionary
(use -CODE to ensure it's loaded) and without the Assembler overhead.

9. You should test your new version of the word to verify it is identical to the original
assembly version.

9 The TI Forth 9900 Assembler 71

 9.10.2 ;CODE without the Assembler

We need to do more work with ;CODE than we did with CODE above. We must find the CFA of
(;CODE) that ;CODE compiled into our word and retrieve the machine code that follows it. Refer
to the example in § 9.9 (which we've renamed here as CONST2 to avoid confusion) for the
following:

5. Use ' and CFA to find the CFA of (;CODE) so you can find the cell within the definition
of CONST2 that contains it:

HEX ' (;CODE) CFA U.

will display this on the screen:
BA6A ok

6. Use ' to find the PFA of CONST2 and dump from the PFA to the end of the word:
HERE ' CONST2 SWAP OVER - DUMP

will dump this to the screen:
E424 B998 A992 BA6A 0649 j.I
E42C C65A 045F .Z._
ok

The column at the left indicates the addresses in RAM where the hexadecimal cells to the
right are located. The 8-character, right-hand column is their ASCII representation.

7. The last cell should be 045Fh, corresponding to the NEXT, instruction.

8. Write the high-level part of the word through ;CODE followed by the machine code after
BA6Ah [the CFA of (;CODE) we found above in (5)]. Use the dump above for guidance
to compile with , the hexadecimal value for each cell as follows:

HEX
: CONSTANT <BUILDS , ;CODE 0649 , C65A , 045F ,

which can now be entered on a Forth screen to be loaded with only ;CODE in the
dictionary (use -CODE to ensure it's loaded) and without the Assembler overhead.

9. If all the code was assembly code, as it is here, you're done. Otherwise, you need to
replace values that can vary from one load to the next, such as variables, named constants
and dictionary entries, with the high-level code used in the word's assembly language
definition. See (8) in § 9.10.1 for an example with a named constant.

10. You should test your new version of the word to verify it is identical to the original
assembly version.

72 10 Interrupt Service Routines (ISRs)

10 Interrupt Service Routines (ISRs)

The TI-99/4A has the built-in ability to execute an interrupt routine every 1/60 second. This
facility has been extended by the TI Forth system so that the routine to be executed at each
interrupt period may be written in Forth rather than in assembly language. This is an advanced
programming concept and its use depends on the user’s knowledge of the TI-99/4A.

The user Variables ISR and INTLNK are provided to assist the user in using ISRs. Initially, they
each contain the address of the link to the Forth ISR handler, To correctly use User Variable ISR
the following steps should be followed:

 10.1 Installing a Forth Language Interrupt Service Routine

1) Create and test a Forth routine to perform the function.

2) Determine the Code Field Address (CFA) of the routine in (1).

3) Write the CFA from (2) into ISR .

4) Write the contents of INTLNK into 83C4h (33732).

The ISR linkage mechanism is designed so that your interrupt service routine will be allowed to
execute immediately after each time the Forth system executes the “NEXT” instruction (as it does
at the end of each code word). In addition, the KEY routine has been coded so that it also executes
“NEXT” after every keyscan whether or not a key has been pressed. The “NEXT” instruction is
actually coded in TI Assembler as “B *NEXT” or “B *R15” because workspace register 15 (R15
or NEXT) contains the address of the next instruction to be executed. This executes the same
procedure as the TI Forth Assembler word NEXT, (see Chapter 9).

Before installing an ISR you should have some idea of how long it takes to execute, keeping in
mind that for normal behavior it should execute in less than 16 milliseconds. ISRs that take
longer than that may cause erratic sprite motion and sound because of missed interrupts. In
addition it is possible to bring the Forth system to a slow crawl by using about 99% of the
processor’s time for the ISR.

The ISR capability has obvious applications in game software as well as for playing background
music or for spooling screens from disk to printer while other activities are taking place. This
final application will require that disk buffers and user variables for the spool task be separate
from the main Forth task or a very undesirable cross-fertilization of buffers may result. In
addition it should be mentioned that disk activity causes all interrupt service activity to halt.

ISRs in Forth can be written as either colon definitions or as CODE definitions. The former
permits very easy routine creation, and the latter permits the same speed capabilities as routines
created by the Editor/Assembler. Both types can be used in a single routine to gain the
advantages of both.

10 Interrupt Service Routines (ISRs) 73

 10.2 An Example of an Interrupt Service Routine

An example of a simple ISR is given below. This example also illustrates some of the problems
associated with ISRs and how they can be circumvented. The problems are:

1) A contention for PAD between a normal Forth command and the ISR routine.

2) Long execution time for the ISR routine. (Even simple routines, especially if they
include output conversion routines or other words that nest Forth routines very deeply,
will not complete execution in 1/60 second.)

These problems are overcome by moving PAD in the interrupt routine to eliminate the
interference between the foreground and the background task. The built-in number formatting
routines are quite general and hence pay a performance penalty. This example performs this
conversion rather crudely, but fast enough that there is adequate time remaining in each 1/60
second to do meaningful computing.

0 VARIABLE TIMER (TIMER will hold the current count)
: UP 100 ALLOT ; (move HERE and thus PAD up 100 bytes)
: DOWN -100 ALLOT DROP17 ; (restore PAD to its original location)
: DEMO UP (move PAD to avoid conflict)
 1 TIMER +! TIMER @ (increment TIMER , leave on stack)
 PAD DUP 5 + (ready to loop from PAD + 5 down to PAD + 1)
 DO

 0 10 U/ (make positive double, get 1st digit)
 SWAP 48 + (generate ASCII digit)
 I C! (store to PAD)
 -1 +LOOP (decrement loop counter)
 PAD 1+ SCRN_START @ 5 VMBW (write to screen)
 DOWN ; (restore PAD location)

 10.3 Installing the ISR

To install this ISR the following code may be executed:

INTLNK @ (get the ISR ‘hook’ to the stack)
' DEMO CFA (get CFA of the word to be installed as ISR)
ISR ! (place it in user variable ISR)
HEX 83C4 ! (put ISR ‘hook’ into console interrupt service routine)

(Note: the CFA must be in user variable ISR before
writing to 83C4h)

17 Bug Fix: See Appendix J for the source of the fix. It might be clearer why DROP is necessary if it were placed
after +LOOP instead of in the definition of DOWN : After the first pass through the loop in DEMO , the remainder from
U/ is consumed, but the quotient is left for the next pass through the loop and, of course, remains on the stack when
the loop exits. DROP cleans up the stack.

74 10.3 Installing the ISR

To reverse the installation of the ISR one can either write a 0 to 83C4h or place the CFA of NOP (a
do-nothing instruction) in user variable ISR .

 10.4 Some Additional Thoughts Concerning the Use of ISRs

ISRs are uninterruptible. Interrupts are disabled by the code that branches to your ISR routine
and they are not enabled until just before branching back to the foreground routine. Do not
enable interrupts in your interrupt routine.

1) Caution must be exercised when using PABs, changing user variables or using disk
buffers in an ISR, as these activities will likely interfere with the foreground task unless
duplicate copies are used in the two processes.

2) An ISR must never expect nor leave anything on the stacks. It may however use them in
the normal manner during execution.

3) Disk activity disables interrupts as do most of the other DSRs in the TI-99/4A. An ISR
that is installed will not execute during the time interval in which disk data transfer is
active. It will resume after the disk is finished. Note that it is possible to LOAD from disk
while the ISR is active. It will wait for about a second each time the disk is accessed.
The dictionary will grow with the resultant movement of PAD without difficulty.

11 Potpourri 75

11 Potpourri
Your TI Forth system has a number of additional features that will be discussed in this chapter.
These include a facility to save and load binary images of the dictionary so that applications need
not be recompiled each time they are used. Also available are a group of CRU (Communications
Register Unit) instructions and a version of MESSAGE that does not require a disk to display the
standard error messages.

 11.1 BSAVE and BLOAD

BSAVE (addr scr1 --- scr2)

The word BSAVE is used to save binary images of the dictionary. BSAVE requires two
entries on the stack:

1) The lowest memory address addr in the dictionary image to be saved to disk.

2) The Forth screen number scr1 to which the saved image will be written.

BSAVE will use as many Forth screens as necessary to save the dictionary contents from
the address given on the stack to HERE. These are saved with 1000 bytes per Forth screen
until the entire image is saved. BSAVE returns on the stack the number scr2 of the first
available Forth screen after the image.

Each Forth screen of the saved image has the following format:

Byte # Contents
0‒1 Address at which the first image byte of this Forth screen

will be placed.
2‒3 DP for this memory image.
4‒5 Contents of CURRENT .
6‒7 Contents of CURRENT @ .
8‒9 Contents of CONTEXT .
10‒11 Contents of CONTEXT @ .
12‒13 Contents of VOC-LINK .
14 The letter ‘t’.
15 The letter ‘i’.
16‒23 Not used.
24‒1023 Up to 1000 bytes of the memory image.

BLOAD (scr --- flag)

BLOAD is part of your TI Forth kernel and does not have to be loaded before you can use
it. It reverses the BSAVE process and makes it possible to bring in an entire application in
seconds. BLOAD expects a Forth screen number scr on the stack. Before performing the
BLOAD function the 14th and 15th bytes are checked to see that they contain the letters “ti”.

76 11.1 BSAVE and BLOAD

If they do, the load proceeds and BLOAD returns a flag of 0 on the stack signifying a
successful load. If the letters “ti” are not found, then the BLOAD is not performed and a
flag of 1 is returned. This facility permits a conditional binary load to be performed and
if it fails (wrong disk, etc.), other actions can be performed.

Because the BLOAD and BSAVE facility is designed to start the save (and hence the load) at a user-
supplied address, a complete overlay structure can be implemented. Very important: The user
must ensure that when part of the dictionary is brought in, the remainder of the dictionary (older
part) is identical to that which existed when the image was saved.

 11.1.1 Customizing How TI Forth Boots Up

You may find that you use the same MENU choices frequently and would like to load them
automatically and quickly each time you boot TI Forth. You can do this by using the Forth word
TASK as a reference point for BSAVE . A no-operation word or null definition, TASK is the last
word defined in the resident Forth vocabulary of TI Forth and the last word that cannot be
forgotten using FORGET . Its definition is simply

: TASK ;

Its address can be used to BSAVE a personalized TI Forth system disk by using ' TASK as the
address on the stack for BSAVE . If part of your personalized system includes the 64-column
editor, you can use the 9 screens starting with screen 21 to save your system image:

' TASK 21 BSAVE .

(Be sure to back up the original disk before trying this!). It is important that you ensure that this
procedure does not compromise Forth system screens you may need for your new personalized
system. The . after BSAVE will report the next available screen from the value left on the stack.
Subtracting 21 from that number will tell you how many screens it took to save the binary image
in the above BSAVE line.

You now need to add the code to load what you have just saved the next time you boot your
system. You can also do a little housecleaning by erasing superfluous material from screens 3
and 20:

On Forth screen 3:

• Erase lines 3 ‒ 11. These definitions will be redundant.

• Replace 20 LOAD on line 2 with 21 BLOAD to load the rest of the system from
TASK forward the next time you boot up TI Forth.

On Forth screen 20:

• Erase lines 0 ‒ 8.

• On line 0, put something like: (MENU CHOICES) , to indicate the purpose of
lines 9 ‒ 15. You need to keep those lines because MENU will list them to the
screen regardless of how they read.

11 Potpourri 77

 11.1.2 An Overlay System with BSAVE/BLOAD

As mentioned above, you can implement a complete overlay structure using BSAVE and BLOAD .
It can be a bit tedious to set up, however, because you must ensure that the dictionary structure
older than what you load with BLOAD is identical to what it was when the binary image was saved
with BSAVE . If your application always uses TASK as the reference point, as in the previous
section, for saving and loading all overlays you set up for your application, the situation is
actually pretty simple. If, on the other hand, you wish to have the most efficiently running
application possible with minimum load/reload times, you will want to load as overlays only
those parts of your application that can be considered mutually exclusive or, at least, not
redundant functions.

Such an application might be set up as follows:

1. Anticipate screens where overlays will be saved with BSAVE .

2. Set up storage (variables, arrays, ...) that is common to two or more overlays.

3. Set up the overlay-loading mechanism in your application to use BLOAD to load them.
The following example illustrates such a mechanism using the CASE … ENDCASE
construct:

0 VARIABLE OVLY (track current ovly#)

: OVLY_LD (ovly# ---)
DUP

CASE
1 OF 120 BLOAD ENDOF

2 OF 130 BLOAD ENDOF
3 OF 140 BLOAD ENDOF

(no overlay change if we get here!)
-1 SWAP (ENDCASE will DROP top number)

 ENDCASE

(2 cells to here unless fell thru. Top cell: -1|0|1)
CASE

-1 OF ." No choice for overlay " . CR ENDOF
 0 OF OVLY ! ENDOF (Success! Save new #)

 1 OF ." Failed to load overlay " . CR ENDOF
ENDCASE ;

4. Program a method for determining which overlay is needed for a particular function or
set of functions and use OVLY to determine whether that overlay needs to be loaded.

5. As the last word of your application before any overlays, define OVERLAYS as a null
definition to be a reference point for BSAVE and make it unforgettable:

: OVERLAYS ;

' OVERLAYS NFA FENCE !

6. Begin each overlay with the following null definition as a FORGET reference point for
loading the next overlay source screen prior to saving its binary image with BSAVE :

: OVLY_STRT ;

78 11.1 BSAVE and BLOAD

7. After the successful load (with BLOAD) of an overlay, set OVLY to its number as in the
example in (3) above.

After programming and debugging the application, save the application and its overlays as
follows:

 1. Remove all system components from the dictionary that are not required by your
application and that are newer than TASK . To start with a dictionary with only resident
words:

 a) Execute -DUMP to load the definition for VLIST .

 b) Execute VLIST to get the name of the word immediately following TASK .
Remember that VLIST lists the dictionary from HERE back to older words.

 c) FORGET that word to leave only the resident dictionary. If the word following TASK ,
i.e., listed just before TASK by VLIST , is XXX , then execute FORGET XXX .

 2. Load all system components required to run your application. At the very least, you will
need to load -BSAVE to use BSAVE to save the binary images for your application and its
overlays, even though your application will never need it.

 3. Load application.

 4. Load first overlay.

 5. BSAVE application using the address of TASK to a free Forth screen:

' TASK 110 BSAVE .

 6. BSAVE first overlay using the address of OVERLAYS to a free Forth screen:

' OVERLAYS 120 BSAVE .

 7. For each overlay following the first do the following:

 a) FORGET OVLY_STRT

 b) 100 LOAD (100 should be where the Forth screen for next overlay resides.)

 c) ' OVERLAYS 130 BSAVE . (Obviously, 130 should be a different screen for each
additional overlay.)

 11.1.3 An Easier Overlay System in Source Code

The above BSAVE/BLOAD method for setting up an overlay system can be very difficult to
maintain because of the unforgiving nature of BLOAD . Any changes in the application other than
the overlay section will almost certainly necessitate re-saving all of the overlays. An easier
method to maintain is one such as described in Starting FORTH (1st Ed.), p. 80ff. It will be
necessarily slower to load overlays because it uses source screens. You can still save a binary
image of the application as above with the first, presumably most used, overlay to minimize load
time; but, it still may be better for software changes to BSAVE the application without an overlay.

Because you are not using BSAVE to save the overlays, you can dispense with one of the null
definitions. Let us say you are using OVERLAYS , as the word to FORGET each time another
overlay is loaded. OVERLAYS will now separate the main application from the current overlay
and should, of course, be the last word of the main application. OVERLAYS should obviously not
be made unforgettable! The first Forth screen of each overlay should begin with

FORGET OVERLAYS : OVERLAYS ;

11 Potpourri 79

You can use the same mechanism (OVLY_LD) as in the previous section for loading the overlays;
but, you will need to change all instances of BLOAD to LOAD and, of course, the screens will be
text screens, not binary images. You will also need to change the code that expects a flag on the
stack from BLOAD because LOAD does not leave a flag.

 11.2 Conditional Loads

CLOAD (scr ---)

The word CLOAD has been included in your system to assist in easily managing the
process of loading the proper support routines for an application without compiling
duplicates of support routines into the dictionary.

CLOAD calls the words <CLOAD> , WLITERAL , and SLIT . Their functions are described
briefly as follows:

<CLOAD> (---)

performs the primary CLOAD function and is executed or compiled by CLOAD depending
on STATE .

SLIT (--- addr)

is a word designed to handle string literals during execution. Its purpose is to put the
address of the string on the stack and step the Forth Instruction Pointer over it.

WLITERAL (---)

is used to compile SLIT and the desired character string into the current dictionary
definition. See the TI Forth Glossary (Appendix D) for more detail.

To use CLOAD , there must always be a Forth screen number on the stack. The word CLOAD must
be followed by the word whose conditional presence in the dictionary will determine whether or
not the Forth screen number on the stack is loaded.

27 CLOAD FOO

This instruction, for example, will load Forth screen 27 only if a dictionary search, (FIND) , fails
to find FOO . FOO should be the last word loaded by the command 27 LOAD .

It is also possible to use CLOAD to abort the loading of a Forth screen. This is done by using the
command:

0 CLOAD TESTWORD

If this line of code were located on Forth screen 50, and the word TESTWORD was in the present
dictionary, the load would abort just as if a ;S had been encountered.

Caution must be exercised when using BASE->R and R->BASE with CLOAD as these will cause
the return stack to be polluted if a LOAD is aborted and the BASE->R is not balanced by a
R->BASE at execution time.

80 11.3 Memory Resident Messages

 11.3 Memory Resident Messages

message (---)

If the user desires, he may elect to use a version of MESSAGE which is provided on the
system disk (Forth screen 84). This version is spelled with lower case message . The
purpose of this version is to avoid having to place the messages on the diskette in DR0.
The code to install this version is supplied on the same Forth screens with the routines.
Installing message will remove the 5th disk buffer from the system and use that memory
for storing the error messages. It will then place a patch in the old version of message to
cause it to branch to the new routine. Caution must be exercised if COLD is executed with
the new version in place, as COLD will restore the 5th buffer but will not unpatch the old
version of MESSAGE . After performing the COLD , you must reinstall the new message
or unpatch the old version of MESSAGE prior to the system using the word MESSAGE .
Failure to do this will cause a crash. To repatch MESSAGE , the first two words in the
parameter field must be restored to be the CFAs of WARNING and @ .

 11.4 CRU Words

LDCR (n1 n2 addr ---)

STCR (n1 addr --- n2)

TB (addr --- flag)

SBO (addr ---)

SBZ (addr ---)

The above five words have been included to assist in performing CRU (Communications
Register Unit) related functions. They allow the Forth programmer to perform the LDCR,
STCR, TB, SBO and SBZ operations of the TMS9900 without using the Assembler. The
functions of these words will be apparent when someone familiar with these instructions
on the TMS9900 examines their definitions in the Glossary (Appendix D). Also, see the
Editor/Assembler Manual for greater detail.

12 TI Forth Dictionary Entry Structure 81

12 TI Forth Dictionary Entry Structure
[Editor’s Note: As with several of the appendices in this document, this chapter was added by
the editor.]

The structure of an entry (a Forth word) in the TI Forth dictionary is briefly described in this
chapter to give the reader a better understanding of TI Forth and how its dictionary may differ
from other Forth implementations.

The dictionary entries are shown here schematically as a stack of single cells of 16 bits each:

At the least, each entry contains a link field (1 cell), a name field (1 ‒ 16 cells), a code field
(1 cell) and a parameter field (n ≥1 cells).

 12.1 Link Field

The link field is the first field in a definition. It contains the address of the name field of the
immediately preceding word in the vocabulary list to which the word belongs in the dictionary.
The address of this field is termed the link field address lfa and may be retrieved by pushing the
pfa (see § 12.4) onto the stack and executing LFA .

 12.2 Name Field

The name field follows the link field and may be as long as 16 cells (32 bytes). The name field
address nfa points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the
stack and executing NFA .

 precedence bit terminator bits smudge bit

(previous entry)

link field address lfa link field

name field address nfa t p s len char1

name field ⁞
charlen-1 | charlen t charlen | space

code field address cfa code field

parameter field address pfa parameter field

⁞
end of definition

82 12.2 Name Field

The first byte is the length byte. The three highest bits of the length byte are the beginning
terminator bit (80h), the precedence bit (40h) and the smudge bit (20h). These are shown in the
above figure as t, p and s, respectively. That leaves 5 bits for the character-length len of the
name, which is the reason that TI Forth words have a maximum length of 31 characters. The
name field in TI Forth always occupies an even number of bytes, i.e., it begins and ends on a cell
boundary. The last byte of the name field will be either the last character of the name or a space
and will have the highest bit (80h) set as the ending terminator bit.

To clarify the above diagram a bit, when the name is only one character long, the first character is
obviously the last character and the ending terminator bit will be set in that byte, which results in
a name field occupying just one cell.

The terminator bits are flags used by TRAVERSE (q.v.) to find the beginning or end of the name
field, given the address of one end and the direction (+1|-1) to search.

The precedence bit is used to indicate that a word should be executed rather than compiled during
compilation. It is set by IMMEDIATE , which sets the precedence bit for the most recently
completed definition.

The smudge bit is used to hide|unhide a word from a dictionary search during compilation. If the
smudge bit is set (20h), ' , -FIND and (FIND) will not find the word. During compilation, the
smudge bit is toggled by SMUDGE or similar code and toggled again by ; or similar termination
code.

 12.3 Code Field

The code field immediately follows the last cell of the name field. The code field address cfa
points to this field and may be retrieved by pushing the pfa (see § 12.4) onto the stack and
executing CFA . The code field contains the address of the machine-code routine that TI Forth
will run when it executes this word and depends on the nature of the word’s definition. The
following table shows common situations:

Word
Defined by

Code Field Contains
Address of What the Runtime Code Does

VARIABLE Runtime code of VARIABLE Pushes word’s pfa onto stack

CONSTANT Runtime code of CONSTANT Pushes contents of word’s pfa onto
stack

: Runtime code of : Executes the list of previously
defined words, the addresses of
which are stored beginning at this
word’s pfa

CODE pfa of word Executes machine code stored
beginning at this word’s pfa

12 TI Forth Dictionary Entry Structure 83

 12.4 Parameter Field

The parameter field follows the code field. The parameter field address pfa points to this address,
which can be retrieved by using ' :

' cccc

where cccc is the name of the Forth word for which you desire the pfa.. If the word is not found,
however, you will get an error message as well as two values on the stack that indicate the
character offset and screen number (0 for terminal) of the error. -FIND (q.v.) will also return the
pfa along with the length byte of the name field and true if the word is found in the dictionary or
just false if it is not found. It is used the same way as ' ; but, more work is required if all you
want is the pfa, so it is more suited to colon definitions:

-FIND cccc DROP DROP

If you know only the nfa, you can retrieve the pfa by executing PFA .

The contents of the parameter field depend on the type of word defined. The following table
shows common situations:

Word Defined by Parameter Field Contains

VARIABLE Value of variable

CONSTANT Value of constant

: Mostly a list of the addresses (usually their cfas) of
previously defined words that comprise this word’s
definition

CODE Machine code comprising this word’s runtime code

84 Appendix A ASCII Keycodes (Sequential Order)

 Appendix A ASCII Keycodes (Sequential
Order)

ASCII Code ASCII Code

 Character hex decimal Character hex decimal

NUL <CTRL+,> 00h 0 SP 20h 32

SOH <CTRL+A> <FCTN+7> 01h 1 ! 21h 33

STX <CTRL+B> <FCTN+4> 02h 2 " <FCTN+P> 22h 34

ETX <CTRL+C> <FCTN+1> 03h 3 # 23h 35

EOT <CTRL+D> <FCTN+2> 04h 4 $ 24h 36

ENQ <CTRL+E> <FCTN+=> 05h 5 % 25h 37

ACK <CTRL+F> <FCTN+8> 06h 6 & 26h 38

BEL <CTRL+G> <FCTN+3> 07h 7 ' <FCTN+O> 27h 39

BS <CTRL+H> <FCTN+S> 08h 8 (28h 40

HT <CTRL+I> <FCTN+D> 09h 9) 29h 41

LF <CTRL+J> <FCTN+X> 0Ah 10 * 2Ah 42

VT <CTRL+K> <FCTN+E> 0Bh 11 + 2Bh 43

FF <CTRL+L> <FCTN+6> 0Ch 12 , 2Ch 44

CR <CTRL+M> 0Dh 13 - 2Dh 45

SO <CTRL+N> <FCTN+5> 0Eh 14 . 2Eh 46

SI <CTRL+O> <FCTN+9> 0Fh 15 / 2Fh 47

DLE <CTRL+P> 10h 16 0 <CTRL+0> 30h 48

DC1 <CTRL+Q> 11h 17 1 <CTRL+1> 31h 49

DC2 <CTRL+R> 12h 18 2 <CTRL+2> 32h 50

DC3 <CTRL+S> 13h 19 3 <CTRL+3> 33h 51

DC4 <CTRL+T> 14h 20 4 <CTRL+4> 34h 52

NAK <CTRL+U> 15h 21 5 <CTRL+5> 35h 53

SYN <CTRL+V> 16h 22 6 <CTRL+6> 36h 54

ETB <CTRL+W> 17h 23 7 <CTRL+7> 37h 55

CAN <CTRL+X> 18h 24 8 38h 56

EM <CTRL+Y> 19h 25 9 <FCTN+Q> <FCTN+.> 39h 57

SUB <CTRL+Z> 1Ah 26 : <FCTN+/> 3Ah 58

ESC <CTRL+.> 1Bh 27 ; <CTRL+/> 3Bh 59

FS <CTRL+;> 1Ch 28 < <FCTN+0> 3Ch 60

GS <CTRL+=> 1Dh 29 = <FCTN+;> 3Dh 61

RS <CTRL+8> 1Eh 30 > <FCTN+B> 3Eh 62

 US <CTRL+9> 1Fh 31 ? <FCTN+H> <FCTN+I> 3Fh 63

 Appendix A ASCII Keycodes (Sequential Order) 85

…continued from previous page—

ASCII Code ASCII Code

 Character hex decimal Character hex decimal

@ <FCTN+J> 40h 64 ` <FCTN+C> 60h 96

A <FCTN+K> 41h 65 a 61h 97

B <FCTN+L> 42h 66 b 62h 98

C <FCTN+M> 43h 67 c 63h 99

D <FCTN+N> 44h 68 d 64h 100

E 45h 69 e 65h 101

F <FCTN+Y> 46h 70 f 66h 102

G 47h 71 g 67h 103

H 48h 72 h 68h 104

I 49h 73 i 69h 105

J 4Ah 74 j 6Ah 106

K 4Bh 75 k 6Bh 107

L 4Ch 76 l 6Ch 108

M 4Dh 77 m 6Dh 109

N 4Eh 78 n 6Eh 110

O 4Fh 79 o 6Fh 111

P 50h 80 p 70h 112

Q 51h 81 q 71h 113

R 52h 82 r 72h 114

S 53h 83 s 73h 115

T 54h 84 t 74h 116

U 55h 85 u 75h 117

V 56h 86 v 76h 118

W 57h 87 w 77h 119

X 58h 88 x 78h 120

Y 59h 89 y 79h 121

Z 5Ah 90 z 7Ah 122

[<FCTN+R> 5Bh 91 { <FCTN+F> 7Bh 123

\ <FCTN+Z> 5Ch 92 | <FCTN+A> 7Ch 124

] <FCTN+T> 5Dh 93 } <FCTN+G> 7Dh 125

^ 5Eh 94 ~ <FCTN+W> 7Eh 126

_ <FCTN+U> 5Fh 95 DEL <FCTN+V> 7Fh 127

86 Appendix B ASCII Keycodes (Keyboard Order)

 Appendix B ASCII Keycodes (Keyboard
Order)

ASCII Code ASCII Code

Control Key hex decimal Function Key hex decimal
<CTRL+1> 31h 49 <FCTN+1> 03h 3
<CTRL+2> 32h 50 <FCTN+2> 04h 4
<CTRL+3> 33h 51 <FCTN+3> 07h 7
<CTRL+4> 34h 52 <FCTN+4> 02h 2
<CTRL+5> 35h 53 <FCTN+5> 0Eh 14
<CTRL+6> 36h 54 <FCTN+6> 0Ch 12
<CTRL+7> 37h 55 <FCTN+7> 01h 1
<CTRL+8> 1Eh 30 <FCTN+8> 06h 6
<CTRL+9> 1Fh 31 <FCTN+9> 0Fh 15
<CTRL+0> 30h 48 <FCTN+0> 3Ch 60
<CTRL+=> 1Dh 29 <FCTN+=> 05h 5
<CTRL+Q> 11h 11 <FCTN+Q> 39h 57
<CTRL+W> 17h 23 <FCTN+W> 7Eh 126
<CTRL+E> 05h 5 <FCTN+E> 0Bh 11
<CTRL+R> 12h 18 <FCTN+R> 5Bh 91
<CTRL+T> 14h 20 <FCTN+T> 5Dh 93
<CTRL+Y> 19h 25 <FCTN+Y> 46h 70
<CTRL+U> 15h 21 <FCTN+U> 5Fh 95
<CTRL+I> 09h 9 <FCTN+I> 3Fh 63
<CTRL+O> 0Fh 15 <FCTN+O> 27h 39
<CTRL+P> 10h 16 <FCTN+P> 22h 34

 <CTRL+/> 3Bh 59 <FCTN+/> 3Ah 58

 Appendix B ASCII Keycodes (Keyboard Order) 87

…continued from previous page—

ASCII Code ASCII Code

Control Key hex decimal Function Key hex decimal
<CTRL+A> 01h 1 <FCTN+A> 7Ch 124
<CTRL+S> 13h 19 <FCTN+S> 08h 8
<CTRL+D> 04h 4 <FCTN+D> 09h 9
<CTRL+F> 06h 6 <FCTN+F> 7Bh 123
<CTRL+G> 07h 7 <FCTN+G> 7Dh 125
<CTRL+H> 08h 8 <FCTN+H> 3Fh 63
<CTRL+J> 0Ah 10 <FCTN+J> 40h 64
<CTRL+K> 0Bh 11 <FCTN+K> 41h 65
<CTRL+L> 0Ch 12 <FCTN+L> 42h 66
<CTRL+;> 1Ch 28 <FCTN+;> 3Dh 61
<CTRL+Z> 1Ah 26 <FCTN+Z> 5Ch 92
<CTRL+X> 18h 24 <FCTN+X> 0Ah 10
<CTRL+C> 03h 3 <FCTN+C> 60h 96
<CTRL+V> 16h 22 <FCTN+V> 7Fh 127
<CTRL+B> 02h 2 <FCTN+B> 3Eh 62
<CTRL+N> 0Eh 14 <FCTN+N> 44h 68
<CTRL+M> 0Dh 13 <FCTN+M> 43h 67
<CTRL+,> 00h 0 <FCTN+,> 38h 56
<CTRL+.> 1Bh 27 <FCTN+.> 39h 57

88 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth

 Appendix C Differences between Starting
FORTH (1st Ed.) and TI Forth

Page Word Changes Required

10 BACKSPACE <FCTN+S> produces a backspace on the TI 99/4A.

10 OK TI Forth automatically prints a space before “ok”.

16 The TI Forth dictionary can store names up to 31 characters in length.

18 ^ Not a special character in TI Forth.

18 ." Will execute inside or outside a colon definition in TI Forth.

42 /MOD Uses signed numbers in TI Forth. Remainder has sign of dividend.

42 MOD Uses signed numbers in TI Forth. Remainder has sign of dividend.

50 .S This word is available on the TI Forth disk. The TI Forth version prints a
vertical bar (|) followed by the stack contents. The stack contents will
be printed as unsigned numbers. To use the definition shown you must
make the following change because of vocabulary differences: in place of
'S use SP@ 2- :

: .S CR SP@ 2- S0 @ . -2 +LOOP ;

52 2SWAP This word is not in TI Forth but can be created with the following
definition:

: 2SWAP ROT >R ROT R> ;

52 2DUP This word is not in TI Forth but can be created with the following
definition:

: 2DUP OVER OVER ;

52 2OVER This word is not in TI Forth but can be created with the following
definition:

: 2OVER SP@ 6 + @ SP@ 6 + @ ;

52 2DROP This word is not in TI Forth but can be created with the following
definition:

: 2DROP DROP DROP ;

57 When you redefine a word that is already in the dictionary, TI Forth will
issue a message saying “WORD isn’t unique”. In the example, a message
saying “GREET isn’t unique” would appear.

60 TI Forth supports 90 screens per disk, numbered 0 ‒ 89.

63-82 The TI Forth Editor is different (much better) than the editor described in
this section. Read the section of this TI Forth Instruction Manual
describing the Editor.

 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth 89

Page Word Changes Required

83 DEPTH See comments for page 50.

84 COPY TI Forth has a disk based word SCOPY (screen copy) which is exactly like
COPY , e.g.,

: COPY SCOPY ;

84-5 Ignore Editor words.

89ff. THEN THEN is in the TI Forth vocabulary and is a synonym for the word
ENDIF . Many people find ENDIF less confusing than THEN .

91 0> This word is not in TI Forth but can be created with the following
definition:

: 0> 0 > ;

91 NOT This word is not in TI Forth, but can be created with the following
definition:

: NOT 0= ;

101 ?DUP This word is identical to -DUP in TI Forth. Use the following definition if
necessary:

: ?DUP -DUP ;

101ff. ABORT" As with the Forth-79 Standard, TI Forth provides ABORT instead of
ABORT" .

102 ?STACK In TI Forth this word automatically calls ABORT and prints the appropriate
error message.

107 2* This word is not in TI Forth, but can be created with the following
definition:

: 2* DUP + ;

107 2/ This word is not in TI Forth, but can be created with the following
definition:

: 2/ 1 SRA ;

108 NEGATE This word is not in TI Forth, but can be created with the following
definition:

: NEGATE MINUS ;

110 I This word exists in TI Forth but also has a duplicate definition, R . I and
R are identical in function.

110 I' This word is not in TI Forth, but can be created with the following
definition: (Note: R is a synonym for I .)

: I' R> R SWAP >R ;

90 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth

Page Word Changes Required

112 If you will notice, there is a . (print) missing in the QUADRATIC
definition. You must add a . after the last + to make QUADRATIC work
correctly.

112 Ignore the last two paragraphs. They do not apply.

131 Just a reminder! You must define 2DUP and 2DROP before the COMPOUND
example may be used.

132 There is a mistake in the second definition of TABLE. It should look like
this:

: TABLE CR 11 1 DO

11 1 DO I J * 5 U.R LOOP CR LOOP ;

134 When you execute the DOUBLING example, an extra number will be
printed after 16384. This is because +LOOP behaves a little differently in
TI Forth.

136 In the definition of COMPOUND , the CR should precede SWAP instead of
LOOP .

137 XX When an error is detected in TI Forth, the stack is cleared but then the
contents of BLK and IN are saved on the stack to assist in locating the
error. The stack may be completely cleared with the word SP! .

142 PAGE This word is not in TI Forth, but can be created with the following
definition:

: PAGE CLS 0 0 GOTOXY ;

161 U/MOD This word is not in TI Forth, but can be created with the following
definition:

: U/MOD U/ ;

161 /LOOP This word is not in TI Forth.

162 OCTAL OCTAL does not exist in TI Forth. See p. 163 for definition.

164-5 Numbers in TI Forth may only be punctuated with periods. Commas,
slashes and other marks are not permitted. Any number containing a
period (.) is considered double-length. In later examples using D. and
UD. , replace all punctuation in the inputs with decimal points. It is
recommended that you not place more than one decimal place in each
number if you want valid output.

166 UD. This word is already defined in TI Forth.

173 D- This word is not in TI Forth, but can be created with the following
definition:

: D- DMINUS D+ ;

 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth 91

Page Word Changes Required

173 DNEGATE This word is not in TI Forth, but can be created with the following
definition:

: DENEGATE DMINUS ;

173 DMAX This word is not in TI Forth, but can be created with the following
definition:

: DMAX 2OVER 2OVER D- SWAP DROP 0<

IF 2SWAP ENDIF

2DROP ;

173 DMIN This word is not in TI Forth, but can be created with the following
definition:

: DMIN 2OVER 2OVER 2SWAP D- SWAP DROP 0<

IF 2SWAP ENDIF

2DROP ;

173 D= This word is not in TI Forth, but can be created with the following
definition:

: D= D- 0= SWAP 0= AND ;

173 D0= This word is not in TI Forth, but can be created with the following
definition:

: D0= 0. D= ;

173 D< This word is not in TI Forth, but can be created with the following
definition:

: D< D- SWAP DROP 0<;

173 DU< This word is not in TI Forth, but can be created with the following
definition:

: DU< ROT SWAP OVER OVER
U<
IF (determined less using high order halves)

DROP DROP DROP DROP 1
ELSE (test if high halves equal)

=
IF (equal so just test low halves)

U<
ELSE (test fails)

DROP DROP 0
ENDIF

ENDIF ;

92 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth

Page Word Changes Required

174 M+ This word is not in TI Forth, but can be created with the following
definition:

: M+ 0 D+ ;

174 M/ This word is different in TI Forth and can be changed with the following
definition:

: M/ M/ SWAP DROP ;

174 M*/ Not available in TI Forth because no triple precision arithmetic has been
included. This could be created using either a relatively complicated
colon definition or by using the Assembler included with TI Forth.

183ff. Variables in TI Forth are required to be initialized at creation, thus the
word VARIABLE takes the top item on the stack and places it into the
variable as its initial value. For example, 12 VARIABLE DATE both
creates the variable DATE and initializes it to 12. If desired, the advanced
user can use the words <BUILDS and DOES> to create a new defining
word, VARIABLE , which has exactly the behavior of VARIABLE as used
in this section. The code to do this is:

: VARIABLE <BUILDS 0 , DOES> ;

193 2VARIABLE This word is not in TI Forth, but can be created with the following
definition:

: 2VARIABLE <BUILDS 0. , , DOES> ;

This definition does not require a number to be on the stack when it is
executed.

193 2! This word is not in TI Forth, but can be created with the following
definition:

: 2! >R R ! R> 2+ ! ;

193 2@ This word is not in TI Forth, but can be created with the following
definition:

: 2@ >R R 2+ @ R> @ ;

193 2CONSTANT This word is not in TI Forth, but can be created with the following
definition:

: 2CONSTANT <BUILDS , , DOES> 2@ ;

This definition does not require a number on the stack.

199 You must place a 0 on the stack before executing VARIABLE COUNTS 10
ALLOT . This, however, initializes only the first element of the array
COUNTS to 0. You must execute either the FILL or ERASE instruction
at the bottom of the page to properly initialize the array.

 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth 93

Page Word Changes Required

204 DUMP TI Forth already has a dump instruction which must be loaded from the
disk. Dumps are always printed in hexadecimal. See Appendix D for
location of DUMP .

207 CREATE The CREATE word of TI Forth behaves somewhat differently. Hackers
should consult fig-Forth documentation.

216 EXECUTE Because this word operates a little differently in TI Forth, it must be
preceded by the word CFA . The example should read:

' GREET CFA EXECUTE

217 The example illustrating indirect execution must be modified to work in
TI Forth:

' GREET CFA POINTER ! POINTER @ EXECUTE

218 ['] In TI Forth, this word is unnecessary as the word ' will take the following
word of a definition when used in a definition.

219 NUMBER In TI Forth, NUMBER is always able to convert double precision numbers.

219 'NUMBER TI Forth does not use 'NUMBER to locate the NUMBER routine.

220 In TI Forth, the name field is variable length and contains up to 31
characters. Also, the link field precedes the name field in TI Forth.

225 EXIT This word is ;S in TI Forth. ;S is the word compiled by ; so to create
EXIT we might use:

: EXIT [COMPILE] ;S ; IMMEDIATE

225 I In TI Forth, the interpreter pointer is called IP , not I .

232 See Chapter 1 in this TI Forth Instruction Manual for instructions for
loading elective blocks.

232 RELOAD This instruction is not available in TI Forth.

233 H This word is DP (dictionary pointer) in TI Forth.

235 'S In TI Forth, SP@ is used instead of 'S .

240 See Appendix E in this TI Forth Instruction Manual for a complete list
of user variables.

240 >IN This word is IN in TI Forth.

245 LOCATE TI Forth does not support LOCATE .

256 COPY In TI Forth, this word is SCOPY . SCOPY is disk resident. See Appendix
D for location.

259 ['] Change the ['] to ' in the bottom example. In TI Forth, ' will compile
the address of the next word in the colon definition.

261 >TYPE Unnecessary in non-multiprogramming systems. Not present in TI Forth.

94 Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth

Page Word Changes Required

265 RND TI Forth has two disk resident random number generators: RND and
RNDW . See Appendix D for locations and descriptions. See also
definitions for SEED and RANDOMIZE .

266 MOVE In TI Forth, MOVE moves u words in memory, not u bytes. MOVE can be
redefined to conform to Starting FORTH (1st Ed.):

: MOVE 2/ MOVE ;

266 <CMOVE Not present in TI Forth. Must be created with the Assembler if required.
This word is used only when the source and destination regions of a move
overlap and the destination is higher than the source.

270 WORD In TI Forth, the word WORD does not leave an address on the stack.

270 TEXT This word is not available in TI Forth, but can be defined as follows:

: TEXT PAD 72 BLANKS PAD HERE - 1-

DUP ALLOT MINUS SWAP WORD ALLOT ;

If you want the count to also be stored at PAD, remove the 1- from the
definition.

277 >BINARY This is named (NUMBER) in TI Forth.

277 Because WORD does not leave an address on the stack, it is necessary to
redefine PLUS as follows:

: PLUS 32 WORD DROP NUMBER + ." = " . ;

279 NUMBER This definition of NUMBER is not compatible with TI Forth.

281 -TEXT Not in TI Forth. Use the definition on page 282.

292 TI Forth uses the word pair <BUILDS … DOES> to define a new defining
word. <BUILDS calls CREATE as part of its function.

297 To create a byte ARRAY in TI Forth:

: ARRAY <BUILDS OVER , * ALLOT

DOES> DUP @ ROT * + + 2+ ;

298 Just a reminder! Don’t forget to define 2* before trying the example at
the bottom of the page. Also, replace the word CREATE with <BUILDS .

301 (DO) This is the runtime behavior of DO just as listed. 2>R is not used,
however.

301 DO The given definition of DO is not compatible with TI Forth. TI Forth’s
definition of DO is much more complex because of compile-time error
checking.

303 (LITERAL) The TI Forth name for this word is LIT .

306 TI Forth remains in compilation mode until a ; is typed.

96 Appendix D The TI Forth Glossary

 Appendix D The TI Forth Glossary
TI Forth words appear in this glossary on the left of the entry line for that word and in the order
of the ASCII collating sequence, which is displayed as a handy reference at the bottom of each
page of this appendix. The Forth screen on which the word is defined is right-justified on the
entry line along with the MENU choice that will load its definition. If the word is part of the core
system, it is listed as “RESIDENT”. The stack effects are listed on the second line. The stack
effects on the return stack may also be shown. These will be indicated by “R:” following the “(”
as in the following: “(R: n ---)”, which would mean that a 16-bit number n is removed from the
top of the return stack after the word being described is executed.

 D.1 Explanation of Some Terms and Abbreviations

Term/Abbreviation Meaning

addr, addr1 , … memory address
b byte
col column position
cccc, nnnn, xxxx string representation
cfa code field address
char ASCII character code
count count (length)
d, d1 , d2 , … signed double-precision number
dotcol, dotcol1 , dotcol2 , … dot column position
dotrow, dotrow1 , dotrow2 , … dot row position
drive refers to DR0, DR1, DR2 (DSK1, DSK2, DSK3)
flag Boolean flag
false Boolean false flag (value = 0)
f, f1 , f2 , … floating point number
lfa link field address
n, n1 , n2 , … signed single-precision number
nfa name field address
pfa parameter field address
row row position
rem remainder
scr screen number
spr sprite number
true Boolean true flag (value ≠ 0)
tol tolerance limit
u unsigned single-precision number
ud unsigned double-precision number
vaddr VDP address

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 97

 D.2 TI Forth Word Descriptions

! RESIDENT

(n addr ---)

Store 16 bits of n at address. Pronounced “store”.

!" SCR 39 -COPY

(addr ---)

A string terminated with a " must follow this word. This string will be stored at the
specified address; however, the character count is not stored.

!CSP RESIDENT

(---)

Save the stack position in user variable CSP . Used as part of the compiler security.

RESIDENT

(d1 --- d2)

Generate from a double number d1, the next ASCII character which is placed in an
output string. Result d2 is the quotient after division by the value in BASE , and is
maintained for further processing. Used between <# and #> . See #S .

#> RESIDENT

(d --- addr count)

Terminates numeric output conversion by dropping d, leaving the text address and
character count suitable for TYPE .

#MOTION SCR 59 -GRAPH

(n ---)

Sets sprite numbers 0 to n - 1 in automotion.

#S RESIDENT

(d1 --- d2)

Generates ASCII text from d1 in the text output buffer, by the use of # , until a zero
double number d2 results. Used between <# and #> .

' RESIDENT

(--- pfa)

Used in the form:

' nnnn

Leaves the parameter field address of dictionary word nnnn . As a compiler
directive, executes in a colon definition to compile the address of a literal. If the

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

98 D.2 TI Forth Word Descriptions

word is not found after a search of CONTEXT and CURRENT , an appropriate error
message is given. Pronounced “tick”.

(RESIDENT

(---)

Used in the form:

(cccc)

Ignore a comment that will be delimited by a right parenthesis on the same Forth
screen. May occur during execution or in a colon definition. A blank after the
leading parenthesis is required.

(+LOOP) RESIDENT

(n ---)

The runtime procedure compiled by +LOOP , which increments the loop index by n
and tests for loop completion. See +LOOP .

(.") RESIDENT

(---)

The runtime procedure, compiled by ." ,which transmits the following in-line text to
the selected output device. See ." .

(;CODE) RESIDENT

(---)

The runtime procedure, compiled by ;CODE , that rewrites the code field of the most
recently defined word to point to the machine code sequence following ;CODE . See
;CODE .

(ABORT) RESIDENT

(---)

Executes after an error when WARNING < 0. This word normally executes ABORT ,
but may be redefined (with care) to execute a user’s alternative procedure.

(DO) RESIDENT

(---)

The runtime procedure complied by DO which moves the loop control parameters to
the return stack. See DO .

(DOES>) RESIDENT

(---)

The run time procedure compiled by DOES> .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 99

(FIND) RESIDENT

(addr1 addr2 --- false | pfa b true)

Searches the dictionary starting at the name field address addr2, matching to the text
at addr1. Returns parameter field address pfa, length byte b of name field, and true
for a good match. If no match is found, only false is left.

(LINE) RESIDENT

(n scr --- addr count)

Convert the line number n and the Forth screen scr to the disk buffer address addr
containing the data and the number of characters count. If count is 64, the full-line
text length is indicated.

(LOOP) RESIDENT

(---)

The runtime procedure compiled by LOOP , which increments the loop index and tests
for loop completion. See LOOP .

(NUMBER) RESIDENT

(d1 addr1 --- d2 addr2)

Convert the ASCII text beginning at addr1 + 1 with respect to BASE . The new value
is accumulated into double number d1, being left as d2. addr2 is the address of the
first unconvertible digit. Used by NUMBER .

(OF) RESIDENT

(---)

The run time procedure compiled by OF .

* RESIDENT

(n1 n2 --- n3)

Leave the signed product of two signed numbers.

*/ RESIDENT

(n1 n2 n3 --- n4)

Leave the ratio n4 = n1*n2/n3, where all are signed numbers. Retention of an
intermediate 31-bit product permits greater accuracy than would be available with the
sequence :

n1 n2 * n3 /

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

100 D.2 TI Forth Word Descriptions

*/MOD RESIDENT

(n1 n2 n3 --- rem quot)

Leave the quotient quot and remainder rem of the operation n1*n2/n3. A 31-bit
intermediate product is used as for */ .

+ RESIDENT

(n1 n2 --- n3)

Leave the sum of n1 + n2 as n3.

+! RESIDENT

(n addr ---)

Add n to the value at the address. Pronounced “plus store”.

+- RESIDENT

(n1 n2 --- n3)

Apply the sign of n2 to n1, which is left as n3.

+BUF RESIDENT

(addr1 --- addr2 flag)

Advance the disk buffer address addr1 to the address of the next buffer addr2.
Boolean flag is false when addr2 is the buffer presently pointed to by user variable
PREV .

+LOOP RESIDENT

Runtime: (n1 ---) Compilation: (addr n2 ---)

Used in a colon-definition in the form:

 DO … n1 +LOOP

At run time, +LOOP selectively controls branching back to the corresponding DO
based on n1, the loop index and the loop limit. The signed increment n1 is added to
the index and the total compared to the limit. The branch back to DO occurs until the
new index is equal to or greater than the limit (n1 > 0), or until the new index is equal
to or less than the limit (n1 < 0). Upon exiting the loop, the parameters are discarded
and execution continues ahead.

At compile time, +LOOP compiles the runtime word (+LOOP) and the branch offset
computed from HERE to the address left on the stack by DO . The value n2 is used for
compile-time error checking.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 101

, RESIDENT

(n ---)

Store n into the next available dictionary memory cell, advancing the dictionary
pointer. Pronounced “comma”.

- RESIDENT

(n1 n2 --- n3)

Leave the difference n3 of n1 – n2.

--> RESIDENT

(---)

Continue interpretation with the next Forth screen on disk. Pronounced “next
screen”.

-DUP RESIDENT

(n1 --- n1 | n1 n1)

Duplicate n1 only if it is non-zero. This is usually used to copy a value just before
IF , to eliminate the need for an ELSE clause to drop it.

-FIND RESIDENT

(--- false | pfa len true)

Accepts the next text word (delimited by blanks) in the input stream to HERE ,
searches the CONTEXT and then CURRENT vocabularies for a matching entry. If
found, the dictionary entry’s parameter field address pfa, its length byte len and true
are left. Otherwise, only false is left. [Note: See Chapter 12 about the length byte.]

-TRAILING RESIDENT

(addr n1 --- addr n2)

Adjusts the character count n1 of a text string beginning at addr to suppress the
output of trailing blanks, i.e., the characters at addr + n2 to addr + n1 are blanks.

. RESIDENT

(n ---)

Print a number from a signed 16-bit two’s complement value n, converted according
to the numeric base stored in BASE . A trailing blank follows. Pronounced “dot”.

." RESIDENT

(---)

Used in the form:

." cccc"

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

102 D.2 TI Forth Word Descriptions

Compiles an in-line string cccc (delimited by the trailing ") with an execution
procedure to transmit the text to the selected output device. If executed outside a
definition, ." will immediately print the text until the final " . See (.") .

.LINE RESIDENT

(n scr ---)

Print on the terminal device, a line of text from the disk by its line number n and
Forth screen number scr. Trailing blanks are suppressed.

.R RESIDENT

(n1 n2 ---)

Print the number n1 right aligned in a field whose width is n2. No following blank is
printed.

.S SCR 43 -DUMP

(---)

Prints the entire contents of the parameter stack as unsigned numbers in the current
BASE .

/ RESIDENT

(n1 n2 --- n3)

Leave the quotient n3 of n1/n2.

/MOD RESIDENT

(n1 n2 --- rem n3)

Leave the remainder rem and signed quotient n3 of n1/n2. The remainder has the sign
of the dividend.

0 1 2 3 RESIDENT

(--- n)

These small numbers are used so often that it is attractive to define them by name in
the dictionary as constants.

0< RESIDENT

(n --- flag)

Leave a true flag if the number is less than zero (negative), otherwise leave a false
flag.

0= RESIDENT

(n --- flag)

Leave a true flag if the number is equal to zero, otherwise leave a false flag.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 103

0BRANCH RESIDENT

(flag ---)

The runtime procedure to conditionally branch. If flag is false (zero), the following
in-line parameter is added to the interpretive pointer to branch ahead or back.
Compiled by IF , UNTIL and WHILE .

1+ RESIDENT

(n1 --- n2)

Increment n1 by 1.

1– RESIDENT

(n1 --- n2)

Decrement n1 by 1.

2+ RESIDENT

(n1 --- n2)

Leave n1 incremented by 2 as n2.

2– RESIDENT

(n1 --- n2)

Leave n1 decremented by 2 as n2.

: RESIDENT

(---)

Used in the form called a colon definition:

: cccc … ;

Creates a dictionary entry defining cccc as equivalent to the following sequence of
Forth word definitions ‘...’ until the next ; or ;CODE . The compiling process is done
by the text interpreter as long as STATE is non-zero. Other details are that the
CONTEXT vocabulary is set to the CURRENT vocabulary and that words with the
precedence bit set are executed rather than being compiled.

: (traceable) SCR 44 -TRACE

(---)

This is an alternate definition of : that adds the capability to colon definitions of
being traced when they are executed. When a colon definition is compiled under the
TRACE option, tracing output may be turned on with TRON and off with TROFF prior
to executing the word so defined. After TRON is executed, each time the word is
executed its name will be output along with the contents of the stack. See TRACE ,
UNTRACE , TRON and TROFF .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

104 D.2 TI Forth Word Descriptions

; RESIDENT

(---)

Terminates a colon definition and stops further compilation. Compiles the runtime
;S .

;CODE SCR 74 -CODE

(---)

Used with <BUILDS in the form:

: cccc <BUILDS … ;CODE <assembly mnemonics>

Stop compilation and terminate a new defining word cccc by compiling (;CODE) .
Set the CONTEXT vocabulary to ASSEMBLER , assembling to machine code the
assembly mnemonics following ;CODE .

When cccc later executes in the form:

cccc nnnn

the word nnnn will be created with its execution procedure given by the machine
code following (;CODE) in the definition of cccc , i.e., when nnnn is executed, it
does so by jumping to that code in cccc . An existing defining word (<BUILDS in
this case) must exist in cccc prior to ;CODE .

;S RESIDENT

(---)

Stop interpretation of a Forth screen. ;S is also the runtime word compiled at the end
of a colon definition, which returns execution to the calling procedure.

< RESIDENT

(n1 n2 --- flag)

Leave a true flag if n1 is less than n2, otherwise, leave a false flag.

<# RESIDENT

(---)

Setup for pictured numeric output formatting using the words:

<# # #S SIGN #>

The conversion is done on a double number producing text at PAD (working
downward toward HERE), eventually suitable for output by TYPE . The picture
template between <# and #> represents the output picture from right to left, i.e., the
rightmost digit is processed first. See # , #S , SIGN , #> and HOLD .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 105

<BUILDS RESIDENT

(---)

Used within a colon-definition:

: cccc <BUILDS … DOES> … ; or

: cccc <BUILDS … ;CODE … ;

Each time cccc is executed, <BUILDS defines a new word with a high-level
(DOES>) or machine-code (;CODE) execution procedure. Executing cccc in the
form:

cccc nnnn

uses <BUILDS to create a dictionary entry for nnnn . For the definition with DOES> ,
when nnnn is later executed, it has the address of its parameter area on the stack and
executes the words after DOES> in cccc . For the definition with ;CODE , when
nnnn is later executed, it executes the words after ;CODE in cccc . <BUILDS with
DOES> or ;CODE allows runtime procedures to be written in high-level code with
DOES> or in assembler code with ;CODE .

<CLOAD> SCR 21 BOOT SCR

(---)

The runtime procedure compiled by CLOAD .

= RESIDENT

(n1 n2 --- flag)

Leave a true flag if n1 = n2, otherwise leave a false flag.

=CELLS RESIDENT

(addr1 --- addr1 | addr2)

This instruction expects an address or an offset to be on the stack. If this number is
odd, it is incremented by 1 to put it on the next even word boundary. Otherwise, it
remains unchanged.

> RESIDENT

(n1 n2 --- flag)

Leave a true flag if n1 is greater than n2, otherwise leave a false flag.

>ARG SCR 45 -FLOAT

(f ---)

Moves a floating point number f from the stack into the ARG register.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

106 D.2 TI Forth Word Descriptions

>F SCR 48 -FLOAT

(--- f)

This instruction expects to be followed by a string representing a legitimate floating
point number terminated by a space. This string is converted into floating point and
placed on the stack. This instruction can be used in colon definitions or directly from
the keyboard.

>FAC SCR 45 -FLOAT

(f ---)

Moves a floating point number from the stack into the FAC register.

>R RESIDENT

(n ---) (R: --- n)

Remove a number from the parameter stack and place as the most accessible number
on the return stack. Use should be balanced with R> in the same definition.

? RESIDENT

(addr ---)

Print the value contained at address addr in free format according to the current
BASE . This word is short for the two words, @ . .

?COMP RESIDENT

(---)

Issue error message if not compiling.

?CSP RESIDENT

(---)

Issue error message if stack position differs from value saved in CSP .

?ERROR RESIDENT

(flag n ---)

Issue an error message number n if the Boolean flag is true.

?EXEC RESIDENT

(---)

Issue an error message if not executing.

?FLERR SCR 49 -FLOAT

(---)

Determines if the previous floating point operation resulted in an error. An
appropriate error message is printed upon finding an error.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 107

?KEY RESIDENT

(--- char)

Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Else, the
ASCII code of the key pressed is left on the stack.

?KEY8 RESIDENT

(--- n)

Scans the keyboard for input. If no key is pressed, a 0 is left on the stack. Else, the
8-bit code of the key pressed is left on the stack.

?LOADING RESIDENT

(---)

Issue an error message if not loading.

?PAIRS RESIDENT

(n1 n2 ---)

Issue an error message if n1 does not equal n2. The message indicates that compiled
conditionals do not match.

?STACK RESIDENT

(---)

Issue an error message if the stack is out of bounds.

?TERMINAL RESIDENT

(--- flag)

Perform a test on the terminal keyboard for actuation of the break key (<BREAK>). A
true flag indicates actuation. On the TI-99/4A, <FCTN+4>, <BREAK> and <CLEAR> are
all the same key.

@ RESIDENT

(addr --- n)

Leave the 16-bit contents n of addr.

A$$M SCR 82 -ASSEMBLER

(---)

This word is compiled into the FORTH vocabulary and marks the end of the
ASSEMBLER vocabulary. It is used by CLOAD .

ABORT RESIDENT

(---)

Clear the stacks and enter the execution state. Return control to the operator’s
terminal, printing an appropriate message.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

108 D.2 TI Forth Word Descriptions

ABS RESIDENT

(n1 --- n2)

Leave the absolute value of n1 as n2.

AGAIN RESIDENT

Compilation: (addr n ---)

Used in a colon definition in the form:

BEGIN … AGAIN

At run time, AGAIN forces execution to return to corresponding BEGIN . There is no
effect on the stack. Execution cannot leave the loop unless R> DROP is executed one
level below.

At compile time, AGAIN compiles BRANCH with an offset from HERE to addr. The
vale n is used for compile time error checking.

ALLOT RESIDENT

(n ---)

Add the signed number n to the dictionary pointer DP . May be used to reserve
dictionary space or re-origin memory.

ALTIN RESIDENT

(--- addr)

A user variable whose value is 0 if input is coming from the keyboard else its value is
a pointer to the VDP address where the PAB (Peripheral Access Block) for the
alternate input device is located.

ALTOUT RESIDENT

(--- addr)

A user variable whose value is 0 if output is going to the monitor else its value is a
pointer to the VDP address where the PAB (Peripheral Access Block) for the
alternate output device is located.

AND RESIDENT

(n1 n2 --- n3)

Leave the bitwise logical AND of n1 and n2 as n3.

APPND SCR 69 -FILE

(---)

Assigns the APPEND attribute to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 109

ARG SCR 45 -FLOAT

(--- addr)

A constant which contains the address of the ARG register.

ASSEMBLER SCR 74 -ASSEMBLER

(---)

The name of the TI Forth Assembler vocabulary. Execution makes ASSEMBLER the
CONTEXT vocabulary. ASSEMBLER is immediate, so it will execute during the
creation of a colon definition to select this vocabulary at compile time. See
VOCABULARY .

ATN SCR 50 -FLOAT

(f1 --- f2)

Calculates the arctangent in radians of f1 leaving the floating point result f2 on the
stack.

B/BUF RESIDENT

(--- n)

This constant leaves the number of bytes n per disk buffer, the byte count read from
disk by BLOCK .

B/BUF$ RESIDENT

(--- addr)

A user variable which contains the number of bytes per buffer.

B/SCR RESIDENT

(--- n)

This constant leaves the number of blocks per editing screen. By convention, an
editing screen is 1024 bytes organized as 16 lines of 64 characters each.

B/SCR$ RESIDENT

(--- addr)

A user variable which contains the number of blocks per Forth screen.

BACK RESIDENT

(addr ---)

Calculate the backward branch offset from HERE to addr and compile into the next
available dictionary memory address.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

110 D.2 TI Forth Word Descriptions

BASE RESIDENT

(--- addr)

A user variable containing the current number base used for input and output
conversion.

BASE->R RESIDENT

(---)

Place the current number base on the return stack. Caution must be exercised when
using BASE->R and R->BASE with CLOAD as these will cause the return stack to be
polluted if a LOAD is aborted and the BASE->R is not balanced by a R->BASE at
execution time. See R->BASE .

BEEP SCR 60 -GRAPH

(---)

Produces the sound associated with correct input or prompting.

BEGIN RESIDENT

Compilation: (--- addr n)

Occurs in a colon-definition in the form:

BEGIN … UNTIL

BEGIN … AGAIN

BEGIN … WHILE … REPEAT

At runtime, BEGIN marks the start of a sequence that may be repetitively executed. It
serves as a return point from the corresponding UNTIL , AGAIN or REPEAT . When
executing UNTIL , a return to BEGIN will occur if the top of the stack is false; for
AGAIN and REPEAT a return to BEGIN always occurs.

At compile time, BEGIN leaves its return address addr and n for compiler error
checking.

BL RESIDENT

(--- char)

A constant that leaves the ASCII value for “blank”.

BLANKS RESIDENT

(addr count ---)

Fill an area of memory beginning at addr with count blanks.

BLK RESIDENT

(--- addr)

A user variable containing the block number being interpreted. If zero, input is being
taken from the terminal input buffer.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 111

BLOAD RESIDENT

(scr --- flag)

Loads the binary image at scr which was created by BSAVE . BLOAD returns a true
flag (1) if the load was not successful and a false flag (0) if the load was successful.

BLOCK RESIDENT

(n --- addr)

Leave the memory address of the block buffer containing block n. If the block is not
already in memory, it is transferred from disk to whichever buffer was least recently
written. If the block occupying that buffer has been marked as updated, it is written
to disk before block n is read into the buffer. See also BUFFER , R/W , UPDATE and
FLUSH .

BOOT RESIDENT

(---)

Examines the Forth screen designated as the boot screen (screen #3). If it contains
only displayable characters (ASCII 32 ‒ 127), it performs a LOAD on that screen.

BRANCH RESIDENT

(---)

The runtime procedure to unconditionally branch. An in-line offset is added to the
interpretive pointer (IP) to branch ahead or back. BRANCH is compiled by ELSE ,
AGAIN , REPEAT , and ENDOF .

BSAVE SCR 83 -BSAVE

(addr scr1 --- scr2)

Places a binary image (starting at scr1 and going as far as necessary) of all dictionary
contents between addr and HERE . The next available Forth screen number scr2 is
returned on the stack. See BLOAD .

BUFFER RESIDENT

(n --- addr)

Obtain the next memory buffer, assigning it to block n. If the contents of the buffer
is marked as updated, it is written to the disk. The block is not read from the disk.
The address left is the first cell within the buffer for data storage.

C! RESIDENT

(b addr ---)

Store the low-order byte (8 bits) of b (16-bit number on the stack) at addr.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

112 D.2 TI Forth Word Descriptions

C, RESIDENT

(b ---)

Store the low-order byte (8 bits) of b (16-bit number on the stack) into the next
available dictionary byte, advancing the dictionary pointer. This instruction should
be used with caution on byte addressing, word oriented computers such as the TI
9900.

C/L RESIDENT

(--- n)

Returns on the stack the number of characters per line.

C/L$ RESIDENT

(--- addr)

A user variable whose value is the number of characters per line.

C@ RESIDENT

(addr --- b)

Leave the 8-bit contents of the memory address on the stack.

CASE RESIDENT

Compilation: (---) Runtime: (n --- n)

Used in a colon definition to initiate the construct:

CASE

n1 OF … ENDOF

n2 OF … ENDOF

…

ENDCASE

At runtime, CASE itself does nothing with the number n on the stack; but, it must be
there for OF or ENDCASE to consume. If n = n1, the code between the immediately
following OF … ENDOF is executed. Execution then continues after ENDCASE . If n
does not match any of the values preceding any OF , the code between the last ENDOF
and ENDCASE is executed and may consume n; but, one cell must be left for
ENDCASE to consume. Execution then continues after ENDCASE .

CFA RESIDENT

(pfa --- cfa)

Convert the parameter field address pfa of a definition to its code field address cfa .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 113

CHAR SCR 57 -GRAPH

(n1 n2 n3 n4 char ---)

Defines character # char to have the pattern specified by the 4 numbers (n1, n2, n3, n4)
on the stack. The definition for character #0 by default resides at 800h. Each
character definition is 8 bytes long with each number on the stack representing two
bytes.

CHAR-CNT! SCR 69 -FILE

(n ---)

Used in file I/O to store in the current PAB the character count of a record to be
transmitted by WRT .

CHAR-CNT@ SCR 69 -FILE

(--- n)

Used in file I/O to retrieve from the current PAB the character count of a record that
has been read. Used by RD .

CHARPAT SCR 57 -GRAPH

(char --- n1 n2 n3 n4)

Places the 4-number (8-byte) pattern of a specified character char on the stack. By
default, the definition for character #0 resides at 800h.

CHK-STAT SCR 68 -FILE

(---)

Checks for errors following an I/O operation. If an error has occurred, an appropriate
message is printed.

CLEAR RESIDENT

(scr ---)

Fills the designated Forth screen with blanks.

CLINE SCR 66 -64SUPPORT

(addr count n ---)

Prints one line of tiny characters on the display screen. CLINE expects on the stack
the address addr of the line to be written in memory, the number of characters count
in that line, and the line number n on which it is to be written on the display screen.
CLINE calls SMASH to do the actual work. See SMASH and CLIST .

CLIST SCR 66 -64SUPPORT

(scr ---)

Lists the specified Forth screen in tiny characters to the monitor. CLIST executes a
multiple call to CLINE . See CLINE and TCHAR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

114 D.2 TI Forth Word Descriptions

CLOAD SCR 21 BOOT SCR

(scr ---)

Used in the form:

scr CLOAD nnnn

CLOAD will load Forth screen scr only if the word nnnn (the last word loaded by scr)
is not in the CONTEXT vocabulary. A screen number of 0 will suppress loading of the
current Forth screen if the specified word has already been compiled.

CLR-STAT SCR 68 -FILE

(---)

Clears (zeroes) the error code in bits 0‒2 of the flag/status byte of the PAB
(Peripheral Access Block) pointed to by PAB-ADDR .

CLS SCR 33 -SYNONYMS

(---)

Clears display screen by filling the screen image table with blanks. The screen image
table runs from SCRN_START to SCRN_END .

CLSE SCR 71 -FILE

(---)

Closes the file whose PAB (Peripheral Access Block) is pointed to by PAB-ADDR .

CMOVE RESIDENT

(addr1 addr2 count ---)

Move count number of bytes from addr1 to addr2. The contents of addr1 is moved
first proceeding toward high memory.

CODE SCR 74 -CODE

(---)

A defining word initializing the definition of a code (assembly) word. It sets the
context vocabulary to Assembler. See Chapter 9 for details.

COINC SCR 61 -GRAPH

(spr1 spr2 tol --- flag)

Detects a coincidence between two given sprites within a specified tolerance limit tol.
A true flag indicates a coincidence.

COINCALL SCR 61 -GRAPH

(--- flag)

Detects a coincidence between the visible portions of any two sprites on the display
screen. A true flag indicates a coincidence.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 115

COINCXY SCR 61 -GRAPH

(dotcol dotrow spr tol --- flag)

Detects a coincidence between a specified sprite and a given point (dotcol,dotrow)
within a given tolerance limit tol. A true flag indicates a coincidence.

COLD RESIDENT

(---)

The COLD start procedure to adjust the dictionary pointer to the minimum standard
and restart via ABORT . May be called from the terminal to remove application
programs and restart. COLD calls BOOT prior to calling ABORT .

COLOR SCR 58 -GRAPH

(n1 n2 n3 ---)

Causes a specified character set n3 to have the given foreground n1 and background n2

colors.

COLTAB SCR 57 -GRAPH

(--- vaddr)

A constant whose value is the beginning VDP address of the color table. The default
value is 380h.

COMPILE RESIDENT

(---)

When the word containing COMPILE executes, the execution address of the word
following COMPILE is copied (compiled) into the dictionary. This allows specific
compilation situations to be handled in addition to simply compiling an execution
address (which the interpreter already does).

CONSTANT RESIDENT

(n ---)

A defining word used in the form:

n CONSTANT cccc

to create word cccc , with its parameter field containing n. When cccc is later
executed, it will push the value of n to the stack.

CONTEXT RESIDENT

(--- addr)

A user variable containing a pointer to the vocabulary within which dictionary
searches will first begin.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

116 D.2 TI Forth Word Descriptions

COS SCR 50 -FLOAT

(f1 --- f2)

Calculates the cosine of f1 radians and leaves the floating point result f2 on the stack.

COUNT RESIDENT

(addr1 --- addr2 n)

Leave the byte address addr2 and byte count n of a message text beginning at addr1.
It is presumed that the first byte at addr1 contains the text byte count and the actual
text starts with the second byte. Typically, COUNT is followed by TYPE .

CR RESIDENT

(---)

Transmit a carriage return and a line feed to the selected output device.

CREATE RESIDENT

(---)

A defining word used in the form:

CREATE cccc

by such words as CODE and CONSTANT to create a dictionary header for a Forth
definition. The code field contains the address of the word’s parameter field. The
new word is created in the CURRENT vocabulary.

CSP RESIDENT

(--- addr)

A user variable temporarily storing the stack pointer position for compilation error
checking.

CURPOS RESIDENT

(--- addr)

A user variable that stores the current VDP (Visual Display Processor) cursor
position.

CURRENT RESIDENT

(--- addr)

A user variable pointing to the vocabulary into which new definitions will be
compiled.

D+ RESIDENT

(d1 d2 --- d3)

Leave the double number sum of two double numbers (d3 = d1 + d2).

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 117

D+- RESIDENT

(d1 n --- d2)

Apply the sign of n to the double number d1, leaving it as d2.

D. RESIDENT

(d ---)

Print a signed double number from a 32-bit two’s complement value d. The high-
order 16 bits are most accessible on the stack. Conversion is performed according to
the current BASE . A blank follows. Pronounced “d dot”.

D.R RESIDENT

(d n ---)

Print a signed double number d right-aligned in a field n characters wide.

DABS RESIDENT

(d1 --- d2)

Leave the absolute value d2 of a double number d1.

DCOLOR RESIDENT

(--- addr)

A variable which contains the dot-color information used by DOT . Its value may be a
two-digit HEX number which defines the foreground and background color, or it may
be -1 which means no color information is changed in the VDP (Visual Display
Processor).

DDOT SCR 63 -GRAPH

(dotcol dotrow --- b vaddr)

The assembly code routine called by DOT . It expects a dot column and a dot row on
the stack and returns a byte b with only one bit set and a VDP address vaddr. The
dot referenced by (dotcol,dotrow) is translated by ddot to the address vaddr of the
byte containing it and a mask b that locates the dot within the byte. [Editor’s Note:
The original glossary entry was missing b and its description.]

DECIMAL RESIDENT

(---)

Set the numeric conversion BASE for decimal input/output.

DEFINITIONS RESIDENT

(---)

Used in the form:

cccc DEFINITIONS

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

118 D.2 TI Forth Word Descriptions

Set the CURRENT vocabulary to the CONTEXT vocabulary. In the example, executing
vocabulary name cccc makes it the CONTEXT vocabulary and executing
DEFINITIONS makes both specify vocabulary cccc .

DELALL SCR 61 -GRAPH

(---)

Delete all sprites.

DELSPR SCR 61 -GRAPH

(spr ---)

Delete the specified sprite.

DIGIT RESIDENT

(char n1 --- false | n2 true)

Convert the ASCII character char (using number base n1) to its binary equivalent n2,
accompanied by a true flag. If the conversion is invalid, leave only a false flag. For
example, DECIMAL 53 10 DIGIT will leave 5 1 on the stack because 53 is the ASCII
code for ‘5’ and is a legitimate digit in base 10. On the other hand, DECIMAL 74 16
DIGIT will leave only 0 on the stack because 74 is the ASCII code for ‘J’ and is not a
legitimate digit in base 16. However, DECIMAL 74 20 DIGIT will leave 19 1 on the
stack because ‘J’ is a legitimate digit in base 20.

DISK-HEAD SCR 40 -COPY

(---)

Writes a disk header on Forth screen 0 that makes the disk compatible with the TI
99/4A Disk Manager and with TI BASIC.

DISK_BUF RESIDENT

(--- addr)

A user variable that points to the first byte in VDP RAM of the 1K disk buffer.

DISK_HI RESIDENT

(--- addr)

A user variable which contains the Forth screen number immediately above the Forth
screen range wherein screen writes are permitted.

DISK_LO RESIDENT

(--- addr)

A user variable which contains the first Forth screen number of the range wherein
disk writes are permitted.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 119

DISK_SIZE RESIDENT

(--- addr)

A user variable whose value is the number of Forth screens logically assigned to a
diskette.

DLITERAL RESIDENT

Compilation: (d ---) Runtime: (--- d) Interpretation: (---)

Same behavior as LITERAL, q.v., except for a double number d

DLT SCR 71 -FILE

(---)

The file I/O routine that deletes the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

DMINUS RESIDENT

(d1 --- d2)

Convert d1 to its double number two’s complement d2.

DMODE SCR 63 -GRAPH

(--- addr)

A variable that determines which dot mode is currently in effect. A DMODE value of 0
indicates DRAW mode, a value of 1 indicates UNDRAW mode, and a value of 2
indicates DOT-TOGGLE mode. This variable is set by the DRAW , UNDRAW and DTOG
words.

DO RESIDENT

Compilation: (addr n ---) Runtime: (n1 n2 ---)

Occurs in a colon-definition in the form:

DO … LOOP

DO … +LOOP

When compiling within the colon-definition, DO compiles (DO) , leaving the
following address addr and n for later error checking.

At run time, DO begins a sequence with repetitive execution controlled by a loop limit
n1 and an index with initial value n2. DO removes these from the stack. Upon
reaching LOOP , the index is incremented by one. Until the new index equals or
exceeds the limit, execution loops back to just after DO , otherwise the loop
parameters are discarded and execution continues ahead. Both n1 and n2 are
determined at runtime and may be the result of other operations. Within a loop, I
will copy the current value of the index to the stack. See I , LOOP , +LOOP and
LEAVE .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

120 D.2 TI Forth Word Descriptions

DOES> RESIDENT

(---)

A word which defines the runtime action within a high-level defining word. DOES>
alters the code field and first parameter of the new word to execute the sequence of
compiled word addresses following DOES> . It is always used in combination with
<BUILDS . When the DOES> part executes it begins with the address of the first
parameter of the new word on the stack. This allows interpretation using this area or
its contents. Typical uses include the Forth assembler, multidimensional arrays and
compiler generation.

DOT SCR 63 -GRAPH

(dotcol dotrow ---)

Plots a dot at (dotcol,dotrow) in whatever mode is selected by DMODE and in
whatever color is selected by DCOLOR .

DP RESIDENT

(--- addr)

A user variable, the dictionary pointer, which contains the address of the next free
memory above the dictionary. The value may be read by HERE and altered by
ALLOT .

DPL RESIDENT

(--- addr)

A user variable containing the number of digits to the right of the decimal point on
double integer input. It may also be used to hold output column location of a decimal
point in user-generated formatting. The default value on single number input is -1.

DR0 DR1 DR2 RESIDENT

(---)

Command to select disk drives by presetting OFFSET . The contents of OFFSET is
added to the block number in BLOCK to allow for this selection. OFFSET is
suppressed for error text so that it may always originate from drive 0.

DRAW SCR 63 -GRAPH

(---)

Sets DMODE equal to 0. This means that dots are plotted in the ‘on’ state.

DRIVE RESIDENT

(n ---)

Adjusts OFFSET so that the drive number on the stack becomes the first drive in the
system.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 121

DROP RESIDENT

(n ---)

Drop the top number from the stack.

DSPLY SCR 69 -FILE

(---)

Assigns the attribute DISPLAY to the file pointed to by PAB-ADDR .

DSRLNK SCR 33 -SYNONYMS

(---)

Links a Forth program to any Device Service Routine (DSR) in ROM. Before this
instruction may be used, a PAB must be set up in VDP RAM.

DTEST SCR 39 -COPY

(---)

Performs a non-destructive test of the disk in DR0 by attempting to read each Forth
screen.

DTOG SCR 63 -GRAPH

(---)

Sets DMODE equal to 2. This means that each dot plotted takes on the opposite state
as the dot currently at that location.

DUMP SCR 43 -DUMP

(addr n ---)

Print the contents of n memory locations beginning at addr. Both addresses and
contents are shown in hexadecimal notation. See PAUSE .

DUP RESIDENT

(n --- n n)

Duplicates the value on the stack.

DXY SCR 59 -GRAPH

(dotcol1 dotrow1 dotcol2 dotrow2 --- n1 n2)

Places on the stack the square of the x distance n1 and the square of the y distance n2

between the points (dotcol1,dotrow1) and (dotcol2,dotrow2).

ECOUNT RESIDENT

(--- addr)

A user variable that contains an error count. This is used to prevent error recursion.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

122 D.2 TI Forth Word Descriptions

ED@ (EDITOR1 Vocabulary) SCR 38 -EDITOR

(---)

Brings you back into the 40-column editor on the last Forth screen you edited. This
screen is pointed to by SCR . Must be in Text mode.

ED@ (EDITOR2 Vocabulary) SCR 29 -64 SUPPORT

(---)

Brings you back into the 64-column editor on the last Forth screen you edited. This
screen is pointed to by SCR .

EDIT (EDITOR1 Vocabulary) SCR 38 -EDITOR

(scr ---)

Brings you into the 40-column editor on the specified Forth screen. Must be in Text
mode.

EDIT (EDITOR2 Vocabulary) SCR 29 -64SUPPORT

(scr ---)

Brings you into the 64-column editor on the specified Forth screen.

ELSE RESIDENT

Compilation: (addr1 n1 --- addr2 n2) Runtime: (---)

Occurs within a colon-definition in the form:

IF … ELSE … ENDIF

At compile-time, ELSE emplaces BRANCH , reserving a branch offset and leaves the
address addr2 and n2 for error testing. ELSE also resolves the pending forward from
IF by calculating the offset from addr1 to HERE and storing it at addr1.

At runtime, ELSE executes after the true part following IF . ELSE forces execution
to skip over the following false part and resume execution after ENDIF . It has no
stack effect.

EMIT RESIDENT

(char ---)

Transmit ASCII character char to the selected output device. OUT is incremented for
each character output.

EMIT8 RESIDENT

(char ---)

Transmit an 8-bit character char to the selected output device. OUT is incremented
for each character output.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 123

EMPTY-BUFFERS RESIDENT

(---)

Mark all block buffers as empty, not necessarily affecting the contents. Updated
blocks are not written to the disk. This is also an initialization procedure before first
use of the disk.

ENCLOSE RESIDENT

(addr1 char --- addr1 n1 n2 n3)

The text scanning primitive used by WORD . From the text address addr1 and an
ASCII-delimiting character char, is determined the byte offset n1 to the first non-
delimiter character, the offset n2 to the delimiter after the text and the offset n3 to the
first character not included. This procedure will not process past an ASCII ‘null’ (0),
treating it as an unconditional delimiter.

END RESIDENT

(flag ---)

This is an alias or duplicate definition for UNTIL .

ENDCASE RESIDENT

(n ---)

Terminates the CASE construct and, if actually executed at runtime because all
intervening OF … ENDOF clauses failed, removes the number n left on the stack. See
CASE .

ENDIF RESIDENT

Compilation: (addr n ---)

Occurs in a colon-definition in the form:

IF … ENDIF

IF … ELSE … ENDIF

AT runtime, ENDIF serves only as the destination of a forward branch from IF or
ELSE . It marks the conclusion of the conditional structure. THEN is another name
for ENDIF . Both names are supported in fig-Forth. See also IF and ELSE .

At compile-time, ENDIF computes the forward branch offset from addr to HERE and
stores it at addr. n is used for error tests.

ENDOF RESIDENT

(---)

Terminates the OF construct within the CASE construct. If executed at runtime,
causes execution to proceed just beyond ENDCASE . See OF .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

124 D.2 TI Forth Word Descriptions

ERASE RESIDENT

(addr n ---)

Clear n bytes of memory to zero starting at addr.

ERROR RESIDENT

(n1 --- n2 n3)

ERROR processes error notification and restarts the interpreter. WARNING is first
examined. If WARNING < 1, (ABORT) is executed. The sole action of (ABORT) is to
execute ABORT . This allows the user to (cautiously!) modify this behavior by
redefining (ABORT) . ABORT clears the stacks and executes QUIT , which stops
compilation and restarts the interpreter. If WARNING ≥ 0, ERROR leaves the contents
of IN n2 and BLK n3 on the stack to assist in determining the location of the error. If
WARNING > 0, ERROR prints the text of line n1, relative to Forth screen 4 of drive 0. If
WARNING = 0, ERROR prints n1 as an error number (as in a non-disk installation). The
last thing ERROR does is to execute QUIT , which, as above, stops compilation and
restarts the interpreter.

EXECUTE RESIDENT

(cfa ---)

Execute the definition whose code field address is on the stack. The code field
address is also called the compilation address.

EXP SCR 50 -FLOAT

(f1 --- f2)

Raises e to the power specified by the floating point number f1 on the stack and
leaves the result f2 on the stack.

EXPECT RESIDENT

(addr count ---)

Transfer characters from the terminal to addr until <ENTER> or count characters have
been received. One or more nulls are added at the end of the text.

F! SCR 45 -FLOAT

(f addr ---)

Stores a floating point number f into the 4 words (cells) beginning with the specified
address.

F* SCR 46 -FLOAT

(f1 f2 --- f3)

Multiplies the top two floating point numbers on the stack and leaves the result on the
stack. f1 * f2 = f3.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 125

F+ SCR 46 -FLOAT

(f1 f2 --- f3)

Adds the top two floating point numbers on the stack and places the result on the
stack. f1 * f2 = f3.

F– SCR 46 -FLOAT

(f1 f2 --- f3)

Subtracts f2 from f1 and places the result on the stack (f1 – f2 = f3).

F->S SCR 46 -FLOAT

(f --- n)

Converts a floating point number f on the parameter stack into a single precision
number n.

F-D" SCR 70 -FILE

(---)

Expects a file descriptor ending with a " to follow. This instruction places the file
descriptor in the PAB (Peripheral Access Block) pointed to by PAB-ADDR .

F. SCR 48 -FLOAT

(f ---)

Prints a floating point number in BASIC format to the output device.

F.R SCR 48 -FLOAT

(f n ---)

Prints the floating point number f in BASIC format right justified in a field of width
n.

F/ SCR 46 -FLOAT

(f1 f2 --- f3)

Divides f1 by f2 and leaves the floating point quotient f3 on the stack. f1 / f2 = f3.

F0< SCR 49 -FLOAT

(f --- flag)

Compares the floating point number f on the stack to 0. If it is less than 0, a true flag
is left on the stack, else a false flag is left.

F0= SCR 49 -FLOAT

(f --- flag)

Compares the floating point number f on the stack to 0. If it is equal to 0, a true flag
is left on the stack, else a false flag is left.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

126 D.2 TI Forth Word Descriptions

F< SCR 49 -FLOAT

(f1 f2 --- flag)

Leaves a true flag if f1 < f2, else leaves a false flag.

F= SCR 49 -FLOAT

(f1 f2 --- flag)

Leaves a true flag if f1 = f2, else leaves a false flag.

F> SCR 49 -FLOAT

(f1 f2 --- flag)

Leaves a flag if f1 > f2, else leaves a false flag.

F@ SCR 45 -FLOAT

(addr --- f)

Retrieves the floating point contents f of the given address (4 words) and places it on
the stack.

FAC SCR 45 -FLOAT

(--- addr)

A constant which contains the address of the FAC register.

FAC->S SCR 46 -FLOAT

(--- n)

Converts a floating point number in FAC to a single precision number and places it on
the parameter stack.

FAC> SCR 45 -FLOAT

(--- f)

Brings a floating point number f from FAC to the stack.

FAC>ARG SCR 46 -FLOAT

(---)

Moves a floating point number from FAC into ARG .

FADD SCR 45 -FLOAT

(---)

Adds the floating point number in FAC to the floating point number in ARG and leaves
the result in FAC .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 127

FDIV SCR 45 -FLOAT

(---)

Divides the floating point number in FAC by the floating point number in ARG leaving
the quotient in FAC .

FDROP SCR 45 -FLOAT

(f ---)

Drops the top floating point number f from the stack.

FDUP SCR 45 -FLOAT

(f --- f f)

Duplicates the top floating point number f on the stack.

FENCE RESIDENT

(--- addr)

A user variable containing an address (usually the NFA of a Forth word) below
which FORGETting is trapped. To FORGET below this point the user must alter the
contents of FENCE . It is possible to set the value of FENCE to a value that is actually
less than the address of the end of the last word in the core dictionary (TASK) such
that UNFORGETABLE [sic] will report false; however, FORGET will still trap that error.

FF. SCR 48 -FLOAT

(f n1 n2 ---)

Prints the floating point number f with n2 digits following the decimal point and a
maximum of n1 digits.

FF.R SCR 48 -FLOAT

(f n1 n2 n3 ---)

Prints the floating point number f, with n2 digits following the decimal point, right
justified in a field of width n3 with a maximum of n1 digits.

FILE SCR 68 -FILE

(vaddr1 addr vaddr2 ---)

A defining word which permits you to create a word by which a file will be known.
You must place on the stack the PAB-ADDR , PAB-BUF and PAB-VBUF addresses you
wish to be associated with the file.

Used in the form:

vaddr1 addr vaddr2 FILE cccc

When cccc executes, PAB-ADDR , PAB-BUF and PAB-VBUF are set to vaddr1, addr
and vaddr2, respectively.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

128 D.2 TI Forth Word Descriptions

FILL RESIDENT

(addr count b ---)

Fill memory beginning at addr with count bytes of byte b.

FIRST RESIDENT

(--- addr)

A constant that leaves the address of the first (lowest) block buffer.

FIRST$ RESIDENT

(--- addr)

A user variable which contains the first byte of the disk buffer area.

FLD RESIDENT

(--- addr)

A user variable for control of number output field width. Presently unused in fig-
Forth and TI Forth.

FLERR SCR 49 -FLOAT

(--- n)

Returns on the stack the contents n of the floating point status register (8354h).

FLUSH RESIDENT

(---)

Writes to disk all disk buffers that have been marked as updated.

FMUL SCR 45 -FLOAT

(---)

Multiplies the floating point number in FAC with the floating point number in ARG
leaving the product in FAC .

FORGET RESIDENT

(---)

Executed in the form:

FORGET cccc

Deletes the definition named cccc from the dictionary along with all dictionary
entries physically following it.

FORGET first checks the LFA of cccc to see if it is lower than the address in FENCE .
If it is not, FORGET then checks whether it is lower than the address of the last byte of
the core dictionary. If it is not lower than either of these addresses, FORGET updates
HERE to the LFA of cccc , effectively deleting the desired part of the dictionary.
Otherwise, an appropriate error message is displayed.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 129

FORMAT-DISK SCR 33 -SYNONYMS

(n ---)

Initializes the disk in DR0 (n = 0), DR1 (n = 1) or DR2 (n = 2) for use with the Forth
system. Caution: All data on the disk will be destroyed. Also, disks initialized by
the Disk Manager may be used without any changes. Drive number n must be 0, 1 or
2.

FORTH RESIDENT

(---)

The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary. Until additional user vocabularies are defined, new user definitions
become a part of FORTH because it is at that point also the CURRENT vocabulary.
FORTH is immediate, so it will execute during the creation of a colon definition to
select this vocabulary at compile time.

FORTH-COPY SCR 39 -COPY

(---)

Copies the entire disk in DR1 onto the disk in DR0.

FORTH_LINK RESIDENT

(--- addr)

A user variable used for vocabulary linkage.

FOVER SCR 45 -FLOAT

(f1 f2 --- f1 f2 f1)

Copies the second floating point number on the stack to the top of the stack.

FRND SCR 46 FLOAT

(--- f)

Generates a pseudo-random floating point number greater than or equal to 0 and less
than 1.

FSUB SCR 45 -FLOAT

(---)

Subtracts the floating point number in ARG from the number in FAC and leaves the
result in FAC .

FSWAP SCR 45 -FLOAT

(f1 f2 --- f2 f1)

Swaps the top two floating point numbers on the stack.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

130 D.2 TI Forth Word Descriptions

FXD SCR 68 -FILE

(---)

Assigns the attribute FIXED to the file whose PAB (Peripheral Access Block) is
pointed to by PAB-ADDR .

GCHAR SCR 58 -GRAPH

(col row --- char)

Returns on the stack the ASCII code char of the character currently at (col,row).
Note: Rows and columns are numbered from 0.

GET-FLAG SCR 68 -FILE

(--- b)

Retrieves the flag byte b from the current PAB and places it on the stack.

GOTOXY RESIDENT

(col row ---)

Places the cursor at the designated column col and row row position. Note: Rows
and columns are numbered from 0.

GPLLNK SCR 33 -SYNONYMS

(addr ---)

Links a Forth program to the Graphics Programming Language (GPL) routine located
at the given address.

GRAPHICS SCR 52 -GRAPH1

(---)

Converts from present display screen mode into standard Graphics mode
configurations.

GRAPHICS2 SCR 54 -GRAPH2

(---)

Converts from present Forth screen mode into standard Graphics2 mode
configuration.

HCHAR SCR 57 -GRAPH

(col row count char ---)

Prints a horizontal stream of a specified character char beginning at (col,row) and
having a length char. Note: Rows and columns are numbered from 0.

HERE RESIDENT

(--- addr)

Leave the address of the next available dictionary location.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 131

HEX RESIDENT

(---)

Set the numeric conversion base to sixteen (hexadecimal).

HLD RESIDENT

(--- addr)

A user variable that holds the address of the latest character of text during numeric
output conversion.

HOLD RESIDENT

(char ---)

Used between <# and #> to insert an ASCII character into a pictured numeric output
string, e.g., 2E HOLD will place a decimal point.

HONK SCR 60 -GRAPH

(---)

Produces the sound associated with incorrect input.

I RESIDENT

(--- n)

Used within a DO loop to copy the loop index to the stack. Other use is
implementation dependent. I is a synonym for R .

ID. RESIDENT

(nfa ---)

Print a definition’s name from its name field address nfa.

IF RESIDENT

Compilation: (--- addr n) Runtime: (flag ---)

Occurs in a colon definition in form:

IF (true part) … ENDIF

IF (true part) … ELSE (false part) … ENDIF

At compile time, IF compiles 0BRANCH and reserves space for an offset at addr;
addr and n are used later for resolution of the offset and error testing.

At runtime, IF selects execution based on a Boolean flag. If flag is true (non-zero),
execution continues ahead through the true part. If flag is false (zero), execution
skips to just after ELSE to execute the false part. After either part, execution resumes
after ENDIF . ELSE and its false part are optional. If missing, false execution skips
to just after ENDIF .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

132 D.2 TI Forth Word Descriptions

IMMEDIATE RESIDENT

(---)

Mark the most recently made definition so that when encountered at compile time, it
will be executed rather than being compiled. i.e., the precedence bit in its header is
set. This method allows definitions to handle unusual compiling situations rather
than build them into the fundamental compiler. The user may force compilation of
an immediate definition by preceding it with [COMPILE] .

IN RESIDENT

(--- addr)

A user variable containing the byte offset within the current input text buffer
(terminal or disk) from which the next text will be accepted. WORD uses and moves
the value of IN .

INDEX SCR 73 -PRINT

(n1 n2 ---)

Prints to the terminal a list of the line #0 comments from Forth screen n1 through
Forth screen n2. See PAUSE .

INPT SCR 69 -FILE

(---)

Assigns the attribute INPUT to the file whose PAB is pointed to by PAB-ADDR .

INT SCR 50 -FLOAT

(f1 --- f2)

Leaves the integer portion of a floating point number on the stack.

INTERPRET RESIDENT

(---)

The outer text interpreter, which sequentially executes or compiles text from the
input stream (terminal or disk) depending on STATE . If the word name cannot be
found after a search of CONTEXT and then CURRENT , it is converted into a number
according to the current base. That also failing, an error message echoing the name
with a “?” will be given. Text input will be taken according to the convention for
WORD . If a decimal point is found as part of a number, a double number value will
be left. The decimal point has no other purpose than to force this action. See
NUMBER .

INTLNK RESIDENT

(--- addr)

A user variable which is a pointer to the Interrupt Service linkage.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 133

INTRNL SCR 69 -FILE

(---)

Assigns the attribute INTERNAL to the file whose PAB is pointed to by PAB-ADDR .

ISR RESIDENT

(--- addr)

A user variable that initially contains the address of the interrupt service linkage code
to install an Interrupt Service Routine. The user must modify ISR to contain the
CFA of the routine to be executed each 1/60 second. Next, the contents of 83C4h
must be modified to point to this address. Note that the interrupt service linkage code
address is also available in INTLNK .

J RESIDENT

(--- n)

Copies the loop index of the next outer loop to the stack.

JOYST SCR 60 -GRAPH

(n1 --- char n2 n3)

Allows you to accept input from joystick #1 and the left side of the keyboard (n1 = 1)
or from joystick #2 and the right side of the keyboard (n1 = 2). Values returned are
the character code char of the key pressed, the x status n2 and the y status n3.

KEY RESIDENT

(--- char)

Leave the ASCII value of the next terminal key struck.

KEY8 RESIDENT

(--- char)

Leave the 8-bit value of the next terminal key struck.

L/SCR RESIDENT

(--- n)

Returns on the stack the number of lines per Forth screen.

LATEST RESIDENT

(--- nfa)

Leave the name field address nfa of the most recently defined word in the CURRENT
vocabulary. At compile time, this “latest” word will be the most recently compiled
word.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

134 D.2 TI Forth Word Descriptions

LD SCR 71 -FILE

(n ---)

The file I/0 process to load a program file from a disk into VDP RAM. The
parameter n specifies the maximum number of bytes to be loaded and is usually the
size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

LDCR SCR 88

(n1 n2 addr ---)

Performs a TMS9900 LDCR instruction. The CRU base address addr will be shifted
left one bit and stored in workspace register R12 prior to executing the TMS9900
LDCR instruction. The value n1 is transferred to the CRU with a field width of n2

bits.

LEAVE RESIDENT

(---)

Force termination of a DO loop at the next opportunity by setting the loop limit equal
to the current value of the index. The index itself remains unchanged, and the
execution proceeds normally until LOOP or +LOOP is encountered.

LFA RESIDENT

(pfa --- lfa)

Convert the parameter field address pfa of a dictionary definition to its link field
address lfa.

LIMIT RESIDENT

(--- addr)

A constant which leaves the address addr just above the highest memory available
for a disk buffer.

LIMIT$ RESIDENT

(--- addr)

A user variable that contains the address just above the highest memory available for
a disk buffer. The address of LIMIT$ is left on the stack.

LINE SCR 64 -GRAPH

(dotcol1 dotrow1 dotcol2 dotrow2 ---)

The high resolution graphics routine which plots a line from (dotcol1,dotrow1) to
(dotcol2,dotrow2). DCOLOR and DMODE must be set before this instruction is used.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 135

LIST RESIDENT

(scr ---)

Lists the specified Forth screen to the output device. See PAUSE .

LIT RESIDENT

(--- n)

Within a colon-definition, LIT is automatically compiled before each 16-bit literal
number encountered in input text. Later execution of LIT causes the contents of the
next dictionary address to be pushed to the stack.

LITERAL RESIDENT

Compilation: (n ---) Runtime: (--- n) Interpretation: (---)

During compilation, compiles the stack value n as a 16-bit literal. This will execute
during a colon definition. The intended use is:

: xxx [calculation] LITERAL ;

Compilation is suspended for the compile-time calculation of a value. Compilation is
resumed and LITERAL compiles this value.

At runtime, n is pushed to the stack. Interpretation of LITERAL does nothing, unlike
other compiling words.

LOAD RESIDENT

(n ---)

Begin interpretation of Forth screen n. Loading will terminate at the end of the Forth
screen or at ;S . See ;S and --> .

LOG SCR 50 -FLOAT

(f1 --- f2 | f1)

The floating point operation that returns the natural logarithm f2 of the floating point
number f1. If f1 is 0 or negative, the original number f1 is returned instead.

LOOP RESIDENT

Compilation: (addr n ---)

Occurs in a colon definition in the form:

DO … LOOP

At runtime, LOOP selectively controls branching back to the corresponding DO based
on the loop index and limit. The loop index is incremented by one and compared to
the limit. The branch back to DO occurs until the index equals or exceeds the limit.
At that time, the parameters are discarded and execution continues ahead.

At compile time, LOOP compiles (LOOP) and uses addr to calculate an offset to DO .
n is used for error testing.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

136 D.2 TI Forth Word Descriptions

M* RESIDENT

(n1 n2 --- d)

A mixed magnitude math operation that leaves the double number signed product d
of two signed numbers, n1 and n2.

M/ RESIDENT

(d n1 --- n2 n3)

A mixed magnitude math operator that leaves the signed remainder n2 and signed
quotient n3, from a double number dividend d and divisor n1. The remainder takes its
sign from the dividend.

M/MOD RESIDENT

(ud1 u2 --- u3 ud4)

An unsigned mixed magnitude math operation that leaves an unsigned double
quotient ud4 and a single remainder u3, from a double dividend ud1 and a single
divisor u2.

MAGNIFY SCR 60 -GRAPH

(n1 ---)

Alters the sprite magnification factor to be n1. The value of n1 must be 0, 1, 2 or 3.

MAX RESIDENT

(n1 n2 --- n3)

Leave the greater n3 of the two numbers, n1 and n2.

MCHAR SCR 62 -GRAPH

(n col row ---)

Places a square of color n at (col,row). Used in multicolor mode.

MENU SCR 20 BOOT SCR

(---)

Displays the available Load Options.

MESSAGE RESIDENT

(n ---)

Print on the selected output device the text of line n relative to screen 4 of drive 0.
The value of n may be positive or negative. MESSAGE may be used to print incidental
text such as report headers. If WARNING = 0, the message will simply be printed as a
number (disk unavailable).

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 137

MIN RESIDENT

(n1 n2 --- n3)

Leave the smaller n3 of the two numbers (n1 and n2).

MINIT SCR 62 -GRAPH

(---)

Initializes the monitor screen for use with MCHAR .

MINUS RESIDENT

(n1 --- n2)

Leave the two’s complement n2 of a number n1.

MOD RESIDENT

(n1 n2 --- rem)

Leave the remainder rem of n1/n2, with the same sign as n1.

MON SCR 33 -SYNONYMS

(---)

Exit to the TI 99/4A color bar display screen.

MOTION SCR 59 -GRAPH

(n1 n2 spr ---)

Assigns a horizontal n1 and vertical n2 velocity to the specified sprite spr.

MOVE RESIDENT

(addr1 addr2 n ---)

Move the contents of n memory cells (16-bit contents) beginning at addr1 into n cells
beginning at addr2. The contents of addr1 is moved first.

MULTI SCR 53 -GRAPH

(---)

Converts from present display screen mode into standard Multicolor mode
configuration.

MYSELF RESIDENT

(---)

Used in a colon definition. Places the code field address (CFA) of a word into its
own definition. This permits recursion.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

138 D.2 TI Forth Word Descriptions

NFA RESIDENT

(pfa --- nfa)

Convert the parameter field address pfa of a definition to its name field address nfa.

NOP RESIDENT

(---)

A do-nothing instruction. NOP is useful for patching as in assembly code.

NUMBER RESIDENT

(addr --- d)

Convert a character string left at addr with the character count in the first byte, to a
signed double number d , using the current numeric base. If a decimal point is
encountered in the text, its position will be given in DPL , but no other effect occurs.
If numeric conversion is not possible, an error message will be given.

OF RESIDENT

(n --- n |)

Initiates the OF … ENDOF construct inside of the CASE construct. n is compared to
the value which was on top of the stack when CASE was executed. If the numbers are
identical, the words between OF and ENDOF will be executed. Otherwise, n is put
back on the stack. See CASE .

OFFSET RESIDENT

(--- addr)

A user variable which may contain a block offset to disk drives. The contents of
OFFSET is added to the stack number by BLOCK . Messages issued by MESSAGE are
independent of OFFSET . See BLOCK , DR0 and MESSAGE .

OPN SCR 71 -FILE

(---)

Opens the file whose PAB is pointed to by PAB-ADDR .

OR RESIDENT

(n1 n2 --- n3)

Leave the bit-wise logical OR n3 of two 16-bit values, n1 and n2.

OUT RESIDENT

(--- addr)

A user variable that contains a value incremented by EMIT and EMIT8 . The user
may alter and examine OUT to control display formatting.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 139

OUTPT SCR 69 -FILE

(---)

Assigns the attribute OUTPUT to the file whose PAB is pointed to by PAB-ADDR .

OVER RESIDENT

(n1 n2 --- n1 n2 n1)

Copy the second stack value n1 to the top of the stack.

PAB-ADDR SCR 68 -FILE

(--- addr)

A variable containing the VDP address of the first byte of the current PAB
(Peripheral Access Block).

PAB-BUF SCR 68 -FILE

(--- addr)

A variable which holds the address of the area in CPU RAM used as the source or
destination of the data to be transferred to/from a file. This is a file I/O word.

PAB-VBUF SCR 68 -FILE

(--- addr)

A variable pointing to a VDP RAM buffer which serves as a temporary buffer when
transferring data to/from a file. The VDP address stored in PAB-VBUFF is also stored
in the file’s PAB.

PABS RESIDENT

(--- addr)

A user variable which points to a region in VDP RAM, which has been set aside for
creating PABs.

PAD RESIDENT

(--- addr)

Leave the address of the text output buffer, which is a fixed offset (68 bytes in TI
Forth) above HERE . Every time HERE changes, PAD is updated.

PAUSE RESIDENT

(--- flag)

Checks for a keystroke and issues false if none, true if <BREAK> (<CLEAR> or
<FCTN+4>) or idles until a second keystroke before issuing false (or true if second
keystroke is <BREAK>). The words LIST , INDEX , DUMP and VLIST all call the word
PAUSE . These routines exit when flag = true. PAUSE allows the user to temporarily
halt the output by pressing any key. Pressing another key will allow continuation.
To exit one of these routines prematurely, press <BREAK> .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

140 D.2 TI Forth Word Descriptions

PDT SCR 57 -GRAPH

(--- vaddr)

A constant which contains the VDP address of the Pattern Descriptor Table. Default
value is 800h.

PFA RESIDENT

(nfa --- pfa)

Convert the name field address nfa of a compiled definition to its parameter field
address pfa.

PI SCR 50 -FLOAT

(--- f)

A floating point approximation of π to 13 significant figures. (3.141592653590)

PREV RESIDENT

(--- addr)

A user variable containing the address of the disk buffer most recently referenced.
The UPDATE command marks this buffer to be later written to disk.

PUT-FLAG SCR 68 -FILE

(b ---)

Writes the flag byte b into the appropriate PAB referenced by PAB-ADDR .

QUERY RESIDENT

(---)

Input 80 characters of text (or until <ENTER> is pressed) from the operator’s terminal.
Text is positioned at the address contained in TIB with IN set to 0.

QUIT RESIDENT

(---)

Clear the return stack, stop compilation and return control to the operator’s terminal.
No message is given, including the usual “ok”.

R RESIDENT

(--- n) (R: n --- n)

Copy the top of the return stack to the parameter stack.

R# RESIDENT

(--- addr)

A user variable which may contain the location of an editing cursor or other file-
related function.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 141

R->BASE RESIDENT

(---) (R: n ---)

Restore the current base from the return stack. See BASE->R .

R/W RESIDENT

(addr n1 flag ---)

The fig-Forth standard disk read/write linkage. The source or destination block
buffer address is addr, n1 is the sequential number of the referenced block and flag
indicates whether the operation is write (flag = 0) or read (flag = 1). R/W determines
the location on mass storage, performs the read/write and error checking.

R0 RESIDENT

(--- addr)

A user variable containing the initial location of the return stack. Pronounced
“r zero”. See RP! .

R> RESIDENT

(--- n) (R: n ---)

Remove the top value from the return stack and leave it on the parameter stack. See
>R and R .

RANDOMIZE SCR 33 -SYNONYMS

(---)

Creates an unpredictable seed for the random number generator.

RD SCR 71 -FILE

(--- count)

The file I/O instruction that reads from the current PAB. This instruction uses
PAB-BUF and PAB-VBUF .

RDISK RESIDENT

(addr n1 n2 --- n3)

The primitive routine that performs disk reads. The address where the block is to be
written in CPU RAM is addr. The block number n1, the number of bytes per block is
n2 and n3 is the returned error code.

REC-LEN SCR 69 -FILE

(b ---)

Stores the length b of the record for the upcoming write into the appropriate byte in
the current PAB.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

142 D.2 TI Forth Word Descriptions

REC-NO SCR 69 -FILE

(n ---)

Writes a zero-based record number n into the appropriate location in the current
PAB.

REPEAT RESIDENT

Compilation: (addr n ---)

Used within a colon-definition in the form:

BEGIN … WHILE … REPEAT

At runtime, REPEAT forces an unconditional branch back to just after the
corresponding BEGIN .

At compile-time, REPEAT compiles BRANCH and the offset from HERE to addr. n is
used for error testing.

RLTV SCR 69 -FILE

(---)

Assigns the attribute RELATIVE to the file whose PAB is pointed to by PAB-ADDR .

RND SCR 33 -SYNONYMS

(n1 --- n2)

Generates a positive random integer n2 greater than or equal to 0 and less than n1.

RNDW SCR 33 -SYNONYMS

(--- n)

Generates a random word. The value of the word may be positive or negative
depending on whether the sign bit is set.

ROT RESIDENT

(n1 n2 n3 --- n2 n3 n1)

Rotate the top three values on the stack, bringing the third n1 to the top.

RP! RESIDENT

(---)

A procedure to initialize the return stack pointer from user variable R0 .

RSTR SCR 71 -FILE

(n ---)

Restores the file whose PAB is pointed to by the current PAB to the specified record
number n.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 143

S->D RESIDENT

(n --- d)

Sign-extend a single number n to form a double number d.

S->F SCR 46 -FLOAT

(n --- f)

Converts a single-precision number n on the stack to a floating point number f.

S->FAC SCR 46 -FLOAT

(n ---)

Takes a single-precision number n from the stack, converts it to floating point, and
leaves it in FAC.

S0 RESIDENT

(--- addr)

User variable that points to the base of the parameter stack. Pronounced “s zero”.
See SP! .

SATR SCR 57 -GRAPH

(--- vaddr)

A constant whose value vaddr is the VDP address of the Sprite Attribute List.
Default value is 300h.

SBO SCR 88 -CRU

(addr ---)

This word expects to find on the stack the CRU address addr of the bit to be set to 1.
SBO will put this address into workspace register R12, shift it left (double it) and
execute 0 SBO, to effect setting the bit. See CRU documentation in the
Editor/Assembler Manual for more information.

SBZ SCR 88 -CRU

(addr ---)

This word expects to find on the stack the CRU address addr of the bit to be reset to
0. SBZ will put this address into workspace register R12, shift it left (double it) and
execute 0 SBZ, to effect resetting the bit. See CRU documentation in the
Editor/Assembler Manual for more information.

SCOPY SCR 39 -COPY

(scr1 scr2 ---)

Copies the source Forth screen scr1 to the destination Forth screen scr2 on disk. Does
not destroy the source screen.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

144 D.2 TI Forth Word Descriptions

SCR RESIDENT

(--- addr)

A user variable containing the Forth screen number most recently referenced by
LIST or EDIT .

SCREEN SCR 58 -GRAPH

(n ---)

Changes the display screen color to the color specified n. The foreground (FG) and
background (BG) screen colors must be placed in the low-order byte of n, with FG
the high-order 4 bits and BG the low-order 4 bits, e.g., n = 27 (1Bh) for black on light
yellow.

SCRN_END RESIDENT

(--- addr)

A user variable containing the address addr of the byte immediately following the
last byte of the display screen image table to be used as the logical display screen.

SCRN_START RESIDENT

(--- addr)

A user variable containing the address addr of the first byte of the display screen
image table to be used as the logical display screen.

SCRN_WIDTH RESIDENT

(--- addr)

A user variable which contains the number of characters that will fit across the
display screen. (32 or 40) Used by the display screen scroller.

SCRTCH SCR 71 -FILE

(n ---)

Removes the specified record n from the RELATIVE file whose PAB is pointed to
by PAB-ADDR . [Editor’s Note: This word should never be used. TI never
implemented this operation for files. It will always result in a file I/O error message.]

SEED SCR 33 -SYNONYMS

(n ---)

Places a new seed n into the random number generator.

SET-PAB SCR 68 -FILE

(---)

This instruction assumes that PAB-ADDR is set. It then zeroes out the PAB
(Peripheral Access Block) pointed to by PAB-ADDR and places the contents of PAB-
VBUF into the appropriate word of the PAB. This initializes the PAB.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 145

SETFL SCR 45 -FLOAT

(f1 f2 ---)

Performs >FAC on f2 and >ARG on f1.

SIGN RESIDENT

(n d --- d)

Stores a minus sign (ASCII 45 or 2Dh) at the current location in a converted numeric
output string in the text output buffer if n is negative. At the time n is evaluated, it is
discarded; but, double number d is maintained for continued conversion until #>
removes it from the stack. Must be used between <# and #> . Using SIGN implies
that d can be negative, which means that d should be used to produce n. You should
then replace d with its absolute value (|d|) on the stack by using DABS . This can be
done by pushing d to the stack and executing SWAP OVER DABS : (d --- n |d|) prior
to <# … SIGN … #> .

SIN SCR 50 -FLOAT

(f1 --- f2)

Finds the SIN f2 of the floating point number f1 on the stack and leaves the result f2

on the stack.

SLA RESIDENT

(n1 count --- n2)

Arithmetically shifts the number n1 on the stack count bits to the left, leaving the
result n2 on the stack. Shifting by count will be modulo 16 except when count = 0,
which causes 16 bits to be shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SLA0 -DUP IF SLA ENDIF ;

SLIT SCR 20 BOOT SCR

(--- addr)

SLIT is similar to LIT but acts on strings instead of numbers. SLIT places the
address addr of the string following it on the stack. It modifies the top of the return
stack to point to just after the string.

SMASH SCR 65 -64SUPPORT

(addr1 count1 n --- addr2 vaddr count2)

The assembly code routine that formats a line of tiny characters. It expects the
address addr1 of the line in memory, the number count1 of characters per line, and the
line number n to which it is to be written. It returns on the stack the line buffer
address addr2, a VDP address vaddr, and a character count count2. See CLIST and
CLINE .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

146 D.2 TI Forth Word Descriptions

SMOVE SCR 39 -COPY

(scr1 scr2 count ---)

Copies count Forth screens beginning with the source Forth screen scr1 to the
destination Forth screen scr2. Overlapping screen ranges may be specified without
detrimental effects.

SMTN SCR 57 -GRAPH

(--- vaddr)

A constant whose value is the VDP address of the Sprite Motion Table. Default
value is 780h.

SMUDGE RESIDENT

(---)

Used during word definition to toggle the smudge bit in a definition’s name field.
This prevents an uncompleted definition from being found during dictionary searches
until compilation is completed without error.

SP! RESIDENT

(---)

A procedure to initialize the parameter stack pointer from S0 , the user variable that
points to the base of the parameter stack.

SP@ RESIDENT

(--- addr)

This word returns the address of the top of the stack as it was before SP@ was
executed, e.g., 1 2 SP@ @ . . . would type 2 2 1.

SPACE RESIDENT

(---)

Transmit a blank character (ASCII 32|20h) to the output device.

SPACES RESIDENT

(n ---)

Transmit n blank characters (ASCII 32|20h) to the output device.

SPCHAR SCR 58 -GRAPH

(n1 n2 n3 n4 char ---)

Defines a character char in the Sprite Descriptor Table to have the pattern composed
of the 4 words (cells) on the stack.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 147

SPDTAB SCR 57 -GRAPH

(--- vaddr)

A constant whose value is the VDP address of the Sprite Descriptor Table. Default
value is 800h. Notice that this coincides with the Pattern Descriptor Table.

SPLIT SCR 55 -SPLIT

(---)

Converts from present display screen mode into standard Split mode configuration.

SPLIT2 SCR 55 -SPLIT

(---)

Converts from present display screen mode into standard Split2 mode configuration.

SPRCOL SCR 58 -GRAPH

(n spr ---)

Changes color of the given sprite number spr to the color n specified.

SPRDIST SCR 60 -GRAPH

(spr1 spr2 --- n)

Returns on the stack the square of the distance n between two specified sprites, spr1

and spr2. Distance is measured in pixels and the maximum distance that can be
detected accurately is 181 pixels.

SPRDISTXY SCR 60 -GRAPH

(dotcol dotrow spr --- n)

Places on the stack n, the square of the distance between the point (dotcol,dotrow)
and a given sprite spr. Distance is measured in pixels and the maximum distance that
can be detected accurately is 181 pixels.

SPRGET SCR 59 -GRAPH

(spr --- dotcol dotrow)

Returns the dot column dotcol and dot row dotrow position of sprite spr.

SPRITE SCR 59 -GRAPH

(dotcol dotrow n char spr ---)

Defines sprite number spr to have the specified location (dotcol,dotrow), color n, and
character pattern char. The size of the sprite will depend on the magnification factor.

SPRPAT SCR 59 -GRAPH

(char spr ---)

Changes the character pattern of a given sprite spr to char.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

148 D.2 TI Forth Word Descriptions

SPRPUT SCR 59 -GRAPH

(dotcol dotrow spr ---)

Places a given sprite spr at location (dotcol,dotrow).

SQNTL SCR 69 -FILE

(---)

Assigns the attribute SEQUENTIAL to the file whose PAB is pointed to by PAB-
ADDR .

SQR SCR 50 -FLOAT

(f1 --- f2)

Finds the square root of a floating point number f1 and leaves the result f2 on the
stack.

SRA RESIDENT

(n1 count --- n2)

Arithmetically shifts n1 count bits to the right and leaves the result n2 on the stack.
Shifting by count will be modulo 16 except when count = 0, which causes 16 bits to
be shifted. To create a word which does not perform a 16-bit shift when count is
zero, use the following definition for the same stack contents:

: SRA0 -DUP IF SRA ENDIF ;

SRC RESIDENT

(n1 count --- n2)

Performs a circular right shift of count bits on n1 leaving the result n2 on the stack. If
count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit shift
when count is zero, use the following definition for the same stack contents:

: SRC0 -DUP IF SRC ENDIF ;

SRL RESIDENT

(n1 count --- n2)

Performs a logical right shift of count bits on n1 and leaves the result n2 on the stack.
If count is 0, 16 bits are shifted. To create a word which does not perform a 16-bit
shift when count is zero, use the following definition for the same stack contents:

: SRL0 -DUP IF SRL ENDIF ;

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 149

SSDT SCR 58 -GRAPH

(vaddr ---)

Places the Sprite Descriptor Table at the specified VDP address vaddr and initializes
all sprite tables. The address given must be on an even 2K boundary. This
instruction must be executed before sprites can be used.

STAT SCR 71 -FILE

(--- b)

Reads the status of the current PAB and returns the status byte b to the stack. See the
table in § 8.4 following the explanation of STAT for the meaning of each bit of the
status byte.

STATE RESIDENT

(--- addr)

A user variable containing the compilation state. A non-zero value indicates
compilation. The value itself may be implementation dependent.

STCR SCR 88

(n1 addr --- n2)

Performs the TMS9900 STCR instruction. The field width is n1, the CRU base
address is addr, and the returned value is n2. The CRU base address will be shifted
left 1 bit and stored in workspace register R12 prior to executing the TMS9900
STCR instruction.

STR SCR 47 -FLOAT

(---)

Converts the number in the FAC to a string, which is placed in PAD. The string is in
BASIC format. Used by F. and F.R .

STR. SCR 47 -FLOAT

(n1 n2 n3 ---)

Converts the number in the FAC to a string which is placed in PAD. The maximum
number of output digits is n1 (STR. places n1 in the byte at FAC+11). Calling STR.
with n1 = 0 is identical to calling STR . The number of significant digits of output is
n2 (STR. places n2 in the byte at FAC+12). The number of digits to be output after
the decimal point is n3 (STR. places n3 in the byte at FAC+13). See the GPL STR
routine on page 254 in the Editor/Assembler Manual for more detail.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

150 D.2 TI Forth Word Descriptions

SV SCR 71 -FILE

(count ---)

Performs the file I/O save operation. The number of bytes count to be saved will be
the size of the file on disk. The file’s PAB must be set up and be the current PAB, to
which PAB-ADDR points, before executing this word.

SWAP RESIDENT

(n1 n2 --- n2 n1)

Exchange the top two values on the stack.

SWCH SCR 72 -PRINT

(---)

A special purpose word which permits EMIT to output characters to an RS232 device
rather than to the screen. See UNSWCH .

SWPB RESIDENT

(n1 --- n2)

Reverses the order of the two bytes in n1 and leaves the new number as n2.

SYS$ RESIDENT

(--- addr)

A user variable that contains the address of the system support entry point.

SYSTEM RESIDENT

(n ---)

Calls the system synonyms. You must specify an offset n into a jump table for the
routine you wish to call. The offset n must be one of the predefined even numbers.
See system Forth screen 33 for offsets 0 – 26.

TAN SCR 50 -FLOAT

(f1 --- f2)

Finds the tangent of the floating point number (f1 = angle in radians) on the stack and
leaves the result f2.

TASK RESIDENT

(---)

A no-operation word or null definition, TASK is the last word defined in the resident
Forth vocabulary of TI Forth and the last word that cannot be forgotten using
FORGET . Its definition is simply : TASK ; . Its address can be used to BSAVE a
personalized TI Forth system disk (see Chapter 11): ' TASK 21 BSAVE (Be sure to
back up the original disk before trying this!). By redefining TASK at the beginning of
an application, you can mark the boundary between applications. By forgetting TASK

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 151

and re-compiling, an application can be discarded in its entirety. You will be able to
FORGET each instance of the definition of TASK except the first one described above.

TB SCR 88 -CRU

(addr --- flag)

TB performs the TMS9900 TB instruction. The bit at CRU address addr is tested by
this instruction. Its value (flag = 1|0) is returned to the stack. The CRU base
address addr will be shifted left one bit and stored in workspace register R12 prior to
executing the TMS9900 TB instruction.

TCHAR SCR 65 & 67 -64SUPPORT

(--- addr)

Points to the array that holds the tiny character definitions for the 64-column editor.
See CLIST .

TEXT SCR 51 -TEXT

(---)

Converts from present display screen mode into standard Text mode configuration.

THEN RESIDENT

(---)

An alias for ENDIF .

TIB RESIDENT

(--- addr)

A user variable containing the address of the terminal input buffer.

TOGGLE RESIDENT

(addr b ---)

Complement (XOR) the contents of the byte at addr by the bit pattern of byte b.

TRACE SCR 44 -TRACE

(---)

Forces colon definitions that follow it to be compiled in such a way that their
execution can be traced. Once a routine has been compiled with the TRACE option, it
may be executed with or without a trace. To implement a trace, type TRON before
execution. To execute without a trace, type TROFF . Colon definitions that have
been compiled under the TRACE option must be recompiled under the UNTRACE
option to remove the tracing capability. TRACE and UNTRACE can be used alternately
to select words to be traced. See TRON , TROFF , UNTRACE and § 5.4 .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

152 D.2 TI Forth Word Descriptions

TRAVERSE RESIDENT

(addr1 n --- addr2)

Traverse the name field of a fig-Forth variable-length name field. The starting point
addr1 is the address of either the length byte or the last letter. If n = 1, the direction is
toward high memory; if n = -1, the direction is toward low memory. The resulting
address addr2 points to the other end of the name.

TRIAD SCR 72 -PRINT

(scr ---)

Display on the RS232 device the three Forth screens that include screen number scr,
beginning with a Forth screen evenly divisible by three. Output is suitable for source
text records and includes a reference line at the bottom taken from line 15 of screen
4: “TI FORTH --- a fig-FORTH extension”.

TRIADS SCR 73 -PRINT

(scr1 scr2 ---)

May be thought of as a multiple TRIAD , q.v. You must specify a Forth screen range.
TRIADS will execute TRIAD as many times as necessary to cover that range.

TROFF SCR 44 -TRACE

(---)

Turn off tracing of words compiled with the TRACE option. See TRON , TRACE ,
UNTRACE and § 5.4 .

TRON SCR 44 -TRACE

(---)

Turn on tracing of words compiled with the TRACE option. See TROFF , TRACE ,
UNTRACE and § 5.4 .

TYPE RESIDENT

(addr count ---)

Transmit count characters from addr to the selected output device.

U RESIDENT

(--- n)

Places the contents n of workspace register UP (R8) on the stack. Register U
contains the base address of the user variable area. This is quicker than executing U0
@ , which accomplishes the same thing.

U* RESIDENT

(u1 u2 --- ud)

Leave the unsigned double number product ud of two unsigned numbers, u1 and u2.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 153

U. RESIDENT

(u ---)

Prints an unsigned number u to the output device.

U.R RESIDENT

(u n ---)

Prints an unsigned number u right justified in a field of width n.

U/ RESIDENT

(ud u1 --- rem quot)

Leave the unsigned remainder rem and unsigned quotient quot from the unsigned
double dividend ud and unsigned divisor u1.

U0 RESIDENT

(--- addr)

A user variable that points to the base of the user variable area.

U< RESIDENT

(u1 u2 --- flag)

Leaves a true flag if u1 is less than u2, else leaves a false flag.

UCONS$ RESIDENT

(--- addr)

A user variable which contains the base address of the user variable initial value
table, which is used to initialize the user variables at a COLD start.

UD. RESIDENT

(ud ---)

Prints an unsigned double number ud to the output device.

UD.R RESIDENT

(ud n ---)

Prints an unsigned double number ud right justified in a field of length n.

UNDRAW SCR 62 -GRAPH

(---)

Sets DMODE to 1. This means that dots are plotted in the off mode.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

154 D.2 TI Forth Word Descriptions

UNFORGETABLE [sic] RESIDENT

(addr --- flag)

Decides whether or not a word can be forgotten. A true flag is returned if the address
is not located between FENCE and HERE . Otherwise, a false flag is left. See
FORGET . It is possible to set the value of FENCE to a value that is actually less than
the address of the end of the last word in the core dictionary (TASK) such that
UNFORGETABLE [sic] will report false; however, FORGET will still trap that error.

UNSWCH SCR 72 -PRINT

(---)

Causes the computer to send output to the display screen instead of an RS232 device.
See SWCH .

UNTIL RESIDENT

Compilation: (addr n ---) Runtime: (flag ---)

Occurs within a colon-definition in the form:

BEGIN … UNTIL

At compile-time, UNTIL compiles (0BRANCH) and an offset from HERE to addr.
Number n is used for error tests.

At runtime, UNTIL controls the conditional branch back to the corresponding
BEGIN . If flag is false, execution returns to just after BEGIN ; if true, execution
continues ahead.

UNTRACE SCR 44 -TRACE

(---)

Colon definitions that have been compiled under the TRACE option must be
recompiled under the UNTRACE option to remove the tracing capability. TRACE and
UNTRACE can be used alternately to select words to be traced.

UPDATE RESIDENT

(---)

Marks the most recently referenced block pointed to by PREV as altered. The block
will subsequently be transferred automatically to disk should its buffer be required
for storage of a different block. See FLUSH .

UPDT SCR 69 -FILE

(---)

Assigns the attribute UPDATE to the file whose PAB is pointed to by PAB-ADDR .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 155

USE RESIDENT

(--- addr)

A user variable containing the address of the block buffer to use next as the least
recently written.

USER RESIDENT

(n ---)

A defining word used in the form:

n USER cccc

which creates a user variable cccc . The parameter field of cccc contains n as a
fixed offset relative to the user variable base address pointed to by workspace register
UP (R8) for this user variable. When cccc is later executed, it places the sum of its
offset and the user area base address on the stack as the storage address of that
particular variable. You should only use the even numbers 68h – 7Eh for n. You
should actually avoid 68h as well because the TI Forth boot screen (screen 3) uses
that offset for defining user variable VDPMDE , leaving 6Ah – 7Eh as the available
offsets—enough for 11 user variables.

Even if you use odd offsets, storage/retrieval is always on even-address boundaries
one byte less. However, USER does not check that the definition is within the 80h
size allotted to the user variable table.

VAL SCR 47 -FLOAT

(---)

Causes the string at PAD to be converted into a floating point number and put into
the FAC. The string must have a leading length byte with no embedded blanks.

VAND SCR 33 -SYNONYMS

(b vaddr ---)

Performs a logical AND on the byte at the specified VDP location vaddr and the
given byte b. The result byte is stored back into the VDP address.

VARIABLE RESIDENT

(n ---)

A defining word used in the form:

n VARIABLE cccc

When VARIABLE is executed, it creates the definition cccc with its parameter field
initialized to n. When cccc is later executed, the address of its parameter field
(containing n) is left on the stack, so that a fetch or store may access this location.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

156 D.2 TI Forth Word Descriptions

VCHAR SCR 57 -GRAPH

(col row count char ---)

Prints on the display screen a vertical stream of length count of the specified
character char. The first character of the stream is located at (col,row). Rows and
columns are numbered from 0 beginning at the upper left of the display screen.

VFILL SCR 33 -SYNONYMS

(vaddr count b ---)

Fills count locations beginning at the given VDP address vaddr with the specified
byte b.

VLIST SCR 43 -DUMP

(---)

Prints the names of all words defined in the CONTEXT vocabulary. See PAUSE .

VMBR SCR 33 -SYNONYMS

(vaddr addr count ---)

Reads count bytes beginning at the given VDP address vaddr and places them at
addr.

VMBW SCR 33 -SYNONYMS

(addr vaddr count ---)

Writes count bytes from addr into VDP beginning at the given VDP address vaddr.

VOC-LINK RESIDENT

(--- addr)

A user variable containing the address of a field in the definition of the most recently
created vocabulary. All vocabulary names are linked by these fields to allow control
for forgetting with FORGET through multiple vocabularies.

VOCABULARY RESIDENT

(---)

A defining word used in the form:

VOCABULARY cccc

to create a vocabulary definition cccc . Subsequent use of cccc will make it the
CONTEXT vocabulary which is searched first by INTERPRET . The sequence cccc
DEFINITIONS will also make cccc the CURRENT vocabulary into which new
definitions are placed.

cccc will be so chained as to include all definitions of the vocabulary in which cccc
is itself defined. All vocabularies ultimately chain to Forth. By convention,
vocabulary names are to be declared IMMEDIATE . See VOC-LINK .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 157

VOR SCR 33 -SYNONYMS

(b vaddr ---)

Performs a logical OR on the byte at the specified VDP address and the given byte b.
The result byte is stored back into the VDP address.

VRBL SCR 68 -FILE

(---)

Assigns the attribute VARIABLE to the file whose PAB is pointed to by PAB-ADDR .

VSBR SCR 33 -SYNONYMS

(vaddr --- b)

Reads a single byte from the given VDP address vaddr and places its value b on the
stack.

VSBW SCR 33 -SYNONYMS

(b vaddr ---)

Writes a single byte b into the given VDP address vaddr.

VWTR SCR 33 -SYNONYMS

(b n ---)

Writes the given byte b into the specified VDP write-only register n.

VXOR SCR 33 -SYNONYMS

(b vaddr ---)

Performs a logical XOR on the byte at the specified VDP address vaddr and the
given byte b. The result byte is stored back into the VDP address vaddr.

WARNING RESIDENT

(--- addr)

A user variable initialized by COLD at system startup containing a value controlling
messages. If WARNING > 0, a disk is present and Forth screen 4 of drive 0 is the base
location for messages. If WARNING = 0, no disk is present and messages will be
presented by number. If WARNING < 0 when ERROR executes, ERROR will execute
(ABORT) , which can be redefined to execute a user-specified procedure instead of
the default ABORT . See MESSAGE , ERROR .

WDISK RESIDENT

(addr n1 n2 --- n3)

The primitive routine which performs a disk write. The CPU RAM location of the
block to be written is addr. The block number is n1, the number of bytes per block is
n2 and the returned error code is n3.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

158 D.2 TI Forth Word Descriptions

WHERE (EDITOR1 Vocabulary) SCR 38 -EDITOR

(n1 n2 ---)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the
40-column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, n1 and n2, left on the stack by the LOAD error.

WHERE (EDITOR2 Vocabulary) SCR 29 -64SUPPORT

(n1 n2 ---)

When an error occurs on a LOAD instruction, typing WHERE will bring you into the
64-column editor and place the cursor at the exact location of the error. WHERE
consumes the two numbers, n1 and n2, left on the stack by the LOAD error.

WHILE RESIDENT

Compilation: (addr1 n1 --- addr1 n1 addr2 n2) Runtime: (flag ---)

Occurs in a colon-definition in the form:

BEGIN … WHILE (true part) … REPEAT

At compile time, WHILE emplaces (0BRANCH) and leaves addr2 of the reserved
offset. The stack values will be resolved by REPEAT .

At runtime, WHILE selects conditional execution based on flag. If flag is true (non-
zero), WHILE continues execution of the true part through to REPEAT , which then
branches back to BEGIN . If flag is false (zero), execution skips to just after
REPEAT , exiting the structure.

WIDTH RESIDENT

(--- addr)

A user variable containing the maximum number of letters saved in the compilation
of a definition’s name. It must be 1 – 31, with a default value of 31. The name
character count and its natural characters are saved up to the value in WIDTH . The
value may be changed at any time within the above limits.

WLITERAL SCR 20 BOOT SCR

(---)

A compiling word which compiles SLIT and the string which follows WLITERAL
into the dictionary.

Used in the form: WLITERAL cccc

WORD RESIDENT

(char ---)

Read the text characters from the input stream being interpreted until a delimiter char
is found, storing the packed character string beginning at the dictionary buffer HERE .

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

 Appendix D The TI Forth Glossary 159

WORD leaves the character count in the first byte followed by the input characters and
ends with two or more blanks. Leading occurrences of char are ignored. If BLK is
zero, text is taken from the terminal input buffer, otherwise from the disk block
stored in BLK . See BLK , IN .

WRT SCR 71 -FILE

(count ---)

Performs the file I/O write operation. You must specify the number of bytes count to
be written.

XMLLNK SCR 33 -SYNONYMS

(addr ---)

Links a Forth program to a routine in ROM or to a routine located in the memory
expansion unit. A ROM address addr or XML vector must be specified as in the
Editor/Assembler Manual.

XOR RESIDENT

(n1 n2 --- n3)

Leave n3, the bitwise logical exclusive OR (XOR) of n1 and n2.

[RESIDENT

(---)

Used in a colon-definition in the form:

: xxxx [words] more ;

Suspend compilation. The words after [are executed, not compiled. This allows
calculation or compilation exceptions before resuming compilation with] . See
LITERAL and] .

[COMPILE] RESIDENT

(---)

Used in a colon definition in the form:

: xxxx [COMPILE] FORTH ;

[COMPILE] will force the compilation of an immediate definition that would
otherwise execute during compilation. The above example will select the Forth
vocabulary when xxxx executes rather than at compile time.

] RESIDENT

(---)

Resume compilation to the completion of a colon definition. See [.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

160 D.2 TI Forth Word Descriptions

^ SCR 50 -FLOAT

(f1 f2 --- f3)

Returns f3 on the stack f1 raised to the f2 power. The operands must be floating point
numbers.

message SCR 84

(---)

A replacement for MESSAGE that contains the error messages in memory instead of
on the disk. When Forth screen #84 is loaded, the error messages are compiled into
the space formerly occupied by the fifth disk buffer leaving only four working disk
buffers. MESSAGE is patched so that it now points to message.

ASCII Collating Sequence: ! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~

162 Appendix E User Variables in TI Forth

 Appendix E User Variables in TI Forth
The purpose of this appendix is to detail the User Variables in TI Forth to assist in their use and
to provide the necessary information to change or add to this list as necessary. A more
comprehensive description of each of these variables is provided in Appendix D. The table
follows these comments in two layouts. The first is in address offset order and the second is in
alphabetical order by variable name.

The user may use even numbers 6Ah through 7Eh to create his/her own user variables. See the
definition of USER in Appendix D.

 E.1 TI Forth User Variables (Address Offset Order)

Name Offset Initial Value Description

UCONS$ 6h 3944h Base of User Var initial value table
S0 8h FFA0h Base of Stack
R0 Ah 3FFEh Base of Return Stack
U0 Ch 3980h Base of User Variables
TIB Eh FFA0h Terminal Input Buffer address
WIDTH 10h 31 Name length in dictionary
DP 12h BC80h Dictionary Pointer
SYS$ 14h 348Eh Address of System Support
CURPOS 16h 0 Cursor location in VDP RAM
INTLNK 18h 3424h Pointer to Interrupt Service Linkage
WARNING 1Ah 1 Message Control
C/L$ 1Ch 64 Characters per Line
FIRST$ 1Eh 2010h Beginning of Disk Buffers
LIMIT$ 20h 3424h End of Disk Buffers
B/BUF$ 22h 1024 Bytes per Buffer
B/SCR$ 24h 1 Blocks per Forth Screen
DISK_LO 26h 1 Low end Disk Fence
DISK_HI 28h 90 High end Disk Fence
DISK_SIZE 2Ah 90 Logical Disk Size in Forth Screens
DISK_BUF 2Ch 1000h VDP location of 1K Forth Buffer
PABS 2Eh 460h VDP location for PABs
SCRN_WIDTH 30h 40 Display Screen Width in Characters
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_END 34h 960 Display Screen Image End in VDP
ISR 36h 3424h Interrupt Service Pointer
ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
FENCE 3Ch Dictionary Fence
BLK 3Eh Block being interpreted
IN 40h Byte offset in text buffer
OUT 42h Incremented by EMIT
SCR 44h Last Forth Screen referenced
OFFSET 46h Block offset to disks

 Appendix E User Variables in TI Forth 163

Name Offset Initial Value Description

CONTEXT 48h Pointer to Context Vocabulary
CURRENT 4Ah Pointer to Current Vocabulary
STATE 4Ch Compilation State
BASE 4Eh Number Base for Conversions
DPL 50h Decimal Point Location
FLD 52h Field Width (unused)
CSP 54h Stack Pointer for error checking
R# 56h Editing Cursor location
HLD 58h Holds address during numeric conversion
USE 5Ah Next Block Buffer to Use
PREV 5Ch Most recently accessed disk buffer
[unavailable] 5Eh —Do Not Use—
[unavailable] 60h —Do Not Use—
FORTH_LINK 62h Forth Vocabulary base
ECOUNT 64h Error control
VOC-LINK 66h Vocabulary linkage
VDPMDE 68h 0 VDP Mode (defined in TI Forth Screen #3)
[user to define] 6Ah —available to user—
[user to define] 6Ch —available to user—
[user to define] 6Eh —available to user—
[user to define] 70h —available to user—
[user to define] 72h —available to user—
[user to define] 74h —available to user—
[user to define] 76h —available to user—
[user to define] 78h —available to user—
[user to define] 7Ah —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Eh —available to user—

164 E.2 TI Forth User Variables (Variable Name Order)

 E.2 TI Forth User Variables (Variable Name Order)

Name Offset Initial Value Description

ALTIN 38h 0 Alternate Input Pointer
ALTOUT 3Ah 0 Alternate Output Pointer
B/BUF$ 22h 1024 Bytes per Buffer
B/SCR$ 24h 1 Blocks per Forth Screen
BASE 4Eh Number Base for Conversions
BLK 3Eh Block being interpreted
C/L$ 1Ch 64 Characters per Line
CONTEXT 48h Pointer to Context Vocabulary
CSP 54h Stack Pointer for error checking
CURPOS 16h 0 Cursor location in VDP RAM
CURRENT 4Ah Pointer to Current Vocabulary
DISK_BUF 2Ch 1000h VDP location of 1K Forth Buffer
DISK_HI 28h 90 High end Disk Fence
DISK_LO 26h 1 Low end Disk Fence
DISK_SIZE 2Ah 90 Logical Disk Size in Forth Screens
DP 12h BC80h Dictionary Pointer
DPL 50h Decimal Point Location
ECOUNT 64h Error control
FENCE 3Ch Dictionary Fence
FIRST$ 1Eh 2010h Beginning of Disk Buffers
FLD 52h Field Width (unused)
FORTH_LINK 62h Forth Vocabulary base
HLD 58h Holds address during numeric conversion
IN 40h Byte offset in text buffer
INTLNK 18h 3424h Pointer to Interrupt Service Linkage
ISR 36h 3424h Interrupt Service Pointer
LIMIT$ 20h 3424h End of Disk Buffers
OFFSET 46h Block offset to disks
OUT 42h Incremented by EMIT
PABS 2Eh 460h VDP location for PABs
PREV 5Ch Most recently accessed disk buffer
R# 56h Editing Cursor location
R0 Ah 3FFEh Base of Return Stack
S0 8h FFA0h Base of Stack
SCR 44h Last Forth Screen referenced
SCRN_END 34h 960 Display Screen Image End in VDP
SCRN_START 32h 0 Display Screen Image Start in VDP
SCRN_WIDTH 30h 40 Display Screen Width in Characters
STATE 4Ch Compilation State
SYS$ 14h 348Eh Address of System Support
TIB Eh FFA0h Terminal Input Buffer address
U0 Ch 3980h Base of User Variables
UCONS$ 6h 3944h Base of User Var initial value table
USE 5Ah Next Block Buffer to Use

 Appendix E User Variables in TI Forth 165

Name Offset Initial Value Description

VDPMDE 68h 0 VDP Mode (defined in TI Forth Screen #3)
VOC-LINK 66h Vocabulary linkage
WARNING 1Ah 1 Message Control
WIDTH 10h 31 Name length in dictionary
[unavailable] 5Eh —Do Not Use—
[unavailable] 60h —Do Not Use—
[user to define] 6Ah —available to user—
[user to define] 6Ch —available to user—
[user to define] 6Eh —available to user—
[user to define] 70h —available to user—
[user to define] 72h —available to user—
[user to define] 74h —available to user—
[user to define] 76h —available to user—
[user to define] 78h —available to user—
[user to define] 7Ah —available to user—
[user to define] 7Ch —available to user—
[user to define] 7Eh —available to user—

166 Appendix F TI Forth Load Option Directory

 Appendix F TI Forth Load Option Direct-
ory

The load options are displayed on the TI Forth welcome screen and may subsequently be
displayed by typing MENU . The load options allow you to load only the Forth extensions you
wish to use.

You will notice, for example, that the -EDITOR option also loads the Forth screens that
-SYNONYMS loads. The words loaded by -SYNONYMS are prerequisites for the words loaded by
-EDITOR . If, by chance, the -SYNONYMS words were already in the dictionary at the time you
type -EDITOR , they would not be loaded again. This is called a conditional load.

 F.1 Option: -SYNONYMS

Starting screen: 33

Prerequisite options loaded: -CODE

Words loaded: VSBW VMBW VSBR

VMBR VWTR GPLLNK

XMLLNK DSRLNK CLS

FORMAT-DISK VFILL VAND

VOR VXOR MON

RNDW RND SEED

RANDOMIZE

 F.2 Option: -EDITOR (40-Column Editor)

Starting screen: 34

Prerequisite options loaded: -SYNONYMS

Words loaded: EDIT ED@ WHERE

 F.3 Option: -COPY

Starting screen: 39

Words loaded: !" DTEST SCOPY
SMOVE FORTH-COPY DISK-HEAD

 F.4 Option: -DUMP

Starting screen: 42

Words loaded: DUMP .S VLIST

 Appendix F TI Forth Load Option Directory 167

 F.5 Option: -TRACE

Starting screen: 44

Prerequisite options loaded: -DUMP

Words loaded: TRACE UNTRACE TRON
TROFF : (alternate)

 F.6 Option: -FLOAT

Starting screen: 45

Prerequisite options loaded: -SYNONYMS

Words loaded: FDUP FDROP FOVER
FSWAP F! F@
>FAC SETFL FADD
FMUL F+ F-
F* F/ S->FAC
FAC->S FAC>ARG F->S
S->F FRND STR
STR. VAL F$
>F F.R F.
FF.R. FF. F0<
F0= F> F=
F< FLERR ?FLERR
INT ^ SQR
EXP LOG COS
SIN TAN ATN
PI

 F.7 Option: -TEXT

Starting screen: 51

Prerequisite options loaded: -SYNONYMS

Words loaded: TEXT

 F.8 Option: -GRAPH1

Starting screen: 52

Prerequisite options loaded: -SYNONYMS

Words loaded: GRAPHICS

168 F.9 Option: -MULTI

 F.9 Option: -MULTI

Starting screen: 53

Prerequisite options loaded: -SYNONYMS

Words loaded: MULTI

 F.10 Option: -GRAPH2

Starting screen: 54

Prerequisite options loaded: -SYNONYMS

Words loaded: GRAPHICS2

 F.11 Option: -SPLIT

Starting screen: 55

Prerequisite options loaded: -SYNONYMS -GRAPH2

Words loaded: SPLIT SPLIT2

 F.12 Option: -VDPMODES

Starting screen: 51

Prerequisite options loaded: -SYNONYMS -TEXT -GRAPH1
-MULTI -GRAPH2 -SPLIT

 F.13 Option: -GRAPH

Starting screen: 57

Prerequisite options loaded: -SYNONYMS -CODE

Words loaded: CHAR CHARPAT VCHAR
HCHAR COLOR SCREEN
GCHAR SSDT SPCHAR
SPRCOL SPRPAT SPRPUT
SPRITE MOTION #MOTION
SPRGET DXY SPRDIST
SPRDISTXY MAGNIFY JOYST
COINC COINCXY COINCALL
DELSPR DELALL MINIT
MCHAR DRAW UNDRAW
DTOG DOT LINE

 Appendix F TI Forth Load Option Directory 169

 F.14 Option: -FILE

Starting screen: 68

Prerequisite options loaded: -SYNONYMS

Words loaded: FILE GET-FLAG PUT-FLAG
SET-PAB CLR-STAT CHK-STAT
FXD VRBL DSPLY
INTRNL I/OMD INPT
OUTPT UPDT APPND
SQNTL RLTV REC-LEN
CHAR-CNT! CHAR-CNT@ REC-NO
N-LEN! F-D" DOI/O
OPN CLSE RD
WRT RSTR LD
SV DLT SCRTCH18

STAT

 F.15 Option: -PRINT

Starting screen: 72

Prerequisite options loaded: -SYNONYMS -FILE

Words loaded: SWCH UNSWCH ?ASCII
TRIAD TRIADS INDEX

 F.16 Option: -CODE

Starting screen: 74

Words loaded: CODE ;CODE

 F.17 Option: -ASSEMBLER

Starting screen: 75

Prerequisite options loaded: -CODE

Words loaded: Entire Assembler vocabulary. See Chapter 9.

18 See footnote 12, page 52.

170 F.18 Option: -64SUPPORT (64-Column Editor)

 F.18 Option: -64SUPPORT (64-Column Editor)

Starting screen: 22

Prerequisite options loaded: -SYNONYMS -GRAPH -TEXT
-GRAPH2 -SPLIT

Words loaded: EDIT ED@ WHERE
CLIST CLINE

 F.19 Option: -BSAVE

Starting screen: 83

Words loaded: BSAVE

 F.20 Option: -CRU

Starting screen: 88

Prerequisite options loaded: -CODE

Words loaded: SBO SBZ TB
LDCR STCR

 Appendix G Assembly Source for CODEd Words 171

 Appendix G Assembly Source for CODEd
Words

Several words on the Forth System Disk have been written in TMS9900 code to increase their
execution speeds and/or decrease their size. They include the words:

SBO — a CRU instruction

SBZ — a CRU instruction

TB — a CRU instruction

LDCR — a CRU instruction

STCR — a CRU instruction

DDOT — used by the dot plotting routine

SMASH — used by CLINE and CLIST

TCHAR — definitions for the tiny characters

MON — returns to 99/4A color bar screen

These words have been coded in hexadecimal on your System disk, thus they do not require that
the TI Forth Assembler be in memory before they can be loaded. Their Assembly source code
(written in Forth Assembler) is listed on the following pages.

Editor’s Notes: I detected a few errors and items in need of clarification in the TI Forth Assem-
bler source code listed in this section. The errors are corrected in red text on the TI Forth screens
in this section. The corrected lines are also highlighted in gray. The errors are as follows:

1. Screen 40, line 5: In the code for SBZ , the first *SP should be *SP+ . The TMS9900-
coded word on screen 88 of the TI Forth system diskette is correct.

2. Screen 43: There are several errors on this screen:

a. DTAB is supposed to be an initialized table of 12 cells (24 bytes), not just the one cell
defined on this screen in the original (see screen 62 of the TI Forth system diskette to
verify)—though, to be fair, it may have been done that way to justify the presence of
DTAB in the assembly code.

b. DDOT is missing 1 *SP MOV, and NEXT, from the end of the definition of DDOT ,
which can be verified by examining the code compiled into the dictionary from the
source code here with screen 63 of the TI Forth system diskette.

3. Screen 44: This screen is missing the definitions of two variables (tables), viz., TCHAR
and LB .

172 Appendix G Assembly Source for CODEd Words

4. Screen 45 clarifications:

a. It should be noted that the definition of TCHAR in screen 45 is not actually Assembly
source code. It is high-level Forth source code. If you wanted to change the
character definitions and copy your new table to screen 67 of the system disk, you
would need to first load the new character definitions. Let's say you have screens 45
‒ 47 on a non-system disk set up with your new character definitions for TCHAR . For
a system with two 90KB-disks and the foregoing disk in the second drive, this would
require loading screen 135, obtained by adding the number (90) of screens on the
system disk to the beginning screen number (45) for the definition of TCHAR . The
following code will do the trick:

135 LOAD <== Load TCHAR

TCHAR 67 BLOCK 194 MOVE FLUSH <== Copy TCHAR to screen 67

FORGET TCHAR <== Recover space in dictionary used by
TCHAR

b. The comment, (^0) (Shift+0), on line 5 is a substitute for ()) , a syntax error.

 Appendix G Assembly Source for CODEd Words 173

SCR #40
 0 (SOURCE FOR CRU WORDS) BASE->R HEX
 1 CODE SBO
 2 *SP+ 0C MOV, 0C 0C A,
 3 0 SBO, NEXT,
 4 CODE SBZ
 5 *SP+ 0C MOV, 0C 0C A,
 6 0 SBZ, NEXT,
 7 CODE TB
 8 *SP 0C MOV, 0C 0C A,
 9 *SP CLR, 0 TB,
 10 EQ IF,
 11 *SP INC,
 12 ENDIF,
 13 NEXT,
 14
 15 R->BASE -->

SCR #41
 0 (SOURCE FOR CRU WORDS) BASE->R HEX
 1 0C CONSTANT CRU
 2 CODE LDCR
 3 *SP+ CRU MOV, CRU CRU A, *SP+ 1 MOV,
 4 *SP+ 0 MOV, 01 OF ANDI,
 5 NE IF,
 6 01 08 CI,
 7 LTE IF,
 8 0 SWPB,
 9 ENDIF,
 10 ENDIF,
 11 01 06 SLA, 01 3000 ORI, 01 X,
 12 NEXT,
 13
 14
 15 R->BASE -->

SCR #42
 0 (SOURCE FOR CRU WORDS) BASE->R HEX
 1 CODE STCR
 2 *SP+ CRU MOV, CRU CRU A, *SP 01 MOV,
 3 0 CLR, 01 000F ANDI, 01 02 MOV,
 4 01 06 SLA, 01 3400 ORI, 01 X,
 5 02 02 MOV,
 6 NE IF,
 7 02 08 CI,
 8 LTE IF,
 9 0 SWPB,
 10 ENDIF,
 11 ENDIF,
 12 0 *SP MOV,
 13 NEXT,
 14
 15 R->BASE

174 Appendix G Assembly Source for CODEd Words

SCR #43
 0 (SOURCE FOR DDOT)
 1 BASE->R HEX 8040 VARIABLE DTAB 2010 , 804 , 201 , 7FBF , DFEF ,
 2 F7FB , FDFE , 8040 , 2010 , 804 , 201 ,
 3 CODE DDOT
 4 *SP+ 1 MOV, *SP 3 MOV, 1 2 MOV,
 5 3 4 MOV, 1 7 ANDI, 3 7 ANDI,
 6 2 F8 ANDI, 4 F8 ANDI, 2 5 SLA,
 7 2 1 A, 4 1 A, 1 2000 AI,
 8 4 CLR, DTAB 3 @(?) 4 MOVB,
 9 4 SWPB, 4 *SP MOV, SP DECT,
 10 1 *SP MOV,
 11 NEXT,
 12
 13
 14
 15 R->BASE

SCR #44
 0 (SOURCE FOR SMASH) BASE->R HEX
 1 0 VARIABLE TCHAR 17E ALLOT 43 BLOCK TCHAR 180 CMOVE
 2 TCHAR 7C - CONSTANT TC 0 VARIABLE LB FE ALLOT
 3 CODE SMASH (ADDR #CHAR LINE# --- LB VADDR CNT)
 4 *SP+ 1 MOV, *SP+ 2 MOV, *SP 3 MOV, 4 LB LI,
 5 4 *SP MOV, SP DECT, 1 SWPB, 1 2000 AI,
 6 1 *SP MOV, 2 1 MOV, 1 INC, 1 FFFE ANDI, SP DECT,
 7 1 2 SLA, 1 *SP MOV,
 8 3 2 A, BEGIN, 2 3 C, GT WHILE, 5 CLR, 6 CLR,
 9 3 *?+ 5 MOVB, 3 *?+ 6 MOVB, 5 6 SRL, 6 6 SRL,
 10 BEGIN, TC 5 @(?) 0 MOV, TC 6 @(?) 1 MOV, 1 4 SRC,
 11 C 4 LI, BEGIN, 0 B MOV, B F000 ANDI, 1 7 MOV, 7 F00 ANDI,
 12 B 7 SOC, 7 4 *?+ MOVB, 0 C SRC, 1 C SRC, C DEC, EQ UNTIL,
 13 5 INCT, 6 INCT, 5 C MOV, C 2 ANDI, EQ UNTIL, REPEAT,
 14 NEXT,
 15 R->BASE

 Appendix G Assembly Source for CODEd Words 175

SCR #45
 0 (DEFINITIONS FOR TINY CHARACTERS) BASE->R HEX
 1 0EEE VARIABLE TCHAR EEEE ,
 2 0000 , 0000 , () 0444 , 4404 , (!) 0AA0 , 0000 , (")
 3 08AE , AEA2 , (#) 04EC , 46E4 , ($) 0A24 , 448A , (%)
 4 06AC , 4A86 , (&) 0480 , 0000 , (') 0248 , 8842 , (()
 5 0842 , 2248 , (^0) 04EE , 0400 , (*) 0044 , E440 , (+)
 6 0000 , 0048 , (,) 0000 , E000 , (-) 0000 , 0004 , (.)
 7 0224 , 4488 , (/) 04AA , AAA4 , (0) 04C4 , 4444 , (1)
 8 04A2 , 488E , (2) 0C22 , C22C , (3) 02AA , AE22 , (4)
 9 0E8C , 222C , (5) 0688 , CAA4 , (6) 0E22 , 4488 , (7)
 10 04AA , 4AA4 , (8) 04AA , 622C , (9) 0004 , 0040 , (:)
 11 0004 , 0048 , (;) 0024 , 8420 , (<) 000E , 0E00 , (=)
 12 0084 , 2480 , (>) 04A2 , 4404 , (?) 04AE , AEA4 , (@)
 13 04AA , EAAA , (A) 0CAA , CAAC , (B) 0688 , 8886 , (C)
 14 0CAA , AAAC , (D) 0E88 , C88E , (E) 0E88 , C888 , (F)
 15 -->

SCR #46
 0 (TINY CHARACTERS CONTINUED)
 1 04A8 , 8AA6 , (G) 0AAA , EAAA , (H) 0E44 , 444E , (I)
 2 0222 , 22A4 , (J) 0AAC , CAAA , (K) 0888 , 888E , (E)
 3 0AEE , AAAA , (M) 0AAE , EEAA , (N) 0EAA , AAAE , (0)
 4 0CAA , C888 , (P) 0EAA , AAEC , (Q) 0CAA , CAAA , (R)
 5 0688 , 422C , (S) 0E44 , 4444 , (T) 0AAA , AAAE , (U)
 6 0AAA , AA44 , (V) 0AAA , AEEA , (W) 0AA4 , 44AA , (X)
 7 0AAA , E444 , (Y) 0E24 , 488E , (Z) 0644 , 4446 , ([)
 8 0884 , 4422 , (\) 0C44 , 444C , (]) 044A , A000 , ($)
 9 0000 , 000F , (_) 0420 , 0000 , (`) 0004 , AEAA , (a)
 10 000C , ACAC , (b) 0006 , 8886 , (c) 000C , AAAC , (d)
 11 000E , 8C8E , (e) 000E , 8C88 , (f) 0004 , A8A6 , (g)
 12 000A , AEAA , (h) 000E , 444E , (i) 0002 , 22A4 , (j)
 13 000A , CCAA , (k) 0008 , 888E , (l) 000A , EEAA , (m)
 14 000A , EEEA , (n) 000E , AAAE , (o) 000C , AC88 , (p)
 15 -->

SCR #47
 0 (TINY CHARACTERS CONCLUDED)
 1 000E , AAEC , (q) 000C , ACAA , (r) 0006 , 842C , (s)
 2 000E , 4444 , (t) 000A , AAAE , (u) OOOA , AA44 , (v)
 3 000A , AEEA , (w) 000A , A4AA , (x) 000A , AE44 , (y)
 4 000E , 248E , (z) 0644 , 8446 , ({) 0444 , 0444 , (|)
 5 0C44 , 244C , (}) 02E8 , 0000 , (~) 0EEE , EEEE , (DEL)
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15 R->BASE

176 Appendix G Assembly Source for CODEd Words

SCR #48
 0 (SOURCE FOR MON) BASE->R HEX
 1
 2 CODE MON
 3 0 4E4F LI, 1 2000 LI,
 4 BEGIN,
 5 0 1 *?+ MOV,
 6 1 4000 CI,
 7 EQ UNTIL,
 8 0 @() BLWP,
 9
 10
 11
 12
 13
 14
 15 R->BASE

 Appendix H Error Messages 177

 Appendix H Error Messages

Error# Message Probable Causes

1 empty stack Procedure being executed attempts to pop a number off the
parameter stack when there is no number on the parameter
stack. The error may have occurred long before it is
detected as Forth checks for this condition only when
control returns to the outer interpreter.

2 dictionary full The user dictionary space is full. Too many definitions have
been compiled.

3 has incorrect address
mode

Not used by TI Forth. Some fig-Forth assemblers use this
message.

4 isn’t unique This message is more a warning than an error. It informs the
user that a word with the same name as the one just
compiled is already in the CURRENT or CONTEXT
vocabulary.

6 disk error This has several possible causes: No disk in disk drive, disk
not initialized, disk drive or controller not connected
properly, disk drive or controller not plugged in. The
diskette may be damaged with some sector having a hard
error.

7 full stack The procedure being executed is leaving extra unwanted
numbers on the parameter stack resulting in a stack
overflow.

9 file I/O error Any file I/O operation which results in an error will return
this message. The GET-FLAG instruction will fetch the
status byte. An error code of 0 indicates no error only if the
COND bit (bit 2) of the STATUS byte located at 837Ch is
not set.

code meaning

00 Bad device name

01 Device is write protected

02 Bad open attribute

03 Illegal operation

04 Out of table or buffer space on the device

05 Attempt to read past EOF

06 Device error

07 File error. Attempt to open nonexistent file, etc.

178 Appendix H Error Messages

Error# Message Probable Causes

10 floating point error This error message will be issued only when ?FLERR is
executed and a true flag is returned. FLERR may be
executed to fetch the floating point status byte.

code meaning

01 Overflow

02 Syntax

03 Integer overflow on conversion

04 Square root of negative

05 Negative number to non-integer power

06 Logarithm of a non-positive number

07 Invalid argument in a trigonometric function

11 disk fence violation An attempt has been made to write to a screen outside the
disk fence area. The values of DISK_LO and DISK_HI must
be changed to include this screen before it may be written to.

12 can’t load from screen 0 Self explanatory. Loading from screen 0 is Forth’s
indication for loading from the keyboard.

17 compilation only, use in
definition

Occurs when conditional constructs such as DO … LOOP or
IF … THEN are executed outside a colon definition.

18 execution only Occurs when you attempt to compile a compiling word into
a colon definition.

19 conditionals not paired A DO has been left with a LOOP , an IF has no corresponding
THEN , etc.

20 definition not finished A ; was encountered and the parameter stack was not at the
same height as when the preceding : was encountered. For
example, an incomplete conditional construct: : xx IF ;

23 off current editing screen Not used in TI Forth.

24 declare vocabulary Not used in TI Forth due to the way TI Forth’s FORGET is
configured.

25 bad jump token Improper use of jump tokens or conditionals in the TI Forth
Assembler.

 Appendix I Contents of the TI Forth Diskette 179

 Appendix I Contents of the TI Forth
Diskette

The Forth screens that follow have been modified from the original to fix known bugs as
documented in Appendix J. The changed lines are highlighted in gray and the actual changes are
marked by red text.

SCR #2
 0 T I F O R T H
 1
 2 THIS VERSION OF THE FORTH LANGUAGE
 3 IS BASED ON THE fig-FORTH MODEL
 4
 5 THE ADDRESS OF THE FORTH INTEREST GROUP IS:
 6
 7 FORTH INTEREST GROUP
 8 P.O. BOX 1105
 9 SAN CARLOS, CA 94070
 10
 11 TEXAS INSTRUMENTS PERSONNEL WITH SIGNIFICANT
 12 INPUT TO THIS VERSION INCLUDE:
 13 LEON TIETZ
 14 LESLIE O'HAGAN
 15 EDWARD E. FERGUSON

180 Appendix I Contents of the TI Forth Diskette

SCR #3
 0 (WELCOME SCREEN) 0 0 GOTOXY ." BOOTING..." CR
 1 BASE->R HEX 10 83C2 C! (QUIT OFF!)
 2 DECIMAL (84 LOAD) 20 LOAD 16 SYSTEM MENU
 3 HEX 68 USER VDPMDE 1 VDPMDE ! DECIMAL
 4 : -SYNONYMS 33 LOAD ; : -EDITOR 34 LOAD ; : -COPY 39 LOAD ;
 5 : -DUMP 42 LOAD ; : -TRACE 44 LOAD ; : -FLOAT 45 LOAD ;
 6 : -TEXT 51 LOAD ; : -GRAPH1 52 LOAD ; : -MULTI 53 LOAD ;
 7 : -GRAPH2 54 LOAD ; : -SPLIT 55 LOAD ; : -GRAPH 57 LOAD ;
 8 : -FILE 68 LOAD ; : -PRINT 72 LOAD ; : -CODE 74 LOAD ;
 9 : -ASSEMBLER 75 LOAD ; : -64SUPPORT 22 LOAD ;
 10 : -VDPMODES -TEXT -GRAPH1 -MULTI -GRAPH2 -SPLIT ;
 11 : -BSAVE 83 LOAD ; : -CRU 88 LOAD ;
 12
 13
 14
 15 R->BASE

SCR #4
 0 (ERROR MESSAGES)
 1 empty stack
 2 dictionary full
 3 has incorrect address mode
 4 isn't unique.
 5
 6 disk error
 7 full stack
 8
 9 file i/o error
 10 floating point error
 11 disk fence violation
 12 can't load from screen zero
 13
 14
 15 TI FORTH --- a fig-FORTH extension

SCR #5
 0 (ERROR MESSAGES)
 1 compilation only, use in definition
 2 execution only
 3 conditionals not paired
 4 definition not finished
 5 in protected dictionary
 6 use only when loading
 7 off current editing screen
 8 declare vocabulary
 9 bad jump token
 10
 11
 12
 13
 14
 15

 Appendix I Contents of the TI Forth Diskette 181

SCR #20
 0 (CONDITIONAL LOAD)
 1 : MENU CR 272 265 DO I MESSAGE CR LOOP CR CR CR ;
 2 : SLIT (--- ADDR OF STRING LITERAL)
 3 R> DUP C@ 1+ =CELLS OVER + >R ;
 4
 5 : WLITERAL (WLITERAL word)
 6 BL STATE @
 7 IF COMPILE SLIT WORD HERE C@ 1+ =CELLS ALLOT
 8 ELSE WORD HERE ENDIF ; IMMEDIATE -->
 9 -SYNONYMS -EDITOR -COPY
 10 -DUMP -TRACE -FLOAT
 11 -TEXT -GRAPH1 -MULTI
 12 -GRAPH2 -SPLIT -VDPMODES
 13 -GRAPH -FILE -PRINT
 14 -CODE -ASSEMBLER -64SUPPORT
 15 -BSAVE -CRU

182 Appendix I Contents of the TI Forth Diskette

SCR #21
 0 (CONDITIONAL LOAD)
 1 : <CLOAD> (SCREEN STRING_ADDR ---)
 2 CONTEXT @ @ (FIND)
 3 IF DROP DROP 0=
 4 IF BLK @
 5 IF R> DROP R> DROP
 6 ENDIF
 7 ENDIF
 8 ELSE -DUP
 9 IF LOAD
 10 ENDIF
 11 ENDIF ;
 12 : CLOAD (scr_no CLOAD name)
 13 [COMPILE] WLITERAL STATE @
 14 IF COMPILE <CLOAD> ELSE <CLOAD> ENDIF
 15 ; IMMEDIATE

SCR #22
 0 (64 COLUMN EDITOR) 0 CLOAD ED@
 1 BASE->R DECIMAL 57 R->BASE CLOAD LINE BASE->R DECIMAL 51 R->BASE
 2 CLOAD TEXT BASE->R DECIMAL 54 R->BASE CLOAD GRAPHICS2 BASE->R
 3 DECIMAL 55 R->BASE CLOAD SPLIT
 4 BASE->R DECIMAL 65 R->BASE CLOAD CLIST
 5 BASE->R HEX (3800 ' SATR !)
 6 VOCABULARY EDITOR2 IMMEDIATE EDITOR2 DEFINITIONS
 7 0 VARIABLE CUR
 8 : !CUR 0 MAX B/SCR B/BUF * 1- MIN CUR ! ;
 9 : +CUR CUR @ + !CUR ;
 10 : +LIN CUR @ C/L / + C/L * !CUR ; DECIMAL
 11 : LINE. DO I SCR @ (LINE) I CLINE LOOP ;
 12 : BCK 0 0 GOTOXY QUIT ; (<--This line can be removed)
 13 : PTR SCR @ B/SCR * CUR @ B/BUF /MOD ROT + BLOCK + ;
 14 : R/C CUR @ C/L /MOD ; (--- COL ROW) R->BASE -->
 15

SCR #23
 0 (64 COLUMN EDITOR) BASE->R HEX
 1
 2 : CINIT 3800 DUP ' SPDTAB ! 800 / 6 VWTR 3800 ‘ SATR !
 3 SATR 2 0 DO DUP >R D000 SP@ R> 2 VMBW DROP 4 + LOOP DROP
 4 0000 0000 0000 0000 5 SPCHAR 0 CUR !
 5 F090 9090 9090 90F0 6 SPCHAR 0 1 F 5 0 SPRITE ; DECIMAL
 6
 7 : PLACE CUR @ 64 /MOD 8 * 1+ SWAP 4 * 1- DUP 0< IF DROP 0 ENDIF
 8 SWAP 0 SPRPUT ;
 9 : UP -64 +CUR PLACE ;
 10 : DOWN 64 +CUR PLACE ;
 11 : LEFT -1 +CUR PLACE ;
 12 : RIGHT 1 +CUR PLACE ;
 13 : CGOTOXY (COL ROW ---) 64 * + !CUR PLACE ;
 14
 15 R->BASE -->

 Appendix I Contents of the TI Forth Diskette 183

SCR #24
 0 (64 COLUMN EDITOR) BASE->R
 1
 2 DECIMAL
 3
 4 : .CUR CUR @ C/L /MOD CGOTOXY ;
 5 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
 6
 7 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
 8 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
 9 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
 10 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
 11 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
 12 PAD PTR C/L CMOVE C/L * !CUR ;
 13 : RELINE R/C SWAP DROP DUP LINE. UPDATE .CUR ;
 14 : +.CUR +CUR .CUR ;
 15 R->BASE -->

SCR #25
 0 (64 COLUMN EDITOR) BASE->R DECIMAL
 1 : -TAB PTR DUP C@ BL >
 2 IF BEGIN 1- DUP -1 +CUR C@ BL =
 3 UNTIL
 4 ENDIF
 5 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL > ELSE .CUR 1 ENDIF UNTIL
 6 BEGIN CUR @ IF 1- DUP -1 +CUR C@ BL = DUP IF 1 +.CUR ENDIF
 7 ELSE .CUR 1 ENDIF
 8 UNTIL DROP ;
 9 : TAB PTR DUP C@ BL = 0=
 10 IF BEGIN 1+ DUP 1 +CUR C@ BL =
 11 UNTIL
 12 ENDIF
 13 CUR @ 1023 = IF .CUR 1
 14 ELSE BEGIN 1+ DUP 1 +CUR C@ BL > UNTIL .CUR
 15 ENDIF DROP ; R->BASE -->

SCR #26
 0 (64 COLUMN EDITOR) BASE->R
 1 DECIMAL
 2 : !BLK PTR C! UPDATE ;
 3 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
 4 : HOME 0 0 CGOTOXY ;
 5 : REDRAW SCR @ CLIST UPDATE .CUR ;
 6 : SCRNO CLS 0 0 GOTOXY ." SCR #" SCR @ BASE->R DECIMAL U.
 7 R->BASE CR ;
 8 : +SCR SCR @ 1+ DUP SCR ! SCRNO CLIST ;
 9 : -SCR SCR @ 1- 0 MAX DUP SCR ! SCRNO CLIST ;
 10 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
 11 PTR R/C DROP - C/L + 1- C! ;
 12 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO
 13 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
 14 DO I C! -1 +LOOP ; R->BASE -->
 15

184 Appendix I Contents of the TI Forth Diskette

SCR #27
 0 (64 COLUMN EDITOR 15JUL82 LAO) BASE->R DECIMAL
 1 0 VARIABLE BLINK 0 VARIABLE OKEY
 2 10 CONSTANT RL 150 CONSTANT RH 0 VARIABLE KC RH VARIABLE RLOG
 3 : RKEY BEGIN ?KEY -DUP 1 BLINK +! BLINK @ DUP 60 < IF 6 0 SPRPAT
 4 ELSE 5 0 SPRPAT ENDIF 120 = IF 0 BLINK ! ENDIF
 5 IF (SOME KEY IS PRESSED) KC @ 1 KC +! 0 BLINK !
 6 IF (WAITING TO REPEAT) RLOG @ KC @ <
 7 IF (LONG ENOUGH) RL RLOG ! 1 KC ! 1 (FORCE EXT)
 8 ELSE OKEY @ OVER =
 9 IF DROP 0 (NEED TO WAIT MORE)
 10 ELSE 1 (FORCE EXIT) DUP KC ! ENDIF
 11 ENDIF
 12 ELSE (NEW KEY) 1 (FORCE LOOP EXIT) ENDIF
 13 ELSE (NO KEY PRESSED) RH RLOG ! 0 KC ! 0
 14 ENDIF
 15 UNTIL DUP OKEY ! ; R->BASE -->

SCR #28
 0 (64 COLUMN EDITOR) BASE->R HEX
 1 : EDT VDPMDE @ 5 = 0= IF SPLIT ENDIF CINIT !CUR R/C CGOTOXY
 2 DUP DUP SCR ! SCRNO CLIST BEGIN RKEY
 3 CASE 08 OF LEFT ENDOF 0C OF -SCR ENDOF
 4 0A OF DOWN ENDOF 03 OF DEL RELINE ENDOF
 5 0B OF UP ENDOF 04 OF INS RELINE ENDOF
 6 09 OF RIGHT ENDOF 07 OF DELLIN REDRAW ENDOF
 7 0E OF HOME ENDOF 06 OF INSLIN REDRAW ENDOF
 8 02 OF +SCR ENDOF 16 OF TAB ENDOF
 9 0D OF 1 +LIN .CUR PLACE ENDOF 7F OF -TAB ENDOF
 10 01 OF DELHALF BLNKS RELINE ENDOF
 11 0F OF 5 0 SPRPAT CLS SCRNO DROP 300 ‘ SATR ! QUIT ENDOF
 12 1E OF INSLIN BLNKS REDRAW ENDOF
 13 DUP 1F > OVER 7F < AND IF DUP !BLK R/C SWAP DROP DUP SCR @
 14 (LINE) ROT CLINE 1 +.CUR ELSE 7 EMIT ENDIF ENDCASE AGAIN ;
 15 R->BASE -->

SCR #29
 0 (64 COLUMN EDITOR) BASE->R HEX
 1 FORTH DEFINITIONS
 2 : EDIT EDITOR2 0 EDT ;
 3 : WHERE EDITOR2 B/SCR /MOD SWAP B/BUF * ROT + 2- EDT ;
 4
 5 : ED@ EDITOR2 SCR @ SCRNO EDIT ;
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15 R->BASE

 Appendix I Contents of the TI Forth Diskette 185

SCR #33
 0 (SYSTEM CALLS 09JUL82 LCT) 0 CLOAD RANDOMIZE
 1 BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
 2 BASE->R DECIMAL
 3 : VSBW 0 SYSTEM ; : VMBW 2 SYSTEM ;
 4 : VSBR 4 SYSTEM ; : VMBR 6 SYSTEM ;
 5 : VWTR 8 SYSTEM ; : GPLLNK 0 33660 C! 10 SYSTEM ;
 6 : XMLLNK 12 SYSTEM ; : DSRLNK 8 14 SYSTEM ;
 7 : CLS 16 SYSTEM ; : FORMAT-DISK 1+ 18 SYSTEM ;
 8 : VFILL 20 SYSTEM ; : VAND 22 SYSTEM ; : VOR 24 SYSTEM ;
 9 : VXOR 26 SYSTEM ; HEX
 10 CODE MON 0200 , 4E4F , 0201 , 2000 , CC40 , 0281 , 4000 , 16FC ,
 11 0420 , 0000 ,
 12 : RNDW 83C0 DUP @ 6FE5 * 7AB9 + 5 SRC DUP ROT ! ;
 13 : RND RNDW ABS SWAP MOD ; : SEED 83C0 ! ;
 14 : RANDOMIZE 8802 C@ DROP 0 BEGIN 1+ 8802 C@ 80 AND UNTIL SEED ;
 15 R->BASE

SCR #34
 0 (SCREEN EDITOR 09JUL82 LCT) 0 CLOAD ED@
 1 BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
 2 BASE->R HEX VOCABULARY EDITOR1 IMMEDIATE EDITOR1 DEFINITIONS
 3 0 VARIABLE OLDCUR 6 ALLOT
 4 : GETCUR 8F0 OLDCUR 8 VMBR ; : PUTCUR OLDCUR 8F0 8 VMBW ;
 5 : BOX 8F7 8F1 DO 84 I VSBW LOOP 0FC 8F0 VSBW 0FC 8F7 VSBW ;
 6 : CUR R# ; : !CUR 0 MAX B/SCR B/BUF * 1- MIN CUR ! ;
 7 : +CUR CUR @ + !CUR ; : +LIN CUR @ C/L / + C/L * !CUR ;
 8 0 VARIABLE S_H DECIMAL
 9 : FTYPE 40 * 124 + SWAP VMBW ;
 10 : LISTA DECIMAL 0 0 GOTOXY DUP SCR !
 11 ." SCR # " . CR CR CR 16 0 DO I 3 .R CR LOOP ;
 12 : ROWCAL S_H @ IF 29 + ENDIF ;
 13 : LINE. DO I SCR @ (LINE) DROP ROWCAL 35 I FTYPE LOOP ;
 14 : LISTB L/SCR 0 LINE. ;
 15 R->BASE -->

SCR #35
 0 (SCREEN EDITOR 09JUL82 LCT)
 1
 2 : LISTL BASE->R LISTA 4 1 GOTOXY
 3 ." 1 2 3 " 4 2 GOTOXY
 4 ."+....0....+....0....+....0....+"
 5 0 S_H ! LISTB R->BASE ;
 6 : LISTR BASE->R DROP 4 1 GOTOXY
 7 ." 3 4 5 6 " 4 2 GOTOXY
 8 ." 0....+....0....+....0....+....0...."
 9 1 S_H ! LISTB R->BASE ;
 10 : BCK 0 L/SCR 2+ GOTOXY PUTCUR QUIT ;
 11 : PTR SCR @ B/SCR * CUR @ B/BUF /MOD ROT + BLOCK + ;
 12 : R/C CUR @ C/L /MOD ; (--- COL ROW)
 13 : DELHALF PAD 64 BLANKS PTR PAD C/L R/C DROP - CMOVE ;
 14
 15 -->

186 Appendix I Contents of the TI Forth Diskette

SCR #36
 0 (SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL
 1 : .CUR CUR @ C/L /MOD 3 + SWAP 4 + DUP S_H @
 2 IF 32 > IF 29 - ELSE SCR @ LISTL ENDIF
 3 ELSE 39 < 0= IF SCR @ LISTR 29 - ENDIF
 4 ENDIF SWAP GOTOXY ;
 5 : DELLIN R/C SWAP MINUS +CUR PTR PAD C/L CMOVE DUP L/SCR SWAP
 6 DO PTR 1 +LIN PTR SWAP C/L CMOVE LOOP
 7 0 +LIN PTR C/L 32 FILL C/L * !CUR ;
 8 : INSLIN R/C SWAP MINUS +CUR L/SCR +LIN DUP 1+ L/SCR 0 +LIN
 9 DO PTR -1 +LIN PTR SWAP C/L CMOVE -1 +LOOP
 10 PAD PTR C/L CMOVE C/L * !CUR ;
 11 : RELINE R/C SWAP DROP DUP 13 EMIT LINE. UPDATE .CUR ;
 12 : +.CUR +CUR .CUR ;
 13 : TAB PTR DUP @ 32 = 0= IF BEGIN 1+ DUP 1 +CUR C@ 32 = UNTIL
 14 ENDIF CUR @ 1023 = IF .CUR 1 ELSE BEGIN 1+ DUP 1 +CUR C@ 32 >
 15 UNTIL .CUR ENDIF ; R->BASE -->

SCR #37
 0 (SCREEN EDITOR 12JUL82 LCT) BASE->R DECIMAL
 1 : -TAB PTR DUP C@ 32 > IF BEGIN 1- DUP -1 +CUR C@ 32 = UNTIL
 2 ENDIF BEGIN CUR @ IF 1- DUP -1 +CUR C@ 32 > ELSE .CUR 1 ENDIF
 3 UNTIL BEGIN CUR @ IF 1- DUP -1 +CUR C@ 32 = DUP IF 1 +.CUR
 4 ENDIF ELSE .CUR 1 ENDIF UNTIL ; : !BLK PTR C! UPDATE 1 +.CUR ;
 5 : BLNKS PTR R/C DROP C/L SWAP - 32 FILL ;
 6 : FLIP S_H @ IF -29 ELSE 29 ENDIF +.CUR ;
 7 : REDRAW SCR @ S_H @ IF LISTR ELSE LISTL ENDIF UPDATE .CUR ;
 8 : NEWSCR 0 SWAP LISTL !CUR .CUR ;
 9 : +SCR SCR @ 1+ NEWSCR ;
 10 : -SCR SCR @ 1- 0 MAX NEWSCR ;
 11 : DEL PTR DUP 1+ SWAP R/C DROP C/L SWAP - CMOVE 32
 12 PTR R/C DROP - C/L + 1- C! ;
 13 : INS 32 PTR DUP R/C DROP C/L SWAP - + SWAP DO
 14 I C@ LOOP DROP PTR DUP R/C DROP C/L SWAP - + 1- SWAP 1- SWAP
 15 DO I C! -1 +LOOP ; R->BASE -->

SCR #38
 0 (SCREEN EDITOR 12JUL82 LCT) BASE->R HEX
 1 : VED GETCUR BOX SWAP CLS LISTL !CUR .CUR BEGIN KEY CASE
 2 0F OF BCK ENDOF 01 OF DELHALF BLNKS RELINE ENDOF
 3 08 OF -1 +.CUR ENDOF 02 OF +SCR ENDOF
 4 0A OF C/L +.CUR ENDOF 0C OF -SCR ENDOF
 5 0B OF C/L MINUS +.CUR ENDOF 03 OF DEL RELINE ENDOF
 6 09 OF 1 +.CUR ENDOF 04 OF INS RELINE ENDOF
 7 0D OF 1 +LIN .CUR ENDOF 07 OF DELLIN REDRAW ENDOF
 8 0E OF FLIP ENDOF 06 OF INSLIN REDRAW ENDOF
 9 1E OF INSLIN BLNKS REDRAW ENDOF 16 OF TAB ENDOF
 10 7F OF -TAB ENDOF
 11 DUP 1F > OVER 7F < AND IF DUP EMIT DUP !BLK ELSE 7 EMIT ENDIF
 12 ENDCASE AGAIN ; FORTH DEFINITIONS
 13 : WHERE EDITOR1 B/SCR /MOD SWAP B/BUF * ROT + 2- VED ;
 14 : EDIT EDITOR1 0 VED ; : ED@ EDITOR1 SCR @ EDIT ;
 15 R->BASE

 Appendix I Contents of the TI Forth Diskette 187

SCR #39
 0 (STRING STORE AND SCREEN COPY WORDS 12JUL82 LCT) 0 CONSTANT AD
 1 0 CLOAD DISK-HEAD (ADDR ---) BASE->R HEX
 2 : (!") R COUNT DUP 1+ =CELLS R> + >R >R SWAP R> CMOVE ;
 3 : !" 22 STATE @ (STORE STRING AT ADDR)
 4 IF COMPILE (!") WORD HERE C@
 5 1+ =CELLS ALLOT
 6 ELSE WORD HERE COUNT >R SWAP R> CMOVE
 7 ENDIF ; IMMEDIATE DECIMAL (SCREEN COPYING WORDS)
 8 : DTEST 90 0 DO I DUP . BLOCK DROP LOOP ;
 9 : SCOPY OFFSET @ + SWAP BLOCK 2- ! UPDATE FLUSH ; (1K BLOCKS)
 10 : SMOVE >R OVER OVER - DUP 0< SWAP R MINUS > + 2 = IF
 11 OVER OVER SWAP R + 1- SWAP R + 1- -1 ' AD ! ELSE 1 ' AD !
 12 ENDIF R> 0 DO OVER OVER SCOPY AD + SWAP AD + SWAP LOOP DROP
 13 DROP ;
 14 : FORTH-COPY 90 0 DO I DUP . 90 + I SCOPY LOOP ;
 15 R->BASE -->

SCR #40
 0 (WRITE A HEAD COMPATABLE WITH THE DISK MANAGER 12JUL82 LCT)
 1 BASE->R HEX
 2 : DISK-HEAD 0 CLEAR 0 BLOCK (START SECTOR 0)
 3 DUP !" FORTH " DUP A + 168 SWAP !
 4 DUP C + 944 SWAP ! DUP E + 534B SWAP !
 5 DUP 10 + 2000 SWAP ! DUP 12 + 26 0 FILL
 6 DUP 38 + C8 FF FILL 100 + (START SECTOR 1)
 7 DUP 2 SWAP ! DUP 2+ FE 00 FILL
 8 100 + (START SECTOR 2)
 9 DUP !" SCREENS " DUP A + 0 SWAP !
 10 DUP C + 2 SWAP ! DUP E + 165 SWAP !
 11 DUP 10 + 80 SWAP ! DUP 12 + CA02 SWAP !
 12 DUP 14 + 8 0 FILL DUP 1C + 2250 SWAP !
 13 DUP 1E + 1403 SWAP ! DUP 20 + 4016 SWAP ! 22 + 0DE 0 FILL
 14 FLUSH
 15 ; R->BASE

188 Appendix I Contents of the TI Forth Diskette

SCR #42
 0 (DUMP ROUTINES 12JUL82 LCT)
 1 0 CLOAD VLIST BASE->R HEX
 2 : DUMP8 -DUP
 3 IF
 4 BASE->R HEX 0 OUT ! SPACE OVER 4 U.R
 5 OVER OVER 0 DO
 6 DUP @ 0 <# # # # # BL HOLD BL HOLD #> TYPE 2+ 2
 7 +LOOP DROP 1F OUT @ - SPACES
 8 0 DO
 9 DUP C@ DUP 20 < OVER 7E > OR
 10 IF DROP 2E ENDIF
 11 EMIT 1+
 12 LOOP
 13 CR R->BASE
 14 ENDIF ;
 15 -->

SCR #43
 0 (DUMP ROUTINES 12JUL82 LCT)
 1 : DUMP CR 00 8 U/ >R SWAP R> -DUP
 2 IF 0
 3 DO 8 DUMP8 PAUSE IF SWAP DROP 0 SWAP LEAVE ENDIF LOOP
 4 ENDIF SWAP DUMP8 DROP ;
 5 : .S CR SP@ 2- S0 @ 2- ." | " OVER OVER = 0= IF
 6 DO I @ U. -2 +LOOP ELSE DROP DROP ENDIF ;
 7 : VLIST 80 OUT ! CONTEXT @ @
 8 BEGIN DUP C@ 3F AND OUT @ + 25 >
 9 IF CR 0 OUT ! ENDIF
 10 DUP ID. PFA LFA @ SPACE DUP 0= PAUSE OR
 11 UNTIL DROP ; R->BASE
 12
 13
 14
 15

SCR #44
 0 (TRACE COLON WORDS-FORTH DIMENSIONS III/2 P.58 26OCT82 LCT)
 1 0 CLOAD (TRACE) BASE->R DECIMAL 42 R->BASE CLOAD VLIST
 2 FORTH DEFINITIONS
 3 0 VARIABLE TRACF (CONTROLS INSERTION OF TRACE ROUTINE)
 4 0 VARIABLE TFLAG (CONTROLS TRACE OUTPUT)
 5 : TRACE 1 TRACF ! ;
 6 : UNTRACE 0 TRACF ! ;
 7 : TRON 1 TFLAG ! ;
 8 : TROFF 0 TFLAG ! ;
 9 : (TRACE) TFLAG @ (GIVE TRACE OUTPUT?)
 10 IF CR R 2- NFA ID. (BACK TO PFA NFA FOR NAME)
 11 .S ENDIF ; (PRINT STACK CONTENTS)
 12 : : (REDEFINED TO INSERT TRACE WORD AFTER COLON)
 13 ?EXEC !CSP CURRENT @ CONTEXT ! CREATE [' : CFA @] LITERAL
 14 HERE 2- ! TRACF @ IF ' (TRACE) CFA DUP @ HERE 2- ! , ENDIF]
 15 ; IMMEDIATE

 Appendix I Contents of the TI Forth Diskette 189

SCR #45
 0 (FLOATING POINT <4 WORD> STACK ROUTINES 12JUL82 LCT)
 1 0 CLOAD PI BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
 2 BASE->R HEX
 3 : FDUP SP@ DUP 2- SWAP 6 + DO I @ -2 +LOOP ;
 4 : FDROP DROP DROP DROP DROP ;
 5 : FOVER SP@ DUP 6 + SWAP E + DO I @ -2 +LOOP ;
 6 : FSWAP FOVER >R >R >R >R >R >R >R >R
 7 FDROP R> R> R> R> R> R> R> R> ;
 8 : F! 4 0 DO DUP >R ! R> 2+ LOOP DROP ;
 9 : F@ 6 + 4 0 DO DUP >R @ R> 2- LOOP DROP ;
 10 834A CONSTANT FAC 835C CONSTANT ARG
 11 : >FAC FAC F! ; : >ARG ARG F! ; : FAC> FAC F@ ;
 12 : SETFL >FAC >ARG ;
 13 : FADD 0600 C SYSTEM ; : FSUB 0700 C SYSTEM ;
 14 : FMUL 0800 C SYSTEM ; : FDIV 0900 C SYSTEM ;
 15 R->BASE -->

SCR #46
 0 (FLOATING POINT ARITHMETIC ROUTINES 12JUL82 LCT)
 1 BASE->R HEX
 2 : F+ SETFL FADD FAC> ;
 3 : F- SETFL FSUB FAC> ;
 4 : F* SETFL FMUL FAC> ;
 5 : F/ SETFL FDIV FAC> ;
 6 : S->FAC FAC ! 2300 C SYSTEM ;
 7 : FAC->S 1200 C SYSTEM FAC @ ;
 8 : FAC>ARG FAC ARG 8 CMOVE ;
 9 : F->S >FAC FAC->S ;
 10 : S->F S->FAC FAC> ;
 11 DECIMAL
 12 : FRND 3 0 DO 100 RND 100 RND 256 * + LOOP
 13 100 RND 16128 + ;
 14
 15 R->BASE -->

SCR #47
 0 (FLOATING POINT CONVERSION ROUTINES CONTINUED 12JUL82 LCT)
 1 BASE->R HEX
 2 : DOSTR FAC B + C! 14 GPLLNK
 3 FAC B + C@ 8300 + FAC C + C@ DUP PAD C!
 4 PAD 1+ SWAP CMOVE ;
 5
 6 (NUMBER IN FAC CONVERTED TO BASIC STRING AND PLACED AT PAD)
 7 : STR 0 DOSTR ;
 8
 9 (NUMBER IN FAC CONVERTED TO FIXED STRING AND PLACED AT PAD)
 10 : STR. FAC D + C! FAC C + C! DOSTR ;
 11
 12 (STRING AT PAD CONVERTED TO NUMBER IN FAC)
 13 : VAL PAD 1+ DISK_BUF @ DUP FAC C + ! PAD C@ OVER OVER + 20
 14 SWAP VSBW VMBW 1000 XMLLNK ;
 15 R->BASE -->

190 Appendix I Contents of the TI Forth Diskette

SCR #48
 0 (FLOATING POINT - COMPILE NO TO STACK 12JUL82 LCT) BASE->R HEX
 1 : F$ PAD 1+ SWAP >R R CMOVE R> PAD C! VAL FAC> ;
 2 : (>F) R COUNT DUP 1+ =CELLS R> + >R F$;
 3 : >F 20 STATE @
 4 IF COMPILE (>F) WORD HERE C@
 5 1+ =CELLS ALLOT
 6 ELSE WORD HERE COUNT F$
 7 ENDIF ; IMMEDIATE
 8
 9 (FLOATING POINT OUTPUT ROUTINES)
 10 : JST PAD C@ - SPACES PAD COUNT TYPE ;
 11 : F.R >R >FAC STR R> JST ;
 12 : F. 0 F.R ;
 13 : FF.R >R >R >R >FAC R> 0 R> STR. R> JST ;
 14 : FF. 0 FF.R ;
 15 R->BASE -->

SCR #49
 0 (FLOATING POINT COMPARE ROUTINES 12JUL82 LCT)
 1 BASE->R HEX
 2 : FCLEAN >R DROP DROP DROP R> ;
 3
 4 : F0< 0< FCLEAN ;
 5
 6 : F0= 0= FCLEAN ;
 7
 8 : FCOM SETFL 0A00 C SYSTEM 837C C@ ;
 9 : F> FCOM 40 AND MINUS 0< ;
 10 : F= FCOM 20 AND MINUS 0< ;
 11 : F< FCOM 60 AND 0= ;
 12 : FLERR 8354 C@ ;
 13 : ?FLERR FLERR A ?ERROR ;
 14
 15 R->BASE -->

SCR #50
 0 (FLOATING POINT TRANSCENDENTAL FUNCTIONS 12JUL82 LCT)
 1 BASE->R HEX
 2 0 VARIABLE LNKSAV
 3 : GLNK 83C4 @ LNKSAV ! GPLLNK LNKSAV @ 83C4 ! ;
 4 : INT >FAC 22 GLNK FAC> ;
 5 : ^ SETFL ARG 836E @ 8 VMBW 24 GLNK FAC> 8 836E +! ;
 6 : SQR >FAC 26 GLNK FAC> ;
 7 : EXP >FAC 28 GLNK FAC> ;
 8 : LOG >FAC 2A GLNK FAC> ;
 9 : COS >FAC 2C GLNK FAC> ;
 10 : SIN >FAC 2E GLNK FAC> ;
 11 : TAN >FAC 30 GLNK FAC> ;
 12 : ATN >FAC 32 GLNK FAC> ;
 13 : PI >F 3.141592653590 ;
 14
 15 R->BASE

 Appendix I Contents of the TI Forth Diskette 191

SCR #51
 0 (CONVERT TO TEXT MODE CONFIGURATION 14SEP82 LAO)
 1 0 CLOAD TEXT BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
 2 BASE->R HEX
 3
 4 : TEXT
 5 0 3C0 20 VFILL (BLANKS TO SCREEN IMAGE AREA)
 6 28 SCRN_WIDTH ! 0 SCRN_START ! 3C0 SCRN_END ! 460 PABS !
 7 SETVDP1 1 VDPMDE !
 8 (NOW SET VDP REGISTERS)
 9 1 6 VWTR 0F4 7 VWTR
 10 0F0 SETVDP2 ;
 11
 12
 13
 14
 15 R->BASE

SCR #52
 0 (CONVERT TO GRAPHICS MODE CONFIG 14SEP82 LAO)
 1 0 CLOAD GRAPHICS BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
 2 BASE->R HEX
 3
 4 : GRAPHICS
 5 0 300 20 VFILL (BLANKS TO SCREEN IMAGE AREA) 300 80 0 VFILL
 6 380 20 F4 VFILL
 7 20 SCRN_WIDTH ! 0 SCRN_START ! 300 SCRN_END !
 8 SETVDP1 2 VDPMDE !
 9 (NOW SET VDP REGISTERS)
 10 1 6 VWTR 0F4 7 VWTR
 11 E0 SETVDP2 ;
 12
 13
 14
 15 R->BASE

SCR #53
 0 (CONVERT TO MULTI-COLOR MODE CONFIG 14SEP82 LAO)
 1 0 CLOAD MULTI BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
 2 BASE->R HEX
 3
 4 : MULTI 0B0 1 VWTR (BLANK THE SCREEN)
 5 -1 18 0 DO I 4 / 0FF SWAP DO 1+ I OVER VSBW 8 +LOOP LOOP DROP
 6 800 800 0 VFILL (INIT 256 CHAR PATTERNS TO 0)
 7 300 80 0 VFILL 380 20 0F4 VFILL
 8 20 SCRN_WIDTH ! 0 SCRN_START ! 300 SCRN_END ! 460 PABS !
 9 1000 DISK_BUF ! (RESTORE USER VARIABLES)
 10 3 VDPMDE !
 11 (NOW SET VDP REGISTERS)
 12 4 6 VWTR 11 7 VWTR
 13 0EB SETVDP2 ;
 14
 15 R->BASE

192 Appendix I Contents of the TI Forth Diskette

SCR #54
 0 (CONVERT TO GRAPHICS2 MODE CONFIG 14SEP82 LAO)
 1 0 CLOAD GRAPHICS2 BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
 2 BASE->R HEX : GRAPHICS2 0A0 1 VWTR
 3 -1 1B00 1800 DO 1+ DUP 0FF AND I VSBW LOOP DROP
 4 1 PABS @ VSBW 16 PABS @ 1+ VSBW 1 (#FILE) 834C C! PABS @ 8356 !
 5 0A 0E SYSTEM (SUBROUTINE TYPE DSRLNK TO SET 2 DISK BUFFERS)
 6 0 1800 0F0 VFILL (INIT COLOR TABLE)
 7 2000 1800 0 VFILL (INIT BIT MAP)
 8 20 SCRN_WIDTH ! 1800 SCRN_START ! 1B00 SCRN_END ! 1B00 PABS !
 9 1C00 DISK_BUF ! (USER VARIABLES NOW SET UP)
 10 2 0 VWTR 6 2 VWTR (SET VDP REGISTERS)
 11 07F 3 VWTR 0FF 4 VWTR
 12 70 5 VWTR 7 6 VWTR
 13 0F1 7 VWTR 0E0 DUP 83D4 C! 1 VWTR 1BC0 836E ! (VSPTR)
 14 0 0 GOTOXY 4 VDPMDE ! 0 837A C! ;
 15 R->BASE

SCR #55
 0 (CONVERT TO SPLIT MODE CONFIG 14SEP82 LAO)
 1 0 CLOAD SPLIT BASE->R DECIMAL 56 R->BASE CLOAD SETVDP2
 2 BASE->R DECIMAL 54 R->BASE CLOAD GRAPHICS2
 3 BASE->R HEX
 4 : SPLIT GRAPHICS2 1A00 SCRN_START ! 0A0 1 VWTR 3000 800 0FF
 5 VFILL 3100 834A ! 18 GPLLNK 3300 834A ! 4A GPLLNK
 6 1A00 100 20 VFILL 1000 800 0F4 VFILL 0 0 GOTOXY 0E0 1 VWTR
 7 5 VDPMDE ! 0 837A C! ;
 8
 9 : SPLIT2 GRAPHICS2 1880 SCRN_END ! 2000 400 0FF VFILL
 10 2100 834A ! 18 GPLLNK 2300 834A ! 4A GPLLNK
 11 1800 80 20 VFILL 0 400 0F4 VFILL 0 0 GOTOXY 6 VDPMDE !
 12 0 837A C! ;
 13
 14
 15 R->BASE

SCR #56
 0 (VDPMODES 14SEP82 LAO) 0 CLOAD SETVDP2 BASE->R DECIMAL 33
 1 R->BASE CLOAD RANDOMIZE BASE->R HEX
 2 : SETVDP1 0B0 1 VWTR (BLANK THE SCREEN)
 3 800 800 0FF VFILL (INIT 256 CHAR PATTERNS TO FF)
 4 900 834A ! 18 GPLLNK (LOAD CAPITAL LETTERS)
 5 B00 834A ! 4A GPLLNK (LOAD LOWER CASE -ON 99/4A ONLY) ;
 6 : SETVDP2 (n ---) 460 PABS !
 7 1000 DISK_BUF ! (RESTORE USER VARIABLES)
 8 (SET VDP REGISTERS)
 9 0 0 VWTR 0 2 VWTR 0E 3 VWTR
 10 1 4 VWTR 6 5 VWTR
 11 3E0 836E ! (VSPTR)
 12 1 PABS @ VSBW 16 PABS @ 1+ VSBW 3 (#FILE) 834C C! PABS @ 8356 !
 13 0A 0E SYSTEM (SUB TYPE DSRLNK TO SET 3 DISK BUF)
 14 0 0 GOTOXY 0 837A C!
 15 DUP 83D4 C! 1 VWTR ; R->BASE

 Appendix I Contents of the TI Forth Diskette 193

SCR #57
 0 (GRAPHICS PRIMITIVES 12JUL82 LCT) 0 CLOAD LINE BASE->R DECIMAL
 1 33 R->BASE CLOAD RANDOMIZE BASE->R DECIMAL 74 R->BASE CLOAD
 2 ;CODE BASE->R HEX
 3 380 CONSTANT COLTAB 300 CONSTANT SATR 780 CONSTANT SMTN
 4 800 CONSTANT PDT 800 CONSTANT SPDTAB
 5 : CHAR (W1 W2 W3 W4 CH ---)
 6 8 * PDT + >R -2 6 DO PAD I + ! -2 +LOOP PAD R> 8 VMBW ;
 7 : CHARPAT (CH --- W1 W2 W3 W4)
 8 8 * PDT + PAD 8 VMBR 8 0 DO PAD I + @ 2 +LOOP ;
 9 : VCHAR (X Y CNT CH ---)
 10 >R >R SCRN_WIDTH @ * + SCRN_END @ SCRN_START @ - SWAP
 11 R> R> SWAP 0 DO SWAP OVER OVER SCRN_START @ + VSBW SCRN_WIDTH
 12 @ + ROT OVER OVER /MOD IF 1+ SCRN_WIDTH @ OVER OVER = IF -
 13 ELSE DROP ENDIF ENDIF ROT DROP ROT LOOP DROP DROP DROP ;
 14 R->BASE -->
 15

SCR #58
 0 (GRAPHICS PRIMITIVES 20OCT83 LAO) BASE->R HEX
 1 : HCHAR (X Y CNT CH ---)
 2 >R >R SCRN_WIDTH @ * + SCRN_START @ + R> R> VFILL ;
 3 : COLOR (FG BG CHSET ---) >R SWAP 10 * + R> COLTAB + VSBW ;
 4 : SCREEN (COLOR ---) 7 VWTR ;
 5 : GCHAR (X Y --- ASCII) (COLUMNS AND ROWS NUMBERED FROM 0)
 6 SCRN_WIDTH @ * + SCRN_START @ + VSBR ;
 7 : SSDT (ADDR ---) (SET SPRITE DESCRIPTOR TABLE ADDRESS)
 8 DUP ' SPDTAB ! 800 / 6 VWTR (RESET VDP REG 6)
 9 VDPMDE @ 4 < IF SMTN 80 0 VFILL 300 ' SATR ! ENDIF
 10 SATR 20 0 DO DUP >R D000 SP@ R> 2 VMBW DROP 4 + LOOP DROP
 11 (INIT ALL SPRITES) ;
 12 : SPCHAR (W1 W2 W3 W4 CH# ---)
 13 8 * SPDTAB + >R -2 6 DO PAD I + ! -2 +LOOP PAD R> 8 VMBW ;
 14 : SPRCOL (COL # ---) 4 * SATR 3 + + DUP >R VSBR 0F0 AND OR
 15 R> VSBW ; R->BASE -->

SCR #59
 0 (GRAPHICS PRIMITIVES 20OCT83 LCT)
 1 BASE->R HEX
 2 : SPRPAT (CH # ---) 4 * SATR 2+ + VSBW ;
 3 : SPRPUT (DX DY # ---)
 4 4 * SATR + >R 1- 100 U* DROP + SP@ R> 2 VMBW DROP ;
 5 : SPRITE (DX DY COL CH # ---) (SPRITES NUMBERED 0 - 31)
 6 DUP 4 * SATR + >R DUP >R SPRPAT R SPRCOL R> SPRPUT R> 4 +
 7 SATR DO I VSBR D0 = IF C001 SP@ I 2 VMBW DROP ENDIF 4 +LOOP ;
 8 : MOTION (SPX SPY # ---)
 9 4 * SMTN + >R 8 SLA SWAP 00FE AND OR SP@ R> 2 VMBW DROP ;
 10 : #MOTION (NO ---) 837A C! ;
 11 : SPRGET (# --- DX DY)
 12 4 * SATR + DUP VSBR 1+ 0FF AND SWAP 1+ VSBR SWAP ;
 13 : DXY (X2 Y2 X1 Y1 --- X^2 Y^2)
 14 ROT - ABS ROT ROT - ABS DUP * SWAP DUP * ;
 15 R->BASE -->

194 Appendix I Contents of the TI Forth Diskette

SCR #60
 0 (GRAPHICS PRIMITIVES 12JUL82 LCT)
 1 BASE->R HEX : BEEP 34 GPLLNK ; : HONK 36 GPLLNK ;
 2 : SPRDIST (#1 #2 --- DIST^2) (DISTANCE BETWEEN 2 SPRITES)
 3 SPRGET ROT SPRGET DXY OVER OVER
 4 + DUP >R OR OR 8000 AND IF R> DROP 7FFF ELSE R> ENDIF ;
 5 : SPRDISTXY (X Y # --- DIST^2) SPRGET DXY OVER OVER
 6 + DUP >R OR OR 8000 AND IF R> DROP 7FFF ELSE R> ENDIF ;
 7 : MAGNIFY (MAG-FACTOR ---)
 8 83D4 C@ 0FC AND + DUP 83D4 C! 1 VWTR ;
 9 : JOYST (KEYBDNO --- ASCII XSTAT YSTAT) 8374 C!
 10 ?KEY DROP 8375 C@ DUP DUP 12 = IF DROP 0 0 ELSE 0FF =
 11 IF 8377 C@ 8376 C@ ELSE 8375 C@
 12 CASE 4 OF 0FC 4 ENDOF 5 OF 0 4 ENDOF 6 OF 4 4 ENDOF
 13 2 OF 0FC 0 ENDOF 3 OF 4 0 ENDOF 0 OF 0 0FC ENDOF
 14 0F OF 0FC 0FC ENDOF 0E OF 4 0FC ENDOF DROP DROP 0 0 0 0
 15 ENDCASE ENDIF ENDIF 4 8374 C! ; R->BASE -->

SCR #61
 0 (GRAPHICS PRIMITIVES 12JUL82 LCT) BASE->R HEX
 1 : COINC (#1 #2 TOL --- F) (0= NO COINC 1= COINC)
 2 DUP * DUP + >R SPRDIST R> > 0= ;
 3 : COINCXY (DX DY # TOL --- F)
 4 DUP * DUP + >R SPRDISTXY R> > 0= ;
 5 : COINCALL (--- F) (BIT SET IF ANY TWO SPRITES OVERLAP)
 6 8802 C@ 20 AND 20 = ;
 7 : DELSPR (# ---)
 8 4 * DUP SATR + >R 0 C001 SP@ R> 4 VMBW DROP DROP
 9 SMTN + >R 0 0 SP@ R> 4 VMBW DROP DROP ;
 10 : DELALL (---)
 11 0 #MOTION SATR 20 0 DO DUP D0 SWAP VSBW 4 + LOOP DROP
 12 SMTN 80 0 VFILL ;
 13
 14
 15 R->BASE -->

SCR #62
 0 (GRAPHICS PRIMITIVES 24NOV82 LAO) BASE->R HEX 0 VARIABLE ADR
 1 : MINIT 18 0 DO 0 I 4 / 20 * DUP 20 + SWAP
 2 DO DUP J 1 I HCHAR 1+ LOOP DROP LOOP ;
 3 : MCHAR (COLOR C R ---) DUP >R 2 / SWAP DUP >R 2 / SWAP
 4 DUP >R GCHAR DUP 20 / 100 U* DROP 800 + >R 20 MOD
 5 8 * R> + R> 4 MOD 2 * + ADR ! R> 2 MOD R> 2 MOD SWAP
 6 IF IF 3 ELSE 1 ENDIF ELSE IF 2 ELSE 0 ENDIF ENDIF
 7 DUP 2 MOD 0= IF SWAP 10 * SWAP ENDIF
 8 CASE 0 OF ADR @ VSBR 0F ENDOF 1 OF ADR @ VSBR F0 ENDOF
 9 2 OF 1 ADR +! ADR @ VSBR 0F ENDOF
 10 3 OF 1 ADR +! ADR @ VSBR F0 ENDOF
 11 ENDCASE AND + ADR @ VSBW ;
 12 0 VARIABLE DMODE -1 VARIABLE DCOLOR
 13 : DRAW 0 DMODE ! ; : UNDRAW 1 DMODE ! ; : DTOG 2 DMODE ! ;
 14 8040 VARIABLE DTAB 2010 , 804 , 201 , 7FBF , DFEF , F7FB ,
 15 FDFE , 8040 , 2010 , 804 , 201 , R->BASE -->

 Appendix I Contents of the TI Forth Diskette 195

SCR #63
 0 (GRAPHICS PRIMITIVES) BASE->R HEX
 1 CODE DDOT C079 ,
 2 C0D9 , C081 , C103 , 0241 ,
 3 0007 , 0243 , 0007 , 0242 ,
 4 00F8 , 0244 , 00F8 , 0A52 ,
 5 A042 , A044 , 0221 , 2000 ,
 6 04C4 , D123 , DTAB , 06C4 ,
 7 C644 , 0649 , C641 , 045F ,
 8 : DOT (X Y ---)
 9 DDOT DUP 2000 - >R DMODE @
 10 CASE 0 OF VOR ENDOF (DRAW)
 11 1 OF SWAP FF XOR SWAP VAND ENDOF (UNDRAW)
 12 2 OF VXOR ENDOF (TOGGLE)
 13 DROP DROP ENDCASE R>
 14 DCOLOR @ 0 < IF DROP ELSE DCOLOR @ SWAP VSBW ENDIF ;
 15 R->BASE -->

SCR #64
 0 (GRAPHICS PRIMITIVES 12JUL82 LCT) BASE->R HEX
 1 : SGN DUP IF DUP 0< IF -1 ELSE 1 ENDIF ELSE 0 ENDIF + ;
 2 : LINE >R R ROT >R R - SGN SWAP >R R ROT >R R - SGN OVER ABS
 3 OVER ABS < >R R 0= IF SWAP ENDIF 100 ROT ROT */ R>
 4 IF (X AXIS) R> R> OVER OVER >
 5 IF (MAKE L TO R) SWAP R> DROP R>
 6 ELSE R> R> DROP
 7 ENDIF 100 * ROT ROT 1+ SWAP
 8 DO I OVER 0 100 M/ SWAP DROP DOT OVER + LOOP
 9 ELSE (Y AXIS) R> R> R> R> ROT >R ROT >R OVER OVER >
 10 IF (MAKE T TO B) SWAP R> DROP R>
 11 ELSE R> R> DROP
 12 ENDIF 100 * ROT ROT 1+ SWAP
 13 DO DUP 0 100 M/ SWAP DROP I DOT OVER + LOOP
 14 ENDIF DROP DROP ;
 15 R->BASE

SCR #65
 0 (COMPACT LIST)
 1 0 CLOAD SMASH BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
 2 BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE BASE->R DECIMAL
 3 0 VARIABLE TCHAR 382 ALLOT 67 BLOCK TCHAR 384 CMOVE HEX
 4 TCHAR 7C - CONSTANT TC 0 VARIABLE BADDR 0 VARIABLE INDX
 5 (SMASH EXPECTS ADDR #CHAR LINE# --- LB VADDR CNT)
 6 0 VARIABLE LB FE ALLOT
 7 CODE SMASH
 8 C079 , C0B9 , C0D9 , 0204 , LB , C644 , 0649 , 06C1 ,
 9 0221 , 2000 , C641 , C042 , 0581 , 0241 , FFFE , 0649 ,
 10 0A21 , C641 , A083 , 80C2 , 1501 , 1020 , 04C5 , 04C6 ,
 11 D173 , D1B3 , 0965 , 0966 , C025 , TC , C066 , TC ,
 12 0B41 , 020C , 0004 , C2C0 , 024B , F000 , C1C1 , 0247 ,
 13 0F00 , E1CB , DD07 , 0BC0 , 0BC1 , 060C , 16F4 , 05C5 ,
 14 05C6 , C305 , 024C , 0002 , 16E7 , 10DD , 045F ,
 15 R->BASE -->

196 Appendix I Contents of the TI Forth Diskette

SCR #66
 0 (COMPACT LIST) BASE->R DECIMAL
 1 : CLINE LB 100 ERASE SMASH VMBW ;
 2 : CLOOP DO I 64 * OVER + 64 I CLINE LOOP DROP ;
 3
 4 : CLIST BLOCK 16 0 CLOOP ;
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14 R->BASE
 15

SCR #68
 0 (FILE I/O ROUTINES 12JUL82 LCT)
 1 0 CLOAD STAT BASE->R DECIMAL 33 R->BASE CLOAD RANDOMIZE
 2 BASE->R HEX
 3 0 VARIABLE PAB-ADDR
 4 0 VARIABLE PAB-BUF
 5 0 VARIABLE PAB-VBUF
 6 : FILE <BUILDS , , , DOES> DUP @ PAB-VBUF ! 2+ DUP @ PAB-BUF !
 7 2+ @ PAB-ADDR ! ;
 8 : GET-FLAG PAB-ADDR @ 1+ VSBR ;
 9 : PUT-FLAG PAB-ADDR @ 1+ VSBW ;
 10 : SET-PAB PAB-ADDR @ DUP 0A 0 VFILL 2+ PAB-VBUF SWAP 2 VMBW ;
 11 : CLR-STAT GET-FLAG 1F AND PUT-FLAG ;
 12 : CHK-STAT GET-FLAG 0E0 AND
 13 837C C@ 20 AND OR 9 ?ERROR ;
 14 : FXD GET-FLAG 0EF AND PUT-FLAG ;
 15 : VRBL GET-FLAG 10 OR PUT-FLAG ; R->BASE -->

 Appendix I Contents of the TI Forth Diskette 197

SCR #69
 0 (FILE I/O ROUTINES 12JUL82 LCT) BASE->R HEX
 1 : DSPLY GET-FLAG 0F7 AND PUT-FLAG ;
 2 : INTRNL GET-FLAG 8 OR PUT-FLAG ;
 3 : I/OMD GET-FLAG 0F9 AND ;
 4 : INPT I/OMD 4 OR PUT-FLAG ;
 5 : OUTPT I/OMD 2 OR PUT-FLAG ;
 6 : UPDT I/OMD PUT-FLAG ;
 7 : APPND I/OMD 6 OR PUT-FLAG ;
 8 : SQNTL GET-FLAG 0FE AND PUT-FLAG ;
 9 : RLTV GET-FLAG 1 OR PUT-FLAG ;
 10 : REC-LEN PAB-ADDR @ 4 + VSBW ;
 11 : CHAR-CNT! PAB-ADDR @ 5 + VSBW ;
 12 : CHAR-CNT@ PAB-ADDR @ 5 + VSBR ;
 13 : REC-NO DUP SWPB PAB-ADDR @ 6 + VSBW PAB-ADDR @ 7 + VSBW ;
 14 : N-LEN! PAB-ADDR @ 9 + VSBW ;
 15 R->BASE -->

SCR #70
 0 (FILE I/O ROUTINES 12JUL82 LCT) BASE->R HEX
 1 (COMPILE A STRING WHICH IS MOVED TO VDP-ADDR AT EXECUTION)
 2
 3 : (F-D")
 4 PAB-ADDR @ 0A + R COUNT DUP 1+ =CELLS R> +
 5 >R >R SWAP R VMBW R> N-LEN! ;
 6 : F-D" 22 STATE @
 7 IF
 8 COMPILE (F-D") WORD HERE C@
 9 1+ =CELLS ALLOT
 10 ELSE
 11 PAB-ADDR @ 0A + SWAP WORD HERE COUNT >R SWAP R
 12 VMBW R> N-LEN!
 13 ENDIF ; IMMEDIATE
 14
 15 R->BASE -->

SCR #71
 0 (FILE I/O ROUTINES 12JUL82 LCT)
 1 BASE->R HEX
 2 : DOI/O CLR-STAT PAB-ADDR @ VSBW PAB-ADDR @ 9 + 8356 !
 3 0 837C C! DSRLNK CHK-STAT ;
 4 : OPN 0 DOI/O ;
 5 : CLSE 1 DOI/O ;
 6 : RD 2 DOI/O PAB-VBUF @ PAB-BUF @ CHAR-CNT@ VMBR CHAR-CNT@ ;
 7 : WRT >R PAB-BUF @ PAB-VBUF @ R VMBW R> CHAR-CNT! 3 DOI/O ;
 8 : RSTR REC-NO 4 DOI/O ;
 9 : LD REC-NO 5 DOI/O ;
 10 : SV REC-NO 6 DOI/O ;
 11 : DLT 7 DOI/O ;
 12 : SCRTCH REC-NO 8 DOI/O ;
 13 : STAT 9 DOI/O PAB-ADDR @ 8 + VSBR ;
 14
 15 R->BASE

198 Appendix I Contents of the TI Forth Diskette

SCR #72
 0 (ALTERNATE I/O SUPPORT FOR RS232 PNTR 12JUL82 LCT)
 1 0 CLOAD INDEX BASE->R DECIMAL 68 R->BASE CLOAD STAT
 2 0 0 0 FILE >RS232 BASE->R HEX
 3 : SWCH >RS232 PABS @ 10 + DUP PAB-ADDR ! 1- PAB-VBUF !
 4 SET-PAB OUTPT F-D" RS232.BA=9600" OPN 3
 5 PAB-ADDR @ VSBW 1 PAB-ADDR @ 5 + VSBW PAB-ADDR @ ALTOUT ! ;
 6 : UNSWCH 0 ALTOUT ! CLSE ;
 7 : ?ASCII (BLOCK# --- FLAG)
 8 BLOCK 0 SWAP DUP 400 + SWAP
 9 DO I C@ 20 > + I C@ DUP 20 < SWAP 7F > OR
 10 IF DROP 0 LEAVE ENDIF LOOP ;
 11 : TRIAD 0 SWAP SWCH 3 / 3 * DUP 3 + SWAP
 12 DO I ?ASCII IF 1+ I LIST CR ENDIF LOOP
 13 -DUP IF 3 SWAP - 14 * 0 DO CR LOOP
 14 0F MESSAGE 0C EMIT ENDIF UNSWCH ;
 15 R->BASE -->

SCR #73
 0 (SMART TRIADS AND INDEX 15SEP82 LAO) BASE->R DECIMAL
 1 : TRIADS (FROM TO ---)
 2 3 / 3 * 1 + SWAP 3 / 3 * DO I TRIAD 3 +LOOP ;
 3 : INDEX (FROM TO ---) 1+ SWAP
 4 DO I DUP ?ASCII IF CR 4 .R 2 SPACES I BLOCK 64 TYPE ELSE DROP
 5 ENDIF PAUSE IF LEAVE ENDIF LOOP ;
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15 R->BASE

SCR #74
 0 (ASSEMBLER 12JUL82 LCT)
 1 FORTH DEFINITIONS
 2 0 CLOAD CODE
 3
 4 VOCABULARY ASSEMBLER IMMEDIATE
 5
 6 : CODE
 7 ?EXEC CREATE SMUDGE LATEST PFA DUP CFA !
 8 [COMPILE] ASSEMBLER ;
 9
 10 : ;CODE
 11 ?CSP COMPILE (;CODE) SMUDGE
 12 [COMPILE] [[COMPILE] ASSEMBLER ; IMMEDIATE
 13
 14
 15

 Appendix I Contents of the TI Forth Diskette 199

SCR #75
 0 (ASSEMBLER 12JUL82 LCT) 0 CLOAD A$$M
 1 BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
 2 BASE->R HEX
 3 ASSEMBLER DEFINITIONS
 4 : GOP' OVER DUP 1F > SWAP 30 < AND
 5 IF + , , ELSE + , ENDIF ;
 6 : GOP <BUILDS , DOES> @ GOP' ;
 7 0440 GOP B, 0680 GOP BL, 0400 GOP BLWP,
 8 04C0 GOP CLR, 0700 GOP SETO, 0540 GOP INV,
 9 0500 GOP NEG, 0740 GOP ABS, 06C0 GOP SWPB,
 10 0580 GOP INC, 05C0 GOP INCT, 0600 GOP DEC,
 11 0640 GOP DECT, 0480 GOP X,
 12 : GROP <BUILDS , DOES> @ SWAP 40 * + GOP' ;
 13 2000 GROP COC, 2400 GROP CZC, 2800 GROP XOR,
 14 3800 GROP MPY, 3C00 GROP DIV, 2C00 GROP XOP,
 15 -->

SCR #76
 0 (ASSEMBLER 12JUL82 LCT)
 1 : GGOP <BUILDS ,
 2 DOES> @ SWAP DUP DUP 1F > SWAP 30 < AND
 3 IF 40 * + SWAP >R GOP' R> ,
 4 ELSE 40 * + GOP' ENDIF ;
 5 A000 GGOP A, B000 GGOP AB,
 6 8000 GGOP C, 9000 GGOP CB,
 7 6000 GGOP S, 7000 GGOP SB,
 8 E000 GGOP SOC, F000 GGOP SOCB,
 9 4000 GGOP SZC, 5000 GGOP SZCB,
 10 C000 GGOP MOV, D000 GGOP MOVB,
 11
 12 : 0OP <BUILDS , DOES> @ , ;
 13 0340 0OP IDLE, 0360 0OP RSET, 03C0 0OP CKOF,
 14 03A0 0OP CKON, 03E0 0OP LREX, 0380 0OP RTWP,
 15 -->

SCR #77
 0 (ASSEMBLER 12JUL82 LCT)
 1
 2 : ROP <BUILDS , DOES> @ + , ;
 3
 4 02C0 ROP STST, 02A0 ROP STWP,
 5
 6 : IOP <BUILDS , DOES> @ , , ;
 7
 8 02E0 IOP LWPI, 0300 IOP LIMI,
 9
 10 : RIOP <BUILDS , DOES> @ ROT + , , ;
 11
 12 0220 RIOP AI, 0240 RIOP ANDI,
 13 0280 RIOP CI, 0200 RIOP LI,
 14 0260 RIOP ORI,
 15 -->

200 Appendix I Contents of the TI Forth Diskette

SCR #78
 0 (ASSEMBLER 12JUL82 LCT)
 1 : RCOP <BUILDS , DOES> @ SWAP 10 * + + , ;
 2 0A00 RCOP SLA, 0800 RCOP SRA,
 3 0B00 RCOP SRC, 0900 RCOP SRL,
 4 : DOP <BUILDS , DOES> @ SWAP 00FF AND OR , ;
 5 1300 DOP JEQ, 1500 DOP JGT,
 6 1B00 DOP JH, 1400 DOP JHE,
 7 1A00 DOP JL, 1200 DOP JLE,
 8 1100 DOP JLT, 1000 DOP JMP,
 9 1700 DOP JNC, 1600 DOP JNE,
 10 1900 DOP JNO, 1800 DOP JOC,
 11 1C00 DOP JOP, 1D00 DOP SBO,
 12 1E00 DOP SBZ, 1F00 DOP TB,
 13 : GCOP <BUILDS , DOES> @ SWAP 000F AND 040 * + GOP' ;
 14 3000 GCOP LDCR, 3400 GCOP STCR,
 15 -->

SCR #79
 0 (ASSEMBLER 12JUL82 LCT)
 1 : @() 020 ; : *? 010 + ;
 2 : *?+ 030 + ; : @(?) 020 + ;
 3 : W 0A ; : @(W) W @(?) ;
 4 : *W W *? ; : *W+ W *?+ ;
 5 : RP 0E ; : @(RP) RP @(?) ;
 6 : *RP RP *? ; : *RP+ RP *?+ ;
 7 : IP 0D ; : @(IP) IP @(?) ;
 8 : *IP IP *? ; : *IP+ IP *?+ ;
 9 : SP 09 ; : @(SP) SP @(?) ;
 10 : *SP SP *? ; : *SP+ SP *?+ ;
 11 : UP 08 ; : @(UP) UP @(?) ;
 12 : *UP UP *? ; : *UP+ UP *?+ ;
 13 : NEXT 0F ; : *NEXT+ NEXT *?+ ;
 14 : *NEXT NEXT *? ; : @(NEXT) NEXT @(?) ;
 15 -->

SCR #80
 0 (ASSEMBLER 12JUL82 LCT)
 1 (DEFINE JUMP TOKENS)
 2 : GTE 1 ; : H 2 ; : NE 3 ;
 3 : L 4 ; : LTE 5 ; : EQ 6 ;
 4 : OC 7 ; : NC 8 ; : OO 9 ;
 5 : HE 0A ; : LE 0B ; : NP 0C ;
 6 : LT 0D ; : GT 0E ; : NO 0F ;
 7 : OP 10 ;
 8 : CJMP ?EXEC
 9 CASE LT OF 1101 , 0 ENDOF
 10 GT OF 1501 , 0 ENDOF
 11 NO OF 1901 , 0 ENDOF
 12 OP OF 1C01 , 0 ENDOF
 13 DUP 0< OVER 10 > OR IF 19 ERROR ENDIF DUP
 14 ENDCASE 100 * 1000 + , ;
 15 -->

 Appendix I Contents of the TI Forth Diskette 201

SCR #81
 0 (ASSEMBLER 12JUL82 LCT)
 1 : IF, ?EXEC
 2 [COMPILE] CJMP HERE 2- 42 ; IMMEDIATE
 3 : ENDIF, ?EXEC
 4 42 ?PAIRS HERE OVER - 2- 2 / SWAP 1+ C! ; IMMEDIATE
 5 : ELSE, ?EXEC
 6 42 ?PAIRS 0 [COMPILE] CJMP HERE 2- SWAP 42 [COMPILE]
 7 ENDIF, 42 ; IMMEDIATE
 8 : BEGIN, ?EXEC
 9 HERE 41 ; IMMEDIATE
 10 : UNTIL, ?EXEC
 11 SWAP 41 ?PAIRS [COMPILE] CJMP HERE - 2 / 00FF AND
 12 HERE 1- C! ; IMMEDIATE
 13 : AGAIN, ?EXEC
 14 0 [COMPILE] UNTIL, ; IMMEDIATE
 15 -->

SCR #82
 0 (ASSEMBLER 12JUL82 LCT)
 1 : REPEAT, ?EXEC
 2 >R >R [COMPILE] AGAIN, R> R> 2- [COMPILE] ENDIF,
 3 ; IMMEDIATE
 4 : WHILE, ?EXEC
 5 [COMPILE] IF, 2+ ; IMMEDIATE
 6
 7
 8
 9
 10 : NEXT, *NEXT B, ;
 11
 12 FORTH DEFINITIONS
 13
 14 : A$$M ; R->BASE
 15

SCR #83
 0 (BSAVE -- BINARY SAVER FOR FORTH OVERLAYS LCT 14SEP82)
 1 0 CLOAD BSAVE BASE->R DECIMAL
 2 : BSAVE (from scrn-no ---) FLUSH
 3 BEGIN
 4 SWAP >R DUP 1+ SWAP
 5 OFFSET @ + BUFFER UPDATE DUP B/BUF ERASE
 6 R OVER ! 2+ HERE OVER ! 2+
 7 CURRENT @ OVER ! 2+ LATEST OVER ! 2+
 8 CONTEXT @ OVER ! 2+ CONTEXT @ @ OVER ! 2+
 9 VOC-LINK @ OVER ! 2 + 29801 OVER ! 10 +
 10 HERE R -
 11 R> DUP 1000 + >R SWAP >R SWAP R>
 12 1000 MIN CMOVE
 13 R SWAP HERE R> <
 14 UNTIL
 15 SWAP DROP FLUSH ; R->BASE

202 Appendix I Contents of the TI Forth Diskette

SCR #84
 0 (NEW MESSAGE ROUTINE 13SEP82 LCT) BASE->R DECIMAL
 1
 2 (THIS VERSION OF MESSAGE HAS THE SCREEN 4 AND 5 MESSAGES
 3 INCLUDED IN THIS ROUTINE.)
 4
 5 FLUSH EMPTY-BUFFERS HERE LIMIT$ @ B/BUF 4 + - DUP LIMIT$!
 6 DP ! (PLACES message WHERE 5TH DISK BUF IS. NOW HAVE 4 BUFS)
 7 : message
 8 WARNING @
 9 IF
 10 -DUP
 11 IF (NON-ZERO MESSAGE NUMBER)
 12 DUP 26 <
 13 IF (MESSAGE NEED NOT BE RETRIEVED FROM DISK)
 14 CASE (FOLLOWING CASES FOR MESSAGE NUMBERS)
 15 -->

SCR #85
 0 (NEW MESSAGE CONTINUED)
 1 01 OF ." empty stack" ENDOF
 2 02 OF ." dictionary full" ENDOF
 3 03 OF ." has incorrect address mode" ENDOF
 4 04 OF ." isn't unique." ENDOF
 5
 6 06 OF ." disk error" ENDOF
 7 07 OF ." full stack" ENDOF
 8
 9 09 OF ." file i/o error" ENDOF
 10 10 OF ." floating point error" ENDOF
 11 11 OF ." disk fence violation" ENDOF
 12 12 OF ." can't load from screen zero" ENDOF
 13
 14
 15 15 OF ." TI FORTH --- a fig-FORTH extension" ENDOF -->

SCR #86
 0 (NEW MESSAGE CONTINUED)
 1 17 OF ." compilation only, use in definition" ENDOF
 2 18 OF ." execution only" ENDOF
 3 19 OF ." conditionals not paired" ENDOF
 4 20 OF ." definition not finished" ENDOF
 5 21 OF ." in protected dictionary" ENDOF
 6 22 OF ." use only when loading" ENDOF
 7
 8 24 OF ." declare vocabulary" ENDOF
 9 25 OF ." bad jump token" ENDOF
 10
 11 ENDCASE
 12
 13 -->
 14
 15

 Appendix I Contents of the TI Forth Diskette 203

SCR #87
 0 (NEW MESSAGE CONTINUED)
 1
 2 ELSE
 3 4 OFFSET @ B/SCR / - .LINE
 4 ENDIF
 5 ENDIF
 6 ELSE
 7 ." MSG # " .
 8 ENDIF
 9 ;
 10
 11 DP ! (RESTORE DP TO POSITION PRIOR TO message)
 12 (INSTALL NEW MESSAGE)
 13 ' BRANCH CFA ' MESSAGE
 14 ' message OVER - 2- OVER 2+ ! !
 15 R->BASE

SCR #88
 0 (CRU WORDS 12OCT82 LAO) 0 CLOAD STCR
 1 BASE->R DECIMAL 74 R->BASE CLOAD ;CODE
 2 BASE->R HEX
 3 CODE SBO C339 , A30C , 1D00 , 045F ,
 4 CODE SBZ C339 , A30C , 1E00 , 045F ,
 5 CODE TB C319 , A30C , 04D9 , 1F00 , 1601 , 0599 , 045F ,
 6
 7 CODE LDCR C339 , A30C , C079 , C039 , 0241 , 000F , 1304 ,
 8 0281 , 0008 , 1501 , 06C0 , 0A61 , 0261 , 3000 ,
 9 0481 , 045F ,
 10
 11 CODE STCR C339 , A30C , C059 , 04C0 , 0241 , 000F , C081 ,
 12 0A61 , 0261 , 3400 , 0481 , C082 , 1304 , 0282 ,
 13 0008 , 1501 , 06C0 , C640 , 045F ,
 14
 15 R->BASE

204 Appendix J TI Forth Bugs

 Appendix J TI Forth Bugs
TI Forth Bugs found as of the May, 1985 issue of HOCUS (Milwaukee TI Users Group):

 Jeff Stanford—

Screen 22, Line 5:
BASE->R HEX (3800 ' SATR !)

Screen 23, Line 2:
: CINIT 3800 DUP ' SPDTAB ! 800 / 6 VWTR 3800 ' SATR !

Screen 28, Line 1
: EDT VDPMDE @ 5 = 0= IF SPLIT ENDIF CINIT !CUR R/C CGOTOXY

Screen 28, Line 11:
0F OF 5 0 SPRPAT CLS SCRNO DROP 300 ' SATR ! QUIT ENDOF

 Tom Freeman—

Screens 53 ‒ 55, Line 1 on each screen:

Change VDPSET2 to SETVDP2
Screen 58:

Switch Lines 9 & 10

In new Line 9, change 300 ! SATR to 300 ' SATR

Screen 59, Line 9, between SWAP and AND
Change 00FF to 00FE

 Everybody & his brother—

Screen 72 Line 5:

PAB_ADDR to PAB-ADDR

 Jim Vincent—

Original Manual, Chapter 6, Page 10, Line 1 (see this manual, footnote 10, page 37):
HEX 3800 ' SATR !

Original Manual, Chapter 10, Page 3, Line 20 (see this manual, footnote 17, page 73):
: DOWN -100 ALLOT DROP ;

TI Forth Bugs found more recently by the Editor:

 64-column editor—

Screen 22, Line 12:

The definition of BCK is not used for this editor, so it can safely be removed. This
is not really a bug, but it takes up unnecessary space in the dictionary.

 In the 40-column editor, the cursor is changed to a box shape upon entry, but is not
restored upon exit. The following changes will save and restore the old cursor—

Screen 34, Lines 3 ‒ 7:

 Appendix J TI Forth Bugs 205

Consolidate Lines 6 & 7 to Line 7, Lines 4 & 5 to Line 6 and move Line 3 to Line
5 to make room for OLDCUR , GETCUR and PUTCUR on Lines 3 & 4:
0 VARIABLE OLDCUR 6 ALLOT

: GETCUR 8F0 OLDCUR 8 VMBR ; : PUTCUR OLDCUR 8F0 8 VMBW ;

Add to the definition of BOX after LOOP in Line 3:
0FC 8F0 VSBW 0FC 8F7 VSBW

Screen 35, Line 10:

Insert PUTCUR between GOTOXY and QUIT .

Screen 38, Line 1:

Insert GETCUR between VED and BOX .

 In the Floating Point Routines, use of the definition of VAL in bitmap mode corrupts the
screen because VAL uses the TI Forth disk buffer explicitly (1000h) instead of via the user
variable DISK_BUF , which moves the buffer out of the way in bitmap mode—

Screen 47, Line 13:

Move the last two words, SWAP VSBW , to the beginning of the next line to make
room. Change 1000 to the two words, DISK_BUF @ .

 In the Graphics Primitives load screen (57), the load should be conditional on finding
LINE , the last word defined, rather than CHAR , the first word defined, to maintain
consistency with the instructions in § 11.2 —

Screen 57, Line 0:

Change CHAR to LINE .

 Compact List—

Screen 65, Line 4:

BADDR and INDX are defined but never used. They can probably be safely be
removed; but, because the editor has not analyzed what exactly SMASH is doing
and because it is just possible they are there to act as a buffer ahead of LB , we'll
leave them alone for now.

 Bad definition of ;CODE —

Screen 74, Line 12:

The definition of ;CODE needs to be made immediate by adding the word
IMMEDIATE after the definition-ending ; . Be sure to leave an intervening space.

See also the corrections and clarifications in the Editor’s Notes in Appendix G .

206 Appendix K Diskette Format Details

 Appendix K Diskette Format Details
The information in this section is based on TI’s Software Specifications for the 99/4 Disk
Peripheral (March 28, 1983).

The original disk drives supplied by TI supported only single-sided, single-density (SSSD), 90-
KB diskettes. The TI Forth system was designed around and supplied in this disk format.
Though different formats are possible, we will consider the usual format of 256 bytes per sector
and 40 tracks per side. The following table shows possible formats with 256 bytes/sector and 40
tracks/side:

Disk Type Sides Density
Sectors/
Track

Total Sectors Capacity

SSSD 1 single 9 360 90 KB

DSSD 2 single 9 720 180 KB

SSDD 1 double 18 720 180 KB

DSDD 2 double 18 1440 360 KB

Compact Flash19 2 double 20 160020 400 KB

The information in the following sections accrues to all the above formats:

 K.1 Volume Information Block (VIB)

Byte # 1st Byte 2nd Byte Byte #

0
Disk Volume Name (10 characters padded on the right with blanks)

1

8 9

10 Total Number of Sectors 11

12 Sectors/Track “D” 13

14 “S” “K” 15

16 Protection (“P” or “ ”) Tracks/Side 17

18 # of Sides Density 19

20
Reserved

21

54 55

56
Allocation Bit Map (room for 1600 sectors)

57

254 255

Sector 0 contains the volume information block (VIB). The layout is shown in the above table.

19 This is a third-party peripheral expansion device with 400 KB virtual disks using Compact Flash memory on
devices named nanoPEB and CF7+ (see website: http://webpages.charter.net/nanopeb/)

20 1600 sectors is the maximum possible number of sectors that can be managed by the current specification.

 Appendix K Diskette Format Details 207

 K.2 File Descriptor Index Record (FDIR)

Sector 1 contains the file descriptor index record (FDIR). It can hold up to 127 2-byte entries,
each pointing to a file descriptor record (FDR—see next section). These pointers are
alphabetically sorted by the file names to which they point. This list of pointers starts at the
beginning of sector 1 and ends with a pointer value of 0.

 K.3 File Descriptor Record (FDR)

Byte # 1st Byte 2nd Byte Byte #

0
File Name (10 characters padded on the right with blanks)

1

8 9

10 Reserved 11

12 File Status Flags # of Records/Sector (0 for program) 13

14 # of Sectors currently allocated (not counting this FDR) 15

16 EOF Offset (bytes in last Sector) Bytes/Record 17

18 # of Records (Fixed) or # of Sectors (Variable)—bytes are in reverse order 19

20
Reserved

21

26 27

28
Data Chain Pointer Blocks (3 bytes/block encoding two 12-bit numbers that

indicate cluster start and highest, cumulative sector offset)

29

254 255

There can be as many as 127 file descriptor records (FDRs) laid out as in the above table. There
are no subdirectories. FDRs will start in sector 2 and continue, at least, until sector 33, unless a
file allocation requires more space than is available in sectors 34 – end-of-disk, in which case the
system will begin allocating space for the file in the first available sector in sectors 3 – 33. This
is done “to obtain faster directory search response times” 21. Each FDR beyond 32 files will be
placed in the first available sector.

Byte 12 contains file status flags defined as follows, with bit 0 as the least significant bit:

Bit # Description

0 Program or Data file (0 = Data; 1 = Program)

1 Binary or ASCII data (0 = ASCII, DISPLAY file; 1 = Binary, INTERNAL or program file)

2 Reserved

3 PROTECT flag (0 = not protected; 1 = protected)

4‒6 Reserved

7 FIXED/VARIABLE flag (0 = fixed-length records; 1 = variable-length records)

21 Software Specifications for the 99/4 Disk Peripheral (March 28, 1983), p. 19.

208 K.3 File Descriptor Record (FDR)

The cluster blocks listed in bytes 28 ‒ 255 of the FDR each contain 2 12-bit (3-nybble 22)
numbers. The first points to the beginning sector of that cluster of contiguous sectors and the
second is the sector offset reached by that cluster. If we label the 3 nybbles of the cluster pointer
as n1 ‒ n3 and the 3 nybbles of the cumulative sector offset as m1 ‒ m3, with the subscripts
indicating the significance of the nybble, then the 3 bytes are laid out as follows:

Byte 1: n2n1 Byte 2: m1n3 Byte 3: m3m2

The actual 12-bit numbers, then, are

Cluster Pointer: n3n2n1 Sector Offset: m3m2m1

For example, the following represents 2 blocks in the FDR for a file with 2 clusters allocated:

Actual layout in the FDR: 4D20h 5F05h F060h

1st Cluster Pointer: 04Dh (7710)
23 Record Offset: 5F2h (152210)

2nd Cluster Pointer: 005h (510) Record Offset: 60Fh (155110)

The above example represents a file, the data for which occupies 1552 sectors on the disk. If we
assume that no files have been deleted in this case, you should also be able to deduce that there
are only 3 files on the disk because the second cluster starts in sector 5 and occupies all sectors
from 5 ‒ 33, which should tell you there are 3 FDRs before this cluster was allocated: Sector 0
(VIB), sector 1 (FDIR), sector 2 (FDR of first file), sector 3 (FDR of second file), sector 4 (FDR
of third file and sector 5 (second cluster start of the third file, the first two occupying sectors 34 ‒
76 by inference). Furthermore, the disk contains 1600 sectors because that is the maximum and
the first cluster ended in the 1600th sector of the disk (1st cluster starts in sector 77 and ends 1522
sectors later in sector 1599).24

 K.4 Comparison of TI Forth and TI File System Layouts on the
Same Disk

The TI file system layout has been detailed earlier in this appendix. The TI Forth system is based
on 1-KB blocks or screens that each consist of 16 lines of 64 characters. TI Forth screens start in
the first sector of the disk and contiguously occupy the entire disk with each screen consuming 4
contiguous sectors (4 ∙ 256 = 1024 bytes/screen). The TI Forth system reads and writes screens
using direct sector access, thus making it possible to easily destroy the normal file-system layout
of the system disk and, less so, work disks that have been set up by DISK-HEAD or the method of
§ L.2 if you are not careful. The sections that follow show the two layouts side by side to make
it easier to understand the relationship of the 128-byte file records with where they appear on TI
Forth screens.

22 A nybble (also nibble) is half of one byte (8 bits) and is equal to 4 bits. The editor prefers “nybble” to “nibble”
because of its obvious relationship to “byte”. 2 nybbles = 1 byte.

23 The subscript, 10, indicates base 10 (decimal).

24 This example is taken from one of my (Lee Stewart’s) Compact Flash volumes.

 Appendix K Diskette Format Details 209

 K.4.1 TI Forth System Disk

The TI Forth system disk of the original 90-KB disk is shown in the following table [Note: In
this table and the next, a row with white on black is the beginning of a file.]:

Sector
Record
Bytes Record File Name Contents (Characters as DOS/IBM ASCII)

Forth
Screen Line

0 256 0 {VIB} TI/FORTH ☺h○DSK 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 256 0 {FDIR} .☻.♥.♦.. 0 4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2 256 0 {FDR} FORTH FORTH ...♥.♣.P♪........."@.................................. 0 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

3 256 0 {FDR} FORTHSAVE FORTHSAVE ..☺..&(...........'P☻................................. 0 12

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

4 256 0 {FDR} SYS-SCRNS SYS-SCRNS ...☻☺8.Çp☻........Má◄♣p‼.............................. 1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

5 128 566 SYS-SCRNS .. 1 4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

8 128 572 SYS-SCRNS T I F O R T H 2 0

SYS-SCRNS 2 1

128 573 SYS-SCRNS THIS VERSION OF THE FORTH LANGUAGE 2 2

SYS-SCRNS IS BASED ON THE fig-FORTH MODEL 2 3

9 128 574 SYS-SCRNS 2 4

SYS-SCRNS THE ADDRESS OF THE FORTH INTEREST GROUP IS: 2 5

128 575 SYS-SCRNS 2 6

SYS-SCRNS FORTH INTEREST GROUP 2 7

10 128 576 SYS-SCRNS P.O. BOX 1105 2 8

SYS-SCRNS SAN CARLOS, CA 94070 2 9

128 577 SYS-SCRNS 2 10

SYS-SCRNS TEXAS INSTRUMENTS PERSONNEL WITH SIGNIFICANT 2 11

11 128 578 SYS-SCRNS INPUT TO THIS VERSION INCLUDE: 2 12

SYS-SCRNS LEON TIETZ 2 13

128 579 SYS-SCRNS LESLIE O'HAGAN 2 14

SYS-SCRNS EDWARD E. FERGUSON 2 15

12 128 580 SYS-SCRNS (WELCOME SCREEN) 0 0 GOTOXY ." BOOTING..." CR 3 0

SYS-SCRNS BASE->R HEX 10 83C2 C! (QUIT OFF!) 3 1

128 581 SYS-SCRNS DECIMAL (84 LOAD) 20 LOAD 16 SYSTEM MENU 3 2

SYS-SCRNS HEX 68 USER VDPMDE 1 VDPMDE ! DECIMAL 3 3

13 128 582 SYS-SCRNS : -SYNONYMS 33 LOAD ; : -EDITOR 34 LOAD ; : -COPY 39 LOAD ; 3 4

SYS-SCRNS : -DUMP 42 LOAD ; : -TRACE 44 LOAD ; : -FLOAT 45 LOAD ; 3 5

128 583 SYS-SCRNS : -TEXT 51 LOAD ; : -GRAPH1 52 LOAD ; : -MULTI 53 LOAD ; 3 6

SYS-SCRNS : -GRAPH2 54 LOAD ; : -SPLIT 55 LOAD ; : -GRAPH 57 LOAD ; 3 7

14 128 584 SYS-SCRNS : -FILE 68 LOAD ; : -PRINT 72 LOAD ; : -CODE 74 LOAD ; 3 8

210 K.4 Comparison of TI Forth and TI File System Layouts on the Same Disk

Sector
Record
Bytes Record File Name Contents (Characters as DOS/IBM ASCII)

Forth
Screen Line

SYS-SCRNS : -ASSEMBLER 75 LOAD ; : -64SUPPORT 22 LOAD ; 3 9

128 585 SYS-SCRNS : -VDPMODES -TEXT -GRAPH1 -MULTI -GRAPH2 -SPLIT ; 3 10

SYS-SCRNS : -BSAVE 83 LOAD ; : -CRU 88 LOAD ; 3 11

15 128 586 SYS-SCRNS 3 12

SYS-SCRNS 3 13

128 587 SYS-SCRNS 3 14

SYS-SCRNS R->BASE 3 15

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

33 128 622 SYS-SCRNS σσ 8 4

σσ 8 5

128 623 σσ 8 6

σσ 8 7

34 FORTH ...BOOT A..B..B..B..B%(B..BDSBK1B.FBORBTHBSABVE9..B.IB.JB..B. 8 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

39 FORTHSAVE ..42...............`...@... :"...:. <..N....4`...6.`.<4b4d 9 12

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

77 128 0 SYS-SCRNS σσ 19 4

SYS-SCRNS σσ 19 5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

81 128 8 SYS-SCRNS (CONDITIONAL LOAD) 20 0

SYS-SCRNS : MENU CR 272 265 DO I MESSAGE CR LOOP CR CR CR ; 20 1

128 9 SYS-SCRNS : SLIT (--- ADDR OF STRING LITERAL) 20 2

SYS-SCRNS R> DUP C@ 1+ =CELLS OVER + >R ; 20 3

82 128 10 SYS-SCRNS 20 4

SYS-SCRNS : WLITERAL (WLITERAL word) 20 5

128 11 SYS-SCRNS BL STATE @ 20 6

SYS-SCRNS IF COMPILE SLIT WORD HERE C@ 1+ =CELLS ALLOT 20 7

83 128 12 SYS-SCRNS ELSE WORD HERE ENDIF ; IMMEDIATE --> 20 8

SYS-SCRNS -SYNONYMS -EDITOR -COPY 20 9

128 13 SYS-SCRNS -DUMP -TRACE -FLOAT 20 10

SYS-SCRNS -TEXT -GRAPH1 -MULTI 20 11

84 128 14 SYS-SCRNS -GRAPH2 -SPLIT -VDPMODES 20 12

SYS-SCRNS -GRAPH -FILE -PRINT 20 13

128 15 SYS-SCRNS -CODE -ASSEMBLER -64SUPPORT 20 14

SYS-SCRNS -BSAVE -CRU 20 15

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

359 128 564 SYS-SCRNS 89 12

SYS-SCRNS 89 13

128 565 SYS-SCRNS 89 14

SYS-SCRNS 89 15

 Appendix K Diskette Format Details 211

 K.4.2 TI Forth Work Disk

The TI Forth original, 90-KB format disk written by DISK-HEAD is shown in the following table:

Sector
Record
Bytes Record File Name Contents (Characters as DOS/IBM ASCII)

Forth
Screen Line

0 256 0 {VIB} FORTH ☺h○DSK 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 256 0 {FDIR} .☻.. 0 4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2 256 0 {FDR} SCREENS SCREENS ...☻☺e.P╩☻........"á(♥Ç,.............................. 0 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

3 128 652 SCREENS σσ 0 12

SCREENS σσ 0 13

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

33 128 712 SCREENS σσ 8 4

SCREENS σσ 8 5

128 713 SCREENS σσ 8 6

SCREENS σσ 8 7

34 128 0 SCREENS σσ 8 8

SCREENS σσ 8 9

128 1 SCREENS σσ 8 10

SCREENS σσ 8 11

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

359 128 650 SCREENS σσ 89 12

128 SCREENS σσ 89 13

128 651 SCREENS σσ 89 14

128 SCREENS σσ 89 15

212 Appendix L TI Forth System for Larger Disks

 Appendix L TI Forth System for Larger
Disks

Most users of TI Forth these days are using disk sizes that are larger than the original 90 KB disks
on which TI supplied TI Forth to TI-99/4A users groups at the end of 1983. This appendix will
show you how to put TI Forth on a larger system disk and how to create larger, non-system TI
Forth work disks.

 L.1 Larger System Disk

With the following procedure, you can make a TI Forth system disk in a larger disk format:

1. Make a backup copy of the original system disk and use that below where “original
system disk” is indicated.

2. Format a disk with Disk Manager or a third-party disk manager to the desired size.

3. With the same disk manager program, copy “FORTH” from the original system disk to
the newly formatted disk.

4. Repeat (3) for “FORTHSAVE”.

5. Repeat (3) for “SYS-SCRNS”.

6. Put the following screen on an available blank screen on the original system disk (screens
30 ‒ 32 should be available) and load it:

(Swell TI FORTH SYS-SCRNS file to fill disk 07SEP11 LES)
BASE->R : LSYS ; DECIMAL 68 CLOAD STAT 33 CLOAD RANDOMIZE
HEX 0 VARIABLE LESBUF 7E ALLOT 0 VARIABLE LASTREC
PABS @ A + LESBUF 1700 FILE SCRFIL
: FORTHSYS (size_KB drive_no ---)
 SCRFIL SET-PAB RLTV DSPLY 80 REC-LEN
 F-D" DSK .SYS-SCRNS" (filename to PAB--space for drive#)
 31 + PAB-ADDR @ D + VSBW (drive# + 1 to ASCII & put in PAB)
 OPN LESBUF 80 BLANKS (open file & blank fill buffer)
 4 * 30 - 2 * 1- LASTREC ! LASTREC @ REC-NO (Set last rec#)
 80 WRT (Write last record)
 25C 23C DO (Restore screens 2-5)
 I REC-NO RD LASTREC @ I + 26F - REC-NO WRT LOOP
 CLSE ; (Close file) R->BASE

7. Type the size in KB of the new system disk, the zero-based drive number and the word
FORTHSYS . If your new system disk is 360 KB and the drive number is 1 (DSK2), type
the following on the keyboard:

360 1 FORTHSYS

To accommodate your larger disk, you now need to add to line 12 of Forth screen 3:

360 DISK_SIZE !

Depending on whether you use 2 or 3 disk drives, you might also want to follow that with:

720 DISK_HI ! or 1080 DISK_HI !

 Appendix L TI Forth System for Larger Disks 213

When you are done using FORTHSYS , you can get rid of its part of the dictionary by executing

FORGET LSYS

 L.2 Larger Work Disk

With the procedure delineated below (an alternative to DISK-HEAD), you can make a TI Forth
work disk in a larger disk format. If you study it, you will see at a higher level what it is that
DISK-HEAD is actually doing at a lower level. An updated, more general-purpose DISK-HEAD
(as DSK-HD) follows in § L.3 .

1. Format a disk with Disk Manager or a third-party disk manager to the desired size.

2. Put the following screen on an available blank screen on your new system disk (there are
now plenty of empty screens beyond screen 89) and load it:

(Create TI FORTH work disk larger than 90 KB 07SEP11 LES)
BASE->R DECIMAL : LWRK ; 68 CLOAD STAT 33 CLOAD RANDOMIZE
39 CLOAD DISK-HEAD
HEX 0 VARIABLE LESBUF 7E ALLOT
PABS @ A + LESBUF 1700 FILE SCRFIL
: FORTHWRK (size_KB drive_no ---) OVER OVER
 SCRFIL SET-PAB RLTV DSPLY 80 REC-LEN
 F-D" DSK .SCREENS" (filename to PAB--space for drive#)
 31 + PAB-ADDR @ D + VSBW (drive# + 1 to ASCII & put in PAB)
 OPN LESBUF 80 BLANKS (open file & blank fill buffer)
 4 * 3 - 2 * 1- REC-NO (Calculate last record # & set it)
 80 WRT CLSE (Write last record & close file)
 * BLOCK !" FORTH " UPDATE FLUSH (write disk name->VIB)
; R->BASE

3. Ensure that DISK_SIZE and DISK_HI are properly set before executing FORTHWRK .

4. If the work disk is in drive 0, be sure to set DISK_LO to 0 before executing FORTHWRK .

5. Type the size in KB of the new work disk, the zero-based drive number and the word
FORTHWRK . If your new work disk is 360 KB and the drive number is 1 (DSK2), type
the following on the keyboard:

360 1 FORTHWRK

When you are done using FORTHWRK , you can get rid of its part of the dictionary by executing

FORGET LWRK

 L.3 Updating Disk Utilities for Larger Disks

With disks larger than 90 KB, you will need either to update several disk utility words on the
system disk or avoid using them with any but 90 KB disks. These words are

214 L.3 Updating Disk Utilities for Larger Disks

Word Screen Lines

DTEST 39 8

FORTH-COPY 39 14

DISK-HEAD 40 0 ‒ 15

FORMAT-DISK 33 7

The above words are redefined in this section to remove hardwired disk sizes from the
definitions. The words may then be used for any size disk. You can replace the original
definitions of these words on the Forth system screens indicated above except for
FORMAT-DISK , which will require a bit more work. Always remember to keep backups (more
than one!) of the original disks!! Please note, also, that the stack effects are the same for only
two of these redefined words (DTEST , FORTH-COPY) as for the originals. The other two words
(DSK-HD , FMT-DSK) are actually renamed from the originals because their stack effects are
different. If you wish to also use the original names with the new stack effects, simply
uncomment the definitions that follow each new definition. If you do uncomment the definition
of FORMAT-DISK , be sure to remove the original definition on screen 33 and, perhaps, add a
conditional load for the screen where you put FMT-DSK on the bottom line of screen 33. With
FMT-DSK on screen 100, the new bottom line for screen 33 would be

DECIMAL 100 CLOAD FMT-DSK R->BASE

You should probably have a definition for DISK-HEAD on screen 40 because other system screens
use it for conditional loads. Either uncomment the definition after DSK-HD , make it a null
definition (: DISK-HEAD ;) or just bite the bullet by changing the name of DSK-HD to DISK-
HEAD in the new definition and try your best to remember the new stack effects.

Before executing any of these words, be sure that DISK_SIZE , DISK_LO and DISK_HI are
properly set.

DTEST (---)

: DTEST DISK_SIZE @ 0 DO I DUP . BLOCK DROP LOOP ;

FORTH-COPY (---)

: FORTH-COPY DISK_SIZE @ 0 DO I DUP . DISK_SIZE @ + I
SCOPY LOOP ;

 Appendix L TI Forth System for Larger Disks 215

DSK-HD (drive sides density ---)

(WRITE A HEAD COMPATABLE WITH THE DISK MANAGER 07SEP11 LES)
BASE->R HEX : DSK-HD SWAP SWPB + >R DISK_SIZE * DUP
 CLEAR BLOCK (START SECTOR 0)
 DUP !" FORTH " DUP A + DISK_SIZE @ 4 * SWAP !
 DUP C + 944 SWAP ! DUP E + 534B SWAP ! DUP 10 + 2028 SWAP !
 DUP 12 + R> SWAP ! DUP 14 + 24 0 FILL DUP 38 + C8 FF FILL
 100 + (START SECTOR 1) DUP 2 SWAP ! DUP 2+ FE 00 FILL
 100 + (START SECTOR 2) DUP !" SCREENS " DUP A + 0 SWAP !
 DUP C + 2 SWAP ! DUP E + DISK_SIZE @ 4 * 3 - DUP >R SWAP !
 DUP 10 + 80 SWAP ! DUP 12 + R> 2 * SWPB SWAP !
 DUP 14 + 8 0 FILL >R 22 R 1C + C! DISK_SIZE @ 4 * 1- DUP 34 -
 DUP F AND 4 SLA R 1D + C! 4 SRA R 1E + C!
 03 R 1F + C! DUP 3 - F AND 4 SLA R 20 + C! 4 SRA R 21 + C!
 R> 22 + 0DE 0 FILL UPDATE FLUSH
; (: DISK-HEAD DSK-HD ;) R->BASE

Be advised that DSK-HD does CLEAR sectors 0 ‒ 3 (screen 0 if disk is in drive 0) of the
disk as does the original DISK-HEAD . Also, note that unlike DISK-HEAD , DSK-HD
requires three numbers on the stack, viz., the drive number, the number of sides (1 or 2)
and the density (1 or 2). To invoke it for a DSDD disk in drive 1 (DSK2), you would
type

1 2 2 DSK-HD

FMT-DSK (drive sides density --- sectors)

(Format Disk, given drive #, sides & density 07SEP11 LES)
BASE->R DECIMAL 33 CLOAD RANDOMIZE 0 CLOAD FMT-DSK HEX
: FMT-DSK (drive sides density --- sectors)
 1 PABS @ VSBW 11 PABS @ 1+ VSBW (subroutine 11h)
 8350 C! (density)
 8351 C! (sides)
 1+ 834C C! (drive)
 28 834D C! (40 tracks)
 DISK_BUF @ 834E ! (VDP buffer)
 PABS @ 8356 ! 0A 0E SYSTEM (call DSRLNK subroutine)
 834A @ (leave sectors formatted)
; (: FORMAT-DISK FMT-DSK ;) R->BASE

This disk-formatting word requires on the stack the drive number, number of sides and
density of the disk to be formatted. To format a 360-KB DSDD diskette in drive 2
(DSK3), you would type

2 2 2 FMT-DSK

The following two lines will each format a 90-KB SSSD diskette:

2 1 1 FMT-DSK

2 FORMAT-DISK (if you keep the original definition)

216 L.3 Updating Disk Utilities for Larger Disks

If you were to store the above definition of FMT-DSK on screen 100 and would like it to load
when the system-synonyms screen loads (the screen with FORMAT-DISK on it), then replace line
15 on screen 33 with

DECIMAL 100 CLOAD FMT-DSK R->BASE

You might also want to consider deleting the definition of FORMAT-DISK from screen 33 because
you will not need it with the above word. It is probably not a good idea to rename the new
definition FORMAT-DISK because its stack effects are so different from the old definition and
could be confusing.

As with FORMAT-DISK , FMT-DSK creates a disk that can only be used by TI Forth. There is no
information written to sectors 0 and 1 that will allow file-access words to work with the disk. If
you run DSK-HD after FMT-DSK , you can then use the disk for file access from TI Forth, TI
BASIC, etc. A clunky way to create a blank disk would be to delete the file “SCREENS” from
the disk after running DSK-HD by using file-access words described in Chapter 8. You can
(carefully!) change the name of the disk by editing the first 10 bytes of Forth screen 0 for a disk
in drive 0 and after setting DISK_LO to 0. Just remember to use names of no more than 10
characters that contain no spaces or periods. Spaces should be used after the name to fill out the
10 characters in this field.

 Appendix M Notes on Radix-100 Notation 217

 Appendix M Notes on Radix-100 Notation
TI Forth floating-point math routines use radix-100 format for floating-point numbers. The term
“radix” is used in mathematics to mean “number base”. We will use “radix 100” to describe the
base-100 or centimal number system and “radix 10” to describe the base-10 or decimal number
system. Radix-100 format is the same format used by the XML and GPL routines in the TI-
99/4A console. Each floating-point number is stored in 8 bytes (4 cells) with a sign bit, a 7-bit,
excess-64 (64-biased) integer exponent of the radix (100) and a normalized, 7-digit (1 radix-100
digit/byte) significand for a total of 8 bytes per floating point number. The signed, radix-100
exponent can be -64 to +63. (Keep in mind that the exponent is for radix-100 notation. Those
same exponents radix 10 would be -128 to +126.) The exponent is stored in the most significant
byte (MSB) biased by 64, i.e., 64 is added to the actual exponent prior to storing, i.e., -64 to +63
is stored as 0 to 127.

The significand (significant digits of the number) must be normalized, i.e., if the number being
represented is not zero, the MSB of the significand must always contain the first non-zero
(significant) radix-100 digit, with the radix exponent of such a value that the radix point
immediately follows the first digit. This is essentially scientific notation for radix 100. Each byte
contains one radix-100 digit of the number, which, of course, means that each byte can have a
value from 0 to 99 (0 to 63h) except for the first byte of a non-zero number, which must be 1 to
99. It is easy to view a radix-100 number as a radix-10 number by representing the radix-100
digits as pairs of radix-10 digits because radix 100 is the square of radix 10. In the following list
of largest and smallest possible 8-byte floating point numbers, the radix-100 representation is on
the left with spaces between pairs of radix-100 digits. The radix-16 (hexadecimal) internal
representation of each byte of the number is also shown:

• Largest positive floating point number [hexadecimal: 7F 63 63 63 63 63 63 63]:

99 . 99 99 99 99 99 99×10063= 99.999999999999×10126

= 9.9999999999999×10127

• Largest negative floating point number [hexadecimal: 80 9D 63 63 63 63 63 63]:

−99 . 99 99 99 99 99 99×10063=−99.999999999999×10126

=−9.9999999999999×10127

• Smallest positive floating point number [hexadecimal: 00 01 00 00 00 00 00 00]:

01 . 00 00 00 00 00 00×100−64= 1.000000000000×10−128

• Smallest negative floating point number [hexadecimal: FF FF 00 00 00 00 00 00]:

−01 . 00 00 00 00 00 00×100−64=−1.000000000000×10−128

The only difference in the internal storage of positive and negative floating point numbers is that
only the first word (2 bytes) of negative numbers is negated or complemented (two’s
complement).

A floating point zero is represented by zeroing only the first word. The remainder of the floating
point number does not need to be zeroed for the number to be treated as zero for all floating
point calculations.

218 Appendix N Adding True Lowercase Character Sets

 Appendix N Adding True Lowercase Char-
acter Sets

This appendix explains how to add true lowercase character sets to text, graphics and bitmap
modes of TI Forth.

 N.1 True Lowercase for Text and Graphics Modes

The following graphic shows the true lowercase character set the editor designed for text and
graphics modes:

We will store the character codes on system screen 41 (29h) to be loaded by code we will modify
on system screens 55 and 56. The screens that follow should be loaded to store the character
codes on screen 41 and FORGET the definition of TRUE_LC , which is no longer needed:

SCR #100
 0 (True lowercase characters for TEXT mode)
 1 BASE->R HEX 0000 VARIABLE TRUE_LC
 2 2010 , 0800 , 0000 , (`)
 3 0000 , 0038 , 043C , 443C , (a)
 4 0040 , 4078 , 4444 , 4478 , (b)
 5 0000 , 003C , 4040 , 403C , (c)
 6 0004 , 043C , 4444 , 443C , (d)
 7 0000 , 0038 , 447C , 4038 , (e)
 8 0018 , 2420 , 7020 , 2020 , (f)
 9 0000 , 003C , 443C , 0438 , (g)
 10 0040 , 4058 , 6444 , 4444 , (h)
 11 0010 , 0030 , 1010 , 107C , (i)
 12 0004 , 0004 , 0404 , 4438 , (j)
 13 0040 , 4044 , 4870 , 4844 , (k)
 14 0030 , 1010 , 1010 , 107C , (l)
 15 0000 , 0068 , 5454 , 5454 , (m) -->

 Appendix N Adding True Lowercase Character Sets 219

SCR #101
 0 (True lowercase characters for TEXT mode continued)
 1 0000 , 0058 , 6444 , 4444 , (n)
 2 0000 , 0038 , 4444 , 4438 , (o)
 3 0000 , 0078 , 4478 , 4040 , (p)
 4 0000 , 0038 , 443C , 0404 , (q)
 5 0000 , 0058 , 6440 , 4040 , (r)
 6 0000 , 003C , 4038 , 0478 , (s)
 7 0010 , 107C , 1010 , 1408 , (t)
 8 0000 , 0044 , 4444 , 4C34 , (u)
 9 0000 , 0044 , 4444 , 2810 , (v)
 10 0000 , 0044 , 4454 , 5428 , (w)
 11 0000 , 0044 , 2810 , 2844 , (x)
 12 0000 , 0044 , 4C34 , 0438 , (y)
 13 0000 , 007C , 0810 , 207C , (z)
 14 0018 , 2020 , 4020 , 2018 , ({)
 15 0010 , 1010 , 0010 , 1010 , (|) -->

SCR #102
 0 (True lowercase characters for TEXT mode concluded)
 1 0030 , 0808 , 0408 , 0830 , (})
 2 0000 , 2054 , 0800 , 0000 , (~)
 3 TRUE_LC 29 BLOCK 7C MOVE FLUSH FORGET TRUE_LC R->BASE
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

We now need to replace the code on screens 55 and 56 that uses GPL routine 4A to load
“lowercase” letters. In screen 55, replace

3300 834A ! 4A GPLLNK
with

29 BLOCK 3300 0F8 VMBW
and

2300 834A ! 4A GPLLNK
with

29 BLOCK 2300 0F8 VMBW

In screen 56, replace

B00 834A ! 4A GPLLNK
with

29 BLOCK B00 0F8 VMBW

220 N.2 True Lowercase for Bitmap mode

 N.2 True Lowercase for Bitmap mode

The following graphic shows the complete character set, with the true lowercase letters and the
‘@’ designed by the editor, for bitmap mode:

This character set is used principally by the 64-column editor via the word SMASH defined on
system screen 65. Designing the characters for a 37 matrix was quite a challenge. The ‘&’
should probably be re-designed.

The only change necessary here is to overwrite the character codes for the tiny character set on
system screen 67. Loading the following screens will accomplish this:

SCR #103
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS) BASE->R HEX
 1 0EEE VARIABLE TCHAR EEEE ,
 2 0000 , 0000 , () 0444 , 4404 , (!) 0AA0 , 0000 , (")
 3 08AE , AEA2 , (#) 04EC , 46E4 , ($) 0A24 , 448A , (%)
 4 06AC , 4A86 , (&) 0480 , 0000 , (') 0248 , 8842 , (()
 5 0842 , 2248 , (^0) 04EE , 4000 , (*) 0044 , E440 , (+)
 6 0000 , 0048 , (,) 0000 , E000 , (-) 0000 , 0004 , (.)
 7 0224 , 4488 , (/) 04AA , AAA4 , (0) 04C4 , 4444 , (1)
 8 04A2 , 488E , (2) 0C22 , C22C , (3) 02AA , AE22 , (4)
 9 0E8C , 222C , (5) 0688 , CAA4 , (6) 0E22 , 4488 , (7)
 10 04AA , 4AA4 , (8) 04AA , 622C , (9) 0004 , 0040 , (:)
 11 0004 , 0048 , (;) 0024 , 8420 , (<) 000E , 0E00 , (=)
 12 0084 , 2480 , (>) 04A2 , 4404 , (?) 04AE , AE86 , (@)
 13 04AA , EAAA , (A) 0CAA , CAAC , (B) 0688 , 8886 , (C)
 14 0CAA , AAAC , (D) 0E88 , C88E , (E) 0E88 , C888 , (F)
 15 -->

 Appendix N Adding True Lowercase Character Sets 221

 SCR #104
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS continued)
 1 04A8 , 8AA6 , (G) 0AAA , EAAA , (H) 0E44 , 444E , (I)
 2 0222 , 22A4 , (J) 0AAC , CAAA , (K) 0888 , 888E , (E)
 3 0AEE , AAAA , (M) 0AAE , EEAA , (N) 0EAA , AAAE , (0)
 4 0CAA , C888 , (P) 0EAA , AAEC , (Q) 0CAA , CAAA , (R)
 5 0688 , 422C , (S) 0E44 , 4444 , (T) 0AAA , AAAE , (U)
 6 0AAA , AA44 , (V) 0AAA , AEEA , (W) 0AA4 , 44AA , (X)
 7 0AAA , E444 , (Y) 0E24 , 488E , (Z) 0644 , 4446 , ([)
 8 0884 , 4422 , (\) 0C44 , 444C , (]) 044A , A000 , ($)
 9 0000 , 000F , (_) 0420 , 0000 , (`) 000E , 2EAE , (a)
 10 088C , AAAC , (b) 0006 , 8886 , (c) 0226 , AAA6 , (d)
 11 0004 , AE86 , (e) 0688 , E888 , (f) 0006 , A62C , (g)
 12 088C , AAAA , (h) 0404 , 4442 , (i) 0202 , 22A4 , (j)
 13 088A , ACAA , (k) 0444 , 4444 , (l) 000A , EEAA , (m)
 14 0008 , EAAA , (n) 0004 , AAA4 , (o) 000C , AC88 , (p)
 15 -->

SCR #105
 0 (DEFINITIONS FOR true lowercase TINY CHARACTERS concluded)
 1 0006 , A622 , (q) 0008 , E888 , (r) 0006 , 842C , (s)
 2 044E , 4442 , (t) 000A , AAA6 , (u) 000A , AAA4 , (v)
 3 000A , AEEA , (w) 000A , A4AA , (x) 000A , A62C , (y)
 4 000E , 248E , (z) 0644 , 8446 , ({) 0444 , 0444 , (|)
 5 0C44 , 244C , (}) 02E8 , 0000 , (~) 0EEE , EEEE , (DEL)
 6 TCHAR 43 BLOCK C2 MOVE FLUSH FORGET TCHAR R->BASE
 7
 8
 9
 10
 11
 12
 13
 14
 15

222 Appendix O TMS9900 Assembly Source Code for TI Forth

 Appendix O TMS9900 Assembly Source
Code for TI Forth

This appendix includes the original TMS9900 Assembly source code from the two 90-KB
diskettes made available to user groups when TI Forth was released into the Public Domain. The
editor has extensively annotated the code for BOOT (FORTH) and, less so, DRIVER. All such
annotations are preceded with “*++” in this hand-printing style font to distinguish them from the
original, which is in this BOLD, MONO-SPACED FONT.

The distributed diskettes were labeled “03NOV82” and “08DEC82”. Disk “03NOV82”
contained the following files:

ASMSRC
ASMSRC1
ASMSRC2
ASMSRC3

File 08DEC82 contained the following files:

BOOT
DRIVER
UTILEQU
UTILROM
UTILRAM

TI Forth can be generated from source code by following the procedure described in § O.4
Generating TI Forth from Source Code below.

 O.1 DRIVER—Part 1 of FORTHSAVE

DRIVER contains the system support for TI Forth, virtually all the functionality that the
Editor/Assembler cartridge loads in low memory expansion RAM, except that it is unique to TI
Forth's needs. It appears to the editor that DRIVER was initially intended to be the start-up
program because (1) there is quite a bit of extraneous code that is very similar to BOOT and (2)
loading ASMSRC followed by DRIVER followed by <ENTER> <ENTER>, actually appears to
properly start TI Forth with the exception that CIF is not properly initialized. The source code
that follows has been expanded into a single file:

 TITL 'FORTH DRIVER WITH UTIL'
 IDT 'FORTH'
**

*++ The TI Forth workspace registers
TEMP0 EQU 0
TEMP1 EQU 1
TEMP2 EQU 2
TEMP3 EQU 3
TEMP4 EQU 4
TEMP5 EQU 5
TEMP6 EQU 6
TEMP7 EQU 7
U EQU 8

 Appendix O TMS9900 Assembly Source Code for TI Forth 223

SP EQU 9
W EQU 10
LINK EQU 11
CRU EQU 12
IP EQU 13
R EQU 14
NEXT EQU 15
**

*++ TI Forth's workspace is 32 bytes at start of PAD (>8300->831F)
MAINWS EQU >8300 IN CONSOLE CPU RAM

KYSTAT EQU >837C *++ GPL status byte
KYCHAR EQU >8375 *++ keycode detected by keyboard scan routine
FAC EQU >834A FLOATING POINT ACCUMULATOR
SUBPTR EQU >8356 POINTS TO SUBROUTINE NAMES IN VDP

VSPTR EQU >836E *++ pointer to value stack in VDP RAM
DSKERR EQU >8350 DISK DSR ERROR CODES HERE
**
 DEF FORTH *++ not really necessary because we're not starting TI Forth from this program
 REF KEY,SEMIS
*

FF9900 EQU >A000 *++ pointer to TI Forth COLD start code
VDPSTA EQU >8802 *++ VDPram read status register
GRMWA EQU >9C02 *++ GROM write address register
GRMRA EQU >9802 *++ GROM read address register
**

*++ TI Forth's inner interpreter uses 26 bytes in PAD
 DORG >832E
DODOES DECT SP DUMMY COPY TO GET ADRESSES
 MOV W,*SP
 MOV LINK,W
DOCOL DECT R
 MOV IP,*R
 MOV W,IP
$NEXT MOV *IP+,W
DOEXEC MOV *W+,TEMP1
 B *TEMP1
$SEMIS MOV *R+,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
 DORG 0
UBASE BSS 6 BASE OF USER VARIABLES
$UCONS BSS 2 06 USER UCONS
$S0 BSS 2 08 USER S0
$R0 BSS 2 0A USER R0 { R0$
$U0 BSS 2 0C USER U0
 BSS 2 0E USER TIB
 BSS 2 10 USER WIDTH
 BSS 2 12 USER DP
$SYS BSS 2 14 USER SYS$
CURPO$ BSS 2 16 USER CURPOS
 BSS 2 18 USER INTLNK
 BSS 2 1A USER WARNING
 BSS 2 1C USER C/L$ { CL$
 BSS 2 1E USER FIRST$
 BSS 2 20 USER LIMIT$
 BSS 2 22 USER B/BUF$ { BBUF$
 BSS 2 24 USER B/SCR$ { BSCR$
$DKFLO BSS 2 26 USER DISK_LO (LOW DISK FENCE)
$DKFHI BSS 2 28 USER DISK_HI (HIGH DISK FENCE)
$DKSIZ BSS 2 2A USER DISK_SIZE (IN SCREENS)

224 O.1 DRIVER—Part 1 of FORTHSAVE

$DKBUF BSS 2 2C USER DISK_BUF (BUFFER LOC IN VDP. SIZE=1K) 1K)
$PABS BSS 2 2E USER PABS (AREA FOR PABS ETC.)
$SWDTH BSS 2 30 USER SCRN_WIDTH
$SSTRT BSS 2 32 USER SCRN_START
$SEND BSS 2 34 USER SCRN_END
$ISR BSS 2 36 USER ISR
$ALTI BSS 2 38 USER ALTIN
$ALTO BSS 2 3A USER ALTOUT
 BSS 2 3C USER FENCE
 BSS 2 3E USER BLK
 BSS 2 40 USER IN
$OUT BSS 2 42 USER OUT
 BSS 2 44 USER SCR
$OFFST BSS 2 46 USER OFFSET
 BSS 2 48 USER CONTEXT
 BSS 2 4A USER CURRENT
 BSS 2 4C USER STATE
 BSS 2 4E USER BASE
 BSS 2 50 USER DPL
 BSS 2 52 USER FLD
 BSS 2 54 USER CSP
 BSS 2 56 USER R# { RNUM
 BSS 2 58 USER HLD
 BSS 2 5A USER USE
 BSS 2 5C USER PREV
 BSS 2 5E
FORLNK BSS 2 60 USER FORTH_LINK
 BSS 2 62
 BSS 2 64 USER ECOUNT
UMAX BSS 0
*
*

*++ End of resident dictionary and start of optional/removable section of dictionary
 DORG >BC80
DPBASE BSS >4320 START OF RAM DICTIONARY
SPBASE BSS 0 BASE OF PARAMETER STACK *++ grows down toward HERE
 BSS 82 TEXT INPUT BUFFER *++ same address as base of stack
RBASE EQU >3FFE BASE OF RETURN STACK *++ grows down toward system support
*
*** UTILITY EQUATES ******
**
** COPY "DSK2.UTILEQU"
**
** vvvvvvvvvvvv UTILEQU vvvvv below vvvvvvvvvvvvvvvvvvvvvvvv
**
SCNKEY EQU >000E
XMLTAB EQU >0CFA XML TABLES (BASE)
FLAG2 EQU >8349
SCLEN EQU >8355
SCNAME EQU >8356
SUBSTK EQU >8373
CRULST EQU >83D0
SADDR EQU >83D2
GPLWS EQU >83E0 GPL/EXTENDED BASIC WORKSPACE
PAD EQU >8300
VDPRD EQU >8800 VDP read data address
VDPWD EQU >8C00 VDP write data address
VDPWA EQU >8C02 VDP write address address
R0LB EQU >83E1
R1LB EQU >83E3
R3LB EQU >83E7
**
** ^^^^^^^^^^^^ UTILEQU ^^^^^ above ^^^^^^^^^^^^^^^^^^^^^^^^
**
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 225

*++ This section of the program up to DORG >2010 is not necessary because we don't start TI Forth
*++ with this program. Once TI decided to develop the BOOT program (FORTH) to start TI Forth,
*++ this code was essentially abandoned. You can actually start TI Forth by loading (E/A option 3)
*++ the ASMSRC object file followed by this object file and then tapping <ENTER> to the "FILE NAME?"
*++ prompt and the subsequent "PROGRAM NAME?" prompt. There is, however, at least one problem
*++ with starting up this way, viz., a missing reference at >2006 to CIF, the integer-to-floating-point
*++ conversion routine, which could be remedied by adding the following code after "DATA ENTLNK":
*++ AORG >2006
*++ DATA CIF
*++ In addition to the above fix, you would need to have a disk in drive 0 (DSK1) with all the system
*++ screens/blocks in place and load the above object files from any drive except the first one.
*
 AORG >2002
 DATA ENTLNK PATCH TO MY ENTRY
*
 AORG >C000
FMOVE DECT SP COPY TO MOVE TO CONSOLE RAM
 MOV W,*SP
 MOV LINK,W
 DECT R
 MOV IP,*R
 MOV W,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
 MOV *R+,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
*
FORTH LIMI 0
 LWPI MAINWS
 LI TEMP1,FORTH-FMOVE
 LI TEMP2,FMOVE
 LI TEMP3,DODOES
MLOOP MOV *TEMP2+,*TEMP3+
 DECT TEMP1
 JNE MLOOP
*
*** INITIALIZE VDP STUFF
*
 LI TEMP0,>01B0 BLANK SCREEN
 BLWP @VWTR
 LI TEMP0,>030E SET COLOR TABLE AT >0380
 BLWP @VWTR
 LI TEMP0,>0401 SET PATTERN DESCRIPTOR TABLE >0800
 BLWP @VWTR
 LI TEMP0,>0506 SET SPRITE ATTRIBUTE TABLE >0300
 BLWP @VWTR
 LI TEMP0,>0601 SET SPRITE DESCRIPTOR TABLE >0800
 BLWP @VWTR
 LI TEMP0,>07F4 SET TEXTMODE COLORS
 BLWP @VWTR
 LI TEMP0,>2000 BLANK

 LI TEMP1,>960 TEXT-MODE SCREEN SIZE *++ should be 960 or >3C0
 LI TEMP2,>0 SCREEN STARTS AT 0
 BL @FILLER CLEAR SCREEN
 LI TEMP0,>FF00 CHAR FF

 LI TEMP1,>2048 BLOCK SIZE *++ should be 2048 or >800
 LI TEMP2,>800 STARTING LOCATION IN VDP
 BL @FILLER FILL AREA WITH FF'S
 LI TEMP0,>81F0

226 O.1 DRIVER—Part 1 of FORTHSAVE

 SWPB TEMP0
 MOVB TEMP0,@>83D4 USED TO UPDATE VDP REG EACH KEYSTROKE
 MOVB TEMP0,@VDPWA FORCE TEXT MODE
 SWPB TEMP0
 MOVB TEMP0,@VDPWA
 LI TEMP0,>900 VDP LOCATION
 MOV TEMP0,@FAC
 CLR TEMP1 CLEAR GPL STATUS
 MOVB TEMP1,@KYSTAT
 LI TEMP7,>3E0
 MOV TEMP7,@VSPTR
 BLWP @GPLLNK LOAD CAPITAL LETTER SHAPES
 DATA >0018
 LI TEMP2,>1200
 CB TEMP2,@3 IF BYTE @3 IN THE CONSOLE IS >12 IT'S A 99/4
 JEQ FOUR DON'T LOAD LOWER CASE IN A 99/4
 LI TEMP0,>0B00
 MOV TEMP0,@FAC
 MOVB TEMP1,@KYSTAT
 BLWP @GPLLNK LOAD LOWER CASE IN 99/4A
 DATA >004A
*
FOUR LI TEMP1,UBASE0
 B @FF9900 BRANCH TO ACMSRC
*
FILLER ORI TEMP2,>4000 SET BIT FOR VDP WRITE
 SWPB TEMP2
 MOVB TEMP2,@VDPWA LS BYTE FIRST
 SWPB TEMP2
 MOVB TEMP2,@VDPWA THEN MS BYTE
 NOP KILL TIME
FLLOOP MOVB TEMP0,@VDPWD WRITE A BYTE
 DEC TEMP1
 JNE FLLOOP NOT DONE, FILL ANOTHER
 B *LINK
*
 DORG >2010
*
$BUFF BSS 5*>404 I/O BUFFERS
$LO BSS 0
*

*++ beginning of BOOT (FORTH) load of DRIVER (1st part of FORTHSAVE)
 AORG $LO
*
*
*** INTERRUPT SERVICE
*
INT1 LI TEMP1,INT2 FIX 'NEXT' SO THAT INTERRUPT IS
 MOV TEMP1,@2*NEXT+MAINWS PROCESSED AT END OF
 LWPI >83C0 NEXT 'CODE' WORD
 RTWP
*
INT2 LIMI 0
 MOVB @>83D4,TEMP0
 SRL TEMP0,8
 ORI TEMP0,>100
 ANDI TEMP0,>FFDF
 BLWP @VWTR TURN OFF VDP INTERRUPTS
 LI NEXT,$NEXT RESTORE 'NEXT'
 SETO @INTACT
 DECT R SET UP RETURN LINKAGE
 MOV IP,*R
 LI IP,INT3
 MOV @$ISR(U),W DO THE FORTH ROUTINE
 B @DOEXEC
INT3 DATA $+2

 Appendix O TMS9900 Assembly Source Code for TI Forth 227

 DATA $+2
 MOV *R+,IP
 CLR @INTACT
 MOVB @>83D4,TEMP0
 SRL TEMP0,8
 AI TEMP0,>100
 MOVB @VDPSTA,TEMP1 REMOVE PENDING INTERRUPT
 BLWP @VWTR
 LIMI 2
 B *NEXT CONTINUE NORMAL TASK
*===
BKLINK MOV @INTACT,TEMP7
 JNE BKLIN1
 LIMI 2
BKLIN1 B *LINK
*===
*
SYS LIMI 0
 MOV @SYSTAB(TEMP1),TEMP0
 B *TEMP0
 DATA DSK CODE=-18 DRIVE SELECTION
 DATA DSK CODE=-16 READ DISK
 DATA DSK CODE=-14 WRITE DISK
 DATA GXY CODE=-12 GOTOXY
 DATA QKY CODE=-10 ?KEY
 DATA QTM CODE=-8 ?TERMINAL
 DATA CLF CODE=-6 CRLF
 DATA EMT CODE=-4 EMIT
 DATA KY CODE=-2 KEY
SYSTAB DATA SBW CODE=0 VSBW
 DATA MBW CODE=2 VMBW
 DATA SBR CODE=4 VSBR
 DATA MBR CODE=6 VMBR
 DATA WTR CODE=8 VWTR
 DATA GPL CODE=10 GPLLNK
 DATA XML CODE=12 XMLLNK
 DATA DSR CODE=14 DSRLNK
 DATA CLS CODE=16 CLS
 DATA FMT CODE=18 FORMAT-DISK
 DATA FILL CODE=20 VFILL
 DATA AOX CODE=22 VAND
 DATA AOX CODE=24 VOR
 DATA AOX CODE=26 VXOR
*
*== THIS IS A VDP SINGLE BYTE WRITE. CODE=0 ==============
*
SBW MOV *SP+,TEMP0 VDP ADDRESS (DESTINATION)
 MOV *SP+,TEMP1 CHARACTER TO WRITE
 SWPB TEMP1 GET IN LEFT BYTE
 BLWP @VSBW
 B @BKLINK
*
*== THIS IS A VDP MULTI BYTE WRITE. CODE=2 ==============
*
MBW MOV *SP+,TEMP2 NUMBER OF BYTE TO MOVE
 MOV *SP+,TEMP0 VDP ADDRESS (DESTINATION)
 MOV *SP+,TEMP1 RAM ADDRESS (SOURCE)
 BLWP @VMBW
 B @BKLINK
*
*== THIS IS A VDP SINGLE BYTE READ. CODE=4 ==============
*
SBR MOV *SP,TEMP0 VDP ADDRESS (SOURCE)
 BLWP @VSBR
 SRL TEMP1,8 CHARACTER TO RIGHT HALF FOR FORTH
 MOV TEMP1,*SP STACK IT

228 O.1 DRIVER—Part 1 of FORTHSAVE

 B @BKLINK
*
*== THIS IS A VDP MULTI BYTE READ. CODE=6 ==============
*
MBR MOV *SP+,TEMP2 NUMBER OF BYTES TO READ
 MOV *SP+,TEMP1 RAM ADDRESS (DESTINATION)
 MOV *SP+,TEMP0 VDP ADDRESS (SOURCE)
 BLWP @VMBR
 B @BKLINK
*
*== VDP REGISTER WRITE. CODE=8 ==============
*
WTR MOV *SP+,TEMP1 VDP REGISTER NUMBER
 MOV *SP+,TEMP0 DATA FOR REGISTER
 SWPB TEMP1 GET REGISTER TO LEFT BYTE
 MOVB TEMP1,TEMP0 PLACE WITH DATA
 BLWP @VWTR
 B @BKLINK
*
*== THIS IS THE GPL LINK UTILITY. CODE=10 ==============
*
GPL CLR TEMP0
 MOVB TEMP0,@KYSTAT
 LI TEMP0,>0420 CONSTRUCT THE BLWP INSTRUCTION
 LI TEMP1,GPLLNK TO THE GPLLNK UTILITY
 MOV *SP+,TEMP2 WITH THIS DATA IDENTIFYING THE ROUTINE
 LI TEMP3,>045B CONSTRUCT THE B *LINK INSTRUCTION
 MOV LINK,TEMP4 SAVE LINK ADDRESS
 BL @2*TEMP0+MAINWS EXECUTE THE ABOVE INSTRUCTIONS
 MOV TEMP4,LINK AND RECONSTRUCT LINK
 B @BKLINK
*
*== THIS IS THE XML LINK UTILITY. CODE=12 ==============
*
XML LI TEMP0,>0420 CONSTRUCT THE BLWP INSTRUCTION
 LI TEMP1,XMLLNK TO THE XMLLNK UTILITY
 MOV *SP+,TEMP2 WITH THIS DATA IDENTIFYING THE ROUTINE
 LI TEMP3,>045B CONSTRUCT THE B *LINK INSTRUCTION
 MOV LINK,TEMP4 SAVE LINK ADDRESS
 BL @2*TEMP0+MAINWS EXECUTE THE ABOVE INSTRUCTIONS
 MOV TEMP4,LINK AND RECONSTRUCT LINK
 B @BKLINK
*
*== THIS IS THE DSR LINK UTILITY. CODE=14 ==============
*
DSR LI TEMP0,>0420 CONSTRUCT THE BLWP INSTRUCTION
 LI TEMP1,DSRLNK TO THE DSRLNK UTILITY
 MOV *SP+,TEMP2 THIS DATUM SELECTS DSR OR SUBROUTINE
 LI TEMP3,>045B CONSTRUCT THE B *LINK INSTRUCTION
 MOV LINK,TEMP4 SAVE LINK ADDRESS
 BL @2*TEMP0+MAINWS EXECUTE THE ABOVE INSTRUCTIONS
 MOV TEMP4,LINK AND RECONSTRUCT LINK
 B @BKLINK
*
*== THIS IS THE SCREEN CLEARING UTILITY. CODE=16 ==========
*
CLS MOV @$SSTRT(U),TEMP2 BEGINNING OF SCREEN IN VDP
 MOV @$SEND(U),TEMP1 END OF SCREEN IN VDP
 S TEMP2,TEMP1 SCREEN SIZE
 LI TEMP0,>2000 BLANK CHARACTER
 MOV LINK,TEMP7
 BL @FILL1
 MOV TEMP7,LINK
 B @BKLINK
*
*== THIS IS THE DISK FORMATTER. CODE=18 =================

 Appendix O TMS9900 Assembly Source Code for TI Forth 229

*
FMT MOV @$DKBUF(U),TEMP0 VDP BUFFER START ADDRESS (3300 BYTES)
 MOV TEMP0,@FAC+4
 MOV *SP+,TEMP0
 SLA TEMP0,8 DRIVE # TO LEFT BYTE
 AI TEMP0,40 40 TRACKS
 MOV TEMP0,@FAC+2
 MOV @$PABS(U),TEMP0 SETUP SUBR NAME (>11)
 MOV TEMP0,@SUBPTR
 LI TEMP1,DFMT
 LI TEMP2,2
 BLWP @VMBW
 BLWP @DSRLNK
 DATA >A
 B @BKLINK
DFMT DATA >0111 USED BY VMBW ABOVE
*
*== THIS IS THE VDP FILL ROUTINE. CODE=20
*
FILL MOV *SP+,TEMP0 FILL CHARACTER
 SWPB TEMP0 TO LEFT BYTE
 MOV *SP+,TEMP1 FILL COUNT
 MOV *SP+,TEMP2 ADDRESS TO START VDP FILL
 MOV LINK,TEMP7
 BL @FILL1
 MOV TEMP7,LINK
 B @BKLINK
*===
FILL1 ORI TEMP2,>4000 SET BIT FOR VDP WRITE
 SWPB TEMP2
 MOVB TEMP2,@VDPWA LS BYTE FIRST
 SWPB TEMP2
 MOVB TEMP2,@VDPWA THEN MS BYTE
 NOP KILL TIME
FLOOP MOVB TEMP0,@VDPWD WRITE A BYTE
 DEC TEMP1
 JNE FLOOP NOT DONE, FILL ANOTHER
 B *LINK
*===
*
*== VDP BYTE 'AND' 'OR' 'XOR' ROUTINES. CODE=22,24,26 ===
*
AOX MOV *SP+,TEMP2 VDP ADDRESS
 SWPB TEMP2
 MOVB TEMP2,@VDPWA LS BYTE FIRST
 SWPB TEMP2
 MOVB TEMP2,@VDPWA THEN MS BYTE
 NOP KILL TIME
 MOVB @VDPRD,TEMP3 READ BYTE
 MOV *SP+,TEMP0 GET DATA TO OPERATE WITH
 SWPB TEMP0 TO LEFT BYTE
*** NOW DO REQUESTED OPERATION *****************
 CI TEMP1,24
 JEQ DOOR
 JGT DOXOR
 INV TEMP3 THESE TWO INSTRUCTIONS
 SZC TEMP3,TEMP0 PERFORM AN 'AND'
 JMP FINAOX
DOOR SOC TEMP3,TEMP0 PERFORM OR
 JMP FINAOX
DOXOR XOR TEMP3,TEMP0 PERFORM XOR
FINAOX LI TEMP1,1
 MOV LINK,TEMP7
 BL @FILL1
 MOV TEMP7,LINK
 B @BKLINK

230 O.1 DRIVER—Part 1 of FORTHSAVE

*
*===
*
*== KEY ROUTINE CODE= -2 =================================
*
KY MOV @$ALTI(U),TEMP0
 JEQ KEY0
 CLR TEMP7
 MOVB TEMP7,@KYSTAT
 INC TEMP0
 BLWP @VSBR
 ANDI TEMP1,>1F00
 BLWP @VSBW
 MOV TEMP0,TEMP1
 AI TEMP1,8
 MOV TEMP1,@SUBPTR
 BLWP @DSRLNK
 DATA >8
 DECT TEMP0
 BLWP @VSBR
 SRL TEMP1,8
 MOV TEMP1,TEMP0
 B @BKLINK
KEY0 MOV @KEYCNT,TEMP7
 INC TEMP7
 JNE KEY1
 MOV @CURPO$(U),TEMP0
 BLWP @VSBR READ CHARACTER AT CURSOR POSITION
 MOVB TEMP1,@CURCHR AND SAVE IT
 LI TEMP1,>1E00 PLACE CURSOR CHARACTER ON SCREEN
 BLWP @VSBW
*
KEY1 LI TEMP4,>2000 MASK TO CHECK STATUS
 BLWP @KSCAN
 MOVB @KYSTAT,TEMP0
 COC TEMP4,TEMP0
 JEQ KEY2 JMP IF KEY WAS PRESSED
*
 CI TEMP7,100 NO KEY PRESSED
 JNE KEY3
 MOVB @CURCHR,TEMP1
 JMP KEY5
*
KEY3 CI TEMP7,200
 JNE KEY4
 CLR TEMP7
 LI TEMP1,>1E00 CURSOR CHAR
KEY5 MOV @CURPO$(U),TEMP0
 BLWP @VSBW
KEY4 MOV TEMP7,@KEYCNT
 MOV @INTACT,TEMP7
 JNE KEY6
 LIMI 2
KEY6 DECT IP THIS WILL RE-EXECUTE KEY
 B *NEXT
*KE DATA KEY,SEMIS
*
*
KEY2 SETO @KEYCNT KEY WAS PRESSED
 MOV @CURPO$(U),TEMP0 RESTORE CHARACTER AT CURSOR LOCATION
 MOVB @CURCHR,TEMP1
 BLWP @VSBW
 MOVB @KYCHAR,TEMP0 PUT CHAR IN RIGHT HALF OF TEMP0
 SRL TEMP0,8
 B @BKLINK
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 231

*== EMIT ROUTINE CODE= -4 ================================
*
EMT MOV TEMP2,TEMP1
 MOV @$ALTO(U),TEMP0
 JEQ EMIT0
 CLR TEMP7 ALTOUT ACTIVE
 MOVB TEMP7,@KYSTAT
 DEC TEMP0
 SWPB TEMP1
 BLWP @VSBW
 INCT TEMP0
 BLWP @VSBR
 ANDI TEMP1,>1F00
 BLWP @VSBW
 AI TEMP0,8
 MOV TEMP0,@SUBPTR
 BLWP @DSRLNK
 DATA >8
 B @BKLINK
*
EMIT0 CI TEMP1,7 IS IT A BELL?
 JNE NOTBEL
 CLR TEMP2
 MOVB TEMP2,@KYSTAT
 MOVB @GRMSAV,@GRMWA RESTORE GROM ADDRESS
 NOP
 MOVB @GRMSAV+1,@GRMWA
 BLWP @GPLLNK
 DATA >0036 EMIT ERROR TONE
 JMP EMEXIT
*
NOTBEL CI TEMP1,8 IS IT A BACKSPACE?
 JNE NOTBS
 LI TEMP1,>2000
 MOV @CURPO$(U),TEMP0
 BLWP @VSBW
 JGT DECCUR
 JMP EMEXIT
DECCUR DEC @CURPO$(U)
 JMP EMEXIT
*
NOTBS CI TEMP1,>A IS IT A LINE FEED?
 JNE NOTLF
 MOV @$SEND(U),TEMP7
 S @$SWDTH(U),TEMP7
 C @CURPO$(U),TEMP7
 JHE SCRLL
 A @$SWDTH(U),@CURPO$(U)
 JMP EMEXIT
SCRLL MOV LINK,TEMP7
 BL @SCROLL
 MOV TEMP7,LINK
 JMP EMEXIT
*
*** SCROLLING ROUTINE
*
SCROLL MOV @$SSTRT(U),TEMP0 VDP ADDR
 LI TEMP1,LINBUF BUFFER
 MOV @$SWDTH(U),TEMP2 COUNT
 A TEMP2,TEMP0 START AT LINE 2
SCROL1 BLWP @VMBR
 S TEMP2,TEMP0 ONE LINE BACK TO WRITE
 BLWP @VMBW
 A TEMP2,TEMP0 TWO LINES AHEAD FOR NEXT READ
 A TEMP2,TEMP0
 C TEMP0,@$SEND(U) END OF SCREEN?

232 O.1 DRIVER—Part 1 of FORTHSAVE

 JL SCROL1
 MOV TEMP2,TEMP1 BLANK BOTTOM ROW OF SCREEN
 LI TEMP0,>2000 BLANK
 S @$SEND(U),TEMP2
 NEG TEMP2 NOW CONTAINS ADDRESS OF START OF LAST LINE
 MOV LINK,TEMP6
 BL @FILL1 WRITE THE BLANKS
 B *TEMP6
*
NOTLF CI TEMP1,>D IS IT A CARRIAGE RETURN?
 JNE NOTCR
 CLR TEMP0
 MOV @CURPO$(U),TEMP1
 MOV TEMP1,TEMP3
 S @$SSTRT(U),TEMP1 ADJUSTED FOR SCREEN NOT AT 0
 MOV @$SWDTH(U),TEMP2
 DIV TEMP2,TEMP0
 S TEMP1,TEMP3
 MOV TEMP3,@CURPO$(U)
 JMP EMEXIT
*
NOTCR SWPB TEMP1 ASSUME IT IS A PRINTABLE CHARACTER
 MOV @CURPO$(U),TEMP0
 BLWP @VSBW
 MOV @$SEND(U),TEMP2
 DEC TEMP2
 C TEMP0,TEMP2
 JNE NOTCR1
 MOV @$SEND(U),TEMP0
 S @$SWDTH(U),TEMP0 WAS LAST CHAR ON SCREEN. SCROLL
 MOV TEMP0,@CURPO$(U)
 JMP SCRLL
NOTCR1 INC TEMP0 NO SCROLL NECESSARY
 MOV TEMP0,@CURPO$(U)
*
EMEXIT B @BKLINK
*
*== CRLF ROUTINE CODE= -6 ================================
*
CLF MOV LINK,TEMP5
 LI TEMP2,>000D
 BL @EMT
 LI TEMP2,>000A
 LIMI 0 PREVIOUS CALL TO EMT ALTERED INT MASK
 BL @EMT
 MOV TEMP5,LINK
 B @BKLINK
*
*== ?TERMINAL ROUTINE CODE= -8 ============================
*
QTM BLWP @KSCAN
 MOVB @KYCHAR,TEMP0
 SRL TEMP0,8
 CI TEMP0,>2
 JEQ QTERM1
 CLR TEMP0
QTERM1 B @BKLINK
*
*== ?KEY ROUTINE CODE= -10 ================================
*
QKY BLWP @KSCAN
 MOVB @KYCHAR,TEMP0
 SRL TEMP0,8
 CI TEMP0,>00FF
 JNE QKEY1
 CLR TEMP0

 Appendix O TMS9900 Assembly Source Code for TI Forth 233

QKEY1 B @BKLINK
*
*== GOTOXY ROUTINE CODE= -12 ==============================
*
GXY MPY @$SWDTH(U),TEMP3
 A TEMP2,TEMP4 POSITION WITHIN SCREEN
 A @$SSTRT(U),TEMP4 ADD VDP OFFSET TO SCREEN TOP
 MOV TEMP4,@CURPO$(U)
 B @BKLINK
*
*** ENTRY POINT FOR DISK HANDLING ROUTINES
*

*++ only used for TI Forth screen/block reads and writes.
DSK MOV TEMP1,TEMP7 SAVE CODE OF DISK ROUTINE
 MOV @$PABS(U),TEMP0
 LI TEMP1,>0100 SET UP VDP FOR DISK DSR
 BLWP @VSBW LEVEL ONE R/W ACCESS
 INC TEMP0
 LI TEMP1,>1000
 BLWP @VSBW
 MOV TEMP4,TEMP1 ADDRESS TO TEMP1
 CI TEMP7,-14
 JNE NOTWD
*
*** DISK WRITE ROUTINE CODE=-14
*

*++ writes one block of B/BUF bytes to 4 sectors of the disk
 C TEMP2,@$DKFLO(U) TEST DISK FENCES
 JHE DKWT1
DKWT0 LI TEMP0,>B
 JMP DKEXIT
DKWT1 C TEMP2,@$DKFHI(U)
 JHE DKWT0
 MOV @$DKBUF(U),TEMP0 VDP BUFFER
 MOV TEMP2,TEMP5 SAVE BLOCK #
 MOV TEMP3,TEMP2 BYTES/BLOCK
 BLWP @VMBW
 CLR TEMP4
 DIV @$DKSIZ(U),TEMP4 BLOCK # IN TEMP5
 INC TEMP4
 SWPB TEMP4
 MOV TEMP4,@FAC+2
 SLA TEMP5,2 CONV BLOCK # TO SECT #
 MOV TEMP5,@FAC+6
 LI TEMP6,4 SET COUNTER
 MOV @$DKBUF(U),@FAC+4
WTLOOP MOV @$PABS(U),@SUBPTR
 BLWP @DSRLNK
 DATA >A
 MOVB @DSKERR,TEMP7
 JNE DKERR
 DEC TEMP6 CHECK LOOP COUNT
 JEQ DSKDON
 MOV @FAC,@FAC+6
 INC @FAC+6
 LI TEMP0,256
 A TEMP0,@FAC+4
 JMP WTLOOP
DKERR LI TEMP0,6
 JMP DKEXIT
DSKDON CLR TEMP0
*
DKEXIT B @BKLINK
*
*

234 O.1 DRIVER—Part 1 of FORTHSAVE

NOTWD CI TEMP7,-16
 JNE NOTRD
*
*** DISK READ ROUTINES CODE=-16
*

*++ reads 4 sectors from disk and copies B/BUF bytes to the requested block buffer
 MOV TEMP2,TEMP5 SAVE BLK#
 CLR TEMP4
 DIV @$DKSIZ(U),TEMP4 BLOCK # IN TEMP5
 INC TEMP4
 SWPB TEMP4
 INC TEMP4 SET BIT FOR READ
 MOV TEMP4,@FAC+2
 SLA TEMP5,2
 MOV TEMP5,@FAC+6
 MOV @$PABS(U),TEMP4
 LI TEMP6,4 INIT COUNTER
 MOV @$DKBUF(U),@FAC+4
RDLOOP MOV TEMP4,@SUBPTR
 BLWP @DSRLNK
 DATA >A
 MOVB @DSKERR,TEMP7
 JNE DKERR
 DEC TEMP6
 JEQ RDDONE
 MOV @FAC,@FAC+6
 INC @FAC+6
 LI TEMP0,256
 A TEMP0,@FAC+4
 JMP RDLOOP
RDDONE MOV @$DKBUF(U),TEMP0 VDP BUFFER
 MOV TEMP3,TEMP2 #BYTES/BLOCK
 BLWP @VMBR
 JMP DSKDON
*
*
NOTRD EQU $
*
*** DRIVE SELECTION ROUTINE CODE =-18
*
 CLR TEMP0
DRV1 DEC TEMP2
 JLT DRV2
 A @$DKSIZ(U),TEMP0
 JMP DRV1
DRV2 B @BKLINK
*
*===
*

*++ initial values for first 27 user variables—COLD resets user variable table to these
UBASE0 BSS 6 BASE OF USER VARIABLES
 DATA UBASE0 06 USER UCONS
 DATA SPBASE 08 USER S0
 DATA RBASE 0A USER R0 { R0$
 DATA $UVAR 0C USER U0
 DATA SPBASE 0E USER TIB
 DATA 31 10 USER WIDTH
 DATA DPBASE 12 USER DP
 DATA SYS 14 USER SYS$
 DATA 0 16 USER CURPOS
 DATA INT1 18 USER INTLNK
 DATA 1 1A USER WARNING
 DATA 64 1C USER C/L$ { CL$
 DATA $BUFF 1E USER FIRST$
 DATA $LO 20 USER LIMIT$

 Appendix O TMS9900 Assembly Source Code for TI Forth 235

 DATA 1024 22 USER B/BUF$ { BBUF$
 DATA 1 24 USER B/SCR$ { BSCR$
 DATA 1 26 USER DISK_LO (LOW DISK FENCE)
 DATA 90 28 USER DISK_HI (HIGH DISK FENCE)
 DATA 90 2A USER DISK_SIZE (IN SCREENS)
 DATA >1000 2C USER DISK_BUF (BUFFER LOC IN VDP. SIZE=1K) 1K)
 DATA >460 2E USER PABS (AREA FOR PABS ETC.)
 DATA 40 30 USER SCRN_WIDTH
 DATA 0 32 USER SCRN_START
 DATA 960 34 USER SCRN_END
 DATA INT1 36 USER ISR
 DATA 0 38 USER ALTIN
 DATA 0 3A USER ALTOUT
*
$UVAR BSS >80 USER VARIABLE AREA
*
**
** COPY "DSK2.UTILROM"
**
** vvvvvvvvvvvv UTILROM vvvvv below vvvvvvvvvvvvvvvvvvvvvvvv
**
C100 DATA 100
H20 EVEN
H2000 DATA >2000
DECMAL TEXT '.'
HAA BYTE >AA
 EVEN
*
* Utility Vectors
*
GPLLNK DATA UTILWS,GLENTR Link to GROM routines
XMLLNK DATA UTILWS,XMLENT Link to ROM routines
KSCAN DATA UTILWS,KSENTR Keyboard scan
VSBW DATA UTILWS,VSBWEN VDP single byte write
VMBW DATA UTILWS,VMBWEN VDP multiple byte write
VSBR DATA UTILWS,VSBREN VDP single byte read
VMBR DATA UTILWS,VMBREN VDP multiple byte read
VWTR DATA UTILWS,VWTREN VDP write to register
DSRLNK DATA DLNKWS,DLENTR Link to device service routine
*
*===
ENTLNK MOV R11,@SVGPRT Save return to GPL interpreter
 MOVB @GRMRA,R1 Save GROM address of XML to
 SWPB R1 this routine.
 MOVB @GRMRA,R1
 SWPB R1
 AI R1,-3
 MOV R1,@GRMSAV
 LI R1,RTFGPL Change XML vectors
 MOV R1,@>2000 for Extended BASIC
 MOV R1,@>2002 for Editor/Assembler
 B @FORTH Go to FORTH
*
*==
* LINK TO SYSTEM XML UTILITIES
*
XMLENT MOV *R14+,@GPLWS+2 Get argument
 LWPI GPLWS Select GPL workspace
 MOV R11,@UTILWS+22 Save GPL return address
 MOV R1,R2 Make a copy of argument
 CI R1,>8000 Direct address in ALC?
 JH XML30 We have the address
 SRL R1,12
 SLA R1,1
 SLA R2,4
 SRL R2,11

236 O.1 DRIVER—Part 1 of FORTHSAVE

 A @XMLTAB(R1),R2
 MOV *R2,R2
XML30 BL *R2
 LWPI UTILWS GET BACK TO RIGHT WS
 MOV R11,@GPLWS+22 Restore GPL return address
 RTWP
*
*===
*** Link to GPL utilities
*
GLENTR MOVB @SUBSTK,R2 Fetch GPL subroutine stack ptr
 SRL R2,8 Make it an index
 AI R2,PAD
 INCT R2
 MOV @GRMSAV,R1 Push XML address for return
 MOVB R1,*R2
 SWPB R1
 MOVB R1,@1(R2)
 SWPB R2 Adjust stack pointer
 MOVB R2,@SUBSTK
 MOVB *R14+,@GRMWA Set up address to call
 MOVB *R14+,@GRMWA and second byte, adjusting return
 LWPI GPLWS
 MOV @SVGPRT,R11
 RT Return to GPL
*
*** Return to assembly language from GPL
*
RTFGPL LWPI UTILWS Select utility workspace
 RTWP Return to calling AL routine
*
*==
* KEYBOARD SCAN
*
KSENTR LWPI GPLWS
 MOV R11,@UTILWS+22 Save GPL return address
 BL @SCNKEY
 LWPI UTILWS
 MOV R11,@GPLWS+22 Restore GPL return address
 RTWP
*
*==
* VDP UTILITIES
*
** VDP single byte write
*
VSBWEN BL @WVDPWA Write out address
 MOVB @2(R13),@VDPWD Write data
 RTWP Return to calling program
*
** VDP multiple byte write
*
VMBWEN BL @WVDPWA Write out address
VWTMOR MOVB *R1+,@VDPWD Write a byte
 DEC R2 Decrement byte count
 JNE VWTMOR More to write?
 RTWP Return to calling Program
*
** VDP single byte read
*
VSBREN BL @WVDPRA Write out address
 MOVB @VDPRD,@2(R13) Read data
 RTWP Return to calling program
*
** VDP multiple byte read
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 237

VMBREN BL @WVDPRA Write out address
VRDMOR MOVB @VDPRD,*R1+ Read a byte
 DEC R2 Decrement byte count
 JNE VRDMOR More to read?
 RTWP Return to calling program
*
** VDP write to register
*
VWTREN MOV *R13,R1 Get register number and value
 MOVB @1(R13),@VDPWA Write out value
 ORI R1,>8000 Set for register write
 MOVB R1,@VDPWA Write out register number
 RTWP Return to calling program
*
** Set up to write to VDP
*
WVDPWA LI R1,>4000
 JMP WVDPAD
*
** Set up to read VDP
*
WVDPRA CLR R1
*
** Write VDP address
*
WVDPAD MOV *R13,R2 Get VDP address
 MOVB @R2LB,@VDPWA Write low byte of address
 SOC R1,R2 Properly adjust VDP write bit
 MOVB R2,@VDPWA Write high byte of address
 MOV @2(R13),R1 Get CPU RAM address
 MOV @4(R13),R2 Get byte count
 RT Return to calling routine
*
*===
* CIF - Convert integer to floating *
*
CIF LI R4,FAC Will convert into the FAC
 MOV *R4,R0 Get integer into register
 MOV R4,R6 Copy ptr to FAC to clear it
 CLR *R6+ Clear FAC,FAC+1
 CLR *R6+ IN CASE HAD A STRING IN FAC
 MOV R0,R5 IS INTEGER EQUAL TO ZERO?
 JEQ CIFRT YES - ZERO RESULT AND RETURN
 ABS R0 GET ABS VALUE OF ARG
 LI R3,>40 GET EXPONENT BIAS
 CLR *R6+ CLEAR WORDS IN RESULT THAT
 CLR *R6 MIGHT NOT GET A VALUE
 CI R0,100 IS INTEGER < 100?
 JL CIF02 YES-JUST PUT IN 1ST FRACTION
* PART
 CI R0,10000 NO-IS ARG < 100,2?
 JL CIF01 YES-JUST 1 DIVISION NECESSARY
* NO - 2 DIVISIONS ARE NECESSARY
 INC R3 ADD 1 TO EXPONENT FOR 1ST DIV
 MOV R0,R1 PUT # IN LOW ORDER WORD FOR
* THE DIVIDE
 CLR R0 CLEAR HIGH ORDER WORD FOR THE
* DIVIDE
 DIV @C100,R0 DIVIDE BY THE RADIX
 MOVB @R1LB,@3(R4) MOVE THE RADIX DIGIT IN
CIF01
 INC R3 ADD 1 TO EXPONENT FOR DIVIDE
 MOV R0,R1 PUT IN LOW ORDER FOR DIVIDE
 CLR R0 CLEAR HIGH ORDER FOR DIVIDE
 DIV @C100,R0 DIVIDE BY THE RADIX
 MOVB @R1LB,@2(R4) PUT NEXT RADIX DIGIT IN

238 O.1 DRIVER—Part 1 of FORTHSAVE

CIF02
 MOVB @R0LB,@1(R4) PUT HIGHEST ORDER RADIX DIGIT
* IN
 MOVB @R3LB,*R4 PUT EXPONENT IN
 INV R5 IS RESULT POSITIVE?
 JLT CIFRT YES - SIGN IS CORRECT
 NEG *R4 NO - MAKE IT NEGATIVE
CIFRT RT
*
*===
*** Link to device service routine
*
DLENTR MOV *R14+,R5 Fetch program type for link
 SZCB @H20,R15 Reset equal bit
 MOV @SCNAME,R0 Fetch pointer into PAB
 MOV R0,R9 Save pointer
 AI R9,-8 Adjust pointer to flag byte
 BLWP @VSBR Read device name length
 MOVB R1,R3 Store it elsewhere
 SRL R3,8 Make it a word value
 SETO R4 Initialize a counter
 LI R2,NAMBUF Point to NAMBUF
LNK$LP INC R0 Point to next char of name
 INC R4 Increment character counter
 C R4,R3 End of name?
 JEQ LNK$LN Yes
 BLWP @VSBR Read current character
 MOVB R1,*R2+ Move it to NAMBUF
 CB R1,@DECMAL Is it a decimal point?
 JNE LNK$LP No
LNK$LN MOV R4,R4 Is name length zero?
 JEQ LNKERR Yes, error
 CI R4,7 Is name length > 7?
 JGT LNKERR Yes, error
 CLR @CRULST
 MOV R4,@SCLEN-1 Store name length for search
 MOV R4,@SAVLEN Save device name length
 INC R4 Adjust it
 A R4,@SCNAME Point to position after name
 MOV @SCNAME,@SAVPAB Save pointer into device name
*
*** Search ROM CROM GROM for DSR
*
SROM LWPI GPLWS Use GPL workspace to search
 CLR R1 Version found of DSR etc.
 LI R12,>0F00 Start over again
NOROM MOV R12,R12 Anything to turn off
 JEQ NOOFF No
 SBZ 0 Yes, turn it off
NOOFF AI R12,>0100 Next ROM'S turn on
 CLR @CRULST Clear in case we're finished
 CI R12,>2000 At the end
 JEQ NODSR No more ROMs to turn on
 MOV R12,@CRULST Save address of next CRU
 SBO 0 Turn on ROM
 LI R2,>4000 Start at beginning
 CB *R2,@HAA Is it a valid ROM?
 JNE NOROM No
 A @TYPE,R2 Go to first pointer
 JMP SGO2
SGO MOV @SADDR,R2 Continue where we left off
 SBO 0 Turn ROM back on
SGO2 MOV *R2,R2 Is address a zero
 JEQ NOROM Yes, no program to look at
 MOV R2,@SADDR Remember where we go next
 INCT R2 Go to entry point

 Appendix O TMS9900 Assembly Source Code for TI Forth 239

 MOV *R2+,R9 Get entry address
*
*** See if name matches
*
 MOVB @SCLEN,R5 Get length as counter
 JEQ NAME2 Zero length, don't do match
 CB R5,*R2+ Does length match?
 JNE SGO No
 SRL R5,8 Move to right place
 LI R6,NAMBUF Point to NAMBUF
NAME1 CB *R6+,*R2+ Is character correct?
 JNE SGO No
 DEC R5 More to look at?
 JNE NAME1 Yes
NAME2 INC R1 Next version found
 MOV R1,@SAVVER Save version number
 MOV R9,@SAVENT Save entry address
 MOV R12,@SAVCRU Save CRU address
 BL *R9 Match, call subroutine
 JMP SGO Not right version
 SBZ 0 Turn off ROM
 LWPI DLNKWS Select DSRLNK workspace
 MOV R9,R0 Point to flag byte in PAB
 BLWP @VSBR Read flag byte
 SRL R1,13 Just want the error flags
 JNE IOERR Error!
 RTWP
*
*** Error handling
*
NODSR LWPI DLNKWS Select DSRLNK workspace
LNKERR CLR R1 Clear the error flags
IOERR SWPB R1
 MOVB R1,*R13 Store error flags in calling R0
 SOCB @H20,R15 Indicate an error occured
 RTWP Return to caller
**
** ^^^^^^^^^^^^ UTILROM ^^^^^ above ^^^^^^^^^^^^^^^^^^^^^^^^
**
** COPY "DSK2.UTILRAM"
**
** vvvvvvvvvvvv UTILRAM vvvvv below vvvvvvvvvvvvvvvvvvvvvvvv
**
SVGPRT DATA 0 Save GPL return address
SAVCRU DATA 0 CRU address of peripheral
SAVENT DATA 0 Entry address of DSR
SAVLEN DATA 0 Save device name length
SAVPAB DATA 0 Ptr into device name in PAB
SAVVER DATA 0 Version number of DSR
NAMBUF DATA 0,0,0,0
*
*** General utility workspace registers (Overlaps next WS)
UTILWS DATA 0,0
 BYTE 0
R2LB BYTE 0
*
*** DSR link routine workspace registers (Overlaps prev. WS)
DLNKWS DATA 0,0,0,0,0
TYPE DATA 0,0,0,0,0,0,0,0,0,0,0
*
** ^^^^^^^^^^^^ UTILRAM ^^^^^ above ^^^^^^^^^^^^^^^^^^^^^^^^
**
*===
LINBUF BSS 40 BUFFER FOR SCROLLING
KEYCNT DATA -1 USED IN CURSOR FLASH LOGIC
CURCHR BSS 2 CHAR AT CURSOR POSITION

240 O.1 DRIVER—Part 1 of FORTHSAVE

GRMSAV BSS 2 SAVE GROM ADDRESS DURING DSRLNK
INTACT DATA 0 NON-ZERO DURING INTERRUPT SERVICE
*
*===
*
 END

 O.2 ASMSRC—Part 2 of FORTHSAVE

ASMSRC contains the resident portion of the TI Forth dictionary, which includes the routine that
initializes the system. The source code that follows has been expanded into a single file:

** COPY "DSK2.ASMSRC1"
**
TEMP0 EQU 0
TEMP1 EQU 1
TEMP2 EQU 2
TEMP3 EQU 3
TEMP4 EQU 4
TEMP5 EQU 5
TEMP6 EQU 6
TEMP7 EQU 7
U EQU 8
SP EQU 9
W EQU 10
LINK EQU 11
CRU EQU 12
IP EQU 13
R EQU 14
NEXT EQU 15
*
**
DODOES EQU >832E
DOCOL EQU >8334
$NEXT EQU >833A
DOEXEC EQU >833C
$SEMIS EQU >8340
**
*
FF9900 LI IP,COLD+2
 MOV @$U0(TEMP1),U
 MOV TEMP1,@$UCONS(U)
 MOV @$UCONS(U),TEMP1
 MOV @$S0(TEMP1),SP
 MOV @$R0(TEMP1),R
 MOV @$U0(TEMP1),U
 MOV U,@$U0(U)
 LI NEXT,$NEXT
 B *NEXT
*
*
*** EXECUTE ***
 DATA >0
L1000 DATA >8745,>5845,>4355,>54C5
EXECUT DATA $+2
 MOV *SP+,W
 B @DOEXEC
*
*
*** LIT ***
 DATA L1000

 Appendix O TMS9900 Assembly Source Code for TI Forth 241

L1001 DATA >834C,>49D4
LIT DATA $+2
 DECT SP
 MOV *IP+,*SP
 B *NEXT
*
*
*** BRANCH ***
 DATA L1001
L1002 DATA >8642,>5241,>4E43,>48A0
BRANCH DATA $+2
BRAN2 A *IP,IP
 B *NEXT
*
*
*** 0BRANCH ***
 DATA L1002
L1003 DATA >8730,>4252,>414E,>43C8
ZBRAN DATA $+2
 MOV *SP+,TEMP1
 JEQ ZBRAN1
 INCT IP
 B *NEXT
ZBRAN1 A *IP,IP
 B *NEXT
*
*
*** (OF) ***
 DATA L1003
L1004 DATA >8428,>4F46,>29A0
POF DATA $+2
 C *SP+,*SP
 JNE POF1
 INCT SP
 INCT IP
 B *NEXT
POF1 A *IP,IP
 B *NEXT
*
*
*** (LOOP) ***
 DATA L1004
L1005 DATA >8628,>4C4F,>4F50,>29A0
PLOOP DATA $+2
 INC *R
 C *R,@2(R)
 JLT PLOOPA
 AI R,4
 INCT IP
 B *NEXT
PLOOPA A *IP,IP
 B *NEXT
*
*
*** (+LOOP) ***
 DATA L1005
L1006 DATA >8728,>2B4C,>4F4F,>50A9
PPLOOP DATA $+2
 MOV *SP+,TEMP1
 A TEMP1,*R
 MOV TEMP1,TEMP1
 JLT PLOOP2
PLOOP1 C *R,@2(R)
 JLT PLOOP3
 AI R,4
 INCT IP

242 O.2 ASMSRC—Part 2 of FORTHSAVE

 B *NEXT
PLOOP2 C *R,@2(R)
 JGT PLOOP3
 AI R,4
 INCT IP
 B *NEXT
PLOOP3 A *IP,IP
 B *NEXT
*
*
*** (DO) ***
 DATA L1006
L1007 DATA >8428,>444F,>29A0
PDO DATA $+2
 AI R,-4
 MOV *SP+,*R
 MOV *SP+,@2(R)
 B *NEXT
*
*
*** I ***
 DATA L1007
L1008 DATA >81C9
I DATA $+2
 DECT SP
 MOV *R,*SP
 B *NEXT
*
*
*** J ***
 DATA L1008
J1008 DATA >81CA
J DATA $+2
 DECT SP
 MOV @4(R),*SP
 B *NEXT
*
*
*** DIGIT ***
 DATA J1008
L1009 DATA >8544,>4947,>49D4
DIGIT DATA $+2
 MOV *SP+,TEMP1
 MOV *SP,TEMP2
 AI TEMP2,->0030
 CI TEMP2,10
 JL DIGIT1
 AI TEMP2,-7
 CI TEMP2,10
 JHE DIGIT1
DIGIT2 CLR *SP
 B *NEXT
DIGIT1 C TEMP2,TEMP1
 JHE DIGIT2
 MOV TEMP2,*SP
 DECT SP
 SETO *SP
 NEG *SP
 B *NEXT
*
*
*** (FIND) ***
 DATA L1009
L100A DATA >8628,>4649,>4E44,>29A0
PFIND DATA $+2
 MOV *SP,TEMP1

 Appendix O TMS9900 Assembly Source Code for TI Forth 243

 JEQ PFIND4
PFIND1 MOV TEMP1,TEMP2
 MOV @2(SP),TEMP3
 MOVB *TEMP2+,W
 ANDI W,>3F00
 CB W,*TEMP3+
 JNE PFIND3
PFIND2 MOVB *TEMP2+,W
 JLT PFIND5
 CB W,*TEMP3+
 JEQ PFIND2
PFIND3 MOV @-2(TEMP1),TEMP1
 JNE PFIND1
PFIND4 INCT SP
 CLR *SP
 B *NEXT
PFIND5 ANDI W,>7F00
 CB W,*TEMP3
 JNE PFIND3
 INCT TEMP2
 MOV TEMP2,@2(SP)
 CLR *SP
 MOVB *TEMP1,@1(SP)
 DECT SP
 SETO *SP
 NEG *SP
 B *NEXT
*
*
*** ENCLOSE ***
 DATA L100A
L100B DATA >8745,>4E43,>4C4F,>53C5
ENCLOS DATA $+2
 MOV *SP+,TEMP1
 MOV *SP,TEMP2
 SWPB TEMP1
 SETO TEMP3
ENCL1 INC TEMP3
 CB TEMP1,*TEMP2+
 JEQ ENCL1
 DEC TEMP2
 AI SP,-6
 MOV TEMP3,@4(SP)
 MOV TEMP3,*SP
 INC TEMP3
 MOV TEMP3,@2(SP)
 MOVB *TEMP2,W
 JNE ENCL4
 B *NEXT
ENCL4 INC TEMP2
ENCL2 MOV TEMP3,@2(SP)
 MOVB *TEMP2,W
 JEQ ENCL3
 INC TEMP3
 CB TEMP1,*TEMP2+
 JNE ENCL2
ENCL3 MOV TEMP3,*SP
 B *NEXT
*
*
*** kEY ***
 DATA L100B
L100C DATA >836B,>45D9
KE DATA $+2
 LI TEMP1,-2
 MOV @$SYS(U),LINK

244 O.2 ASMSRC—Part 2 of FORTHSAVE

 BL *LINK
 DECT SP
 MOV TEMP0,*SP
 B *NEXT
*
*
*** KEY ***
 DATA L100C
L100CX DATA >834B,>45D9
KEY DATA DOCOL,KE,LIT,>7F,AND,SEMIS
*
*
*** KEY8 ***
 DATA L100CX
L100CY DATA >844B,>4559,>38A0
KEY8 DATA DOCOL,KE,SEMIS
*
*
*** EMIT ***
 DATA L100CY
L100D DATA >8445,>4D49,>54A0
EMIT DATA $+2
 MOV *SP+,TEMP2
 ANDI TEMP2,>007F
 LI TEMP1,-4
 MOV @$SYS(U),LINK
 BL *LINK
 INC @$OUT(U)
 B *NEXT
*
*
*** EMIT8 ***
 DATA L100D
L100DX DATA >8545,>4D49,>54B8
EMIT8 DATA $+2
 MOV *SP+,TEMP2
 ANDI TEMP2,>00FF
 LI TEMP1,-4
 MOV @$SYS(U),LINK
 BL *LINK
 INC @$OUT(U)
 B *NEXT
*
*
*** CR ***
 DATA L100DX
L100E DATA >8243,>52A0
CR DATA $+2
 LI TEMP1,-6
 MOV @$SYS(U),LINK
 BL *LINK
 B *NEXT
*
*
*** ?TERMINAL ***
 DATA L100E
L100F DATA >893F,>5445,>524D,>494E,>41CC
QTERM DATA $+2
 LI TEMP1,-8
 MOV @$SYS(U),LINK
 BL *LINK
 DECT SP
 MOV TEMP0,*SP
 B *NEXT
*
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 245

*** ?KEY ***
 DATA L100F
L1010 DATA >843F,>4B45,>59A0
QKEY DATA $+2
 LI TEMP1,-10
 MOV @$SYS(U),LINK
 BL *LINK
 ANDI TEMP0,>007F
 DECT SP
 MOV TEMP0,*SP
 B *NEXT
*
*
*** ?KEY8 ***
 DATA L1010
L1010X DATA >853F,>4B45,>59B8
QKEY8 DATA $+2
 LI TEMP1,-10
 MOV @$SYS(U),LINK
 BL *LINK
 ANDI TEMP0,>00FF
 DECT SP
 MOV TEMP0,*SP
 B *NEXT
*
*
*** GOTOXY ***
 DATA L1010X
L1011 DATA >8647,>4F54,>4F58,>59A0
GOTOXY DATA $+2
 MOV *SP+,TEMP3
 MOV *SP+,TEMP2
 LI TEMP1,-12
 MOV @$SYS(U),LINK
 BL *LINK
 B *NEXT
*
*
*** WDISK ***
 DATA L1011
L1012 DATA >8557,>4449,>53CB
WDISK DATA $+2
 LI TEMP1,-14
 MOV *SP+,TEMP3
 MOV *SP+,TEMP2
 MOV *SP,TEMP4
 MOV @$SYS(U),LINK
 BL *LINK
 MOV TEMP0,*SP
 B *NEXT
*
*
*** RDISK ***
 DATA L1012
L1013 DATA >8552,>4449,>53CB
RDISK DATA $+2
 LI TEMP1,-16
 MOV *SP+,TEMP3
 MOV *SP+,TEMP2
 MOV *SP,TEMP4
 MOV @$SYS(U),LINK
 BL *LINK
 MOV TEMP0,*SP
 B *NEXT
*
*

246 O.2 ASMSRC—Part 2 of FORTHSAVE

*** DRIVE ***
 DATA L1013
L1014 DATA >8544,>5249,>56C5
DRIVE DATA $+2
 MOV *SP+,TEMP2
 LI TEMP1,-18
 MOV @$SYS(U),LINK
 BL *LINK
 MOV TEMP0,@$OFFST(U)
 B *NEXT
*
*
*** CMOVE ***
 DATA L1014
L1015 DATA >8543,>4D4F,>56C5
CMOVE DATA $+2
 MOV *SP+,TEMP1
 MOV *SP+,TEMP2
 MOV *SP+,TEMP3
 MOV TEMP1,TEMP1
 JEQ CMOVE2
CMOVE1 MOVB *TEMP3+,*TEMP2+
 DEC TEMP1
 JNE CMOVE1
CMOVE2 B *NEXT
*
*
*** MOVE ***
 DATA L1015
A1000 DATA >844D,>4F56,>45A0
MOVE DATA $+2
 MOV *SP+,TEMP1
 MOV *SP+,TEMP2
 MOV *SP+,TEMP3
 MOV TEMP1,TEMP1
 JEQ MOVE2
MOVE1 MOV *TEMP3+,*TEMP2+
 DEC TEMP1
 JNE MOVE1
MOVE2 B *NEXT
*
*
*** SWPB ***
 DATA A1000
A1001 DATA >8453,>5750,>42A0
SWPB DATA $+2
 SWPB *SP
 B *NEXT
*
*
*** SRL ***
 DATA A1001
A1002 DATA >8353,>52CC
SRL DATA $+2
 MOV *SP+,TEMP0
 MOV *SP,TEMP1
 SRL TEMP1,0
 MOV TEMP1,*SP
 B *NEXT
*
*
*** SLA ***
 DATA A1002
A1003 DATA >8353,>4CC1
SLA DATA $+2
 MOV *SP+,TEMP0

 Appendix O TMS9900 Assembly Source Code for TI Forth 247

 MOV *SP,TEMP1
 SLA TEMP1,0
 MOV TEMP1,*SP
 B *NEXT
*
*
*** SRA ***
 DATA A1003
A1004 DATA >8353,>52C1
SRA DATA $+2
 MOV *SP+,TEMP0
 MOV *SP,TEMP1
 SRA TEMP1,0
 MOV TEMP1,*SP
 B *NEXT
*
*
*** SRC ***
 DATA A1004
A1005 DATA >8353,>52C3
SRC DATA $+2
 MOV *SP+,TEMP0
 MOV *SP,TEMP1
 SRC TEMP1,0
 MOV TEMP1,*SP
 B *NEXT
*
*
*** U* ***
 DATA A1005
L1016 DATA >8255,>2AA0
MULT DATA $+2
 MOV *SP+,TEMP2
 MPY *SP,TEMP2
 MOV TEMP3,*SP
 DECT SP
 MOV TEMP2,*SP
 B *NEXT
*
*
*** U/ ***
 DATA L1016
L1017 DATA >8255,>2FA0
DIV DATA $+2
 MOV @2(SP),TEMP2
 MOV @4(SP),TEMP3
 DIV *SP+,TEMP2
 MOV TEMP2,*SP
 MOV TEMP3,@2(SP)
 B *NEXT
*
*
*** AND ***
 DATA L1017
L1018 DATA >8341,>4EC4
AND DATA $+2
 INV *SP
 SZC *SP+,*SP
 B *NEXT
*
*
*** OR ***
 DATA L1018
L1019 DATA >824F,>52A0
OR DATA $+2
 SOC *SP+,*SP

248 O.2 ASMSRC—Part 2 of FORTHSAVE

 B *NEXT
*
*
*** XOR ***
 DATA L1019
L101A DATA >8358,>4FD2
XOR DATA $+2
 MOV *SP+,TEMP1
 XOR *SP,TEMP1
 MOV TEMP1,*SP
 B *NEXT
*
*
*** SP@ ***
 DATA L101A
L101B DATA >8353,>50C0
SPAT DATA $+2
 DECT SP
 MOV SP,*SP
 INCT *SP
 B *NEXT
*
*
*** SP! ***
 DATA L101B
L101C DATA >8353,>50A1
SPSTOR DATA $+2
 MOV @$S0(U),SP
 B *NEXT
*
*
*** RP! ***
 DATA L101C
L101D DATA >8352,>50A1
RSTOR DATA $+2
 MOV @$R0(U),R
 B *NEXT
*
*
*** ;S ***
 DATA L101D
L101E DATA >823B,>53A0
SEMIS DATA $SEMIS
*
*
*** LEAVE ***
 DATA L101E
L101F DATA >854C,>4541,>56C5
LEAVE DATA $+2
 MOV *R,@2(R)
 B *NEXT
*
*
*** >R ***
 DATA L101F
L1020 DATA >823E,>52A0
TOR DATA $+2
 DECT R
 MOV *SP+,*R
 B *NEXT
*
*
*** R> ***
 DATA L1020
L1021 DATA >8252,>3EA0
FROMR DATA $+2

 Appendix O TMS9900 Assembly Source Code for TI Forth 249

 DECT SP
 MOV *R+,*SP
 B *NEXT
*
*
*** R ***
 DATA L1021
L1022 DATA >81D2
RR DATA $+2
 DECT SP
 MOV *R,*SP
 B *NEXT
*
*
*** U ***
 DATA L1022
L1023 DATA >81D5
UU DATA $+2
 DECT SP
 MOV U,*SP
 B *NEXT
*
*
*** 0= ***
 DATA L1023
L1024 DATA >8230,>3DA0
ZEQU DATA $+2
 MOV *SP,TEMP1
 JEQ ZEQUTR
 CLR *SP
 B *NEXT
ZEQUTR SETO *SP
 NEG *SP
 B *NEXT
*
*
*** 0< ***
 DATA L1024
L1025 DATA >8230,>3CA0
ZLESS DATA $+2
 MOV *SP,TEMP1
 JLT PUSHTR
PUSHFL CLR *SP
 B *NEXT
PUSHTR SETO *SP
 NEG *SP
 B *NEXT
*
*
*** + ***
 DATA L1025
L1026 DATA >81AB
PLUS DATA $+2
 A *SP+,*SP
 B *NEXT
*
*
*** D+ ***
 DATA L1026
L1027 DATA >8244,>2BA0
DPLUS DATA $+2
 A *SP+,@2(SP)
 A *SP+,@2(SP)
 JNC DPLUS1
 INC *SP
DPLUS1 B *NEXT

250 O.2 ASMSRC—Part 2 of FORTHSAVE

*
*
*** MINUS ***
 DATA L1027
L1028 DATA >854D,>494E,>55D3
MINUS DATA $+2
 NEG *SP
 B *NEXT
*
*
*** DMINUS ***
 DATA L1028
L1029 DATA >8644,>4D49,>4E55,>53A0
DMINUS DATA $+2
 INV @2(SP)
 INV *SP
 INC @2(SP)
 JNC DM1
 INC *SP
DM1 B *NEXT
*
*
*** OVER ***
 DATA L1029
L102A DATA >844F,>5645,>52A0
OVER DATA $+2
 DECT SP
 MOV @4(SP),*SP
 B *NEXT
*
*
*** DROP ***
 DATA L102A
L102B DATA >8444,>524F,>50A0
DROP DATA $+2
 INCT SP
 B *NEXT
*
*
*** SWAP ***
 DATA L102B
L102C DATA >8453,>5741,>50A0
SWAP DATA $+2
 MOV *SP,TEMP1
 MOV @2(SP),*SP
 MOV TEMP1,@2(SP)
 B *NEXT
*
*
*** DUP ***
 DATA L102C
L102D DATA >8344,>55D0
DUP DATA $+2
 DECT SP
 MOV @2(SP),*SP
 B *NEXT
*
*
*** +! ***
 DATA L102D
L102E DATA >822B,>21A0
PSTORE DATA $+2
 MOV *SP+,TEMP1
 A *SP+,*TEMP1
 B *NEXT
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 251

*
*** TOGGLE ***
 DATA L102E
L102F DATA >8654,>4F47,>474C,>45A0
TOGGLE DATA $+2
 MOV *SP+,TEMP1
 MOV *SP+,TEMP2
 MOVB *TEMP2,TEMP3
 SWPB TEMP1
 XOR TEMP1,TEMP3
 MOVB TEMP3,*TEMP2
 B *NEXT
*
*
*** @ ***
 DATA L102F
L1030 DATA >81C0
AT DATA $+2
 MOV *SP,TEMP1
 MOV *TEMP1,*SP
 B *NEXT
*
*
*** C@ ***
 DATA L1030
L1031 DATA >8243,>40A0
CAT DATA $+2
 MOV *SP,TEMP1
 MOVB *TEMP1,TEMP1
 SRL TEMP1,8
 MOV TEMP1,*SP
 B *NEXT
*
*
*** ! ***
 DATA L1031
L1032 DATA >81A1
STORE DATA $+2
 MOV *SP+,TEMP1
 MOV *SP+,*TEMP1
 B *NEXT
*
*
*** C! ***
 DATA L1032
L1033 DATA >8243,>21A0
CSTORE DATA $+2
 MOV *SP+,TEMP1
 MOVB @1(SP),*TEMP1
 INCT SP
 B *NEXT
*
*
*** 1+ ***
 DATA L1033
L1034 DATA >8231,>2BA0
ONEP DATA $+2
 INC *SP
 B *NEXT
*
*
*** 2+ ***
 DATA L1034
L1035 DATA >8232,>2BA0
TWOP DATA $+2
 INCT *SP

252 O.2 ASMSRC—Part 2 of FORTHSAVE

 B *NEXT
*
*
*** 1- ***
 DATA L1035
L1035A DATA >8231,>2DA0
ONEM DATA $+2
 DEC *SP
 B *NEXT
*
*
*** 2- ***
 DATA L1035A
L1035B DATA >8232,>2DA0
TWOM DATA $+2
 DECT *SP
 B *NEXT
*
*
*** - ***
 DATA L1035B
L1036 DATA >81AD
SUB DATA $+2
 S *SP+,*SP
 B *NEXT
*
*
*** =CELLS ***
 DATA L1036
L1037 DATA >863D,>4345,>4C4C,>53A0
ECELLS DATA $+2
 MOV *SP,TEMP1
 INC TEMP1
 ANDI TEMP1,>FFFE
 MOV TEMP1,*SP
 B *NEXT
*
*
*** S->D ***
 DATA L1037
L1038 DATA >8453,>2D3E,>44A0
STOD DATA $+2
 SETO TEMP1
 MOV *SP,TEMP2
 JLT STOD1
 CLR TEMP1
STOD1 DECT SP
 MOV TEMP1,*SP
 B *NEXT
*
*
*** ABS ***
 DATA L1038
L1039 DATA >8341,>42D3
ABS DATA $+2
 ABS *SP
 B *NEXT
*
*
*** MIN ***
 DATA L1039
L103A DATA >834D,>49CE
MIN DATA $+2
 C @2(SP),*SP
 JLT MIN1
 MOV *SP,@2(SP)

 Appendix O TMS9900 Assembly Source Code for TI Forth 253

MIN1 INCT SP
 B *NEXT
*
*
*** MAX ***
 DATA L103A
L103B DATA >834D,>41D8
MAX DATA $+2
 C *SP,@2(SP)
 JLT MAX1
 MOV *SP,@2(SP)
MAX1 INCT SP
**
** COPY "DSK2.ASMSRC2"
**
 B *NEXT
*
*
*** U< ***
 DATA L103B
L103C DATA >8255,>3CA0
ULESS DATA $+2
 MOV *SP+,TEMP2
 MOV *SP,TEMP1
 CLR *SP
 C TEMP1,TEMP2
 JHE ULESS1
 INC *SP
ULESS1 B *NEXT
*
*
*** 0 ***
 DATA L103C
L103F DATA >81B0
ZERO DATA DOCON,>0
*
*** 1 ***
 DATA L103F
L1040 DATA >81B1
ONE DATA DOCON,>1
*
*** 2 ***
 DATA L1040
L1041 DATA >81B2
TWO DATA DOCON,>2
*
*** 3 ***
 DATA L1041
L1042 DATA >81B3
THREE DATA DOCON,>3
*
*** BL ***
 DATA L1042
L1043 DATA >8242,>4CA0
BL DATA DOCON,>20
*
*** UCONS$ ***
 DATA L1043
L1044 DATA >8655,>434F,>4E53,>24A0
UCONS$ DATA DOUSER,>6
*
*** S0 ***
 DATA L1044
L1045 DATA >8253,>30A0
S0 DATA DOUSER,>8
*

254 O.2 ASMSRC—Part 2 of FORTHSAVE

*** R0 ***
 DATA L1045
L1046 DATA >8252,>30A0
RR0 DATA DOUSER,>A
*
*** U0 ***
 DATA L1046
L1047 DATA >8255,>30A0
U0 DATA DOUSER,>C
*
*** TIB ***
 DATA L1047
L1048 DATA >8354,>49C2
TIB DATA DOUSER,>E
*
*** WIDTH ***
 DATA L1048
L1049 DATA >8557,>4944,>54C8
WIDTH DATA DOUSER,>10
*
*** DP ***
 DATA L1049
L104A DATA >8244,>50A0
DP DATA DOUSER,>12
*
*** SYS$ ***
 DATA L104A
L104B DATA >8453,>5953,>24A0
SYS$ DATA DOUSER,>14
*
*** CURPOS ***
 DATA L104B
L104C DATA >8643,>5552,>504F,>53A0
TERM$ DATA DOUSER,>16
*
*** INTLNK ***
 DATA L104C
L104D DATA >8649,>4E54,>4C4E,>4BA0
DISK$ DATA DOUSER,>18
*
*** WARNING ***
 DATA L104D
L104E DATA >8757,>4152,>4E49,>4EC7
WARNIN DATA DOUSER,>1A
*
*** C/L$ ***
 DATA L104E
L104F DATA >8443,>2F4C,>24A0
CL$ DATA DOUSER,>1C
*
*** FIRST$ ***
 DATA L104F
L1050 DATA >8646,>4952,>5354,>24A0
FIRST$ DATA DOUSER,>1E
*
*** LIMIT$ ***
 DATA L1050
L1051 DATA >864C,>494D,>4954,>24A0
LIMIT$ DATA DOUSER,>20
*
*** B/BUF$ ***
 DATA L1051
L1052 DATA >8642,>2F42,>5546,>24A0
BBUF$ DATA DOUSER,>22
*
*** B/SCR$ ***

 Appendix O TMS9900 Assembly Source Code for TI Forth 255

 DATA L1052
L1053 DATA >8642,>2F53,>4352,>24A0
BSCR$ DATA DOUSER,>24
*
*** DISK_LO ***
 DATA L1053
X0001 DATA >8744,>4953,>4B5F,>4CCF
 DATA DOUSER,>26
*
*** DISK_HI ***
 DATA X0001
X0002 DATA >8744,>4953,>4B5F,>48C9
 DATA DOUSER,>28
*
*** DISK_SIZE ***
 DATA X0002
X0003 DATA >8944,>4953,>4B5F,>5349,>5AC5
 DATA DOUSER,>2A
*
*** DISK_BUF ***
 DATA X0003
X0004 DATA >8844,>4953,>4B5F,>4255,>46A0
 DATA DOUSER,>2C
*
*** PABS ***
 DATA X0004
X0005 DATA >8450,>4142,>53A0
 DATA DOUSER,>2E
*
*** SCRN_WIDTH ***
 DATA X0005
X0006 DATA >8A53,>4352,>4E5F,>5749,>4454,>48A0
 DATA DOUSER,>30
*
*** SCRN_START ***
 DATA X0006
X0007 DATA >8A53,>4352,>4E5F,>5354,>4152,>54A0
 DATA DOUSER,>32
*
*** SCRN_END ***
 DATA X0007
X0008 DATA >8853,>4352,>4E5F,>454E,>44A0
 DATA DOUSER,>34
*
*** ISR ***
 DATA X0008
X0009 DATA >8349,>53D2
 DATA DOUSER,>36
*
*** ALTIN ***
 DATA X0009
X000A DATA >8541,>4C54,>49CE
 DATA DOUSER,>38
*
*** ALTOUT ***
 DATA X000A
X000B DATA >8641,>4C54,>4F55,>54A0
 DATA DOUSER,>3A
*
*** FENCE ***
 DATA X000B
L1054 DATA >8546,>454E,>43C5
FENCE DATA DOUSER,>3C
*
*** BLK ***
 DATA L1054

256 O.2 ASMSRC—Part 2 of FORTHSAVE

L1055 DATA >8342,>4CCB
BLK DATA DOUSER,>3E
*
*** IN ***
 DATA L1055
L1056 DATA >8249,>4EA0
IN DATA DOUSER,>40
*
*** OUT ***
 DATA L1056
L1057 DATA >834F,>55D4
OUT DATA DOUSER,>42
*
*** SCR ***
 DATA L1057
L1058 DATA >8353,>43D2
SCR DATA DOUSER,>44
*
*** OFFSET ***
 DATA L1058
L1059 DATA >864F,>4646,>5345,>54A0
OFFSET DATA DOUSER,>46
*
*** CONTEXT ***
 DATA L1059
L105A DATA >8743,>4F4E,>5445,>58D4
CONTEX DATA DOUSER,>48
*
*** CURRENT ***
 DATA L105A
L105B DATA >8743,>5552,>5245,>4ED4
CURREN DATA DOUSER,>4A
*
*** STATE ***
 DATA L105B
L105C DATA >8553,>5441,>54C5
STATE DATA DOUSER,>4C
*
*** BASE ***
 DATA L105C
L105D DATA >8442,>4153,>45A0
BASE DATA DOUSER,>4E
*
*** DPL ***
 DATA L105D
L105E DATA >8344,>50CC
DPL DATA DOUSER,>50
*
*** FLD ***
 DATA L105E
L105F DATA >8346,>4CC4
FLD DATA DOUSER,>52
*
*** CSP ***
 DATA L105F
L1060 DATA >8343,>53D0
CSP DATA DOUSER,>54
*
*** R# ***
 DATA L1060
L1061 DATA >8252,>23A0
RNUM DATA DOUSER,>56
*
*** HLD ***
 DATA L1061
L1062 DATA >8348,>4CC4

 Appendix O TMS9900 Assembly Source Code for TI Forth 257

HLD DATA DOUSER,>58
*
*** USE ***
 DATA L1062
L1063 DATA >8355,>53C5
USE DATA DOUSER,>5A
*
*** PREV ***
 DATA L1063
L1064 DATA >8450,>5245,>56A0
PREV DATA DOUSER,>5C
*
*** FORTH_LINK ***
 DATA L1064
L1065 DATA >8A46,>4F52,>5448,>5F4C,>494E,>4BA0
FORTHL DATA DOUSER,>62
*
*** ECOUNT ***
 DATA L1065
L1066 DATA >8645,>434F,>554E,>54A0
ECOUNT DATA DOUSER,>64
*
*** VOC-LINK ***
 DATA L1066
L1066X DATA >8856,>4F43,>2D4C,>494E,>4BA0
VLINK DATA DOUSER,>66
*
*
 DORG 0
UBASE BSS 6 BASE OF USER VARIABLES
$UCONS BSS 2 06 USER UCONS
$S0 BSS 2 08 USER S0
$R0 BSS 2 0A USER R0 { R0$
$U0 BSS 2 0C USER U0
 BSS 2 0E USER TIB
 BSS 2 10 USER WIDTH
 BSS 2 12 USER DP
$SYS BSS 2 14 USER SYS$
CURPO$ BSS 2 16 USER CURPOS
$INTLK BSS 2 18 USER INTLNK
 BSS 2 1A USER WARNING
 BSS 2 1C USER C/L$ { CL$
 BSS 2 1E USER FIRST$
 BSS 2 20 USER LIMIT$
 BSS 2 22 USER B/BUF$ { BBUF$
 BSS 2 24 USER B/SCR$ { BSCR$
 BSS 2 26 USER DISK_LO
 BSS 2 28 USER DISK_HI
 BSS 2 2A USER DISK_SIZE
 BSS 2 2C USER DISK_BUF
 BSS 2 2E USER PABS
 BSS 2 30 USER SCRN_WIDTH
 BSS 2 32 USER SCRN_START
 BSS 2 34 USER SCRN_END
 BSS 2 36 USER ISR
 BSS 2 38 USER ALTIN
 BSS 2 3A USER ALTOUT
ULNGTH EQU $
 BSS 2 3C USER FENCE
 BSS 2 3E USER BLK
 BSS 2 40 USER IN
$OUT BSS 2 42 USER OUT
 BSS 2 44 USER SCR
$OFFST BSS 2 46 USER OFFSET
 BSS 2 48 USER CONTEXT
 BSS 2 4A USER CURRENT

258 O.2 ASMSRC—Part 2 of FORTHSAVE

 BSS 2 4C USER STATE
 BSS 2 4E USER BASE
 BSS 2 50 USER DPL
 BSS 2 52 USER FLD
 BSS 2 54 USER CSP
 BSS 2 56 USER R# { RNUM
 BSS 2 58 USER HLD
 BSS 2 5A USER USE
 BSS 2 5C USER PREV
 BSS 2 5E
 BSS 2 60
 BSS 2 62 USER FORTH_LINK
 BSS 2 64 USER ECOUNT
UMAX BSS 0
 RORG
*
*** C/L ***
 DATA L1066X
L1067 DATA >8343,>2FCC
CSL DATA DOCOL,CL$,AT,SEMIS
*
*** B/BUF ***
 DATA L1067
L1068 DATA >8542,>2F42,>55C6
BSLBUF DATA DOCOL,BBUF$,AT,SEMIS
*
*** B/SCR ***
 DATA L1068
L1069 DATA >8542,>2F53,>43D2
BSLSCR DATA DOCOL,BSCR$,AT,SEMIS
*
*** FIRST ***
 DATA L1069
L106A DATA >8546,>4952,>53D4
FIRST DATA DOCOL,FIRST$,AT,SEMIS
*
*** LIMIT ***
 DATA L106A
L106B DATA >854C,>494D,>49D4
LIMIT DATA DOCOL,LIMIT$,AT,SEMIS
*
*** DR0 ***
 DATA L106B
L106C DATA >8344,>52B0
DR0 DATA DOCOL,ZERO,DRIVE,SEMIS
*
*** DR1 ***
 DATA L106C
L106X DATA >8344,>52B1
DR1 DATA DOCOL,ONE,DRIVE,SEMIS
*
*** DR2 ***
 DATA L106X
L106Y DATA >8344,>52B2
DR2 DATA DOCOL,TWO,DRIVE,SEMIS
*
*** HERE ***
 DATA L106Y
L106D DATA >8448,>4552,>45A0
HERE DATA DOCOL,DP,AT,SEMIS
*
*** ALLOT ***
 DATA L106D
L106E DATA >8541,>4C4C,>4FD4
ALLOT DATA DOCOL,SPAT,OVER,HERE,PLUS,LIT,>80
 DATA PLUS,ULESS,TWO,QERROR,DP,PSTORE

 Appendix O TMS9900 Assembly Source Code for TI Forth 259

 DATA SEMIS
*
*** , ***
 DATA L106E
L106F DATA >81AC
COMMA DATA DOCOL,HERE,STORE,TWO,ALLOT,SEMIS
*
*** C, ***
 DATA L106F
L1070 DATA >8243,>2CA0
CCOMMA DATA DOCOL,HERE,CSTORE,ONE,ALLOT,SEMIS
*
*** = ***
 DATA L1070
L1071 DATA >81BD
EQUAL DATA DOCOL,SUB,ZEQU,SEMIS
*
*** < ***
 DATA L1071
L1072 DATA >81BC
LESS DATA $+2
 CLR TEMP1
 C *SP+,*SP
 JLT LESS1
 JEQ LESS1
 INC TEMP1
LESS1 MOV TEMP1,*SP
 B *NEXT
*
*** > ***
 DATA L1072
L1073 DATA >81BE
GREAT DATA DOCOL,SWAP,LESS,SEMIS
*
*** ROT ***
 DATA L1073
L1074 DATA >8352,>4FD4
ROT DATA DOCOL,TOR,SWAP,FROMR,SWAP,SEMIS
*
*** SPACE ***
 DATA L1074
L1075 DATA >8553,>5041,>43C5
SPACE DATA DOCOL,BL,EMIT,SEMIS
*
*** -DUP ***
 DATA L1075
L1076 DATA >842D,>4455,>50A0
DDUP DATA DOCOL,DUP,ZBRAN,L1077-$,DUP
L1077 DATA SEMIS
*
*** TRAVERSE ***
 DATA L1076
L1078 DATA >8854,>5241,>5645,>5253,>45A0
TRAVER DATA DOCOL,SWAP
L1079 DATA OVER,PLUS,LIT,>7F,OVER,CAT,LESS,ZBRAN
 DATA L1079-$,SWAP,DROP,SEMIS
*
*** CFA ***
 DATA L1078
L107A DATA >8343,>46C1
CFA DATA DOCOL,TWOM,SEMIS
*
*** NFA ***
 DATA L107A
L107B DATA >834E,>46C1
NFA DATA DOCOL,THREE,SUB,LIT,>FFFF,TRAVER,SEMIS

260 O.2 ASMSRC—Part 2 of FORTHSAVE

*
*** PFA ***
 DATA L107B
L107C DATA >8350,>46C1
PFA DATA DOCOL,ONE,TRAVER,THREE,PLUS,SEMIS
*
*** LFA ***
 DATA L107C
L107D DATA >834C,>46C1
LFA DATA DOCOL,NFA,TWOM,SEMIS
*
*** LATEST ***
 DATA L107D
L107E DATA >864C,>4154,>4553,>54A0
LATEST DATA DOCOL,CURREN,AT,AT,SEMIS
*
*** !CSP ***
 DATA L107E
L107F DATA >8421,>4353,>50A0
STRCSP DATA DOCOL,SPAT,CSP,STORE,SEMIS
*
*** ?ERROR ***
 DATA L107F
L1080 DATA >863F,>4552,>524F,>52A0
QERROR DATA DOCOL,SWAP,ZBRAN,L1081-$,ERROR,BRANCH
 DATA L1082-$
L1081 DATA DROP
L1082 DATA SEMIS
*
*** ?COMP ***
 DATA L1080
L1083 DATA >853F,>434F,>4DD0
QCOMP DATA DOCOL,STATE,AT,ZEQU,LIT,>11,QERROR
 DATA SEMIS
*
*** ?EXEC ***
 DATA L1083
L1084 DATA >853F,>4558,>45C3
QEXEC DATA DOCOL,STATE,AT,LIT,>12,QERROR,SEMIS
*
*** ?PAIRS ***
 DATA L1084
L1085 DATA >863F,>5041,>4952,>53A0
QPAIRS DATA DOCOL,SUB,LIT,>13,QERROR,SEMIS
*
*** ?CSP ***
 DATA L1085
L1086 DATA >843F,>4353,>50A0
QCSP DATA DOCOL,SPAT,CSP,AT,SUB,LIT,>14,QERROR
 DATA SEMIS
*
*** ?LOADING ***
 DATA L1086
L1087 DATA >883F,>4C4F,>4144,>494E,>47A0
QLOADI DATA DOCOL,BLK,AT,ZEQU,LIT,>16,QERROR,SEMIS
*
*** COMPILE ***
 DATA L1087
L1088 DATA >8743,>4F4D,>5049,>4CC5
COMPIL DATA DOCOL,QCOMP,FROMR,DUP,TWOP,TOR,AT,COMMA
 DATA SEMIS
*
*** [***
 DATA L1088
L1089 DATA >C1DB
LBRCKT DATA DOCOL,ZERO,STATE,STORE,SEMIS

 Appendix O TMS9900 Assembly Source Code for TI Forth 261

*
***] ***
 DATA L1089
L108A DATA >81DD
RBRCKT DATA DOCOL,LIT,>C0,STATE,STORE,SEMIS
*
*** SMUDGE ***
 DATA L108A
L108B DATA >8653,>4D55,>4447,>45A0
SMUDGE DATA DOCOL,LATEST,LIT,>20,TOGGLE,SEMIS
*
*** HEX ***
 DATA L108B
L108C DATA >8348,>45D8
HEX DATA DOCOL,LIT,>10,BASE,STORE,SEMIS
*
*** DECIMAL ***
 DATA L108C
L108D DATA >8744,>4543,>494D,>41CC
DECIMA DATA DOCOL,LIT,>A,BASE,STORE,SEMIS
*
*** COUNT ***
 DATA L108D
L108E DATA >8543,>4F55,>4ED4
COUNT DATA DOCOL,DUP,ONEP,SWAP,CAT,SEMIS
*
*** TYPE ***
 DATA L108E
L108F DATA >8454,>5950,>45A0
TYPE DATA DOCOL,DDUP,ZBRAN,L1090-$,ZERO,PDO
L1091 DATA DUP,CAT,EMIT,ONEP,PLOOP,L1091-$
L1090 DATA DROP,SEMIS
*
*** -TRAILING ***
 DATA L108F
L1092 DATA >892D,>5452,>4149,>4C49,>4EC7
DTRAIL DATA DOCOL,DUP,ZERO,PDO
L1093 DATA OVER,OVER,PLUS,ONEM,CAT,BL,SUB,ZBRAN
 DATA L1094-$,LEAVE,BRANCH,L1095-$
L1094 DATA ONEM
L1095 DATA PLOOP,L1093-$,SEMIS
*
*** ?STACK ***
 DATA L1092
L1096 DATA >863F,>5354,>4143,>4BA0
QSTACK DATA DOCOL,SPAT,S0,AT,SWAP,ULESS,ONE,QERROR
 DATA SPAT,HERE,LIT,>80,PLUS,ULESS
 DATA LIT,>7
 DATA QERROR,SEMIS
*
*** EXPECT ***
 DATA L1096
L1097 DATA >8645,>5850,>4543,>54A0
EXPECT DATA DOCOL,ZERO,PDO
L1098 DATA KEY,DUP,LIT,>D,EQUAL,ZBRAN,L1099-$
 DATA DROP,SPACE,LEAVE,ZERO,BRANCH,L109A-$
L1099 DATA DUP,LIT,>8,EQUAL,ZBRAN,L109B-$,DROP
 DATA I,ZEQU,ZBRAN,L109C-$,LIT,>7,EMIT,ZERO
 DATA BRANCH,L109D-$
L109C DATA LIT,>8,EMIT,FROMR,ONEM,TOR,ONEM
 DATA ZERO
L109D DATA BRANCH,L109E-$
L109B DATA DUP,EMIT,OVER,CSTORE,ONEP,ONE
L109E
L109A DATA PPLOOP,L1098-$,ZERO,SWAP,OVER,OVER
 DATA CSTORE,ONEP,CSTORE,SEMIS

262 O.2 ASMSRC—Part 2 of FORTHSAVE

*
*** QUERY ***
 DATA L1097
L109F DATA >8551,>5545,>52D9
QUERY DATA DOCOL,TIB,AT,LIT,>50,EXPECT,ZERO,IN
 DATA STORE,SEMIS
*
*** FILL ***
 DATA L109F
L10A0 DATA >8446,>494C,>4CA0
FILL DATA DOCOL,SWAP,TOR,OVER,CSTORE,DUP,ONEP
 DATA FROMR,ONEM,CMOVE,SEMIS
*
*** ERASE ***
 DATA L10A0
L10A1 DATA >8545,>5241,>53C5
ERASE DATA DOCOL,ZERO,FILL,SEMIS
*
*** BLANKS ***
 DATA L10A1
L10A2 DATA >8642,>4C41,>4E4B,>53A0
BLANKS DATA DOCOL,BL,FILL,SEMIS
*
*** HOLD ***
 DATA L10A2
L10A3 DATA >8448,>4F4C,>44A0
HOLD DATA DOCOL,LIT,>FFFF,HLD,PSTORE,HLD,AT,CSTORE
 DATA SEMIS
*
*** PAD ***
 DATA L10A3
L10A4 DATA >8350,>41C4
PAD DATA DOCOL,HERE,LIT,>44,PLUS,SEMIS
*
*** WORD ***
 DATA L10A4
L10A5 DATA >8457,>4F52,>44A0
WORD DATA DOCOL,BLK,AT,ZBRAN,L10A6-$,BLK,AT,BLOCK
 DATA BRANCH,L10A7-$
L10A6 DATA TIB,AT
L10A7 DATA IN,AT,PLUS,SWAP,ENCLOS,HERE,LIT,>22
 DATA BLANKS,IN,PSTORE,OVER,SUB,DUP,TOR,HERE
 DATA CSTORE,PLUS,HERE,ONEP,FROMR,CMOVE,SEMIS
*
*** (.") ***
 DATA L10A5
L10A8 DATA >8428,>2E22,>29A0
PTYPE DATA DOCOL,RR,COUNT,DUP,ONEP,ECELLS,FROMR
 DATA PLUS,TOR,TYPE,SEMIS
*
*** ." ***
 DATA L10A8
L10A9 DATA >C22E,>22A0
STRNG DATA DOCOL,LIT,>22,STATE,AT,ZBRAN,L10AA-$
 DATA COMPIL,PTYPE,WORD,HERE,CAT,ONEP,ECELLS
 DATA ALLOT,BRANCH,L10AB-$
L10AA DATA WORD,HERE,COUNT,TYPE
L10AB DATA SEMIS
*
*** (NUMBER) ***
 DATA L10A9
L10AC DATA >8828,>4E55,>4D42,>4552,>29A0
PNUMBR DATA DOCOL
L10AD DATA ONEP,DUP,TOR,CAT,BASE,AT,DIGIT,ZBRAN
 DATA L10AE-$,SWAP,BASE,AT,MULT,DROP,ROT
 DATA BASE,AT,MULT,DPLUS,DPL,AT,ONEP,ZBRAN

 Appendix O TMS9900 Assembly Source Code for TI Forth 263

 DATA L10AF-$,ONE,DPL,PSTORE
L10AF DATA FROMR,BRANCH,L10AD-$
L10AE DATA FROMR,SEMIS
*
*** NUMBER ***
 DATA L10AC
L10B0 DATA >864E,>554D,>4245,>52A0
NUMBER DATA DOCOL,ZERO,ZERO,ROT,DUP,ONEP,CAT,LIT
 DATA >2D,EQUAL,DUP,TOR,PLUS,LIT,>FFFF
L10B1 DATA DPL,STORE,PNUMBR,DUP,CAT,BL,SUB,ZBRAN
 DATA L10B2-$,DUP,CAT,LIT,>2E,SUB,ZERO,QERROR
 DATA ZERO,BRANCH,L10B1-$
L10B2 DATA DROP,FROMR,ZBRAN,L10B3-$,DMINUS
L10B3 DATA SEMIS
*
*** -FIND ***
 DATA L10B0
L10B4 DATA >852D,>4649,>4EC4
DFIND DATA DOCOL,BL,WORD,HERE,CONTEX,AT,AT,PFIND
 DATA DUP,ZEQU,ZBRAN,L10B5-$,DROP,HERE,LATEST
 DATA PFIND
L10B5 DATA SEMIS
*
*** (ABORT) ***
 DATA L10B4
L10B6 DATA >8728,>4142,>4F52,>54A9
PABORT DATA DOCOL,ABORT,SEMIS
*
*** ERROR ***
 DATA L10B6
L10B7 DATA >8545,>5252,>4FD2
ERROR DATA DOCOL,WARNIN,AT,ZLESS,ZBRAN,L10B8-$
 DATA PABORT,BRANCH,L10B9-$
L10B8 DATA ECOUNT,AT,ZEQU,ZBRAN,L10BA-$,ONE,ECOUNT
 DATA STORE,HERE,COUNT,TYPE,PTYPE,>420,>203F
 DATA >2020,MESSAG
L10BA
L10B9 DATA ZERO,ECOUNT,STORE,SPSTOR,IN,AT,BLK
 DATA AT,QUIT,SEMIS
*
*** ID. ***
 DATA L10B7
L10BB DATA >8349,>44AE
IDDOT DATA DOCOL,PAD,LIT,>20,LIT,>5F,FILL,DUP
 DATA ONE,TRAVER,OVER,SUB,DUP,TOR,ONEP,PAD
 DATA SWAP,CMOVE,PAD,FROMR,PLUS,LIT,>80,TOGGLE
 DATA PAD,COUNT,LIT,>1F,AND,TYPE,SPACE,SEMIS
*
*** CREATE ***
 DATA L10BB
L10BC DATA >8643,>5245,>4154,>45A0
CREATE DATA DOCOL,HERE,ECELLS,DP,STORE
 DATA LATEST,COMMA,DFIND,ZBRAN,L10BD-$
 DATA DROP,NFA,IDDOT,LIT,>4,MESSAG,SPACE
L10BD DATA HERE,DUP,CAT,WIDTH,AT,MIN,ONEP,ECELLS
 DATA ALLOT,DUP,LIT,>A0,TOGGLE,HERE,ONEM
 DATA LIT,>80,TOGGLE,CURREN,AT,STORE,HERE
 DATA TWOP,COMMA,SEMIS
*
*** [COMPILE] ***
 DATA L10BC
L10BE DATA >C95B,>434F,>4D50,>494C,>45DD
BCOMPI DATA DOCOL,DFIND,ZEQU,ZERO,QERROR,DROP,CFA
 DATA COMMA,SEMIS
*
*** LITERAL ***

264 O.2 ASMSRC—Part 2 of FORTHSAVE

 DATA L10BE
L10BF DATA >C74C,>4954,>4552,>41CC
LITERA DATA DOCOL,STATE,AT,ZBRAN,L10C0-$,COMPIL
 DATA LIT,COMMA
L10C0 DATA SEMIS
*
*** DLITERAL ***
 DATA L10BF
L10C1 DATA >C844,>4C49,>5445,>5241,>4CA0
DLITER DATA DOCOL,STATE,AT,ZBRAN,L10C2-$,SWAP,LITERA
 DATA LITERA
L10C2 DATA SEMIS
*
*** INTERPRET ***
 DATA L10C1
L10C3 DATA >8949,>4E54,>4552,>5052,>45D4
INTERP DATA DOCOL
L10C4 DATA DFIND,ZBRAN,L10C5-$,STATE,AT,LESS,ZBRAN
 DATA L10C6-$,CFA,COMMA,BRANCH,L10C7-$
L10C6 DATA CFA,EXECUT
L10C7 DATA QSTACK,BRANCH,L10C8-$
L10C5 DATA HERE,NUMBER,DPL,AT,ONEP,ZBRAN,L10C9-$
 DATA DLITER,BRANCH,L10CA-$
L10C9 DATA DROP,LITERA
L10CA DATA QSTACK
L10C8 DATA BRANCH,L10C4-$,SEMIS
*
*** IMMEDIATE ***
 DATA L10C3
L10CB DATA >8949,>4D4D,>4544,>4941,>54C5
IMMEDI DATA DOCOL,LATEST,LIT,>40,TOGGLE,SEMIS
*
*** (***
 DATA L10CB
L10CC DATA >C1A8
PAREN DATA DOCOL,LIT,>29,WORD,SEMIS
*
*** FORTH ***
 DATA L10CC
L10CD DATA >C546,>4F52,>54C8
FORTH DATA DOCOL,FORTHL,LIT,>4,SUB,CONTEX,STORE
 DATA SEMIS
*
*** DEFINITIONS ***
**
** COPY "DSK2.ASMSRC3"
**
 DATA L10CD
L10CE DATA >8B44,>4546,>494E,>4954,>494F,>4ED3
DEFINI DATA DOCOL,CONTEX,AT,CURREN,STORE,SEMIS
*
*** QUIT ***
 DATA L10CE
L10CF DATA >8451,>5549,>54A0
QUIT DATA DOCOL,ZERO,BLK,STORE,LBRCKT
L10D0 DATA RSTOR,CR,QUERY,INTERP,STATE,AT,ZEQU
 DATA ZBRAN,L10D1-$,PTYPE,>320,>6F6B
L10D1 DATA BRANCH,L10D0-$,SEMIS
*
*** ABORT ***
 DATA L10CF
L10D2 DATA >8541,>424F,>52D4
ABORT DATA DOCOL,SPSTOR,DECIMA,ZERO,ECOUNT,STORE
 DATA CR,PTYPE,>854,>4920
 DATA >464F,>5254,>4820,FORTH,DEFINI,QUIT
 DATA SEMIS

 Appendix O TMS9900 Assembly Source Code for TI Forth 265

*
*** +- ***
 DATA L10D2
L10D3 DATA >822B,>2DA0
PM DATA DOCOL,ZLESS,ZBRAN,L10D4-$,MINUS
L10D4 DATA SEMIS
*
*** D+- ***
 DATA L10D3
L10D5 DATA >8344,>2BAD
DPM DATA DOCOL,ZLESS,ZBRAN,L10D6-$,DMINUS
L10D6 DATA SEMIS
*
*** DABS ***
 DATA L10D5
L10D7 DATA >8444,>4142,>53A0
DABS DATA DOCOL,DUP,DPM,SEMIS
*
*** M* ***
 DATA L10D7
L10D8 DATA >824D,>2AA0
MSTAR DATA DOCOL,OVER,OVER,XOR,TOR,ABS,SWAP,ABS
 DATA MULT,FROMR,DPM,SEMIS
*
*** M/ ***
 DATA L10D8
L10D9 DATA >824D,>2FA0
MSLASH DATA DOCOL,OVER,TOR,TOR,DABS,RR,ABS,DIV
 DATA FROMR,RR,XOR,PM,SWAP,FROMR,PM,SWAP
 DATA SEMIS
*
*** * ***
 DATA L10D9
L10DA DATA >81AA
TIMES DATA DOCOL,MULT,DROP,SEMIS
*
*** /MOD ***
 DATA L10DA
L10DB DATA >842F,>4D4F,>44A0
DMOD DATA DOCOL,TOR,STOD,FROMR,MSLASH,SEMIS
*
*** / ***
 DATA L10DB
L10DC DATA >81AF
DDIV DATA DOCOL,DMOD,SWAP,DROP,SEMIS
*
*** MOD ***
 DATA L10DC
L10DD DATA >834D,>4FC4
MOD DATA DOCOL,DMOD,DROP,SEMIS
*
*** */MOD ***
 DATA L10DD
L10DE DATA >852A,>2F4D,>4FC4
MDMOD DATA DOCOL,TOR,MSTAR,FROMR,MSLASH,SEMIS
*
*** */ ***
 DATA L10DE
L10DF DATA >822A,>2FA0
MD DATA DOCOL,MDMOD,SWAP,DROP,SEMIS
*
*** M/MOD ***
 DATA L10DF
L10E0 DATA >854D,>2F4D,>4FC4
MSLMOD DATA DOCOL,TOR,ZERO,RR,DIV,FROMR,SWAP,TOR
 DATA DIV,FROMR,SEMIS

266 O.2 ASMSRC—Part 2 of FORTHSAVE

*
*** SPACES ***
 DATA L10E0
L10E1 DATA >8653,>5041,>4345,>53A0
SPACES DATA DOCOL,ZERO,MAX,DDUP,ZBRAN,L10E2-$,ZERO
 DATA PDO
L10E3 DATA SPACE,PLOOP,L10E3-$
L10E2 DATA SEMIS
*
*** <# ***
 DATA L10E1
L10E4 DATA >823C,>23A0
STRTCN DATA DOCOL,PAD,HLD,STORE,SEMIS
*
*** #> ***
 DATA L10E4
L10E5 DATA >8223,>3EA0
STOPCN DATA DOCOL,DROP,DROP,HLD,AT,PAD,OVER,SUB
 DATA SEMIS
*
*** SIGN ***
 DATA L10E5
L10E6 DATA >8453,>4947,>4EA0
SIGN DATA DOCOL,ROT,ZLESS,ZBRAN,L10E7-$,LIT,>2D
 DATA HOLD
L10E7 DATA SEMIS
*
*** # ***
 DATA L10E6
L10E8 DATA >81A3
NUMSGN DATA DOCOL,PAD,HLD,AT,SUB,DPL,AT,EQUAL,ZBRAN
 DATA L10E9-$,LIT,>2E,HOLD
L10E9 DATA BASE,AT,MSLMOD,ROT,LIT,>9,OVER,LESS
 DATA ZBRAN,L10EA-$,LIT,>7,PLUS
L10EA DATA LIT,>30,PLUS,HOLD,SEMIS
*
*** #S ***
 DATA L10E8
L10EB DATA >8223,>53A0
NUMS DATA DOCOL
L10EC DATA NUMSGN,OVER,OVER,OR,ZEQU,ZBRAN,L10EC-$
 DATA SEMIS
*
*** D.R ***
 DATA L10EB
L10ED DATA >8344,>2ED2
DDOTR DATA DOCOL,TOR,SWAP,OVER,DABS,STRTCN,NUMS
 DATA SIGN,STOPCN,FROMR,OVER,SUB,SPACES,TYPE
 DATA SEMIS
*
*** D. ***
 DATA L10ED
L10EE DATA >8244,>2EA0
DDOT DATA DOCOL,ZERO,DDOTR,SPACE,SEMIS
*
*** .R ***
 DATA L10EE
L10EF DATA >822E,>52A0
DOTR DATA DOCOL,TOR,STOD,FROMR,DDOTR,SEMIS
*
*** . ***
 DATA L10EF
L10F0 DATA >81AE
DOT DATA DOCOL,STOD,DDOT,SEMIS
*
*** ? ***

 Appendix O TMS9900 Assembly Source Code for TI Forth 267

 DATA L10F0
L10F1 DATA >81BF
QMARK DATA DOCOL,AT,DOT,SEMIS
*
*** UD.R ***
 DATA L10F1
L10F2 DATA >8455,>442E,>52A0
UDDOTR DATA DOCOL,TOR,STRTCN,NUMS,STOPCN,FROMR
 DATA OVER,SUB,SPACES,TYPE,SEMIS
*
*** UD. ***
 DATA L10F2
L10F3 DATA >8355,>44AE
UDDOT DATA DOCOL,ZERO,UDDOTR,SPACE,SEMIS
*
*** U.R ***
 DATA L10F3
L10F4 DATA >8355,>2ED2
UDOTR DATA DOCOL,TOR,ZERO,FROMR,UDDOTR,SEMIS
*
*** U. ***
 DATA L10F4
L10F5 DATA >8255,>2EA0
UDOT DATA DOCOL,ZERO,UDDOT,SEMIS
*
*** +BUF ***
 DATA L10F5
L10F6 DATA >842B,>4255,>46A0
PLSBUF DATA DOCOL,BSLBUF,LIT,>4,PLUS,PLUS,DUP,LIMIT
 DATA EQUAL,ZBRAN,L10F7-$,DROP,FIRST
L10F7 DATA DUP,PREV,AT,SUB,SEMIS
*
*** BUFFER ***
 DATA L10F6
L10F8 DATA >8642,>5546,>4645,>52A0
BUFFER DATA DOCOL,USE,AT,DUP,TOR
L10F9 DATA PLSBUF,ZBRAN,L10F9-$,USE,STORE,RR,AT
 DATA ZLESS,ZBRAN,L10FA-$,RR,TWOP,RR,AT,LIT
 DATA >7FFF,AND,ZERO,RSLW
L10FA DATA RR,STORE,RR,PREV,STORE,FROMR,TWOP,SEMIS
*
*** UPDATE ***
 DATA L10F8
L10FB DATA >8655,>5044,>4154,>45A0
UPDATE DATA DOCOL,PREV,AT,AT,LIT,>8000,OR,PREV
 DATA AT,STORE,SEMIS
*
*** FLUSH ***
 DATA L10FB
L10FC DATA >8546,>4C55,>53C8
FLUSH DATA DOCOL,LIMIT,FIRST,SUB,BSLBUF,LIT,>4
 DATA PLUS,DDIV,ONEP,ZERO,PDO
L10FD DATA LIT,>7FFF,BUFFER,DROP,PLOOP,L10FD-$
 DATA SEMIS
*
*** EMPTY-BUFFERS ***
 DATA L10FC
L10FE DATA >8D45,>4D50,>5459,>2D42,>5546,>4645
 DATA >52D3
EMPTYB DATA DOCOL,FIRST,LIMIT,OVER,SUB,ERASE,FLUSH
 DATA FIRST,USE,STORE,FIRST,PREV,STORE,SEMIS
*
*** CLEAR ***
 DATA L10FE
L10FF DATA >8543,>4C45,>41D2
CLEAR DATA DOCOL,DUP,SCR,STORE,BSLSCR,TIMES,OFFSET

268 O.2 ASMSRC—Part 2 of FORTHSAVE

 DATA AT,PLUS,FLUSH,BSLSCR,ZERO,PDO
L1100 DATA I,OVER,PLUS,BUFFER,BSLBUF,BLANKS,UPDATE
 DATA PLOOP,L1100-$,DROP,SEMIS
*
*** BLOCK ***
 DATA L10FF
L1101 DATA >8542,>4C4F,>43CB
BLOCK DATA DOCOL,OFFSET,AT,PLUS,TOR,PREV,AT,DUP
 DATA AT,RR,SUB,DUP,PLUS,ZBRAN,L1102-$
L1103 DATA PLSBUF,ZEQU,ZBRAN,L1104-$,DROP,RR,BUFFER
 DATA DUP,RR,ONE,RSLW,TWOM
L1104 DATA DUP,AT,RR,SUB,DUP,PLUS,ZEQU,ZBRAN
 DATA L1103-$,DUP,PREV,STORE
L1102 DATA FROMR,DROP,TWOP,SEMIS
*
*** (LINE) ***
 DATA L1101
L1105 DATA >8628,>4C49,>4E45,>29A0
PLINE DATA DOCOL,TOR,CSL,BSLBUF,MDMOD,FROMR,BSLSCR
 DATA TIMES,PLUS,BLOCK,PLUS,CSL,SEMIS
*
*** .LINE ***
 DATA L1105
L1106 DATA >852E,>4C49,>4EC5
DOTLN DATA DOCOL,PLINE,DTRAIL,TYPE,SEMIS
*
*** MESSAGE ***
 DATA L1106
L1107 DATA >874D,>4553,>5341,>47C5
MESSAG DATA DOCOL,WARNIN,AT,ZBRAN,L1108-$,DDUP
 DATA ZBRAN,L1109-$,LIT,>4,OFFSET,AT,BSLSCR
 DATA DDIV,SUB,DOTLN
L1109 DATA BRANCH,L110A-$
L1108 DATA PTYPE,>64D,>5347,>2023,>2020,DOT
L110A DATA SEMIS
*
*** LOAD ***
 DATA L1107
L110B DATA >844C,>4F41,>44A0
LOAD DATA DOCOL,DDUP,ZEQU,LIT,>C,QERROR,BLK,AT
 DATA TOR,IN,AT,TOR,ZERO,IN
 DATA STORE,BSLSCR,TIMES,BLK,STORE,INTERP
 DATA FROMR,IN,STORE,FROMR
 DATA BLK,STORE,SEMIS
*
*** --> ***
 DATA L110B
L110C DATA >C32D,>2DBE
ARROW DATA DOCOL,QLOADI,ZERO,IN,STORE,BSLSCR
 DATA BLK,AT,OVER,MOD,SUB
 DATA BLK,PSTORE,SEMIS
*
*** R/W ***
 DATA L110C
L110D DATA >8352,>2FD7
RSLW DATA DOCOL,BSLBUF,SWAP,ZBRAN,L110E-$,RDISK
 DATA BRANCH,L110F-$
L110E DATA WDISK
L110F DATA DUP,QERROR,SEMIS
*
*** ' ***
 DATA L110D
L1110 DATA >C1A7
TICK DATA DOCOL,DFIND,ZEQU,ZERO,QERROR,DROP,LITERA
 DATA SEMIS
*

 Appendix O TMS9900 Assembly Source Code for TI Forth 269

*** UNFORGETABLE ***
 DATA L1110
L1110X DATA >8C55,>4E46,>4F52,>4745,>5441,>424C,>45A0
UNFORG DATA DOCOL,DUP,FENCE,AT,ULESS,OVER,LIT,$TASK1
 DATA ULESS,OR,HERE,ROT,ULESS,OR,SEMIS
*
*** FORGET ***
 DATA L1110X
L1111 DATA >8646,>4F52,>4745,>54A0
FORGET DATA DOCOL,TICK,LFA,DUP,UNFORG,LIT,>15,QERROR
 DATA TOR,VLINK,AT
FORGE1 DATA RR,OVER,ULESS,OVER,UNFORG,ZEQU,AND
 DATA ZBRAN,FORGE2-$,FORTH,DEFINI,AT
 DATA BRANCH,FORGE1-$
FORGE2 DATA DUP,VLINK,STORE
FORGE3 DATA DUP,TWOM
FORGE4 DATA PFA,LFA,AT,DUP,PFA,LFA,RR,ULESS,OVER
 DATA UNFORG,OR,ZBRAN,FORGE4-$
 DATA OVER,LIT,>4,SUB,STORE,AT,DDUP,ZEQU
 DATA ZBRAN,FORGE3-$,FROMR,DP,STORE,SEMIS
*
*** : ***
 DATA L1111
L1112 DATA >C1BA
COLON DATA DOCOL,QEXEC,STRCSP,CURREN,AT,CONTEX
 DATA STORE,CREATE,RBRCKT,LIT,DOCOL
 DATA HERE,TWOM,STORE,SEMIS
*
*** ; ***
 DATA L1112
L1113 DATA >C1BB
SEMIC DATA DOCOL,QCSP,COMPIL,SEMIS,SMUDGE,LBRCKT
 DATA SEMIS
*
*** BACK ***
 DATA L1113
L1114 DATA >8442,>4143,>4BA0
BACK DATA DOCOL,HERE,SUB,COMMA,SEMIS
*
*** BEGIN ***
 DATA L1114
L1115 DATA >C542,>4547,>49CE
BEGIN DATA DOCOL,QCOMP,HERE,ONE,SEMIS
*
*** ENDIF ***
 DATA L1115
L1116 DATA >C545,>4E44,>49C6
ENDIF DATA DOCOL,QCOMP,TWO,QPAIRS,HERE,OVER,SUB
 DATA SWAP,STORE,SEMIS
*
*** THEN ***
 DATA L1116
L1117 DATA >C454,>4845,>4EA0
THEN DATA DOCOL,ENDIF,SEMIS
*
*** DO ***
 DATA L1117
L1118 DATA >C244,>4FA0
DO DATA DOCOL,QCOMP,COMPIL,PDO,HERE,THREE,SEMIS
*
*** LOOP ***
 DATA L1118
L1119 DATA >C44C,>4F4F,>50A0
LOOP DATA DOCOL,QCOMP,THREE,QPAIRS,COMPIL,PLOOP
 DATA BACK,SEMIS
*

270 O.2 ASMSRC—Part 2 of FORTHSAVE

*** +LOOP ***
 DATA L1119
L111A DATA >C52B,>4C4F,>4FD0
PLLOOP DATA DOCOL,QCOMP,THREE,QPAIRS,COMPIL,PPLOOP
 DATA BACK,SEMIS
*
*** UNTIL ***
 DATA L111A
L111B DATA >C555,>4E54,>49CC
UNTIL DATA DOCOL,QCOMP,ONE,QPAIRS,COMPIL,ZBRAN
 DATA BACK,SEMIS
*
*** END ***
 DATA L111B
L111C DATA >C345,>4EC4
END DATA DOCOL,UNTIL,SEMIS
*
*** AGAIN ***
 DATA L111C
L111D DATA >C541,>4741,>49CE
AGAIN DATA DOCOL,QCOMP,ONE,QPAIRS,COMPIL,BRANCH
 DATA BACK,SEMIS
*
*** REPEAT ***
 DATA L111D
L111E DATA >C652,>4550,>4541,>54A0
REPEAT DATA DOCOL,QCOMP,TOR,TOR,AGAIN,FROMR,FROMR
 DATA TWOM,ENDIF,SEMIS
*
*** IF ***
 DATA L111E
L111F DATA >C249,>46A0
IF DATA DOCOL,QCOMP,COMPIL,ZBRAN,HERE,ZERO
 DATA COMMA,TWO,SEMIS
*
*** ELSE ***
 DATA L111F
L1120 DATA >C445,>4C53,>45A0
ELSE DATA DOCOL,QCOMP,TWO,QPAIRS,COMPIL,BRANCH
 DATA HERE,ZERO,COMMA,SWAP,TWO,ENDIF,TWO
 DATA SEMIS
*
*** WHILE ***
 DATA L1120
L1121 DATA >C557,>4849,>4CC5
WHILE DATA DOCOL,IF,TWOP,SEMIS
*
*** CASE ***
 DATA L1121
L1122 DATA >C443,>4153,>45A0
CASE DATA DOCOL,QCOMP,CSP,AT,STRCSP,LIT,>4,SEMIS
*
*** OF ***
 DATA L1122
L1123 DATA >C24F,>46A0
OF DATA DOCOL,LIT,>4,QPAIRS,COMPIL,POF,HERE
 DATA ZERO,COMMA,LIT,>5,SEMIS
*
*** ENDOF ***
 DATA L1123
L1124 DATA >C545,>4E44,>4FC6
ENDOF DATA DOCOL,LIT,>5,QPAIRS,COMPIL,BRANCH,HERE
 DATA ZERO,COMMA,SWAP,TWO,ENDIF,LIT,>4,SEMIS
*
*** ENDCASE ***
 DATA L1124

 Appendix O TMS9900 Assembly Source Code for TI Forth 271

L1125 DATA >C745,>4E44,>4341,>53C5
ENDCAS DATA DOCOL,LIT,>4,QPAIRS,COMPIL,DROP
L1126 DATA SPAT,CSP,AT,EQUAL,ZEQU,ZBRAN,L1127-$
 DATA TWO,ENDIF,BRANCH,L1126-$
L1127 DATA CSP,STORE,SEMIS
*
*** BASE->R ***
 DATA L1125
L1128 DATA >8742,>4153,>452D,>3ED2
BASTOR DATA DOCOL,FROMR,BASE,AT,TOR,TOR,SEMIS
*
*** R->BASE ***
 DATA L1128
L1129 DATA >8752,>2D3E,>4241,>53C5
RTOBAS DATA DOCOL,FROMR,FROMR,BASE,STORE,TOR,SEMIS
*
*** L/SCR ***
 DATA L1129
L112A DATA >854C,>2F53,>43D2
LPSCR DATA DOCOL,BSLSCR,BSLBUF,TIMES,CSL,DDIV
 DATA SEMIS
*
*** PAUSE ***
 DATA L112A
L112AX DATA >8550,>4155,>53C5
PAUSE DATA DOCOL,QKEY,DUP,TWO,EQUAL
 DATA ZBRAN,PAUSE1-$,DROP,ONE,BRANCH,PAUSE2-$
PAUSE1 DATA ZBRAN,PAUSE3-$
PAUSE4 DATA QKEY,ZEQU,ZBRAN,PAUSE4-$
PAUSE5 DATA QKEY,DDUP,ZBRAN,PAUSE5-$
 DATA TWO,EQUAL,ZBRAN,PAUSE6-$
 DATA ONE,BRANCH,PAUSE7-$
PAUSE6 DATA QKEY,ZEQU,ZBRAN,PAUSE6-$,ZERO
PAUSE7 DATA BRANCH,PAUSE2-$
PAUSE3 DATA ZERO
PAUSE2 DATA SEMIS
*
*** LIST ***
 DATA L112AX
L112B DATA >844C,>4953,>54A0
LIST DATA DOCOL,BASTOR,DECIMA,CR,DUP,SCR,STORE
 DATA PTYPE,>553,>4352,>2023,DOT,LPSCR,ZERO
 DATA PDO
L112C DATA CR,I,THREE,DOTR,SPACE,I,SCR,AT,DOTLN
 DATA PAUSE,ZBRAN,L112CX-$,LEAVE
L112CX DATA PLOOP,L112C-$,CR,RTOBAS,SEMIS
*
*** <BUILDS ***
 DATA L112B
L1139 DATA >873C,>4255,>494C,>44D3
BUILDS DATA DOCOL,CREATE,SMUDGE,SEMIS
*
*** (DOES>) ***
 DATA L1139
L113A DATA >8728,>444F,>4553,>3EA9
PDOES DATA DOCOL,FROMR,LATEST,PFA,CFA,STORE,SEMIS
*
*** DOES> ***
 DATA L113A
L113B DATA >C544,>4F45,>53BE
DOES DATA DOCOL,LIT,PDOES,COMMA,LIT,>6A0,COMMA
 DATA LIT,DODOES,COMMA,SEMIS
*
*** CONSTANT ***
 DATA L113B
L113C DATA >8843,>4F4E,>5354,>414E,>54A0

272 O.2 ASMSRC—Part 2 of FORTHSAVE

CONSTA DATA DOCOL,BUILDS,COMMA
DOCON EQU $+2
 DATA PDOES,>6A0,DODOES,AT,SEMIS
*
*** USER ***
 DATA L113C
L113D DATA >8455,>5345,>52A0
USER DATA DOCOL,BUILDS,COMMA
DOUSER EQU $+2
 DATA PDOES,>6A0,DODOES,AT,UU,PLUS,SEMIS
*
*** VARIABLE ***
 DATA L113D
L113E DATA >8856,>4152,>4941,>424C,>45A0
VARIAB DATA DOCOL,BUILDS,COMMA
DOVAR EQU $+2
 DATA PDOES,>6A0,DODOES,SEMIS
*
*** VOCABULARY ***
 DATA L113E
L113F DATA >8A56,>4F43,>4142,>554C,>4152,>59A0
VOCABU DATA DOCOL,BUILDS,CURREN,AT,TWOP,COMMA,LIT
 DATA >81A0,COMMA,HERE,VLINK,AT,COMMA
 DATA VLINK,STORE
DOVOC EQU $+2
 DATA PDOES,>6A0,DODOES,CONTEX,STORE,SEMIS
*
*** (;CODE) ***
 DATA L113F
L1140 DATA >8728,>3B43,>4F44,>45A9
PSCODE DATA DOCOL,FROMR,LATEST,PFA,CFA,STORE,SEMIS
*
*** MYSELF ***
 DATA L1140
L1144 DATA >C64D,>5953,>454C,>46A0
MYSELF DATA DOCOL,LATEST,PFA,CFA,COMMA,SEMIS
*
*** ~ ***
 DATA L1144
L1145 DATA >C180
NULL DATA DOCOL,BLK,AT,ZBRAN,L1146-$,ONE,BLK
 DATA PSTORE,ZERO,IN,STORE,BLK,AT,BSLSCR
 DATA MOD,ZEQU,ZBRAN,L1147-$,QEXEC,FROMR
 DATA DROP
L1147 DATA BRANCH,L1148-$
L1146 DATA FROMR,DROP
L1148 DATA SEMIS
*
*** NOP ***
 DATA L1145
L1166 DATA >834E,>4FD0
NOP DATA DOCOL,SEMIS
*
*** BLOAD ***
 DATA L1166
L1166X DATA >8542,>4C4F,>41C4
BLOAD DATA DOCOL
BLOAD1 DATA DUP,ONEP,SWAP,BLOCK
 DATA DUP,LIT,14,PLUS,AT,LIT,29801,EQUAL
 DATA ZBRAN,BLOAD2-$,DUP,AT,TOR
 DATA TWOP,DUP,AT,DUP,TOR,DP,STORE
 DATA TWOP,DUP,AT,CURREN,STORE
 DATA TWOP,DUP,AT,CURREN,AT,STORE
 DATA TWOP,DUP,AT,CONTEX,STORE
 DATA TWOP,DUP,AT,CONTEX,AT,STORE
 DATA TWOP,DUP,AT,VLINK,STORE

 Appendix O TMS9900 Assembly Source Code for TI Forth 273

 DATA LIT,12,PLUS,FROMR,FROMR,SWAP
 DATA OVER,SUB,DUP,TOR,LIT,1000,MIN
 DATA CMOVE,FROMR,LIT,1001,LESS,BRANCH,BLOAD3-$
BLOAD2 DATA DROP,DROP,ZERO,ONE
BLOAD3 DATA ZBRAN,BLOAD1-$,ZEQU,SEMIS
*
*** COLD ***
 DATA L1166X
L1167 DATA >8443,>4F4C,>44A0
COLD DATA DOCOL,UCONS$,AT,U0,AT,LIT,ULNGTH,CMOVE
 DATA LIT,$TASK0,LIT,$TASK1,OVER,SUB,TOR
 DATA HERE,RR,CMOVE,HERE,TWOP,DUP,FORTHL
 DATA LIT,>4,SUB,STORE,FENCE,STORE,LIT,>81A0
 DATA FORTHL,TWOM,STORE,ZERO,FORTHL,STORE
 DATA FORTHL,VLINK,STORE
 DATA FIRST,USE,STORE,FIRST,PREV,STORE,FROMR
 DATA ALLOT,DR0,EMPTYB,LIT,>FFFF,DPL,STORE
 DATA BOOT,ABORT,SEMIS
*
*** BOOT ***
 DATA L1167
BOOTN DATA >8442,>4F4F,>54A0
BOOT DATA DOCOL,SPSTOR,DECIMA,ZERO,ECOUNT
 DATA STORE,FORTH,DEFINI,ZERO,BLK,STORE,LBRCKT
 DATA ZERO,THREE,BLOCK,DUP,LIT,>400,PLUS
 DATA SWAP,PDO
BOOT1 DATA I,CAT,DUP,LIT,>20,LESS,SWAP
 DATA LIT,>7F,GREAT,OR,ZBRAN,BOOT2-$
 DATA ONEP,LEAVE
BOOT2 DATA PLOOP,BOOT1-$,ZEQU,ZBRAN,BOOT3-$
 DATA THREE,LOAD
BOOT3 DATA SEMIS
*
*** SYSTEM ***
 DATA BOOTN
L1168 DATA >8653,>5953,>5445,>4DA0
SYST$ DATA $+2
 MOV *SP+,TEMP1
 MOV @$SYS(U),LINK
 BL *LINK
 B *NEXT
$TASK0 EQU $
*
*** TASK ***
 DATA L1168
L1169 DATA >8454,>4153,>4BA0
TASK DATA DOCOL,SEMIS

$TASK1 EQU $
*
**
 END

 O.3 BOOT—FORTH

BOOT is assembled to FORTH, the program that starts TI Forth. This program is loaded from
Editor/Assembler option 3, LOAD AND RUN by giving the FILE NAME? prompt “DSK1.FORTH”.
BOOT, as FORTH, loads FORTHSAVE from DSK1 and copies the first 2230 (8B6h) bytes to
low memory expansion CPU RAM at 3424h and the last 7282 (1C72h) bytes to high memory
expansion CPU RAM at A000h. After some additional initializing, TI Forth is cold started.

274 O.3 BOOT—FORTH

 TITL 'FORTH BOOT PROGRAM'
 IDT 'BOOT'
**

*++ The TI Forth workspace registers
TEMP0 EQU 0
TEMP1 EQU 1
TEMP2 EQU 2
TEMP3 EQU 3
TEMP4 EQU 4
TEMP5 EQU 5
TEMP6 EQU 6
TEMP7 EQU 7
U EQU 8
SP EQU 9
W EQU 10
LINK EQU 11
CRU EQU 12
IP EQU 13
R EQU 14
NEXT EQU 15
**

*++ TI Forth's workspace is 32 bytes at start of PAD (>8300->831F)
MAINWS EQU >8300 IN CONSOLE CPU RAM
SUBPTR EQU >8356 POINTS TO SUBROUTINE NAMES IN VDP
DSKERR EQU >8350 DISK DSR ERROR CODES HERE
**
 DEF BOOT
*++ these REFs needed to access Editor/Assembler routines prior to having the TI Forth versions available
*++ and/or because they don't get trampled by the system load until the COLD start at the end of BOOT
 REF VWTR,VDPWA,VDPWD
 REF VMBW,DSRLNK,VMBR
*

FF9900 EQU >A000 *++ pointer to TI Forth COLD start code
VSPTR EQU >836E *++ pointer to value stack in VDP RAM
KYSTAT EQU >837C *++ GPL status byte
FAC EQU >834A

GRMWA EQU >9C02 *++ GROM write address register
GRMRA EQU >9802 *++ GROM read address register
GRMRD EQU >9800 *++ GROM read data register
SVGPRT EQU >3C70 *++ save return to GPL interpreter
GRMSAV EQU >3CD6 *++ save GROM address during DSRLNK
RTFGPL EQU >3AB0 *++ return to assembly language from GPL
*++ address of initial values for first 27 user variables—COLD resets user variable table to these
UBASE0 EQU >3944

ENTLNK EQU >3A2A *++ not sure this is actually used
GPLLNK EQU >3A06 *++ TI Forth's GPLLNK routine
XMLTAB EQU >0CFA *++ XML table in console ROM
CIFENT EQU >3B32 *++ TI Forth's integer to floating point conversion routine
**
PAB EQU >F80 *++ PAB for loading FORTHSAVE binary from DSK1
*++ PAB data: LOAD file opcode=5,
*++ VDP address of buffer=1000h,

 Appendix O TMS9900 Assembly Source Code for TI Forth 275

*++ maximum number of bytes to transfer=8B6h+1C72h=size of file
*++ name-length byte=Eh (length of file descriptor)
PDATA DATA >0500,>1000,0,>8B6+>1C72,>000E

*++ PAB data (continued): file descriptor="DSK1.FORTHSAVE"
 TEXT 'DSK1.FORTHSAVE'
 EVEN
**

*++ location of TI Forth's inner interpreter in PAD RAM
 DORG >832E *++ code at FMOVE will be moved here
DODOES DECT SP DUMMY COPY TO GET ADRESSES
 MOV W,*SP
 MOV LINK,W
DOCOL DECT R
 MOV IP,*R
 MOV W,IP
$NEXT MOV *IP+,W
DOEXEC MOV *W+,TEMP1
 B *TEMP1
$SEMIS MOV *R+,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
*
*
 AORG >C000

*++ this is the guts of TI Forth's inner interpreter that gets moved to DODOES in PAD RAM
FMOVE DECT SP COPY TO MOVE TO CONSOLE RAM
 MOV W,*SP
 MOV LINK,W
 DECT R
 MOV IP,*R
 MOV W,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
 MOV *R+,IP
 MOV *IP+,W
 MOV *W+,TEMP1
 B *TEMP1
*

*++ beginning of BOOT program code
BOOT LWPI MAINWS *++ set up TI Forth workspace in PAD
 LIMI 0

*++ copy PAB data to PAB (VDP F80h)
 LI TEMP0,PAB
 LI TEMP1,PDATA
 LI TEMP2,>20
 BLWP @VMBW

*++ set up and invoke disk DSR to load DSK1.FORTHSAVE to VDP buffer at 1000h
 LI TEMP6,PAB+9
 MOV TEMP6,@SUBPTR
 BLWP @DSRLNK
 DATA 8

*++ copy first 8B6h bytes of system from VDP buffer to low memory expansion RAM at 3424h
 LI TEMP0,>1000
 LI TEMP1,>3424
 LI TEMP2,>8B6
 BLWP @VMBR

*++ copy rest of system (1C72h bytes) from VDP buffer to high memory expansion RAM at A000h
 LI TEMP0,>18B6

276 O.3 BOOT—FORTH

 LI TEMP1,>A000
 LI TEMP2,>1C72
 BLWP @VMBR
*++ finding and saving GROM address (682Dh) of XML instruction in E/A cartridge that got us here so
*++ we can use it to "return" from GPL to execute assembly code. The GPL code in question ("XML >22")
*++ starts the E/A loader that loaded this TI Forth BOOT program, which means the loader address is
*++ stored at CPU RAM address 2004h. until we change it in later code
 MOVB @GRMRA,TEMP1
 SWPB TEMP1
 MOVB @GRMRA,TEMP1
 SWPB TEMP1
 AI TEMP1,-3
 MOV TEMP1,@GRMSAV

*++ get the object of the GPL XML instruction, the ">22" of "XML >22", into the high byte of TEMP1
 INC TEMP1
 MOVB TEMP1,@GRMWA
 SWPB TEMP1
 MOVB TEMP1,@GRMWA
 NOP
 MOVB @GRMRD,TEMP1

*++ calculate the XML vector by using first nybble of ">22" = 2 to look up the table's address in the
*++ console ROM's XML table at 0CFAh + (2 x 2) = 0CFEh (which contains 2000h) and adding the
*++ table's offset (the second nybble (2) x 2 = 4) to get 2004h, which is then stored in TEMP2
 MOV TEMP1,TEMP2
 SRL TEMP1,12
 SLA TEMP1,1
 SLA TEMP2,4
 SRL TEMP2,11
 A @XMLTAB(TEMP1),TEMP2
*++ save E/A loader's return address to the GPL interpreter in console ROM = 061Ch, which is by a
*++ "JMP >05E4" followed by a "B @>0070"
 MOV @>2030,@SVGPRT >2030 IS SVGPRT USED BY E/A LOADER
*++ move the address of our return from GPL (RTFGPL=3AB0h) to 2004h, the object of the GROM
*++ "XML >22" instruction noted above, which will be executed every time we return from GPL
 LI TEMP1,RTFGPL
 MOV TEMP1,*TEMP2
*++ copy TI Forth's inner interpreter code (26 bytes) from FMOVE to where it will execute in PAD
*++ at 832Eh
 LI TEMP1,BOOT-FMOVE
 LI TEMP2,FMOVE
 LI TEMP3,DODOES
MLOOP MOV *TEMP2+,*TEMP3+
 DECT TEMP1
 JNE MLOOP
*
*** INITIALIZE VDP STUFF
*
 LI TEMP0,>01B0 BLANK SCREEN
 BLWP @VWTR
 LI TEMP0,>030E SET COLOR TABLE AT >0380
 BLWP @VWTR
 LI TEMP0,>0401 SET PATTERN DESCRIPTOR TABLE >0800
 BLWP @VWTR
 LI TEMP0,>0506 SET SPRITE ATTRIBUTE TABLE >0300
 BLWP @VWTR
 LI TEMP0,>0601 SET SPRITE DESCRIPTOR TABLE >0800
 BLWP @VWTR
 LI TEMP0,>07F4 SET TEXTMODE COLORS
 BLWP @VWTR
 LI TEMP0,>2000 BLANK

 Appendix O TMS9900 Assembly Source Code for TI Forth 277

 LI TEMP1,>960 TEXT-MODE SCREEN SIZE *++ this should be either 960 or >3C0
 LI TEMP2,>0 SCREEN STARTS AT 0
 BL @FILLER CLEAR SCREEN
 LI TEMP0,>FF00 CHAR FF

 LI TEMP1,>2048 BLOCK SIZE *++ this should be either 2048 or >800
 LI TEMP2,>800 STARTING LOCATION IN VDP
 BL @FILLER FILL AREA WITH FF'S

*++ force text mode
 LI TEMP0,>81F0
 SWPB TEMP0
 MOVB TEMP0,@>83D4 USED TO UPDATE VDP REG EACH KEYSTROKE
 MOVB TEMP0,@VDPWA FORCE TEXT MODE
 SWPB TEMP0
 MOVB TEMP0,@VDPWA

*++ load capital letters
 LI TEMP0,>900 VDP LOCATION

 MOV TEMP0,@FAC *++ FAC must contain VDP start address
 CLR TEMP1 CLEAR GPL STATUS
 MOVB TEMP1,@KYSTAT
 LI TEMP7,>3E0
 MOV TEMP7,@VSPTR
 BLWP @GPLLNK LOAD CAPITAL LETTER SHAPES
 DATA >0018

*++ set location of TI Forth's CIF routine (replaces trampled E/A version)
 LI TEMP2,CIFENT
 MOV TEMP2,@>2006

*++ load lowercase letters (actually, small caps)
 LI TEMP2,>1200
 CB TEMP2,@3 IF BYTE @3 IN THE CONSOLE IS >12 IT'S A 99/4
 JEQ FOUR DON'T LOAD LOWER CASE IN A 99/4
 LI TEMP0,>0B00

 MOV TEMP0,@FAC *++ FAC must contain VDP start address
 MOVB TEMP1,@KYSTAT
 BLWP @GPLLNK LOAD LOWER CASE IN 99/4A
 DATA >004A
*

*++ finally, we cold start TI Forth
FOUR LI TEMP1,UBASE0
 B @FF9900 BRANCH TO ACMSRC
*
FILLER ORI TEMP2,>4000 SET BIT FOR VDP WRITE
 SWPB TEMP2
 MOVB TEMP2,@VDPWA LS BYTE FIRST
 SWPB TEMP2
 MOVB TEMP2,@VDPWA THEN MS BYTE
 NOP KILL TIME
FLLOOP MOVB TEMP0,@VDPWD WRITE A BYTE
 DEC TEMP1
 JNE FLLOOP NOT DONE, FILL ANOTHER
 B *LINK
*
 END BOOT

278 O.4 Generating TI Forth from Source Code

 O.4 Generating TI Forth from Source Code

To generate TI Forth from the original source code, you must do the following:

1. Assemble the three files, BOOT, DRIVER and ASMSRC. BOOT is self-contained and
should be assembled to FORTH. DRIVER includes UTILEQU, UTILROM and
UTILRAM when it is assembled. Assemble it to something like DRIVERO to
distinguish it from the source file. ASMSRC includes ASMSRC1, ASMSRC2 and
ASMSRC3 when it is assembled. Assemble it to something like ASMSRCO.

2. Load the two object files, ASMSRCO and DRIVERO, in that order, with the
Editor/Assembler option 3.

3. This step is not so easy. You can write an assembly language program to load next
(avoiding clobbering the two files already loaded) that will copy the 9512 bytes of CPU
RAM 3424h–3CD9h (where the relevant part of DRIVERO is loaded) and A000h–BC71h
(where ASMSRCO is loaded) to a VDP RAM buffer and from there to a file with the
disk DSR I/O opcode=6 (SAVE) and name that file FORTHSAVE. The editor has
written such a program (FSAVE) and included it in the section following these
instructions. [Note: This step cannot be accomplished with the Editor/Assembler's
SAVE utility due to SAVE’s 8-KB limit.]

4. At this point, you can copy FORTH and FORTHSAVE to a copy of the old diskette, if
your purpose for regenerating these object files was to replace a defective system.
Otherwise, there is more work to do. Check Appendix K and Appendix L for details
that will help you set up the system for larger disks and explain in greater detail the
purpose for as well as an alternative method for the next step.

5. The TI Forth system screens (blocks) need to be copied to the new system disk. From a
working, 90-KB TI Forth system diskette, copy the file named SYS-SCRNS. If the new
diskette is also 90 KB, you're done. Otherwise, write a blank record to the last possible
record of the file such that writing that record completely fills the disk. The number of
sectors occupied by a SYS-SCRNS file that fills the disk can be calculated from the size
of the disk my multiplying the disk size in KB by 4 to get total sectors and subtracting the
sectors occupied by the FDIR (2), the three FDRs (3) and the first two files (5 + 38 = 43).
For a 360-KB diskette, this would be 360 * 4 - 2 - 3 - 43 = 1392 sectors. The number of
128-byte records is twice this (2784 records), so the last record, counting from 0, would
be record number 2783. You can expand the file in TI Basic or TI Extended Basic like
this:

100 OPEN #1:"DSK1.SYS-SCRNS",RELATIVE,UPDATE,FIXED 128
110 LASTREC=2783
120 PRINT #1,REC LASTREC:" "
130 CLOSE #1

6. If you performed step 5 for a new system disk larger than 90 KB, you will need to copy
TI Forth system screens #2 ‒ #5 to their proper locations from screens #90 ‒ #94. The
problem with this is that the source screens are skewed by 12 lines, i.e., we need to start
the copy from line 12 of screen #90 and continue through line 11 of screen #94. It will be
easier to copy records 572 ‒ 603 of the new SYS-SCRNS file to there proper locations in
the SYS-SCRNS file. Doing this requires us to calculate the starting destination record,
which will always be the same distance from the end of the SYS-SCRNS file regardless

 Appendix O TMS9900 Assembly Source Code for TI Forth 279

of its size. There will always be a 20-record space at the end of the file. With 2 lines per
record and 16 lines per screen, we will be copying 32 records beginning with the last
record - 51, which, for the 360-KB case is 2783 - 51 = 2732. This can be done with
another TI Forth system as in Appendix L or with the following TI Extended Basic code
(TI Basic won't handle this correctly), which includes extending SYS-SCRNS to fill up the
disk:

100 OPEN #1:"DSK1.SYS-SCRNS",RELATIVE,UPDATE,FIXED 128
110 LASTREC=2783
120 PRINT #1,REC LASTREC:" "
130 FOR I=572 TO 603
140 LINPUT #1,REC I:LINE$
150 PRINT #1,REC LASTREC-623+I:LINE$
160 NEXT I
170 CLOSE #1

Remember to change LASTREC to whatever is the last record number in SYS-SCRNS on
the new disk.

 O.5 FSAVE Assembly Source Code

The following TMS9900 assembly source code was written by the editor to save the memory
images of the previously loaded DRIVERO and ASMSRCO object files to FORTHSAVE.
FORTHSAVE is the memory-image file that FORTH (the TI Forth BOOT program) loads to start
TI Forth. FSAVE saves FORTHSAVE to DSK2. You can change this in (or near) line 61 to
save to a different disk drive, if you like. This code is offered “as is”:

 TITL 'FORTH SAVE PROGRAM'
 IDT 'FSAVE'
**
* Though the names may be different, this program expects
* object files DRIVERO and ASMSRCO to be in memory before it
* is loaded and run. DRIVERO is assembled from DRIVER and
* ASMSRCO from ASMSRC. If any modifications are made to
* DRIVER or ASMSRC, starting points and image lengths will
* need to be changed in this program and the Forth BOOT pro-
* gram to match.
* ...Lee Stewart, April 18, 2013
**
TEMP0 EQU 0
TEMP1 EQU 1
TEMP2 EQU 2
TEMP3 EQU 3
TEMP4 EQU 4
TEMP5 EQU 5
TEMP6 EQU 6
TEMP7 EQU 7
U EQU 8
SP EQU 9
W EQU 10
LINK EQU 11
CRU EQU 12
IP EQU 13
R EQU 14
NEXT EQU 15

280 O.5 FSAVE Assembly Source Code

**
MAINWS EQU >8300 IN CONSOLE CPU RAM
SUBPTR EQU >8356 POINTS TO SUBROUTINE NAMES IN VDP
**
 DEF FSAVE
*
FAC EQU >834A
KYBD EQU >8374
KYCHR EQU >8375
KYSTAT EQU >837C
GRMRA EQU >9802
GRMRD EQU >9800
GRMWA EQU >9C02
KSCAN EQU >2108
UTILWS EQU >2094
VDPWA EQU >8C02
VDPWD EQU >8C00
VMBR EQU >2118
VMBW EQU >2110
VSBW EQU >210C
VSPTR EQU >836E
VWTR EQU >211C
XMLTAB EQU >0CFA
*
**
* Set up PAB for disk SAVE operation
**
PAB EQU >F80
*
 AORG >C000 insure DRIVER and ASMSRC not corrupted
*
PDATA DATA >0600,>1000,0,>8B6+>1C72,>000E
 TEXT 'DSK2.FORTHSAVE'
 EVEN
**
*
PREAM TEXT 'FSAVE running...Tap a key to start... '
 EVEN
LOCPY TEXT '-Copying Forth support to VDP RAM '
 EVEN
HICPY TEXT '-Copying resident dictionary to VDP RAM'
 EVEN
SVFIL TEXT '-Saving memory image to DSK2.FORTHSAVE '
 EVEN
FERROR TEXT '***FILE I/O ERROR: DSK2.FORTHSAVE*** '
EPILOG TEXT ' ...done. Press <quit> to exit.'
 EVEN
MCNT DATA 39 Char count of above messages
ROW DATA 0 Rowcount initialized to 0
D40 DATA 40 Decimal 40
*
**
*** PROGRAM START
**
FSAVE LWPI MAINWS
 LIMI 0
*
**
*** INITIALIZE VDP STUFF
**
 LI TEMP0,>01B0 BLANK SCREEN
 BLWP @VWTR
 LI TEMP0,>030E SET COLOR TABLE AT >0380
 BLWP @VWTR
 LI TEMP0,>0401 SET PATTERN DESCRIPTOR TABLE >0800
 BLWP @VWTR

 Appendix O TMS9900 Assembly Source Code for TI Forth 281

 LI TEMP0,>0506 SET SPRITE ATTRIBUTE TABLE >0300
 BLWP @VWTR
 LI TEMP0,>0601 SET SPRITE DESCRIPTOR TABLE >0800
 BLWP @VWTR
 LI TEMP0,>07F4 SET TEXTMODE COLORS
 BLWP @VWTR
 LI TEMP0,>2000 BLANK
 LI TEMP1,>3C0 TEXT-MODE SCREEN SIZE
 LI TEMP2,>0 SCREEN STARTS AT 0
 BL @FILLER CLEAR SCREEN
 LI TEMP0,>FF00 CHAR FF
 LI TEMP1,>800 BLOCK SIZE
 LI TEMP2,>800 STARTING LOCATION IN VDP
 BL @FILLER FILL AREA WITH FF'S
 LI TEMP0,>81F0
 SWPB TEMP0
 MOVB TEMP0,@>83D4 UPDATES VDP REG EACH KEYSTROKE
 MOVB TEMP0,@VDPWA FORCE TEXT MODE
 SWPB TEMP0
 MOVB TEMP0,@VDPWA
 LI TEMP7,>3E0 VSPTR location in VDP RAM
 MOV TEMP7,@VSPTR set VSPTR
 LI TEMP0,>900 VDP LOCATION
 MOV TEMP0,@FAC
 CLR TEMP1 CLEAR GPL STATUS
 MOVB TEMP1,@KYSTAT
 BLWP @GPLLNK LOAD SMALL CAPITAL LETTER SHAPES
 DATA >0018
*
 LI TEMP2,>1200
 CB TEMP2,@3 99/4, IF CONSOLE BYTE @3 = >12
 JEQ WORK DON'T LOAD LOWER CASE IN A 99/4
 LI TEMP0,>0B00
 MOV TEMP0,@FAC
 MOVB TEMP1,@KYSTAT
 BLWP @GPLLNK LOAD LOWER CASE IN 99/4A
 DATA >004A
*
 JMP WORK
*
FILLER ORI TEMP2,>4000 SET BIT FOR VDP WRITE
 SWPB TEMP2
 MOVB TEMP2,@VDPWA LS BYTE FIRST
 SWPB TEMP2
 MOVB TEMP2,@VDPWA THEN MS BYTE
 NOP KILL TIME
FLLOOP MOVB TEMP0,@VDPWD WRITE A BYTE
 DEC TEMP1
 JNE FLLOOP NOT DONE, FILL ANOTHER
 B *LINK
**
* Message display routine
**
DSP
 MOV @ROW,TEMP0 get bytecount of row
*---> TEMP1 already set by caller
 MOV @MCNT,TEMP2 message bytecount
 BLWP @VMBW
 A @D40,@ROW Increment row bytecount by 1 row
 B *LINK
**
* Announce start of program.
**
WORK
 LIMI 2
 LIMI 0

282 O.5 FSAVE Assembly Source Code

 LI TEMP1,PREAM
 BL @DSP
 A @D40,@ROW Increment bytecount another row
**
* Wait for user to press a key
**
GETKY
 CLR @KYBD check entire keyboard
 BLWP @KSCAN check keyboard
 MOVB @KYSTAT,TEMP1 Check flag for key pressed
 SLA TEMP1,3 Flag value is >20
 JNC GETKY No key was pressed, try again
**
* Announce LO-mem copy.
**
 LI TEMP1,LOCPY
 BL @DSP
**
* Copy Forth support routines (>3424 - >3CD9) to VDP
**
 LI TEMP0,>1000
 LI TEMP1,>3424
 LI TEMP2,>8B6
 BLWP @VMBW
**
* Announce HI-mem copy.
**
 LI TEMP1,HICPY
 BL @DSP
**
* Append resident Forth vocabulary (>A000 - >BC71) to above
* copied VDP section
**
 LI TEMP0,>18B6
 LI TEMP1,>A000
 LI TEMP2,>1C72
 BLWP @VMBW
**
* Announce saving of DSK2.FORTHSAVE.
**
 LI TEMP1,SVFIL
 BL @DSP
 A @D40,@ROW Increment bytecount another row
**
* Copy PAB data to VDP RAM in preparation for SAVEing memory
* image to disk in DSK2.FORTHSAVE
**
 LI TEMP0,PAB
 LI TEMP1,PDATA
 LI TEMP2,>20
 BLWP @VMBW
**
* Perform SAVE of memory image
**
 LI TEMP6,PAB+9
 MOV TEMP6,@SUBPTR
 BLWP @DSRLNK
 DATA 8
 JNE EPIDSP File error?
 LI TEMP1,FERROR Yes! Inform user.
 BL @DSP
 A @D40,@ROW Increment bytecount another row
**
* Announce that program is finished.
**
EPIDSP LI TEMP1,EPILOG

 Appendix O TMS9900 Assembly Source Code for TI Forth 283

 BL @DSP
*
DONE LIMI 2
DONE1 NOP
 JMP DONE1 Spin our wheels until interrupted
*
---GPLLNK----(begin)--------------------------------------
* *
* A universal GPLLNK--6/21/85--MG Millers Graphics) *
* This routine will work with any GROM library slot since *
* it is indexed off of R13 in the GPLWS. (It does require *
* Mem Expansion) This GPLLNK does NOT require a module to *
* be plugged into the GROM port so it will work with the *
* Editor/Assembler, Mini Memory (with Mem Expansion), *
* Extended Basic, the Myarc CALL LR("DSKx.xxx") or the *
* CorComp Disk Manager Loaders. It saves and restores the *
* current GROM Address in case you want to return back to *
* GROM for Basic or Extended Basic CALL LINKs or to return *
* to the loading module. *
* *
* ENTER: The same way as the E/A GPLLNK, i.e., *
* BLWP @GPLLNK *
* DATA >34 *
* *
* NOTES: Do Not REF GPLLNK when using this routine in *
* your code. *
* *
* 70 Bytes - including the GPLLNK Workspace *
--

GPLWS EQU >83E0 GPL workspace
GR4 EQU GPLWS+8 GPL workspace R4
GR6 EQU GPLWS+12 GPL workspace R6
STKPNT EQU >8373 GPL Stack pointer
LDGADD EQU >60 Load & Execute GROM entry point
XTAB27 EQU >200E Low Mem XML table location 27
GETSTK EQU >166C

GPLLNK DATA GLNKWS R7 Set up BLWP Vectors
 DATA GLINK1 R8

RTNAD DATA XMLRTN R9 GPL XML returns to us here
GXMLAD DATA >176C R10 GROM Address of GPL "XML 27"
* (0F 27 Opcode)
 DATA >50 R11 Initialized to >50 where
* PUTSTK address resides
GLNKWS EQU $->18 GPLLNK's workspace--only
 BSS >08 R12-R15 registers R7-R15 are used
GLINK1 MOV *R11,@GR4 Store PUTSTK Address in R4
* of GPL workspace
 MOV *R14+,@GR6 Put GPL Routine Address in
* R6 of GPL wprkspace
 MOV @XTAB27,R12 Save the value at >200E
 MOV R9,@XTAB27 Save XMLRTN Address at >200E
 LWPI GPLWS Load GPL workspace
 BL *R4 Current GROM Addr to stack
 MOV @GXMLAD,@>8302(R4) Push GPL XML Addr on stack
* for GPL ReTurn
 INCT @STKPNT Adjust the stack pointer
 B @LDGADD Execute our GPL Routine

XMLRTN MOV @GETSTK,R4 Get GETSTK pointer
 BL *R4 Restore GROM addr from stack
 LWPI GLNKWS Load our WS
 MOV R12,@XTAB27 Restore >200E
 RTWP All Done - Return to Caller

284 O.5 FSAVE Assembly Source Code

---GPLLNK----(end)--

---DSRLNK----(begin)--------------------------------------
* *
* A Universal Device Service Routine Link - MG *
* (Uses console GROM 0's DSRLNK routine) *
* (Do not REF DSRLNK or GPLLNK when using these routines) *
* (This DSRLNK will also handle Subprograms and CS1, CS2) *
* *
* ENTER: The same way as the E/A DSRLNK, i.e., *
* BLWP @DSRLNK *
* DATA 8 *
* *
* NOTES: Must be used with a GPLLNK routine *
* Returns ERRORs the same as the E/A DSRLNK *
* EQ bit set on return if error *
* ERROR CODE in caller's MSB of R0 on return *
* *
* 186 Bytes total: GPLLNK, DSRLNK and both Workspaces *
--

PUTSTK EQU >50 Push GROM Add to stack pointer
TYPE EQU >836D DSRLNK Type byte for GPL DSRLNK
NAMLEN EQU >8356 Device name length pointer, VDP PAB
VWA EQU >8C02 VDP Write Address location
VRD EQU >8800 VDP Read Data byte location
GR4LB EQU >83E9 GPL Workspace R4 Lower byte
GSTAT EQU >837C GPL Status byte location

DSRLNK DATA DSRWS,DLINK1 Set BLWP Vectors

DSRWS EQU $ Start of DSRLNK workspace
DR3LB EQU $+7 R3 lower byte of DSRLNK WS
DLINK1 MOV R12,R12 R0 Have we already looked up
* the LINK address?
 JNE DLINK3 R1 YES! Skip lookup routine
<<-->>
* This section of code is only executed once to find the *
* GROM address for the GPL DSRNK, which is placed at DSRADD*
* and R12 is set to >2000 to indicate that the address is *
* found and to be used as a mask for EQ & CND *
--
 LWPI GPLWS R2,R3 else load GPL workspace
 MOV @PUTSTK,R4 R4,R5 Store current GROM
* address on the stack
 BL *R4 R6
 LI R4,>11 R7,R8 Load R4 with address of
* LINK routine vector
 MOVB R4,@>402(R13) R9,R10 Set up GROM with address
* for vector
 JMP DLINK2 R11 Jump around R12-R15
 DATA 0 R12 has >2000 flag when set
 DATA 0,0,0 R13-R15 has WS, PC & ST for RTWP
DLINK2 MOVB @GR4LB,@>402(R13) Finish GROM addr setup
 MOV @GETSTK,R5 Take some time & set up
* GETSTK pointer
 MOVB *R13,@DSRAD1 Get GPL DSR LINK vector
 INCT @DSRADD Adjust it to get past
* GPL FETCH instr
 BL *R5 GROM address from stack
 LWPI DSRWS Reload DSRLNK workspace
 LI R12,>2000 Set flag to signify
* DSRLNK addr is set
<<-->>
DLINK3 INC R14 Adjust R14 to point to
* caller's DSR Type byte

 Appendix O TMS9900 Assembly Source Code for TI Forth 285

 MOVB *R14+,@TYPE Move >836D for GPL DSRLNK
 MOV @NAMLEN,R3 Save VDP addr of Name Length
 AI R3,-8 Adjust, point to PAB Flag byte
 BLWP @GPLLNK Execute DSR LINK
DSRADD BYTE >03 High byte of GPL DSRLNK address
DSRAD1 BYTE >00 Lower byte of GPL DSRLNK address
*
*---Error Check & Report to Caller's R0 and EQU bit---------
*
 MOVB @DR3LB,@VWA LSB of VDP Addr for Error Flag
 MOVB R3,@VWA MSB of VDP Add for Error Flag
 SZCB R12,R15 Clear EQ bit for Error Report
 MOVB @VRD,R3 Get PAB Error Flag
 SRL R3,5 Adjust it to 0-7 error code
 MOVB R3,*R13 Put it into Caller's R0 (msb)
 JNE SETEQ If it's not zero, set EQ bit
 COC @GSTAT,R12 Else, CND bit = 0? (Link Error)
 JNE DSREND No Error; Just return
SETEQ SOCB R12,R15 Error, so set Caller's EQ bit
DSREND RTWP All Done - Return to Caller
*
---DSRLNK----(end)--
*

 END FSAVE

	Dedication
	1 Introduction
	1.1 Editor’s Note—1st LES Edition
	1.2 Editor’s Note—2nd LES Edition
	1.3 Starting Forth

	2 Getting Started
	2.1 Stack Manipulation
	2.2 Arithmetic and Logical Operations
	2.3 Comparison Operations
	2.4 Memory Access Operations
	2.5 Control Structures
	2.6 Input and Output to/from the Terminal
	2.7 Numeric Formatting
	2.8 Disk-Related Words
	2.9 Defining Words
	2.10 Miscellaneous Words

	3 How to Use the Forth Editor
	3.1 Forth Screen Layout Caveat
	3.2 The Two TI Forth Editors
	3.3 Editing Instructions
	3.4 Changing Foreground/Background Colors of 64-Col Editor

	4 Memory Maps
	4.1 VDP Memory Map
	4.2 CPU Memory
	4.3 CPU RAM Pad
	4.4 Low Memory Expansion
	4.5 High Memory Expansion

	5 System Synonyms and Miscellaneous Utilities
	5.1 System Synonyms
	5.1.1 VDP RAM Read/Write
	5.1.2 Extended Utilities: GPLLNK, XMLLNK AND DSRLNK
	5.1.3 VDP Write-Only Registers
	5.1.4 VDP RAM Single-Byte Logical Operations

	5.2 Disk Utilities
	5.2.1 Disk Formatting Utility
	5.2.2 Disk and Screen Copying Utilities

	5.3 Listing Utilities
	5.4 Debugging
	5.4.1 Dump Information to Terminal
	5.4.2 Tracing Word Execution
	5.4.3 Recursion

	5.5 Random Numbers
	5.6 Miscellaneous Instructions

	6 An Introduction to Graphics
	6.1 Graphics Modes
	6.2 Forth Graphics Words
	6.3 Color Changes
	6.4 Placing Characters on the Screen
	6.5 Defining New Characters
	6.6 Sprites
	6.6.1 Magnification
	6.6.2 Sprite Initialization
	6.6.3 Using Sprites in Bit-Map Mode
	6.6.4 Creating Sprites
	6.6.5 Sprite Automotion
	6.6.6 Distance and Coincidences between Sprites
	6.6.7 Deleting Sprites

	6.7 Multicolor Graphics
	6.8 Using Joysticks
	6.9 Dot Graphics
	6.10 Special Sounds
	6.11 Constants and Variables Used in Graphics Programming

	7 The Floating Point Support Package
	7.1 Floating Point Stack Manipulation
	7.2 Floating Point Fetch and Store
	7.3 Floating Point Conversion Words
	7.4 Floating Point Number Entry
	7.5 Floating Point Arithmetic
	7.6 Floating Point Comparison Words
	7.7 Formatting and Printing Floating Point Numbers
	7.8 Transcendental Functions
	7.9 Interface to the Floating Point Routines

	8 Access to File I/O Using TI-99/4A Device Service Routines
	8.1 The Peripheral Access Block (PAB)
	8.2 File Setup and I/O Variables
	8.3 File Attribute Words
	8.4 Words that Perform File I/O
	8.5 Alternate Input and Output
	8.6 File I/O Example 1: Relative Disk File
	8.7 File I/O Example 2: Sequential RS232 File

	9 The TI Forth 9900 Assembler
	9.1 TMS9900 Assembly Mnemonics
	9.2 Forth’s Workspace Registers
	9.3 Loading and Using the Assembler
	9.4 TI Forth Assembler Addressing Modes
	9.4.1 Workspace Register Addressing
	9.4.2 Symbolic Memory Addressing
	9.4.3 Workspace Register Indirect Addressing
	9.4.4 Workspace Register Indirect Auto-increment Addressing
	9.4.5 Indexed Memory Addressing
	9.4.6 Addressing Mode Words for Special Registers

	9.5 Handling the Forth Stacks
	9.6 Structured Assembler Constructs
	9.7 Assembler Jump Tokens
	9.8 Assembly Example for Structured Constructs
	9.9 Assembly Example Using ;CODE
	9.10 Using CODE and ;CODE without the Assembler
	9.10.1 CODE without the Assembler
	9.10.2 ;CODE without the Assembler

	10 Interrupt Service Routines (ISRs)
	10.1 Installing a Forth Language Interrupt Service Routine
	10.2 An Example of an Interrupt Service Routine
	10.3 Installing the ISR
	10.4 Some Additional Thoughts Concerning the Use of ISRs

	11 Potpourri
	11.1 BSAVE and BLOAD
	11.1.1 Customizing How TI Forth Boots Up
	11.1.2 An Overlay System with BSAVE/BLOAD
	11.1.3 An Easier Overlay System in Source Code

	11.2 Conditional Loads
	11.3 Memory Resident Messages
	11.4 CRU Words

	12 TI Forth Dictionary Entry Structure
	12.1 Link Field
	12.2 Name Field
	12.3 Code Field
	12.4 Parameter Field

	Appendix A ASCII Keycodes (Sequential Order)
	Appendix B ASCII Keycodes (Keyboard Order)
	Appendix C Differences between Starting FORTH (1st Ed.) and TI Forth
	Appendix D The TI Forth Glossary
	D.1 Explanation of Some Terms and Abbreviations
	D.2 TI Forth Word Descriptions

	Appendix E User Variables in TI Forth
	E.1 TI Forth User Variables (Address Offset Order)
	E.2 TI Forth User Variables (Variable Name Order)

	Appendix F TI Forth Load Option Directory
	F.1 Option: -SYNONYMS
	F.2 Option: -EDITOR (40-Column Editor)
	F.3 Option: -COPY
	F.4 Option: -DUMP
	F.5 Option: -TRACE
	F.6 Option: -FLOAT
	F.7 Option: -TEXT
	F.8 Option: -GRAPH1
	F.9 Option: -MULTI
	F.10 Option: -GRAPH2
	F.11 Option: -SPLIT
	F.12 Option: -VDPMODES
	F.13 Option: -GRAPH
	F.14 Option: -FILE
	F.15 Option: -PRINT
	F.16 Option: -CODE
	F.17 Option: -ASSEMBLER
	F.18 Option: -64SUPPORT (64-Column Editor)
	F.19 Option: -BSAVE
	F.20 Option: -CRU

	Appendix G Assembly Source for CODEd Words
	Appendix H Error Messages
	Appendix I Contents of the TI Forth Diskette
	Appendix J TI Forth Bugs
	Appendix K Diskette Format Details
	K.1 Volume Information Block (VIB)
	K.2 File Descriptor Index Record (FDIR)
	K.3 File Descriptor Record (FDR)
	K.4 Comparison of TI Forth and TI File System Layouts on the Same Disk
	K.4.1 TI Forth System Disk
	K.4.2 TI Forth Work Disk

	Appendix L TI Forth System for Larger Disks
	L.1 Larger System Disk
	L.2 Larger Work Disk
	L.3 Updating Disk Utilities for Larger Disks

	Appendix M Notes on Radix-100 Notation
	Appendix N Adding True Lowercase Character Sets
	N.1 True Lowercase for Text and Graphics Modes
	N.2 True Lowercase for Bitmap mode

	Appendix O TMS9900 Assembly Source Code for TI Forth
	O.1 DRIVER—Part 1 of FORTHSAVE
	O.2 ASMSRC—Part 2 of FORTHSAVE
	O.3 BOOT—FORTH
	O.4 Generating TI Forth from Source Code
	O.5 FSAVE Assembly Source Code

