
Avg NEWS
DIGEST

Focusing on the TI99/4A Home Computer

Volume 8, Number 12
	

December, 1989
Registered by Australia Post - Publication No. NBH5933

come 00 ft v boLPH

w 	c-rlw'r Di Sft-rPotor

1140s-a- Tt--clq ev-s

LI !WI-1NQ NE-0,J soF-rwlve
P-ok CO/41ST PA CIS ,

_

P.O. Box 214, Redfern, New South Wales, Australia, 2016
	

$3

TIsHUG News Digest 	ISSN 0819-1984

lluitz
Title Description Author 	Page No.

32K memory expansion Hardware project Amadio,Lou 7

32K memory expansion Hardware project Mudie,Ross 9

c99 quick reference Software hints 24

c99 tutorial Software hints Sheehan,Craig 23

Calendar programs General interest Robinson,Adrian 21

Co—ordinators report General news Warburton,Dick 2

Extended BASIC Tutorial Software hints McGovern,Tony 5

Extended BASIC screen colours Software hints 12

Forth dimension Software hints Stanford,Jeff 27

Forth to you too! Software hints 27

From the bulletin board Mail to all 12

Games information Witness, Karate chall. Brown,Robert 13

Letter to editor Leaving group Bull,Greg 2

New programs and games Software review Saunders,Larry 4

Newsletter update General interest Amadio,Lou 30

Plotic General 	interest Harris,D.N 90

Program to type in Wankapillar Sumner,Mark 15

Project Management General interest 14

Rambles from UK General interest Shaw,Stephen 29

Regional group reports General interest 31

Secretary's notebook Club news Phillips,Terry 3

Starting using TI99/4A Software hints Shaw,Stephen 17

Techo time Hardware project Amadio,Lou 7

TEXPAC BBS versiou 4F BB11 inforwarion Mudie,Ross 4

They're off General interest Trott,Geoff 1

TI—Base tutorial Data base Smoley,Martin 25

Tips from the tigercub #37 Software hints Peterson,Jim 19

TIsHUG software column Club software Phillips,Terry 3

Working with numbers Software hints Nollan,Joe 28

Younger set Program, adventure Maker,Vincent 16

tyciTt
by Geoff Trott

We had a good day at the full day tutorial, even though the venue was
changed at the last minute. I was busy with dead consoles and Lou seemed to be
constantly conversing with members who were interested in the many projects he
has originated this year. The other groups had lots of room to attract
customers and there was very little interference with each other. It seemed to
be a very good place to meet. I had a few interesting problems with consoles.
The first came from the console repair group where they had diagnosed video
memory problems and changed two chips without any improvement. Working out the
patterns shown by the console tester showed that at least one chip was bad and
possibly more. Removing that chip and then running the console tester actually
seemed to give a slight improvement and replacing the chip fixed the video
problems. That video RAM chip must have been interfering with the operation of
other RAM chips. I then tried to run my diagnostic module and it did not appear
on the menu. Clean the edge connector, no help but try it in another console
and all is OK. Ran the console tester again and the non—existant GROMs were
producing non—zero checksums. 	Look at the circuit which is supposed to pull
down the data bus to the GROMs when reading them and it is not working. 	Trying
to locate a resistor to put the oscilloscope lead on to check one of the signals
and the resistor is not there! In its place is a diode, never been touched,
installed in the factory. Replaced it with a suitable resistor and all was
well. The problem would only show up on some modules as Extended BASIC was OK.
That was a strange one!

continued on page 30

TIsHUG (Australia) Ltd.

TIsHUG News Digest

December 1989

All correspondence to:

P.O. Box 214
Redfern, NSW 2016
Australia

The Board
Co-ordinator

Dick Warburton 	(02) 918 8132
Secretary

Terry Phillips 	(02) 797 6313
Treasurer

Rolf Schreiber 	(042) 84 2980
Directors

Robert Peverill 	(02) 602 4168
Russell Welham 	(043) 92 4000

Sub-committees
News Digest Editor

Geoff Trott 	 (042) 29 6629
BBS Sysop

Ross Mudie 	 (02) 456 2122
BBS telephone number (02) 319 1009

Merchandising
Steven Carr 	 (02) 608 3564

Publications Library
Warren Welham 	(043) 92 4000

Software library
Terry Phillips 	(02) 797 6313

Technical co-ordinator
Lou Arnadio 	 (042) 2/14906

Regional Group Contacta

Carlingford
Chris Buttner 	(02) 871 7753

Central Coast
Russell Welham 	(043) 92 4000

Coffs Harbour
Kevin Cox 	 (066) 53 2649

Glebe
Mike Slattery 	(02) 692 0559

Illawarra
Geoff Trott 	 (042) 29 6629

Liverpool
Larry Saunders 	(02) 644 7377

Northern Suburbs
Dennis Norman 	(02) 452 3920

Sutherland
Peter Young 	 (02) 528 8775

Membership and Subscriptions

Annual Family Dues
	

$25.00
Overseas Airmail Dues
	

AUS$50.00

TIsHUG Sydney Meeting

The next meeting will start at 12 pm on
2nd of December at Woodstock
Community Centre, Church Street,
Burwood.

Printed by
The University of Wollongong

Printery

(Page 1 	 TIsHUG NEWS DIGEST December 198

CID=IDT 111:1110103 	Et]Dbli
by Dick Warburton

What motivates a person to join a computer club
like TIsHUG, and stay in it? How did you join? Did
someone bring you along? 	Did you come out of
curiosity? 	Where did you find out about the club? Did
you need help? Did you get help? 	Did you find the
members friendly? 	I suppose there are almost as many
reasons as there are members. I know that I came along
because I felt I was so ignorant about computers, and I
wanted to learn to use one. I found the basic manuals
did not meet my needs, and I came looking for help. I
suspect that many of us join a group to be helped to
achieve our computer goals. At the time I joined, TI
was ceasing to market the TI99/4A, and I was concerned
about support and future problems. I bought a TI99/4A
by accident. I had decided to learn a bit about
computers by learning to use one. I asked my son (the
only computer literate member of the family), what to
buy. he went away, read the magazines, and told me
there was only one real choice, if I wanted a real
computer. Fortunately the price dropped sufficiently
for me to afford an expanded system. Unfortunately, my
wife likes to write Looks, so we bought TI—writer, and I
nad considerable difficulty actually using the TI99/4A
at any time. However, because she was so busy she
bought another system, and I took over the TI99/4A.
s,;e11, that marked the beginnin„ of a different
relationship in the house. Does your wife or husband
use your TI99/4A? Whatever happened, it triggered a
more active membership in the club. I have 6ained far
wore from belonging to this group, than I could ever
hope to give back. 1 found a new world opening up to
me. I found an excitine new tool which could do all
manner of things if one put the effort in to program it.
i laboriously wrote some simple programs which actually
did what I wanted. For example punting programs, but
alas, computers are no better than the program we
devise. I suspect if I had relied on my programs to
make a L.uid", that I would be broke by now. What
gradually dawned on me, was the tremendous satisfaction,
of learning to do a variety of computer thin,;s for
myself. For example, to open the console and change a
chip, to diagnose simple faults. 	I still find it
difficult to realize that 	can now do these sorts of
things. 	I have gained some basic knowledge about how
computers work, how to use tools, how to 	handle
electricity. 	fhit most of all, I have met a great group
of people, some of whom have become friends. I suppose
now that the needs 1 had when] ioihed, have changed. I
can now do many more things for myself, however I want
o stay 	this beaut group, because of the friendship
and mutual help we give each other. 	I suspect that
-mere are still people outside the club who need to joiL
b broup for the sorts of reasons we had. They need our
help. They need to know that the club is available
first of all. lhey need to have some of their needs met
when they come. They need to be mane to feel welcome,
to become part of this ongoing group. t.e will be trying
to reach old members, ana recruit aew ones over the next
year. if yal, enjoy your Lembership, if you have gained
soeething for yourself from belonging, then help the
clua next year by L;iving somc of your time and skill
ouch to thu club. heed volunteers to seek out new
members, to publicize the clun, to aelp our Lewer
members, to repair consoles, to accept olfice the
club.

1996 looks like being a gocai year for il9q4A
users, particularly Irrom the hardware point of view.
2irstly, because TI99/4As are out_ of fashion, they are
now really cheap. If you have an unexpanded system, now
is the time to think seriously about bringing it up to a
really useful standard. :;isb aries are plentiful.
Second hand drives will cost from 15 dollars to 120
dollars. You can buy or make a power supply fairly
cheaply. People are selling peripheral expansion boxes
quite cheaply, when you consider how strong and reliable
they are. We are planning all manner of projects for
1990. We are purchasing 8K and 32K static memory chips.
We will have some printed circuit boards made up, for
example, for RAMdisks if there is sufficient interest.

We are hoping to develop an EPROM version of the
RAMdisk, with all our important software in EPROM. We
will have a simple expansion card for those who cannot
get a PE box. There are new cards coming from overseas.
In December I want to start a project group to actively
develop and complete new TI99/4A projects. There is
sufficient interest already to start. It is hoped to
have kits of parts available to members to allow them to
complete these projects. We have not yet decided where
to meet. If the interest is sufficient, we will break
into two or more regional groups. I have found that my
greatest 	enjoyment with the TI99/4A came when I
completed my first RAMdisk successfully. 	Do not miss
out. Have a go at one project at least in 1990. I have
at least four projects I want to complete for my own
satisfaction. come and join in the fun. Hopefully we
will liaise with other groups, and work, co—operatively.
Make sure you get some real satisfaction from your
membership in 1990. Join in the fun and the friendship,
and help others to enjoy it too.

See you soon

Dick Warburton. 	 0

LattltEr Is lin 2Cdaaa-
Dear TIsHUG,

I have finally decided to shake the dust off my
system and do something with it. Living in the country,
far away from other TI99/4A users, I have not put my
TI99/4A to much use recently. I thought it would be
better off in the hands of someone who would use it. My
full system includes:
Silver and black console, power supply and VHF (was

converted from UHF) modulator
32K memory expansion (TIsHUG kit)
Peter Schubert RS232/modem
MiniMemory plus MiniWriter
Touch Typing Tutor
Terminal Emulator II
Extended BASIC
Personal Record Keeper
Speech Synthesizer

All these items are fully functional and have not
received much use. I also have some games on tape and a
number of books of TI99/4A programs etc. If TIsHUG is
interested in this system I will sell it for $200 and I
will pay postage and packing from here. I thought it
may provide backups and spares which could keep the
dedicated user poing longer. If the group is not
interested, would you please run an advertisement in the
next club magazine. I am only interested in selling the
whole system, not parts of it and to anyone apart from
TIsHUG I would ask $250.

I feel the main reason I have not put the system to
use is because I have not got a disk drive. At the end
of 1987 I intended to purchase an expanded system second
hand, but found I could buy a new computer, disk drive
and software for about the same price.

It is with some regret that I have decided to sell,
as I have used the TI99/4A system:
1. to learn the rudiments of word processing;
2. as a teacher's mark book using Personal Record

Keeping;
3. to learn the "basics" of BASIC programming;
4. to entertain my children, particularly with the

speech synthesizer; and
5. to use the BBS and the Department of Education's

keylink service.

I now realise that availability of software and
compatibility are more important than the quality of the
computer, unless you are a dedicated enthusiast.

I also appreciate TIsHUG. 	Without the monthly
newsletter, which I invariably read, I would have
stopped using my TI99/4A three or four years ago.

continued on page 13

(December 1989 	TIsHUG NEWS DIGEST 	 Page 2)

attrta T7°3 HilAtbl.)(01
by Terry Phillips

The December meeting will mark the end of another
year's activities, and with a fine day it promises to be
a meeting where members and their families can get
together and relax with party food and drink provided by
the group. So make sure you come along and have a chat
to your fellow members.

Inside this issue you will find a nomination form
which can be used to make nominations for Directors'
positions. As you are aware the Annual General Meeting
is held on the first Saturday of February each year,
with the 1990 date being the 3rd, so mark it in your
diary now. We are hopeful of again having the use of
the Burwood RSL Club auditorium to conduct our 1990 AGM.
If nominating a member for a Director's position, make
sure you get a seconder and that the member nominated
consents to his nomination. Nominations close with the
Secretary at 8pm on the 13th January, 1990. If the
required number are not received by that date then
further nominations can be made at the AGM.

Feedback I received on the day would indicate that
most who attended the November full day meeting enjoyed
the change of venue. Certainly it gave us much more
opportunity to spread out and conduct the various
activities in separate rooms. Unfortunately there was
little time to publicize the venue change. Our booking
for Shirley House fell through and Woodstock main
building was unavailable for more than 2 upstairs rooms.
If you did not get your IND before the meeting, and were
unaware of the venue change then sincere apologies.

At the meeting I was kept busy all day doing disk
copies and the time just seemed to fly by. I was also
booked to give a tutorial on TI-Base for both morning
and afternoon but during the morning I only had one
attendee. I did not do the afternoon session as the
committee meeting was in progress. Shane Ferrett took
over for me. Thanks Shane.

I hope everyone got onto that great bargain in
Xidex disks at the meeting. Great work on Dick
Warburton's part in sourcing out that supply. I do not
think you could buy cheaper disks anywhere.

Dick will probably cover this also in his column,
but the news is we have had to give up on our bulk
importing of MICROpendium. Chief reasons being are
declining sales together with the large stock of back
issues we have which are tying up club funds. If you
know of anyone who would like to buy some then see
Stephen at the meetings as I am sure some deal can be
arranged.

There are available 4 sets of Asgard News, Volume 1
Number 4 and Volume 2 Number 1. If you would like to
purchase these then see me at the next meeting.
Subscription is $17 for 4 issues and the next issue
should be received soon.

We only have two new members to welcome this month.
They are:

Sylvia Kwok of Chatswood, and
Garry Hughes of Kurnell.

A big welcome to you both and I hope you can make it to
some of the main or regional group meetings.

Copies of TNDs being mailed to Tony Imbruglia and
David Rivett are being returned marked "Left Address".
If anyone knows there whereabouts could they let me know
please.

That is it for this month, but please give the
important matter of nominations for Director 	some
thought over the next few weeks. 	 0

11'18g1WICt
	

W iare
17:1Aaltaila by Terry Phillips

Well I do not know how many disks were copied at
the November meeting, but it sure felt like I was busy
all day, and I hope that everyone got what they wanted.
Thanks go to Ross Mudie for the loan of the disk copier.
It sure speeds up the job.

On the software scene there are two major items to
talk about this month.

The first being the release of TI-Artist Plus (or
TIAP for short). What we have here is a complete revamp
of the old TI-Artist. The new version comes on 3 disks
and supports Pictures, Instances, Slides, Fonts, Vectors
and Movies. A 38 page manual accompanies the package
and gives details on all these capabilities. A couple
of the users of the old TI-Artist who tried out this
version at the last meeting were very impressed with
what it can do. If you are a current owner of the older
version then you can get the upgrade for about $15 and
copies should be available at the December meeting.
Price is subject to import costs. If you are not
already an owner then TIAP can be purchased for
approximately $25. Dennis and Chris Faherty of Inscebot
Software are great supporters of the TI99/4A community,
so please support them, and your club, by buying their
products. Some of the better TI99/4A software is
currently being marketed by this talented father and son
team.

The second item is a new revamped version of
TI-Writer, titled TI-Writer Version 4.0. This is
Fairware with a suggested contribution of $10 to RAG
Software (R A Green), 1032 Chantenay Drive, Gloucester,
Ontario Canada. The software supports a host of Editor
and Formatter improvements together with new format
commands. A simple QQ will exit from the Editor without
any further key presses. I like it and will have some
copies available through the shop at the December
meeting.

If you are looking at some disks from the library
for Christmas, then give me a list together with a few
dollars for postage and I will make every effort to get
them back to you by that Lime. 0

confinuodfrompage30
PUG Peripheral, July '89. 	Zeno board (console

internal peripheral expansion) has been 	completed,
TI-Artist for beginners Vo13, table of TI99/4A key
character codes, high resolution graphics for the 99/4A,
review on kindermath and TI-Sort, reminder that Star
NX1000 printers with ROMs higher than V1.31 will not
work with the TI99/4A and how to fix "Macflix" in order
to get a 1:1 aspect ratio on printout. PUG Peripheral,
Oct '89. 	"Interface Standard Design Guide for Lhe
TI99/4A Peripherals", Zeno modified 	console with
internal clock, speech, 32K, Extended BASIC, Editor
Assembler, DM2, TI-Writer together with pause, reset and
GROM disable switches! Another new release is a "RAUEO"
(random access memory bank operator) PCB which allows
Horizon RAMdisk to be partitioned as CPU memory up to
the capacity of the RAMdisk, more Geneve operating
information, High Resolution Graphics continued, console
hardware debugging hints covering lockup, module errors
and Joystick port errors, Printers #2 by J. Willforth on
using control codes from BASIC, fix for Funlweb V4.0
which allows marking files with FCTN[7] in the
Formatter, changing defaults in the Formatter, how to
deactivate "out of paper" feature to allow printing
close to bottom of single sheets of paper or for
addressing envelopes with a printer and lastly sorting
numbers in Forth.

TIdbits Oct '89. Has information about the Chicago
faire, Bill Gaskill's Four-A/talk, a review of TI -SorL
and 9640 news by Berry Miller. 0

Page 3 	 TIsHUG NEWS DIGEST December 198

TrIDEEPCMG and GIUna
typed by Larry Saunders from Asgard News

Tris

An extremely addictive mind teaser! 	In Tris you
must rotate and move colourful , falling shapes to fill
in the holes in the bottom of the screen. Complete rows
disappear but incomplete ones just cause the screen to
fill up! Simple to play but difficult to master, Tris
will challenge and amaze for hours. This novel game is
based on the popular Russian program that perpetually
tops the best seller list for IBM and Apple software,
but it has better sound effects and colour then any
version ever produced! (this is not the version that is
on this BBS).

Karate Challenge

Evil Dragons have taken over the minds of the
students and teachers at your Karate Dojo. In this
fast-paced action game you must fight your former
friends and teachers in order to get a chance to defeat
the dragons in mortal combat. The amazing graphics of
this game depict the many kicks and punches you can
throw at your opponents in order to save the day.

Mission Destruct

Evil robots have taken over the moon! You are on a
mission to destroy as many moon base reactors as you can
before the waves of Death Droids, Space Mines, and the
evil Draks overtake your frail craft. This is a truly
fast, arcade style game that has great sound effects and
fantastic graphics.

Legends II

You are ship-wrecked with fellow adventurers on the
island of Femble, leagues from home. 	You have to
explore 	this vast island, fight unknown monsters,
explore a city and plumb the depths of dungeons in order
to raise enough dough to buy passage home.

Zoom Flume

You are in your bathing suit at a water park. You
only have so much money to spend, so spend it wisely!

Witch's Brew

A witch has let loose spells across the land. 	Can
you find the witch and remove the spells without
becoming part of one?

Wizard's End

A multi-player game with monsters, spells and
treasures in the traditional Dungeons and Dragon's mold.
(For the advanced players only.)

Oliver's Twist

Can you return the 15 treasures to their rightful
places without disturbing the ghost of King Oliver? He
will kill you if he disturbs you or if you take too
long.

aisk 	Pyratos

A fascinating 4 disk package. Disk of Pyrates is a
veritable cornucopia of Pyrate artwork, Pyrate games,
Pyrate music, Pyrate animation and Pyrate history.

Music Pro

This is a Music Processor program that allows you
to type on a staff directly from sheet music, then
compile and play the music.

The Animator

A complete frame by frame animation package. It is

an extensive program that allows you to create multiple
animation sequences one frame at a time, and then script
them together in a complicated animation sequence.

Pix Pro

The "super converter" to meet all your graphics
needs. It will convert almost any format to almost any
format.

TI-Writer Version 4.4

This program has had the works done to it. 	It is
faster, a lot of new commands, for example .PC (printer
control) or CIRL',' (will go to start) or CTRLI.' (will
go to end of the document. It also has an install
program that customizes your editor and formatter.

TI-Writer will be at the next TIsHUG meeting at the
word processing clinic along with almost every other
word processing program for the TI99/4A. 0

'1123KID.A.0 11LEZ Team 4F
by Ross Mudie

User BEN was having trouble loading a file through
the mail system. On examination I found that it
contained strings of ASCII 12,13, that is a form feed
and carriage return. The BBS was set up to discard any
character outside of the range of ASCII 16 to ASCII 127,
so the ASCII 12 was discarded and the ASCII 13 was the
only byte in the string which dropped the sender out of
mail (a carriage return on its own).

Version 4F allows characters from ASCII 0 to ASCII
15 to pass on to the disk for storage as mail with the
exception of ASCII 8 which is backspace, ASCII 10 which
is line feed and ASCII 13 (carriage return) which
signifies end of a line if other characters exist in the
line or end of mail on its own.

Version 4F also changes the operation of backspace.
Previously the backspace character just acted on the
string in the BBS editor, doing a destructive backspace
along the string, leaving the string intact on the
user's screen. The new version wipes out characters on
the users screen by echoing ASCII 8,32,8 each time an
ASCII 8 is received. This moves the cursor back one
space, then writes a space which also moves the cursor
one to the right then moves the cursor one character to
the left again.

If anyone has any problem with the expanded
characters available please let me know. 	 0

Ben Takach's highly modified TI99/4A system

(December 1989 	TIsHUG NEWS DIGEST 	 Page 4)

Extendtd 3ASIC Inaturie
by Tony McGovern, Funnelweb Farm

V. Extended BASIC STYLE WITH SUB-PROGRAMS

Let us now stand back a bit and look at the best
way to construct Extended BASIC edifices. Assume at
this stage that we are in the process of developing a
program, but not yet to the point where scrunching
program length has become important. The first thing to
note is that by giving the sub-programs good descriptive
names you have already 8one a long way to making your
program self-explanatory.

How big should individual sub-programs be allowed
to get? After all, one of the reasons for using them is
to break up big programs into manageable hunks. We will
use the term 'line' to refer to a multi-statement
Extended BASIC line identified by a line number. My own
prejudice is that, except in special circumstances,
sub-programs should be no more than about 10 lines long,
and mostly rather less than that. 	What makes an
exceptional circumstance? 	An obvious one is in title
blocks, like that in SIMPLIST which was left as an
almost bare stub. A full version would provide graphics
and advice screens, which can be tediously long to
write, but contain very little in the way of branching
decisions or variable assignments. Another example is
where a familiar routine, that already works, is used
with little variation as in COLIST where the disk
directory routine from the Disk Manual is incorporated
as a subprogram with only minor changes. In any such
situation where long sub-programs are justified, the
lists of parameters passed will be short or
non-existent.

The other extreme is short one or two liners which
are frequently CALLed for small special tasks, more or
less your own customized extension of the built in set
of sub-programs. In the middle there are middle length
sub-programs with extensive parameter lists and the
logic which carries the burden of program flow.

Some sub-programs may be CALLed only once from
within another sub-program but are of value in making
your code easier to read and modify. These are
associated with the branching of program flow by means
of IF..THEN..ELSE statements. In either TI BASIC or
Extended BASIC , FOR-NEXT loops may extend indefinitely
with NEXT acting as delimiter. Unfortunately in
extending BASIC to Extended BASIC, TI did not provide an
"ENDIF" statement as in TI-Forth, but only the 'endif'
implied by the end of a Extended BASIC line. This means
that any alternative actions determined by the IF..
condition have to fit within that Extended BASIC line or
involve a GOTO somewhere else unless the usual simple
drop through to the next line is enough. The Extended
BASIC manual already explicitly forbids inclusion of
FOR..NEXT loops within IF..THEN..ELSE statements. No
doubt you are already used to getting around this little
deficiency by placing the looping code in a subroutine
and using a GOSUB. Sub-programs can be used instead,
following THEN and ELSE to give more complex alternative
possibilities, but still staying within the confines of
a single line with a minimum of leaping about with
GOTOs.

This brings us to the subject of the 'dreaded
GOT0'. A great deal of heat, and not necessarily much
light, has been expended on this subject. It is after
all just another statement available in many languages,
and has perfectly predictable immediate consequences.
The real objection is that it leaves no trace as to
where the program "came from". At the machine code
level, jumps enable the computer to do more than just
chomp along a single track of instructions. The
question is whether it is a help or hindrance in high
level languages, and whether other ways of controlling
program flow can replace its explicit use to advantage.
TI-Forth does without it, but that most procedural of
languages, TI-LOGO, still finds it useful. Pascal tries
to do without it. What we do have is Extended BASIC,

and Extended BASIC cannot do without GOTOs. If anything
should be considered as reprehensible in a high level
language, it is any need to provide PEEK and POKE.

The great weakness of GOTO as a language element is
that it is so readily abused, because undisciplined use
makes the program code inefficient and hard for people
to follow. The genuine message from 'structured
programming' ideas is not that BASIC is bad for having
,GOT0s, but that most BASICs (TI console BASIC is
typical) make it necessary for the programmer to
exercise real restraint if terrible tangles of GOTOs are
to be avoided.

Once you use Extended BASIC sub-programs to chop up
a program into small hunks, then you have automatically
eliminated great leaps around with GOTOs. All you need
then is to remember the comments on using sub-program
CALLs as statements in IF..THEN..ELSE and take a little
care in laying out the logic flow, you will find it very
much easier to debug or develop programs. Backwards
GOTOs over more than one or two lines of code, or any
forward GOTOs at all, should only occur under the most
regular of logical layouts, as in SUB BASICLINE in the
SIMPLIST example. Single recursive lines such as in
line 620 of SIMPLIST are very effective. It is a pity
that the designers of Extended BASIC did not add the
"MYSELF" function as in TI-Forth to enhance such
constructions.

One last little matter before we go on to other
topics. Many languages with local procedures also allow
specification of global variables, accessible from any
part of the program. Extended BASIC does not allow for
separate global variables, and it can be quite tiresome
when a parameter defined at the end of one sub-program
chain is only needed at the end of another chain, and
has to be passed all the way up and down in parameter
lists. A way around this is to use the static value
feature of Extended BASIC sub-programs .

3000 SUB PAGELENGTH(A,B):: IF A THEN C=B ELSE B=C
3010 SUBEND

If the write flag is set as CALL PAGELENGTH(1,66)
the value 66 is stored in the sub-program local variable
C, while CALL PAGELENGTH(0,PL) will retrieve that value
into PL. This is clumsier than having global variables,
but is also more protected from unwanted interference.
Extended BASIC does not enforce any hierarchy of
sub-program levels, so PAGELENGTH can be written to, or
read from, at any level in the program. The example is
for one parameter only, but is easily extended.

Using sub-programs does carry 	some 	overhead
expenses, both in the size of the program and in the
time taken for Extended BASIC to do a CALL as distinct
from a simpler GOSUB. 	Unless you are absolutely
desperate for bytes, the benefits of 	sub-programs
outweigh that price and they should always be used
liberally in the early stages of program development.
The speed argument is a mixed one, as in a long program
the extra time cost of a sub-program CALL can be more
than outweighed by the savings in time for the
interpreter because it has only a short local list uf
variable names to search instead of a much larger global
list.

VI. PRE-SCAN SWITCH COMMANDS

The little supplementary booklet that comes with
the current Version 110 of Extended Basic introduces a
new pair of reserved words, !@P+ and !@P-. These have
the form of a tail remark (Extended BASIC manual p38)
and so are ignored entirely by the earlier V.100 of
Extended BASIC. If the Extended BASIC interpreter finds
an exclamation mark ! outside any DATA string or string
enclosed by quotes, it treats the rest of that line as
though it were a REM statement. The V.110 interpreter
has the added ability to recognize this pair of words
beginning with ! as being distinct from normal tail
remarks when used as a single word statement. Their use
is allowed only at the end of a line so that V.100 just

(Page5 	 TIsHUG NEWS DIGEST December 1989

ignores them, not creating any incompatibility problems
between versions, something that TI was always
conscientious about. TI then could not let these
commands actually do anything! So why are they there ?

The Extended BASIC manual addendum, p7, tells the
story. These switch commands allow you to control the
operation of the pre-scan through the program by the
interpreter: that agonizing time interval after RUN is
entered before the program starts executing. The
interpreter is grinding its way through your program,
byte by byte, ignoring only the messages in DATA, BEMs
and tail remarks. Other than these there is nothing
that it can afford to ignore until it has actually
looked at it. The pre-scan sets up the storage areas
and lookup procedures for variables, arrays, data,
sub-programs and DEFs used by the interpreter as the
program runs. Of course once it has set aside space for
a variable and its lookup linkages, then it does not
need to do it again or even to have to decide it has
already fixed it up earlier. The pre-scan switch
commands allow the programmer, from a superior vantage
point, to turn the pre-scan off and on throughout the
program so that it only looks at what it really needs to
look at to do its job.

What does the programmer gain by going to all this
extra trouble? The most obvious result is a reduction
of pre-scan time. This can be significant in long
programs. The 6 to 7 seconds for TI Extended BASIC, a
12K program, may still seem long but beats 4 times that.
In a later chapter we will see how it can be used to
fine tune run time behaviour as well. What price does
the programmer pay for these benefits? The necessary
penalty is the memory space taken by the extra
statements. The hidden penalties, incurred while
writing programs, are the inscrutable bugs that may be
introduced into the code and the loss of some program
checking during pre-scan such as FOR-NEXT nesting.

Let us work our way through the Extended BASIC
manual's prescriptions. Some of these help give insight
into the way Extended BASIC conducts its affairs. My
experience is that some of the restrictions need not be
followed strictly as laid down, as long as the essential
spirit is observed, while some are absolute, and others
are in between. These last are the ones where it is
possible to imagine another version of Extended BASIC
doing things differently while still being according to
the book. This is always the danger in usinh
unspecified properties or "undocumented features". It
is not such a problem with Extended BASIC since TI
pulled the plug on the TI99/4A and made Extended BASIC a
language as dead as Latin. In retrospect this last
statement is no longer quite true, and though people
continue to use the original Extended BASIC there have
been enhanced alternatives, still GPL based using
various GROM simulation schemes. There have also been
utility programs to do automatically some of tasks we
are discussing here and more. What has been sorely
lacking has been any published exegesis of just how
Extended BASIC goes about its business internally. I
have never seen any source code for Extended BASIC,
either original TI or reconstructed. I do not know
whether TI source has leaked out, or even if it still
exists, but if it has it is being closely held, and the
writers of Extended BASIC processing utilities do not
seem to have felt any urge to share around the details
of what they found.

(1) DATA statements :-

The pre-scan locates the first DATA statement
and sets Extended BASIC's data pointer for the first
READ operation to use. If the first DATA is skipped in
the pre-scan, then RESTORE must be invoked before the
first READ to set the data pointer correctly. If this
is done, the Extended BASIC manual's advice can be
ignored.

(2) Variables :-

Each variable must be scanned once, otherwise
Extended BASIC will not have it in its linked list of

pointers to names and storage locations. This can be
the source of some truly evil program bugs, where a
syntax error message results from a line of code which
looks perfectly correct. The reason can be that
injudicious positioning of pre-scan switch commands has
left the interpreter with something that should be a
variable, but cannot be located as such. Being a
non-variable is a much worse fate than merely being set
to zero.

OPTION BASE 1 affects how storage is allocated and
normally precedes any array references. If hidden from
the pre-scan by !@1D- then the default 0 will apply.

The manual says that the first occurrence of any
variable or array must be included in the pre-scan.
This would seem to be necessary for arrays, in the DIM
statement, unless you are using the default (no DIM)
dimensioning. Simple variables can be pre-scanned
anywhere as long as it is at least once. Try the little
sample program

100 CALL CLEAR :: !@P-
200 I=1 :: PRINT I
300 !@P+
400 1=2

Run this program and there will be no problems. Delete
line 400 and see what happens. Now you will have a
syntax error in a line that by itself is perfectly
correct.

(3) Sub-programs :-

The Extended BASIC manual recommends that the first
CALL to any sub-program be included in the pre-scan. It
would appear that if the first CALL to a user defined
sub-program occurs after its own SUB (from within a
later sub-program) then the necessary inclusion of the
SUB and SUBEND markers suffices.

Built-in 	sub-programs of course do not have
associated SUB statements, so a CALL must be included in
the pre-scan if the program is to run normally. Try
this example.

100 FOR I=1 TO 1000 :: !@P-
200 CALL SCREEN(12)
300 !@P+
400 NEXT I
500 SUB ANYTHING :: CALL SCREEN(3):: SUBEND

This will run even though SCREEN is pre-scanned
only in a sub-program. Delete line #500 and it will
crash if you are running Extended BASIC with the 32K
memory expansion. In VDP RAM (console only) it still
executes but only at about 1/3 the speed.

What happens if an array is referenced in the
parameter list of a sub-program, but not dimensioned
until a later sub-program? If you recall the discussion
on passing arrays by reference, you will not be
surprised to find that Extended BASIC is smart enough to
hold over assigning space for the array until it comes
across a genuine program reference. Try this little
example

100 CALL SECOND
200 SUB FIRST(A()):: PRINT A(20):: SUBEND
300 SUB SECOND :: !@P-
400 DIM A(20):: CALL FIRST(A())
500 !@P+
600 SUBEND

This program crashes with a syntax error in 400 in
SECOND. Now delete the pre-scan commands and the
program will run. If you further delete DIM A(20):: in
line 400 the program will crash in 200 with a subscript
error.

(4) DEF, SUB and SUBEND

Do as the book says. Extended BASIC needs these in
the pre-scan to set things up correctly. continued on page 13

(December 1989 	TIsHUG NEWS DIGEST 	Page 6

TatIn
with Lou Amactio

The last TIsHUG meeting was held at Ryde Infant
School. This was a tutorial day with a lot of
interesting talks arranged by Craig Sheehan. Once again
we were kept busy all day on hardware problems. Geoff
in particular had a very late lunch with some tricky
console repairs.

Multifunction Cards

There was a lot of interest in building hardware
items, in particular the Peter Shubert Multi Function
Card. These cards are now available through the club
shop for $30 and can be configured with any or all of
the following options:

Double density disk controller
RS232 #1 and #2
PIO printer port
32K memory expansion.

We will be supplying most of the chips for the
above options and preparing instructions on how to add
them. Most of the building will be fairly straight
forward except for the DDDC option which will need a CRO
to set two pots. This will be done at one of the
meetings or by prior arrangement.

Direct I/0 Interface PCBs

Double sided printed circuit boards for the
interface are now available through Geoff Trott
(042-296629) for $35. We are also seeking supply of a
plated through version to simplify construction. You
may write to Geoff at:

20 Robsons Road, Keiraville, NSW 2500

nif INIT1111517 3ZID,C111310931
by Lou Amadio

The following hardware article is part 1 of a two
part series on memory expansion for the TI99/4A console.
The purpose of the article is to assist members in
choosing a memory expansion options which best fits
their long term plans.

STOP PRESS

The club has purchased a number of 8K and 32K SRAMs
at very good prices. See the club shop for
availability.

The 32K memory expansion is perhaps the most useful
hardware addition for the TI99/4A computer. Indeed, if
you want to do anything serious with the console,
including quality games, then 32K memory expansion is
mandatory. The reason for this is that all machine
language programs need the expansion memory to run. Not
only are you able to run more sophisticated software,
but there is a much larger storage area for user data,
such as text during word processing, etc.

The TI99/4A console has 16K of memory in its
standard configuration. This memory is controlled by
the Video Display Processor (TMS9929A) and is used to
run BASIC and Extended BASIC programs as well as some
housekeeping functions. The 16K of VDP memory cannot be
expanded any further.

The TI99/4A, however has a second processor,
(TMS9900) which is called the main CPU chip. In a
standard console the CPU controls only 256 bytes of RAM
(user memory). This RAM can be expanded by an
additional 32K for a total of 48K RAM. Only 32K of
this, however, is controlled directly by the CPU.

A Little History

Texas Instruments provided a way of expanding
memory back in 1980 with an add—on 32K peripheral which
plugged into the side of the console. This unit was
rather large and very expensive (about $250) and is
virtually unobtainable these days.

About three years 	later TI 	introduced 	the
Peripheral Expansion Box (PEB) which allowed a large
range of expansion interfaces, including 32K memory, to
be plugged into a mother board. Although this actually
increased the cost of a memory expansion to $350 ($200
for PEB, $150 for 32K), the package now had room for
disk drives, printer (RS232) card, etc, etc. With the
demise of the stand—alone peripheral, 99ers had little
choice but to pay up.

In 1983, when the end came for TI Home Computer
Division (see John Paine's very interesting article on
this subject), hundreds of thousands of consoles were
bought by consumers worldwide at bargain prices.
Although the cost of the computer was very attractive
($199 in Australia), the cost of fully expanding was
still very high (approximately $1000). In addition,
there were only a very small number of expansion systems
actually produced by TI, so demand exceeded supply and
second hand prices were often no better than new prices.

The situation remained this way for some time until
a break through occurred in Perth. Two industrious
99ers (Bernie Elsner and Phil West) discovered that it
was possible to fit the memory expansion inside the
console. The availability of static RAM chips (at a
reasonable price and memory capacity) simplified the
project greatly as the console was able to supply the
power for the chips. In contrast, the TI memory card
has a total of about 28 chips and draws about 0.6 amps
from an external supply.

Bernie and Phil called the project a "Matchbox
Memory Expansion" as it was about the same size and
shape as a match box. The expansion consisted of four
memory chips soldered one on top of the other and was
wired to the back of the module (GROM) port, with a
small number of wires going to the mother board. Old
99ers will remember the excitement that this project
caused when it was first published. This was the
turning point for many users who could now "get serious"
with their computer. In 1985, however, the cost of the
8K chips was $25 each (down from $140 the previous
year!). Bernie predicted that the prices would
ultimately drop to under $5. How right he was, although
recent fluctuations in supply and demand have seen
prices as high as $9 for the 8K chips.

The availability 	of 	printed circuit 	boards
(designed by club members) has greatly simplified
construction and hundreds of these add on expansions
have been built by TT99/4A users.

lechnical Description

The memory expansion uses 28 pin Hitachi (or
equivalent) HM6264LP15 8K x 8 bit SRAM chips. (The
single chip version is the HM62256.) These chips are
high speed static CMOS random access memory with low
operating current (60 mA) at 5 volts, and very low
standby current of about 2 uA making them suitable for
battery backup. SRAMs also simplify circuit
construction as no memory refresh cycle circuitry is
required as is the case with dynamic RAMs.

The expansion interface consists of connecting 13
address lines (A3 to A15), 8 data bus lines (DO to D7),
the Write Enable (WE), +5 volts and ground, all to the
back of the GROM port. The decoding for the memory
expansion is available on the TI99/4A mother board where
five additional wires are connected. These are the 4
chip select (CS) lines (one for each bank of 8K) and the
DBIN line. One 8K bank of memory is at address >2000
(low memory). The other 3 by 8K banks of memory are
from A000 to >FFFF (high memory).

(Page7 	 TIsHUG NEWS DIGEST December 198

U600
U610 :n

17.
12600,6,4

=R403 	R.E1:17 	C505 	EF„,..: Rr_412,

R518 ,,:j1_,..i
Rg 4 0.1 11 i n n 	•:. •

C506 ° 	
,._,

L4 021C41411401
C50 	 . : 	CA.& 	cILSI?0 C402 i ___D {

0401 c,too 	caos
R401

R4I
TE LI *721r -cc:: ::o4

R510

R501
- -CR500 — — ---0501

P107
J500 	R525 GO

7

0,1 —
L0

g- C4_01 	1L4ogi-

G-aom Po a -r 	if

	

I 	 g
'frA00 [..13

■ to 	LC660°23 it. _ 44
. C607 L

1. 	C142 	R605 	 R300 L-E9.1.1
°--4---' 	tl.°231 f 	rnCie c 138 	 C503
LI1.2 	 CI41

i•foi

_t
.11

-ca.

U507 I

Do It Yourself Memory Expansion

If you want memory expansion (and you should), then
doing it yourself will provide you with the most useful
addition to your computer since the Extended BASIC
module, which, incidentally, is necessary to be able to
use the extra memory for BASIC programs.

Printed Circuit Boards

Several PCBs have been designed over the years to
provide either memory expansion alone or in combination
with other functions. Some use four 8K SRAMs while
others use the newer 32K chips. All provide the same
facility, and the choice of which way to go will depend
on what you ultimately want to end up with. Another
consideration will be the cost of the 8K versus the 32K
chips. Currently one 32K chip is a little cheaper than
four 8K chips.

Two PCBs are available for the 8K chip version of
the memory expansion: one designed in Sydney and the
other in Wollongong. The Sydney PCB is identified by
the fact that the data and address lines are at
different ends of the board. See the notes at the end
of this article.

Four PCBs are available for the single chip
expansion system:

1) A PCB which uses one 32K chip and an additional
74LSO9 control chip.

2) The Peter Schubert designed Multifunction card
(MFC). The MFC is a PEB card and is potentially the
most powerful as it also offers the ability to have a
double density disk controller, an RS232 and a PIO as
well as the memory expansion option. This card can also
be used with the Direct I/0 Interface system described
in recent issues of the TND.

3) The Mini PE System mother board (also a Peter
Schubert design) can accommodate a 32K memory chip.

4) The USA designed Zeno Board. This PCB will also
allow Extended BASIC, Speech Synthesizer and a number of
additional GROM chips as well as a 32K memory chip. The
Zeno board must be ordered from the USA and I hope to
have one for show in the near future.

General Construction Hints

SRAM chips are easily damaged by static
electricity. Ensure that you earth yourself to a
metallic object (which is in itself earthed), prior to
touching any SRAMs. Avoid touching the pins when
handling the chips.

All 	PCBs 	should 	be 	inspected, 	prior 	to
construction, for breaks or shorts. etc.

Use sockets for all chips. This will facilitate
trouble shooting later if needed.

Inspect the module port for wear prior to starting.
If OK, wash it out with alcohol prior to soldering. If
it is worn, throw it away as it may cause lock up
problems later. The club has a number of GROM port PCBs
for replacing the old ones.

Use a soldering iron with a fine (<1.5 mm) tip, as
well as fine resin-cored solder.

Kits - Illawarra Version PCB

32K memory expansion kits will be available through
the club. See me (Lou) or the shop for supplies. Note
that this version of the PCB has all of the I/0
connections located at one end of the board.

PCB Location

Some of the diagrams presented below are courtesy
of TIUP, Perth WA.

The internal memory expansion is located on top of
the mother board metal shield and close to the GROM
port. The board is fixed with double sided tape between
two of the memory chips and the metal shield. The
distance between the PCB and the GROM port should be no
less than about 50 mm. The connecting wires or cable
must be laid flat to allow proper fit of the console
plastic top during re-assembly.

-

The GROM Port Connections

All internal versions of the memory expansion are
hard wired directly to the back of the GROM port.

__11 Rear view of cartridge connector I-
36 	 2
• • • • • •1111•••••1111•11111
	 1

111111111111111111
Looking at the back of the port, the pins are

numbered from right to left as indicated above. Fine
multicored wire or ribbon cable at least 200 mm long is
required. Strip back and pre-tin all connections. If
you are using a ribbon cable, solder every second wire
to the top row of pins on the GROM port.

The Mother board Connections

Five wires must be connected from the expansion
board to two chips on the TI mother board . The chips
are U504 and U508 as indicated on the mother board
layout below:

(December 1989 	TIsHUG NEWS DIGEST Page 8

etria
,j nstmas

1 	 N/C 	N/A
2 	25,26 	GND
3 	 16 	D7
4 	N/C 	N/A
5 	18 	D6
6 	N/C 	N/A
7 	 20 	D5
8 	17 	Al5
9 	22 	D4
10 	14 	Al3
11 	24 	D3
12 	12 	Al2
13 	23 	D2
14 	10 	All
15 	21 	D1
16 	9 	 A10
17 	19 	DO
18 	8 	 A9
19 	1,2 	+5 V
20 	6 	 A8
21 	N/C 	N/A

:3121c Whimsey 2zptulalam
Inside the console

by Ross Mudie

DISCLAIMER.
The author and TIsHUG will accept no responsibility

or liability for any damage to any computer as a result
of use of any information contained herein.

OBJLCT.
This document describes a method of installation of

a 32K Static RAM printed circuit board. The board is
mounted on top of the PCB shield with 2 layers of double
sided foam mounting tape. Three ribbon cables connect
to the PCB, two connecting to the rear of the GROM port
socket and one (a long one) connects to pins of
Integrated circuits U504 U508 on the main PCB of the
computer. This cable is left long enough to allow the
computer to be easily serviced.

The 	pin 	numbers 	of 	the 	mother 	hoard chips are
marked on the diagram.

Use fine multicored coloured wire at least 	300 	mm
long 	and route the wires past the GROM port and through
the opening on the metal 	shield 	at 	the 	back 	of 	the
console.

GROM PortI32K Fedi

22 	5
23 	15
24 	3
25 	N/C
26 	7
27 	N/C

Function

A7
Al4
A3
N/A
A6
N/A

Connect 	pin 	9 	of U508 to DBIN (28) on the memory 28 13 A5
expansion PCB. 29 N/C N/A

30 27 A4
Connect pins 7, 9, 10 and 14 of U504 to chip select 31 N/C N/A

pins 	29, 	30, 	31 	and 	32 	respectively 	on the memory 32 4 WE
expansion PCB 33 N/C N/A

34 N/C N/A
Mounting The PCB Components 35 25 GND

36 26 GND
The board is easily constructed using 3 wire links,

four 	28 	pin 	IC 	sockets 	and a 10 uF TAG electrolytic U508 p9 28 DBIN
capacitor. 	The capacitor is 	soldered 	between 	the 	+5 U504 p7 29 CSE
volts and ground at the opposite end of the board to the U504 p9 30 CSC
I/0 connections (watch polarity). 	Solder the IC sockets U504 p10 31 CSA
with 	the 	notch 	facing 	as 	indicated. 	Note that the
diagram shows the bottom of the PCB.

U504 p14 32 CS2

Testing The Memory Expansion

p,,,,

21 , 3. 31 • • 3. •

.P.,,11 O. 4r —16 r r — —

'44 03

1.0

11,

Om

eq

,. 0,

.111 	Nip.

of/ 	09 • Z7
t • 	•7 I
60 	11,. "

40 	1111

451, ,0 	• L L _J 	L J

Illawarra version of the four by 8K, 32K memory expansion
showing I/0 solder pad identification. The board is mounted upside

down prior to soldering the connections.

With the GROM port prewired as indicated above,
insert the GROM connector into the mother board socket,
locate the expansion board (upside down) as indicated
above and proceed to wire the ribbon cable directly to
the contacts from the solder side of the board.

Using the table below for reference, strip, pre—tin
and solder each wire in turn to the correct PCB pad on
the expansion board. Ensure that the cable or wires can
be laid flat for at least 50 mm from the GROM port.

Connections For The Illawarra PCB

GROM PortI32K Pad' Function

When you have finished wiring the memory expansion,
check it all again for possible errors. If you are
happy that all is well, partially assemble the console,
plug in the GROM port with Extended BASIC attached,
power up the console and type in the command "SIZE". If
all is well you should be greeted with the following
message:

13928 BYTES OF STACK FREE
24488 BYTES OF PROGRAM SPACE FREE

If not, and/or the computer locks up, then switch
off the power and check for errors. In particular, make
sure that there are no shorts between the solder pads
and adjacent copper tracks.

Re—assemble the console carefully and start to
enjoy the advantages of a highly versatile expanded
TI99/4A.

Additional Notes

The following notes were written by Ross Mudie for
the TIsHUG memory expansion workshops which were held in
the past. The notes provide a good reference to
dismantling the console as well as other construction
hints. All references to PCB layouts and wiring
connections in this article are for the Sydney version
of the PCB (no longer readily available).

Coming Up Next Issue

In the next issue of the TND I will describe how to
build the single chip versions of the memory expansion
and the advantages that each system offers. 0

(Page 9 	 TIsHUG NEWS DIGEST December 198

1 U28

IC3

-p7u 28

IC2

A000
to

BFFF

C000
to

DFFF
CSA

*WE 0
A4 o 1 U 28
A5 o
A6 o IC1
A3 0
Al4 o 2000
A7 o 	to

3FFF
A8 0
A9 o
A10 o
All o
Al2 o
Al3 o
Al5 o

CS2

MATERIALS.

Quantity Size 	 Description or Use
1 	10.way by 300mm Ribbon Cable, +5V, DO-D7 and Earth.
1 	14 way by 250mm Ribbon cable, 'notWE', (*WE) and A3

to A15.
1 	5 way by 500mm Ribbon cable 'not DBIN', (*DBIN)

and Chip select wires CS2, CSA, CSC
and CSE.

4 	45mm by 12mm 	Double sided "foam type" mounting
tape. (PCB mount).

1 	20mm by 12mm 	Double sided "foam type" mounting
tape. (Retain ribbon)

1 	 Memory Expansion Printed Circuit
board.

1 	22uF 10V 	Tag Tantalum capacitor.
4 	28 pin 	 DIL IC sockets.
4 	HM6264LP-15 	CMOS Static RAM.
1 	Metre 0.7mm 	flux cored soider. (Only 0.5 metre

should be needed.)
A small amount Solder flux solvent.

WARNING...
Do not 	remove the CMOS RAM chips from the

anti-static packaging until you have completed
installation of the PCB in the console, then only under
anti-static conditions. Only work on the console under
anti-static conditions.

TOOLS REQUIRED.

(a) Soldering Iron, preferably temperature controlled,
otherwise not exceeding 20 watts, with a maximum
soldering face of 1.5mm.

(b) Fine wire cutters.
(c) Fine long nosed pliers or wiring tweezers.
(d) Medium sized phillips head screw driver.
(e) Wire stripper.
(f) Solderwick or equivalent solder removing braid, s e

1 (smallest).
(g) Anti-static work mat, wrist, job and earth straps.
(h) A small shifting spanner.
(i) A short stiff bristle brush or toothbrush.

OVERVIEW OF METHOD.
This is a summary of the steps required in this

modification.

(a) Read this instruction thoroughly before starting.
(b) Assemble PCB, connect the ribbon cables to the PCB,

check and de-flux.
(c) Dismantle console, remove GROM connector, connect

two of the ribbon cables to the GROM port connector.
(d) Remove shield from the main PCB of the computer,

connect ribbon cable.
(e) Reassemble PCB shield, mount expansion memory PCB,

plug in memory chips.
(0 Reassemble computer and test.

Carry out all work under anti-static conditions.

METHOD.

(b) Place the IC sockets in the PCB with correct
orientation and solder carefully. The notch in one end
of the sockets should be in line with the position for
the Tag Tantalum capacitor.

Terminate the 10 way ribbon cable on the capacitor
end of the PCB. Note which wires are used for the +5V
and Earth. The +5V is at the end near the capacitor,
the earth connection is at the other end of the group of
10 terminations, refer to Figure 1.

Terminate the 15 way ribbon cable to the group of
in-line connections from *WE at the pin 1 end of the ICs
to A15.

Terminate the 5 way ribbon cable to the *DBIN, CS2,
CSA, CSC and CSE.

Place the 22uF Tantalum capacitor in the PCB,
observing correct polarity and solder in carefully. Cut
the leads off short.

IC4

CSC

*DEIN o
U508 	U504 	U504 	U504 	U504
pin 9. pin 14. 	pin 10. 	pin 9. 	pin 7.

Expansion RAM PCB Layout and Connections
Figure 1

Check the PCB thoroughly for solder bridges between
tracks and solder pads. especially where the ribbon
cable wires terminate in the PCB.

After visually ensuring that the board is free of
faults clean the solder side of the board with solder
flux remover and a new (cheap) toothbrush or a brush
with short stiff bristles. The purpose of this is to
clean off excess flux residue left from soldering. Take
care to avoid flux and solvent getting into the IC
socket holes.

Recheck the soldering of the board after cleaning.

When the board is dry place two double layers of
foam tape on the under side of the board, leaving the
protective paper covering in position on the exposed
face of the tape.

The actual order that the Address wires and the
Data bus wires are inter-connected with the computer
does not matter, but the data bus and address must not
be interchanged with each other. The wires for +5V,
earth, *WE and *DEIN must be connected as shown. The
connection of the CS wires may be in any order, (the
computer will not mind which chip is used for each
memory block), but if the diagrams herein are followed
it will be connected in logical order.

(c) Set up a Static Electricity free work place
with anti-static mat earthed. Remove any cartridge from
the GROM port. Disconnect any cords.

Place the console upside down on an anti-static
surface which will not scratch the console, with the
front of the console nearest to you.

Remove the 7 screws which retain the base of the
computer.

Take the power inp,,L wire from uPder Lhe piece ,A
tape, remove the power supply socket from the rear of
the computer and lay the socket and wire to the side.

Remove the 3 screws which hold the main board in
place. (On some consoles it will be necessary to remove
the screws which retain the power supply board also.)

Ensure that anti-static wrist strap is attached.

Carefully lift up the main board and unplug the key
board connector, without touching any contacts.

Invert the main board and place it 	on 	the
anti-static mat nearest to you. Remove the right angle
shaped GROM port connector from the main PCB unit to
prevent possible static discharge damage to the
computer. Do not touch the contacts of the GROM port
connector and ensure that the contacts remain clean.

Tag Tantalum o-
	 22uF

T-TU 28
Capacitor

o+

o +5V
E000 	o DO
to 	o DI

FFFF 	o D2
CSE o D3
o 	o D4

o D5
o Do
o D7

Earth

(December 1989 	TIsHUG NEWS DIGEST 	Page 10)

1 	1 	1* 	1A41A51A61A31A71A8
11WEii111
136134132130128126124'22120

A91A11A1
1 	01 	1

18116114

AllAl
21 31

121101

Al
5
8

, I
, I

61 4

I
1 	1 	I 	1 	1 	1 	1A11 	1+51D0011D21D3 D4 D5 DOID7

135133131129127125121312111119117115113 111 91 7 5 3

Rear View of GROM Port Connector
A=Address line; D=Data bus line;

+5V = +5 volt power supply
Designations for pins connected to in this modification

only are shown in this diagram.
Figure 2

In connecting the ribbon cable remember that the
flat cables will need to lay flat on top of the PCB
shield with the wires running individually up to the
pins of the GROM port connector. The wires connect to
the visible solder pins of the GROM port connector unit
by placing a turn of wire around the socket pins before
soldering.

Allow 45mm from the nearest edge of the PCB to the
GROM connector with the Tantalum capacitor end of the
PCB furthest away from the GROM connector.

Refer to Figure 2 for the GROM connector numbering.

Connect the 10 way ribbon connector to pins 2, 3,
5, 7, 9, 11, 13, 15, 17 and 19 of the GROM port
connector. Start with the earth wire, (as identified on
the expansion PCB), on GROM connector pin 2, then
continue with the wires in turn. The last wire is the
+5V which connects to GROM connector, pin 19. Connect
the 15 way ribbon cable to pins 8, 10, 12, 14, 16, 18,
20, 22, 23, 24, 26, 28, 30 and 32 of the GROM port
connector.

Check that there are no shorts between pins and
that there is no excess bare wire on any of the
connections. Watch out for individual strands of the
ribbon cable wires.

(d) Ensure anti—static wrist strap is attached and
PCB earth (bottom PCB shield) is contacting the
anti—static mat.

Remove the top cover of the main PCB, it is held on
by 3 nuts and bolts and two sheet metal clips. Note
which clip came from where, they must go back in the
same places or the case will not fit properly. (I also
prefer to undo the two phillips head screws holding the
metal case to the heatsink of the video processor as
this saves having to worry about the thermal compound.
GT)

Do not disturb the white thermal compound which
improves the thermal conductivity of the heat away from
the Video Display Processor chip.

* Ensure that the soldering iron tip is connected
to the earthed anti—static mat

Remove any twists from the 5 way ribbon cable.

Leave a reasonable amount of slack in the 5 way
ribbon cable and solder the other end of this cable on
the main PCB IC pins as follows:

*DBIN connects to U508 pin 9
CS2 connects to U504 pin 14
CSA connects to U504 pin 10
CSC connects to U504 pin 9
CSE connects to U504 pin 7

Take special care at this point not to provide any
solder bridges between adjacent pins or IC pins and PCB
tracks.

Place the 5 way ribbon cable so that it passes out
the opening in the shield near the cassette socket. The
ribbon cable should be positioned past the corner of the
GROM connector nearest the cassette socket.

Apply a small amount of fresh thermal compound to
the VDP chip if the existing compound has dried out.

Replace the top cover of the main PCB shield,
ensure that the clips hold correctly, especially the one
near the VDP chip (the one with the white thermal
compound on top). It may be necessary to squeeze the
clips a bit, whilst they are off, so that they hold
tight. (If you removed the screws into the video
processor heat sink, then replace them here. GT)

Ensure that the edge connector of the GROM port
connector is clean, then plug the GROM connector into
the main board of the computer.

Remove the paper covering from the foam tape and
locate the PCB on top of the shield approximately 45mm
to the inside of the computer from the GROM connector,
so that the air circulation holes are not blocked.
Correct placement of the PCB will ensure that is does
not foul the top cover of the console case. Watch that
the ribbon cables do not lie across the mounting holes,
there are two holes which the ribbons may lay across,
possibly use a piece of double sided mount to hold the
ribbons in position here, avoiding the mounting holes.

Under anti—static conditions remove the memory
chips from their packaging and plug them into their
sockets; correct orientation is essential. The end with
the notch goes goes to the same side of the board as the
Tag Tantalum capacitor. It may be necessary to bend the
pins of the ICs in a little so that they will plug in
easily into the sockets. This is best done by placing
the whole of one side of pins on the flat surface of the
table and then by applying even pressure bending all
pins on one side in a uniform manner. Both sides should
receive equal treatment. When plugging the ICs into the
sockets ensure that no pin bends back or folds up
underneath the IC.

Reassemble the computer. 	Plug in Extended BASIC
and on entering Extended BASIC type SIZE <ENTER>. The
computer should have 13928 bytes of STACK FREE and 24488
bytes of PROGRAM SPACE FREE.

continued from page 26

WAIT 5
CLEAR
DISPLAY STATUS
RETURN

* FIN1 	Save as FIN1/C
* **** Finish Program 11/10/88

We have previously covered everything in this
system. There are a couple of tricks that might be of
interest. In INFSCR1 the WHILE loop will not accept a
value less than zero or greater than 5, and in PR—LBLS1
there is a WHILE within a WHILE, and they both use the
same variable (ANS). I have not typed in complete
command files. I used FunnelWeb to edit command files
we covered earlier, and I deleted and added some lines
and then saved thew under a new name. Read over the old
tutorials. You will find it all there, with
explanations. I searched for NM in the label command
file, because it is the easiest and least confusing for
the user. We created the NM field in tutorial 4. In
January 1989 I plan on starting with the new features of
TI—Base Version 2.0. I am sure I will recover some of
this old stuff in an effort to compare version 1.02 with
version 2.0. If you are lost, do not despair. Keep
those questions and tips coming in. And, I would like
to thank Jerry Keisler of the PARIS 99/4A User Group.
He gave me several good tips. Thanks Jerry.

Ear
th
2

1

(Page 11 	 TIsHUG NEWS DIGEST December 198

Szleiage,11 13 ACM STLettun CaUtvre
Author unknown

(Extended BASIC plus 32K RAM required)

Here is a super short, super fast, assembly routine
for Extended BASIC that allows you to change screen and
character colours instantaneously!

There are lots of possible uses for the thing
including games, but the real feature of this program is
that it changes the colour of the edit Mode screen as
well! Yes, no more black on cyan if you do not want to!

How does it Work?

The colour change is inserted into the user defined
interrupt and is constantly "re-performed" every 1/50 of
a second. This makes it seem like the edit Mode screen
colour has been changed. In order to return control of
the colour commands CALL SCREEN and CALL COLOR, you must
load the user defined interrupt with zeros (eg CALL
LOAD(-31804,0,0). Any use of CALL COLOR or CALL SCREEN
while the routine is operational will just cause the
screen to flash briefly.

Demonstration Programs

Along with the program that loads in the original
routine, below is a demonstration routine to show off
your new screen colours.

A simple CALL LOAD will do it.

Of course, you do not need a program to change to
screen colours once the original file is loaded. All
you have to do is poke a single byte value into CPU
address 9460. This value is found by doing the
following:

Foreground colour (0-15)x16 plus
Background colour (0-15)

For instance, to set the screen to black and the
characters to white you would do the following:

15x16+1=241
CALL LOAD(9460,241)

NOTE: 0=transparent, 15=white

PROGRAM #1: SCRNCOLR/X

100 ****************
110 ! *
120 ! * SCREEN COLOR *
130 ! *

! ****************
150 !
160 ! 	11/84
170 !
180 ! 	SDBFILE99
190 !
200 CALL CLEAR :: CALL AIL
210 MEM=9459
220 !
230 ! *LOAD IN PROGRAM*
240 !
250 FOR I=1 TO 50
260 READ X
261 TOT=T0T+X
270 CALL LOAD(MEM+I,X)
280 NEXT I
285 IF TOT<>3951 THEN 420
290 !
300 ! *START UP PROGRAM*
310 !
320 CALL LOAD(8194,37,38,"",-31804,36,246)
330 END
340 !
350 ! *PROGRAM DATA*
360 !

370 DATA 244,0,2,1,0,135,208,96,36,244,216
380 DATA 1,140,2,6,193,216,1,140,2,2,1,0,72
390 DATA 216,1,140,2,6,193,216,1,140,2,2
400 DATA 0,0,32,216,32,36,244,140,0,6,0
410 DATA 22,251,4,91
420 PRINT "DATA LINES ENTERED WRONG. CHECK AGAINST

LISTING!"
430 END

PROGRAM #2: CLRDEM01/X

loo ! *****************
110 ! *
120 ! * COLOR CHANGE *
130 ! *
140 ! * DEMONSTRATION *
150 ! *
160 ! *****************
170 !
180 ! 	11/84
190 !
200 ! 	SUBFILE99
210 !
220 ! * 	
230 ! NOTE:
240 ! 	YOU MUST HAVE
250 ! ALREADY LOADED AND
260 ! RUN "SCRNCOLR/X"!
270 ! *
280 !
290 CALL CLEAR :: RANDOMIZE :: DIM C$(15)
300 M$="Screen Colour Change Demonstration "
310 !
320 FOR C=0 TO 15 :: READ C$ (C):: NEXT C
330 !
340 !
350 DISPLAY AT(1,1):M$::DISPLAY AT(2,1):

RPT$("-",LEN(M$))
355 DISPLAY AT(10,1):"FRGRND COLOUR:"
356 DISPLAY AT(16,1):"BKGRND COLOUR:"
360 !
370 FC=INT(15*RND)
380 BC=1NT(15*RND)
390 DISPLAY AT(10,14):C$(FC)
400 DISPLAY AT(16,14):C$(BC)
410 !
420 CVAL=16*FC+BC
430 CALL LOAD(9460,CVAL)
440 !
450 GOTO 370
460 !
470 DATA Transparent,Black,Medium Green,Light Green
480 DATA Dark Blue,Light Blue,Dark Red,Cyan
490 DATA Medium Red,Light Red,Dark Yellow,Light Yellow
500 DATA Dark Green,Magenta,Gray,White 0
DIO END

1FT01111 tale 31411lletin 13ourd
MATL TO : ALL
NAIL FROM : CO —ORB

%dules
Early Learning Modules...three
Addition and Subtraction...three
Connect Four...two
Addition 5 to 6 yearsone
Other modules with games for very young children.
Joysticks and adaptor if necessary.

If you can help, then please ring the International
Kindergarten at Chatswood. Ask for Mrs Sylvia Kwok on
(02)419 3499.

Dick Warburton.

MAIL TO : ALL
MAIL FROM : CHEMTECH

Can anybody recommend a 	good 	quality, 	robust
joystick. Re-wiring to suit the TI is no problem.
Thanks and regards 	Tony Beuermann. 	0

UL
.04;,

rota
MAW'

anurrmt

(December 1989 	TIsHUG NEWS DIGEST 	Page 12)

26 - - - 23

19- 8-20
22

8

7

Karate Challenge

Gat11113 1131U11"111111111)11
by Robert Brown

Welcome to yet another NEW LOOK GAMES INFO. The
date is in the middle of the holidays, and as my exams
are approaching and I am doing Year 12, which means HSC
next year, this will most likely the last set of
articles for some period of time. I hope to write a few
articles at this time and get them to the editor each
month. So enjoy it while it lasts.

This month, we have the long waited Karate
Challenge Review, as well as the solution for the
Infocom Adventure Witness.

Witness Solution

1 GO TO #8, AND RING THE BELL
2 WAIT FOR PHONG TO LEAD YOU TO #24
3 ASK MONICA ABOUT MR. LINDER
4 WAIT UNTIL LINDER FINISHES HIS DRINK
5 SIT ON THE WOODEN CHAIR WHEN YOU GET TO THE OFFICE.
6 STAY THERE UNTIL LINDER IS KILLED
7 PUSH THE OFFICE BUTTON
8 ASK PHONG ABOUT THE OFFICE BUTTON TO
9 MAKE HIM ADMIT TO THE CONSPIRACY
10 LOOK AT THE CLOCK
11 LOOK AT THE KEYHOLE
12 GET THE POWDER.
13 GO TO #26 TO GET PHONG
14 GET THE HOUSE KEYS FROM HIM
15 GO TO #21 AND OPEN THE BOOK
16 READ THE RECEIPT
17 GO TO #13
18 UNLOCK AND OPEN THE BACK DOOR
19 GO E
20 MAKE A CAST OF THE FOOT-PRINTS IN #4
21 GO S
22 ANALYZE THE GUN IN #3
23 GO TO #24 AND COMPARE THE CAST TO STILES' SHOES
24 GO TO #10 AND CONFRONT MONICA RIGHT AFTER SHE

RETURNS
25 SHOW HER THE POWDER TO MAKE HER ADMIT TO THE

CONSPIRACY
26 ACCUSE HER
27 GO TO #17 AND LOOK AT THE DESK CAREFULLY
28 READ THE REPORT
29 ASK MONICA ABOUT IT WHEN SHE GOES TO HER ROOM (#17)

WAIT UNTIL SHE GOES OUT OF HER ROOM AGAIN, AND THEN
FOLLOW HER TO #13

30 HANDCUFF HER
31 SEARCH HER TWO TIMES
32 ASK HER ABOUT THE HIDDEN HAND GUN
33 ASK HER ABOUT THE CLOCK KEY
34 ARREST HER

28----25----24----27----6

1

2

To my knowledge, I was the first person in the club
to actually play this game. If you wish to purchase it,
you can get it from Triton for $14.95 (plus tax). But
you need 32K as well as a disk drive.

At first glance, the game seems simple enough, two
figures fighting with scorre and power arrows on the
screen.

The key codes are given at the beginning of the
game; you get 3 punches, 3 kicks and the ability to move
left or right. 	All the blows have a different travel
length, with the kicks reaching out much further. 	The
high and the low punches can also be used as blocks, so
that means you have a ring of defence.

Power arrows regenerate when you do not get hit for
a few seconds, same for the other side, up to a maximum
of 15. There are 26 levels (A to Z), and you fight
students up to level J. There is a dragon on level J
and could also be more dragons on your way from J to Z.
After level N, you run out of students and get masters.
There are point systems and arrow bonuses, but that is a
long way off.

I highly recommend you buy this game, it is
excellent.

Well that just about finishes this NEW LOOK
ARTICLE. Do not forget that you can write to myself
at...

141 Beecroft Road, Beecroft 2119 or

write to GAMES on TEXPAC.

Bye for now... 	 0

continuedfrompage6

The pre-scan switch does not have much effect
unless the program is of substantial size, so it is not
worth worrying about too much in the early stages of a
program's development beyond being prepared for the
possibility. The Extended BASIC manual supplement 010)
shows how all variable and sub-program declarations may
be gathered together to minimize the range of the
pre-scan, by using a GOTO to jump over the list to the
first executable statement. This can be gotten awa)
with since Extended BASIC does not do a complete check
for correct syntax until it comes to execute the line.
This is the only virtue one can ascribe to Extended
BASIC's failure to reject all invalid lines at entry
time. The same technique can be used within a
sub-program, and I have found it very convenient for
this same GOTO to reserve a hiding place in which to
tuck away the subroutines accessed by GOSUBs within the
sub-program. 0

condnued fawn page 2

I hope the club is interested in my system, but if
not, would you please run an advertisement for the lot
at $250. My phone number is (058)81 3959 and I am
usually home after 4pm.

Yours sincerely, Gr36 J Bull

PS All modules have the original manuals and I have the
following books:
1. Tantalising Games for your TI99/4A; Hel Renko/Sam

Edwards
2. The Best of TI99/4A Cartridges; Thomas Blackador
3. Video Display Processors TMS9918A/TMS9928A/TMS9929A

Data Manual
4. Video Display Processors Programmers' Guide
5. TMS32010 Development Support
6. TI99/4A Users Reference Guide x2
7. 32 BASIC Programs for the TI99/4A; Rugg, Feldman and

Allen

LAYOUT OF

THE WITNESS

(Page 13 	 TIsHUG NEWS DIGEST December 198

IPtrajaCta
Author unknown, supplied by John Paine

In the Beginning the Project Manager created the
Programming Staff. The Programming Staff was without
form and Structure. And the Project Manager said, "Let
there be Organization"; and there was Organization. And
the Project Manager saw that Organization was good; and
the Project Manager separated the workers from the
supervisors, and he called the superviscirs "Management",
and he called the workers "Exempt".

And the Project Manager said, "Let there be a
mission in the midst of the Organization, and let it
separate the workers, one from another". And the
Project Manager created the mission and he called it
"The System". And the Project Manager separated those
who were to benefit from the System from those who were
to build it. And he called the former "User", and he
called the latter "Programmers".

And the Project Manager said, "Let 	all 	the
Programmers in the Organization be gathered together
into one place, and let a Chief Programmer be brought up
to lead them". And it was so. And the Project Manager
saw that it would work.

The Project Manager said unto the Chief Programmer,
"Create for me a schedule, so that I may look upon the
schedule and know the Due Date". And the Chief
Programmer went among his staff and consulted with them.
And the staff was divided into two parts, one part was
called "Analysts", and the other part was called
"Application Programmers". And the Analysts went back
to their desks and estimated, as was their custom. And
it came to pass that each Analyst brought his estimate
to the Chief Programmer whereupon he collected them,
summarized them, and drew a Pert Chart.

And the Chief Programmer went unto the Project
Manager and presented to him the estimate saying, "It
shall take ten months". And the Project Manager was not
pleased and said, "I have brought you up from the depths
of the staff; and you have not grasped the "Big
Picture". And the Project Manager hired consultants,
and authorized overtime, and he said to the Chief
Programmer, "Behold and see all that I have done! The
Due Date will be in five months". The Chief Programmer
was much impressed and went from before the Project
Manager and proceeded to implement the System.

And the Chief Programmer sent his Analysts to the
users and said, "Let Specifications be written". And
there were meetings, and lunches, and telephone calls.
And the Specifications were written. And there was a
Payday and the Happy Hour, one month.

And 	the 	Chief 	Programmer 	examined 	the
Specifications and saw that they were too ambitious.
And he separated the mandatory features from the
optional features. And he called the mandatory features
"Requirements," and he called the optional features
"Deferred," and the Users called him names. And the
Chief Programmer gave the Specifications to the Analysts
and said, "Let the Requirements be Analyzed and let the
Files be Designed". And it was so. And the Chief
Programmer said, "Let the Software Houses put forth
their salesmen, and let us have a Data Management
System". 	And it was so. The software houses brought
forth all manner of Salesmen who presented 	their
packages, and claimed wondrous things for them, each
according to his own file structure. And it came to
pass that a Data Management System was selected; and the
Chief Programmer saw that it was good. And there was a
Payday and the Happy Hour, a second month.

And the Chief Programmer said, "Let there be
Progress Reports, so we can monitor and control;" and
there were Progress Reports. And the Chief Programmer
looked upon the Progress Reports and saw that the Due
Date was not to be met. And the Chief Programmer arose,

pressed his suit, shaved his beard, and went unto the
Project Manager and grovelled. And the Chief Programer
pointed his finger, and caused blame to issue forth upon
all manner of creatures who sold Hardware and Software.
And the Chief Programmer asked for an Extension.

And the Project Manager was exceedingly angry, and
cast doubts upon the Chief Programmers ancestry; and
uttered a multitude of threats. But it came to pass
that an extension was granted; and the Chief Programmer
took the extension back to the programming teams, and
there was much rejoicing. And the programming of the
modules was completed. And there was a Payday and the
Happy Hour a fifth month.

And the Chief Programmer said, "Let the modules be
integrated one with another, so that System Testing may
begin". And IL was so.

Great difficulties were experienced, and many hours
of overtime were used, and many cups of coffee were
consumed. And it came to pass that System Testing was
completed. And there was a Payday and the Happy Hour, a
sixth month.

Then the Chief Programmer did go to the Project
Manager and said unto him, "Behold, I bring you good
tidings of a great joy which will come to all the Users;
for on this day The System is completed". And suddenly
there was with them a multitude of Users praising the
Chief Programmer and saying, "Glory be to The System in
the highest, but can you make this one small change?". 0

continued from page 27

The Complete Forth, by Alan Winfield (Wiley)

This book has several pluses which make it a good
text on Forth. First, Mr. Winfield has packed it with a
generous amount of examples. He included several
examples showing equivalent program segments in BASIC
and Forth. He also devoted a large part of his book to
the handling of INPUT and OUTPUT of both numbers and
strings including an excellent development of a string
variable. Finally, I like the inclusion of a Forth
programmers reference card in the back of the book.

Discover Forth, by Thom Hogan (Osborne/McGraw—Hill)

This book's strong points are its appendices which
have a lot of information in them and the examples
Mr. Hogan uses to get his points across.

There are two additional books that I recommend for
further reading by the advanced programmers among our
readers.

Thinking Forth, by Leo Brodie (Prentice—Hall)

This is Mr. Brodie's second book on Forth and
continues the work he started in his first book
"Starting Forth". This book is devoted to Forth style
and problem analysis and solving. Again it is full of
tips and still more cartoons.

Threaded 	Interpreted 	Languages, 	by 	A.G. Loeliger
(Byte Books)

This is a book for the experienced computer hacker
who wants to learn how Forth works and how to write
their own fast and compact version of a Forth—like
lan6uage.

I would like to close this month's article by
stating that any questions sent to me through this
newsletter will be answered in one of two methods.
Either (1) through the tutorial articles if it is of
general interest or (2) directly if the question also
includes a self addressed, stamped envelope. Please
forward all your questions to the newsletter address. 0

December 1989 	TIsHUG NEWS DIGEST 	Page 14)

TI BASIC Program

WONKAPILLAR is written by Mark Sumner, and was
commercially released in the UK by Stainless Software.
It is one program I do enjoy playing. Key this in and
see how you like it! The caterpillar can plant one time
bomb at a time! He must not collide with himself or the
walls. It is bad luck to blow your head up!!!

(Do not worry too much about your body, losing
weight may be good for you!).

The length of the fuse is determined by how long
you hold the space bar down. Move with usual arrow
keys. In essence, to escape off the screen you must
blow up lots of walls! The bomb will remove the square
it is on and each of the 8 squares around it (that is a
3x3 block). Can be played in TI BASIC only. Disk
owners can play from Extended BASIC if they add the
utility VDPUTIL.

1 REM WONKAPILLAR/TI BASIC
100 U=69
110 R=68
120 D=88
130 L=83
140 B=32
150 MEN=3
160 SC=0
170 BON=3000
180 M=1
190 CALL CLEAR
200 CALL SCREEN(2)
210 CALL COLOR(9,5,2)
220 CALL COLOR(10,7,2)
230 CALL COLOR(11,13,2)
240 FOR A=1 TO 8
250 CALL COLOR(A,16,1)
260 NEXT A
270 F$="FFFFFFFFFFFFFFFF"
280 CALL CHAR(96,F$)
290 CALL CHAR(104,"BD7EDBDBFFBD423C")
300 CALL CHAR(112,"003C7E7E7E7E3C00")
310 CALL CHAR(120,"0204183C7E7E3C")
320 CALL COLOR(12,14,2)
330 CALL CHAR(128,"0000183C7E3C1800")
340 CALL COLOR(13,12,2)
350 CALL CHAR(136,"004020183C3C1800")
360 CALL COLOR(14,10,2)
370 CALL CHAR(144,"00020206060C38E0")
380 CALL COLOR(15,11,2)
390 GOSUB 2150
400 CALL CLEAR
405 BT=Z
410 CALL HCHAR(1,3,96,28)
420 CALL HCHAR(3,5,96,24)
430 CALL HCHAR(5,7,96,20)
440 CALL HCHAR(7,9,96,16)
450 CALL HCHAR(14,9,96,16)
460 CALL HCHAR(16,7,96,20)
470 CALL HCHAR(18,5,96,24)
480 CALL HCHAR(20,3,96,28)
490 CALL VCHAR(1,3,96,20)
500 CALL VCHAR(3,5,96,16)
510 CALL VCHAR(5,7,96,12)
520 CALL VCHAR(7,9,96,8)
530 CALL VCHAR(1,30,96,20)
540 CALL VCHAR(3,28,96,16)
550 CALL VCHAR(5,26,96,12)
560 CALL VCHAR(7,24,96,8)
570 CALL HCHAR(11,27,120)
580 CALL HCHAR(11,6,120)
590 CALL HCHAR(10,16,104)
600 CY=0
610 CX=1
620 PY=10
630 PX=16
640 REM KEY
650 BON=BON-10
660 SC=SC+1
670 IF BT>0 THEN 1320
680 CALL KEY(0,K,S)
690 IF KOU THEN 720
700 CY=-1

710 CX=0
720 IF KOR THEN 750
730 CY=0
740 CX=1
750 IF KOD THEN 780
760 CY=1
770 CX=0
780 IF KOL THEN 810
790 CX=-1
800 CY=0
810 IF K=B THEN 940
820 IF PY+CY<1 THEN 1470
830 IF PY+CY>24 THEN 1470
840 IF PX+CX>32 THEN 1470
850 IF PX+CX<1 THEN 1470
860 CALL GCHAR(PY+CY,PX+CX,G)
870 IF G032 THEN 1060
880 CALL HCHAR(PY+CY,PX+CX,104)
890 CALL SOUND(-50,-7,5)
900 CALL HCHAR(PY,PX,112)
910 PY-PY+CY
920 PX=PX+CX
930 GOTO 640
940 REM PLANT BOMB
950 BT=1
960 CALL KEY(0,K,S)
970 IF KOB THEN 1020
980 BT=BT+1
990 IF BT=9 THEN 1020
1000 CALL SOUND(-50,-5,5)
1010 GOTO 960
1020 CALL HCHAR(PY,PX,BT)
1030 BY=PY
1040 BX=PX
1050 GOTO 820
1060 REM MAN LOST
1070 IF G>119 THEN 1270
1080 CALL SOUND(250,-2,5)
1090 PRINT
1100 MEN=MEN-1
1110 PRINT "MEN:";MEN
1115 BT=Z
1120 PRINT "SCORE:";SC
1130 FOR A=1 TO 1000
1140 NEXT A
1150 IF MEN<1 THEN 1170
1160 GOTO 1610
1170 PRINT "*********GAME OVER**********"
1180 IF SC<=HIS THEN 1230
1190 PRINT : :
1200 PRINT " 	* NEW HIGHSCORE! *"
1210 INPUT "INPUT YOUR INITIALS: ":H$
1220 HIS=SC
1230 PRINT "PRESS ANY KEY TO RESTART"
1240 CALL KEY(0,K,S)
1250 IF S=0 THEN 1240
1260 GOTO 150
1270 CALL SOUND(-100,440,5)
1280 CALL SOUND(-100,880,5)
1290 CALL SOUND(-100,1760,5)
1300 SC=SC+50*M
1310 GOTO 880
1320 BT=BT-1
1330 CALL HCHAR(BY,BX,48+BT)
1340 CALL SOUND(-50,-1,10)
1350 IF BT>0 THEN 680
1360 REM EXPLOSION
1370 CALL SOUND(-100,110,5,-5,0)
1380 CALL HCHAR(BY-1,BX-1,32,3)
1390 CALL HCHAR(BY,BX-1,32,3)
1400 CALL HCHAR(BY+1,BX-1,32,3)
1410 IF ABS(BY-PY)>1 THEN 1460
1420 IF ABS(BX-PX)>1 THEN 1460
1430 CALL SOUND(300,-5,1)
1440 PRINT "OOPS! YOU BLEW YOURSELF UP!"
1450 GOTO 1060
1460 GOTO 640
1470 REM MAZE COMPLETED
1480 PRINT "MAZE";M;"COMPLFTED!"
1490 M=M+1
1500 IF BON>0 THEN 1520
1510 BON=0
1520 PRINT "BONUS:";BON
1530 PRINT "SCORE:";SC

Page 15
	

TIsHUG NEWS DIGEST December 1989

1540 PRINT "TOTAL:";BON+SC
1550 PRINT "MEN:";MEN
1560 SC=SC+BON
1570 FOR A=1 TO 1000
1580 NEXT A
1590 IF M<9 THEN 1610
1600 M=1
1610 ON M GOTO 400,400,1780,1780,1620,1620,1930,1930
1620 REM MAZE 2
1630 CALL CLEAR
1640 FOR X=3 TO 32 STEP 2
1650 CALL VCHAR(1,X,96,24)
1660 NEXT X
1670 CALL HCHAR(1,3,96,28)
1680 CALL HCHAR(24,3,96,28)
1690 FOR Y=9 TO 11
1700 CALL HCHAR(Y,12,32,10)
1710 NEXT Y
1720 CALL HCHAR(4,16,136)
1730 CALL HCHAR(20,16,136)
1740 CALL HCHAR(12,5,136)
1750 CALL HCHAR(12,27,136)
1760 BON=4000
1770 COTO 590
1780 REM MAZE 2
1790 CALL CEEAk
1800 FOR Y=I TO 23 STEP 3
1810 CALL HCHAR(Y,3,96,28)
1820 CALL HCHAR(Y+1,3,96,28)
1830 NEXT Y
1840 CALL VCHAR(1,3,96,24)
1850 CALL VCHAR(1,30,96,24)
1860 FOR Y=8 TO 13
1870 CALL HCHAR(Y,12,32,12)
1880 NEXT Y
1890 BON=3500
1900 CALL HCHAR(6,16,128)
1910 CALL HCHAR(18,16,128)
1920 GOTO 590
1930 REM MAZE 4
1940 CALL CLEAR
1950 FOR X=3 TO 15 STEP 2
1960 CALL VCHAR(1,X,96,24)
1970 NEXT X
1980 FOR X=18 TO 30 STEP 2
1990 CALL VCHAR(1,X,96,24)
2000 NEXT X
2010 CALL VCHAR(1,16,96,48)
2020 FOR Y=1 TO 24 STEP 2
2030 CALL HCHAR(Y,3,96,28)
2040 NEXT Y
2050 CALL HCHAR(10,12,32,10)
2060 CALL HCHAR(12,12,32,10)
2070 CALL HCHAR(11,12,32)
2080 CALL HCHAR(11,21,32)
2090 CALL HCHAR(4,4,144)
2100 CALL HCHAR(20,4,144)
2110 CALL HCHAR(20,29,144)
2120 CALL HCHAR(4,29,144)
2130 BON=5000
2140 GOTO 590
2150 REM TITLE SCREEN
2160 BT=0
2170 PRINT "ppppppppp"
2180 PRINT " 	WpNKAPILLAR"
2190 PRINT " 	P"
2200 PRINT " 	PPPPPPPPh"
2210 PRINT : : :
2220 PRINT " 	BY M.C. SUMNER"
2230 PRINT :
2240 PRINT " 	(C)1982 PS SOFTWARE": : :
2250 PRINT " HIGHSCORE:";HIS
2260 PRINT " MADE BY : ";H$
2270 PRINT
2280 PRINT : : 	:
2290 PRINT "PRESS: S TO START
2300 PRINT " 	C TO CHANGE CONTROLS"
2310 PRINT " 	H FOR HELP"
2320 PRINT " 	E TO EXIT PROGRAM"
2330 CALL KEY(5,K,S)
2340 IF S=0 THEN 2330
2350 IF K=83 THEN 2410
2360 IF K=67 THEN 2420
2370 IF K=72 THEN 2800

2380 IF K=69 THEN 3070
2390 GOTO 2330
2400 GOSUB 2420
2410 RETURN
2420 REM DEFINE KEYS
2430 PRINT 	: : :
2440 PRINT "WHICH KEY FOR UP?"
2450 CALL KEY(0,K,S)
2460 IF S=0 THEN 2450
2470 CALL SOUND(100,440,0)
2480 U=K
2490 PRINT "WHICH KEY FOR DOWN?"
2500 CALL KEY(0,K,S)
2510 IF S=0 THEN 2500
2520 IF K=U THEN 2500
2530 CALL SOUND(100,440,0)
2540 D=K
2550 PRINT "WHICH KEY FOR RIGHT?"
2560 CALL KEY(0,K,S)
2570 IF S=0 THEN 2560
2580 IF K=U THEN 2560
2590 IF K=D THEN 2560
2600 CALL SOUND(100,440,0)
2610 R=K
2620 PRINT "WHICH KEY FOR LEFT?"
2630 CALL KEY(0,K,S)
2640 IF S=0 THEN 2630
2650 IF K=U THEN 2630
2660 IF K=R THEN 2630
2670 IF K=D THEN 2630
2680 CALL SOUND(100,440,1)
2690 L=K
2700 PRINT "WHICH KEY FOR BOMBS?"
2710 CALL KEY(0,K,S)
2720 IF S=0 THEN 2710
2730 IF K=U THEN 2710
2740 IF K=R THEN 2710
2750 IF K=D THEN 2710
2760 IF K=L THEN 2710
2770 CALL SOUND(100,440,1)
2780 B=K
2790 RETURN
2800 REM HELP SCREEN
2810 PRINT " * WONKAPILLAR RULES *"
2820 PRINT : : :
2830 PRINT " WALL 	=-> "&CHR$(96)
2840 PRINT " SEGMENT =-> p"
2850 PRINT " HEAD 	=-> h"
2860 PRINT :
2870 PRINT "THE OBJECT OF WONKAPILLAR IS TO GUIDE THE

WONKAPILLAR TO ESCAPE FROM 8 MAZES. "
2880 PRINT "AT FIRST THIS APPEARS IMPOSS-IBLE, BUT BY

PLACING TIME BOMBS YOU CAN BLOW YOUR WAY"
2890 PRINT "THROUGH THE MAZE WALLS AND ESCAPE."
2900 PRINT :
2910 PRINT "THE CONTROLS ARE FIRST SET: E=UP, D=RIGHT,

X=DOWN, 	S=LEFT, AND THE SPACE BAR"
2920 PRINT "CONTROLS DROPPING BOMBS."
2930 PRINT "(PRESS ANY KEY TO CONTINUE)"
2940 CALL KEY(0,K,S)
2950 IF S=0 THEN 2940
2960 PRINT "THE WONKAPILLAR'S HEAD CAN'T TOUCH ANY WALLS

OR SEGMENTS OR ITS DOOMED. YOU MUST "
2970 PRINT "ALSO BE CAREFULL IN THE 	PLACEMENT OF

YOUR BOMBS. "
2980 PRINT : :
2990 PRINT "THE LONGER YOU HOLD DOWN THE SPACE BAR, THE

LONGER IT WILL TAKE FOR THE BOMB TO GO"
3000 PRINT "OFF (MAXIMUM: 8 SECONDS). BE SURE TO ALLOW

YOURSELF TIME TO ESCAPE!"
3010 PRINT : : :
3020 PRINT "(PRESS ANY KEY TO RETURN)"
3030 PRINT • • • • • •
3040 CALL KEY(0,K,S)
3050 IF S=0 THEN 3040
3060 GOTO 2150
3070 END
	

0

(December 1989 	TIsHUG NEWS DIGEST 	 Page 16)

Excerpts frorn "Galahli/ 3ametva
als 711131/6k.'
by Stephen Shaw, England

FOR TO STEP

Note that in TI BASIC you must always use the
variable name after NEXT. NEXT on its own is an error.
In some early computers you were not allowed to transfer
to another line once a FOR NEXT loop had been
established, but with the TI99/4A you need not worry.
You may leave a FOR NEXT loop before the loop has been
completed.

Sample use:

100 FOR FREQ=110 TO 200
110 CALL SOUND(100,FREQ,0)
120 NEXT FREQ

FOR..T0..STEP may also be used to provide delays:

100 FOR DELAY=1 TO 300
110 NEXT DELAY

will take a little over a second to complete in TI
BASIC.

INPUT

Try to use a separate INPUT for each variable. It
is possible to input more than one variable, eg by using
INPUT A,B but this requires the program user to input
two numbers separated by a comma.

The TI form of input, INPUT "HOW MANY?":N uses a
colon separator (:), most other BASICs use a semicolon

VARIABLES

When you wish to refer to a number, you may use
that number, or a 'label' representing the number. For
instance, if we tell the computer:

A=2
then whenever the computer comes to 'A' (without other
letters, that is, with spaces or brackets on either
side), it will treat it as the number 2.

'A' is a variable, and can be allocated to any
number. The TI99/4A may have variable names up to
fifteen letters long. You may for instance use:

HIGHSCORE=12000

A variable representing a number is a numeric
variable and a variable representing a letter, a word,
or a group of words is called a string variable. A
string variable always ends with the dollar sign:

MESSAGE$="YOU WIN"

Strings (as they are called) are dealt with later.

READ...DATA...RESTORE

TI BASIC is slow at reading DATA lines, and if you
need to use a number of READs, it is essential that you
do not do it more often than absolutely necessary. It
is a good idea to fill a variable array, and refer to
that (ARRAYs are dealt with at some length later).

For example:

FOR I=1 TO 5
READ A
IF A=1 THEN 200
NEXT I
DATA 2,3,1,0,6

if used often, could be replaced with:

then when a check is required

FOR I=1 TO 5
IF B(I)=1 THEN 200
NEXT I
DATA 2,3,1,0,6

It is worth mentioning that DATA causes more
problems in debugging a program than any other command.
There must be enough DATA to fill all the READs in the
program, and they must be numbers if a numeric variable
is READ. Be careful how many commas you use in your
DATA lines. Too many or too few can cause many hours
searching for errors. The error messages you will
receive may be some distance from a READ line, if you
have loaded an incorrect value into a numeric variable
due to missing out just one comma.

DATA hint: adding an additional value to your data
list, which is never read or used, causes the computer
to be notably faster in reading the actually used last
item.

PRINT

TI BASIC has a fairly slow screen scroll, but your
information will appear more quickly if you use the
print separators instead of a number of separate PRINT
lines. You will also save memory.

For example:

100 PRINT "PRESS"
110 PRINT "1. TO START"
120 PRINT "2. TO TERMINATE"
130 PRINT
140 PRINT "H FOR HELP"

will appear more quickly if you use:

100 PRINT "PRESS":"1. TO START":"2. TO TERMINATE"::"H
FOR HELP"

TI BASIC allows you to key in a program line up to
4 screen lines long, so use this facility. Notice that
instead of a single PRINT to scroll one line, an extra
colon has been used in our single line amendment. 	Each
colon causes the screen to scroll once. 	 0

continuedfrompage23

"getc" has a special character to signify the end of a
file. "EOF" represents this character, and is one of
the "#define" statements in "STDIO". "EOF" will be
replaced with this special character when the program is
compiled. 	"!=" means not equal to, and so (c != EOF)
is true if we are not at the end of file. 	If this is
the case, the character that 'c' holds is printed on the
screen and the loop repeated until the condition is
false (i.e. we are at the end of the file).

Finally the file is closed using the "fclose"
subprogram and the option of exiting the program given.
Note that this program will only echo the file name
given in the first argument of "fopen". If you save the
lc' code to this file name, when you run the program,
the 'c' program itself will be echoed to the screen.

That concludes another information packed part of
"Programming c99". Unfortunately there was insufficient
space for numeric arrays this month, but I promise these
will be covered next month. Do not forget to
experiment, it is the only way to learn. You may wish
to write a program that counts the number of characters,
or even words, in a file. If you have any queries about
using 'c99' write to me at the address in the above the
program.

FOR I=1 to 5
READ B(I)
NEXT I

NEXT MONTH
We will exanine arrays of both

integers and characters, as well as
the use of pointers.

0

(Page 17 	 TIsHUG NEWS DIGEST December 1989

jenny 's 7sullmaw 3t1

Dear Jenny,

First of all, Merry Christmas and a happy New Year
to you and all the Younger Set.

I have two programs for you this time. They are
"Greensleeves" and a New Year's program. The idea with
the New Year's program is to let the "PRESS ANY KEY"
message come up just before midnight. Then on midnight
press <ENTER> to see the program work. Anyhow you can
decide on what you prefer.

Wishing all a Merry Christmas,
Vincent Maker

50 CALL CLEAR
60 GOSUB 430
70 GOTO 100
80 GOTO 100
100 CALL SOUND(250,165,0)
110 CALL SOUND(500,196,0)
120 CALL SOUND(250,220,0)
130 CALL SOUND(250,247,0)
135 CALL SOUND(125,262,0)
140 CALL SOUND(250,247,0)
150 CALL SOUND(500,220,0)
160 CALL SOUND(250,175,0)
170 CALL SOUND(250,147,0)
175 CALL SOUND(125,165,0)
180 CALL SOUND(250,175,0)
190 CALL SOUND(500,196,0)
200 CALL SOUND(250,165,0)
210 CALL SOUND(250,165,0)
215 CALL SOUND(125,156,0)
220 CALL SOUND(250,165,0)
230 CALL SOUND(500,175,0)
240 CALL SOUND(125,156,0)
250 CALL SOUND(500,123,0)
260 CALL SOUND(250,165,0)
270 CALL SOUND(500,196,0)
280 CALL SOUND(250,220,0)
290 CALL SOUND(250,247,0)
295 CALL SOUND(125,262,0)
300 CALL SOUND(250,247,0)
310 CALL SOUND(500,220,0)
320 CALL SOUND(250,175,0)
330 CALL SOUND(250,147,0)
331 CALL SOUND(250,165,0)
335 CALL SOUND(125,165,0)
340 CALL SOUND(250,175,0)
350 CALL SOUND(250,196,0)
351 CALL SOUND(250,175,0)
355 CALL SOUND(125,175,0)
360 CALL SOUND(250,165,0)
370 CALL SOUND(250,156,0)
371 CALL SOUND(250,131,0)
375 CALL SOUND(125,123,0)
380 CALL SOUND(250,156,0)
390 CALL SOUND(250,156,0)
400 CALL SOUND(500,165,0)
410 CALL SOUND(250,165,0)
420 CALL SOUND(500,165,0)
429 GOTO 490
430 DISPLAY AT(3,1):"GREENSLEEVES

440 DISPLAY AT(5,1):"Alas my love you do me 	wrong
to cast me off dis— courteously. And I have

loved you oh so long"
450 DISPLAY AT(9,1):"delighting in your company."
460 DISPLAY AT(9,2):"Greensleeves was all my joy,

Greensleeves was my delight."
470 DISPLAY AT(12,2):"Greensleeves was my heart ofgold,

and who but my lady Greensleeves?"
480 RETURN
490 CALL SOUND(500,587,0)
500 CALL SOUND(250,587,0)
510 CALL SOUND(125,277,0)
520 CALL SOUND(250,247,0)
530 CALL SOUND(250,220,0)

540 CALL SOUND(250,175,0)
550 CALL SOUND(250,147,0)
560 CALL SOUND(125,165,0)
570 CALL SOUND(250,175,0)
580 CALL SOUND(500,196,0)
590 CALL SOUND(250,165,0)
600 CALL SOUND(250,165,0)
610 CALL SOUND(125,156,0)
620 CALL SOUND(250,165,0)
630 CALL SOUND(500,165,0)
640 CALL SOUND(250,156,0)
650 CALL SOUND(250,123,0)
660 CALL SOUND(500,587,0)
670 CALL SOUND(250,587,0)
680 CALL SOUND(125,277,0)
690 CALL SOUND(250,247,0)
700 CALL SOUND(500,220,0)
710 CALL SOUND(250,175,0)
720 CALL SOUND(250,147,0)
730 CALL SOUND(125,165,0)
740 CALL SOUND(250,175,0)
750 CALL SOUND(250,196,0)
770 CALL SOUND(125,175,0)
780 CALL SOUND(250,165,0)
790 CALL SOUND(125,156,0)
800 CALL SOUND(125,131,0)
810 CALL SOUND(125,156,0)
820 CALL SOUND(500,165,0)
830 CALL SOUND(500,165,0)

100 CALL MAGNIFY(2)
110 PRINT "PRESS ANY KEY OR <ENTER> 	WHEN YOU ARE

READY TO RUN THE NEW YEAR'S PROGRAM."
120 CALL KEY(0,U,I)
130 IF I=0 THEN 120
140 CALL CLEAR
150 CALL SCREEN(1)
160 FOR T=0 TO 8
170 CALL COLOR(T,4,2)
180 NEXT T
190 CALL SPRITE(#1,49,4,40,110,0,0)
200 CALL SPRITE(#2,57,4,75,110,0,0)
210 CALL SPRITE(#3,57,4,110,110,0,0)
220 CALL SPRITE(#4,48,4,145,110,0,0)
230 DISPLAY AT(1,3):"** HAPPY NEW YEAR **"
240 DISPLAY AT(24,3):" HAVE A GOOD ONE !!"
250 CALL SPRITE(#5,42,4,70,50,5,0)
260 CALL SPRITE(#6,42,4,70,175,5,0)
270 CALL DELSPRITE(#5,#6)
280 GOTO 250

Dear Jenny,
This is Crocodile Jones. I would like to thank all

those who have sent me letters this year. I wish them
every success in completing their adventures. Also I
wish you and the Younger Set a very merry Christmas.

Wishing all a merry Christmas and successful New Year,
Crocodile Jones

A big thank you to both Vincent and Crocodile for
all their good wishes to me and our readers and also for
all their contributions throughout the year. I know
that school takes a lot of our younger members' time hut
I hope they can continue to push Dad off their TI99/4A
and get some time to try out all the good software that
is around. Programs are fun to write and make the
computer do what you want it to instead of what someone
else has made it do. There are a lot of different
languages to try, some of them very powerful, and the
more you do while you are young the easier it will be as
you get older. Merry Christmas from me and have fun in
the holidays! 0

(December 1989 	TIsHUG NEWS DIGEST 	Page 18)

INIDO 	 TIEWV.ilb #3 7
by Jim Peterson, Tigercub Software, USA

Copyright 1986 Tigercub Software
156 Collingwood Ave., Columbus, OH 43213

Distributed by Tigercub Software to TI99/4A Users
Groups for promotional purposes and in exchange for
their newsletters. May be reprinted by non-profit users
groups, with credit to Tigercub Software.

Over 130 original programs in Basic and Extended
Basic, available on cassette or disk, only $3 each plus
$1.50 per order for PPM. Entertainment, education,
programmer's utilities.

Descriptive catalog $1, deductable from your first
order.

Tips from The Tigercub, a full disk containing the
complete contents of this newsletter numbers 1 through
14, 50 original programs and files, just $15 postpaid.
Tips from the Tigercub volume 2, another disk full,
complete contents of numbers 15 through 24, over 60
files and programs, also just $15 postpaid.

* Tips from the Tigercub volume 3 is now ready.
* Another 62 programs, routines, tips, tricks from *
* numbers 25 through 32. 	Also $15 postpaid. *
* Any two Tips disks $27 or all 3 for $35 postpaid. *

Nuts & Bolts (No. 1), a full disk of 100 Extended
Basic utility sub-programs in merge format, ready to
merge into your own programs. Plus the Tigercub
Menuloader, a tutorial on using sub-programs , and 5
pages of documentation with an example of the use of
each subprogram. All for just $19.95 postpaid.

Nuts & Bolts No. 2, another full disk of 108
utility sub-programs in merge format, all new and fully
compatible with the last, and with 10 pages of
documentation and examples. Also $19.95 postpaid, or
both Nuts & Bolts disks for $37 postpaid.

Tigercub Full Disk Collections, just $12 postpaid!
Each of these contains either 5 or 6 of my regular $3
catalog programs, and the remaining disk space has been
filled with some of the best public domain programs of
the same category. I am not selling public domain
programs. My own programs on these disks are greatly
discounted from their usual price, and the public domain
is a free bonus!

TIGERCUB'S BEST, 	 PROGRAM-TUTOR,
PROGRAMMER'S UTILITIES, 	 BRAIN GAMES,
BRAIN TEASERS, BRAIN BUSTERS!, MANEUVERING GAMES,
ACTION REFLEX AND CONCENTRATION, TWO-PLAYER GAMES,
KID'S GAMES, 	MORE GAMES, 	WORD GAMES,
ELEMENTARY MATH, 	 MIDDLE/HIGH SCHOOL MATH,
VOCABULARY AND READING, 	MUSICAL EDUCATION,
KALEIDOSCOPES AND DISPLAYS

For descriptions of these send a dollar for my
catalog!

I am going to mail out the July and August Tips at
the end of June, and go fishing. Imagine, a TI99/4A
publication ahead of schedule! However, in the unlikely
event that anyone should send me an order, it will
receive my usual one-day service.

Here is another tune for the dulcimer player in the
last Tips. Change the TO value to 94 -

350 DATA 9,11,13,13,13,13,13,16,16,13,13,11,11,11,11,
11,11

360 DATA 16,18,14,21,18,18,16,13,9,11,9,9,9,9,9
370 DATA 21,20,18,18,16,13,16,16,9,11,13,11,13,14,13,13
380 DATA 21,20,18,18,16,13,16,16,9,13,11,9,8,6,4,4
390 DATA 9,11,13,13,13,13,13,16,16,13,13,11,11,11,11,11
400 DATA 16,18,14,21,18,18,16,13,9,11,9,9,9,9,9

Here is one for those who like graphics, and those
who make a living designing floor tiles. It borrows a
bit from a Renko and Edwards program -

100 CALL CLEAR :: F=2 :: BC=16 :: RANDOMIZE ::

DISPLAY AT(2,10):"ESCHER ART": :TAB(14);"by":
:TAB(9);"Jim Peterson"

110 DISPLAY AT(12,3):"Press Q for new pattern":" R to
change colours":" C for new colours": :" Any key to
start"

120 CALL KEY(0,K,S):: IF S=0 THEN 120 ELSE CALL CLEAR
130 DATA 808080808080808OFF0000000000000001010101010101

010000000000000OFF
140 DATA 2020202020202020000OFF000000000004040404040404

04000000000OFF0000
150 DATA 101010101010101000000OFF0000000008080808080808

080000000OFF000000
160 DATA COCOCOCOCOCOCOCOFFFF00000000000003030303030303

0300000000000OFFFF
170 DATA FOF0F0F0F0F0F0FOFFFFFFFF000000000F0F0F0F0F0FOF

OF0000000OFFFFFFFF
180 DATA 8040201008040201010204081020408080402010080402

010102040810204080
190 DATA 1010200000000000808040300000000000000000304080

80000000000O201010
200 DATA FFFEFCF8F0E0C08OFF7F3F1F0F0703010103070F1F3F7F

FF80C0E0F0F8FCFEFF
210 DATA FOF0F0F0000000000F0F0F0F00000000000000000F0FOF

OF00000000F0F0F0F0
220 DATA 80C0A090888482FFFF82848890A0C08OFF412111090503

0101030509112141FF
230 DATA 8142241818244281814224181824428181422418182442

818142241818244281
240 DATA 08080808FF0808081010101OFF10101010101OFF101010

10080808FF08080808
250 DATA AA55AA55AA55AA5555AA55AA55AA55AAAA55AA55AA55AA

5555AA55AA55AA55AA
260 DATA FOF0F0FOOF0F0F0F0F0F0FOFF0F0F0F0F0F0F0FOOFOFOF

OF0F0F0FOFF0F0F0F0
270 CALL CHAR(84,RPT$("0",64)):: FOR CH=88 TO 140 STEP 4

:: READ CH$:: CALL CHAR(CN,CH$):: NEXT CH :: CALL
SCREEN(5)

280 A=INT(6*RND+3):: H=INT(24/A):: HC=INT(28/A)::
W=ABS(HC/2=INT(HC/2)):: DIM M(8,8) :: FOR P=1 TO A

290 D(P)=4*INT(15*RND+21)
300 NEXT P 	GOSUB 370
310 CALL KEY(3,K,ST):: IF K<>81 THEN 330
320 CALL SOUND(50,500,5):: FOR J=1 TO 4 :: FOR JJ=1 TO A

	

M$(J,JJ)="" :: NEXT JJ : : NEXT J 	GOTO 280
330 IF K<>67 THEN 360 :: F=INT(15*RND+2)
340 BC=INT(15*RND+2):: IF BC=F THEN 340
350 FOR S=7 TO 14 :: CALL COLOR(S,F,BC):: NEXT S 	GOTO

310
360 IF K<>ASC("R")THEN 310 :: T=F 	F=BC 	BC=T

GOTO 350
370 ON A-2 GOSUB 380,390,400,410,420,430 :: GOTO 520
380 RESTORE 440 :: RETURN
390 RESTORE 450 :: RETURN
400 RESTORE 460 :: RETURN
410 RESTORE 470 :: RETURN
420 RESTORE 480 :: RETURN
430 RESTORE 500 :: RETURN
440 DATA 1,2,1,2,3,2,3,1,3
450 DATA 1,2,2,1,2,3,3,2,3,4,4,3,4,1,1,4
460 DATA 1,2,3,1,2,2,3,4,3,2,3,4,5,4,3,4,5,1,5,4,5,1,2,

1,5
470 DATA 1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3,4,5,6,6,5,

4,5,6,1,1,6,5,6,1,2,2,1,6
460 DATA 1,2,3,4,3,2,1,2,3,4,5,4,3,2,3,4,5,6,5,4,3,4,5,

6,7,6,5,4
490 DATA 5,6,7,1,7,6,5,6,7,1,2,1,7,6,7,1,2,3,2,1,7
500 DATA 1,2,3,4,4,3,2,1,2,3,4,5,5,4,3,2,3,4,5,6,6,5,4,

3,4,5,6,7,7,6,5,4
510 DATA 5,6,7,8,8,7,6,5,6,7,8,1,1,8,7,6,7,8,1,2,2,1,8,

7,8,1,2,3,3,2,1,8
520 FOR J=1 TO A 	FOR JJ=1 TO A :: READ M(J,JJ)::

NEXT JJ :: NEXT J
530 X=A+1 :: FOR J=1 TO A :: FOR JJ=1 TO A ::

14(1,J)=10(1,JACHR4i(D(M(J,JJ)))
540 M$(2,J)=M$(2,JACHR$0(M(JJ,X-J))+1)
550 M$(3,J)=M$(3,JACHR$(D(M(X-J,X-JJ))+2)
560 M$(4,J)=M$(4,JACHR4i(D(M(X-JJ,J))+3)
570 NEXT JJ :: NEXT J
580 CALL CLEAR :: FOR R=1 TO A*H STEP A :: FOR C=1 TO

A*HC STEP A
590 CALL KEY(0,K,ST):: IF K=81 THEN 320
600 V=V+1+4*(V=4) :: FOR T=1 TO A ::

DISPLAY AT(R-1+T,C):M$(V,T):: NEXT T :: NEXT C
V=V+W+4*(V=4) :: NEXT R

610 RETURN

(Page 19 	 TIsHUG NEWS DIGEST December 198

This routine will search a disk file for up to 10
key words in one pass (more if you DIM K$()) and you
may elect to find all records which contain the key word
or only those which contain it in combination with one
of 1 or more secondary key words.

100 CALL CLEAR
110 Y=0 :: DISPLAY AT(3,5):"TIGERCUB KEYSEARCH"

DISPLAY AT(6,1):"Filename? DSK" :: ACCEPT
AT(6,14)BEEP:F$:: OPEN #1:"DSK"&F$,INPUT

120 DISPLAY AT(8,1):"Output to":" (1)Screen":"
(2)Printer":" (3)Both" :: ACCEPT
AT(8,11)VALIDATE("123")SIZEMBEEP:0

130 IF Q>1 THEN DISPLAY AT(13,1):"Printer name?" ::
ACCEPT AT(13,15):P$:: OPEN #2:P$

140 DISPLAY AT(15,1):"Searchfor":" (1)First match":"
(2)All matches" :: ACCEPT
AT(15,13)VALIDATE("12")SIZE(1)BEEP:S

150 DISPLAY AT(12,1)ERASE ALL:"Press ENTER when all
key-":"words have been entered."

160 DISPLAY AT(17,1):"Press ENTER if none -"
170 Y=Y+1 :: DISPLAY AT(15,1):"Keyword? ";CHR$(127)::

ACCEPT AT(15,10)SIZE(-28)BEEP:K$(Y):: IF
K$(Y)=CHR$(127)THEN 190

180 W=W+1 :: DISPLAY AT(19,1):"With? ";CHR$(127)::
ACCEPT AT(19,7)SIZE(-21)BEEP:W$(Y,W):: IF
W$(Y,W)=CHR$(127)THEN W=0 :: GOTO 170 ELSE GOTO 180

190 Y=Y-1
200 LINPUT #1:M$
210 FOR J=1 TO Y 	IF POS(M$,K$(J),1)=0 THEN 290
220 IF W$(J,1)=CHR$(127)THEN 250
230 W=W+1 :: IF W$(J,W)=CHR$(127)THEN W=0 :: GOTO 290
240 IF POS(M$,WW,W),1)=0 THEN 230
250 IF Q>1 THEN PRINT g2:M$
260 IF Q<>2 THEN PRINT M$
270 IF S=1 THEN 310
280 IF WW,W)OCHR$(127)THEN 230
290 NEXT J
300 IF EOF(1)01 THEN 200
310 CLOSE #1 :: DISPLAY AT(24,1):"FINISHED - PRESS ANY

KEY" :: CALL SOUND(200,500,5)
320 CALL KEY(0,K,ST):: IF ST=0 THEN 320 ELSE CALL CLEAR

GOTO 110

You can set up a key file in TI-Writer, just
remember that each 80-character line is a separate
record, and keep the Alpha Lock down! However, this is
the program that I plan to use to set up a key file
index of all the newsletters you have sent me, if I ever
find the time -

100 DISPLAY AT(3,10)ERASE ALL:"TIGERCUB": :" 	KEYWORD
INDEX WRITER" !by Jim Peterson

110 DISPLAY AT(8,1):"Filename? DSK"
ACCEPT AT(8,14):F$:: OPEN #1:"DSK"&F$,APPEND
CALL KEY(3,K,S)

120 PW*****" :: Y=00 :: M$="**" :: P=00
130 DISPLAY AT(12,1):"NEWSLETTER? ":P$

ACCEPT AT(13,1)SIZE(-28):P$:: IF SEG$(P$,1,3)="END"
THEN CLOSE #1 :: STOP

140 DISPLAY AT(14,1):"YEAR?":Y :: ACCEPT
AT(14,7)VALIDATE(DIGIT)SIZE(-4):Y

150 DISPLAY AT(14,13):"MONTH? "&M$
ACCEPT AT(14,20)SIZE(-9):M$

160 DISPLAY AT(16,1):"PAGE?";P :: ACCEPT
AT(16,7)VALIDATE(DIGIT)SIZE(-3):P

170 DISPLAY AT(18,1):"ARTICLE? " :: ACCEPT AT(19,1):A$
180 DISPLAY AT(20,1):"AUTHOR?" :: ACCEPT AT(21,1):AU$
190 DISPLAY AT(22,1):"KEYWORDS?" :: ACCEPT AT(23,1):K$
200 PRINT #1:P$&" "&STRS(Y)&" "&M$&" "&STR$(P)&" "&A$&"

"&AU$&" "&K$
210 GOTO 130

Here is one to have fun with, from an ingenious
German programmer. I just could not resist adding a
tuba to his band.

100 !BY TORSTEN NIEMIETZ, MARBACHER WEG 3,D-2800 BREMEN
1,WEST GERMANY

110 FOR J=1 TO 10 :: READ T(J)
120 NEXT J 	E=330 :: A=440 :: H=494 :: C=554 :: K=659

:: F=740 :: G=831
130 DISPLAY AT(3,8)ERASE ALL:"S - 0 - L - On:

:TAB(10);"MIT OOMPAH": :RPT$("=",28): : :"BY":"
TORSTEN NIEMIETZ": :flmit Oompah by Tigercub"

140 DISPLAY AT(18,1):"MAKE UP YOUR SOLO WITH":"KEYS 1 TO
9 ... COME ON !!!"

150 FOR S=1 TO 2 :: CALL SOUND(200,E,3,H,3)::
CALL SOUND(200,E,S,H,3)

160 CALL SOUND(200,E,3,C,3):: CALI SOUND(200,E,3,H,3)::
NEXT 6

170 M=E 	N=H :: 0=C :: D=8 :: GOSUB 210 :: M=A :: NA

	

:: 0=F :: D=4 :: GOSUB 210 :: M=E 	N=H 	0=C ;:
GOSUB 210 	M=H 	N=F 	0=G :: D=2

180 GOSUB 210 :: M=A 	N=K 	0=F :: GOSUB 210 :: M=E

	

N=H :: 0=C :: GOSUB 210 :: M=H 	N=F 	0=G ::
GOSUB 210

190 FOR X=10 TO 3 STEP -1 ::
CALL SOUND(200,E,3,H,3,T(X),0)

200 NEXT X :: CALL SOUND(800,E,3,H,3,K,0):: GOTO 150
210 FOR X=1 TO D :: FOR Y=1 TO 2 :: GOSUB 280
220 CALL SOUND(200,M,3,N,3,T(R-48-(R=48))*.9375,30,-4,0)
230 NEXT Y 	GOSUB 280
240 CALL SOUND(200,M,3,0,3,T(R-48-(R=48))*.9375,30,-4,0)

GOSUB 280
250 CALL SOUND(200,M,3,N,3,T(R-48-(R=48))*.9375,30,-4,0)
260 NEXT X :: RETURN
270 DATA 587,659,784,880,988,1175,1319,1568,1760,447'33
280 CALL KEY(0,R,S):: IF S<>0 AND R>48 AND R<58 THEN

RETURN ELSE R=57 :: RETURN

1 !ONE-LINER universal calendar for day of week of any
date since 1905 - by Dennis Hodgson in Sydney News
Digest

2 !input day, month, year as for instance 30,4,1986
100 A=1 :: INPUT D,M,Y :: FOR T=A TO M-A

H=H+29+VAL(SEG$("20212122121",T,A)):: NEXT T
J=H+(Y/40INT(Y/4)AND M>2)+365.25*INT((Y-A))+D
PRINT SEG$CSASUMOTUWETHER",2*(J-7*INT(J/7))+A,2)::
RUN

Yes, there are legitimate uses for GRAM copiers and
track copiers and such, but there is no way to get these
utilities into the hands of the few who will only use
them honestly, without also getting them into the hands
of the many who will use them as burglar tools. And so,
a few more nails are driven into the coffin...

Memory full, Jim Peterson 	 0

I t 	by D.N. Harris

I have found that most Robots tend to "speak"
Plotic, which is a language dealing with travel and
state of travel, and changes of tool. I have also found
that any software that enables one to print control
codes will make a suitable vehicle for PLOTIC.

One such vehicle is of course BASIC, in either TI
BASIC or Extended BASIC. In this case the Plotic can go
in as a series of DATA with a READ connand and a
PRINT #1 (or #255 if you wish!) that has the output
channel defined as PIO. At the other end of the system
you can have a laser cutter, or a diamond engraver, or a
simple little plotter, the kind that always spits its
pens into the works just when you want to pack it up, so
that the neighbours can hear all those nice 4 letter
words you had not realized were part of your reflexive
vocabulary, especially if you have been programming half
the night and frantically mean to go to bed and catch
some sleep!

I refrained from mentioning Plotic until I had got
the thing to draw 5 pointed stars, then an irregular
shape such as a Chemical Retort, then my signature.
Finally, it must be admitted that PLOTIC is an advanced
graphics language that can be used to draw anything. As
most Plotters have colour, quite startling
multi-coloured effects are possible. I can try to send
a program, or hand some in for down loading from the BBS
but these programs include the code; CTRLA which makes
your printer go to the beginning and list one line on
top of the other, also CTRLIRj and CTALIQJ which do sowe
things like set ELITE mode on some printers! If you have
a word-processing program you may be able to send these
codes to your PLOTIC device. If not, BASIC and a nice
chunk of 50 or so DATA statements will do. The segments
are LINE segments. continued on page 22

December 1989 TIsHUG NEWS DIGEST 	Page 20

laniqll 	IPTSET111310
and no assembly

byAdrianRobinson,ROMUsersGroup,USA

This article has been in the back of my mind for
several years. Calendars are a fairly frequent subject
of programmers' efforts and, when new calendar programs
appear, I often feel an urge to comment on them.
Occasionally, a program may be founded on an incorrect
algorithm, which results in inaccuracy of in a limited
range of application. More often though the algorithm
is correct, but extremely inefficient programming
techniques are employed, which result in a program much
longer than it needs to be. A calendar program can
really be quite simple and I will discuss some simple
techniques, but first I would like to say a little about
the foundations for, and history of, the calendar. The
history of development of the calendar is an interesting
subject in itself.

A calendar is basically just an enumeration of the
days in a year or of the number of rotations of the
Earth about its axis during one revolution of the Earth
around the Sun. Oddly enough there are at least three
different definitions of the length of a year. They are
the Sidereal Year, the Anomalistic Year and the Tropical
Year. We will not discuss the first two of these but
the Tropical Year is the year of the Seasons and thus
the basis of the calendar. The Tropical Year is the
time between two successive occurrences of the Vernal
Equinox, the time when the Sun's apparent motion crosses
the Earth's equatorial plane in its northward movement
and marks the beginning of Spring. The length of the
Tropical Year is approximately 365.2422 Mean Solar Days.
We will refer to this value later.

As civilizations developed in various parts of the
world, some of the earliest recorded information
includes astronomical observations and the development
of a calendar in one form or another. An observer may
notice that the position of sunrise or sunset on the
horizon varies, moving north an south, during the year
and he may relate that cycle to the seasons. Then, by
counting the days in the cycle he can forecast the
seasons. A hunter—gatherer society can now decide its
migration cycle or an agricultural society can decide
when to plant and when to harvest its crops. Thus, even
a crude calendar can be a powerful tool.

The roots of our calendar go back more than 7000
years. The ancient _Egyptians first determined the
length of the year as 360 days and then, centuries later
as 365 days. With this value, in the year 4236 BC, they
devised a calendar of twelve thirty day months
supplemented by five consecutive year end holidays. Not
a bad idea!! in fact, I think that I would prefer this
to our current calendar with its months of oddly varying
lengths. Much later, they realized that the year was
more nearly 365.25 days in length and in 238 BC they
provided for a leap year every forth year. This
calendar, however, was not widely accepted.

Meanwhile the Romans were struggling still with a
lunar calendar of twelve alternating 29 and 30 day
months. (The cycle of lunar phases is 29.5 days). But
twelve lunar months total only 354 days so they found it
necessary to throw in an extra month about every two or
three years to keep the seasons more or less in order.

Finally, in 46 BC Julius Caesar set about reforming
the calendar. He made the calendar independent of the
phases of the moon and changed the lengths of the months
to total 365 days. He also adopted the Egyptians'
365.25 day year. In addition, he restored the time of
the Vernal Equinox to its ancient date of March 25.
Naturally this became the Julian Calendar. Aside from
some inconsequential "political" adjustments the only
significant change in the next sixteen centuries was the
introduction early in the forth century AD of the
Christian seven day week. This added a further
complication to the calendar since the year is not
divisible by seven.

Now the Julian calendar of 365.25 days differs from
the actual length of the Tropical Year of 365.2422 days
by about one day in every 128 years. As a result by the
sixteenth century, the calendar date of the Vernal
Equinox had advanced from March 25 to March 11. If this
were to continue long enough we would have Spring in
December and Winter in August (USA).

In 1582, therefore Pope Gregory XIII proceeded to
correct the errors of the Julian calendar. You may have
wondered why Pope Gregory would be concerned with the
calendar. Well, the date of Easter was prescribed in AD
325 to be the First Sunday on or following the day of
the first full moon following the Vernal Equinox. Hence
he wanted to maintain a constant date of the Vernal
Equinox. He therefore ordained that century years would
not be counted as leap years unless they were also
divisible by 400. This has the effect of making the
average length of the calendar year —:

(365+.25)—(1/100)+0/400) = 365.2425

which is a much better approximation to the true
length of a year. He also made March 21 the date of the
Vernal Equinox, as it was in AD 325 instead of the
original March 25. Thus in 1582, in order to correct
the calendar October 5 suddenly became October 15!

I 	think 	that 	it is worth noting that two
contemporaries of Pope Gregory were Copernicus and
Galileo, both of whom were persecuted by the Church for
their "heretical beliefs" that the earth revolved around
the sun and was not the center of the universe.

The world's acceptance of the Gregorian calendar
has been slow. It took Great Britain and her Empire two
centuries to accept the Gregorian calendar (1752). It
seems that the venerable old Church of England had been
very influential and it was not anxious to accept a
calendar that was ordained by the Pope of Rome. However
it is generally accepted today, at least in the western
world. Although the Gregorian calendar has a residual
error of one day in about 3300 years, it is a good
enough approximation for many more centuries of
practical use.

From time to time proposals are made for reform of
the internal structure of the calendar. Although it
still has twelve months, there is no longer any direct
connection to the phases of the moon and the varying
lengths of the months are actually illogical. The seven
day week, however, has become an integral part of
everyday life and would be very difficult to change.

My personal preference would be a year of thirteen
identical months of twenty eight days, each of four
weeks. Every month would begin on Sunday and end on
Saturday. The year would be completed with an extra
holiday (New Year's Eve?) following the thirteenth
month. Leap years would have an additional extra
holiday at the end. The current year 1989, would have
been a good time to start this new calendar since It

already started on a Sunday. The Vernal Equinox by the
way, would occur on the 24th day of the third month,
whatever its name might be. I am sure that there would
be strong resistance from the Calendar publishing lobby
since this would be a perpetual calendar. The calendar
would be identical every year. There would never be a
need to buy a new calendar except to get a new set of
pictures!

In addition to the above reform, I would add a new
term to the formula for the mean length of the calendar
year—:

(365+.25)—(1/100)+0/400)—(1/3200) = 365.2422 davs
(rounded).

The new term, —1/3200, means that years divisible
by 3200 would not be counted as leap years, whereas in
the Gregorian calendar they would be. The agreement of
this value with the true length of the Tropical Year
would allow this Robinsonian Calendar to serve without
error for about 1000 centuries.

(Page21 	 TIsHUG NEWS DIGEST December 198

But wait!! 	This article was supposed to 	be
primarily about calendar programming techniques. 	I
guess I just got carried away. 	Let us reduce the
calendar to its fundamentals. As indicated above, the
calendar year is basically just a string of numbers from
1 to 365 (or 366). The division into months simply
converts it to a concatenation of strings from 1 to 31,
1 to 28, etc.with allowance made for leap years.

Introduction of week days results in a need to
"register" the date string to the repeated weekday
string. But this simply requires that we determine the
"offset" of January 1 from the first Sunday of the year.
The rest of the year takes care of itself. If we think
about these statements for just a moment we should see
how very simple the problem is. The names and lengths
of the months, as well as the weekdays, are
predetermined. 	All we need to define a calendar, for
any year, are two items of data-:

1. What is the offset for January 1st?
2. Is it or is it not a leap year?

The included program, for convenience actually
computes the offset for each month individually. This
way, a slight modification will allow the program to
compute and print a single month.

So, finally, let us take a look at the program.
Lines 18 and 20 contain the names and lengths of the
months. Line 22 forms a string of weekdays and line 24
does the same for the dates 1 to 31 in four character
blocks. Thus a week fills up BASIC's twenty eight
column screen. Note the printer OPEN statement in line
28.

The mainline program starts with the loop at line
30, which reads the twelve months' names and lengths and
calls the subprogram MONTH. MONTH then computes the
number of days elapsed from a hypothetical zero date to
the first day of the current month, allowing for all
leap years. Line 48 then converts that to a modulo 7
number (0 to 6) which is the number of weekdays
preceding the first date of the month. Line 32 adds a
day to February if Y is a leap year. Line 34 uses L to
take the proper segment of M$, and B to add the proper
number of blanks to the front of M$ for the offset.
Line 36 then displays and prints the month.

Lines 30 through 50, just twelve lines, comprise
the essence of the program and it computes, displays and
prints an accurate calendar for any year later than
1582, with six months per page. With relatively minor
modifications the program could be tailored to print in
any desired format.

10 ! SAVE DSK6.CALENDER
11 ! CALENDER PROGRAM
12 ! by Adrian Robinson
13 ! ROM Newsletter, August 1989
14 !
16 ON WARNING NEXT :: CALL CLEAR
18 DATA JANUARY,31,FEBRUARY,28,MARCH,31,APRIL,30,

MAY,31,JUNE,30
20 DATA JULY,31,AUGUST,31,SEPTEMBER,30,0CTOBER,31,

NOVEMBER,30,DECEMBER,31
22 W$=" SU MO TU WE TH FR SA "&RPT$("-",28)
24 M$="" :: FOR I=1 TO 31 ::

M$=M$&RPT$(" 11,3-LEN(STRW)))&STRW)&" " :: NEXT I
26 INPUT " YEAR: ":Y :: IF Y<1583 THEN

PRINT "YEAR MUST BE LATER THAN 1582": : : GOTO 26
28 OPEN #1:"PIO",DISPLAY ,VARIABLE 28 :: PRINT #1:Y: :
30 FOR M=1 TO 12 :: READ MO$,L :: CALL MONTH((Y),M,B)
32 IF M=2 THEN IF (Y/4=INT(Y/4))-(Y/100=INT(Y/100))+

(Y/400=INT(Y/400))THEN L=L+1
34 D$=RPT$(" 	",BASEG$(M$,1,4*1)
36 PRINT " ";MO$:W$:D$: : :: PRINT #1:" ";MO$:W$:D$: :
37 IF M=6 THEN PRINT #1:CHR$(12): : :
38 NEXT M :: CLOSE #1 :: END
40 SUB MONTH(Y,M,B)
42 F=365*Y+31*(M-1)+1
44 IF M>2 THEN F=F-INT(2.3+.4*M)ELSE Y=Y-1
46 F=F+INT(Y/4)-INT(Y/100)+INT(Y/400)
48 F=F-1 	B=F-7*INT(F/7)
50 	ID

100 ! SAVE DSK6.CALENDER1
110 ! CALENDER PROGRAM
120 ! by Adrian Robinson
130 ! ROM Newsletter, August 1989
140 ! Printout mods by Ross Mudie
150 DIM P$(12,9)
160 ON WARNING NEXT :: CALL CLEAR
170 DATA JANUARY,31,FEBRUARY,28,MARCH,31,APRIL,30,

MAY,31,JUNE,30
180 DATA JULY,31,AUGUST,31,SEPTEMBER,30,0CTOBER,31,

NOVEMBER,30,DECEMBER,31
190 W$=" SU MO TU WE TH FR SA "&RPT$("-",28)
200 M$="" 	FOR I=1 TO 31 ::

M$=14$8,RPTU" ",3-LEN(STR$(1)))&STRW)&" " :: NEXT I
210 INPUT " YEAR: ":Y :: IF Y<1583 THEN PRINT

	

"YEAR MUST BE LATER THAN 1582": : 	GOTO 210
220 OPEN #1:"PIO",DISPLAY ,VARIABLE

PRINT #1:TAB(28);CHR$(14);Y:
230 FOR M=1 TO 12 :: READ MO$,L :: CALL MONTH((Y),M,B)
240 IF M=2 THEN IF (Y/4=INT(Y/4))-(Y/100=INT(Y/100))+

(Y/400=INT(Y/400)) THEN L=L+1
250 D$=RPT$(" 	",BASEG$(M$,1,4*L)
260 PRINT " ";MO$:W$:D$: : :
270 P$(M,1)=MO$ 	P$(M,2)=SEG$(W$,1,28)::

P$(M,3)=SEG$(W$,29,28):: P$(M,4)=SEG$(D$,1,28)::
P$K5)=SEG$04,29,28)

280 P$(M,6)=SEG$04,57,28):: P$(14,7)=SEG$(D$,85,28)::
P$(M,8)=SEG$(D$,113,28)

290 IF LEN(D$)>141 THEN P$04,9)=SEG$(D$,141,28)ELSE
P$04,9)=""

300 NEXT M
310 FOR M=1 TO 12 STEP 2
320 FOR L=1 TO 9
330 IF L=1 THEN PRINT #1:CHR$(14);TAB(3);P$(M,L);

TAB(22);P$(M+1,L)
340 IF L>1 THEN PRINT #1:TAB(2);PW,L);TAB(40);

P$(M+1,L)
350 NEXT L
360 PRINT #1: :
370 NEXT M :: PRINT #1:CHR$(12):: CLOSE #1 :: END
380 SUB MONTH(Y,M,B)
390 F=365*Y+31*(M-1)+1
400 IF M>2 THEN F=F-INT(2.3+.4*M)ELSE Y=Y-1
410 F=F+INT(Y/4)-INT(Y/100)+INT(Y/400)
420 F=F-1 	B=F-7*INT(F/7)
430 SUBEND 	 0

confinued froni page 20 	J480,0CTki(MA WILL DRAW A STRAIGHT
LINE. J480,0CTRL(MA J0,-480CTRLA J-480,0CTRILMJ
J0,480CTRILM] R0,-480 draws a box, but first you have to
do a CTRL[Rj and afterwards you have to do a CTR110].

There are a lot of other commands to learn, various
character sizes are possible, 3 on some plotters, 64 on
the one I have, and multiple characters can be woven
together, to create smooth 3 dimensional banners of
superb quality. Here goes an attempt to send a 5
pointed star.

continued on page 31

CTRLI.Qj
HM
1240,-457
IM148,0
ID-148,108
ID-148,-108
ID57,174
ID-148,108
ID183,0
ID57,174

Starting again:

CTRLLQA
HM240,-457CTRLLMA
IM148,0CTALLMj
ID-148,108CTRLIM.1
ID-148,-108CTRILMA
ID57,174CTRLLMA
ID-148,108CTRLA
ID183,0CTRIAMA
ID57,174CTRL[Mi
ID57,-174CTRLLMj
ID183,0CTRILMA
ID-148,-108CTRL[Mj
ID57,-174CTRLLMACTRLLQi

December 1989 	TIsHUG NEWS DIGEST 	Page 22

Pro rammlil

c99

OIT /* Modified for Ic99' by Craig Sheehan. 2/ 6/89 	*/
/* 	21 Suzanne road, Mona Vale NSW 2103, Australia */

part 4
by Craig Sheehan

So far in this series on programming with 'c99' we
have covered the use of printf , numeric variables and
sub-programs. Now is good time to review this material
before progressing to this part, which deals with
character variables and basic file handling techniques.

Character variables are very similar to integers
and should not present any problems if you have followed
the material so far. Just as integers hold a single
value, character variables can hold only a single
character. (To hold more than one character, arrays of
characters are required. These will be discussed next
month.) An example of how character variables are
defined is given in Figure 7. It is basically the same
as Figure 4 (see part 2, TND, September 1989) except it
prints the date instead of the time and that the "%c"
command is used in printf to display the separation
character.

/* Routine to display the date. */

extern printf();

main()
(int date, month, year;
char sep;

/* Define the separation character */
sep = '/';

/* Set the date */
date 	26;
month = 1;
year = 88;

/* Print the date */
printf("Today's date: %2d%c%2d%c%2d\n", date, sep,
month, sep, year);

exit(0);

Figure 7 - Print the date.

When this program is run, it should produce the
output "Today's date: 26/ 1/88". The character variable
'sep' is set by enclosing the required character in
single quotes. As mentioned above, the "%c" sequence is
used to display the separating character, but the
sequence "%2d" used to display each integer is new. It
operates in the same manner as "%d", except that the
integer is printed so that it uses at least two
characters, with preceding spaces added to the integer
to make it large enough if necessary. For this reason,
the month in the above example takes two spaces rather
than one. Setting the minimum number of characters to
print a variable in is useful for the production of neat
tables. A final point to note is that the PRINTF
command is split between two lines. Because 'c991 is
free format, it does not matter if this is done,
provided the line is split where a space would have
occurred. It is even possible to leave several lines
between the two halves of the statement.

An example of a use for character variables is for
displaying the contents of a file on the screen. A
program to accomplish this is shown below.

/* Program to display the contents of a display / 	*/
/* variable 80 file on the screen. 	 */
/* 	 */
/* Source: Brain W. Kernighan, et al, "The C 	*/
/* 	Programming Language", 2nd edition, 1988, 	*/
/* 	 pages 16 to 17. 	*/
/* 	 */

#include DSKII.STDIO
extern printf();

main()
(char c;
FILE inputf;

inputf 	fopen("DSK1.ECHO;C","r80");

while ((c = getc(inputf)) != EOF)
printf("%c", c);

inputf 	fclose(inputf);

exit(0);

Figure 8 - Echo a DV80 file to the screen

Before compiling this program, the following files
from the 'c99' disk must included on your program disk:
CSUP, CFIO, PRINTF and STDIO. To load the program, use
the filenames: DSK1.CSUP, DSK1.CFIO, DSK1.PRINTF and
finally the object file for the above program. The
first thing in the program is a comment that details
what the program does, where it came from and its
history. As I mentioned last month, it is important to
do this for all programs you write.

The next line contains an "#include" command which
instructs the compiler to compile the contents of the
named file before compiling the remainder of the
program. It is equivalent to loading the file "STDIO"
and typing the rest of the program around it. You may
wish to load the file "STDIO" into the editor and
examine it. Were you to do this, you would discover
that it contains a collection of "extern" statements,
which provide access to all of the file handling
sub-programs in the CFIO library as well as some lines
that start with "#define". "#define" commands are
similar to the replace string function on TI-Writer's
editor. As an example, one of these lines reads:
"#define FILE int". Every occurrence of "FILE" in the
'c' program following this will be replaced with "int".
Following the "#include" is an "extern", which should be
familiar to you by now.

The actual program has been broken down to five
distinct blocks. The first of these defines two
variables: the character 'c' and the integer 'inputf'.
Notice that "FILE" has been used instead of "int". As I
mentioned in the preceding paragraph, every occurrence
of "FILE" is changed into "int". Whilst using "int" in
the first place would not affect the running or tile
program, I have used the word "FILE" so that is clear to
someone reading this program that 'inputf' refers to an
external file that is going to be used.

The second block opens the file. Full details of
the CFIO library can be found in the tc99'
documentation. "fopen" performs the task of opening the
file whose name is given as the first argument, in the
format specified by the second argument. "r80" means to
open a read only, display variable 80 file. "fopen"
returns a number that identifies this file for use by
other sub-programs in the CFIO library. This file
number is stored in 'inputf' for future use.

The third block, translated into plain english,
says: if we are not at the end of the file, print the
next character on the screen. The key to understanding
the while statement is to evaluate its innermost
brackets first. The innermost brackets contain the
statement:

c 	getc(inputf)
"getc" retrieves the next character from the file
defined by linputr. This character is placed in the
variable 'c'. The overall value of (c = getc(inputf))
is the value of 'c'. So after the next character has
been retrieved, the while statement is equivalent to:

while (c != EOF) 	continued on page 17

(Page23 	 TIsHUG NEWS DIGEST December 198--

December 1989 	TIsHUG NEWS DIGEST 	Page 24

Set sprite pattern 	grflrf GRF1 sppat(spn,ch);

CSUP
CSUP

exit(c);
abort(c);

Exit the program
Exit the program

spposn(spn,&rpAcp); Return sprite position grflrf GRF1

key=poll(c); Check keyboard status 	 CSUP

c=fclose(unit); Close a file 	stdio CFIO

grfl(); Set to graphics 1 mode 	grflrf GRF1

Set to text mode 	 grflrf GRF1 text();

Set screen colour to c 	grflrf GRF1 screen(c);

floati FLOAT
c=fint(fl,f2);
	

Returns greatest
integer value

patcpy(a,b); Copy character pattern 	grflrf GRF1

clear(); Clear the screen 	 grflrf GRF1

Read keyboard u 	 grflrf GRF1 c=key(uAs);

spdel(spn); Delete sprite grflrf GRF1

Ftoati FLOAT
c=fcopy(fl,f2); 	Copy one float array

to anothur

randomize(); Initialize random seed 	random;c

rndnum(); Generate a 16—bit
random number 	 random;c

continuodonpage28

131D ql[EiltaK
Author unknown, USA

**
Incl 	Obj.

Command/Function 	Description 	 File File

spdall();

Read character from keyboard 	CSUP sploct(spn,dr,dc); Set sprite location 	grflrf GRF1

spmag(f); 	Set sprite magnification grflrf GRF1

c=getchar();

c=gets(buff); 	Read a line from keyboard 	CSUP

puts(string); 	Write string to screen 	 CSUP

spmotn(spn,rv,cv); Set sprite velocity grflrf GRF1

locate(row,col); Locate cursor on screen 	 CSUP

tscrn(f,b); 	Change screen colour 	 CSUP

unit=fopen(name,mode); Open a file 	 stdio CFIO

c=fwrite(buff,len,unit);Write record to file stdio CFIO

fseek(unit,recno); 	Set record number 	stdio CFIO

fdelete(filename); 	Delete a file 	 stdio CFIO

c=feof(unit); 	Test for end—of file 	stdio CFIO

c=ferrc(unit); 	Get error code 	 stdio CFIO

rewind(unit); 	Rewind a file 	 stdio CFIO

c=fread(buff,len,unit);Read record from file stdio CFIO

c=getc(unit); 	Read character from file 	stdio CFIO

c=putc(cpunit); 	Write character to file 	stdio CFIO

c=fgets(huff,col,unit);Read string from file stdio CFIO

c=fputs(string,unit); Write string to file 	stdio CFIO

dsq=spdist(spnl,spn2); Return distance
between sprites grflrf GRF1

dsq=spdrc(spn,dr,dc,); Return distance
between sprite and location grflrf GRF1

flg=spcnc(spnl,spn2,tol); Sprite
coincidence 	grflrf GRF1

flg=sperc(spn,dr,dc); Coincidence sprite
and location 	grflrf GRF1

flg=spcall(); 	Coincidence of all sprites grflrf GRF1

float numberiFLOATLEN; Define float type floati FLOAT

c=fpgets(s,f); 	Prompt for floating point
number 	floati FLOAT

fpput(f,$); 	Display floating point
number 	floati FLOAT

c=itof(i,f); 	Converts integer to
floating point 	floati FLOAT

i=ftoi(f); 	Converts floating point
to integer 	floati FLOAT

c=stof(s,f); 	Converts string to
floating point floati FLOAT

c=ftos(f,s,mode,sig,dec); Float array
to string array floati FLOAT

color(cs,f,b,); 	Change colors for character
set cs to f and b 	grflrf GRF1

chrdef(ch,str); 	Define character patterns grflrf GRF1

chrset(); 	Load standard character patterns grflrf GRF1

c=fexp(fl,op,f2,res); Execute floating point
expression 	floati FLOAT

c=fexp(fl,"+",f2,res); Add two numbers 	floati FLOAT
c=fexp(fl,"—",f2,res); Subtract two numbers floati FLOAT
c=fexp(fl,"*",f2,res); Multiply two numbers floati FLOAT
c=fexp(fl,"/",f2,res); Divide two numbers 	floati FLOAT

true=fcom(fl,rel,f2); 	Compare two
floating point numbers floati FLOAT

hchar(r,c,ch,n); Place character n times
horizontally 	 grflrf GRF1

vchar(r,c,ch,n); Place character n times
vertically 	 grflrf GRF1

c=gchar(r,c); 	Return value of character
at r c 	 grflrf GRF1

s=joyst(u,&x,&y); Read joystick u 	 grflrf GRF1

sprite(spn,ch,col,dr,dc); Define sprite 	grflrf GRF1

filptr=topen(n,a,$); 	Open a file
(name,access,fsize) 	tcioi TCIO

eof=tread(b,r,f,&s); 	Read a file
(buff,rec,fileptrAsize) tcioi TCIO

eof=twrite(b,r,f,$); 	Write a file
(buff,rec,fileptr,size) tcioi TCIO

eof=tclose(fileptr); 	Close a file 	tcioi TCIO

Delete all sprites 	grflrf GRF1

spcolr(spn,col); Set sprite colour 	grflrf GRF1

c=putchar(c); 	Write character to screen 	CSUP

spmct(n); 	Enable sprite auto—motion grflrf GRF1

traIaat INilairita #5
by Martin Smoley, NorthCoast 99'ers
© Copyright 1988 by Martin A. Smoley

I am reserving the copyright on this material, but
I will allow the copying of this material by anyone
under the following conditions. (1) It must be copied
in its entirety with no changes. (2) If it is retyped,
credit must be given to myself and the NorthCoast 99ers,
as above. (3) The last major condition is that there
may not be any profit directly involved in the copying
or transfer of this material. In other words, Clubs can
use it in their newsletters and you can give a copy to
your friends as long as it is free.

Well here it is December already. Gee! time flies
when you are having fun. This month I am going to
change my mind again. I said I did not like System type
setups, so this month I am doing a system for you. This
is my Version 1.02 and my 1988 finale. This tutorial
will contain practically all programming, with only a
couple comments from me. The whole thing works, so if
this is what you wanted, your time is here. This type
of program runs too slow for me, but once it is finished
you can run the whole thing with a few number entries.
TIBSYS, which is listed below, runs all the other
command files (more or less). So, to get the system
going you would type DO DSK2.TIBSYS <ENTER>. You can
find your way through the system by the order of the DO
DSKn.XXX commands. you will notice that all the remark
statements are at the end of the command files. This is
because the processor does not read anything after
RETURN. Putting your remarks after that point will
speed things up. I have also kept the size of the
command files down so you can edit any of them using
MODIFY COMMAND. I try to use the same field names (NM,
FN, LN, MI) for all my data bases. This allows me to
use this type of programming on several data bases by
merely changing USE NEWNAMES to USE (WHATEVER). Except
for possible minor field length problems this system
command file should be usable for many things.

LOCAL ? N 2 0
LOCAL SEL N 2 0

REPLACE ? WITH 0
DO DSK2.PREP1
DO DSK2.SYSSCR

USE NEWNALIES
TOP

WHILE .NOT. (?)
DO DSK2.INFSCR1
DO DSK2.SLCASE

ENDWHILE
DO DSK2.FIN1

RETURN

* TIBSYS
	

Save as TIBSYS/C
* ****** 	TI—Base System 12/1/88

Note: Do not type In the last two lines of h:p.h
command file . I am referring to the *, and the
***********s. I put those in to keep things separated.

CLEAR
* Pre—Program Preparation

CLEAR
COLOR BLACK GRAY
WRITE 3,9,"This is a TI—Base System."
WRITE 5,9,"It is a club type system"
WRITE 7,9,"to produce a club Roster,"
WRITE 9,9,"a complete set of labels,"
WRITE 11,9,"or search for individual"
WRITE 13,9,"names and print more than"
WRITE 15,9,"one label for a specific"
WRITE 17,9,"name on the list."
WRITE 19,12,"** USEs NEWNAMES **"

WAIT 4
COLOR WHITE DARK—BLUE

RETURN

* SYSSCR 	Save as SYSSCR/C
* ****** 	System Screen 12/1/88

CLEAR
REPLACE SEL WITH —1

WRITE 2,8,"** Make A Selection **"
WRITE 4,10,"> 0 < To Quit command file"
WRITE 6,10,"> 1 < Print Roster"
WRITE 8,10,"> 2 < Print All Labels"
WRITE 10,10,"> 3 < Print Spec. Labels"
WRITE 12,10,"> 4 < Edit NEWNAMES"
WRITE 14,10,"> 5 < Append To NEWNAMES"

WHILE (SEL<O) .0R. (SEL>5)
WRITE 22,4,"Enter 0-5"
READ 22,15,SEL
WRITE 22,3,"
	

ft

ENDWHILE
CLEAR
RETURN

* INFSCR1 	Save as INFSCR1/C
* ******* 	Info Screen 1 12/1/88

DOCASE
CASE SEL = 0
WRITE 18,13,"Have a nice day"
REPLACE ? WITH 1
BREAK

CASE SEL = I
DO DSE2.PRSTR

BREAK
CASE SEL = 2

DO DSK2.LBLS5
BREAK

CASE SEL = 3
DO DSK2.ENDPRNT1

BREAK
CASE SEL = 4

DO DSK2.EDFL1
BREAK

CASE SEL = 5
DO DSK2.APFL1

BREAK
ENDCASE

RETURN

* SLCASE 	Save as SLCASE/C
* ****** Case Selection 12/1/88

* PREP1 Save as PREP1/C
* ***** 	 SET FAGE=00O

SET 1INE=SO
CLOSE ALL
	

CLEAR
SET HEADING OFF
	

LOCAL TLTIF C UO
SET RECNUM OFF
	

LOCAL BLNK C 1
COLOR WHITE DARK—BLUE

	
WRITE 10,4,"Set Printer + press ENTER"

SET TALK OFF
	

READ 10,30,TEMP
WAIT 5
	

CLEAR
RETURN
	

WRITE 10,12,"Printing Roster"
SORT OFF

************************* 	 TOP

(Page25 TIsHUG NEWS DIGEST December 1989

REPLACE TEMP WITH "<27>E

. 	 ** NorthCoast Roster * * "
PRINT TEMP
PRINT BLNK

SET LINE=134
PRINT ALL
SET LINE=80

REPLACE TEMP WITH " <27>@ "
PRINT TEMP

CLEAR
RETURN

Version 1.02
* PRSTR
	

Save as PRSTR/C
* ***** Print Roster 12/03/88

SET PAGE=000
CLEAR
LOCAL TEMP C 40
LOCAL BLNK C I
WRITE 10,4,"Set Printer + press ENTER"
READ 10,30,TEMP
CLEAR
WRITE 10,12,"Printing Labels"
SORT ON ZP
TOP
WHILE .NOT. (EOF)

REPLACE TEMP WITH "<27>E
	

II;

Exp. Date " I XP
PRINT TEMP
PRINT BLNK

REPLACE TEMP WITH TRIM(FN)
	

.;

MI
	

II 	 LN

PRINT TEMP
PRINT SA

REPLACE TEMP WITH TRIM(CT) . .;

ST I ". " 	ZP
PRINT TEMP
PRINT BLNK

MOVE
ENDWHILE

CLEAR
RETURN

* LBLS5 Save as LBLS5/C 12/01/88
* ***** 	Prints all Labels

LOCAL SELZ N 3 0
LOCAL MORE N 3 0
REPLACE MORE WITH 1
WHILE (MORE > 0)
TOP
DO DSK2.INFSCR2

WRITE 19,6,"ENTER 1-5"
READ 19,17,SEL2

CLEAR
WHILE (.NOT.(E0F)) .AND.;

(NM <> SEL2)
MOVE
ENDWHILE
IF (NM = SEL2)
DO DSK2.DISPNA1

ENDIF
WRITE 6,6,"FIND MORE NAMES"
WRITE 8,6,"0 = No 	1 = Yes"
READ 8,25,MORE
CLEAR
ENDWHILE
RETURN

* FNDPRNT1 Save as FNDPRNT1/C
* ******** 	 11/29/88

CLEAR
REPLACE TEMPI WITH "<27>E
	II ;

1 " Exp. Date " I XP
WRITE 10,3,TEMP1

REPLACE TEMP2 WITH TRIM(FN)
	

. .;

1 MI I " " 	LN
WRITE 12,3,TEMP2
WRITE 14,3,SA

REPLACE TEMP3 WITH TRIM(CT) 1 . .;

I ST I ". " 	ZP
WRITE 16,3,TEHP3

WRITE 22,1," 	Number of Labels"
READ 22,22,ANS

WRITE 22,1,"
IF ANS > 0
DO DSK2.PR-LBLS1

ENDIF
CLEAR
RETURN

* DISPNA1 	Save as DISPNAl/C
* ******* 	11/29/88

SET PAGE=000
SET LINE=80
WHILE (ANS > 0)

WHILE (ANS > 0)
PRINT TEMPI
PRINT BLNK
PRINT TEMP2
PRINT SA
PRINT TEM
PRINT BLNK

REPLACE ANS WITH ANS - 1
WRITE 22,4," Labels To Go =",ANS
WAIT 1

WRITE 22,4,"
ENDWHILE
WRITE 22,4,"More? How many? "
READ 22,22,ANS

WRITE 22,4,"
ENDWHILE
CLEAR

RETURN
Version 1.02 11/29/88

* PR-LBLSI Save as PR-LBLS1/C
* ******** Multiple Label Print

CLEAR
COLOR WHITE MAGENTA
WRITE 10,8,"DataBase should be open."
SORT OFF
TOP
EDIT
WRITE 10,8,"DataBase is not closed!"
COLOR WHITE DARK-BLUE
RETURN

* EDFLI 	 Save as EDELl/C
* ***** 	EDIT A File 12/02/88

CLEAR
COLOR WHITE MAGENTA
WRITE 10,8,"DataBase should be open."
SORT OFF
APPEND
WRITE 10,8,"DataBase is not closed!"
COLOR WHITE DARK-BLUE
RETURN

* APFL1 	Save as APFL1/C
* ***** 	APPEND To 12/02/88

LOCAL TEMPI C 40
LOCAL TEMP2 C 40
LOCAL TEMP3 C 40
LOCAL BLNK C 1
LOCAL ANS N 3 0

SET TALK ON
CLOSE ALL
SET HEADING ON
SET RECNUM ON
COLOR WHITE MAGENTA continued on page 11

(December 1989 	TIsHUG NEWS DIGEST 	Page 26)

/ftetla 	71)11 qaq),44 Session 4
Author unknown

You now have a system disk which autoboots the
options you selected and before you do anything else,
again: make a backup disk! Believe me, this is no idle
chatter. I have messed up quite a few disks with some
ill defined or used word. While you are in the learning
stage, making a backup is perhaps as important as
getting familiar with Forth words and how they work.
Take it from one who has spent a lot of time starting
over (and over). Unlike TI-Writer, Forth does not have
an Oops!, only a 7.!-#$*. I use two drives with my write
protected system disk in drive 1 and do my programming
on a disk in drive 2.

If you work with one disk drive, your best bet is
to get a copy of Doug Smith's "3-PASS DISK COPIER".
This clever 2 screen program was published in the June
84 issue of Miller's Smart Programmer. It is handy even
if you have 2 drives, because it shortens the time
required to copy a Forth disk. With 2 drives you can
also use the word FORTH-COPY you booted
-COPY). The disk to be copied must be in drive 2 and
the blank disk in 1. It takes approximately 1 second
per screen or a minute and a half to copy a disk. Since
it is done a screen at a time your drives get a good
workout. But be sure to initialize the disk first with
n FORMAT-DISK, where n is the number of the drive you
put the blank disk in. However, remember that Forth
starts counting with 0 (zero). What you would normally
call drive 1 is 0, 2 is 1, etc. 1 FORMAT-DISK
initializes the disk in drive 2.

In the last session I touched briefly on the SWCH
and UNSWCH words of the -PRINT option. I know you will
have no trouble remembering them. SWCH n LIST UNSWCH
will soon be as familiar to you as n EDIT. Try SWCH 3
LIST UNSWCH. If you did not forget to turn your printer
on you got a listing of screen #3. This is much easier
to read then 3 LIST, which puts the listing on your
display, because the lines are not broken. Then there
are TRIAD and TRIADS which are similar to LIST but have
SWCH/UNSWCH built in. 31 TRIAD first looks for the next
lower number than the one you gave which is divisible by
three and then prints 3 screens. SWCH and UNSWCH are
built in since you could not use TRIAD as a display
command. TRIADS works the same way, except you specify
a range of screens (n1 n2 TRIADS). It will print as
many triads as are needed to cover the range you
specified.

Tricky, eh? 	But very neat: 3 screens per page.
And one more: INDEX. It does not include SWCH/UNSWCH
because it can be used on the display, too. But it is
one of my favourites. n1 n2 INDEX lists the 0 (zero)
lines of the screens from n1 to n2. (SWCH 0 89 INDEX
UNSWCH will get you a printed index of your whole FORTH
disk.) Like LIST it is really better in printed form,
because of the display being limited to 40 columns which
makes it harder to read and digest.

When you start programming, keep a printed INDEX of
your disk on hand and make sure you use the Forth
convention of identifying your screens on line zero. I
prefer to not only put a program name on line 0 but to
include the needed load option(s) as well. For example:

SCR 28
(TEXT MODE SCREEN-DUMP 	-PRINT)

HEX
: SCREEN-DUMP SWCH

03C0 00 DO I DUP 28 MOD 0=
IF CR THEN VSBR EMIT

LOOP CR UNSWCH ;
DECIMAL

I wrote this little routine to save my trials and
tribulations before they scrolled off the display when
working in the interactive mode.

One of the beauties of Forth is the opportunity to
try definitions from the keyboard in the so-called I/A
mode. You can define a word (;) and, before
you use it in a program, see if it will do what you had
in mind. The problem is, as you keep goofing and trying
again, they disappear off the top of your display.
Unless your memory is a lot better than mine, you will
find SCREEN-DUMP a helpful addition to your Forth
vocabulary. Since we either do not need -64Support or
made it part of our autoboot, I saved this routine on
screen #28, then added 28 LOAD on screen #3.
SCREEN-DUMP is booted along with the autoboot and
available any time I need it.

Recap:

1. Make a backup of your working autoboot disk
2. -PRINT is one of the most useful load options. It

provides some new words and makes some others more
useful than they already are (LIST and INDEX)

3. Save and load the SCREEN-DUMP routine. It will help
you by putting your experiments on paper 	for
reference.

Get busy with Chapters 4 through 6 of Starting
Forth. (You can skip 3 because the TI Forth editor is
much better than what Brodie describes.) 0

The (TI) Ybrail DagnyineiDin
by Jeff Stanford, JSC Users Group, USA

When TI-Forth became available at the beginning of
last year, I purchased a copy for myself immediately. 1
had a prior experience with Forth. Before II-Forth's
release, a friend of mine purchased a copy of a Forth
source listing. After entering it, he gave me a copy of
his absolute (error free source code) to test and
evaluate. His fig-Forth was fun to play with, but it
lacked an editor and its disk interface was not very
efficient or reliable. After a period of time, I
determined his fig-Forth could provide tremendous power
for my computer if it were only expanded. I then put it
aside and returned to learning Assembly Language.

When Texas Instruments introduced TI-Forth, I had
something to get excited about. With TI-Forth's power,
what was taking me days to do in assembly language now
only took mere hours. But even in this abundance of new
power for the TI99/4A, a flaw still existed. The
documentation included with TI-Forth, in classic Texas
Instruments' form, was designed not to be an instructive
text, but rather to serve as a reference manual for the
experienced Forth programmer (a la Editor Assembler).
At least, the writers had the decency to mention this
and to give some source materials for the intrepid
novice.

What I plan to do with this series of tutorials is
to share my experiences with TI-Forth. The series of
articles will take complete novices and introduce them
to the power of this exciting language. To get my
tutorial off to a good start, I have decided to cover
the books that will be used as source materials first.
This is not to imply that these are the best available,
but rather they are the books that I have purchased and
found useful to learn more about Forth.

Starting Forth, by Leo Brodie (Prentice-Hall)

This is, in my own opinion, the foremost text on
Forth for both the beginner and the expert alike.
Mr. Brodie writes in a very readable style. The cartoon
characters he uses for each of the Forth words make
great learning aids. 	The book is jam packed with
general 	information as well as useful hints and
footnotes. Differences between TI-Forth and standard
Forth discussed by Brodie in the book are illustrated in
the TI-Forth manual (Appendix C).

continued on page 14

(Page 27 	 TIsHUG NEWS DIGEST December 1989

VV ourhams waala mtEtumbeura
by Joe NoIlan, Tacoma Informer, USA

There are a number of statements in TI BASIC that
help us deal with numbers. The math functions are
pretty straight forward and covered well in the book.
There are problems which are not algebraic functions but
are more of a house keeping nature. The first number
problem that I encountered was after dividing $17
between 3 people my answer had eight decimal places.
This is a common problem when dealing with numbers. The
solution is fairly simple; consider the number
5.66666667. To reduce this to two decimal places so
that it can more easily represent dollars and cents,
first multiply it by 100 to yield 566.666607. The next
step makes use of the INT function which will eliminate
the fractional portion of the number giving us 566.
This can now be divided by 100 to yield 5.66. Although
this process was explained in a step by step manner it
can often be done in a single statement like
X=(INT(100*X))/100.

Another common problem is rounding off. If you
have a number like 5.98 and would like it rounded to the
nearest dollar the following method can be used. First
add 0.5 to the value and then use the INT function. In
the example of 5.98, adding 0.5 to it will yield 6.48
and the INT function will reduce it to 6 even. If the
original value was 5.14, adding 0.5 and using the INT
function would reduce it to 5 even. The BASIC statement
would look like this: X=INT(X+0.5).

There are 	a couple of statements that are
invaluable when numbers are involved. 	The STR$(N)
statement will convert the numeric variable NI into a
string variable. This can be used when printing the
value in a statement. 	When printed as a string, you
will not have an extra space ahead of the number. 	The
inverse of the STR$ function is the VAL(N$) statement.
This statement will convert a string value into a
numeric expression. You can not perform any
calculations on a numeric expression whilst it is in
string format.

A big word with numbers is truncation (cutting
short). This shows its ugly head when you print out a
column of numbers and the trailing zeros are left off,
making your column look like it was done by a five year
old. The problem can be solved by converting the
numbers to string variables and printing them as such.
The trailing zero problem can be solved by adding a
small amount to the number. Working with dollars and
cents, you may have a number like $9.50 that will look
like $9.5 when printed. For example let us start with a
numeric variable X and use it to represent the cost of
an item (in dollars and cents). The $9.50 will be used
as the value for this example. First we add a small
amount to the value which will not affect the original
number. In this case we are dealing with two decimal
places so we will add a three decimal place number to
it. X+0.001 will do it and we now have a value of
9.501. The last digit of I will hold the zero next to
it. Before this figure is printed it is first converted
to a string, then printed without the last character.
First use X$=STR$(X) to convert it to a string variable.
Now we will use the SEG$ function to drop the last
character. The SEG$ function requires a string (X$), a
point to start in the string (1) and how many characters
(LEN(X$)-1). The BASIC statement would be:
X$=SEG(X4',1,LE/kX)-1). With these values the SECS
function will take all of the X$ starting from the first
character and include everything but the last character.
Our new string will contain 9.50. The value can then be
printed in a sentence with a statement like PRINT "THE
ITEM COST IS $";Z$;" WHOLESALE".

Printing a column of numbers presents another
problem. Tab settings will line up the left digits
which is great if the values all have the same number of
digits and awful if they do not. One way to solve this
problem is to use the LEN(X$) statement to determine the

TAB(Z) value. • Look at this example: PRINT 	"ITEM
COST";TAB(15—LEN(Xs));XS. 	In this example the lar8er
the number, the smaller the TAB will be and the column
wilL be lined up on the right.

These are not the only ways to solve number
problems; Extended BASIC has ways around them as well.
This is intended to give some ideas so that you can
solve your own specific problems.

From The Tacoma Informer, August 1989, retyped and
edited by Ross Mudie. 	 0

continued from page 24

rnd(n);
	

Generate a random number
between 0 and n-1 	 random;c

n=atoi(s); 	Convert string to integer conv;c

s=itod(nbr,str,sz); Convert number to
signed decimal 	conv;c

n=xtoi(hexstr,nbr); Convert hexstring to
integer 	conv;c

bitmap(fore,back); Change to bitmapped
screen mode 	biti BITSUP

bitclr(); 	Clears the entire screen biti BITSUP

plot(x,y,c,t,); 	Turns on single pixel 	biti BITSUP

line(xl,y1,x2,y2,c,t); Draws line between
two points 	biti BITSUP

rect(xl,y1,x2,y2,c,t); Draws a rectangle 	biti BITSUP

circle(xc,yc,r,c,t);
	

Draws a circle 	biti BITSUP

bitxt(); 	 Copies ASCII characters
into CPU RAM 	 biti BITSUP

bputch(ASCII,r,c,col); Similar to putchar() biti BITSUP

bputs(r,c,col,str); 	Similar to puts() 	biti BITSUP

blanks(r,c); 	Places a blank on screen biti BITSUP

btblanks(r,c,count); Blanks sequence of
locations 	biti BITSUP

bgetch(r,c,col); Returns keypress of
user input
	

biti BITSUP

bgets(buffadr,s,r,c,col); 	Inserts characters
in buffer 	biti BITSUP

getky(); Scans keyboard similar to poll() 	biti BITSUP

Notes:

The purpose of "c99 Quick Reference" is to provide
a handy summary of c99 command syntax and required
parameters, a brief dscription and a reference to
"include" and "object" files required to support a
particular command. All references were re—capped from
Clint Pulley's release diskette for c99 Version 2.0
except for "biti" and "bitsup" which are based on Jay
Holovacs BITRTN and BITWRT Rel. 2.0.

By necessity the description of the commands had to
be brief and is intended to be more of a "memory
jogger". In all cases the user is urged to refer to the
full documentation for all items.

The naming of include and object files reflect the
preference of the compiler of this quick reference. You
may have your own system and can feel free to use any
suitable editor to make necessary changes. 0

(December 1989 	TIsHUG NEWS DIGEST 	Page 28

alaibilta
byStephenShaw,England

News is in that Adelaide TI Computer Club are
tackling the problem of getting RGB output from the
TI99/4A in a very technical manner indeed. Previous
published circuits have not resulted in pleasing
results, as the RGB signal is obtained by "undoing" the
processing which results in the standard colour
difference signal output, resulting in an output which
has been processed twice, rather than not at all! ATICC
have decided to produce their own monolithic circuit to
do the job, with computer checked circuits no less, with
RGB TTL and Analog output for about A$85.

I suspect most members will not be aware of the
work involved in producing a short-run VLSI chip, but
our technically minded members should be suitably
impressed. If you would like more information , write
tO :

Colin Cartwright, c/o Fred Cugley,
26 Suffolk Ave, BRAHMA LODGE, SA, AUSTRALIA, 5109.

Report from Geoff Phillips of Australia that the
Horizon RAMdisk, using OS 7.3, will not handle TI-Artist
or TI-Pascal (referring possibly to USCD Pascal?), while
one of our own members reports that TI-Base is unhappy
with the HRD.

MICROpendium December 1988 had a useful article on
connecting disk drives to the TI99/4A system, with much
detail on whether you should or should not use resistor
termination packs, whether additional or different value
resistors were appropriate, and the different ways of
selecting drives. TEAC drives are specifically
mentioned. 	Good article. If you do not subscribe take
out a subscription now and ask for the back issue!

A belated welcome back to the group to C H Street
who asked what was required to attach a printer to his
console, and also asked about modems.

i. A modem is used to connect a telephone line to the
computer, and in addition to a modem you will
require an RS232 device, usually a card fpr the
peripheral expansion box.

ii. Most printers these days come with a parallel
interface and with a serial interface available as
an option. 	This refers to the plug on the printer
side as well as to the format that the printer will
accept the information in.

The bare console does not have any suitable output
socket and you must purchase a separate device to attach
to the computer, which is either a standalone device, or
a card for the peripheral expansion box.

(A remarkable number of owners have purchased an
expensive printer and then tried to connect it directly
to their console! And having spent all their money on a
printer, cannot afford a peripheral device to drive it.)

Standalones tend to be parallel only, while the
cards often offer a parallel port as well as one or two
serial ports. Connecting the output port to the printer
will require a specially made cable. Have a word with
your supplier and/or our own Mike Goddard before laying
out your money! Make sure you see the printer working
with your computer before laying down the cash! There
are two types of parallel output, Epson and Centronix,
although the term Centronix is often used when Epson is
meant! The difference is a major one if you wish to use
the TI RS232 peripheral card, as it does not drive a
printer with a true Centronix port (such as the Tandy
range) without some additional circuitry to provide the
signals the Centronix port requires!

A few printers use an "inverted data strobe" (no I

have no idea whether it is catching) such as the Hewlett
Packard Ink Jet (got one going spare?) and this also
needs a little circuitry to interface to the TI card
correctly.

Wiring (for Epson, may be OK on others) of the
parallel port is:

COMPUTER: 	PRINTER:
Pins 1 to 9 	Pins 1 to 9 (connect 1 to 1 etc)
Pin 10, connect to Pin 11
TI pins 12 to 15 are not used.
TI pins 11 and 16 are "logic ground" and may

usually be connected to printer pins 19 to 30. (Not to
be connected to printer "chassis".)

The TI peripheral (and most TI99/4A software) was
designed for the Epson printer range and Epson printers
do not provide any problems at all. Other printers may
not be fully compatible for graphics dumps. In addition
to the peripherals, there are also modules available
from Databiotics which have parallel printer ribbons
coming out of the actual module! These are spread sheet
and word processing modules.

Other printer considerations, apart from graphics
compatibility and of course print quality and noise, are
serviceability; how easily can you obtain a new print
head or new ribbons and how much are the ribbons and how
long do they last? I recall a TI99/4A owner who got a
good printer bargain only to discover the ribbons were
expensive and did not last too long and too many printer
purchasers discover they cannot get replacement ribbons
at all. Epson ribbons are very widely available!

What word processors are available?

TI-Writer is the standard, 	now upgraded to
Funnelweb, both on disk. Press is an upcoming program
which may be a replacement. If you have no disk, then
Databiotics have a module which can save and load to
tape, and there is the option with that of a printer
cable coming from the module.

How to Edit a BASIC Program:

From Nicky Goddard, Age 9, thank you Nicky.

Nicky wrote to me regarding a disk AUTOLOAD program
which allowed you to input a 1, 2 or a 3 for drive
number. Nicky pointed out that the TI disk controller
card could be modified to operate 4 drives as can the
Myarc and CorComp cards, while RAMdisks can take higher
disk numbers.

How to edit the LOAD program:
Type EDIT 1 and press FCTN[X] until you see on

screen:
""DISK? 1-3" and change the 3 to whatever number

you wish. Press FCTN[X] more times until you read on
screen ("123") and add your extra number(s) using INSERT
(FCTN[2]). Now press ENTER and save your program and
there you are.

Nicky also asks who wrote the disk AUTOLOAD
program. This appears in many formats, which all have
in common a line something like "DSKn.1234567890" or
something equally odd.

This originated in issue 2 of 99er Magazine back in
July 1981. Lots of people have decorated the program
since and it can be found with lots of extras nowadays,
but the essential part is unchanged and involves "a
program that writes the program", as the program name is
INSERTed into that odd line by the program itself. The
author? Charles Ehninger, who went on to found Futura
Software, a company which advertised a lot but did not
obviously sell too much and is not too well known today
(no longer trading of course!).

The part of the program that reads the disk
directory comes from TI and can be found in the Disk
Controller documentation. 0

Page 29 TIsHUG NEWS DIGEST December 198

continued from page 1
Then there was the console from a school which was

diagnosed as having a faulty processor at the console
repair night. Dick had removed the processor and when I
tried it in my console it was OK. Looking at it later,
with the processor soldered back in, I found that the
READY line to the processor was low so that the prcessor
was held in its wait state. This means that the LOAD
interrupt does not operate, as it requires the IAQ
signal, and the console tester will not run, unless it
starts from power up, before any GROM accesses. The
READY line is mainly controlled by the GROMs so I
removed these and still the READY line stayed low.
Another chip that controls the READY line is the sound
chip so I removed that also and now the console tester
worked. One of the first things the console tester does
is to turn off the sound chip. So what I had found was
that any of the GROM chips or sound chip in place and
the READY line was held low. On closer examination of
the board, I could see a track that was passing between
two holes of the processor had been pushed sideways and
was touching the pad round one of the holes. No doubt
damaged in the unsoldering process, as others were also
in a similar state but not actually touching. Once that
was cleared, I could replace all but the system GROM,
which must have been the original fault, as it would not
release the READY line. A new GROM installed and good
as new! Two other consoles looked at seemed to have bad
processors, one of which was removed and found to be not
working. Robert revived a bad key on a keyboard and I
have subsequently fixed an Extended BASIC module with a
bad ROM. By the way, the Extended BASIC module has two
ROMs in it, a 4K byte one (addresses >6000 to >6FFF) and
an 8K byte one which is bank switched to cover the
addresses >7000 to >7FFF. The bank switching is done by
writing to an address like >7000 to select one bank and
to an address like >7002 to select the other bank.

Terry has received a letter from Stephen Shaw in

England, one of our contributors (as he does to a large
number of newsletters around the world) and obviously
one of our readers, as he has picked up two errors in a
music program published by us in October 1985. They
occur in a program written by Fred Hawkins of the LeHigh
group, based on some articles by Stephen, which
generates music without any CALL SOUNDs and only two
CALL LOADs to play the music. The lines to be corrected
appear on page 13 of the October 1985 issue and should
be:
590 DATA 0295D2010491DOAD1101
1120 DATA 04FF9FBEDFE0

Thank you Stephen, and if you should be talking to
Peter Brooks at any time, give him my regards.

I have finally returned the hard disk on loan to me

from John Vandermay for all these months (at least I
gave it to John Paine to pass on). If you remember I
had problems with sectors in the bit map area of the
disk becoming unreadable and so I could not use Myarc's
disk manager 5 on the disk and so could not copy files
from it. If you want more details of the problems read
past issues of TND. Garry Christensen of Brisbane wrote
a quick back up program to allow the front half of a
hard disk to be written to the back half of the same
disk and his father Col, wrote a program called Hard
Master to enable sectors of a hard disk to be read and
written to. Unfortunately these did not do exactly what
I wanted to do, as I wanted to copy files from one hard
disk to another. so I modified Garry's program to write
sectors from one hard disk to another, keeping the
parameters of the read disk necessary to reconstruct the
directory and file structure of the data, while
retaining the parameters of the write disk so that it
will operate correctly with the controller card. This
will be the subject of a later article when I get a bit
of time but I was wanting to report here that the
transfer was successful and I transferred 20 megabytes
of data from a 40 megabyte disk to a 20 megabyte disk in
about 80 minutes. It then took me several hours to
transfer files from one hard disk to another. I have
recovered just about all the contents of the disk.
There were 8 bad sectors, 2 of them were bit map sectors
and the rest were File Descriptor sectors. So I have
lost the information about 6 files, where they are and
what their names are, but if I had the time I could

probably recover most of that using Hard Master. By the
way, there is a new version of Hard Master out which I
must try and see if it will work with 10 megabyte disks.

One of the good things about TIsHUG, or indeed any

of the user groups of the TI99/4A around the world I
believe, is the willingness of members to help each
other. I have experienced that myself when many members
offered equipment to me at the beginning of this year to
make the job of the editor easier and now I have had a
response to my plea last month for someone to take over
the onerous task of the editor. Bob Relyea spoke to me
at the November meeting and has since come over to see
what was involved. We hope to make a smooth transition
during January unless there is someone else out there
itching to have a go. Bob is a school teacher living at
The Oaks which is out Picton way. We will be involved
still by doing the paste-up and mailing, so that the
work to be done is being spread around. Good on you
Bob, welcome to the team! 0

W ahalta4 EV11.13111121)
with Lou Amadio

Local Newsletters

Bug Bytes, October '89. A report on the Melbourne
Faire, some Jim Peterson programs, and a programming
challenge from Garry Christenson.

Melbourne Times, June/July '89. 	Peeping into
Pascal by Peter Gleed, interesting article on the
history of computers and structured BASIC with a sample
program on circular maths. Melbourne Times, Aug/Sept
'89. Structured maths and an Extended BASIC program on
quadratics by Peter Gleed and a most unusual heat tester
for the TI99/4A . More on Peeping into Pascal.

Overseas Newsletters

LA 99ers TopIcs, Sept '8(2) 	Release of Tl-Base
V2.02 which is compatible with hard disks, Hardmaster by
Colin Christensen, a sector editor for hard disks, is
now available through Asgard, next release of FirstBase
on its way, Tenex winding down business for the TI99/4A,
new "Harrison Word Processor" allows more pages of text
and supports a menu driven interface versus the command
language of TI-Writer, criticism of TI's early marketing
policy with TI99/4A software, Beginning Forth #16 on
sorting, "Hacker" program in Extended BASIC, novel way
to change the screen in BASIC by Gene Bohot, how to
unprotect an Extended BASIC or tape program and how too
get 28 column listing to your printer. LA 99ers TopIcs,
Oct '89. Mention of Graphic Editor and Hardmaster by
Bill Gaskill, Chick De Marti's column and Beginning
Forth column by Earl Raguse.

Spirit of 99, Oct '89. Number matrix programs in
BASIC, TI-Sort for hard disks, AV-Indexer program for
cassette and VCR labels, updated TI-Writer V4.2 with
improved formatter, and informative BASIC programming by
Irwin Hott.

ROM Sept '89. Justifying decimals in BASIC, Forth
and TI-Writer tutorials, Multiplan investment model.
ROM Oct '89. More Forth from Earl Raguse, using CTRL
and FCTN keys in TI-Writer, tributes to Dr. Guy-Stefen
Romano and John Guion and the constitution and articles
of association of the group.

TIC TOC Rocky Mountain 99ers, Sept '89. 	Assembly
programs to change Extended BASIC colours and provide
true lower case, TI-Base tutorials and a listing of
BASIC and Extended BASIC programs in club library.

TI Focus, Sept '89. New/updated software releases:
Jiffy Card, Jiffy Flyer V3.02, Picture It, Giant Artist
Posters, still no word on Press, new hard drives which
auto park on shutdown, introduction to TI-Base, revic ■,
of Infocom adventure games. TI Focus Oct '89. A review
of XHi by Charles Good of the Lima group and other
interesting general information. continued on page 3

ecember 1989 	TIsHUG NEWS DIGEST 	 Page30)

DI* RtIpDTI3
Meeting summary

Banana Coast 	10/12/89 Sawtell
Carlingford 	20/12/89 Carlingford
Central Coast 	9/12/89 Saratoga
Glebe 	 14/12/89 Glebe
Illawarra 	11/12/89 Keiraville
Liverpool 	8/12/89
Northern Suburbs 21/12/89 ????
Sutherland 	15/12/89 Jannali

BANANA COAST Regional Group
(Coffs Harbour area)

Regular meetings are held in the Sawtell Tennis
Club on the second Sunday of the month at 2 pm sharp.
For information on meetings of the Banana Coast group,
contact Kevin Cox at 7 Dewing Close, Bayldon, telephone
(066)53 2649, or John Ryan of Mullaway via the BBS,
user name SARA, or telephone (066)54 1451.

CARLINGFORD Regional Group
Regular meetings are normally on the third

Wednesday of each month at 7.30pm. Contact Chris
Buttner, 79 Jenkins Rd, Carlingford, (02)871 7753, for
more information.

CENTRAL COAST Regional Group
Regular meetings are now normally held on the

second Saturday of each month, 6.30pm at the home of
John Goulton, 34 Mimosa Ave., Saratoga, (043)69 3990.
Contact Russell Welham (043)92 4000.

Christmas Party at the December meeting

GLEBE Regional Group
Regular meetings are normally on the Thursday

evening following the first Saturday of the month, at
8pm at 43 Boyce St, Glebe. Contact Mike Slattery,
(02)692 0559.

The September meeting of the Glebe Regional Group
proved to be enlighting on the workings of the new Ti
video to TTL monitor conversion adaptors from South
Australia. 3 types of monitors were available, as well
as 3 technical people present to show them off to the
best of their abilities.

As well as this, a program from up north was
demonstrated, which showed that our little orphan is
still being used in a commercial environment and will
be for the next 5 years.

ILLAWARRA Regional Group
Regular meetings are normally on the third Monday

of each month, except January, at 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville, opposite the
Keiraville shopping centre. Contact Lou Amadio on
(042)28 4906 for more information.

The December meeting this year will be on the
second Monday of December, (11th), owing to the school
holidays. This will be our Christmas party so bring
your families and a plate of food for a fun time.

LIVERPOOL Regional Group
Regular meeting date is the Friday following the

TIsHUG Sydney meeting at 7.30 pm. Contact Larry
Saunders (02)644 7377 (home) or (02)642 7418 (work) for
more information.

Press any day now, Legends II about the same
(expanded to 3 disks now). All welcome.

Waiting on some new programs from the USA due any
time.

No December meeting, next meeting 12th January
1990.

NORTHERN SUBURBS Regional Group
Regular meetings are held on the fourth Thursday

of the month. If you want any information please ring
Dennis Norman on (02)452 3920, or Dick Warburton on
(02)918 8132.

Come and join in our fun. Dick Warburton.

SUTHERLAND Regional Group
Regular meetings are held on the third Friday of

each month at the home of Peter Young, 51 Jannali
Avenue, Jannali at 7.30pm. Group co—ordinator is Peter
Young, (02) 528 8775. BBS Contact is Gary Wilson, user
name VK2YGW on this BBS.

The October meeting was well attended and proved
to be a very interesting night. Much of the activity
was of a technical nature. During the evening the
group became occupied with:

— Running the console tester to diagnose problems
with a faulty console for Kevin Taylor.

— Adjusting the rotational speed of my floppy disk
drive using the Diagnostics Module.

— Rewiring Joe D'Ambra's modem cable and test
driving his new modem in addition to Derek Wilkinson's
recently acquired modem.

— Other assorted jobs including my battery charger
and Garry Wilson's RAMdisk.

The latter part of the evening was spent in
perusing the contents of the club BBS and down loading
some software and information.

TIsHUG in Sydney
Monthly meetings start promptly at 2pm (except for

full day tutorials) on the first Saturday of the month
that is not part of a long weekend. They are held at
the Woodstock Community Centre, Church street, Burwood.
Regular items include news from the directors, the
publications library, the shop, and demonstrations of
monthly software.

December 2 — Christmas Party at Woodstock.

Craig Sheehan (Meeting coordinator). 	 0

continued from page 22

That is a better listing, but it should start with
a CTRIARi not a CTRL1Q1.

For a bigger plotter all the numbers can be doubled
to give a bigger 5 pointed star. The drawing of the
star is a whiz—bang thing on the plotter. A dot matrix
printer would go berserk and make a lot of ragged bits
given the same task. It would also take a lot longer.
It you did not know about Plotic then I suggest looking
through the manuals for a lot of cutters, engravers, and
plotting machines and you, will discover that such a
language exists. As to who invented' it, perchance that
could become a topic for study, but there it is, a way
to do graphics with a resolution of 960 by 999 on a
bigger plotter, or 480 by 999 OR such a humble thing as
I have been using. You can literally sign your name at
that resolution! Graph paper and bigger scales (four or
five times the intended drawing) and a sharp pencil help
to plot graphics beyond the screen resolution of the
computer.

If you want to plot something first trace it onto
graph paper, then pick a number of points. For any
straight line segment two points are enough, but to do a
curve point density has to be increased where the curve
approaches the vertical or horizontal to maintain a
curve, so a circle will be circular not a round cornered
square. Even plottin8 at 5 times the intended size with
graph paper at the start, there is always some tricky
segment to be smoothed out and a few extra points to be
inserted.

Some plotters will do up to SO characters a second,
but try not to use them for word processing. A plotter
is meant for pictures and diagrams, and labels where
necessary. There are graphics typewriters which can be
used to write letters but have an interface for use with
a computer, and this form of a plotter can be the most
satisfactory for those not already having some kind of
plotter. 0

(Page3i 	TIsHUG NEWS DIGEST December 1989)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

