
VIZ

Hug NEWS
DIGEST

Focusing on the TI-99/4A Home Computer

Volume 6, Number 11
	

December 1987

ReOstered by Australia Post - Publication No. NBH5933

P.O. Box 214, Redfern, New South Wales, Australia, 2016
	

2

TIsHUG(Australia) Ltd
TIsHUG NEWS DIGEST

DECEMBER 1987

Correspondence to:

PO Box 214
REDFERN NSW 2016

DIRECTORS:

Co—Ordinator:
Chris Buttner 	Tel.(02)8717753
Secretary:
Terry Phillips.Tel.(02)7976313
Treasurer:
Bert Thomas 	Tel.(047)541535
Technical:
John Paine 	Tel.(02)6256318
Librarian:
Terry Phillips.Tel.(02)7976313
EXOFFICIO
Publications:
Bob Montgomery.Tel.(042)286463
Sysop:
Ross Mudie 	Tel.(02)4562122
Merchandising:
Cyril Bohlsen 	Tel.(02)6395847

REGIONAL COMMITTEE MEMBERS:

Glebe:
Mike Slattery 	Tel.(02)6920559
Penrith:
John Paine 	Tel.(02)6256318
Central Coast:
Russell Welham.Tel.(043)924000
Liverpool:
Arto Heino 	Tel(046)6038956
Illawarra:
Rolf Schreiber.Tel.(042)842980
Bankstown:
Peter Pederson.Tel.(02)7722396
Carlingford:
Chris Buttner 	Tel.(02)8717753
Sutherland:
Peter Young 	Tel.(02)5288775
Manly Warringah:
Dennis Norman 	Tel.(02)4523920
Coffs Harbour:
Keir Wells 	Tel.(066)551487

MEMBERSHIP AND SUBSCRIPTIONS:

Joining Fee 	 $ 8.00
Annual Family Dues 	$25.00
Dues O'seas Airmail...US$30.00
Publications Library 	$ 5.00
Texpac BBS 	 $ 5.00
BBS Membership:
Other TI User Group
Members 	 $10.00
Public Access 	 $25.00

GROUP GENERAL MEETING:

First Saturday of each Month at
Shirley House, Church Street
Burwood. Starts 2:00pm

TIsHUG NEWS DIGEST ISSN 0819-1984

CONTENTS 	 PAGE

General Information and Editorial 	 1
Coordinator's Report by Chris Buttner 	 2
Software Competition 	 2
Secretary's Notebook by Terry Phillips 	 3
Letters to the Editor 	 3
Techotime by John Paine 	 4
Ramcard Tip 	 4
TIsHUG Shop by Cyril Bohlsen 	 5
Publications Library Report by Warren Welham 	 5
Software Column by Terry Phillips 	 6
The Communicators by Ross Mudie 	 7
Texpac BBS by Ross Mudie 	 8
Link—It Pt 14 by Ross Mudie 	 9
Hardware News by Peter Schubert 	 11
Joystick Converter by Laurie Marsh 	 11
Type in Programs

The Boogens 	 12
Jawbreaker 	 13
Zapper Zone 	 14
Menu Maker 	 15
Disk Label Printer 	 15

Starting a Database from Scratch by Chris Buttner 	 16
Removing Protection by George Meldrum 	 17
Sprites Pt 2 by Jim Peterson 	 18
Tidbits Six by Wade Bowmer 	 19
Tigercub Tips by Jim Peterson 	 21
Putting it all Together Pt 3 by Jim Peterson 	 23
Stringing and Unstringing by Jim Peterson 	 24
Some Formatting Tricks by Jean Wilcox 	 25
TI—Writer File Printer by George Steffen 	 25
Pretty Please, Pinch My Dear Aunt Sally Rudely by Jim Peterson 	 26
Using CTRL 2 with TEII 	 26
Regional Group Reports 	 27
Adventure Hints 	 27
TICOM by Arto Heino 	 27

The Editorial committee wishes to thank those members who have
contributed, to the pages of the TND, this year. Without your
support this newsletter may not have been as interesting as it has
been. I would also like to thank those who regularly helped to do
the paste—up.

This year has been somewhat of a challenge for the committee. A
number of new ventures were undertaken. Probably the most successful
of them was the Ramdisk. That is not to say that other projects were
not equally successful. While the hardware side of the club has
flourished there has been a dearth in the siftware area. The notable
exception being PICASSO. The club has attempted to correct this
imbalance by conducting a software competition. Make it your New
Year's resolution to submit a program.

You should have found an insert in this issue with instructions of
how to nominate for next year's directors. Take time over the
holiday period to consider your position and nominate.

Note that the December meeting is the Christmas Party. Bring along a
plate of party food to share with others.

Have a joyous Christmas and a prosperous New Year.

6.6 sw,p,tc,-.0

HUG TISHIJIG IVEVIN DIGEST

(Page 1, December 1987

11-151-11116 111-11115 DIGEST

0—ORDINATORS
REPORT 	...Chris Buttner

Our final full—day tutorial this year was successfully
completed last month. I was pleasantly surprised to
see so many of you attending the Assembly Language
sessions and coming to grips with what has seemed to so
many to be an impossible task. There is obviously a
lesson to be learned and that must surely be that
perseverance will win through. If you have not yet had
a go, make a start and discuss your problems with other
club members. It is a worthwhile learning experience
and also a very goods means of making new friendships.

In a few weeks Christmas will be upon us and no doubt a
number of you will put your computers away to get into
full swing with the children during the vacation. The
club will be doing much the same — "closing shop" until
we gear up in February for another exciting year.

The annual general meeting is very important for the
club because we are now bound by our Memorandum and
Articles of Association and the various sections of the
Companies Code (NSW).

TIsHUG SOFTWARE COMPETITION
 —

How would you like to win a great prize merely by
putting your programming skills to good use? You
would? Then read on because a great software
competition has been organised and there are some
really good prizes to be won.

Firmt. here are the rulag:

1. The submitted program can be in any language
capable of running on the TI99/4A computer using
common peripherals.

2. The completed program must be submitted on cassette
or disk and must contain operating instructions either
within the main program or as a separate program.

3. TIsHUG committee members, and their families, are
ineligible to enter.

4. All programs submitted become the property of
TIsHUG.

5. Entries may be submitted either by post to the
Secretary or handed in at monthly meetings. Closing
date for entries will be the 6th February, 1988.

Arrangements have been made for
Articles to be printed in booklet
be distributed to all financial
important you understand the club
Raid. tim. to read it.

In case you are wondering what the
incorporation means I shall try to
layman's terms.

6. Winner(s) will be announced at the March 1988
meeting.

7. The judges decision will be final and no
correspondence will be entered into.

8. Entries will be accepted from.non TIsHUG members,
however such entries will not be eligible for any
prizes.

the Memorandum and
form and these will
members. It is
rules so please set

legal effect of the
explain (I hope) in

Our old group TISHUG is no more, it has ceased and we
have had to open new bank accounts and make new
arrangements with suppliers. We are a public company
and you are the members of the company although nobody
owns any shares in the company. Our company structure
makes it very important that you address correspondence
to the Secretary.

As a company, we have five Directors. The first change
you will probably notice is that the nominations for
Directors for the 1988 year are as Directors — no more
nominations for positions. Those who are successfully
elected as Directors must decide who will be Chairman,
(Co—Ordinator), Secretary, Treasurer and so on. As you
can see, it is important you consider carefully who you
vote for because the board of Directors needs a breadth
of experience and expertise for the club to operate
successfully.

If there are mare nominations thou vacancies for
Directors. there will be a ballot, We do nat have an
option to elect directors by a show of hands aft in the
past.

The DireCtors are the people who are responsible for
the running and good management of the club. However,
the Board has the power to appoint committees. This
allows us to be less centralised in our management and
also give those who do the work more flexibility.

At the moment there are two committees: editorial and
library: to handle the publishing of the club magazine
and run the software and book/magazine library.

This month we will have a small Christmas Party. It is
a bring—a—plate affair and I hope as many of you as
possible will attend. In addition to the festivities,
Cyril has assured me there will be some super—duper
savings in the shop. 1987 has been a good year and
despite a smaller membership, we are still in a sound
financial position. One encouraging note is the number
of new members slowly trickling in. TI'ers it seems
are somewhat like old soldiers.

On behalf of all the old committee members and Eellow
directors, I wish each of you a safe and joyous time at

\,Christmas and in the New Year.

9. The submitted program must be the original work of
the author or joint authors as family participation in
the competition is encouraged.

10. The TIsHUG committee, reserve the right not to
present the major prize if entries submitted fail to
meet an adjudged adequate standard.

THE PRIZES

The overall winning author will be awarded a $200
voucher which can be used to purchase any goods then
available from the TIsHUG shop. Other minor awards, of
$20 TIsHUG Shop vouchers, will be presented as
encouragement to other authors whose programs are
adjudged to have sufficient merit.

WHY RUN A SOFTWARE COMPETITION?

Your Committee feels that TIsHUG must stimulate
interest in programming. For years we have ran
software competitions and some excellent material has
been submitted and distributed to the membership. But
the point now is that, apart from a handful of active
authors, the local supply is drying up, and of course,
you do not need me to tell you, that without software,
there is zero you can do with your TI.

What this boils down to is that we are relying, in the
main, on the generosity of overseas groups to supply
us with new software, with precious little to give
them in return. Sooner or later they will say, enough
is enough, as no doubt you and I would, if it was all
one way traffic.

Hence this competition. Hopefully a new base of
software will be established which we will be proud to
exchange with our friends around this country and
overseas.

So go to it. You have several months to complete your
program, and who knows, maybe win the big prize. 0

December 1987, Page 2

TelHIM

I* Secretary's Notebook *
 	.•))

Despite a bit of rain around lunch time, the last
meeting seemed to be enjoyed by all who attended.
There was certainly a lot to do and see on the day and
special thanks must go that willing band of "doers",
Ross, John, Russell, Shane, Peter, George and Arto —
sorry if I missed anyone — for their untiring efforts
throughout the day. Not, of course, to forget Cyril
and his band of shop—keepers, who toiled throughout the
day making sure you were able to get what you wanted at
the shop.

Speaking of the shop, Cyril tells me that there
was certainly a rush on the Data Perfect disks, with
him nearly selling out. And why not? At $12 a box of
10 these were a bargain. Watch for more disk specials
in coming months.

Version 6.4 of the RAM operating system proved
popular with most in attendance picking up a copy. If
you missed out, make sure you pick up a copy, as this
is excellent software.

The next meeting, to be held on Saturday, 5
December will be the last for this year and will take
the form of a picnic/barbeque get together. The
grounds of Woodstock are very spacious, with plenty of
BBQ and other facilities, so bring along your eats and
drinks and make a great afternoon of it. The shop will
be open during the afternoon — at time of writing — we
have the large upstairs room booked, and the
publications library facility will also be available.

Tony McGovern has written to advise that Version
4.0 of Funnelweb is now available and a distribution
copy has been received. Tony also advised, that his
son, Will, has temporarily ceased work on his TI—MS/DOS
file transfer program until after the HSC. You may
have read of this in Micropendium.

One new member is welcomed this month. He is
Colin McKay from Campbelltown. Hope you enjoy your
stay with us Colin and that you can get to some of the
meetings.

TIsHUG is now a company, and in accordance with
its Articles of Association an election for 5 Directors
will be held at the AGM on 6 February, 1988. Paragraph
16(1) of the Articles of Association states:—

"Nominations for the office of Director shall be
delivered to the Secretary by 8.00pm on the twenty
first (21) day prior to the day fixed by the Board for
the annual election of Directors."

Paragraph 17(b) states:—

"Nominations for election of the Directors shall
be made in writing and signed by two (2) members of the
Club and by the nominee who shall signify his consent
to the nomination."

In accordance with Paragraph 16(1), nominations
for the office of Director will close with the
Secretary, at 8pm on 16 January, 1988, while in
accordance with Paragraph 17(b), a nomination form is
contained elsewhere in this issue.

Please give this important matter some thought
over the next few weeks.

That's it for now. Hope to see you at the next
meeting.

1 This is just a few lines to express my gratitude
to the club for the many benefits received by many
members in the course of each year. Not enough is said
in praise of this fact for very little cost to each
member. The time and effort put in by many committee
officers and lay members in the many activities needed
to keep all the different things going, much of which
is unknown to members and has to go on to enrich our
lives, in the realm of computing.

I myself have been very conscious since joing the
club of these many benefits but like so many others
have taken things for granted until now, before writing
some praise to those who have made all things possible.

With the help of the many articles in the
newsdigest, like the 32K memory expansion, disk drives,
TI controller, etc. etc, I have been able to expand my
system beyond my wildest dreams, and at very moderate
cost. I am now a retired "oldie" who took up computing
by accident. After advising my nephew to have a look
at computers as a career opportunity, I decided to have
a look myself, and was advised to look at the TI99/4A
by one of the members. Believe me, this was the best
advice I have ever got!

Recently, for about a period of six weeks, I was
without my computer. It was heart—breaking being
unable to find the very serious fault — which I
unknowing at this time — had contributed to.

What to do?
I live on the mid North Coast, near Taree, with a

Regional Group of one — me! So you can see my plight,
how am I going to get it up and running?

As I happened to be going to Sydney to visit my
daughter, I rang John Paine, Technical Co—Ordinator,
and he agreed to see me that night at his home with my
non working TI etc. I arrived at John's at 7pm and
left very close to llpm after a long series of faults
had been diagnosed, corrected, parts replaced and a
complete test done on my system. Although this was all
very time cOnsuming, John made it all seem easy because
of his expertise.

Another member also arrived at John's that night
with a problem. That fault was also traced but because
of unavailability of parts, repair had to be held over
to another day. I also mention that this is the second
time that John has been able to help me out with a
problem. A fault in my home built disk drives was
analysed and the faulty part able to be replaced.

Please let it be known to all concerned of my
gratitude to John and to all officials, past and
present, for the help that I have received, too many to
detail, but which I humbly acknowledge.

Sincerely,
Bill Walker
Hallidays Point

Dear Editor,
Some time ago, a copy of Micro Pendium came out

with what was suppose to be a comprehensive listing of
TI User Groups around the world, but to my dismay,
TIsHUG was not included in that listing. The reason
for this letter, is to mention my discontent, for the
lack of Promotional work, ADVERTISING being being done
for our much loved repected Sydney based User Group.

If our group is to grow in numbers again, then it
must be SEEN HEARD, but it would appear that the
responsibility of that task has not been given to a
Committee Member or deligated from one to a member of
this group. This is a crying shame. There are
hundreds of TI Users out there, who don't know our
group exists, and don't know how to use their computer,
and who, probably have bought their consolt second hand
from someone who may even have originally been involved
with this group.

continued on page 8

1-151111G IVEVI1S DIGEST

(wfungi Tax gum)

(Page 3, December 1987

ZYNIIG 	 IISHILIG NEVIN DIGEST

TECHO TIME FAULT of the MONTH
.... John Paine

As Christmas is quickly approaching I'm afraid
that other matters tend to distract me from playing
with my beloved TI. So as a matter of course I will be
be brief with this article on installing independant
sound within the console.

This article was prompted by the fact that I was
able to purchase a high resolution monitor for my son's
system and get rid of the old black and white TV that
he was using.

The first major flaw in using the monitor was the
fact that there was no sound and this caused a little
bit of heartache for my son. No more beep
....beep....honking noises from his bedroom and the
shooting games were absolutely useless.

Two approaches to incorporating sound are viable.
1) Build an appropriate audio amplifier into the

new monitor or include the amplifier in side the
console.

2) Just put a speaker and isolating capacitor
in the console and don't worry about the rather muted
output from the speaker.

I chose to build an amplifier into the console and
run it from the internal 5 volt supply. This allows
plenty of sound and does not put a great load on the
console power supply.

The heart of the amplifier is a National
Semiconductor LM386 which is an 8 pin Audio Amplifier
which is specified to run from a 4 to 12 volt power
supply. With a small speaker mounted just behind the
cartridge port and a potentiometer sticking up in the
left hand corner just above the modulator connector
this installation has been providing the necessary
beeps and honks for a few weeks now.

The necessary parts are:

LM386 IC
100K ohm pot.
100 to 200 uF Electrolytic Capacitor
Small 8 to 16 ohm speaker

This minimum configuration will give a voltage gain of
about 20 and only consume about 18mW of energy,

Audio signal from the console is picked up from pin 5
of the modulator socket and the 5 volts and ground can
be picked up from the power board or motherboard
(Consult your copy of the technical manual first). As
stated above the pot is mounted immediately above the
modulator connector and the speaker was mounted in the
little speaker cage already provided by TI at the rear
of the module port. Those of you who may have owned a
TI 99/4 may remember that a speaker was provided. The
current 99/4A's case still has the same enclosure
(presumably a similar tool was used to injection mould
all the cases for the family of computers).

Access to this compartment is via a pair of self
tapping screws.

The circuit I used is indicated below.

(6)+ 5 volt

(3
(5)

Mod 	[7--
connect. [<--

[pot
[100k 	/

(6) [/I 	100-200uF

	

(2) I 	capacitor
(4)

ground

pins 1,7,8 not connected

The final assembly was then taped to console mother
board and tested.

Once again fault of the month is a misnomer. As our
machines get older, more and more strange things are
happening, and this month has been no exception.
One member recently bought over an original Stand Alone
TI disk controller for repair. While he waited, a
routine check showed that the power supply was shot and
internally a 741s259 had evaporated. The diagnosis was
fine but the repair was quite complicated. The power
board in the disk controller had been replaced by a
console power board some time ago and without too much
thought a reconditioned power board was substituted.
The replacement board used was one of the newer switch

mode types and I had to mount it in a different manner
to the damaged board. Because the controller case was
made of plastic, I just screwed the board down into the
existing holes from the previous board. 	The chip
problem was fixed and on power up I was promptly
greeted with a dense cloud of smoke and a terrible
stench of burnt capacitor.
On investigation, a dead short was placed on the board
by the plastic case. Yes, conductive plastic was the
culprit. Just shows that you must never assume
anything around these machines. The black plastic case
was manufactured using a metalised plastic formula,
probably to help with RFI suppression.
Since then I have found that some of the black consoles
use the same material.

Statistics compiled on console repairs still show that
machines built after week 27, 1983 still represent the
bulk of my workload. The common faults with these
machines are corrupted roms and dead microprocessor
chips. The most common faults in the black and silver
consoles are the decoupling choke in the VDP oscillator
and VDP ram chip failures. 0

RAMCARD TIP

A problem recently cropped up with my HORIZON
ramcard. As a result of a glitch in the system,
whenever I first turned on the PEB, the ramcard light
would come on and stay on. To make matters worse, the
screen would blank and the keyboard became disabled.

It looked like a classic case of lock—up and would
have meant taking out the RAMCARD, removing the
batteries and letting the card discharge. Since I
hadn't backed—up the ramcard onto a disk, this would
have meant the total loss of all the files. No way!, I
thought to myself and tried to come up with a less
drastic solution.

I needed to disable the automatic powerup routine
of the ramcard DSR, but I couldn't access either the
ramcard or any of the diskdrives in order to load a
diagnostic program. The only thing I could think of
was to use EASYBUG in my MINIMEMORY module. and
therein lies the solution....

To cut a long story short, here is what you need
to do:

1) Turn everything off.
2) Turn on the console first with MINIMEMORY
inserted and select option 2 (EASYBUG).
3) Turn on the PEB and TV.
If everything worked out OK, the ramcard light

won't be on and the keyboard will respond to input. If
things didn't work out, go back and repeat steps 1) to
3) until they do.

4) Type C1000 and <enter>. (or C1200 or whatever)
5) Type 01 and <enter>.

At this point the ramdisk light should come on and
stay on.

6) Escape from the C command by pressing the '.'
then M4000 and <enter>.
7) Change the AA to a 00 and press <enter>.
8) Quit EASYBUG and return to the title screen.
You should now be able to load the CONFIG file and

re—boot the ROS. In my case, I am using Version 6.3 of
the CALL MENU ROS from the Miami TI Users Group.

	

\(5)output 	/

	11 	

[/ speaker
[\

December 1987, Page 4)

IMMIG Nums olGrs-t

SECOND HAND ITEMS :-
(a)Grom Ports 	
(b)Ivory Console Cases 	

$ 12.00
$ 	2.00

BOOKS :-

(a) Back issues of SND 	 $ 	1.00
(b) Technical manual 	 $ 15.00
(c)TI-writer manual 	 $ 15.00
(d)Editor Assembler manual 	 $ 28.00
(e)TI LOGO Curriculum guide 	 $ 10.00
(f)TI 3 ring binders 	 $ 	4.00
(g)Micropendiums 	 $ 	3.00

1986-June to Dec./1987-Jan.to Oct.

SOFTWARE:-
(a) Club Software Tapes 	 $ 	3.00
(b)Club Software Disks 	 $ 	5.00

TIsHUG SHOP 	DECEMBER 1987 (c)Picasso Publisher V2.0 (Arto Heino)$ 20.00

Christmas is once more upon us, and to help the
members get the spirit of Christmas we will keep the
price of blank disks at $12.00 per box till the end of
December. Also we will be selling disk storage boxes
(see listing below).

Also the price of multiple disk software will be
reduced :- (ie single density software that won't fit
on one disk)

2 disk set...$ 8.00
3 disk set...$10.00

MODULES:-
(a) VIATEL-1 (for serial port 1)
(b) VIATEL-2 (for serial port 2)
(c) CART WRITER. (similar to Console writer)
(d) DIAGNOSTICS (will test your TI peripherals)

The price of the above modules is $25.00 each
NOTE:-CART-WRITER will not work on the 1983 console.

RAM DISK CARD PARTS :-
Most of the remaining parts for this project were

sold out at the November full day tutorial, the only
item left is the battery set.

(a) Batteries AAA in stick form 	$ 14.00

THIRD RUN OF RAM CARD P.C.Bs.
If the response is large enought we will have a

third run of the RAM card, this will require people
putting up the $35.00 with their order. We will need
at least 50 orders for boards to retain the same
pricing as for the previous run.
At the time of writing I have only one order, so please
get your order in quickly so we can get these under
way.
If we only get orders for 25 P.C.Bs.the cost will be
about $45.00 each, but if we can increase the order to
50 the price should be about $35.00 each.

PRINTER BUFFER PARTS :-
(a) P-BUFF PCB,EPROM,CRYSTAL,8255 	$ 51.00
(b) 41256 memory chips (8 req'd.) 	$ 40.00
(c) Computer sharer board & comp 	$ 18.00
(d) Printer sharer board & comp 	$ 18.00
(e) Plastic box (D/S 2508) small 	$ 9.00
(f) " 	" (D/S 2505) large 	$ 9.50
(g) 9 volt transformer 	 $ 6.50

NOW THE STANDARD ITEMS:-
(a) New DS/DD 5 1/4" Disks (box) 	$ 12.00
(b) Disk storage box (100 capacity) 	$ 20.00
(c) " 	 " plus 10 disks 	$ 30.00
(d) " 	 " plus 20 disks 	$ 40.00
(e) T.I. Joystick handles 	 $.50
(f) Peter Schubert's mini-expansion unit

DS/DD Disk controller card 	$190.00
Mini-PE mother board (with one of either-
32K mem :: PIO :: RS232 port) 	$ 85.00
Extra options on mother board
32K memory 	 $ 50.00
PIO printer port 	 $ 50.00
RS232 port 	 $ 50.00
Finished painted box for Mini PE 	$ 35.00

Bring or send your old original copy of Picasso
to the shop for an updated copy.

POSTAGE:-
Please NOTE that with all mail orders YOU have to
pay postage and packaging.

If you are phoning the SHOP please note that I am NOT
normally available before 7pm week days. (02)639 5847

FOA

Stand alone PIO interface, with cable

$90

Contact Steven Carr
(02) 608 1968

PUBLICATIONS LIBRARY REPORT.

BY WARREN WELHAM.

Well I finally did it,after many tries.I finally
wrote a report for the News Digest.

Firstly,I am happy to be able to report that the
publications library is now fully catalogued. The
library has 182 books and publications in it. 63
different overseas and local T.I. clubs
newsletters(past and present).Ranging from
America,Australia,Canada,England and other smaller
countries.

A list is just in its final stges of completion
after 11 months and should be ready this
month(hopefully)of all the books in the library with
their authors and catalogue numbers.

There is also a list of every issue of every
oversea's and local newsletter the library has.I hope
it will be avaiable at the club shop.Using this you can
keep a record of what the library has,as I will list
the new magazines we get each month.

I hope every one borrows big at the december
meeting so you can read the publications the library
has to offer over the christmas holidays and also
because their will be no borrowing in February due to
the library having a stocktake.

And finally If you are not yet a member of the
Publications library,then I recommend you join as there
is some excellent reading in the magazines as well as a
host of entertaining games and useful routines for you
to type in and enjoy over the christ-Ids
holidays.Remember 	it is only $5.00 to joip the
Publications library.

(Page 5, December 1987

1151-1Uti ‘1111115 INGEST
ASSEMBLY CONVERSIONS — a few more games and..\\

utilities from George Meldrum.

At the December meeting the following will be
released:

ON DISK:

.1.1111-11/11ARE
11,
column by ferry

I trust you found something to interest you in the
software that was available last month.

During my recent holidays, I busied myself
updating the complete software catalog. It is now
available, in disk form only at this stage, in any of
the following formats — double sided/double density (1
disk), double sided/single density (2 disks), single
sided/double density (2 disks), single sided/single
density (3 disks). In total, disk storage space, for
the catalog, amounts to 970 sectors. All files on the
catalog disk(s) are in D/V 80 format and contain the
programs name, a brief description, its size in disk
sectors and its language and peripheral requirements.
In a change from past catalogs I have produced, this
one shows the contents of each disk as it is in the
library. The D/V 80 files on the catalog disk(s) each
contain the contents of approximately 10 disks from the
library. Be prepared to spend some time as you print
it out as it runs to quite a number of pages.

New disks received in the past few weeks include:

DISK AID — a disk information, sector reading type
utility from Col Christensen of Brisbane. The disk has
2 large D/V 80 text files which will give you all the
information you need to get the most out of this
package. Requires XB or E/A module, 32K, disk drive
and printer, optional but recommended.

RAM DISK OP SYSTEM — Version 6.4 copy via John
Paine and authored by members of the Miami User Group.
For those with RAM cards this is the ultimate operating
system.

1. DISK AID as mentioned above.

2. FUNNELWEB V4.0 either on one double sided or
double density disk or on 2 single sided disks. Make
sure you get the right configuration for your system.

3. CHANNEL 99/1 containing the animal series of
pictures, a maze race to the crown game, a RAM test
utility plus source file, 3D Tic—Tac—Toe and an Airwolf
fly helicopter game. All programs this disk require
E/A module and 32K expansion.

4. CHRISTMAS MUSIC containing excellently
programmed music with the words to sing along to. All
your old favourite tunes will be on this disk.

ON TAPE:

TAPE 1987/12 — the same Christmas music as on the
disk version.

TAPE 1987/12A — some games to play during the
holiday period:

STAR PATROL — space game in XB
MAD DOGS — retrieve treasure and avoid dogs in XB
MOUSE — squish a mouse in XB
CONCENTRATION — concentration game in Basic
SEA POWER — well done battleship game in XB
NOMAD — a maze adventure in XB
BOOGENS 2 — shoot as many monsters as you can in

XB
KILLER BEES — fight off the killer bees in XB

That's about all I will have time to do so hope
you enjoy it.

CREATIVE FILING SYSTEM — Version 7.0 the latest
update from Mark Beck. I understand that Version 8.0
may soon be available so I will hold of issueing this
version until further word is heard.

FUNNELWEB — Version 4.0 the McGoverns classic
software package.

3 DISKS OF GAMES, UTILITIES PICTURES from the
Channel 99 user group in Canada. There is some really
good material on these disks.

On a final note, I have received one entry to the
software competition. Make sure you work on yours over
the Christmas period and remember, closing date for
entries is at the February, 1988 meeting.

And almost forgot, new publications recently
received and added to the publications library include
October issues of Ottawa UG, Northern NJ UG, Bug Bytes,
Edmonton UG, HV99er's, ATTIC and Spirit of 99. Some
good articles in these issues so recommend you borrow
if you are a member of the publications library.

continued from page 16

2080 C=ASC(A$)! C=ascii valu
e of the first character of
the command

2090 IF C>96 THEN C=C-32 ! I
he ascii value is greater
an 90 (2) decrease by 32
n and text for display

9020 SUB HELP

9030 DATA 8,5,"VALID COMMAND
S ARE:",10,5,"A = Add a Reco
rd",11,5,"D = Display a Reco
rd",12,5,"E = End Session"

9040 DATA 13,5,"H = Help (Th
is Menu)",14,5,"P = Print Da
ta",15,5,"Q = Query Data bas
e",16,5,"R Remove a Record

9050 DATA 17,5,"U = Update a
Record",24,2,"Press SpaceBar
to Continue"

9060 RESTORE 9030 ! Ensures
data read starting at 9020

9070 FOR C=1 TO 10 :: READ A
,B,A$:: DISPLAY AT(A,B):A$
:: NEXT C ! Reads the Data S
tatements and displays on sc
reen

9080 CALL KEY(0,K,S):: IF (K
032)+(S=-1)THEN 9080 ! Chec
ks for a spacebar press befo
re continuing

9090 SUBEND

9100 REM *** End of Help Sub
program ***

17000 SUB DISPLAY

17010 REM Take detail from t
he command line and get full
details of desired record

17020 REM Take the data stri
ng (record) appart and displ
ay the various parts on the
screen

17030 SUBEND

18000 SUB SEARCH

18010 REM Write a routine to
enter the file(already open)
and get record/s.

18020 REM Remember that it m
ust continue to search if th
e first character is not " "

18030 REM Write routine to d
isplay Surname field and fir
st character of FName on scr
een with an index number
18040 SUBEND

December 1987, Page 6)

,Ar'MUG

!Um-7

TISHLIG 	DIGEST

THE el:11/111/1l11141CATORS

Special Interest Group for Users
of the TEXPAC BBS.

by Ross Mudie, 9th November 1987.

CHRISTMAS GREETINGS.

I would like to take this opportunity to wish all
members and their families a very safe and happy
Christmas and New Year.

Don't forget the TIsHUG Software Competition whilst
you have some spare time over the holiday period.

There is no TND magazine in January, however your
committee is able to keep in touch with BBS members.
The Group Co—ordinator, Secretary, TND Editor, Shop—
keeper and Technical Co—ordinator are all capable of
directly loading their own files into the NEWS menu.
Watch out for these files which carry their user names.
The first line of the file tells you when the file was
uploaded into the BBS.

1. OPTIONAL SCREEN COLOURS FOR TEII AND 4A—TALK.

A number of members have asked for the BBS to
periodically change their terminal screen colour to
other than white characters on a blue background whilst
others using non—TI99/4A computers on the BBS have had
problems with the colour change string sending their
terminal "off the deep end".

From version 3X of the BBS software users will be able
to exercise some control over the screen colour when
using TEII or to avoid the screen change character
string.

To do this users will have to change their password
making the last character a number. Passwords with a
letter as the last character will remain with the
current white text on a blue screen.

The following is the last character allocation.

Digit Foreground Background Note.
0 	no change 	no change LF/CR
1 	White 	Black
2 	White 	Green
3 	White 	Magenta
4 	Black 	Cyan
5 	Black 	Yellow
6 	Black 	White
7 	Cyan 	Blue
8 	 Default
9 	 Default

Default
Non Digit White 	Blue

Digit 0 (zero) gives a LF/CR in place of the colour
string.

Digits 1-9 and the default include a clear screen byte
(CHR$(12)).

At the time that this item was written I requested
that users advise me of their alternative preferences
to those shown above. These preferences will be
included as options 8-9. The available choices are
listed on screen when a user is about to perform a
password change.

Once you have changed your password the new colours
will be given.

2. NEW REMOTE SYSOP FACILITY.

The SYSOP is now able to remotely delete or upload
basic or extended basic programs which appear in the
PROGRAMS menu. I am investigating the feasability of
allowing all users to upload programs, possibly into
the Discussion Rooms area. There will be more on this
subject when something is worked out.

3. DOWNLOADING EXTENDED BASIC PROGRAMS WITH BASIC.

When using the TEII module it is much more conven—
ient to use console basic to download prorams than x/b
which for most users requires the changing of the
command module.

Extended basic programs including those containing
assembly can be downloaded using TI BASIC. Once the
program has been downloaded it should be saved to disk
or cassette tape using SAVE DSKx.PROGNAME or SAVE CS1 .
Attempts to LIST or RUN will be fruitless but OLD RS232
and SAVE DSKx.PROGNAME or SAVE CS1 are valid in this
case.

When saving multipart Extended Basic programs which
contain assembly programs on disk, it is advisable to
use the same name as the program carries on the BBS.
These programs usually load the subsequent parts of the
program from a name contained in the previous part, so
if a different name is used then an error will occur
as an attempt is made to load the incorrectly named
part.

4. HELP FILES ON BBS.

I have observed that some people are unaware of
some of the common control facilities for the BBS. The
most common problems seem to be lack of understanding
of CONTROL S which pauses, CONTROL Q to un—pause,
the letter E once only to escape from a file which is
being listed and CONTROL H which permits a back space.
There are two files in the NEWS menu on the BBS which
detail how to use the BBS. These are BBS_HELP and
SENDMAIL. If in doubt about any facility on the BBS
then users may leave their questions as mail to SYSOP
on the BBS.

5. INTERMITTENT PROBLEMS AND LOCKUPS WITH TEII.

The major problem with TEII, extended basic or, in
fact any other command cartridge, is contact problems
on the cartridge edge connector. These contacts and the
mating contacts in the console can be cleaned with many
layers of clean, lint free cotton over the blade of a
small screwdriver. Take extreme care not to scratch
the contacts or the printed circuit tracks and always
observe static electric precautions to prevent damage
to static sensitive components. If an electronic grade
FREON cleaner is available it may be used to further
clean the edge connector and socket. Never use anything
abrasive on the edge connector or the contacts as this
will lead to future problems.

6. BBS ACCESS.

Access to the BBS is permitted for registered users
only due to problems caused in the past by unregister—
ed people. Requests for access should be sent to the
Secretary TIsHUG, PO Box 214 Redfern, 2016. Subscript—
ion rates are shown on page 1 of the TND magazine. 0

(Page 7, December 1987

1-151-WIG 	INGEST

TEXPAC BBS, An Overview of the Facilities.
by Ross Mudie, 26th October 1987.

It is now a little over a year since I took on the
task of SYSOP for the TEXPAC BBS. Regular readers of
the TND and users of the BBS will have observed the
steady effort to improve the BBS in both reliability &
facilities offered. This BBS uses an almost standard
TI99/4A home computer to provide a reasonably versatile
Bulletin Board Service for the registered users.

When I took the task on the BBS was very unreliable.
The previous SYSOP needed to provide constant supervis—
ion since there were many shortcomings in the program.
My aim was to improve the BBS so that it could provide
a reasonably reliable service, without the BBS ruling
the life of the SYSOP. The BBS now operates unattended,
sometimes for periods of over a month at a time, with
with remote SYSOP supervision only being provided.
The programming task that I have undertaken on this BBS
has taught me a lot about assembly programming in the
TI99/4A and there is still more to learn as I continue.

The basic structure of the BBS has been maintained
so that it is easy to operate and to provide support
for users with the simplest of TI99/4A configurations,
(i.e., TEII, Cassette recorder, stand alone RS232 and
modem). Many operational short cuts have been provided
for experienced users and new features have been added.
The major facility which has been removed is "the SYSOP
keyboard chat" & "Page SYSOP". These features were
virtually redundant due to the unattended nature of the
operation and this made additional memory space free
for other enhancements.

The following information summarises the major
features of the TEXPAC BBS.

1. NORMAL USER FACILITIES.

a) News Menu — Information Files, Adds, Club News, BBS
and program information.

b) Programs Menu — Downloadable basic and ext'd basic
programs in memory image format. Some
extended basic programs contain imbedded
assembly programs.

c) Mail System — Mail can be sent to other registered
users. All Mail is date & time stamped.
Mail is presented at log on & users may
save or delete mail.

d) Uncleared mail to ALL may be read prior to the
SYSOP placing it in the appropiate file.

e) Password Change — Users can change their own pass—
word. If the last character of the password is a
numeric digit then the colours of a terminal screen
used with TEII may be selected from the option
list.

f) User Log — Users may view the activity log which
the BBS maintains.

g) Discussion Rooms — This facility is still being
developed. Operational facilities so far include
a mail room for the committee & committee file load
and file delete. The committee files are loaded
into the NEWS menu without SYSOP intervention.

h) Log On Again — This allows users to log on again to
re—access the mail reading routine without the need
to call the BBS again.

i) General Control — Files may be paused or escaped
from. Abbreviated file or function selection is
provided whilst full menus are easily obtained. The
BBS times out after 9 minutes of non—activity and
releases automatically in the event of the data
carrier being lost by the modem.

k 	

2. REMOTE SYSOP FACILITIES.

These facilities allow the SYSOP to maintain all of
the software based activities of the BBS without having
to actually go to the BBS site.

a) Catalogueing of all disks.

b) Enabling new User Names and Passwords. (Also avail—
able to Secretary and Co—ordinator).

c) Send mail without the date/time stamp.

d) Read/Set Clock/calender in BBS.

e) Load/Delete News files.

Load/Delete Basic and Extended basic programs.

g) Place unfinancial users in a category which gives a
special message to these users at log on.

3. ON SITE LOGGING.

All BBS operations such as files read, programs down—
loaded, log—ons and log offs are recorded with time on
a dedicated 80 column printer. This assists in the
diagnosis of problems.

4. BBS HARDWARE.

The BBS consists of the following hardware:

TI99/4A console, amber monitor and PE Box which
contains:

a) 128K card (32K only used at present).

b) RS232 card (special EPROM).

c) Triple Tech Card (clock/calender & printer buffer).

d) Disk controller & 3 DSDD disk drives used as DSSD.

Additional equipment includes Auto Answer 300 baud
modem, hardware watchdog timer and a MX80 printer.

5. SOFTWARE and OPERATING SYSTEM.

The main program of the BBS runs in TI console basic
with links to assembly language provided by the Editor/
Assembler cartridge.

The basic program is just over 10K bytes in length &
with the necessary variables and arrays there is very
little free space in the console RAM. The assembly pro—
gram is a little over 6K in the high expansion RAM and
with a buffer allocation of 14K, there is about 4K of
free space for more assembly programming. The majority
of text strings transmitted by the BBS reside in the
low RAM and there is about 4K free here also.

from page 3
May I suggest an URGENT review of

this situation, and plan to Spead the word in in News
Media, Computer Magazines, and other forms of
promotion. We have the financial capabilities to
promote this group in a big way, but we seem to be
lacking in the enthusiasm we once had, in its
promotion.

If this group is to survive another 6 to 10 years,
then we need to rethink out how we are to tell others
we exist.

I would like to believe that our past eforts have
not been in vein, that our club and our computer will
not die.

Kindest Regards
SHANE ANDERSEN

December 1987, Page 8)

TIGHIJI6 NEWS DIGEST

LINKING EXTID BASIC—ASSEMBLY

WITH ROSS MUDIE.

TRANSFERING MEMORY IMAGE PROGRAMS
FROM TAPE TO DISK and DISK TO TAPE.

by Ross Mudie of TIsHUG, 12th November 1987.

This program is made up of a routine from an ILLAWARRA
Regional Group disk and routines from the Smart Prog—
rammer to provide GPLLNK and DSRLNK which were not pro—
vided by TI in the INIT routines of extended basic. The
source file is heavily documented to assist with your
understanding of the operation of the program.

The program allows users to transfer memory image pro—
grams from tape to disk or disk to tape. The purpose
of this article is to give programmers an application
example of DSR linking to both the Cassette Tape system
and the Disk system. Access to the cassette routines
is by using GPLLNK whilst access to the disk system is
via DSRLNK. The source file is in three distinct parts

(a)The Tape/Disk, Disk/Tape program.
(b)The GPLLNK routine.
(c)The DSRLNK routine.

These individual parts can be used in other programs.

This source file will appear on the TEXPAC BBS during
December 1987 as will a downloadable program version of
the extended basic program containing the object file
in CALL LOAD format. This when downloaded will allow
immediate use of the routines from extended basic.

The extended basic program which links into the ass—
embly follows. This version of the extended basic pro—
gram uses the conventional CALL LOAD from disk for the
loading of the assembled Display Fixed 80 object file.

100 ! SAVE DSKLTAPE/DISK
110 CALL INIT
120 CALL LOAD("DSK1.DTO")
125 CALL CLEAR
126 CALL KEY(3,K,S)
130 INPUT "DISKFILE TO SAVE/LOAD 	eg. DSKx.PROGNAM

":NAME$
140 IF LEN(NAMES)>15 THEN 130
190 PRINT :"PRESS D. DISK TO TAPE":"OR
	

T. TAPE TO
DISK"
200 CALL KEY(0,K,S)
210 IF S=0 THEN 200
220 IF K=68 THEN 260
230 IF K<>84 THEN 200
240 CALL LINK("TAPDIS",NAMES)
250 GOTO 270
260 CALL LINK("DISTAP",NAME$)
270 PRINT :"DO ANOTHER? Y/N": : :
280 CALL KEY(0,K,S)
290 IF S=0 THEN 280
300 IF K=89 THEN 130
310 IF K<>78 THEN 280
320 STOP

* 	LINK—IT 14 	Ross Mudie. 	Source=DTS 	Object=DTO

DEF 	TAPDIS,DISTAP

STATUS EQU >837C Status Byte
FAC EQU >834A Floating Point Accumulator
PAB EQU >0F80 Address of Peripheral Access Block
PNTR EQU >8356 Name pointer to PAB for DSRLNK
VMBW EQU >2024 Video Multiple Byte Write
STRREF EQU >2014 Gets a string from Extended Basic
VMBR 	EQU >202C Video Multiple Byte Read

WS 	BSS 32 	 Register workspace
PABDSK DATA >0500,>1000,0,>2000 	Disk PAB in CPU RAM

BYTE 0 	 Screen Display Offset byte
NLENBY BYTE 0 	 Name length byte

BSS 15 	Space allocation for DSKx.PROGNAME
B15 	BYTE 15 	Byte size constant of 15, decimal

EVEN

PABCS DATA >0600,>1000,0,>2000,>6003 	Cassette PAB
CS1 	TEXT 'CS1' 	 Cassette name
SAVE BYTE >06 Read about this on page 297 of E/A man
LOAD BYTE >05 Read about this on page 296 of E/A man

EVEN
SAVRTN DATA 0 	2 byte place to save return address

* DISK ACCESS SUBROUTINE
DISK LI 0,PAB 	Address in VDP RAM to put PAB

LI 1,PABDSK 	Info on the PAB in the CPU RAM
LI 2,25 	How many bytes to write in VDP RAM
BLWP @VMBW 	 Do it
LI 6,PAB+9 	DSRLNK uses the VDP address of
MOV 6,@PNTR 	the name length byte in the
BLWP @DSRLNK 	PoiNTeR at >8356 to find the PAB
DATA 8 	 The BLWP does the disk access
RT 	 Return after subprogram

* SUBROUTINE TO TRANSFER LENGTH OF JUST READ PROGRAM
* INTO SAVE PAB.
CHANGE LI 0,>1002 Location of length of file just read

LI 2,2 	 2 bytes to be read from VDP
BLWP @VMBR 	 Get it
RT 	 Return

* TAPE ACCESS SUBROUTINE
* See page 253 of e/a manual to assist with this part.

TAPE LI 0,PAB 	Address in VDP RAM to put PAB
LI 	1,PABCS 	Source of PAB info in CPU RAM
LI 	2,13 	 Number of bytes to wriie
BLWP @VMBW 	 Do it
LI 	1,PAB+13 Addr of byte after CS PAB in VDP
MOV 1,@PNTR 	 Put it in PNTR
LI 1,>0800 The byte >08 required for DSR call
MOVB 1,@>836D 	 Put the >08 in >836D
LI 	0,PAB+10 	Address of device name 	CS1
LI 1,FAC 	Device name must be put in FAC
LI 2,3 	 Number of bytes to read
MOV 2,@PNTR-2 	Put length of name in >8354-5
BLWP @VMBR 	Transfer copy of name to FAC
CLR @>83D0 	 Must be zero

MOVB @>83D0,@STATUS Clr status byte before GPLLNK
BLWP @GPLLNK 	Branch Load WSP to GPLLNK
DATA >3D 	 & do the Tape DSR access.
RT 	 Return

* GET DISK NAME FROM EXTENDED BASIC SUBROUTINE
GETDNM CLR RO 	 Element 0

LI 	R1,1 	 Argument 1
MOVB @B15,@NLENBY 	 Maximum length
LI R2,NLENBY 	 Where to put DSKx.NAME
BLWP @STRREF 	 Do it
RT 	 Return from subprogram

* ENTRY TO DISK to TAPE ROUTINE
DISTAP MOV 11,@SAVRTN 	Remember return address

LWPI WS 	Load our own register work space
BL @GETDNM 	 Get disk name from x/b
MOVB @LOAD,@PABDSK 	Set up disk PAB for load
MOVB @SAVE,@PABCS 	Set up tape PAB for save
BL @DISK 	 Do the disk access
LI 1,PABCS+6 	Load R1 with addr of size word
BL @CHANGE 	To put loaded size in resave PAB
BL @TAPE 	 Do the tape access
JMP RETURN

continued on page 10

(Page 9, December 1987

AI 	R9,-8 	 Adjust pointer to flag byte
BLWP @VSBR 	 Read device name length
MOVB R1,R3 	 Store it
SRL R3,8 	 Make it a word value
SETO R4 	 Initialise counter
LI R2,NAMBUF 	 Point to NAMBUF

LNK$LP INC RO 	 Point to next char of name
INC R4 	 Increment char counter
C 	R4,R3 	 End of name?
JEQ LNK$LN 	 Yes
BLWP @VSBR 	 Read current char
MOVB R1,*R2+ 	 Move it to NAMBUF
CB R1,@DECMAL 	 Is it a decimal point?
JNE LNK$LP 	 No

LNK$LN MOV R4,R4 	 Is name length zero?
JEQ LNKERR 	 Yes - Error
CI 	R4,7 	 Is name length > 7 ?
JGT LNKERR 	 Yes - Error
CLR @CRULST
MOV R4,@SCLEN-1 	Store name length for search
MOV R4,@SAVLEN 	Save device name length
INC R4 	 Adjust it
A 	R4,@PNTR 	Point to position after name
MOV @PNTR,@SAVPAB 	 Save pointer into

device name
* SEARCH ROM FOR DSR

SROM LWPI GPLWS
CLR R1
LI 	R12,>0F00

NOROM MOV R12,R12
JEQ NOOFF
SBZ 0

NOOFF AI R12,>0100
CLR @CRULST
CI R12,>2000
JEQ NODSR
MOV R12,@CRULST
SBO 0
LI R2,>4000
CB *R2,@HAA
JNE NOROM
A 	@TYPE,R2
JMP SGO2

SGO 	MOV @SADDR,R2
SBO 0

SGO2 MOV *R2,R2
JEQ NOROM
MOV R2,@SADDR
INCT R2
MOV *R2+,R9

Use GPL Workspace to search
Version found of DSR

Start over again
Anything to turn off ?

No
Yes, turn it off!

Next DSR ROM's turn on
Clear in case finished

At the end?
No more ROM's to turn on
Save address of next CRU

Turn on ROM
Start at the beginning

Is it a valid ROM
No!

Go to the first pointer

Continue where we left off
Turn ROM back on

Is address a zero?
Yes, no program to look at
Remember where to go next

Go to entry point
Get entry address

* CHECK AND SEE IF NAME MATCHES

MOVB @SCLEN,R5
	

Get length as counter
JEQ NAME2
	

Zero length? Don't do match
CB R5,*R2+
	

Does length match ?.
JNE SGO
	

No
SRL R5,8
	

Move to right place
LI R6,NAMBUF
	

Point to NAMBUF
NAME1 CB *R6+,*R2+
	

Is character correct?
JNE SGO
	

No
DEC R5
	

More to look at?
JNE NAME1
	

Yes
NAME2 INC RI
	

Next version found
MOV R1,@SAVVER
	

Save version number
MOV R9,@SAVENT
	

Save entry address
MOV R12,@SAVCRU
	

Save CRU address
BL *R9
	

EXECUTE ROUTINE
JMP SGO
	

Not right version
SBZ 0
	

Turn off ROM
LWPI DLNKWS
	

Select DSRLNK workspace
MOV R9,R0
	

Point to flag in PAB
BLWP @VSBR
	

Read flag byte
SRL R1,13
	

Just want the error flags
JNE IOERR
	

Error !
RTWP

* ERROR HANDLING
NODSR LWPI DLNKWS 	 Select DSRLNK workspace
LNKERR CLR R1
	

Clear the error flags
IOERR SWPB R1

MOVB R1,*R13 	Store error flags in calling RO
SOCB @H20,R15 	Indicate an error occured
RTWP 	 Return to caller
END

Zgiff 	

from page 9

1115HILIG NEVIN DIGEST

* ENTRY TO TAPE to DISK ROUTINE
TAPDIS MOV 11,@SAVRTN 	Remember return address

LWPI WS 	 Load register work space
BL @GETDNM 	 Get disk name from x/b
MOVB @LOAD,@PABCS 	 Set up tape for load
MOVB @SAVE,@PABDSK 	Set up disk for save
BL @TAPE 	 Load from Tape
LI 	1,PABDSK+6 	Address for the file size
BL @CHANGE 	Take file size from tape-disk
BL @DISK 	 Save program to disk

RETURN CLR 0 	 Prevent false indication
MOVB 0,@STATUS 	 of errors
LWPI GPLWS 	 Reload GPLWS for X/B
MOV @SAVRTN,11 	Remember where to return
RT 	 Return to x/b

* GPLLNK routine for extended basic.

UTLWS EQU >2038
	

Utility workspace
SUBST EQU >8373
	

Subroutine Stack Pointer
GRMRA EQU >9802
	

GRoM Read Address
GPLWS EQU >83E0
	

GPL Work Space

GPLLNK DATA UTLWS 	BLWP @ GPLLNK, vectors: Workspace
DATA GPLLN1 	 Entry point

GPLLN1 MOVB @GRMRA,R0 (Save Grom read address in RO
SWPB RO 	{
MOVB @GRMRA,R0
SWPB RO

AI R0,-3 	Back up to the XML instruction

MOVB @SUBST,R1
	

Get the stack pointer
SRL R1,8
AI R1,>8300

INCT R1
	

(Push XML address for return
MOV RO,*R1
SWPB R1
MOVB R1,@SUBST

LI R3,>2000 Load R3 with address of XML link
MOV *R3,R2 	Save current XML link address

LI RO,GPLLN2 	(Load new XML address at
MOV RO,*R3 	 address >2000

MOV *R14+,@>83EC 	Place GPLLNK data value
at >83CE & advance saved PC past DATA

LWPI GPLWS 	 Load GPL/xb workspace
B 	@>0060 	 Go to routine in console

GROM chip 0

GPLLN2 LWPI UTLWS 	Should return here, reload UTLWS
MOV R2,*R3 Reload original XML address in >2000
RTWP 	Return to caller after GPLLNK & DATA

* DSRLNK routine for XB

SAVCRU DATA 0
	

CRU address of peripheral
SAVENT DATA 0
	

Entry address of DSR
SAVLEN DATA 0
	

Save device name length
SAVPAB DATA 0
	

Pointer to device name in PAB
SAVVER DATA 0
	

Version number of DSR
DLNKWS DATA 0,0,0,0,0
TYPE 	DATA 0,0,0,0,0,0,0,0,0,0,0
NAMBUF DATA 0,0,0,0
H20 	DATA >2000
DECMAL TEXT !.!
HAA 	BYTE >AA

EVEN
DSRLNK - Workspace, PC for BLWP @DSRLNK

DSRLNK DATA DLNKWS,DLENTR
DLENTR MOV *R14+,R5 	Fetch program type for link

SZCB @H20,R15 	 Reset equal bit
MOV @PNTR,R0 	 Fetch pointer into PAB
MOV RO,R9 	 Save pointer

\, 	

VSBR 	EQU >2028
SCLEN 	EQU >8355
CRULST EQU >83D0
SADDR 	EQU >83D2

December 1987, Page 10)

TISHIIG NM% DIGEST
(

Hardware News JOYSTICK CONVERTOR.
by Laurie Marsh of TIsHUG.

•meme■■■•••••■•••.„..\

By P. Schubert

The new MULTI-FUNCTION CARD was displayed and used
to run a system at the November Tutorial day. I now
have two prototype MULTI-CARD's, both of which have
functioned reliably,and one has been used in different
PE boxes. This MULTI-CARD was designed for the
following reasons:-

1) To provide an advanced double density
controller more suited to todays modern disk drives and
software, developed to run at faster speeds, and
including EXTRA CALLS provided by Corcomp and Myarc
designs as well as our own enhancements.

2) To provide a source of local RS232 CARDS which
have become scarce (many have become faulty and are
uneconomical to repare due to use of special IC's), and
also to enhance it to meet todays extra needs.
Additional commands include VIATEL (PRESTEL) 1200/75
baud, 75/1200, MIDI (31250 baud), RTTY 50 baud,and
extra speeds of 50 baud and 19200 baud. The 'PIO' port
can also be called 'PRINT'.

. 	3) Memory expansion of 32K eliminates need for
separate 32K card in PE box.

4) Only one power supply is required for all
functions to work, although the NEG supply is used for
RS232. This allows the MULTI-CARD to be used in
home-made PE box systems, including the Poormans Disk
System featured in earlier TND.

5) It is a buffered card for extra reliability and
compatability with other commercial PE boards. Also
the Ports use TI standard Connectors.

6) All these functions can be provided on one card
to save space in your PE box, and keep cost to a
minimum.

This card represents 2 years of part-time design
and development work on my part, and it has resulted in
a number of other peripherals being developed for our
little orphan TI in the process, notably the MINI-PE
SYSTEM, which is a stand-alone version of this card,
and the "single" chip 32K design now used as a kit for
mounting within console.

I am in the process of ordering PCBs now so that
production can start early next year, and I would like
to hear from anyone interested in either the full
MULTI- CARD or a partial RS232 or Disk only card. Cost
is expected to be around $230 for Disk Control only,
$170 for RS232 only, and a maximum of $390 for all
options including 32K.

A MULTI-CARD is also available for loan to
Regional Groups. Contact me on (02)3585602 or write to

P. Schubert
P.O.Box 28
Kings Cross 2011
	

0

'Congratulations, 'man. You've,:just invented the world's first 2000
bit micro'

Just recently my 2 boys had worn out their third
joystick, which I can't complain about considering the
2 years of service we got out of them, averaging about
an hour a day.

It would be great if we could buy a stick to go
straight into the TI port with out modifications. Thus
if you bought cheaply as I did ("Quick shot 1, $12.99
at TARGET") then, if you received a faulty unit, you
could at least return it to the supplier and get it
replaced as I had to !!!

This brings us to this very simple project, with not
much more work or cost then converting your new
joystick.

I used a small plastic jiffy box with 2 male 9 pin
sockets mounted to allow both sticks to be plugged in.
Then using the original TI "Y" cable with plug left
attached and the old joysticks cut from the cables. The
6 inner wires are then terminated to the back of the 9
pin sockets via small signal type diodes ("1N4001,
1N914 etc").

Once you have mounted the sockets in the case, wire
the 10 diodes with the black band end ("cathode")
soldered to the back of the socket (except the white
"live" which should be soldered directly without a
diode).

The 5 wires from each cable can then be soldered to
the free end of the diodes, but cover with spaghetti
first so no cross shorts can develop.

1 	2 3 4 5

: @ @ @ @ @ :
: 	socket in jiffy box

(2 required)

: @ @ @ @: Pin numbers are read from
----------- 	the front of jiffy

socket
6 7 8 9

TI "Y" cable colours to sockets, with pin numbers to
suit "QUICKSHOT1"
(one cable to one socket)

Pin 1 	orange up
Pin 2 	Green down
Pin 3 	brown left
Pin 4 	Blue right
Pin 6 	black fire
Pin 8 	white live (no diode)

PARTS REQUIRED

1 * SMALL plastic jiffy box
10 * IN4001 OR EQUIV
YOUR OLD TI JOYSTICK "Y"CABLE
2 * 9 PIN MALE SOCKETS
Length of spaghetti to suit diode size
And of course 2 JOYSTICKS SUITABLE FOR ATARI VIDEO

GAME SYSTEM, ATARI 400/800, COMMODORE VIC-20-C64, NEC
PC 6001. 0

'It used to be notes up the chimney asktng for train sets — now a s all
printouts requesting expansion interfaces and floppy disk driues.'

(Page 11, December 1987

SNUG'
	

TIGHLIG 1111E11115 DIGEST

100 REM CHANNEL 99 HAMILTON
USER'S GROUP
110 REM THE BOOGENS
120 REM Al-B0003-JGU
Bo REm ****************
140 REM * W.M. JOHNSON *

REm ****************
160 CALL CHAR(128,"147687612
6")
170 CALL COLOR(12,7,7)
180 CALL CLEAR
190 FOR L=5 TO 8
200 CALL COLOR(L,7,7)
210 NEXT L
220 FOR 1=24 TO 1 STEP -1
230 CALL HCHAR(I,1,120,32)
240 CALL SOUND(-200,350-10*I
,5,220-10*1,5)
250 NEXT I
260 CALL SCREEN(7)
270 PRINT TAB(9);"THE BOOGEN
S":TAB(13);"ARE":TAB(11);"CO
MING". • • • • • • •
280 FOR L=5 TO 8
290 CALL COLOR(L,2,1)
300 RANDOMIZE
310 NEXT L
320 CALL SOUND(750,333,6,444
,6,555,6)
330 CALL SOUND(10,110,0,120,
0)
340 CALL CLEAR
350 CALL CHAR(40,"0808081818
II)

360 CALL CHAR(41,"0002041818
”)

370 CALL CHAR(42,"000000181F
.)

380 CALL CHAR(43,"0000001818
0402")
390 CALL CHAR(44,"0000001818
10101")
400 CALL CHAR(45,"0000001818
204")
410 CALL CHAR(46,"000000F818
II)

420 CALL CHAR(47,"0040201818
.)

430 CALL CHAR(59,"081C7F5D49
14")
440 CALL CHAR(58,"080849495D
3E1C08")
450 CALL CHAR(64,"4F7F0F1F0A
0203")
460 CALL CHAR(65,"40224488F0
F2F5F8")
470 CALL CHAR(74,"001C042E1F
2E041C")
480 CALL CHAR(73,"001C207OFF
70201C")
490 CALL CHAR(80,"0003020A1F
OF7F4F")
500 CALL CHAR(81,"F8F5F2F088
44224")
510 CALL CHAR(88,"00002892BA
FE38I")
520 CALL CHAR(89,"10387CBA92
92101")
530 CALL CHAR(96,"00C04050F8
FOFEF2")
540 CALL CHAR(97,"1FAF4F0F11
22442")
550 CALL CHAR(104,"382074F87
42038")
560 CALL CHAR(105,"38040EFF0
E0438")
570 CALL CHAR(112,"F2FEFOF85
040C")
580 CALL CHAR(113,"024422110
F4FAF1F")
590 SC=0
600 HARD=5

610 BOOG1=1
620 BOOG2-1
630 BOOG3=32
640 BOOG4=24
650 BOOG5=24
660 BOOG6=24
670 BOOG7=1
680 BOOG8=0
690 CALL COLOR(12,8,8)
700 CALL SCREEN(15)
710 REM *************
720 REM * MOVE LOOP *
730 REm *************
740 FOR MOVE=1 TO HARD
750 CALL JOYST(1,ROUND,Y)
760 POINT=POINT+ROUND/4
770 IF POINT>8 THEN 790
780 IF POINT<1 THEN 810 ELSE
820

790 POINT=1
800 GOTO 820
810 POINT=8
820 CALL HCHAR(12,16,39+POIN
T)
830 CALL KEY(1,FIRE,ST)
840 IF FIRE=18 THEN 1950
850 NEXT MOVE
860 	*****************
870 REM * PICK A BOOGEN *
880 REm *****************
890 CALL COLOR(BOOGEN+3,1,1)
900 BOOGEN=INT(RND*8)+1
910 DEAD=0
920 ON BOOGEN GOTO 960,1080,
1200,1320,1440,1560,1680,180
0
930 REm ****************
940 REM * BOOGEN MOVER *
950 REm ****************
960 IF DEAD=1 THEN 1040
970 BOOG1=BOOG1+1
980 IF B0001=10 THEN 2050
990 CALL HCHAR(BOOG1+1,16,58

1000 CALL HCHAR(BOOG1+2,16,5
9)
1010 CALL COLOR(BOOGEN+3,7,1

1020 CALL HCHAR(BOOG1,16,32)
1030 GOTO 2030
1040 CALL HCHAR(BOOG1+2,16,3
2)
1050 CALL HCHAR(BOOG1+1,16,1
28)
1060 BOOG1=1
1070 GOTO 900
1080 IF DEAD=1 THEN 1160
1090 BOOG2=800G2+1
1100 IF BOOG2=10 THEN 2050
1110 CALL HCHAR(BOOG2,29-800
G2,32)
1120 CALL HCHAR(BOOG2+1,28-B
00G2,65)
1130 CALL HCHAR(BOOG2+2,27-B
00G2,64)
1140 CALL COLOR(BOOGEN+3,7,1

1150 GOTO 2030
1160 CALL HCHAR(BOOG2+1,28-B
00G2,32)
1170 CALL HCHAR(80002+2,27-8
00G2,128)
1180 BOOG2=1
1190 GOTO 900
1200 IF DEAD=1 THEN 1280
1210 BOOG3=BOOG3-1
1220 IF BOOG3=19 THEN 2050
1230 CALL HCHAR(12,800G3,32)
1240 CALL HCHAR(12,BOOG3-1,7
3)
1250 CALL HCHAR(12,800G3-2,7
4)

1260 CALL COLOR(BOOGEN+3,7,1

1270 GOTO 2030
1280 CALL HCHAR(12,BOOG3-1,3
2)
1290 CALL HCHAR(12,BOOG3-2,1
28)
1300 BOOG3-32
1310 GOTO 900
1320 IF DEAD=1 THEN 1400
1330 BOOG4=BOOG4-1
1340 IF BOOG4=15 THEN 2050
1350 CALL HCHAR(BOOG4,BOOG4+
4,32)
1360 CALL HCHAR(BOOG4-1,BOOG
4+3,81)
1370 CALL HCHAR(BOOG4-2,1300G
4+2,80)
1380 CALL COLOR(BOOGEN+3,7,1

1390 GOTO 2030
1400 CALL HCHAR(BOOG4-1,BOOG
4+3,32)
1410 CALL HCHAR(BOOG4-2,800G
4+2,128)
1420 BOOG4=24
1430 GOTO 900
1440 IF DEAD=1 THEN 1520
1450 BOOG5=BOOG5-1
1460 IF BOOG5=14 THEN 2050
1470 CALL HCHAR(BOOG5-1,16,8
9)
1480 CALL HCHAR(BOOG5-2,16,8
8)
1490 CALL COLOR(BOOGEN+3,7,1

1500 CALL HCHAR(BOOG5,16,32)
1510 GOTO 2030
1520 CALL HCHAR(BOOG5-1,16,3
2)
1530 CALL HCHAR(BOOG5-2,16,1
28)
1540 BOOG5=24 	,
1550 GOTO 900
1560 IF DEAD=1 THEN 1640
1570 BOOG6=1300G6-1
1580 IF BOOG6=15 THEN 2050
1590 CALL HCHAR(BOOG6,28-800
G6,32)
1600 CALL HCHAR(BOOG6-1,29-8
00G6,97)
1610 CALL HCHAR(BOOG6-2,30-B
00G6,96)
1620 CALL COLOR(BOOGEN+3,7,1

1630 GOTO 2030
1640 CALL HCHAR(80006-1,29-8
00G6,32)
1650 CALL HCHAR(BOOG6-2,30-B
00G6,128)
1660 BOOG6=24
1670 GOTO 900
1680 IF DEAD=1 THEN 1760
1690 BOOG7=BOOG7+1
1700 IF BOOG7=14 THEN 2050
1710 CALL HCHAR(12,800G7,32)
1720 CALL HCHAR(12,BOOG7+1,1
5)
1730 CALL HCHAR(12,800G7+2,1
04)
1740 CALL COLOR(BOOGEN+3,7,1

1750 GOTO 2030
1760 CALL HCHAR(12,800G7+1,3
2)
1770 CALL HCHAR(12,800G7+2,1
28)
1780 BOOG7=1
1790 GOTO 900
1800 IF DEAD=1 THEN 1880
1810 BOOG8=BOOG8+1
1820 IF BOOG8=10 THEN 2050

continued on page 15

December 1987, Page 12)

TI5HUG 	DIGEST

100 CALL COLOR(14,9,9)
110 CALL CHAR(136,"FFFFEFFFF
FFFFFFF")
120 CALL MAGNIFY(4):: CALL S
CREEN(2)
130 NIV=1 	CHA=5 	DENT=1
:: C=8 :: SCORE=0 :: SPEED=

12 :: CS=14
140 CALL CLEAR
150 FOR 1=2 TO 8 :: CALL COL
OR(I,16,1):: NEXT I
160 DISPLAY AT(10,12):"1983"
:: DISPLAY AT(12,5):"J A W
BREAKE R"
170 DISPLAY AT(14,5):" PAR
P.PELLETIER"
180 FOR I=1 TO 400 :: NEXT I
190 DISPLAY AT(10,7):" "
DISPLAY AT(12,5):" "
200 DISPLAY AT(14,5):" "
210 CALL CHAR(104,"FFFFFFFFF
FFF0000000000000000000OFFFFF
FFFFFFF00000000000000000000"

220 CALL CHAR(112,"070F1F333
77F7EFFFFE773393C0E0F03E0FOF
8CCECFE7EFFFFE7CE9C3C7OFOCO"

230 CALL CHAR(116,"3F7FFFFFF
F00000000000OFFFFFF7F3FF0F8F
CFCFC000000000000FCFCFCF8F0"

240 UP$="000000DBDBDB0000000
ODBDBDB0000000000006C6C6C000
000006C6C6C000000"
250 CALL CHAR(120,UP$)
260 OUT$="COCOD8181B030300C0
COD8181B0303000C0C6C60600000
0000006C6060000000"
270 CALL CHAR(128,OUT$)
280 DN$="00000000DBDBDBDBOOD
BDBDBDB000000000000006C6C6C6
COO6C6C6C00000000"
290 CALL CHAR(124,DN$)
300 CALL CHAR(98,"0000000000
000010")
310 CALL CHAR(97,"0000000000
3C3C3C")
320 CALL CHAR(96,"000OFFFFFF
FF0000"):: CALL COLOR(9,C,1)
330 GOSUB 350
340 GOTO 580
350 FOR I=1 TO 24 STEP 5
360 CALL HCHAR(I,1,96,32)
370 NEXT I
380 FOR 1=3 TO 18 STEP 5
390 FOR J=3 TO 30 STEP 3
400 CALL HCHAR(I,J,98)
410 NEXT J :: NEXT I
420 CALL HCHAR(3,3,97)
430 CALL HCHAR(3,30,97)
440 CALL HCHAR(18,3,97)
450 CALL HCHAR(18,30,97)
460 DISPLAY AT(23,1):"J A W
BREAKER"
470 CALL SPRITE(#10,104,2,(5
*8)-5,1,0,SPEED)
480 CALL SPRITE(#11,104,2,(1
O*8)-5,1,0,-SPEED-8)
490 CALL SPRITE(#12,104,2,(1
5*8)-5,200,0,SPEED+8)
500 CALL SPRITE(#3,112,CS-2,
(1*8)+1,125,0,INT(SPEED/2))
510 CALL SPRITE(#4,112,CS-4,
(6*8)+1,25,0,-INT(SPEED-8/2)

520 CALL SPRITE(#5,112,CS-10
,(16*8)+1,225,0,INT(SPEED+8/
2))

530 DISPLAY AT(7,5):"YOU HAV
E";CHA;" CHANCES!" :: DISPLA
Y AT(2,10):"LEVEL ";NIV 	F
OR T=1 TO 300 :: NEXT T 	D
ISPLAY AT(7,3):" " 	DISPLA
Y AT(2,1):"" :: DISPLAY AT(7
,5):" "
540 CALL SPRITE(#1,116,9,(11
*8)+1,125)
550 CALL SPRITE(#2,120,16,(1
1*8)+1,125)
560 LH=89 	LV=125 	P0=11
570 RETURN
580 LH=89 	LV=125 	P0=11
590 CALL JOYST(1,V,H)
600 IF H=-4 AND V=0 THEN LH=
LH+40 	GOTO 780
610 IF H=4 AND V=0 THEN LH=L
H-40 :: GOTO 860
620 IF V=-4 THEN LV=LV-24
GOTO 960
630 IF V=4 THEN LV=LV+24
GOTO 980
640 IF DENT=1 THEN LET DENT=
2 :: GOSUB 760 :: GOTO 690
650 IF COL=1 THEN LET TIM=TI
M+1
660 IF TIM>=20 THEN COL=0

TIM=0
670 IF COL=0 THEN CALL COLOR
(9,8,1):: CALL COLOR(#3,12,#
4,10,#5,4)
680 IF DENT=2 THEN LET DENT=
1 :: GOSUB 760 :: GOTO 690
690 IF P0=9 OR P0=10 THEN CA
LL COINC(#1,#3,24,SS):: IF S
S=-1 THEN GOTO 1090
700 IF P0=10 OR P0=11 THEN C
ALL COINC(#1,#4,24,SS):: IF
SS=-1 THEN GOTO 1090
710 IF P0=11 OR P0=12 THEN C
ALL COINC(#1,#5,24,SS):: IF
SS=-1 THEN GOTO 1090
720 IF CHA<=0 THEN 1400
730 GOTO 590
740 GOSUB 1000
750 GOTO 590
760 IF DENT=1 THEN CALL PATT
ERN(#2,120):: RETURN
770 IF DENT=2 THEN CALL PATT
ERN(#2,124):: RETURN
780 IF LH>=161 THEN LH=LH-40

GOTO 640
790 CALL POSITION(#1,X,Y)
800 IF X=9 THEN P0=10 	GOS
UB 950 :: GOTO 840
810 IF X=49 THEN P0=11 :: GO
SUB 950 :: GOTO 840
820 IF X=89 THEN P0=12 :: GO
SUB 950 :: GOTO 840
830 IF X=129 THEN P0=13 	G
OSUB 950 :: GOTO 840
840 IF XXX=-1 THEN GOSUB 100
0
850 GOTO 640
860 IF LH<=1 THEN LH=LH+40 :
: GOTO 640
870 CALL POSITION(#1,X,Y)
880 IF X=9 THEN P0=9 	GOSU
B 940 :: GOTO 920
890 IF X=49 THEN P0=10 :: GO
SUB 940 :: GOTO 920
900 IF X=89 THEN P0=11 :: GO
SUB 940 :: GOTO 920
910 IF X=129 THEN P0=12 	G
OSUB 940 :: GOTO 920
920 IF XXX=-1 THEN GOSUB 100
0
930 GOTO 640
940 CALL COINC(#1,#P0,24,XXX
):: RETURN

950 CALL COINC(#1,#P0,32,XXX
):: RETURN
960 IF LV<=1 THEN LV=LV+24 :
: GOTO 640
970 GOSUB 1000 :: GOTO 640
980 IF LV>=232 THEN LV=LV-24

GOTO 640
990 GOSUB 1000 :: GOTO 640
1000 CALL LOCATE(#1,LH,LV,#2
,LH,LV)
1010 GOSUB 1200
1020 IF COL=1 THEN CALL COLO
R(#3,14,#4,14,#5,14):: CALL
COLOR(9,14,1):: LET TIM=TIM+
1
1030 IF TIM>20 THEN COL=0
TIM=0 :: CALL COLOR(#3,12,#
4,10,#5,4):: CALL COLOR(9,8,
1)
1040 IF P0=9 OR P0=10 THEN C
ALL COINC(#1,#3,24,SS):: IF.
SS=-1 THEN GOTO 1090
1050 IF P0=10 OR P0=11 THEN
CALL COINC(#1,#4,24,SS):: IF
SS=-1 THEN GOTO 1090
1060 IF P0=11 OR P0=12 THEN
CALL COINC(#1,#5,24,SS):: IF
SS=-1 THEN GOTO 1090
1070 IF COUNT>=40 THEN SPEED
=SPEED+4 	NIV=NIV+1 	COU
NT=0 	GOTO 380
1080 RETURN
1090 IF COL=1 THEN 1180
1100 CALL PATTERN(#2,128)
1110 FOR I=1 TO 20
1120 FOR T=1 TO 10 :: NEXT T
1130 CALL MOTION(#2,16,0)
1140 CALL SOUND(-1,200*I,0,-
2,0):: NEXT I
1150 CALL MOTION(#2,0,0)
1160 CHA=CHA-1 :: IF CHA<=0
THEN 1400
1170 GOSUB 470
1180 CALL COLOR(#P0-7,1):: S
CORE=SCORE+25
1190 GOTO 590 :: GOTO 590
1200 CALL POSITION(#1,X,Y)
1210 IF X=9 THEN LET H0=3 ::
GOTO 1260
1220 IF X=49 THEN LET H0=8 :
: GOTO 1260
1230 IF X=89 THEN LET H0=13

GOTO 1260
1240 IF X=129 THEN LET H0=18

GOTO 1260
1250 END
1260 IF Y=5 THEN LET V0=3 ::
GOTO 1360
1270 IF Y=29 THEN LET V0=6 :
: GOTO 1360
1280 IF Y=53 THEN LET V0=9 :
: GOTO 1360
1290 IF Y=77 THEN LET V0=12

GOTO 1360
1300 IF Y=101 THEN LET V0=15

GOTO 1360
1310 IF Y=125 THEN LET V0=18

GOTO 1360
1320 IF Y=149 THEN LET V0=21

GOTO 1360
1330 IF Y=173 THEN LET V0=24

GOTO 1360
1340 IF Y=197 THEN LET V0=27

GOTO 1360
1350 IF Y=221 THEN LET V0=30

GOTO 1360
1360 CALL GCHAR(HO,VO,CH)
1370 IF CH=97 THEN COL=1
SCORE=SCORE+10 	COUNT=COUN
T+1 :: CALL HCHAR(HO,V0,32):
: GOTO 1390

continued on page 14

(Page 13, December 1967

115HUG %MI5 DIGEST

100 REM CHANNEL 99 HAMILTON
USER'S GROUP
110 REM ZAPPER ZONE
120 REM A7-E0050-JGU
130 REm ****************
140 REM * IAIN JOHNSON *
150 REm ****************
160 CALL CLEAR :: RANDOMIZE
170 DIM D$(14),V(2,2),R(50),
Q(50),F(14)
180 CALL CHAR(104,"10547C7C7
C7C7C44",105,"0000FE7C7F7CFE
",106,"447C7C7C7C7C541",107,
"00007F3EFE3E7F")
190 CALL CHAR(96,"0",108,"40
E04",109,"56AA55AA55AA552A",
110,"4904A04D00224904",111,"
4100108200200441")
200 CALL CHAR(112,"183C7EFFF
F7E3C18",120,"0",136,"54AA41
824182552A")
210 CALL SCREEN(13):: CALL C
OLOR(9,4,4,10,4,4,11,5,4,12,
13,13,14,7,4)
220 DATA sppp""ppp""pp"

,8, sPPs P spspp pp
spPPs"PPP",14,"P"sp '

' 1:1; ,,,, 	'5'" P""
P"s P"P",4

230 DATA s"peppkipp"p"pps
pr"ues,15, sPP Prp pp s
PPsPP PPsPs,I4,sPP , P"
Ps"Pp ,, " , spsp",8,sP"Psss
PPssP ssPpP ,,, P",9
240 DATA p
"Ps"Pss,5,sPPPpj'ssPPCPPP
"PsPPPPPPPs,18, sssPP
PPP P 	PPP",9,sPP"ssPP

8
P P 	,,,, , 250 DATA ". p , 	ps"p"

"sP ,,,,, ,4,s PP 	pp "
s" PP 	,6,

,0
260 DATA 0,0,-1,-1,-1,0,-1,1
,0,-1,0,1,1,-1,1,0,1,1
270 FOR H=0 TO 14 :: READ M$
,M 	F(H)=M 	D$(H)=M$
NEXT H
280 FOR H=0 TO 8 :: READ L,M

AY(H)=L 	AX(H)=M :: NE
XT H
290 V(1,2)=104 :: V(2,1)=105
:: V(1,0)=106 :: V(0,1)=107

300 NM=0 :: DISPLAY AT(3,1):
D$(14):: FOR H=4 TO 20 STEP
2 :: I=INT(RND*14):: DISPLAY
AT(H,1):14(I):DW+1):: NM=

NM+F(I)+F(I+1):: NEXT H
310 I=INT(RND*14):: NM=NM+F(
I):: DISPLAY AT(22,1):D$(1):
D$(14):: CALL HCHAR(24,1,120
,96):: CALL VCHAR(1,31,120,9
6):: K,SC=0
320 NT=1 	T=105 :: YV,XV=0
:: CALL SPRITE(#1,105,2,17,

17,0,0)
330 CALL JOYST(1,A1,81):: K=
K+1 :: IF ABS(A1)+ABS(B1)=4
THEN T=V(SGN(A1)+1,SGN(B1)+1
)ELSE 350
340 YV=-031+B1):: XV=Al+Al
: CALL PATTERN(#1,T):: CALL
MOTION(#1,YV,XV)
350 CALL POSITION(#1,DY,DX):
: IF DX<16 OR DX>234 OR DY<1
6 OR DY>176 THEN GOSUB 810 :
: GOTO 320
360 CALL KEY(1,KY,ST):: IF K
Y=18 THEN CALL MOTION(#1,0,0
):: ON T-103 GOTO 450,480,51
0,540 ELSE ON T-103 GOTO 370
,380,390,400

370 Y1=INTUDY-7)/8)+1 :: X1
=INT((DX-1)/8)+1 	Y2=INT((
DY-7)/8)+1 	X2=INT((DX+5)/
8)+1 :: GOTO 410
380 Y1=INT(DY/8)+1 	X1=INT
((DX+14)/8)+1 	Y2=INT((DY+
6)/8)+1 :: X2=INT((DX+14)/8)
+1 :: GOTO 410
390 Y1=INT((DY+14)/8)+1 :: X
1=INTUDX-1)/8)+1 	Y2=INT(
(DY+14)/8)+1 	X2=INT((DX+5
)/8)+1 	GOTO 410
400 Y1=INT((DY+6)/8)+1 	X1
=INT((DX-6)/8)+1 	Y2=INT(D
Y/8)+1 :: X2=INT((DX-6)/8)+1
410 CALL GCHAR(Y1,X1,Z1):: C
ALL GCHAR(Y2,X2,Z2):: IF Z1=
112 THEN 420 ELSE IF Z2=112
THEN 430 ELSE 330
420 CALL HCHAR(Y1,X1,136)::
GOSUB 810 :: CALL HCHAR(Y1,X
1,96):: GOTO 440
430 CALL HCHAR(Y2,X2,136)::
GOSUB 810 :: CALL HCHAR(Y2,X
2,96)
440 NM=NM-1 :: IF NM THEN 32
0 ELSE 850
450 Y1=INT((DY-1)/8)+1 :: X=
INT((DX+1)/8)+1
460 CALL SPRITE(#2,108,2,DY+
2,DX+2,-56,0):: FOR Y=Y1 TO
1 STEP -1 :: CALL GCHAR(Y,X,
Z1):: IF Z1=112 THEN 580
470 NEXT Y 	GOTO 570
480 Y=INT((DY+2)/8)+1 	Xl=
INT((DX-1)/8)+1
490 CALL SPRITE(#2,108,2,DY+
3,DX+3,0,56):: FOR X=X1 TO 3
2 :: CALL GCHAR(Y,X,Z1):: IF
Z1=112 THEN 580
500 NEXT X :: GOTO 570
510 Y1=INTUDY-1)/8)+1 :: X=
INTUDX+1)/8)+1
520 CALL SPRITE(#2,108,2,DY+
3,DX+2,56,0):: FOR Y=Y1 TO 2
4 :: CALL GCHAR(Y,X,Z1):: IF
Z1=112 THEN 580
530 NEXT Y 	GOTO 570
540 Y=INT((DY+2)/8)+1 	Xl=
INTUDX-1)/8)+1
550 CALL SPRITE(#2,108,2,DY+
3,DX+2,0,-56):: FOR X=X1 TO
1 STEP -1 :: CALL GCHAR(Y,X,
Z1):: IF Z1=112 THEN 580
560 NEXT X
570 CALL MOTION(#1,YV,XV)::
CALL DELSPRITE(#2):: GOTO 33
0
580 CALL DELSPRITE(#2):: C=1

I=0 	GOSUB 790
590 Y1=INT((DY-1)/8)+1 	X1
=INT((DX-1)/8)+1 	Y2=INT((
DY+6)/8)+1 	X2=INT((DX+6)/
8)+1
600 CALL GCHAR(Y1,X1,Z1):: C
ALL GCHAR(Y1,X2,Z2):: CALL G
CHAR(Y2,X1,Z3):: CALL GCHAR(
Y2,X2,Z4)
610 IF Z1=96 THEN CALL HCHAR
(Y1,X1,104)
620 IF Z2=96 THEN CALL HCHAR
(Y1,X2,104)
630 IF Z3=96 THEN CALL HCHAR
(Y2,X1,104)
640 IF Z4=96 THEN CALL HCHAR
(Y2,X2,104)
650 CALL GCHAR(Y-1,X-1,Z(1))
:: CALL GCHAR(Y-1,X,Z(2))::
CALL GCHAR(Y-1,X+1,Z(3)):: C
ALL GCHAR(Y,X-1,Z(4))

660 CALL GCHAR(Y,X+1,Z(5))::
CALL GCHAR(Y+1,X-1,Z(6))::

CALL GCHAR(Y+1,X,Z(7)):: CAL
L GCHAR(Y+1,X+1,Z(8))
670 IF Z(1)+Z(2)+Z(3)+Z(4)+Z
(5)+Z(6)+Z(7)+Z(8)=768 THEN
CALL HCHAR(Y,X,96):: GOTO 73
0
680 FOR I=1 TO 8 :: ON INT(Z
(I)/8)-11 GOTO 710,690,700,7
10
690 GOSUB 810 :: GOTO 710
700 GOSUB 790
710 NEXT I
720 FOR H=-1 TO 1 :: CALL HC
HAR(Y-H,X-1,96,3):: NEXT H
730 Y=R(C):: X=Q(C):: C=C-1
:: IF C THEN 650
740 IF Z1=96 THEN CALL HCHAR
(Y1,X1,96)
750 IF Z2=96 THEN CALL HCHAR
(Y1,X2,96)
760 IF Z3=96 THEN CALL HCHAR
(Y2,X1,96)
770 IF Z4=96 THEN CALL HCHAR
(Y2,X2,96)
780 CALL MOTION(#1,YV,XV)::
IF NM THEN 330 ELSE 850
790 CALL HCHAR(Y+AY(I),X+AX(
I),136):: CALL SOUND(-750,11
0,6,-5,0):: C=C+1 R(C)=Y+
AY(I):: Q(C)=X+AX(I):: NM=NM
-1
800 SC=SC+100 :: DISPLAY AT(
1,12):SC :: RETURN
810 IF NT=0 THEN RETURN
820 FOR H=109 TO 111 :: CALL
PATTERN(#1,H):: CALL SOUND(
-400,110,(H-109)*5+5,-5,(H-1
09)*5):: NEXT H SC=SC-100
O :: NT=0
830 CALL DELSPRITE(#1):: IF
SC<0 THEN SC=0
840 DISPLAY AT(1,12):SC 	R
ETURN
850 FOR H=1 TO 500 :: NEXT H
:: DISPLAY AT(4,1)ERASE ALL
:"THE CLOCK STOPPED AT;";K:"
YOUR FINAL SCORE IS; ";SC+(2
00-K)*10
860 CALL DELSPRITE(ALL):: DI
SPLAY AT(12,2)BEEP:"DO YOU W
ISH TO PLAY AGAIN?":TAB(12);
"Y/N?"
870 CALL KEY(3,KY,ST):: IF S
T=0 THEN 870 ELSE IF KY<>78
THEN 300
880 DISPLAY AT(12,6)ERASE AL
L:"HAVE A NICE DAYI" :: FOR
H=1 TO 800 :: NEXT H
890 END

from page 13

1380 IF CH=98 THEN CALL HCHA
R(HO,V0,32):: SCORE=SCORE+1

COUNT=COUNT+1 	GOTO 139
0
1390 DISPLAY AT(23,21)SIZE(6
):SCORE :: RETURN
1400 GOSUB 470
1410 DISPLAY AT(7,8):" GAM
E OVER "
1420 DISPLAY AT(20,6):"PLAy
AGAIN (Y/N)? "
1430 CALL KEY(0,KK,ST):: IF
ST=0 THEN 1430
1440 IF KR=ASC("Y")OR KK=ASC
("y")THEN CALL DELSPRITE(ALL
):: GOTO 100
1450 END

,,,,, SS

December 1987, Page 14)

HUG 111.51-111UG NEVIN 1111GEST

100 ! MENU MAKER produces a
MENU of programs on a disk
by reading the directory and
then writing the information
back to disk as a MERGE file
110 ! Type 'NEW' and MERGE
the output file into MEMORY,
then save to disk as 'DSK1.

LOAD'
120 CALL CLEAR :: PRINT "PRO
GRAM STATUS WORKING" :
: CL$="CLEAR" :: DIM A$(20):
: OPEN #1:"DSK1.",INPUT ,REL
ATIVE,INTERNAL
130 DEF LNUN)=CHR$(0)&CHR$(
N)
140 DEF DIUR)=CHR$(162)&CHR
$(240)&CHR$(183)&CHR$(200)&C
HRULEN(STRS(R)))&STRURACH
R$(179)&CHR$(200)&CHR$(1)&ST
RUCOL)&CHR$(182)&CHR$(181)
150 DEF IF$(N)=CHR$(132)&"K@
"&CHR$(190)&CHR$(200)&CHR$(2
)&STRUN)&CHR$(176)&CHR$(169
ACHR$(199)&CHRULEN(AW-64
))+5)&"DSK1."&A$(1-64)
160 FOR 1=0 TO 20
170 J=J+1 :: INPUT #1:AS(I),
B,C,D IF 1=0 'THEN 180 ELS
E IF J>=127 OR LEN(A$U))=0
THEN 190 ELSE IF ABS(B)<>5 0
R AS(I)="LOADER" THEN 170
180 NEXT I
190 CLOSE #1 :: ENS=CHR$(181
)&CHR$(199)&CHR$(28)&"PRESS
<ERASE> TO END PROGRAW&CHR$
(0):: COL=1 L=I-1 :: OPEN
#2:"DSK1.CAT",VARIABLE 163

200 PRINT #2:LN$(1)&CHR$(157
)&CHR$(200)&CHR$(5)&CL$&CHR$
(0)
210 PRINT #2:LN$(2)&DI$(1)&C
HR$(199)&CHR$(28)&"CATALOG"&
RPT$(" ",12-LEN(A$(0)))&"DIS
KNAME-"&A$(0)&CHR$(0)
220 COL=8 :: FOR 1=1 TO L
PRINT #2:LNS(I+2)&DI$(12+I-

INT(L/2))&CHR$(199)&CHR$(3+L
EN(A$(1)))&CHRW+64)&"--"&A
$(0&CHR$(0):: NEXT I
230 PRINT #2:LNUL+3)&CHR$(1
62)&CHR$(240)&CHR$(183)&CHR$
(200)&CHR$(2)&"24"&CHR$(179)
&CHR$(200)&CHR$(1)&"1"&CHR$(
182)&CHR$(238)&EN$
240 PRINT #2:LNS(L+4)&CHR$(1
57)&CHR$(200)&CHR$(3)&"KEY"&
CHR$(183)&CHR$(200)&CHR$(1)&
"0"&CHR$(179)&"0"&CHR$(179)
eSe&CHR$(182)&CHR$(0)
250 PRINT #2:LN$(L+5)&CHR$(1
32)&"SMCHR$(190)&CHR$(200)
&CHR$(1)&"0"&CHR$(176)&CHR$(
201)&LNUL+4)&CHR$(0)
260 FOR 1=64 TO L+64 	PRIN
T #2:LNUL+I-59)&IFWACHR$
(0):: NEXT I
270 PRINT #2:LN$(2*L+6)&CHR$
(132)&"Ke&CHR$(190)&CHR$(20
OACHR$(1)&"7"&CHR$(176)&CHR
$(157)&CHR$(200)&CHR$(5)&CL$
&CHR$(130)&CHR$(139)&CHR$(0)
280 PRINT #2:LN$(2*L+7)&CHR$
(134)&CHR$(201)&LNUL+4)&CHR
$(0):CHR$(255)&CHR$(255):: C
LOSE #2 :: DISPLAY AT(23,21)
BEEP:"COMPLETE" :: END

100 REM DISK LABELS
PRINTER OPTIONAL

110 IM$(1)="########## ### #
I "
120 IM$(2)=IM$(1)&SEGM(1
),1,28)
130 DIM FILE$(50),TYP(50),SI
Z(50),CHARLEN(50)
140 CALL CLEAR
150 DIM TYPE$(5)
160 TYPE$(1)="DIS/FIX"
170 TYPE$(2)="DIS/VAR"
180 TYPE$(3)="INT/FIX"
190 TYPE$(4)="INT/VAR"
200 TYPE$(5)="PROGRAM"
210 INPUT "MASTER DISK (1-3)
?":I
220 I=INT(I)
230 IF (I<1)+(I>3)=-1 THEN 2
10
240 OPEN #1:"DSK"&STR$(1)&".
",INPUT ,RELATIVE,INTERNAL
250 INPUT #1:A$,J,J,K
260 DISPLAY "DSK";STRUI);"
-DISKNAME= ";AWAVAILABLE="
;K;" USED= ";J-K
270 DISPLAY :"FILENAME SIZ
E 	TYPE 	P";"----------

280 COUNT=1
290 INPUT #1:FILEUCOUNT),TY
P(COUNT),SIZ(COUNT),CHARLEN(
COUNT)
300 IF LEN(FILE$(COUNT))=0 T
HEN COUNT=COUNT-1 GOTO 38
0
310 DISPLAY :FILE$(COUNT);TA
B(12);SIZ(COUNT);TAB(17);TYP
ES(ABS(TYP(COUNT)));
320 IF ABS(TYP(COUNT))=5 THE
N 350
330 L$=" "&STR$(CHARLEN(COUN
T))
340 DISPLAY SEG$(L$,LEN(L$)-
2,3);
350 IF I>0 THEN 370
360 DISPLAY TAB(28);"Y";
370 COUNT=COUNT+1 	GOTO 29
0
380 CLOSE #1
390 DISPLAY AT(24,1):"PRINT
LABEL?(Y/N) Y" :: ACCEPT AT(
24,19)BEEP SIZE(-1)VALIDATE(
"YN"):RE$
400 IF RE$="Y" THEN GOSUB 44
0
410 DISPLAY AT(24,1):"MORE
DISKS?(Y/N) Y" :: ACCEPT AT(
24,19)BEEP SIZE(-1)VALIDATE(
"YN"):RE$
420 IF RE$="Y" THEN 240
430 END
440 OPEN #2:"PIO.CR" 	PRIN
T #2:CHR$(27)&"0"&CHR$(15)&C
HR$(27)&CHR$(71)
450 CLOSE #2 :: OPEN #2:"PIO

460 PRINT #2:CHR$(14);A$&" A
VAIL="&STR$(X)&" USED="&STR$
(J-K)
470 PASS=1
480 FOR X=1+(PASS-1)*18 TO M
IN(COUNT,9+(PASS-1)*18)
490 Z1$=" "&STRUCHARLEN(X)
):: IF ABS(TYP(X))=5 THEN RL
1$="" ELSE RL1$=SEGUZ1$,LEN
(Z1$)-2,3)
500 IF TYP(X)<0 THEN Pl$="P"
ELSE Pl$=""

510 IF X+9>COUNT THEN GOSUB
590 ELSE GOSUB 550

520 LCT=LCT+1 :: NEXT X 	G
OSUB 610 :: IF COUNT<=PASS*1
8 THEN CLOSE #2 :: RETURN
530 PASS=PASS+1 :: PRINT #2:
CHR$(14);A$&" (Cont.) LABEL
r&STRUPASS)
540 GOTO 480
550 Z2$=" "&STRUCHARLEN(X+
9)):: IF ABS(TYP(X+9))=5 THE
N RL2$="" ELSE RL2$=SEG$(Z2$
,LEN(Z2$)-2,3)
560 IF TYP(X+9)<0 THEN P2$="
P",ELSE P2$=""
570 PRINT #2,USING IM$(2):F1
LE$(X),SIZ(X),TYPE$(ABS(TYP(
X))),R1,1$,Pl$,FILEUX+9),SIZ
(X+9),TYPE$(ABS(TYP(X+9))),R
L2$,P2$
580 RETURN
590 PRINT #2,USING IM$(1):FI
LEUX),SIZ(X),TYPWABS(TYP(
X))),RL1$,P1$
600 RETURN
610 FOR Y=1 TO 11-LCT :: PRI
NT #2:"" :: NEXT Y LCT=0
:: RETURN

continued from page 12

1830 CALL HCHAR(BOOG8,BOOG8+
3,32)
1840 CALL HCHAR(BOOG8+1,BOOG
8+4,113)
1850 CALL HCHAR(BOOG8+2,800G
8+5,112)
1860 CALL COLOR(BOOGEN+3,7,1

1870 GOTO 2030
1880 CALL HCHAR(BOOG8+1,800G
8+4,32)
1890 CALL HCHAR(BOOG8+2,800G
8+5,128)
1900 BOOG8=1
1910 GOTO 900
1920 REM *****************
1930 REM * BOOGEN KILLER *
1940 REM *****************
1950 CALL SOUND(-50,110,0,-6
,0)
1960 IF POINT=BODGEN THEN 19
80
1970 GOTO 890
1980 DEAD=1
1990 SC=SC+1
2000 IF SC<>70-HARD*10 THEN
2020
2010 HARD=HARD-1
2020 GOTO 920
2030 CALL SOUND(-600,-5,8)
2040 GOTO 740
2050 CALL CLEAR
2060 CALL CHAR(89,"004444442
8101010")
2070 CALL CHAR(65,"000814222
2372222")
2080 CALL CHAR(73,"001010101
010101")
2090 PRINT TAB(4);"SORRY YOU
'RE DEAD"
2100 PRINT "YOU KILLED";SC;"
BOOGENS"
2110 PRINT : : :" AGAIN Y-N"
2120 FOR 1=3 TO 8
2130 CALL COLOR(I,2,1)
2140 NEXT I
2150 CALL KEY(3,K,S)
2160 IF S=0 THEN 2150
2170 IF K=89 THEN 170
2180 END

(Page 15, December 1987

TISHIJG INEVII5 INGEST
	1

Starting a Illataliase from Scratch.
PART 2

wi th CHRIS BUTTNER

In the September issue I started out by giving you a
program to create the data file which would be used by
the main database program. This month, I have some of
the simpler "modules" which will be incorporated in the
main program.

I hope by now you have some understanding of how the
large program is broken down into smaller, more
manageable parts. If you are to get the most out of
our little exercise you should try to write some of the
modules yourself. It doesn't matter if your version
does not work at first. At least you will have tried
to do something and you can check your efforts against
the published routines. That way, you will see where
you went wrong and the learning experience will be more
rewarding.

Now down to business. One of the first things needed
will be an on-line help facility. A simple approach is
to accept the command letter "H" as input and on
receipt, display a summary of the commands. It is
important that you understand how the modules are
constructed initially so I will use this one as an
example. Since the subprogram is going to provide
help, let's call it HELP, and start with a line number
of 9000 like so:

9000 SUB HELP

From here, I have inserted data statements which
provide the information to be displayed and the
co-ordinates at which the various lines of text appear.
This if followed by the RESTORE command to ensure data
is read starting at the correct line number. A simple
loop is used to read and display all information. The
CALL KEY command is then used to check for a particular
key-press which is the trigger to continue. Until
then, the information is displayed on screen and the
user can take as long as he likes to read the help
screen before proceeding. The last command is SUBEND.

Now that the subprogram is written, it is saved in the
pure subprogram form. Now comes the moment of truth
when the debugging process is started. Type into the
program the following line:

1 CALL HELP
Now in command mode type the following commands each
followed by ENTER:

CALL CLEAR
RUN

If all is well, your subprogram should do exactly as
you want. It not, examine the screen and see what is
missing/wrong. Edit your program and run it again.
Repeat this process until you have it right then delete
line 1 and resave your subprogram. At this stage I
recommend you save in two ways: firstly as a
conventional program and secondly in MERGE format which
you will require eventually when the various
subprograms are merged into the final work. To
distinguish between the two, save the merge version
with the suffix M.

We also need to know when our input to the program is
wrong so there is another subprogram this time called
ILLEGAL. It is developed in the same manner. In the
published version at line 3020 it flashes the warning
message on the screen then clears before re-displaying
the warning message. If you find this flashing
disconcerting, delete line 3020. (The purpose of the
flashing is to attract your attention. Other methods
could be used such as making a sound).

The WIPE subprogram which I mentioned in the previous
article is also included. It's purpose is to clear the
screen from line 4 down to the bottom.

I have also included a larger subprogram called at this
stage, COMMAND. It takes the input from line 1,
analyses it and then calls the necessary subprogram.
There are a number of parts to this subprogram which
perform the following functions:

(a) Stripping space characters from the end of the
command so that out input is always consistent;

(b) Converting the first character of each command
to upper-case so command letters are not case
dependant. This has one side effect - you must be
consistent in the way to enter your data and how
you query the database. For example, if you
entered a name as McShane, the program would not
retrieve your entry if you listed it MCSHANE.

(c) Checking for the single letter commands H for
help and E for exit;

(d) Checking for a space between the command
letter and command information;

(e) Giving the warning message if a valid command
letter is not used.

All of these modules are commented so you should not
have any problem to seeing exactly what is happening.

Other subprograms are needed to allow you to Query the
database, display information for a particular record
on the screen remove and update various records. To
get you started in programming, I have provided the
Query and Display modules in outline form only. Try to
work out the various steps then have a go with your own
version. I will have fully written and commented
versions in part 3.

If you make a genuine effort and still have problems,
send me a not or button-hole me at the December
meeting. Remember, no matter how lucid this or any
other tutorial may be, personal experience will be your
greatest teacher.

END OF NARRATIVE

START OF VARIOUS SU8PROGRAMS.

2000 REM *** Start of main c
ommand Subprogram.

2010 SUB COMMAND

2020 ACCEPT AT(1,1)SIZE(-28)
:A$! Get input from line 1
of screen allowing 28 charac
ters total

2030 L=LEN(A$)! Calculate th
e length of the input string

2040 IF SEWA$,L,1)<>" " TH
2080 ! If the last charac

ter is NOT a blank space, sk
ip the next two lines.

2050 A$=SEG$01$,1,L-1)! Stri
p of the last blank space

2060 GOTO 2030 ! Loop-back a
nd check for more blank spac
es to be removed

2070 REM ** The next few lin
es convert the first charact
er to upper case if necessar
y. 	 continued on page 6

December 1987, Page 16)

1151-111116 WINS DIGEST 1-411/C

i REMOVING PROTECTION
4- .,„„,„.1 1 .,„rig L„,,,I, ,,,,,x,

' .`46 btfrge)± l'A-T-1°

The Extended BASIC language provides a protection for
programs by including the PROTECTED option when
saving to cassette or disk, e.g. SAVE CS1,PROTECTED.
Personally I found it annoying being unable to list,
edit, or copy other peoples programs. Even more
aggravating was the knowledge discovered later that
those with expanded systems could get around this
problem with a simple CALL LOAD command. Well now I
have an expanded system too so I can just sit back.
Whenever a protected program pops up a quick CALL
LOAD puts an end to it. This article however, is a
promise to myself that all system users be given
equal opportunity to paralyze the protection pest.

Below is listed three methods of removing protection.
The less equipment you have the more complicated it
becomes, but it is all good fun.

Method (1) users with 32K memory expansion.
Method (2) users with cassette and Mini Memory.
Method (3) users with,cassette recorder only.

Fetbod .(1)

',Select Extended BASIC and load the protected program.

>OLD CS1
>OLD DS[1.Eiloname

Pow type the following

>CALL INIT 	nl. 	 .

>CALL LOAD(-31161.0) 	 - =Atoll**

that LS Lt. the prowcion ham nau emon remprod.

Hotbed (2)

Insert the Mini Memory module and select TI BASIC.
Execute these program steps making reference to the
notes that follow.

>CALL LOAD(28672,90,1b5,255,80,0,4,0,0)
>OLD CS1.123
>CALL PEEKV(1805,A,B,C,D)
>CALL LOAD(28680,256-SGN(B)-A,Z56-8,U,D)
>OLD MINIMEM
>SAYE CS1

That is it, the protection has now been removed and
saved to cassette tape. All that is needed now is to
insert the Extended BASIC module and reload the
program.

Motel for oork stop mood la Method (2):

>CALL LOAD(28672,90,165,255,80,0,4,0,0)
This makes Mini Memory think that it is storing a
BASIC program four bytes in length. If several tapes
are to be done then this statement need only be
executed once at the start of a session.

>OLD CS1.123 	 WU 	 .

Yes that is "CS1.123". The . 	is netgssary to make
the device name seven characters long - the same
length as "MINIMEM". Follow the cassette prompts and
load the protected program. After the tape is loaded
an I/0 ERROR 50 message will appear.

>CALL PEEKV(1805,A,B,C,D)
>CALL LOAD(28680,256-SGN(B)-A,256-B,C,D)
This reads the first four bytes of the program file
in VDP memory and transfers them to Mini Memory's
memory. Also it performs a two's complement on the
first word (two bytes).

>OLD MINIMEM
There is the usual delay when loading a program but
when the cursor reappears continue with :-

-/oME,

Programs written in Extended BASIC do not LIST very
well in T1 BASIC. However when the newly recorded
program is reloaded in Extended BASIC it functions
normally and can be LISTed, EDITed, and SAVEd.

Method (3)

Ail steps in this method are done by using TI BASIC
only. Remove any modules then select TI BASIC. To
Atart type in the following program and RUN it.

100 REM UNPROTECTOR AID
110 REM g.meldrum tishug
120 REM
130 DATA 0,3,63,139,63,136
140 DATA 63,255,0,10,63,141
150 DATA 3,154,32,0
160 REM
170 FOR EYE=1 r0 16
180 READ N
190 A$.A$&CHRUNJ
200 NEXT EYE
210 CALL CLEAR

	

220 DISPLAY "PREPARE TO RECORD"::"DUMMY PROGRAM" 	
230 OPEN #1:"CS1",OUTPUT,FIXED 64
240 PRINT #1:A$
250 CLOSE #1
260 END

Tit is not necessary to save this 'UNPROTECTOR AID'
program. When you run this program it will display
prompts for you to record a short file to tape.
The short 'dummy program' that the above program
produces should be kept on a separate tape as it will
be used for each unprotect session.

Next type in the following program. It too shall be
used in each unprotect session so record this program
on the tape after the dummy program.

100 REM PIRATE FACTORY
110 REM g.meldrum tishug
120 REM
130 CALL CLEAR

	

140 DISPLAY "PREPARE TO LOAD MINI-PROGEAM" , 	
150 OPEN #1:"CS1",INPUT,FIXED 128
160 INPUT #1:CS,
170 A$=AS&C$
180 IF LEN(A$)=128 	210
190 A$=A$&","
200 IF LEN(A$)=128 TUB 210 ELSE 160
210 CLOSE #1
220 V1=ASC(SEGUA$,05,1))
230 V2=ASC(SEG$(A$,66,1))
240 T1=255-V1
250 T2=256-V2
260 B$=CHR$(T1)&CHRUT2)&SEG$(14,67,62)
270 CALL CLEAR
280 DISPLAY "OUTPUTTING PIRATE HEADER"::.:::
290 OPEN #1:"CS1",OUTPUT,FIXED 64
300 PRINT #1:B$
310 CLOSE #1
320 END

Be sure to include the comma at the end of line 160.
Save the above 'PIRATE FACTORY' program with SAVE CS1
but do not run it at this stage.

Now you have all the elements ready to go for a
swashbuckling tour through your protected cassette
tape programs. Having completed the procedures above
you can now issue the following steps for each
program that needs unprotecting.

a) Type the following command and load the protectee
cassette program.

>OLD CS1.123456789=123456789=123456789-123456789=12
3456789=123456789=123

.caNtLiqued 04 	Lg

CPage 17, December 1987

117.411T 21-1by J
iiimieElte576 liEnS niGE51-

animated graphics can be created, in much the same way
that cartoon movies are made.

By setting a sprite in motion, and using a loop to
change it through a series of patterns, remarkable

It is difficult to control motion exactly with CALL
MOTION. For more precise control, sprites can be moved
from one point to another, dot by dot, by using CALL
LOCATE within a loop, such as FOR DC=1 to 100 :: CALL
LOCATE(#1,50, DC):: NEXT DC. This movement will be
very smooth but slow; adding a STEP 2 or STEP 3 will
make it faster but less smooth,

If you have Memory Expansion, CALL LOAD(-31806,96)
will freeze all sprite motion and CALL LOAD(-31806,0)
will release all sprites to their normal motion. By
first freezing the motion and then creating up to 28
sprites with predefined motion, all can be set into
motion at once, creating some very remarkable
effects.

Several sprites can be created by one statement, such
as CALL SPRITE(#1,42,16,10,10,#2,65,2,20,20).
The pattern of several sprites can be changed at once
by CALL PATTERN(#1,CHAR,#2,CHAR) — this is very useful
when changing the pattern of a character which has
been created from two or more sprites.

Several sprites can be set in motion simultaneously,
or have their motion changed simultaneously, by CALL
MOTION(#1,RV,CV,#2,RV,CV,#3,RV,CV) etc. This is also
very useful when moving a character formed of two or
more sprites.

Several sprites can be recolored simultaneously with
CALL COLOR(#1,C,#2,C) etc.
Several sprites can be relocated together by CALL
LOCATE(#1,DOTROW,DOTCOL,#2,DOTROW,D0 TCOL) etc.
The position of more than one sprite can be found at
one time by CALL POSITION(#1,DOTROW1,DOTCOL1,#2,DOTRO
W2,DOTCOL2), etc.

A sprite can have only one color, unlike a screen
character which can have a foreground and background
color. Any dots which are not "turned on" in the
character being used for the sprite will be
transparent. However, a sprite with a higher number,
using a redefined character with all dots turned on
and of a different color, can be created at the same
dotrow and dotcolumn, giving the illusion of a sprite
with foreground and background color. Up to 4 sprites
can be stacked in this way to create a multicolored
sprite effect. If the sprite is stationary, colored
graphics behind all 4 sprites can give the illusion of
even more colors.

Sprites always appear to be in front of screen
graphics, and lower—numbered sprites always apear in
front of higher
numbered sprites. However, by skillful
swapping of sprites, remarkable 3—D
effects can be created, seeming to show
a sprite passing before and then behind
another, or before and then behind a
graphics object.

Another way to simulate 3D is to place a second
higher—numbered sprite behind the first, of the same
pattern but of a darker color, and offset by a few
dotrows downward and to the side, so that when both
are set in motion the one appears to be flying above
the surface with the second following as its shadow.

Sprites can also be used to add an apparent third
color to screen graphics, which can have only two
colors in one character.

It is difficult to create the impression of curved
lines with redefined characters because they are
composed of dots rather than lines. This becomes even
more obvious in sprite magnifications 2 and 4, when
each dot is magnified into 4 dots. A circle will
appear more round, and of the same size, if it is
composed of 4 redefined characters in magnification 3
than of one character in magnification 2.

Larger figures can be created using several sprites
placed next to each other, providing that not more
than four are in a row horizontally. These can be of
several colors, and can be set in motion
simultaneously.

Although it is stated that sprites, once set in
motion, will continue to move regardless of.what the
program is doing, this is not quite true. If the
program is doing a lot of calculating, the sprite

\,motion will be jerky and irregular.

continued from page 17

After loading Wri I/0 ERROR 50 rocnNaz amrd. bn
displayed.

b) Now type >OLD CS]. and load the 'dummy program'.

c) When the cursor reappears type >SAVE CS1 and anYle

:o tape. Label this program as 'step c'.

d) Load and run the 'PIRATE FACTORY'.program with
the commands >OLD CS1 and >RUN.

e) When the prompt to load the 'MINI—PROGRAM' appears
then load the short program file SAVEd in step (c)
i.e. the 'step c' program.

f) The next step of the 'PIRATE FACTORY' program is
to save a 'PIRATE HEADER' to tape. Follow the
screen prompts and save to tape which cae be
labelled 'pirate header'.

g) Type >00 CS1 .4 lOad the originul priatc=id
progrAm.

h) After the I/0 ERROR 50 message appears type
>OLD CS1 and load the 'pirate header' program that
that was saved in step (f).

i) After the cursor reappears type >SA4 CS) tind wpm
the finally unprotected prograt.

The program saved in step (0 is the unprotected
version of the original program. You could LIST the
program while you are still in TI BASIC but as
Extended BASIC programs do not list very well that
way it would be better to wait. Wait that is, untii
you insert the Extended BASIC module and reload in an
Extended BASIC environment.

'We need' someone wnoW go to the users' group meetings
ro break some pirates' knuckles."

Nor

December 1987, Page 18)

1FISHILIG NEVIIS DIGEST

This month, I would like to talk about Extended
BASIC's prescan commands, keycodes in key units 4 and 5
(Pascal and BASIC scans), and "crunching" Extended
BASIC: Programs- not necessarily in that order,
Shortening the Prescan.

You are aware of the Prescan commands in Extended
BASIC. aren't you? You know, !@P- and !@P+, and
remember that the Extended BASIC supplement describes
how to make good use of the prescan commands?

I've recently realized the. true power of these little
statements. Recall that only one reference_ to a CALL or a
variable is needed in the prescan, so that means that DIM
and OPTION BASE 1 and even SUB are only understood
during prescan. So, that means that they don't even need to
be in an execution path!

Now what does all that boil down to'? It means that
you can reduce the amount of time taken on the prescan by
following the given layout. Place !@P- as the very first
stater-1(PM in your program, then put !@P-4- on a line all by
itself, after all the top level code, but before any
subprograms are defined, and then follow it with a list of all
variables used (just separate them with commas), then a
list of all subprogram CALLs, entered like this: CALL
CHAR :: CALL CLEAR :: CALL HCHAR, then any
OPTION BASE 1's and DIM's, and finally all the DEFs.

I think that I need to diagram-ate, here.
2 !@P-
10 !Main Program starts here.
5000 !(or some such suitable number) First
line after all the toplevel code.
6005 M-4P+
5010 A.B,C,RS,ZZ
5020 CALL CLEAR :: CALL SCREEN :: CALL CHAR
:: CALL CURSOR
510C SUB CURSOR(R,C,N)! User-defined
subprograms begin here.

The variables are simply those that are used,
A,B,C,P$ and ZZ are just names plucked out of the air. The
same. goes for the subprogram names. If you used CALL
MOTION, put it in the list. If you created CALL HELP, put it
in the list, too.

Tony McGovern, in his Extended Tutorial mentioned
that "...if you CALL a subprogram after you define it, then
including its SUB in the prescan is sufficient." (My
ernphases.) / haven't had the chance to explore that,
although I do not define subprograms earlier in the.
program than I need them.

One point, by arranging the program the way I have
described it, The prograrn will not RUN under Extended
BASIC Version 100. (The prescan commands exist in
Version i/Ct which you all should have, anyway.)

Another statement that should be placed in the
prescan is DEF. It, too, does not need to be in an execution
path, but can be put on the same line ;as any DIM's.

Maybe, you're wondering just what I'm leading up to,
or for that matter, whether I'm leading up to anything at all.
Well, I am, Careful planning of a program with respect to
the prescan, can drastically improve the, program's
performance before it even starts executing I
have read of Extended BASIC programs that nearly
convince the buyer that it has "locked-up" their computed
Making and Saving Room.

I said that I would be presenting another section of
Making and Saving Room in a later article.

NIP

3. Crunching the Program.
Some of you, mainly those of you who have been

members of TIsHUG for some time, will remember Balloon
Voyage in The Bumper Book #2 It was one of the
programs that I typed in. However, it was slightly too large
for Extended BASIC to handle confidently, and so often
suffered "automatic editing", or more correctly, random
corruption, whenever I set about altering it.

Now that my programming is at a high level of
effiency, I can look at Balloon Voyage and be shocked at
how open the code really is! So I set about "crunching" it.
The result is a program that fits much better in the VDP
RAM, and suffers "automatic editing" no longer.

What l'nn attempting to say, is that programs save
space when as many statements as possible are put on
one line. Each line takes up 6 bytes of room, plus the actual
tokenized prograrn line. The 6 bytes consist of 4 bytes in
the line nurnber table, 2 for line number, 2 for where it is in
memory, another byte before the address given in the table
that states the length of the line, and a 0 byte that heralds
the end of the line.

For example, if you enter line 100 as follows: 100
CALL CLEAR. That takes up 6+1+7= 14 bytes. (CALL is 1
byte, CLEAR comprises the token for a literal constant,
another byte for the length of it and 5 bytes for CLEAR)

If you add another line, 110 CALL SCREEN(5), that
takes up 6 +1+8+1+3+1= 20 bytes (6 overhead, 1 for
CALL, 8 for SCREEN, 1 for the (, 3 for the 5 and 1 for the

) 	In total, that's 1'1+20= 3¢ bytes. Now, if you had typed
1.

100 CALL CLEAR :: CALL SCREEN(5), instead, that's 6
bytes overhead, 0 for CALL CLEAR, 1 for the ::, and 14 for
CALL SCREEN(5). And that sums to just 29 bytes.

It might seem a bit minimal, only 5 bytes difference,
but that's only with 2 statements, neither taking a lot of
memory. And anyway, usually you would want to put rnore
than those two statements on one line anyway. Changing
the colour of the entire character set is often done at the
same time. But if the same practice is done on every lineot
a 400 line pwgran4 the memory savings are sure to be
phenomen,all Surely, the double colon wasn't put in
Extended BASIC just to provide a convenience, but to save
memory. (You may dispute that, but if TI wrote Extended
BASIC, they must have known that pushing the use of the
double colon to its limit would save memory in
abundance.)

If I may make the reference, a Younger Set member
wrote in, one month, wanting someone with the Memory
Expansion to finish a game program that became too big
for his, VDP RAM only, computer. No offense meant, and
this is meant to be constructive criticism, but that program
must have had open or inefficient coding. (Open coding
means that the code looks like it is in TI-BASIC, i.e. one or
two statements per line! When many more than that should
be per line!)

Programs that are so big that they require CALL
FILES(1) before they can be loaded off disk can also
benefit, for if they are crunched as much as possible, then
CALL FILES(1) may become obselete.

There is one disadvantage. (There had to be one!)
Unfortunately, it makes the program feindishly difficult for
us humans to read. Ne.ver mind how much space it saves,
it can make for hard reading. On the positive side, if it is a
listing made in 80 oolumns by LIST "PIO" or LIST
"RS232/1", then the readability problem is very much

solved. Alternatively, if the program that converts an 80
column listing as a disk file, to a 28 column listing also
highlights the line numbers at the start of each line, (Hint!
Hint!) than the problem is also solved. continued on p 20

Welcome to Tidbits Sim!
Presented by Wade Bowmer.

(Page 19, December 1987

NIFVI15 DIGEST

The readability problem comes only because line
numbers at the beginning of program lines can be hard to
find when the listing consists of many long lines.

I'm sure that you're all aware of the trick ot how to get
more than 5 screen lines on a program line, particularly
since that technique was discussed at length in last

month's Tidbits. It needs to be coupled with crunching to
be really useful.
Rey Board Full of Numbers.

The Editors didn't print this section the first time I
1.
included it in one of my articles. It may have been too
small, but I hope this one gets printed.

I--
I 49 2 SO
! 33 P 64

3 	4

145
0 81

113
197

151
Ns! 	S7

119
- 3.26

132
E 	69

101
4■ 	11

14E
R 	32

114
[91

P
P

M

4
1

.1/
.4

1
7
.

.

p
 •
 e
-1 1!

;;.;
.,:ri

l
il

e
a..
.

1,1
1d

144
U 85

117
95

lal
I 	73 0

105
? 	63

143
79

111
39

----.

1441
P 	3C

112
- 	34

611141

	

It 3S 	35 	37 A 94 6 33.* 42
3 51 4 52 5 53 6 54 7 55.9 56

	

179 	13C 	181 	1E2 1221 158

	

7 	2 	14 	3.2 	1 	6

1591 176 157

in 	5

17.4 	147 	132 	12.; 135 	136 	13E 	13: 	140 	LEE 	1
A 65 5 S2 D E: F 7w,5 71 H 72.7 74 K 7E L 76 ; 5E _,13

	

: 124 4. a -> 3 	123), 1-5 191 132 	193 	194 	1E3 	13
37 	115 	10C 	10-i 103 	1041 10E 	107 	10E ; E3 4-, 13

SHIFT
154

2 	SO
122

N. 	92

152 x 	se
120

4. 	10

131
C 	67

99
, 	96

Q
U

IL
L

IP
•

u11
1
1
1
.1

i
130

a SE
3E

130

- 'P
P

 ...H
P

1■

1•.4

141
H 77

IC3
195

128
< 	60
, 	44
184

1ES
> 	EZ SHIFT
. 	16'

liSI

I ECM A/L CTIA 32 SPACE

The first scan is the BASIC Scan, key-unit 5.
The top keycode is the Control co(N i.e. the key
pressed with CTRL. The. second top is (of oourse)
SHIFT. The second bottom is the regularor base.
keycode and the bottommost keycode is the

Functionkeystroke.
(The lowest row is squashed because I was a

bit short of room.)
The next layout is called the Pascal Scan,

key-unit 4.

12Z' 152 30 176 29
! 	12 6.1 	6 35 36 7. 37 A 34 	Ec 3E'. 42

211
40 1 41 + 	43

1 	4: 2 EC 3 51 4 52 5 53 6 5417 55'3 EE 3 57 3 48 SI
Lal 122 135 130 142 140 1Z91 134 143 188 133

0
17
SI

113
197

23
W 	137

119
- 126

5
E 	69

101
4. 139

IS
a 62

114
91

IS
I 	S4

11E
32

. I 1 1110
1 .-1

0
0

1•31u
s
lo

y•

•

i
■-I

I 	
S

.

1

I .41
,11 • LIS

1•P
il I •••1

1
i.

1 	
I

91
' 	73 0

105
E3.'

151_
79.r

1111
391"

161
SC:-

11L1
341

167
45
47
166

. 	19 	4 	6
A 65 3 83 D EE F 72 'I .71 H 72

: 124 4-136 4137 (.-5 191
37 115 :CC 1ci 4: 104

7 	e
X 75.: 76 : 5
137 1051 : 5
193 194 lE

11. 12 2 10
J 74

106
192

13
4-/ 13

1

13

SHIFT

42tig -
-
-

Z4
EB C

1ZOI
4 128r

,I
a7,../
3:1
Sil

-7
g

Ili
127

r K•I W
Y

si _i
4

.7
.

1,1

•

-I

ia

14
ri 75

1/0
196

13
H 77
:::
125

0
< 	60

44
184

27
> 62

46
li5

SHIFT

Afl 44.6. 32 SPACE MTN

Your Write.
Recently, I received from George Meidrum a tape

contining art interesting program. It had riot been created
in Extended BASIC, for line 110 contains unkeyable
characters. Fortunately, it was quite easy to find the
location of this line in memory and CALL PEEK it.

However, it caused a curious effect. It it was loaded
after a "Master Screen 00'; then it ran correotly. But if
another program had be,en loaded in beffire it, but atter
Extended BASIC had been selected, then it faltered,
producing any sort of error in line 110. Which is what
George Meldrum wrote to rne about.

But I discovered that my tape player ne.eded head
realignment to correctly load thE? tape. Sure, no trouble.
only then re.adjustment was nece.ssary to load one of my
tapes. I finally decided to reSAVE this mysterious program
with the normal setting on my equipment.

That done, the program suddenly works properiy,
every time! Oh dear...

k 	

l'rn very soiry to not tie able to offer a oonciel(-
solution, George.. but it seems to me that if you te.saved it as
per your own equipment. then it would not be erratic in
operation. Once again, sorry, but in fairness, I have just
finished rriy Year 11 yearly exams, so I could not find
suitable time tor experimentation.

All up, though, I am quite happy to receive and at least
look at any of your problems. And still do not have a disk
drive, although I hope to lemedy that in the corning fitonths

Enjoy 	

ERRATA! ERRATA! ERRATA: ERRATA! ERRATA!

In Tidbits Ave (October 'CV), I
inadvertently reversed two tokens.

2ohen 160 is CLOSE,
and 161 is SUB.

Please mark this in on your copy of
October's TO. Very Sorry 	

December 1987, Page 20)

7eNLIC

-og&-vub,
45

1151-111.1G NIEV115 DIGEST

TIGERCUB SOFTWARE
156 Collingwood Ave.
Columbus, OH 43213

Distributed by Tigercub
Software to TI-99/4A Users
Groups for promotional
purposes and in exchange for
their newsletters. 	May be
reprinted 	by non-profit
users groups, with credit to
Tigercub Software.

Over 130 original programs
in Basic and Extended Basic,
available on cassette or
disk, now reduced to just
$2.00 each, plus $1.50 per
order for cassette or disk
and PP&M. Cassette programs
will not be available after
my present stock of blanks
is exhausted.
Descriptive catalogs, while
they last, $1.00, which is
deductable from your first
order.

Tigercub Full Disk Collec-
tions, reduced to $10 post-
paid. Each of these contains
either 5 or 6 of my regular
$2 catalog programs, and the
remaining disk space has
been filled with some of the
best public domain programs
of the same category. I am
NOT selling public domain
programs - they are a free
bonus!
TIGERCUB'S BEST, PROGRAMMING
TUTOR, PROGRAMMER'S UTILI-
iIES, 	BRAIN GAMES, 	BRAIN
TEASERS, 	BRAIN BUSTERS!,
MANEUVERING GAMES, ACTION
REFLEX AND CONCENTRATION,
TWO-PLAYER GAMES, 	KID'S
GAMES; MORE GAMES, 	WORD
GAMES, ELEMENTARY MATH, MID-
DLE/HIGH SCHOOL MATH, VOCAB-
ULARY AND READING, MUSICAL
EDUCATION, KALEIDOSCOPES AND
DISPLAYS

NUTS & BOLTS (No. 1), a full
disk of 100 Extended Basic
utility subprograms in merge
format, ready to merge into
your own programs. Plus the
Tigercub Menuloader, a tuto-
rial on using subprograms,
and 5 pages of documentation
with an example of the use
of each subprogram. Reduced
to $15.00 postpaid.
NUTS & BOLTS NO. 2, another
full disk of 108 utility
subprograms in merge format,
all new and fully compatible
with the last, and with 10
pages of documentation and
examples. Also $15 postpaid.

* NUTS & BOLTS #3 is now *
* ready, another full disk *
* of 140 new merge-format *

* utility subprograms, all *
* compatible with the pre- *
* vious. With 11 pages of *
* documentation, $15 ppd. *

TIPS FROM THE TIGERCUB, a
full disk containing the
complete contents of this
newsletter Nos. 1 through
14, 50 original programs and
files, reduced to $10 ppd.
TIPS FROM THE TIGERCUB VOL.
2, another diskfull, com-
plete contents of Nos. 15
through 24, over 60 files
and programs, also just $10
TIPS FROM THE TIGERCUB VOL.
3, another 62 programs, tips
and routines from Nos. 25
through 32, $10 postpaid.
TIPS FROM THE TIGERCUB VOL.
4, another 48 programs and
files from issues 33 through
41, also $10 postpaid.

Here 	is 	a versatile
printer utility which will
accept all printer control
codes, print in 1 to 5 col-
umns with choice of column
separation and margin width,
allow alternate margins and
pause at end of page to turn
paper over, and will load
and print a diskfull of
files one after another. It
is set up for the Gemini 10X
and may require modification
for other printers.

100 DIM M$(400),F$(50)
110 GOTO 150
120 K,ST,SET,S,P$,P,CL,DW$,S
S$,I$,D$,E$,NC,CW,TC,TA,TX,A
V,CS,S$,LT,A$,LSP,LP,RM,OK$,
QQ$,X,F$0,SL,F,IP,M$0,T$,F
LAG,J,PP,LT$
130 CALL CLEAR :: CALL KEY :
: CALL COLOR :: CALL SCREEN
:: CALL SOUND
140 !@P-
150 CALL CLEAR :: CALL KEY(3
,K,ST):: ON WARNING NEXT
160 FOR SET=0 TO 14 :: CALL
COLOR(SET,2,8):: NEXT SET ::
CALL SCREEN(5)
170 DISPLAY AT(3,6):"TIGERCU
* PRINTALL": :TAB(7);"Copyri
ght 1987":TAB(6);"Tigercub S
oftware" !programmed by Jim
Peterson
180 DISPLAY AT(12,1):"May be
distributed without":"restr
iction providing that":"no p
rice or copying fee is":"cha
rged."
190 DISPLAY AT(18,7):"TURN P
RINTER ON!"
200 DISPLAY AT(20,8):"PRESS
ANY KEY" :: DISPLAY AT(20,8)
:"press any key" :: CALL KEY
(0,K,S):: IF S=0 THEN 200 EL
SE CALL CLEAR
210 DISPLAY AT(12,1):"PRINTE
R DESIGNATION?" :: ACCEPT AT
(14,1)BEEP:P$:: IF POS(P$,"
.LF",1)=0 THEN P$=P$8,".LF"
220 ON ERROR 230 :: OPEN #1:
P$,VARIABLE 255 :: ON ERROR
STOP :: PRINT #1:CHR$(27);"@

" :: CALL CLEAR :: GOTO 240
230 DISPLAY AT(20,1):"CANNOT
OPEN PRINTER!" :: RETURN 21

0
240 DISPLAY AT(12,1):"PRINT
SIZE?": :" (1) PICA":" (2)
ELITE":" (3) CONDENSED"
250 ACCEPT AT(12,13)VALIDATE
("123")SIZE(1):P :: PRINT #1
:CHR$(27):"B";CHWP);
260 !The values 80, 96 and 1
36 in the next line are the
maximum number of pica, elit
e and condensed characters p
er line on Gemini 10X
270 !Change as necessary for
your printer!
280 CL=(P=1)*80+(P=2)*96+(P=
3)*136 CL=ABS(CL)
290 DISPLAY AT(12,1)ERASE AL
L:"DOUBLE-WIDTH? (Y/N) N"
ACCEPT AT(12,21)SIZE(-1)VAL
IDATECYN")BEEP:DW$:: IF DW
$="Y" THEN PRINT #1:CHR$(27)
;"W";CHR$(1);:: CL=CL/2
300 DISPLAY AT(12,1)ERASE AL
L:"SUPERSCRIPT? (Y/N) N"
ACCEPT AT(12,20)SIZE(-1)VALI
DATE("YN")BEEP:SS$:: IF SS$
="Y" THEN PRINT #1:CHR$(27):
"S";002$(0):
310 DISPLAY AT(12,1)ERASE AL
L:"ITALICS? (Y/N) N" ACCE
PT AT(12,16)VALIDATECYN")SI
ZE(-1)BEEP:I$:: IF I$="Y" T
HEN PRINT #1:CHR$(27);"4";
320 DISPLAY AT(12,1)ERASE AL
L:"DOUBLE-STRIKE? (Y/N) Y" :
: ACCEPT AT(12,22)VALIDATE("
YN")S1ZE(-1)BEEP:D$:: IF D$
="Y" THEN PRINT #1:CHR$(27):
"G";
330 IF P<>3 AND P<>4 THEN DI
SPLAY AT(12,1):"EMPHASIZED?
(Y/N) Y" :: ACCEPT AT(12,19)
VALIDATE("YN")SIZE(-1)BEEP:E
$ IF E$="Y" THEN PRINT #1
:CHR$(27);"E";
340 DISPLAY AT(12,1)ERASE AL
L:"NUMBER OF COLUMNS? (1-5)"
:: ACCEPT AT(12,26)VALIDATE

("12345")SIZE(1)BEEP:NC
350 DISPLAY AT(12,1):"COLUMN
WIDTH (NUMBER OF": :"CHARAC
TERS?" :: ACCEPT AT(14,13)VA
LIDATE(DIGIT)BEEP:CW
360 TC=NC*CW 	TA=CL-TC
TX=TC+NC*2-2
370 IF TX<=CL THEN 390 :: DI
SPLAY AT(18,1):STR$(NC)&" co
lumns of "&STRUCW)&" charac
ters":"plus 2-column spacing
equals"
380 DISPLAY AT(20,1):STR$(TC
)&" characters; maximum":"av
ailable in print size":"sele
cted is "&STR$(CL)&".":"****
Please reselect****" GOTO
240

390 AV=INT(TAANC-1)):: DISP
LAY AT(12,1)ERASE ALL:"COLUM
N SEPARATION?":"MINIMUM 2":"
MAXIMUM "&STR$(AV)&" AVAILAB
LE ":"2"
400 ACCEPT AT(15,1)VALIDATE(
DIGIT)SIZE(-2)BEEP:CS :: IF
CS<2 OR CS>AV THEN 32767 ELS
E S$=RPT$(" ",CS)
410 TA=TA-CS*(NC-1):: IF TA<
2 THEN 450
420 DISPLAY AT(12,1)ERASE AL
L:"LEFT MARGIN WIDTH?": :"MA

continued on page 22

(Page 21, December 1987

1-151-IUG RIMS DIGEST

XIMUM "&STR$(TA)&" AVAILABLE
" :: ACCEPT AT(12,20)VALIDAT
E(DIGIT)BEEP:LT :: IF LT>TA
THEN 420
430 DISPLAY AT(12,1):"ALTERN
ATING LEFT/RIGHT": :"MARGIN?
(for pages to be":"later re

produced on both":"sides) (Y
/N) N"
440 ACCEPT AT(16,14)VALIDATE
("YN")SIZE(-1):A$
450 LSP =12 :: DISPLAY AT(10,
1):" ":" ":"LINES PER PAGE?
60":" ":" ":" ":" " ACCEP
T AT(12,17)VALIDATE(DIGIT)SI
ZE(-3):LP :: IF LP<70 THEN 4
90
460 DISPLAY AT(12,1):"LINE S
PACING - 72 INCH" :: DISPLAY
AT(11,16):" " :: ACCEPT AT
(10,16)VALIDATE(DIGIT)BEEP:L
SP
470 IF LP/(INT(72/LSP))>11.5
THEN DISPLAY AT(20,1):"WON'
T FIT!" :: GOTO 450
480 PRINT #1:CHR$(27);"A";CH
R$(LSP);
490 RM=TA -LT
500 DISPLAY AT(12,1)ERASE AL
L:STR$(NC)&" columns of":STR
$(CW)&" -character width":"le
ft margin of "&STR$(LT)&" sp
aces"
510 DISPLAY AT(15,1):STR$(LP
)&" lines per page":"with "&
STR$(LSP)&"/72 line spacing"
520 DISPLAY AT(17,1):STR$(CS
)&" spaces between columns":
"right margin of "&STR$(RM)&
" spaces": :"OK? (Y/N) Y"
530 ACCEPT AT(20,11)VALIDATE
("YN")SIZE(-1)BEEP:OK$:: IF
OK$="N" THEN 240
540 DISPLAY AT(12,1)ERASE AL
L:"PAUSE AT END OF PAGE? N"
:: ACCEPT AT(12,23)VALIDATE(
"YN")SIZE(-1):QQ$
550 DISPLAY AT(1,1)ERASE ALL
:"INPUT FILENAMES TO BE":"PR
INTED.":"PRESS ENTER WHEN DO
NE"
560 X=X+1 :: DISPLAY AT(X+3,
1):"FILENAME? DSK" :: ACCEPT
AT(X+3,14)SIZE(-12)BEEP:F$(

X)
570 IF F$(X)="" THEN X=X -1 :
: GOTO 600 ELSE F$(X)="DSK"&
F$(X)
580 ON ERROR 590 :: OPEN #2:
F$(X):: CLOSE #2 :: GOTO 560
590 ON ERROR STOP :: CALL SO
UND(1000,110,0, -4,0):: DISPL
AY AT(20,1):"CANNOT OPEN "&F
$(X):: X=X -1 :: RETURN 560
600 SL=1
610 F=F+1 :: IF F>X THEN 700
:: ON ERROR 620 :: OPEN #2:

FS(F),INPUT :: DISPLAY AT(22
,1):"READING ";FS(F):: ON ER
ROR STOP :: GOTO 630
620 CALL SOUND(1000,110,0, -4
,0):: DISPLAY AT(20,1):"COUL
D NOT OPEN "&F$(F):: STOP
630 FOR IP=SL TO LP*NC :: LI
NPUT #2:M$(1P):: IF LEN(MS(I
P))=0 THEN 670 :: IF NC>1 AN
D POS(M$(IP),CHR$(13),1)<>0
THEN M$(IP)=SEG$(M$(IP),1,LE
N(M$(1P)) -1)
640 IF ASC(M$(1P))>126 OR AS
C(M$(IP))<32 THEN IP=IP -1 ::
GOTO 680

650 IF LEN(M$(IP))<=CW THEN
670 :: M$(IP)=SEG$01$(IP),1,
CW):: CALL SOUND(1000,110,0,
-4,0):: DISPLAY AT(12,1):M$(
IP);" OVER";CW;"CHARACTERS":
"TRUNCATED TO ";T$:"OK?"
660 CALL KEY(3,K,S):: IF S=0
THEN 660 ELSE IF K<>89 THEN
STOP
670 M$(IP)=M$(IP)&RPT$(" ",C
W-LEN(MS(IP)))
680 IF EOF(2)=1 THEN CLOSE #
2 :: SL=IP+1 	GOTO 610
690 NEXT IP :: IF EOF(2)=1 T
HEN CLOSE #2 :: GOTO 720 ELS
E GOTO 720
700 ON ERROR 710 :: FLAG=1 :
: FOR J=IP+1 TO NC*LP 	M$(
J)="" :: NEXT J 	GOTO 720
710 STOP
720 PP=PP+1 :: IF PP/2=INT(P
P/2)AND A$="Y" THEN LT$=RPT$
(" ",RM)ELSE LT$=RPT$(" ",LT

730 FOR J=1 TO LP :: ON NC G
OSUB 750,760,770,780,790 ::
NEXT J :: PRINT #1:CHR$(12):
: SL=1 :: IF F>X THEN STOP E
LSE IF QQ$="N" THEN 630
740 DISPLAY AT(24,1)BEEP:"PR
ESS ANY KEY TO CONTINUE" ::
CALL KEY(0,K,S):: IF S=0 THE
N 740 ELSE DISPLAY AT(24,1):
"" 	GOTO 630
750 PRINT #1:LT$&M$(J)&CHR$(
10):: RETURN
760 PRINT #1:LTS&M$(J)&S$&M$
(J+LP)&CHR$(10):: RETURN
770 PRINT #1:LT$&M$(J)&S$&M$
(J+LP)&S$&M$(J+LP*2)&CHR$(10
):: RETURN
780 PRINT #1:LTS&M$(J)&5$&M$
(J+12)&S$&MS(J+LP*2)&5$&M$(J
+LP*3)&CHR$(10):: RETURN
790 PRINT #1:LT$&M$(J)&S$&M$
(J+LP)&S$&MS(J+LP*2)&S$&M$(J
+LP*3)&SS&M$(J+LP*4)&CHRS(10
):: RETURN

This 	is 	an improved
version of the math program
in Tips #36.

100 CALL CLEAR :: RANDOMIZE
110 B=INT(5*RND+2):: IF B=B2
THEN 110 ELSE B2=B
120 F=INT(5*RND+2):: IF F=F2
THEN 120 ELSE F2=F
130 D=INT(5*RND+2):: IF D=D2
THEN 130 ELSE D2=D
140 X=F*B*D
150 BB=INT(5*RND+2):: IF BB=
BB2 OR BB=B THEN 150 ELSE BB
2=BB
160 DD=INT(5*RND+2):: IF DD=
DD2 OR DD=D THEN 160 ELSE DD
2=DD
170 F=F*BB*DD
180 DISPLAY AT(3,1)ERASE ALL
:"IF";B;"BOYS CAN CATCH";X;"
FROGS IN";D:"DAYS,"
190 DISPLAY AT(6,1):"HOW MAN
Y FROGS CAN";BWBOYS":"CATC
H IN";DD;"DAYS?"
210 ACCEPT AT(7,19):Q
220 IF Q=F THEN DISPLAY AT(9
,1):"THAT'S RIGHT!" :: GOTO
110
230 DISPLAY AT(9,1):"NO, THA
T'S WRONG."

.240 DISPLAY AT(11,1):"IF";B:
"BOYS CAN CATCH";X:"FROCS IN

";D;"DAYS"
250 DISPLAY AT(13,1):"THEN 0
NE BOY CAN CATCH";X/B;"FROGS
IN";WDAYS"
260 DISPLAY AT(15,1):"AND ON
E BOY CAN CATCH";X/B/D;"FROG
S IN ONE DAY."
270 DISPLAY AT(17,1):"SO, IF
ONE BOY CAN CATCH";X/B/D;"F
ROGS IN ONE DAY,"
280 DISPLAY AT(19,1):"THEN";
BB;"BOYS CAN CATCH";X/B/D*BB
;"FROGS IN ONE DAY"
290 DISPLAY AT(21,1):"AND";B
B;"BOYS CAN CATCH";X/B/D*BB*
DD;"FROGS IN";DD;HDAYS."300
DISPLAY AT(24,1):"PRESS ANY
KEY" :: CALL KEY(0,K,S):: IF
S=0 THEN 300 ELSE 110

Here's an idea for an
unusual title screen -

100 CALL CLEAR :: FOR SET=1
TO 8 :: CALL COLOR(SET,1,1):
: NEXT SET :: CALL CHAR(100,
"0",101,"0")
110 X$(0)="4043241818244202"

X$(1)="4021261818648402"
:; X$(2)="2020131C38C80404"

X$(3)="1010101FF8080808"
X$(4)="081010907E111020"

120 X$(5)="080808F81F101010"
X$(6)="0404C8381C132020"
X$(7)="0284641818262140"

130 A$=RPTI(CHR$(100)&CHR$(1
01),13):: FOR R=1 TO 24 :: C
=C+1+(C=2)*2 :: DISPLAY AT(R
,C):A$:: NEXT R
140 CALL VCHAR(1,29,1,168)
150 CALL SCREEN(2):: CALL CO
LOR(9,5,16):: FOR S=1 TO 8 :
: CALL COLOR(S,16,2):: NEXT

160 DISPLAY AT(5,5):" TIGERC
UB SOFTWARE ";:: DISPLAY AT(
8,6):" SQUIRMY SCREEN "; .
170 FOR J=0 TO 7 :: CALL CHA
R(100,X$(J)):: CALL CHAR(101
,X$(7-J)):: NEXT J
180 CALL KEY(0,K,S):: IF S=0
THEN 170

MEMORY FULL

Jim Peterson

December 1987, Page 22)

RUC
	

TISHIlti NEWS 111111GFST

PUTTING IT ALL TOGETHER #3

by Jim Peterson

The hardest part of learning to program is not in
learning what the various commands do - it is in
learning how to put them together to do what you want
them to do! Key in this mini-program and run it to see
what it does. Then read the explanation of each line
and see how it does what it does.

100 !FORMATION by Jim Peters
on - use the S and D keys
110 CALL CLEAR :: CALL CHAR(
100,"381010FEFE383810103838F
EFE10103838"):: CALL SCREEN(
5):: CALL MAGNIFY(2):: RANDO
MIZE
120 V,W,P=0 :: FOR J=1 TO 7
:: CALL SPRITE(#J,100,7,1,25
0*RND+1,10,4):: FOR D=1 TO 1
00 :: NEXT D :: NEXT J :: CA
LL SPRITE(#11,101,16,160,128

130 CALL KEY(3,K,S):: W=W+1
:: IF W=150 THEN 170 ELSE IF
W=300 THEN 180 ELSE IF K=68
THEN V=V+2+(V>125)*2 ELSE I
F K=83 THEN V=V-2-(V<-125)*2
140 IF P=0 THEN CALL MOTION(
#11,0,V)ELSE IF P=1 THEN CAL
L MOTION(#11,0,V,#12,0,V)ELS
E CALL MOTION(#11,0,V,#12,0,
V,#13,0,V)
150 CALL COINC(ALL,A):: IF A
=0 THEN 130
160 CALL SOUND(1000,-4,0)::
Z=Z+1 :: DISPLAY AT(24,1):"P
LANES LOST";Z :: CALL DELSPR
ITE(ALL):: GOTO 120
170 P=1 :: CALL POSITION(#11
,R,C):: CALL SPRITE(#12,101,
16,160,C-40-(C<40)*256):: GO
TO 140
180 P=2 :: CALL POSITION(#11
,R,C):: CALL SPRITE(#13,101,
16,160,C+40+(C>216)*256):: G
OTO 140

This is not a finished program but a mini-program to
demonstrate the use of sprites.

Line 110 first clears the screen. The CALL CHAR lists
a hex code string of 32 characters. The first 16 of
these will reidentify ASCII 100 into an airplane
pointing down, the remaining 16 will reidentify the
next ASCII, 101, to an airplane pointing upward. The
screen is colored dark blue, the sprite magnification
is set at 2 (single character in double size) and
RANDOMIZE insures a different flight pattern each
time.
In line 120, V and W and P are all set or reset to 0
(note that all can be included in one statement)
because the program execution returns here from line
160 to restart after each crash. The J loop runs 7
times to put 7 sprites on screen, numbered 1 to 7,
using ASCII 100 (the down-pointing plane), colored red
(color code 7), at dotrow 1 (top of screen) and at a
randomly selected dotrow between 1 and 250 (thus each
game will be different), moving at a speed of 10
downward and 4 to the right.
The D loop creates a delay so that each sprite will
drift downward before the next is created, so that no
two will overlap and be later detected as a
coincidence in line 150; also, so that more than 4
will not appear in a row and be blanked out. After
these have been placed, sprite #11 with ASCII 101 (the
upward pointing plane), colored white (16), is placed
at dotrow 160, dotcolumn 128, without motion.
In the CALL KEY in line 130, the use of mode 3 insures
that the ASCII of an upper case S or D will be
returned even if the alpha lock happens to be up. W is
a counter for the number of times that the keyboard is
scanned (program execution passes through this line).

114\i„, 	

When the count reaches 150, a jump to line 170 places
a second plane on the screen, and at 300 a jump to
line 180 adds the third plane.
Otherwise, if K=68 (D, the right arrow, is pressed),
the speed of the CALL motion in line 140 is increased
by 2. If this velocity is increased beyond 127 the
program will crash, but if the relational expression
(V>125) is true it will have a relational value of -1,
and V=127+2+(-1)*2 will still be 127. If K=83 (S, the
left arrow), the speed is decreased by 2, and the same
formula insures that the velocity will not go below
-127.
In line 140, P is the counter for the number of planes
in the formation, initially set at 0 for one plane in
line 120, increased to 1 and 2 in lines 170 and 180.
This determines whether the CALL MOTION will change
the speed (if any key was pressed) of 1, 2 or 3
sprites. The CALL MOTION has a 0 row velocity to keep
the plane at the bottom of the screen, and a column
velocity determined by the last keypress. Since all
sprites are controlled in a single CALL MOTION, the
speed change is simultaneous and they stay in
formation.
In line 150, the CALL COINC checks whether any sprite
is overlapping any other, even slightly. Since the
red planes were all placed on the screen separate from
each other and all traveling in the same direction and
speed, they will never touch so any coincidence must
be between a white plane and a red one. If there is
no coincidence, A will equal 0 and program execution
goes back to the CALL KEY.

If A=-1 there is a coincidence and line 160 creates a
sound (I wish the TI was capable of a good bang!), the
counter of crashes is incremented by one and
displayed, all sprites are deleted, and execution goes
back to line 120 to reset variables to 0 and place a
new random formation on the screen.
When program execution jumps to line 170 from 130
after 150 key scans, the P counter for number of
planes is changed to 1. CALL POSITION finds the
dotrow R (not needed but must be included) and
dotcolumn C currently occupied by the white plane.
CALL SPRITE uses that value to place a second plane,
sprite #12, 40 dotcolumns to the left.

If the original plane is less than 40 dotcolumns from
the left of the screen, this would cause a crash
because dotcolumn cannot be a negative number. The
use of relational values again solves this problem.
Suppose that sprite #11 is at dotcolumn 10.
10-40-(-1)*256 will place sprite #12 at dotcolumn 226
which will be 40 dotcolumns to the left of #11 when
wraped around.
Similarly, after 300 keyscans, line 180 puts a third
sprite-plane 40 dot columns to the right of the first
one.

This program could be modified in many ways. The
number of red planes can be changed in the J loop in
line 120 - if more are added, the D loop might also
need adjustment to insure that none will wrap around
before all are placed.
The rate of speed-up can be adjusted by changing the 2
in line 130 to some other value, even a decimal value
such as 2.5

If you would rather use a joystick than the keyboard,
change line 130 to -

130 CALL JOYST(1,X,Y):: K=X*
10+Y :: W=W+1 :: IF W=150 TH
EN 170 ELSE IF W=300 THEN 18
0 ELSE IF K=40 THEN V=V+2+(V
>125)*2 ELSE IF K=-40 THEN V
=V-2-(V<-125)*2

By using variable names rather than values for the J
loop in line 120, or for the velocity in line 130, you
could offer options of difficulty at the start of the
program. When doing any program ming with sprites in
motion, it is always necessary to do a good deal of
on-screen experimentation and program modification to
get the desired results.

(pa_ge 23, December 1987

74vH1/0

,rf 11""".'

STRINGING AND UNSTRINGING

by Jim Peterson

The following program will give
the plural form for most words. I
will leave it to you to improve on
it, and to teach the computer the
correct plural form of PANTS,
TOOTH, MOUSE, FUNGUS, DATA, and
the other inconsistencies of the
English language.

100 INPUT W$
110 L=LEN(W$)
120 Z$=SEG$(W$,L,1)
130 Y$=SEG$01$,L-1,2)
140 ON POS("EFHNSXYZ",Z$,1)+
1 GOTO 320,150,180,210,240,2
70,270,290,270
150 IF SEG04,L-2,2)<>"IF"
THEN 320
160 PL$=SEG$04,1,L-2)&"VES"
170 GOTO 330
180 IF (Y$<>"AF")*(Y$<>"LF")
(Y$<>"RF")(4<>"HOOF")THEN
320
190 PL$=SEG$04,1,L-1)&"VES"
200 GOTO 330
210 IF (Y$<>"CH")*(Y$<>"SH")
THEN 320
220 PL$=WWES"
230 GOTO 330
240 IF SEG04,L-2,3)<>"MAN"
THEN 320
250 PL$=SEG$(14,1,L-3)&"MEN"
260 GOTO 330
270 PL$=WWES"
280 GOTO 330
290 IF (YWAY")+(”="EY")+(
YWOY")+(”="UY")THEN 320
300 PL$=SEG$04,1,L-1WIES"
310 GOTO 330
320 PL$=WWS"
330 PRINT PL$
340 GOTO 100

This program is also a good
example of four of the Basic
statements which are used to
manipulate strings.

Remember that a string is a
character, a group of characters,
a word, a sentence, even a
punctuation mark or a blank space
or one or more numeric digits,
which does not represent a numeric
quantity. And a string variable
name must end in a dollar sign.

Line 100 asks you to input a
string. Line 110 contains the
first of our string manipulators,
LEN. All it does is to count the
number of characters in the
string, including blank spaces.
Try it - type PRINT LENCTHIS IS A
TEST") and Enter. So, L equals the
number of characters in the string
you input.

Line 120 introduces the next
string manipulator, SEG$. That
stands for SEGMENT, and what it
does is to pick a segment out of
the string, starting at the
position you specify and
continuing for as many characters
as you specify. So, SE0$(14$,L,1)
selects the portion of W$

Lbeginning at L and continuing for

1 character. Since we have just
defined L as being the number of
characters in the string, we are
starting with the position of the
last character and it would do no
good to specify more than one
character. So, Z$ is the last
character of W$. Try it - type
PRINT SEG$("TEST",LEN("TEST"),1).

Similarly, line 130 defines Y$ as
being the segment of W$ starting
with the character in the position
of the length of the string, minus
1, and continuing for 2 characters
- in other words, the last 2
characters of the string. Try that
too - PRINT 	•
SEGWTEST",LENCTEST")-1,2).

Line 140 introduces the
manipulator POS, which means
POSITION. It tells the computer to
find the first occurrence, in the
first string, of the character or
characters in the second string,
starting the search at the
position specified. Try it - type
PRINT POS("TEST","T",1). The
answer is 1 because you told the
computer to start searching for T,
starting at the first character of
"TEST", and "T" is the first
character of "TEST". Try PRINT
POS("TEST","T",2). Now the answer
is 4, because you asked for the
search to start at the second
character, so the first "T" it
found was the 4th character of
"TEST". Finally, try PRINT
POS("TEST","X",1). The answer is 0
because no "X" was found in
"TEST".

Line 140 is a bit difficult to
understand, but it shows one of
the best uses of POS. It asks for
the first occurence, starting with
the first character of the string
"EFHNSXYZ", of the string Z$ -
which is the last character of the
input string, remember? So, if W$
is a word ending in "E", Z$="E",
and the POS of "E" in "EFHNSXYZ"
is 1. If W$ ends in "Z" and
Z$="Z", the POS of Z$ in
"EFHNSXYZ" is 8 - get that? And if
W$ ends in "W", Z$="W", and the
position found by POS is 0 because
it didn't find a W - remember
trying that in the last
paragraph.

Now, line 140 uses the value found
by POS to GOTO the appropriate
line number to continue the
program. The trouble is, an ON
GOTO must be able to read a
consecutive series of values
starting with 1, and if POS gives
it a 0, the program will CRASH!
That's why the +1 in line 140. If
W$ does not end in any of the
letters "EFHNSXYZ" then POS=0,
+1=1, ON 1 GOTO 320.

So let's go to 320 and look at our
last string manipulator, the
ampersand, "&", "and sign", or in
computerese, "concatenation". All
it does is to join two strings
into. one. PL$ is our variable name
for the plural form of W$, and in
this case it consists of W$ with
an "S" tacked onto the end.

If W$ ends in "E", POS=1, +1=2, ON
2 GOTO 150. In line 150, the <>
when dealing with strings means
"other than" or "is not", and the
line means "if the segment of W$
consisting of 2 characters
starting with the 2nd character
before the last character, is not
"IF" then go to 320." In other
words, if W$ is not "WIFE" or
"KNIFE" or some such, just put an
"S" after the word, in 320.

Otherwise, in line 160, PL$ (the
plural) consists of the segment of
W$ starting with the first
character and containing the
number of characters equal to the
length of W$ minus 2, with "VES"
tacked on. So, "WIFE" becomes
"WIVES", etc. - yes, I know the
plural of "FIFE" is not "FIVES",
but....1

If W$ ends in "F", POS=2, +1=3, on
3 GOTO 180. Remember that Y$ is
the last two characters of W$. The
coding here had best be the
subject of another article, but
just read those asterisks as "and"
- if Y$ is not "AF" (as in LOAF)
and Y$ is not "LF" (as in CALF)
and Y$ is not "RF" (as in SCARF)
and W$ is not "HOOF" (but it could
be ROOF!) then go to 320 to tack
an "S" on the end, otherwise drop
through to 190 to pick out the
segment from the 1st character to
the next-to-last and add "VES" to
it.

Similarly, in lines 210-220, if
words ending in "H" to do not end
in "CH" or "SH" they take the "S"
ending, otherwise "ES". In lines
240-250, if words ending in "N" do
not end in "MAN" they take "S",
otherwise take the segment from
the 1st character to the 4th from
the end and add "MEN". Words
ending in "S", "X" or "Z" are
referred to line 270 to add the
"ES" ending, and lines 290-300
figure out that words ending in
"Y" preceded by a vowel take the
"S" ending, otherwise knock off
the "Y" and add "IES".

I hope that I haven't overlooked
some other rule of plural endings
here - but anyway, I'm trying to
teach you how to program, not how
to spell!

4
..‘

"These educational packages sure have learned ow a lot, Dad!"

1151-111G runs ilIGEGI

December 1987, Page 24)

1-15HUG IVEVII5 DIGEST

WORD PROCESSING
SOME FORMATTER TRICKS

OR
"HOW TO AVOID READING THE MANUAL"

by Jean Wilcox, SunCoast 99ers

Some time back, Mr. Molander very kindly gave me
the information I needed to bring a Basic or X—Basic
program into the word processor, for which many
thanks. The way to handle this is to list your program
in a file format that can be read by TI Writer, i.e.
LIST "DSKn.filename". Then, using the Text Editor, the
program can be loaded into your text buffer, either
first or following a given line number of existing
text. (A few rude souls nearby suggested it might be
to my advantage to read the manual, and I fully intend
to. Not today, of course, but sometime very soon.). I
did encounter a couple of small difficulties and made
some gigantic messes before I figured out how to
handle the situation. For one thing, if you are
planning to print through the Formatter, as I
generally do, the programs you draw up out of file
will do some really strange things if you forget to
use the .TL command before printing.

Looking at the screen, I assumed that what I saw
was what I would get. Not so. It's easy to forget
that the exponent sign for maths is also the Required
Space sign for text; the "@" key is handy to use as a
variable name, but causes the printer to double—
strike; the ampersand, the symbol for concatenation of
strings, is used to underscore in word processing. A
large proportion of programs will use either the
exponent or the ampersand, or both, so it's a good
idea to .TL these before you attempt to print them
out, unless you want to duplicate my goofs.

Here's something else that TI never told us about
TI Writer. Every time I think I have found all the
things that will give trouble printing through the
Formatter, I find another one. The newest character to
add to the list is the asterisk. Assuming it is to be
followed by a space or letter, (or group of spaces or
letters), you can print asterisks all day long. You
won't have any problems with A*B, 5*C, or
HELL0****STRANGER. But you will be confounded if you
attempt to print one followed directly by a number. As
an example, if you need "A*123", what you will get
will be "A*3".

Part of my wasted time was spent trying to find
out why the miserable thing was doing what it was
doing.. I finally located the one place in the manual
where an asterisk is mentioned as having a function,
rather than as just another character to be printed.
It's on pages 111-113, listed under Alternate Input,
Mail Merge Option. (How many of you send out form
letters?) If you feel like getting really technical
about the thing, read the part about Define Prompt,
too. It's on the same pages. Even after finding this I
still didn't immediately associate the Mail Merge with
the problem I was having, since the command necessary
to carry out the job in a form letter is described as
"*n*", an asterisk sandwich with a number in the
middle. So I just quit worrying about the Why of the
situation and started working on the What To Do About
it.

I must not be too swift because it took another
hour of typing all sorts of strange stuff containing
asterisks in odd configurations to realize that I
could always get what I wanted if a space immediately
follows the asterisk. In a formula it will look
lop—sided, (since the space is printed, too), so, as a
dedicated neat freak, I'm typing a space before and
after it. It's just as easy to remember that as the
other, and the results look as though it were what you
had intended all along.

A day or two later, Irene called to say she had
information on this from the head guru, Guy—Stefan
Romano. He explained that it was indeed the Mail Merge
Option that was the culprit. It seems that when TI
Writer encounters as *, it looks for one or two
numbers for the Value File needed for the form letter,

then proceeds to strip out the asterisk and the
numbers following it. His solution was to print two
asterisks, followed by two dummy numbers, one space,
and then the figure you want printed. This works well,
but you're going all the way around your elbow to get
your thumb. Why not just put a space fore and aft and
carry on?

Another thing that caused me trouble also springs
from my neatness fetish. When the various program
lines are formatted they get drawn all up in a knot..
if there's room on a line of type to print something,
it will get printed, whether you want it there or not.
The obvious answer to this, of course, is to add a
carriage return at the end of each program line.
"Enter" is supposed to do this, but for me it
undependable. If the line is short it might work, then
again it might not. I found that if I enter the <cr>
symbol by using CTRL 8 I was in business. This causes
a blank line to be inserted after each existing line,
but they are easily deleted. There are probably dozens
of ways, all shorter, simpler, and more efficient, to
accomplish these things, but they work for me. So
until I get around to reading the book, this is the
way I'm going to do it.

(NOTE: The <cr> does not appear when you have
previously deleted it on a line, inserted a line, or
deleted lines after the cursor. Another way to get the
<cr> on the line is CTRL M, but you will still get the
extra line.)

TI Writer FILE PRINTER

by George Steffen, LA 991ERs

Reprinted from LA Topics Vol 4 No.6

In the last month's newsletter I first noticed the
wish for a simple program to print TI Writer files.
Here is one that I wrote last year for Chick DeMarti
before he acquired a TI Writer. Unfortunately,
because the INPUT statement assumes that a comma
signals the end of a variable, we have to use Extended
Basic and the LINPUT statement. Lines 150 and 160 get
the names and open the input and output files. The
entire printing portion of the program is in lines 170
and 180. The second statement in line 170 will
eliminate the Tab pointers which are kept along with
the actual text in TI Writer files.

100 REM FILEPRINT
110 REM TI EXTENDED BASIC
120 REM GEORGE F. STEFFEN, LA 99ER CG
130 REM VERSION 1.0, 5/10/84
140 READ P$,T$:: DISPLAY AT (3,1):ERASE

ALL:"THIS PROGRAM WILL PRINT TIW FOR
MATTED FILES OR PROGRAMS LISTED TO DI
SK ON"

150 DISPLAY AT(6,1):"YOUR PRINTER.": :"YO
UR PRINTER NAME?":P$:: ACCEPT AT(9,1
)SIZE(-28)BEEP:P$:: OPEN #2:P$,OUTPU

160 DISPLAY AT(11,1):"FILE TO BE PRINTED?
":T$:: ACCEPT AT(12,1)SIZE(-15)BEEP:
T$:: OPEN #1:T$,DISPLAY ,INPUT

170 IF EOF(1) THEN GOTO 190 ELSE LINPUT #
1:L$:: IF LEN(LUTHEN IF ASC(L$)<128
THEN PRINT #2:L$

180 GOTO 170
190 CLOSE #1 :: DISPLAY AT(14,1):"DO ANOT

HER (Y/N)? Y" :: ACCEPT AT(14,28)SIZE
(-1)VALIDATE("Y/N":L$:: IF L$="Y" TH
EN 160

200 CLOSE' #2 :: STOP
210 DATA PIO,DSK1.TEXT

(Page 25, December 1987

ATHUG TIGHIJIG WINS DIGEST

PRETTY PLEASE, PINCH MY DEAR

AUNT SALLY RUDELY!

by Jim Peterson

My apologies to dear old Sal. That mnemonic device is
usually given as just "My Dear Aunt Sally", but I
expanded it a bit. It is intended to remind you of
the sequence in which your computer solves an
equation, which is -
(P)arentheses
(P)owers (exponentiation)
(P)refixes (plus and minus)
(M)ultiplication
(D)ivision
(A)ddition
(S)ubtraction
(R)elational operations

So what? Well, if one of your program lines isn't
giving you the expected results, it may well be that
you forgot to pinch Saly properly!

The computer goes through the line from left to right
5 times (I don't know if it really does, but that is
the easiest way to explain it!) The first time
through, it looks for a left hand parenthesis. If it
finds one, it stops at the first right hand
parenthesis. If it finds one but not the other, it
CRASHES! When it finds a right parenthesis, it backs
up leftward until it comes to the closest left hand
parenthesis. It solves everything between those two
parentheses, step by step in accordance with the
following priorities, and then erases those two. Then
it goes through the same routine again until it finds
no more parentheses.

Need a "for instance"? OK -

X=((10*2)-6)+(8/4)
X=((20)-6)+(8/4)
X=(20-6)+(8/4)
X=(14)+(8/4)
X=14+(8/4)
X=14+(2)
X=14+2
X=16

Next it goes through the equation looking for the
caret sign. That is the little " that tells it to
multiply the preceding number by itself as many times
as the following number. Example -
4"2 means 4 times 4
6"3 means 6 times 6 times 6

Then, the prefixes. That just means that, for
instance, if removing the parentheses from -(-6) has
left you with --6, it becomes a +6, of course. I
suppose that ABS and SGN are also worked here.

Now, multiplication and division. These are both done
in one pass through because it doesn't make any
difference which is done first. 10*2/4 is the same as
2/4.

Next, addition and subtraction, also in one pass
because 10+4-2 is the same as 4-2+10.

Finally, the relational operations, which had best be
the subject of a separate article. And finally
finally the string concatenations, but let's keep old
Sal out of those.

Note that everything between a pair of parentheses is
worked as a separate equation, step by step in the
above sequence, before the parentheses are erased.

So, why should you need to worry about all this? Well -

10*4-2=38
10*(4-2)=20
10*4"3=640
(10*4)"3=64000
(00*4)^3=....SYNTAX ERROR!

Makes a difference, doesn't it?

The important things to remember are -

If you want to add two numbers together before you
multiply or divide their sum, put them in parentheses
(2+3)*4.

If you want to subtract one number from another before
you multiply or divide the result, put them in
parentheses (10-4)/2.

If you want to add, subtract, multiply or divide
numbers before you increase them by any power, put
them in parentheses (10*4+8)"3.

If you keep Sally in mind, you will have fewer bugs in
your programs!

USING CONTROL 2 WITH THE TERMINAL
EMULATOR COMMAND MODULE

To dump a screen to an output device, such as,
disk,printer or other.

First, make sure host is in a pause state. Second,
press CTRL 2. At this time the TEII emulator asks that
you type in the output device of you choice.

Valid inputs are.

DSKl.filename
DSK2.filename
DSK3.filename
CS1
CS2
TP
PIO
RS232/1
RS232/2

After typing the device name of your choice, press
enter. At this time the TEII emulator will dump the
contents of the screen to the device you specified.

For those of you dumping to disk.

After you are thru dumping all the screens to the same
file, you must close the file, or you will loose it
all.

There's two ways to close a file.

1)PRESS CTRL 2 than 2 for NO
2)CTRL 0 (WHEN HOST HAS DICONNECTED)

Keep in mind, that once you close a file, you can not
reopen it.

To dump more info you must open a new file...

Retrieving data from Disk

All data dumped to disk, are saved in a DIS/VAR80
file.

There's three methods of recalling data from disk.

1) use of TI WRITER
2) use of E/A MODULE
3) use of the program on page 20 in the TEII

manual.

NOTE

Line 250 should read.

250 GOTO 220

December 1987, Page 26)

1-15HOG NEVIN DIGEST

REGIONAL GROUP NIEV115

GLEBE Regional Group.

7th January 1988, 8pm, 43 Boyce St, Glebe. Contact
Mike Slattery, 692 0559.

GLEBE Regional Group.
10th December 1987, 8pm, 43 Boyce St,

Glebe. Contact Mike Slattery, 692 0559.

Regular meetings on the Thursday evening
following the first Saturday of the
month.

LIVERPOOL REGIONAL GROUP - Contact
Arto Heino 603-8956 for more info.

Next meeting:

SATURDAY 12th December 1987 at 2pm.

Regular meeting date is the Friday
following the TIsHUG general meeting
(first Saturday) at 7.30pm.

CENTRAL COAST Regional Group.

Meetings are normally held on Second
Saturday of each month at 6.30 pm at

Toukley Tennis Club hall,
Header St, Toukley.

Christmas meeting will be SUNDAY,
6th December, 1987 at the home of
Ebel Cummings, 48 Manoa Rd, Budgewoi.
This will be a poolside B-B-Q, bring
your own meat and swimmers.

Contact Russell Welham (043 92 4000)

CARLINGFORD Regional Group.

The next Carlingford Regional Group
Commencing Time 7.30 pm

For further information contact
Chris Buttner.

Regular meetings are third wednesday of
each month.

ILLAWARRA Regional Group.

Next meeting 14/12/87 7.30pm, Keiraville
Public School, Gipps Rd, Keiraville.
Opposite Keiraville Shopping centre.

Regular meetings are third Monday of
each month except January.

NORTHERN SUBURBS Regional Group.

Contact Dennis Norman on 452 3920 or
Dick Warburton on 918 8132 for further
information.

Regular meetings are third or fourth
Thursday of the month.

Banana Coast (Coffs Harbour area)
Regional Group.

For information on meetings of the
Banana Coast group contact Keir Wells
at 9 Tamarind Drive, Bellingen, phone
066 55 1487.

All TIsHUG Regional groups are invited
to submit items for this department.
Send details to EDITOR.

Regular meetings on the Thursday evening following the
first Saturday of the month.

The activities at these regional meetings are rather
informal include looking at new hardware, hardware
repairs, looking at new software and having a general
chat; often not finishing till 3am!

ADVENTURE HINTS

Return to Pirate's Isle

Chapter 5

liP:CCEMEECEAM
.•4
F AN

fiMiEnTURE
DE

!MUT°
n111114)

!NE
	 tu;

;$1,c

;313

Dti
;IR
; op,

VonZirr•ImMilr:Zt rITIV.7!. .17.. .74.:Z4V-TorTerMet:

This is the final chapter of this great adventure.
You will be able to get out but not get a perfect
score. The challenge now is how to score 100.

Wash mask, wear mask, hold breath, swim down, swim
east, swim up, go dock, get doll, remove mask, wash
mask, wear mask, look dock, go down, hold breath, swim
down, look pilings, swim west, swim up, open oyster,
use nail, go dock, go boat, go sea, hold breath, swim
down, swim west, swim opening, remove mask, wash mask,
clean mask, breath, wear mask, go boat, drop pin, drop
doll, drop chest, drop book, go pool, remove mask,
wash mask, wear mask, go boat, drop pearl, score
?rm.)

The pirate of this column wishes you all a merry
Christmas and a happy New Year.

	41i
(Page 27, December 1967

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

