

TISHUG NEWS DIGEST

CO-ORDINATOR’S REPORT

with CHRIS

BUTTNER

This issue marks the start of what I hope will become a
regular and useful feature in the magazine., If you
have any queries relating to either hardware or
software, address them to FORUM. Your problems are
likely also problems to others. Where appropriate,
answers will be given through this column and you will
be helping others to understand their computers and
software.

okkskokokk

Last month we had an article in the magazine mentioning
an IBM upgrade for the TI 99/4A. That is now a reality
as is the Myarc Geneve Card. Computer manufacturers,
tend to be a bit like car manufacturers - there is a
lot of "hpye" at release time, glowing reports,
fanfares and many claims about why we need the product.
As users, we should be like car buyers: Cautious.

sk gk

A regular correspondent has made some observations
which I believe are worth mentioning to all TI users.

Firstly, let's deal with the Triton product. Tt sells
for US$449, comes without a keyboard, and is still
going to take up extra space on your table. On the
other hand you could buy a clone with 640K and keyboard
for US$469, The difference in price is less that the
cost of a RAVE keyboard which you would probably buy to
use with the Triton computer.

Secondly, we have the Myarc Geneve card. As with a
car, the after sales backup and support is crucial,

Qur computer is now generally accepted as an "orphan"
although TI still provides limited support. By all
accounts the production version of the card is a joy to
use with the IBM type keyboard and a real screamer
where speed is concerned when compared with our
pedestrian TI but where do I get the support for a new
card and at what cost? I don't know of any short answer
to the questions, but at least if T do buy a unit I
will be doing so with both eyes open and no rose tinted
glasses.

Sl

All this deep thinking brings me back to the question -
Why did T buy the computer in the first place?. I
thought it would be good for the children, I knew I was
going to have fun with it and it might just be handy to
do some spreadsheets or word-processing if I took the
plunge and expanded the system. All that is now
history and I am pleased to say I have not been
disappointed. T still use my unit regularly (in fact
more than I first imagined) the young children use it;
my young adults use it and will probably kick me off it
in time so as to get their college work done, and the
marvelous little machine keeps ticking along while
others T know have had more than one other computer
suffer from that human disease called stress.

Seakookokokokok

In 1987 I wouldn't buy a TI 99/4A to help run a
business but for home use, its on a short list of one.

sk k

Last month I gave you a taste of the administrative
problems we have to tackle this year. I am pleased to
tell you I have had productive talks with a solicitor
regarding our incorporation and it is back on the rails
again., I will keep you up to date with progress there.

\

Our technical group has put in a marvellous effort
manufacturing the 32K console expansion boards. A lot
of club money has been invested in hardware and we must
work to budget. The memory chip market is a volatile
one with wide price fluctuations which can
substantially effect the final cost of any project.
Because of this, we are forced to buy at short notice
(if our selling prices are to be realistic) and
naturally its a case of "first in best dressed", so if
you are thinking about one of our club projects, don't
ponder too long - youdnay well miss out. If you are
genuine about wanting items, we want to help you but at
the same time we need you support - financial and
moral.

stk

The Source Information Network (Virginia, USA) is
considering a proposal from the club to allow members
to subscribe to The Source without having to pay the
normal joining fee of US$49.95. If they agree, the
offer will be open for the month of APRIL only.

Our proposal also includes the opportunity to purchase
the Sourcepak Manual for US$9.95 + shipping (currently
US$15.00 but we're working on that too.)

Most of you will recall the small brown folders packed
in with the console offering the services of TEXNET.
That service no longer exists having been replaced by
TISIG which offers XModem downloading, Bulletin Board,
Members' Directory as well as the other standard Source
features - US Stock market information, access to the
Official Airlines Guide, Crolier's Academic American
Encyclopedia on line, communications, and a tutorial
section where you are not charged access fees by The
Source.

I mention this now so you can consider ALL the
implications of joining at your leisure rather than in
haste in April.

There are several financial matters you need to bear in
mind., All Source charges are in US Dollars and you
will require a credit card such as Mastercard or Visa
to which your monthly charges can be billed. The
MINIMUM monthly charge is $10.,00. On-line charges vary
depending on baud rate and time of access. The minimum
on-line charge is 10 cents/minute and the maximum is 46
cents/minute., If you want specific rates, see Ross
MUDIE or myself.

You will also incur charges in accessing The Source
from Australia. The dearest way is simply to dial
direct. The alternative, cheaper way, is to use
Austpac or Midas/Minerva. Austpac has a $50 joining
fee whereas Midas/Minerva doesn't but the hourly
charges are higher. With regular use spread over a 12
month period, Austpac becomes cheaper if you are
on-line for more than 1 hour/month,

Well, that's it. T expect the club proposal will be
accepted, so you need to now decide if you want access
and secondly, your estimated monthly use so you can get
the lowest charges. Remember, sign up time is APRIL if
you want to participate.

SelkokokokRok

Want to help the club? Get your renewal in early. They
all expire in April but we can serve you better if they
don't all come in at the last minute. After all, its
the cheapest "insurance policy" for your computer.

April 1987, Page 2)

[CHUG TISHUG \EWS DIGEST

TECHO
TIME

FAULT OF THE MONTH ‘ ﬂ

During the last 6 months I have diagnosed over 200
consoles and although not successful with all, some
interesting facts have emerged.

The majority of faulty consoles that T have seen
were manufactured around or just after August 1983,

This period was at the height of the great selloff of
home computers in the US and here just a little later
on. The only assumption I can make now is that the
quality control and heat soak testing of late model
consoles must have been allowed to slip somewhat, after
all , these procedures are extremely costly to maintain
and we know that at one stage, the US retail price fell
as low as $27.00 US. Little wonder that Q.C. fell

away.

Anyway, on to a very common fault with a multitude
of symptoms, which luckily is very easy to fix.

SYMPTOMS

1) Screen ocassionally flashes and sometimes a
loud crack is heard on audio.

2) When screen flashes background color shows up
as pink.

3) Console seems to sometimes ignore PEB and and
cannot address any peripheral devices including
cassette recorder.

4) After running for some time screen slowly fades
away and console appears to take a long time to boot up
again after reset.

Sounds like a terrible tale of woe but generally
easy to diagnose and repair.

THE FIX

The culprit is usually a small choke that TI used
to decouple the +5v rail to the video display chip
crystal oscillator circuit.

This choke is a honeycomb wound type which has all
it's windings interleaved. The choke is encapsulated in
a browny coating which has the ability to soak up as
much moisture as possible. I have dissected a number of
these chokes to find that the interleaved windings have
all manner of green stuff growing in and around them.

A resistance check will show a low impedance path
which would normally be expected, but the crunch comes
when you look look at the circuit.

This choke was designed to provided a relatively
low DC resistance for the oscillator and a high
impedance path back to the DC rail from the crystal.
With the corrosion and moisture it has absorbed, this
little sucker is effectively allowing the low impedance
+5v rail to shunt the high impedance crystal circuit
which is trying it's heart out to drive the relatively
drive hungry VDP chip.

A good crystal circuit will drive the VDP chip
with a signal swing from about 0.2V to about 3.2V which
just barely makes the grade if you read TI

Semiconductor Data sheets on the TMS9918/28/29 chip. "\w

If you suspect that this problem is causing some
of the symptoms mentioned above, look at this circiut
first. Using a scope with probe look at waveform
on pin 39 of VDP . Make sure that the vertical
amplifier of the scope is switched to DC and ensure
that the voltage swing is from about 0.2V to 3.2V peak
to peak. Most bad choke circuits will show a voltage
from 1V to 2V peak to peak.

The choke used by TI is unspecified in the
technical manual I have, but it would appear to be
around 120ulH. T have successfully replaced this choke

with axial type chokes as low as 4uH with no apparent
ill affects.

For those that wish to examine the VDP circuit a
little more closely, the TI reference number for this
device is L207 and connects directly to pin 39 of VDP
chip.

That concludes this month's Techotime and T need
your feedback on the material presented. Do you want
more of this type of technical information? Do you want
a continuation of FAULT OF THE MONTH. Please let me
know,

T can be contacted via Club Mail Box, BBS username
TECHOTIME or by telephone on

(W) 02 8197200

(H) 02 6256318

(INT)61-2-6256318

PARTS LIST FOR RAMDISK

The follawing 1ist is a general parts list for the RAMDISK Project
.

Check the club shop for any specials on same af these parts.

COMPONENT LIST
Cl, C5, ALL Bypass
€2, €3, C4

.1 uf, 20, 15v, Capacitors 25

10 uf, 20%, 25v, Tantaluas 3

R3, R4, R6, R7, RS, R10 2.7K, 1/4 Wart, 10%, Resistors 6

R1

33 OHM, 1/4 W, 102, * ” 1
RS 6.8K, 1/4 W, 102, " " 1
R2 270 OHM, 1/4 W, 10T " v 1
R9 270-470 OHM, 1/4 W, 10% " 1
CRL, CR2 Light Emitting Diades 2
CR8 INGOO1 Diode 1

CR3, CRY, CR1O IN914 Ddodes 3

CR4, CR5, CR6, CR7 IN34A Diodes

Q1 2N2222 Transistor 1
Q2 7805 Regulator 1
u1, U19, U200 7415138 IC 3

u2 74LS154 IC 1
u9 7415259 IC 1
u3, U4, Us, Ue, U7, U8, Ull, Ul12,

U13, Ul4, U1S, U16, U17 6264115 IC (CMOS RAM) 13
u10 74L802 IC 1
v1g 7418156 IC 1
va21, u22 7418244 IC 2
023 7418245 1C 1
Ni-Cad. Recharpeable Batteries AAA 3
Single Cell Battery Holders AAA 3
Heat Sink (suit 7805 regulator) screw mounting 1
Dip-Switch B Position 1
FOR_720_SECTORS OHLY
TOP1, TOP2, TOP3, TOP4, TOPS, TOP6,
TOP7, TOP13, TOP14, TOP1S, TOP16 6264L15 IC (CHOS RAM) 1

April 1987, Page 6)

TISHUG VEWS DIGEST

SOFTwWAREE
calumn by Terry

First up some news of recently acquired software from
local and overseas sources.

Disk Manager 1000 - Version 5.5, which includes new
features in the file utilities area. Of special
interest is the ability to use the "P" command to dump
a D/V80 file to your printer. Watch for this one at the
shop shortly.

Diskhacker - continuing on with the good work from our
friends at Funnelweb Farm (Newcastle) comes this
extremely versatile utility from Will McGovern. It is
being released under the Fairware option so if you come
by a copy, and it will also be available at the shop
shortly, do the right thing and send off your
contribution to Will. And speaking of Funelweb Farm,
the latest version (3.4) of Funlwriter has arrived on
my desk. I haven't used it as yet, so cannot tell you
what the changes may be.

Freddy - a colorful, addictive game from West Germany.
Unfortunately copyrighted so it can’t be distributed
through the shop. If time permits at an upcoming
meeting I will demonstrate the game for those who have
not seen it. I know many of you have seen it at various
Regional Group meetings.

Midnight Mason and 4A Flyer - again 2 copyrighted
games, the former similar to TI Runner, though not as
complex, while the latter is a fair attempt at a flight
simulator for the TI. Still no where near as good as
the industry standard Microsoft Flight Simulator but
never—the-less a reasonable attempt. And speaking of
Microsoft and the upcoming IBM compatability for the
TI, I thought you may be interested in this bit of news
recently received from an overseas correspondent.

"Things are hotting up in the TI world here. MYARC have
finally come out with their new Geneve computer which
is undoubtedly a fantastic computer - but Myarc
products have been known to be full of bugs when first
released, and if their venture fails the buyers of the
computer will be stuck with the orphan of an orphan
with no support whatsover! Not for me.

And MG has gotten together with Triton to offer some
kind of a hybrid which amounts to an IBM clone on a
card stuck in the PEB and attached to a TI keyboard.
Since a TI keyboard can't handle many IBM programs, and
a TV can't handle an 80 column screen, it seems to me
you would have to also buy a keyboard and a high
resolution monitor. So, $499 gets you the guts of an
IBM clone without a case, keyboard or anything else -
and self standing IBM clones are going for not much
more than that!"

So there you have it. Of course the correspondents
comments are his own and in no way endorsed by
TIsHUG.

Well enough of that and down to more serious business
such as the software to be released at the shop in
April. Regrettably here I must mention this. While
there is still plenty of good software around for disk
users, the supply of good software suitable for
distribution on cassette is rapidly drying up. I guess
the main reason for this is that the majority of TI
users, especially software authors, have a full system
and write their software acordingly. This is not to say
that there won't be any more cassettes issued. There
certainly will be, but the point is that the quality of
the programs contained on the tapes may not be as good
a deal as disk users are getting, My apologies for
this but rest assured I will do the best I can.

ON DISK:

There are 3 disks and while they are heavily musically
oriented, I urge you not to dismiss them as not being
the thing for you. Each in their own way show a
different facet of your TI and are fine examples of
programming skills, Here they are:

STARTREK THEMES - from Ken Gilliland. Themes included
are from the TV series and the first 3 movies. Some
very nice high-res graphics add to the class of this
disk. The disk auto-loads through XB and contains a
documenation file from Ken which will tell you how he
went about his programming task. Requires 32K
expansion, .

SOUTH PACIFIC VOLUME 1 - also from Ken Gilliland. This
one contains 3 songs from the classic movie with the
high-res graphics characters actually singing along to
the music, This has to be seen to be believed.
Exceptionally well done. Again auto-loads in XB and
requires 32K expansion.

TI SINGS - a remarkable fairware offering from Barb
Berg. For this one you will need the TEZ module. TI
SINGS will enable you to create songs, refine them and
then play them back all done with alphons. This is a
very exciting and new way to create music. On the disk
are 7 examples for you to see how it's done. This is
really a disk not to be missed.

ON TAPE:

TAPE 1987/04 will contain the following programs:

3D LABYRINTH - a maze escape game in Extended Basic.
Full instructions are included. Tt takes a while to set
up so be patient and good luck in finding your way out.
I think you will need it as all my attempts failed.

A-B GAMES — a fairly simple bouncing ball type of game
with instructions included. It will run in either basic
or extended basic.

ACHILLUS AND THE MOLE - is a chasing/capture game where
you help Achillus catch the mole. It is quite complex
and not all that easy to play. XB required.

ANGRIFF - a fast reaction shooting game, simple but
good fun. Optional speech option is included and will
run in either basic or extended basic.

CAR RACE - a well done car racing game in XB. Avoid the
oncoming cars by manouvering with the No.l joystick.

BRIDGE ON RIVER KWAI - in XB. The idea is to build a
bridge across the river with your limited supply of
building materials. When you think it's ready, cars
drive across to test it. Remember, you will need to
build a strong bridge to succeed in this game.

US FLAGS - is an extremely well done historical program
in extended basic. Flags from 1777 to the present day
are graphically shown, Perhaps this program isn't for
everyone but students of US history should find it very
useful.

BALLOON JUMP - a nicely programmed game in XB where you
have to jump from balloon to balloon using the arrow
keys. Not all that easy so it should keep you amused
for a fair time.

Programs on tape 1987/04 will also be released on disk
for those who prefer that medium.

OK. That's it for this month. Have fun and read this
column next time for news on software releases. o

April 1987, Page 8)

TISHUG \I'WS DIGEST

90 REM CRAZYFRAZEIL

100 REM PAUL YORKE 12/16/83
105 REM 1200 STARFISH LN. ST
UART FL 33494

110 REM RE-WRITTEN 5/14/84

120 REM PRINTER OPTION
130 REM TEIT SPEECH OPTION
140 REM FILL IN THE BLANKS
150 DIM NE$(30),NEE$(30),B$(
30)
160 CALL CLEAR
170 PRINT "Sesksekekoksokapskodkokspkokpok
Seokdeksgkokok kaok !
180 PRINT "rsksksdeskesikkokafeokoksieokok ok
sedesieksfokokokoksiok
190 PRINT "sokskskk

Skl
200 PRINT "#¥#®kk CRAZYFRAZ
EIT okkaokn
210 PRINT "sekksok

Fokdekk
220 PRINT "™k¥¥%* BY PAUL Y
ORKE okkiok"
230 PRINT "k#kikk

Sk
240 PRINT "ikskskskakokskakokkokokokokkok
Sseckiekkoksokkok !
250 PRINT "k akkokkodkok
FqdokdokdokkkR s
269 INPUT “INSTRUCTIONSV(Y/N
) ":F$
270 IF SEG$(F$,1,1)="N" THEN
360
280 REM
START OF INSTRUCTIONS sk
sk ko dokkk
290 PRINT "THIS GAME IS BASE
D ON THE PARLOR GAME ""TEL
EPHONE"",":"YOU ONLY SEE THE
SCRE!
300 PRINT "WHEN IT'S YOUR TU
RN.":"SO IT'S BETTER IF PLAY
ERS ":"ARE IN ANOTHER ROOM."

310 PRINT "THIS PROGRAM WILL

ACCEPT A ": :"LINE OF TEXT
EVERY THIRD": :

320 PRINT "WORD IN THAT LINE
WILL BE": :"REPLACED BY THE
NEXT PLAYER": :"WITH A WORD
OR WORDS.": :

330 PRINT "THIS WILL CONTINU

E UNTIL ": :"SOMEONE INPUTS

""STOP STOP""“: .

340 INPUT "PRESS ENTER TO CO

NTINUE ":DUM$

350 REM
END OF INSTRUCTIONS %ok

Soloksodok ok kokRok Rk

360 CALL CLEAR

370 REM

* START OF ORIGINAL TEXT INP

UT AND PROCESSING dkdicdickskk

380 PRINT "NOW IT'S TIME TO

TYPE IN AN ORIGINAL LINE
OF TEXT.": : :

390 PRINT " MAKE IT MORE TH

WORDS LON

DON'T USE ANY CO

400 PRINT " ALWAYS END TEX
PERIOD.

410 PRINT "INPUT YOUR TEXT"
420 INPUT A$

430 IF A$="" THEN 380

440 GOSUB 1330

450 CALL CLEAR

460 IF ASC(SEG$(A$,LEN(A$),1
))=46 THEN 560

470 PRINT "YOU DID NOT PUT A
PERIOD AT THE END OF YOUR T
EXT": :

480 PRINT "PRESS ""A"" TO AD

D A PERIOD": :

490 PRINT "PRESS ""R"'" TO RE

-INPUT YOUR TEXT"

500 CALL KEY(0,KEY,STATUS)
510 IF STATUS=0 THEN 500
520 IF KEY=67 THEN 670

530 IF KEY=82 THEN 410

540 IF KEY<>65 THEN 490

550 A$=A$&"."

560 PRINT "THE TEXT YOU JUST
TYPED IN IS NOW BEING PR
OCESSED": : :" GO GET THE
NEXT PLAYER": : : :

570 FOR P=1 TO LEN(A$)

580 IF ASC(SEG$(A$,P,1))=46
THEN 670

590 IF ASC(SEG$(A$,P,1))<>32
THEN 660

600 IF ASC(SEG$(A$,P+1,1))<>
32 THEN 660

610 FOR PP=P+2 TO LEN(A$)
620 IF ASC(SEG$(A$,PP,1))<>3
2 THEN 640

630 NEXT PP

640 A$=SEG$(A$,1,P)&SEG$(AS,
PP,LEN(A$)-P)

650 P=P+1

660 NEXT P

670 FOR P=1 TO LEN(A$)

680 IF ASC(SEG$(A$,P,1))=32
THEN 750

690 IF ASC(SEG$(A$,P,1))=46
THEN 740

700 C$=C$&SEG$(A$,P,1)

710 IF ASC(SEG$(A$,P,1))=46
THEN 750

720 NEXT P

730 GOTO 790

740 B$(G+2)="."

750

760

770

780

790 GOSUB 1330

800 X=4
810 REM

*¥k¥¥% END OF ORIGINAL TEXT
PROCESSING ¥*kikiokickkioksoksok
Fkkkk

820 REM
*%%k START OF PLAYER INPUT C
YCLE

830 X=X-1

840 IF PLA>28 THEN 1350

850 IF X<1 THEN 800

860 F=X

870 Z=Z+1

880 IF B$(Z)="" THEN 1000
890 IF LEN(N$)<196 THEN 910
900 GOTO 2060

910 IF B$(Z)="." THEN 930
920 IF Z=X THEN 950

930 N$=N$&B$(Z)&" "

940 GOTO 870

950 N$=N$&"..."&STR$(X)&"...
"&" "

960 BLANK=BLANK+1

970 Q=Q+1

980 X=X+3

990 GOTO 870

1000 CALL CLEAR

1010 PRINT "YOU ARE PLAYER N
UMBER ";PLA+2: : :

1020 PRINT "YOU HAVE “;BLAN
K;" BLANKS TO FILL.": : :
1030 BLANK=0

1040 PRINT N$;™ ";NN$: : : :
1050 FOR INPU=F TO X-3 STEP
3

1060 N$=""

1070 NN$=""

1080 PRINT "INPUT ";INPU;
1090 TEMP$=B$(INPU)

1100 INPUT B$(INPU)

1110 IF B$(INPU)Y<>™' THEN 11
40

1120 PRINT "YOU MUST TYPE IN
A WORD OR PHRASE TO FILL I
N THE BLANK AND THEN PRESS E
NTER"

1130 GOTO 1040

1140 IF B$(INPU)="STOP STOP"
THEN 1380

1150 NEXT INPU

- 1160 CALL CLEAR

1170 PRINT "IF YOU JUST FINI

SHED TYPING GIVE THE NEXT GU

Y A TURN": : :

1180 INPUT "IF YOU ARE THE N

EXT PLAYER PRESS ENTER.":DU

M3

1190 PLA=PLA+l

1200 Z=1

1210 IF B$(Z)="" THEN 1270

1220 IF LEN(NE$(PLA))<200 TH

EN 1240

1230 GOTO 2020

1240 NES (PLA)=NE$(PLA)&BS(Z)

&

1250 Z=Z+1

1260 GOTO 1210

1270 Q=0

1280 Z=0

1290 X=F

1300 REM

1310 GOTO 830

1320 REM

*k#k¥ END OF PLAYER INPUT CY

CLE

%

1330 ORIG$=A$

1340 RETURN

1350 CALL CLEAR

1360 PRINT "YOU HAVE RUN OUT
OF MEMORY GO GET THE GANG

AND LISTEN TO THE CRAZY FRA

ZE": @ @

1370 INPUT "PRESS ENTER":DUM

$

1380 REM FINAL SCREEN

1390 CALL CLEAR

1400 INPUT "DO YOU HAVE SPEE
CH(Y/N) ":F$

1410 IF SEG$(F$,1,1)="N" THE
N 1620

1420 CALL CLEAR

1430 REM
** SPEECH OUTPUT OPTION *¥¥*

1440 OPEN #1:"SPEECH",0UTPUT
1450 PRINT "PRESS ANY KEY TO
CONTINUE" :

1460 PRINT "THIS IS THE ORIG
INAL TEXT": :ORIG$: :

1470 PRINT #1:"THIS IS THE O
RIGINAL TEXT":0RIG$: :

1480 PRINT #1:"PRESS ANY KEY
TO CONTINUE"

1490 FOR I=1 TO PLA

1500 PRINT NE$(I)

1510 PRINT NEE$(I): :

1520 PRINT #1:NE$(I)

1530 PRINT #1:NEE$(I)

1540 CALL KEY(0,K,STATUS)
1550 IF STATUS=0 THEN 1540
1560 NEXT I

1570 CLOSE #1

1580 GOTO 1760

Program continued
on page 11

April 1987, Page 10)

105

106
110
120

S
130

140

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

*% DON QUIXO-TT **

REM JOHN&NORMA CLULOW
REM DECEMBER 1983
REM

REM DESIGN FROM K.SHEET
REM - UCC MARRIAGE -
REM -- ENCOUNTER -
REM

CALL CLEAR

CALL SCREEN(12)

FOR I=1 TO 16

CALL COLOR(I,12,12)

NEXT I
FOR I=1 TO 79

READ R,C,CH,P$

CALL CHAR(CH,P$)
CALL HCHAR(R,C,CH)
NEXT I

CALL COLOR(9,7,12)
FOR I=10 TO 16

CALL COLOR(I,2,12)
NEXT I

CALL COLOR(1,2,12)
CALL COLOR(2,2,12)
CALL HCHAR(18,8,41)
CALL HCHAR(18,9,42)
CALL HCHAR(16,22,44)
CALL HCHAR(16,23,45)
CALL HCHAR(17,22,46)
CALL HCHAR(17,23,47)
CALL HCHAR(18,24,42)
CALL HCHAR(18,25,41)
CALL HCHAR(18,12,42)
CALL HCHAR(18,13,41)
CALL HCHAR(18,10,37)
CALL HCHAR(18,11,38)
CALL HCHAR(18,22,37)
CALL HCHAR(18,23,38)
A=110

B@=117

B=123

C=131

D@=139

D=147

E@<156

E=165

F=175

Ge=185

6=196

A1@=208

A1=220

B16=233

B1=247

C1=262

D1@=277

D1=294

F16=311

E1=330

F1=349

61@=370

61=392

A2@=415

A2=440

B28=466

B2=494

C2=523

D2@=554

D2=587

F2@=622

E2=659

F2=698

62@=740

EN=300

QN=2*EN

DQ=3*EN

HN=4%EN

842 QDQ=7*EN

845 DHQ=8*300

850 CALL SOUND(EN,D1,0)

860 CALL SOUND(HN,D1,0,F1,0)
870 CALL SOUND(EN,Bl@,0,D1,0

)

880 CALL SOUND(EN,B1@,0,El@,

0)

890 CALL SOUND(EN,BL@,0,F1,0

)

900 CALL SOUND(EN,B1@,0,El@,

0)

910 CALL SOUND(EN,Bl@,0,D1,0

)
920 CALL SOUND(DHQ,D1,0,F1,0

)

930 CALL SOUND(EN,F1,0)
940 CALL SOUND(HN,E1@,0,Gl,0

)

950 CALL SOUND(EN,El@,0)
960 CALL SOUND(EN,Bl@,0,F1,0

)
970 CALL SOUND(EN,B1@,0,GL,0

)

980 CALL SOUND(EN,B1@,0,F1,0

)
990 CALL SOUND(EN,B16,0,E1@,

0)
1000

CALL SOUND(DHQ, E1@,0,G1
CALL SOUND(EN,E1@,0,61,
CALL SOUND(HN,F1,0,A2,0
CALL SOUND(EN,D1,0)

CALL SOUND(EN,E1@,0)

CALL SCUND(EN,DL,0,F1,0
CALL SOUND(EN,FE1,0,G1,
CALL SOUND(EN,C1,0,A2,0
CALL SOUND(EN,F1@,0,B2@
CALL SOUND{(QDQ,C1,0,E1@

IF FLAG=2 THEN 2040
CALL SOUND(EN,D1,0,F1,0

CALL SOUND(HN,F18,0,G1,
IF FLAG=1 THEN 1190
CALL SOUND(EN,C1,0)
CALL SOUND(EN,DL,0)
CALL SOUND(EN,CL,0,EL@,
CALL SOUND(EN,D1,0,F1,0
CALL SOUND(EN,E1@,0,G1,
CALL SOUND(DHQ,E1@,0,A2
FLAG=1

GOTO 850

CALL SOUND(EN,C1,0,E1@,
CALL SOUND(EN,D1,G,F1,0
CALL SOUND(EN,E1@,0,G1,
CALL SOUND(EN,E1@,0,A2,
CALL SOUND(EN,E1@,0,B2@
CALL SOUND(DH,FE1@,0,C2,
CALL SOUND(EN,E1@,0,B26

CALL SOUND(EN,E1@,0,C2,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

SOUND(EN,E1@,0,B2@
SOUND(DQQ,F1,0,02,
SOUND(EN, D1,0, B2@,
SOUND(EN, D1,0,B2@,
SOUND(EN, D1,0,C2,0
SOUND(EN, D1,0, B28,
SOUND(DQQ, G1,0,D2,
SOUND(EN,G1,0,B28,
SOUND(EN, D1,0, B2@,
SOUND(EN,D1,0,C2,0
SOUND(EN, D1,0,B2@,
SOUND(EN,F1,0,D2,0
SOUND(HN,F1,0,42,0
SOUND(EN,F1,0,B2@,
SOUND(EN, F1,0,C2,0
SOUND(EN, F1,0, B2@,
SOUND(EN,F1,0,42,0
SOUND(DQQ,G1,0,C2,

SOUND(EN,G1,0)
SOUND(EN,G1,0, B2@,

SOUND(EN, C1,0,42,0
SOUND(EN, C1,0,GL,0
SOUND(HN, D1,0, 28,
SOUND(EN, D1,0,G1,0
SOUND(EN, D1,0,42,0
SOUND(EN, D1,0, 828,
SOUND(EN, D1,0, 42,0
SOUND(EN,D1,0,G1,0
SOUND(HN, D1€,0,B2@
SOUND(EN, D1@,0,B2@
SGUND(EN, C1,0,C2,0
SOUND(EN, D1,0,D2,0
SOUND(EN,C1,0,C2,0
SOUND(EN, DL, 0,B2@,
SOUND(EN, F1,0,D2,0
SOUND(EN, F1,0,C2,0
SOUND(EN, D1,0,B2€,
SOUND(EN,D1,0,D2,0
SOUND(EN, D1,0,B2@,
SOUND(EN, D1,0,C2,0

SOUND(EN,D1,0,D2,0

April 1987, Page 12)

TISHUG \EWS DIGEST

1680 CALL SOUND(EN,G1,0,E2@,
0)
1690 CALL SOUND(EN,G1,0,D2,0
)

CALL SOUND(DH,E1@,0,C2,

CALL SOUND(EN,A,30)
CALL SOUND(EN,El@,0,C2,

CALL SOUND(EN,D1,0,D2,0
CALL SOUND(HN,E1@,0,E2@
CALL SOUND(EN,GI,0,D2,0
CALL SOUND(EN,Ele,o,cz,
CALL SOUND(EN,G1,0,E2@,
SOUND(EN,G1,0,D2,0
SOUND(EN,E1@,0,C2,
SOUND(HN,E1€,0,E2@
SOUND(EN,E1@,0,D2,
SOUND(EN, E1@,0,E2@
SOUND(EN,E1€,0,D2,
SOUND(EN,F1@,0,C2,
SOUND(EN, E1@,0,B2@
SOUND(QDQ, G1@, 0, A2
SOUND(EN,D1,0,42,0
SOUND(EN,D1,0,B2@,
SOUND(HN,E18,0,C2,
SOUND(EN,E1€,0,B2@
SOUND(EN,E1@,0,A2,
SOUND(EN,E1@,0,C2,
SOUND(EN,G1,0,B2@,
CALL SOUND(EN,G1,0,A2,0
CALL SOUND(HN,GI,0,C2,0

CALL SOUND(EN,B2@,2)
CALL SOUND(EN,C2,4)
CALL SOUND(EN,B2@,6)
CALL SOUND(EN,A2,8)
CALL SOUND(EN,G1,8)
CALL SOUND(DQQ,G1@,8)
CALL SOUND(EN, 4,30)
FLAG=2
GOTO 850

20§0 CALL SOUND(EN,E1@,0,B2@

0

E

2050 CALL SOUND(HN,F1,0,B2@,

0,D2,0)

2055 EN=600

2060 CALL SOUND(EN,D1,0,F1,0

,B20,0)

2070 CALL SOUND(EN,D1,0,F1,0

,€2,0)

2080 CALL SOUND(EN,E1@,0,Gl,

0,D2,0)

2090 CALL SOUND(EN,E1@,0,G1,

0,C2,0)

2100 CALL SOUND(EN,E1@,0,Gl1,

0,B26,0)

2110 CALL SOUND(4000,D1,0,B2

@,0,F2,0)

2120 FOR I=1 TO 700

2130 NEXT
2140 REM
9000 REM
9010 DATA
0804

9020 DATA
480102
9030 DATA
80

9040 DATA
101

9050 DATA
0808080
9060 DATA
140201
9070 DATA
20204F8
9080 DATA
04020
9090 DATA
EA78F8D
9100 DATA
9110 DATA
102040
9120 DATA
4284

9130 DATA
00000303
9140 DATA
87808181
9150 DATA
EFEFEFEF
9160 DATA
FOFQFOFO
9170 DATA
07060604
9180 DATA
61616170
9190 DATA
83FFFF3F
9200 DATA
FFFFF8FC
9210 DATA
€080

9215 DATA
00000C0
9220 DATA
FF7E3F1F
9230 DATA
DF9FBFFF
9240 DATA
EFCFBEBF
9250 DATA
FOFEEBFA
9260 DATA
70FQFQF0
9270 DATA
9280 DATA
7C7EFFFF
9290 DATA
07070FOF
9300 DATA
3FFFF7F7
9310 DATA
7F7F7F7D
9320 DATA
AFBABSBC
9330 DATA
DOBOFOBO
9340 DATA
071F3F7F
9350 DATA
FB87BFEE
9360 DATA
030FFFF7
9370 DATA
07070703
9380 DATA
79797978
9390 DATA
60600080

ICALL SOUND(666)
GRAPHICS DATA
8,12,96,0000000800
8,13,97,0000002024
8,14,98,0000000040
8,17,104,000101010
8,18,105,008080808
9,12,99,0001028444
9,13,100,F80402020
9,14,101,408000000
9,18,106,80818F8F9

9,19,107,C0C0C080
10,12,102,00000000

10,13,103,00000202
10,16,108,00000000
10,18,109,85858583
10,19,110,63F7FFEF
10,20,111,COEOEQFO
11,16,112,03070703
11,17,113,80C16163
11,18,114,8187C7C3
11,19,115,FFFFEFEF
11,20,116,FOFOEQEO
12,15,43,000000000
12,17,117,7078F8FC
12,18,118,8383ABAB
12,19,119,FAE2FEFF
12,20,120,000020E0
12,21,121,00000000

13,14,122,010301
13,15,123,FOFOF070

13,17,124 ,1F1F1FOF
13,18,125,FFBFBFBE
13,19,126,FBBF7F7F
13,20,127,37353C2D
13,21,128,FOFOFODO
14,14,129,03030301
14,15,130,FFFFFFFE
14,16,131,82820202
14,17,132,8F838383
14,18,133,F1FB7F79
14,19,134,F9EIALIFO

9400 DATA
FFFFC3C3
9410 DATA
90100000
9420 DATA
7FOFOFO7
9430 DATA
FFFEFEFE
9440 DATA
0606

9450 DATA
03010101
9460 DATA
58B8BSB8
9470 DATA
00010101
9480 DATA
C6C68686
9490 DATA
41221408
9500 DATA
00000700
9510 DATA
EOAOFEQQ
9520 DATA
8ABABABA
9530 DATA
08E70303
9540 DATA
CIFBE770
9550 DATA
9BDIDFDS
9560 DATA
F6C6460C
9570 DATA
1C3878FF
9580 DATA
000000F8
9590 DATA
OC3E7FFF
9600 DATA
7FABDBDF
9610 DATA
86FFFFES
9620 DATA
74FBDSB2
9630 DATA
DBFB7FF8
9640 DATA
EBF7EE23
9650 DATA
4802451
9660 DATA
F3096A4
9670 DATA
9680 DATA
9690 DATA
9700 DATA
9710 DATA
9720 DATA
9730 DATA
9740 DATA
9750 DATA
8070303
9760 DATA
080E070
9770 DATA
6FFFFES
9780 DATA
4FADSB2

14,20,135, 8EDEFDEO
14,21,136, B8BSBCB4
15,14,137,7FFD7F77
15,15,138,EEFFFFFF
15,16,139,F7870706
15,17,140, 03030303
15,18,141,7B797878
15,19, 142,80800000
15,20,143,C36666C6
15,21,144,00000000
16,13, 145,00000001
16,14,146,03030100
16,15,147,FA929292
16,16,148,00002010
16,17,149,216161C1
16,18,150,B9B8B1BF
16,19,151, 63C3E3C?
16,20,152, 86860C0C
16,21,153,48FF0000
17,14,154,00010107
17,15,155,8A8ABAE2
17,16,156,070D0D07
17,17,157, 78404C4C
17,18,158,D8D8DED8
17,19,159,3B3F7F3F
17,20,33,FEFFFDFAF
17,21,34,FFFFFFFDD
18,14,35,A01F
18,15,36,9EE30C
18,16,37,0D056D
18,17,38,6D2F68
18,18, 39,EF
18,19,40,F6
18,20,41,810E1B01
18,21,42,5D73FF80
16,10,44,000020100
16,11,45,202060C0C
17,10,46,070D09070

17,11,47,78404C4C7

(Page 13, april 1987

The Console Tester

A device to locate problems in TI99/4A consoles.

by Geoff Trott

Illawarra Regional Group - TIsHUG
20 Robsons Road,

Keiraville, NSW, 2500

Australia

Background

The TI99/4A is quite a
which relies on a number of parts for its correct
operation. All microprocessors require a programme in
ROM to be accessible upon power up. This is called the
monitor programme and for most computers is the only
programme which runs the computer until something like
BASIC is started, This monitor programme is written in
assembler and is run directly by the processor. In the
TI99/4A there is a monitor programme in ROM but its
main function is to provide an interpreter for another
language called GPL (Graphics Programming Language),
which is the language in which the operating system of
the computer is written. This GPL interpreter expects
to find the GPL commands in another sort of read only
memory called GROM. The contents of GROM can only be
read in such a way that a GROM cannot be used to store
assembler language which is to be executed directly by
the processor from that GROM. Thus for the correct
operation of the computer, both ROM and GROM must be
operating correctly.

sophisticated computer

The 9900 processor requires some RAM for its
registers and other system constants. There are 256
bytes of RAM provided in the console called system RAM.
For most of the other storage requirements of the
computer, VDP RAM is used. This is 16K of dynamic RAM
which also is used by the Video Processor chip to
contain the information required for the screen
display. Once again this memory cannot be used to
store assembler language programmes to be executed
directly by the processor, whereas the System RAM can
be.

If there is a problem with one of the major parts
of the console, it is quite difficult to determine
which one is at fault because of all the interactions
between them. If the problem is only in VDP RAM the
computer will wusually start up and produce a
recognisable title screen. This is because the VDP RAM
is made up of 8 ICs, one for each bit in every byte.
If one IC is faulty it only affects 1 bit of each byte,
so there are 7 bits correct and a recognisable screen
results., If there is a black screen on start up
however, the problem could be due to any one of the
following being faulty:-

Video Modulator

Video Processor

CPU - TMS9900

System ROM

System RAM

GROM

A large number of other components and ICs

For these reasons it was considered necessary to
have a way of determining which parts of the computer
were working, and even to pinpoint the actual faulty
part. The easiest way to do this is by using the
computer itself, but if it was not even giving a title
screen this would seem to be impossible.

-cannot rely on a programme and

The LOAD Interrupt

The solution to this dilemma lies in using the
LOAD interrupt to start another programme running in
hardware external to the console, but using the
processor in the console, to check out the System RAM,
VDP RAM and hence VDP processor, System ROM and GROM.
This must be done without relying on the screen
display, but wusing it if it is working to give more
information than would be otherwise be possible. What
is this LOAD interrupt?

All microprocessors have a RESET input for power
up or panic restarts. The TMS9900 has a RESET which is
used for this purpose on power up and whenever a
cartridge is pushed into the cartridge port. RESET
causes the processor to do an interrupt sequence
through addresses O to 3 and thus to enter the System
ROM and produce the title screen, The TMS9900 has
another interrupt input like RESET called LOAD, not
normally used in the 99/4A, which causes the processor
to do an interrupt sequence through addresses 65532 to
65535, at the top of memory expansion. This LOAD
signal is very like the non-maskable interrupt of other
processors. LOAD is not very useful normally as one
its vectors to be
present in these locations of expansion RAM, However,
if a diagnostic programme is put into EPROM with the
vectors at these addresses, and some RAM was made
available also, then the LOAD signal could be used to
start this programme executing regardless of the state
of all but the processor in the console. All that
would then be necessary would be some indicators to
show any errors found, in case the screen display does
not work.

The Hardware

The hardware is quite simple, consisting of an
EPROM containing the program and the vectors and
occupying the last 8K of the expansion memory address
space, a RAM chip in the next to last 8K of memory (up
to 8K bytes in size), a push button and circuitry for
the LOAD signal, address decoding for the EPROM and
RAM, and an 8 bit latch which is enabled by a write to
any EPROM address. The output of six of the bits of
the latch are connected to 3 red LEDs and 3 green LEDs.
There is a 44 way edge connector on the printed circuit
board and this plugs into the I/0 port on the console,
and uses the +5 volt supply from the console for power
to the board. If a console was in trouble, any
internal memory expansion would need to be removed
before this device is attached to ensure no address
conflicts.

Operational Procedure

The diagnostic board is plugged into the I/O port

of a "dead" console and the power turned on. The LOAD
button is pressed. This starts the diagnostic
programme, and 1if the processor is working the three
red LEDs turn on and the three green LEDs are off. The
first red LED starts blinking to show that the System
RAM is being tested. This test is done by writing a
pattern into the entire memory and then reading the
entire memory checking for any errors, swapping the
bits in the pattern, and doing it again., After doing
this 100 times, if there are no errors the first green
LED turns on, and the blinking red LED is off. If
there are errors, the green LED stays off and the
formerly blinking red LED remains on.

A similar test is then run on the VDP RAM 21 times
while the middle red LED blinks. Since the VDP RAM is
attached to the Video processor, some of its functions
are also checked. At the end of this test the middle
green LED will come on if there are no errors while the
red one will remain on if there are errors,

(Page 15, April 1987

i TISHUG NEWS DIGEST

If all is OK so far, the programme sets up the VDP System ROM High byte >048181
RAM and processor with a green background and black System ROM Low byte >0SFCBC
foreground and a character set of 256 characters, using System GROM
the 128 TI-Writer characters repeated once with a red 0 >075574 (1981) >0731D7 (V2.2)
background colour for those codes between 128 and 255. System GROM 1 >091B99 (BASIC)
A1l the characters appear on the bottom of the screen System GROM 2 >089ADC (BASIC)
in reverse numerical order, taking up the last 8 lines
of the screen. Then the rest of the screen appears The codes for the checksums and RAM errors can be
with a heading in the first two lines followed by worked out from the characters on the bottom of the
diagnostic information. There is a message about the screen. Tf a character has a green background, its
System RAM and another about the VDP RAM, which will hexadecimal value is less than >80. If it has a red
mirror the state of the first 2 pairs of LEDs. Then background, its hexadecimal value is greater than >80.
the checksum of the System ROMs and the 3 GROMs in the If it is a recognisable character, its value can be
console ani 2 GROMs which may be in a cartridge in the determined using the ASCII code, or by counting
cartridge port are calculated and displayed as they are characters on the screen. For example, the characters
calculated. They are displayed using the £full in the last column starting from the top would have the
character set and so the actual value can be determined values »EO, >CO, >AO, >80, >60, »40, >20, >00. The
if required, The programme loops around calculating character "U" with a green background would have the
the checksums indefinitely, with the third red LED value of >55, while with a red background it would have
blinking as it does so. Interrupts are enabled for one the value >D5.
instruction at the end of the loop. If the System ROM
is faulty the diagnostic may not loop, as the interrupt Interpretation of Results
service routine is in System ROM.

If the System RAM has errors, then two error code

The Checksums and Error Codes characters will appear on the screen alongside the

message. 1f these characters are decoded into

The checksums are calculated by adding the bytes hexadecimal and then into binary, they show in which of

of whichever ROM is being checked. In the case of the the 16 bits errors have been found. Since this RAM

System ROMs there are two of them, one for the High or uses two chips, one for the most significant 8 bits,

even address byte, and the other for the Low or odd and the other for the least significant 8 bits, the

address byte. The checksum is calculated for each of chip which should be changed can be determined. The

these ROMs and displayed side by side, using 3 most significant bits are in the left character and a 1

characters for each. For the GROMs the bytes of each indicates an error, while a O indicates no error in the
are added together to produce the checksum. Each bit.

checksum requires 3 bytes and is displayed as 3

characters using the character set displayed on the If the VDP RAM has errors, a single character is

bottom of the screen. The values of the checksums of output. This can be decoded as before to determine

some ROMs and GROMs are: which bit of the memory has errors. For this memory,

each bit is contained in a single chip so the code

allows the chip in error to be determined and replaced.

1O port plug The checksums given are the only ones found
pins 34,36,38, Data bus - & bits so far, but there have been other versions of
35,42,39,40,37 IC pins 11,12,13,15,16,17,18,19 things like system ROMs, or so we believe. The
S b B VT b3 b2 L I most frequent problem encountered is the failure
=) of a system ROM, the low byte ROM. A guide
P T could be that if one of a pair of checksums is
AL RAM ALl ROM 1D 2D 3D 8D 7D 6D as expected, but the other is not, then there is

6264 Al0 2764
Al0 2732 probably an error,

6116 Ao LE 74Ls373 OF
A9

A8 A8 192050 5010 o) If there are errors in VDP RAM and GROMs,
A7 A7 then check the -5 volt supply. If the tester

A6 i does not start flashing when activated, it may
AS A3 be the processor, power supply, address buffers
Ad A4 between the processor and the I/0 port or the

| A3 A data buffers in the 8 to 16 line interface area.
A2 Looking at various signals around these areas

Al Al with an oscilloscope is the only way to

| A0 Ao determine which of these is the problem. ©

b

A12 €S2

Al12

b
b

b

X
[~

8
kn

skl bkhpihpp

WE OE (Sl —l— WE OE CSI

DBIN T —0 :
9 i.(l;) S 10T27 T22 DBIN(L) 27 Tzz 20 b" 7415022 of 4 X ,
w WE L_g:? @ of 9 Editorsn ~__. The success, that John Paine talks
sls
c

of in TE([ME, is largely due to this Console
Tester.

ROMSEL(L)

Prior to this development, troublesome consoles

TI99/4A could take many hours to diagnose the fault.

0
1
2
7415138 3 Console Taester
4
5
6
7

Circuit Diagram .
by Geoff Trott A number of these testers have been shipped

11 Novembar 1986 around Australia and are proving their worth.

Geoff is currently in Canada on sebatical leave.
He has taken a number of testers with him to
demonstrate with several User Groups with whom
he hopes to make contact.

+5V

74L874

* * *

LOAD
push
bulton

C April 1987, Page 16)

After ASSEMBLING the CODE using only option 'R',load as
usual.

CALL INIT
CALL LOAD("DSK1.WRITERLE/O")

Make sure you have saved your WRITERLE file in i|ERGE
format first. Now merge WRITERLE into your PROGRAM and
add a LINE to your PROGRAM at a point you want to SAVE
the SCREEN at:

nnn CALL RLE('DSK1.SCREEN',1
,24,1) 1 EKD

This will save screen lines 1 TO 24 (whole screen) to
the DISK in a format for use with your MAX/RLE DISK.

! AR K 0

! CALL RLE(DV$,Y1,Y2,FN) *
! DV$=DEVICE NAME ¥
! Y1 =START ROW

! Y2 =END ROW

! FN =FILE NUMBER

!

!

by Arto Heino 1987

CEE~NOULEWN R~

11000 SUB RLE(NAME$,Y1,Y2,I)
:: OPEN #I1:NAME$ <: PRINT #1
:CHR$(27);"G";:: FOR Y=Y1 TO
Y2 :: CALL LINK("BINARY",Y,
L$()):: IF Y>Y1 THEN 11020
11010 IF SEG$(L$(1),1,1)="0"
THEN B=0 :: PRINT #I:" ";EL
SE B=1
11020 FOR V=1 TO 8 :: FOR W=
1 TO 255 ::IF B<OASC(SEGS(LS
(V),W,1))-48 THEN GOSUB 1104
0

11030 R=R+1 :: NEXT W :: R=R
+1 :: NEXT V :: NEXT Y :: GO
SUB 11040 :: PRINT #T:CHRS(2
7);"6" :: CLOSE #I :: GOTO 1
1070

11040 Z=INT(R/94):: IF Z THE -
N R=R-(Z*94):: E$=RPTS$("" ",
Z):: IF R=0 THEN ES=E$&" " :
: GOTO 11060

11050 E$=E$&CHR$(R+32)

11060 PRINT #I:ES;::

: B=—(B=0):: R=0 ::

11070 SUBEND

Another use for the link routine is for displaying the
char patterns in a magnified form. eg

!

! CHARACTER MAGNIFIER *
' P,
' *

by Arto lieino 1987

1
2
3
4
5

! £
100 DISPLAY AT(1,1)ERASE ALL
: "ABCDEFGHIJKLMNOPQRSTUVWXYZ
{\": :" Press <S D> Keys to
View" :: CALL LINK("BINARY",
1,L$0))
110 CALL CHAR(48,"FF81818181
B8181FFFFFFFFFFFFFFFFFF"): : P
=1 1: GOTO 130
120 CALL KEY(0,K,S):: IF S=0
THEN 120 ELSE P=P-(K=68 AND
P<255)+(K=83 AND P>1)
130 FOR Z=8 TO 15 :: DISPLAY
AT(Z,1):SEG$(L$(Z2-7),P,28):
: NEXT Z :: GOTO 120

New Flight Simulator Program.

The company, NOT-POLYOPTICS, has released a Flight
Simulator Program named SPAD XIII .

A demo disk has been supplied by the company which
provides a graphic screen apparently from the
program.

The following text is from the leaflet advertising the
program,

SPAD XIII
Flight Simulator

Fly your own classic World War 1 fighter plane in
Not-Polyoptics' new, all assembler language flight
simulator. Set in wartime France, Spad XIII gives you
all the thrills of other, better known simulators,
plus features only a TI99/4A can offer!

* a full 48K program

* an all graphic world in 3D perspective

* look up, down, left, right, forward or back

* full acrobatic control of the airplane with
algorithms that mimic all of the physics of flight

* continuous instrument readouts with graphic throttle
and stick controls

* joystick or keyboard inputs; accepts two commands at
once

* scenery includes: Eiffel Tower, Seine River,
trenches, French villages, clouds; more!

* engage enemy planes in deadly dog- fights

* down enemy obersavation balloons in flames or bomb
enemy hangers; but watch out for the flak!

SPAD XII1

TI99/4A, Extended Basic
cartridge, 32K Memory, Disk.

Requires:

Retail cost: $29.95 US funds from:

Not-Polyoptics,

PO Box 4443,
Woodbridge, VA 22191.
USA,

Phone 0011-703-491 5543

The ext'd basic demo disk program has been reformatted
into an extended basic program which is small enough
to download via the download feature of the TEXPAC
BBS. These program is named SPAD_XTIT .

If anyone gets a copy of the program please let all

users of the BBS know what you think of it. °

April 1987, Page 18)

SENDING MAIL ON TEXPAC BBS.

by Ross Mudie, SYSOP, February, 1987.

A TEXPAC BBS user can send electronic mail to another
user by selecting Main Menu option 3. The mail is
addressed to User Names which appear in the list on the
file BBS_USERS.

The mail may be sent manually, direct from the user's
keyboard or from a previously prepared DIS/VAR text
file. There is an extended basic program in the
program download menu which will mail to be sent from
disk file. :

SENDING MAIL.

Enter the mail option using 3 from the main menu, the
BBS will advise how many sectors are free on the mail
disk. If you are sending a file ensure that your file
is smaller than the free space.

After you enter the addressee user name the BBS will
validate your entry and a file will be opened for the
addressee in the "append" mode. This means that if
there is already other mail for your addressee then
your mail will be added on to the end of the existing
file. You will then receive the same date and time
stamped header as is placed on the addressee's file and
the > prompt will then be received. After the > is
received you may proceed to send your electronic mail
from your keyboard or disk file,

SENDING FROM THE KEYBOARD.

Upper and lower case may be used in addition to numbers
and symbols. Commas and quotes, (once a no no on this
BBS), may be used freely.

If you make a mistake then <ctrl> H will back space in
the same line, wiping out all that you back space over.
Tf FAST-TERM is in use then <fctn) 1 and <fctnd> S will
also perform a destructive back space.

Check that the line you have typed is correct BEFORE
pressing <enter>. Once <enter)> is pressed the line of
text is placed automatically in the disk buffer before
the > prompt is received again.

Lines of mail may be up to 79 charact- ers in length, a
warning bell sounding at 72 characters. Any characters
typed after the 79th in a line will be lost.

If you want to enter a blank line then press the space
bar at the start of the line then press <enter>.

To exit mail press <enter)> at the start of a new line
and you will be prompted:
[S]ave or [Clontinue.

C will let you continue where you left off whilst S (or
just <enter> will finish saving the file to disk and
close the file,

The word END on its own in upper case at the start of a
line will exit to the [S]ave or [Clontinue prompt.

SENDING A FILE TO MAIL.

This is best done using a cartridge expander with TE2
and Extended Basic plugged in, Save your SENDMAIL
program on the disk under the name LOAD. Using TE2
tell the BBS who the mail is for and wait for the >
prompt after validation and header. Exit TE2 with
<ctrl> O (to close any open disk files) and switch to
extended basic. Load and run the SENDMAIL program
which then for the file name to be sent.

It is not practical to use a program in console basic

since commas and quotes can not be used in text with
INPUT.

“—

After entering the file name and specifying to which
RS232 the modem is connected the SENDMAIL program will
show you what is being sent. On completion exit with
BYE and switch back to TE2.

When back in terminal mode press <enter> ONCE only and
the [Slave or [Clontinue prompt will be received.

If you want to experiment with sending mail then
address your test mail to yourself., You can then read
the test mail without having to hang up and call again
by simply pressing 9 when in the main menu. This
special feature, (which is not shown in the menu),
allows you to log on again. After giving your user #
and password you will immediately receive your own test
mail,

Please consider the needs of other users and refrain
from completely filling the mail disk if the free space
is small,

RECEIVING MAIL, THE WHOOPS FUNCTION,

If you receive mail but do not manage to capture it on
your printer or disk, or just want to make sure you
have saved it sucessfully before it is deleted, then at
the end of the mail when you receive the prompt:

Press ENTER to continue >

press E then <enter> . After checking use 9 from the
main menu to log on again for another go and when all
is OK allow deletion of the mail by just pressing
<enter> at the prompt.

Please remember that uncleared mail causes unnecessary
congestion on the mail disk.

1f, for some obscure reason, you want some of your own
mail to another user deleted then the only way is to
leave E-Mail for the SYSOP stating the date that the
mail was sent and the addressee user name. Please note
that this is a particularly time consuming process for
the SYSOP and should only be requested as a last

resort, °

FORUM

I have a modem which I bought from Peter Schubert and

software to run on the club BBS and VIATEL. These all
work but I can't get it to run with the Westpac online
banking system. I have tried their technical section

but they have not been able to help me. Can you

help?

Les Andrews, Waterloo.

Your system (modem and software) would have to be
tested before a meaningful answer could be given.
Your problems may however be the result of software
incompatability. The PRESTEL based systems used in
Australia do not all work in exactly the same way.
Some require all aspects of your transmission format
to exactly match the host system while others are
content with just baud rate, data bit and stop bit
equality. If you are able to generate the host system
logo the problem may well be one of parity which I
suspect is hard coded into your programmes.

Do you know if it is possible to convert TI99/4A data
files to IBM format so I can convert them to dBase III
without having to retype? Of course even having
achieved that I still have the problem of making the
file dBase III compatible. Any Clues?

John Kerr, Aldgate.

HELP! Systems Analyst Wanted.

(Page 19, April 1987

Edited from.... NORTHEAST TARRANT HOME COMPUTER USER'S
GROUP, HURST, TI. January, 1986.

THE M:°1 °_CORNER
BY . GATLIN

Whenever I think about programming music. I think of
the time it takes to key in the CALL SOUND statements.
Mynext concern is which programming trick to use to
make the desired song 'sing' through the computer
instead of spit and hiccup its way through. So far I
have encountered 4 distinctive methods: 1) The CALL
SOUND method, 2) the DATA method, 3) the GOSUB method,
and 4) the ARRAY method.

CALL SOUND is simple: A series of CALL SOUND statements
each with different information, such as :

CALL SOUND(800,10,220,10,370,10)
CALL SOUND(800,165,5,247,5,415,5)
CALL SOUND(1600,110,0,227,0,440,0)

This produces smooth, precise sounds, but gets very
tiresome for the nontypist. My first variation was
setting up variables for all the notes to avoid
constantly referring to the manual for the appropriate

frequency. It worked, but didn't save any typing time
or memory.

The DATA method involves setting up DATA statements
which contain the notes, a READ statement to assign the
notes to variables, a single CALL SOUND statement with

variables read from data, and a clever FOR.., TO.,.NEXT
statement.

Example :

100 FOR REP=1 TO 4

110 READ A,B.C

120 CALL SOUND(400.A,0,B,0,C,0)
130 NEXT REP

140 RESTORE

150 GOTO 100

DATA 100,40000,40000,139, 330,400,
147,40000,40000,165,277, 440

The notes with frequencies of 40000 are used to create
silence without having to key in a separate CALL SOUND
statement with only one note. The disadvantage of this
method is when you have a program with codles of data
(lots of notes), you occasionally get hiccups. The
cause lies somewhere in the BASIC language. I've been
told that BASIC generates garbage that has to be taken
out occasionally. When the garbage is dumped, the
computer hiccups causing the flow of the music to be
interrupted. However, it usually takes quite a bit of
data or an extreme tempo (speed) to cause hiccups.

The GOSUB method was introduced to me by Gerry Myers.
It involves keying in one or more CALL SOUND statements
(as needed) and follow them with a RETURN statement.
Once done, your programming consists of redefining the
CALL SOUND variables and adding a GOSUB statement to
initiate the sound. Just to make things easier, set up
variables for each note within an octave (see lines 100
to 110 below). Now instead of having a variable for
every note, you alter the base variable (is this making
sense). For example:BF is B flat, BF®*2 is B flat 1
octave high8, BF*4 is 2 octaves higher, BF*8 is 3
octaves higher an so on. BF/2 is 1 octave lower, and
BF/4 is 2 octaves lower. Explanation: well there is one,
its just that if I try to explain it correctly, you'll
probably put down the article and grab the TV guide.
Very simple: double the frequency of any note and
you'll have a note one octave higher, halve the

frequency of any note and you'll have a note one octave
lower.

Example :

100 B=493.88 :: AS,BF=466.16 :: A=440.00 :: GS,AF=415.30
:: G=392.00 :: FS,GF=369.99 :: F=349.23

110 E=329.63 :: DS,EF=311.13 :: D=293.66 :: CS,DF=277.18

: C=261.63 :: R=40000 :: L=250

120 FOR REP=1 TO 3

130 X=G*2 :: Y=E*2 :: Z=C :: GOSUB 500

140 X=F*2 :: Y=D*2 :: GOSUB 500 :: X=G*2 :: Y=E*2 ::
GOSUB 500

150 Z=G/2 :: GOSUB 500 :: X=A*2 :: ¥=F*2 :: Z=C :: GOSUB
500 :: GOSUB 500

160 X=BF*2 :: Y=G*2 :: Z=G/2 :: GOSUB 500 :: X=A*2 ::
Y=F*2 :: GOSUB 500

170 X=BF*2 :: Y=G*2 :: GOSUB 500 :: GOSUB 500 :: GOSUB
500

180 X=A*2 :: Y=F*2 :: GOSUB 500

190 NEXT REP

200 X=G*2 :: Y=E*2 :: Z=C/2 :: GOSUB 500

499 END

500 CALL SOUND(L,X,0,Y,0,Z,0):: RETURN

510 CALL SOUND(L*7,X,0,Y,0.Z,0)::RETURN

In the above example, "L"” is the defined length of the
note. Notes longer than "L” can be lengthened with
successive GOSUBs or altered in a separate SOUND
statement (as in line 510). The "voices” are defined as
X,Y,Z. X is the highest voice, Y is the middle. and Z
is the bass. Although it is not necessary to keep them
in that order, it does help make the editing of mistakes
easier. Once a voice is defined, it will remain until
you change it. This causes the illusion of sustained
notes behind moving notes { lines 130, 140). Once
again. 40000 can be used for silence (defined as R but
not used in the example).

The last method is the ARRAY method. It is similar to
DATA in that all the notes are in DATA statements.
Houwever, instead of reading each voice and then playing
them, the notes are read into ARRAYS, then played via a
FOR .. TO .. NEXT statement. Even better. each array can
be a musical line. The melody can be one array, counter
melody in another, and bass line in a third.

Combining this method with a negative "duration” within
the SOUND statement creates a remarkably smooth and
incredibly fast musical line. When a negative duration
is specified, the previous sound is stopped and the new
sound is started immediately. The first question that
comes to mind is how do you use negative values without
getting ridiculously fast music ? EASY ! Just put some
sort of delay between the SOUND statements. In the Bach
Invention example, I've used a math unction that I saw
used in a program by Robert Gagle. The statement "P=2*
50 " causes the computer to think for a few extra
milliseconds before it plays the next sound. A higher
number than fifty creates a longer delay and thus a
lower number creates a shorter delay. Why? It's a
mystery to me but it works like a charm so I don't
complain. (To get an idea of how fast the 4A can play,
change line 240 to read "for N=1 TO 104 :: CALL SOUND{
X,A(N),VL,B(N),V2):: NEXT N", remove line 270 and run
the program.)

Once you've completed your data statements, you can
write the data to a disk file to conserve progran
memory. This can allow you to create programs that
execute extremely long songs without running out of
memory while in the middle of programming (it happened
to me, really !).

In the example program, I've added the option of changing
the volume of either voice while the program is running
and without sacrificing the smoothness of execution

(well, maybe a little, occasionally). Hope you enjoy
the program, and I hope this article has helped someone.

Program on page 22

(Page 21, April 1987

by George Meldrum
Illawarra Regional Group

A problem occurred in our regional group for
producing a software library suitable for both cassette
and disk based systems. BASIC programs were no problem
but many machine language programs needed an E/A module
and could not be SAVEd by the cassette user.

A solution was found by producing a BASIC file
that linked to the machine language file embedded
behind it. With a machine code program sitting behind
a BASIC header there is no problem of loading (OLD
CS/DSK) or saving (SAVE CS/DSK) albeit the minimum
requirements being an XB module and 32K memory to run
such a program.

The only limitation of the machine code
BASIC program is the size of file loaded.
language files can total 24K or more. Our

embedded
Some machine
little TI

does not allow BASIC programs of that magnitude.

The solution our group came up with was to break
the machine language code into two (or three) groups
with BASIC headers, With the machine code partitioned
in this way each section still contained familiar BASIC
code which provided a connection from one file to the
next, Essential of course was an assembly routine
included to move each block of code back to its
original position. The move routine being best placed
at the tail end of the first BASIC file so as not to be
overwritten in the reshuffling of code.

This is the way it works :-

1) The first BASIC file is loaded as normal into high

memory. It contains three important statements :
CALL INIT
CALL LOAD(-31868,0,0)
RUN "Cs1" ! or "DSK1.2ND FILE"
The CALL LOAD tells the computer that there is no
memory expansion,

2) The second BASIC file loads when the RUN "filename;<\\
statement is executed. This time it loads into vram
so as not to overwrite the first file. The second
BASIC file links to the move routine which was
loaded within the first BASIC file still in high
memory. For example :

CALL LOAD(8192, HBYTE, LBYTE)

CALL LINK('MOVE")

! RUN "CS1" (if needed)
Loading the address of your routine at 8192 (>2000)
is cheating as it by-passes the name 1link routine,
Because of this any name of one to six characters
can be used in the link name, HBYTE and LBYTE are
normally numeric values representing the entry
address of the move routine.

As portion of the machine language main program
still resides in vdp ram (loaded within the second
BASIC file) our transfer routine needs to move this to

the appropriate cpu ram location. For

example a

transfer program may look like :

VPTR EQU >8370
CRAM EQU >xxxx
LEN EQU >xxxx
VMBR EQU >202C

ptr highest vram address
cpu ram address

length of portion of code
vram multi byte read

MOV @VPTR,RO
INC RO

AI RO,-LEN
L1 R1,CRAM
LI R2,LEN
BLWP @VMBR

from vdp ram
to cpu ram
number of bytes to move

At this stage you could return to BASIC to load
yet another file (for big programs), or continue to
relocate the machine language portion loaded with the
first BASIC file. Note that BASIC files in high memory
always end at byte DFFE7, Finally character
definitions usually need relocating and vdp registers
need resetting to E/A defaults before jumping to the
machine language program proper.

Although this method requires a fair effort to set
up, once done it provides lots of advantages. Programs
load in bigger chunks (than E/A opt5), no special
loaders are required, and they can be loaded and saved
in an environment familiar to BASIC users. Our group
members, especially the cassette users, love it !

o

KEYBOARD MATRIX.
by Ben Takach

The Technical Data Manual contains much useful
information. One of the notable omissions is the lack
of the keyboard matrix information. Reconstruction of
the matrix by tracing a keyboard could be tedious. TI
has used several different keyboards made by suppliers
from around the Globe, some of which are quite
difficult to trace. None of the club members were able
to help me with a keyboard matrix, so I mapped it
myself., The matrix is reproduced below.

Terminal numbering is from right to left, viewed from
the foil side of the PC board. The numbering will thus
coincide with the circuit diagram published in the
Technical Data Manual.

1 enter

2 zero

oo

< >

6‘;
OO
ololole
alolol
DL

%
S
K

l3 shift

ASENS
DO
eza*a*e*
ololelek
<

o

S

3*

.4 space

= |

ole

7 function

alo

10 control

ol
%

e
'ailigi’.'
ol
oY

N

2
%

O

i1z

The TI-99/44 Keyboard Matrix., The keyboard is

connected to the motherboard by a 15 pin plug.

(" Page 23, April 1987

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

