IIs Hilig ntus digis

TTsHUG NEWS DIGEST
Vol. 5 No. 5 June' 86

The official Newsletter of the 'T.I.'s Homecomputer Users'
Group (Australia).

Editor and Layout designer: SHANE K. ANDERSEN
Assistant Editor \& Reporter:
KERR WELLS
Photographer:
MAURICE STEWARTSON

CONTRTBITTORS:

Revel Otway
Dennis Hodgson
Terry Phillips
Jenny
Ross Mudie
Ben Takach
CM Ehninger
Geoff Prot
Shane Andersen
Fred Morris
Wade Bowmer
Rolf Schreiber
Steven Shraibman
Chris Butter
Daniel Harris
Kevin Watts
Network

Publiated by:
TIsHUG - Australia

Printed by:

APPLE PRINT \& COPY CENTRES
160 Castlereagh St, Sydney. 2000 (02)264 8111

Club Address:
P.O. Box 149,

Pennant Hills,
N.S.W. 2120

Monthly Meeting Place: WOODSTOCK COMMUNITY CENTRE Church Street, BURWOOD. First Saturday of each month except January Public Holidays

Staring at Rpm except on FULL DAY TUTORIAL/WORKSHOPS.

Co-Ordinator:

FRED MORRIS
(02)871-3873

Secretary:
JOHN ROBINSON
(02) 848-0956

WELCOME TO THE FIRST ISSUE OF THE TIsHUG NEWS DIGEST ! The Newsletter of TI's HOMECOMPUTER USERS GROUP.

This month there are two main events which will be worth attending. They are (1)The FULL DAY TUIORIAL WORKSHOP at our new meeting house..."WOODSTOCK COMMUNITY HALL". A grand old mansion which will be used to house our rather unique tutorial day for programmers and game players alike. See all the details about this on page 3 .
(2) The Melbourne TI User group conducts its very first NATIONAL TI FAIR, and there will be many wonderful items on show, and introduced for the first time to this great country of ours. TIsHUG will have its own stand there, staffed be members of this group who plan to travel to Melbourne in a MINI BUS and/or fly down to share in this day... June 14th ' 86 .

We will also be conducting our Regional Home Groups and Special Interest Groups and we hope that you will join in the fun of sharing, at these get-to-gethers.

I have prepared this magazine, in the hope that you will enjoy its contents, wit many varied topics, news \& programs, with special thanks to all those this month who have taken the time to contribute. I have a stack of other files or contributions which have not been able to make this issue due to space...some of these articles that I plan to print in next months TND include the
following...
(1)Review by Chris Butter of the TULPI INIELLIGENT MODEM.
(2)Article by Terry Phillips on EIGFT DISK COPIERS FOR YOUR TI.
(3)Word Processing with Geoff Prot from our Illawarra Regional Group.
(4) and also by Geoff, PARTH2 of a fantastic tutorial on Assembler.
(5)TIPS FROM IIGERCUB \#23 by Jim Petersen.
(6) HOW TO USE MINIMEMORY .. from Sacremento Users Group.

Yes, these are just a few of those articles that have had to be held back to next months News Digest, but will be well worth waiting for. I am only sorry
that we didn't have the rom.

Page \#4 ... Open letter from Texas Instruments.
PAGE \#5 ... SOFIWARE COLUMN BY TERRY PHIILIPS.
Page \#6 ... Jenny's Younger Set.
PAGE \#7 ... GEITING MORE OUT OF SPEECH with Terry Phillips.
Page \#8 ... Overseas Review/report by Steven Shraibman.
PAGE \#9 ... PERFECT PARINERS : ASSEMBLY \& EXTENDED BASIC.
Page \#10 .. TIsHUG SHOP by Chris \& UPGRADING YOUR TI DISK DRIVES with Terry.
PAGE \#11 .. JOYSTICK CONVERTION by Shane Andersen \& LIGHT PEN CONSTRUCTION.
Page \#12 .. TERMINAL EMULATOR II WORK PROCESSING with Daniel Harris.
PAGE \#13 . . Regional Group News.
Page \#14 .. SAVING PARTIAL PROGRAMS with Rolf Schreiber.
plus "COPS" Mini Memory Manual bugs \& MONIIORS v TV's by NEIWORK.
PAGE \#15 . . MORE THINGS TO DO WITH YOUR TI by Shane Andersen.
Page \#16 .. FINANCIAL MAIF program to type in.
PAGE \#17 .. Diagnosing hardware malfunctions by Geoff Prot.
Page \#18 .. LINK-IT \#4 by Ross Mudie.
PAGE \#19... TI STAFF GIVEN A SECURTIY WARNING plus MICROPENDIUM latest issue
Page \#20 .. TIDBITS\#2 Programming for beginners by Wade Downer of Younger Set. plus COLOUR EDITING both continued on next page.
PAGE \#22 .. RS232 TUIORIAL with Printer Subroutine in Assembler.
Page \#23.. Second lease-of-1ife for Teledata PLUS another program to type in. PAGE \#24 .. 2 BOOK REVIEWS by BEN TAKACH.

I have also continued with the PULI-OUT CFNIRE PROGRAM PAGES to place in that special binder of yours. It continues with such programs as..."CUBIC" $Q *$ bert type program, "ON SAFARI", and "TI MARQUE".

Also, you will find a loose OIT-UP PAGE for you to use for ordering of your monty SHOP items and other areas of club activities.

Wei, that it Aram me. See you at the FULL DAY TUIORTAL WORKSHOP
Regards
SHANE ANDERSEN (EDITOR).

Hi, and welcome to another software column. Here it is midway through the year again - how come they go so fast?

First up this month is news of another great Freeware release on disk and available at the club shop as from June. I guess all of you have at least two languages on your systems - Basic \& Extended Basic - plus I suppose the majority have Assembly and quite a few have Forth. But who has "C"? Indeed you may ask what is "C". Let me tell you. It is another language (compiled) that is available with the help of this disk for you to play around with to see what you can do to enhance your programming skills. The disk is FULL containing 25 separate files including the full manual (DV80 format) which runs to 121 sectors on the disk. There are even same test programs on the disk which should be most enjoyable. One member who writes regular columns for this News Digest has had a oopy of "C" for a few months and reckons it's the greatest. Don't be dissapointed get a copy of "C" at the June meeting or order by mail from the Shop PO Box 149 Pennant Hills. Cost as usual will be $\$ 5$.

My software mail bag hasn't exactly been bulging lately, and in fact I have only had one letter. Kevin Cox from Bayldon, up near Coffs Harbour, has written telling me of his problems loading Berlin off tape 1985/11. It seems Kevin can load Part 1 of the program but then has difficulties with Part 2. He has sent his tape back to me and it loads and runs OK off my system. Is anyone else having trouble with this program? Please write and let me know if you are. Kevin was also good enough to send me a corrected version of the 4 Stroke Engine demo and took the time to translate Palace of Ice from French to English. I also gather by his letter that he is interested in obtaining a Tunnels of Doom module. If you can help him out let me know please. Thanks Kevin, it's great to receive letters from members.

John McDonald fran Frmington handed in a tape at the May meeting with some programs he has been writing. Unfortunately my recorder refuses to load John's tape but I will keep trying with other reconders. If no luck John I will need to get back to you to see what can be done. Speaking of the May meeting, the Copy-Thon went off well with a number of members taking the advantage of bolstering their software libraries. I hope you all got what you wanted and that we can run another Copy-Thon soon.

Other software to be released in June will be Tape 1986/6 containing the following programs:

ALFA - Extended Basic - this one is fram Italy and incorporates good graphics and colors. The idea is to catch objects being thrown by some sort of monster. Instructions are included in the program.

ElIZA - Either Basic - discuss your problems and get advice fram you TI.

IN A MAZE - Extended Basic - another one fram Italy. The idea being to find your way through the maze. A very colorful program which I think you will like.

INDIAN DICE - Extended Basic - there are a few differing versions of this theme around but this is one of the better ones. The idea is to gain points by throwing dice but only certain combinations pay off. Up to 9 players can be accamodated with this version.
NEW YORK - NEW YORK - Etended Basic - control busy streets of traffic by pressing the appropriate keys to change the traffic lights from red to green and vice-versa. A bit slow but a reasonably entertaining game to fill in time on a cold night.

SQUARES - Extended Basic - written by Mike Slattery of Tishug. You have probably all played this game before. This one has number, letter and color code choices. Sure to keep you occupied.

TI POKER - Extended Basic - traditional show paker game against the computer as your opponent. You dont see its cards so you won't know if your being cheated. Not the best card game I have seen but feel free to modify it to suit yourself.

WEBSTER - Extended Basic - Webster the spider drops on his prey, but watch out for scorpions.

The same prograns will also be available on disk, but added to the disk are the two versions of Richard Stanford's DISKCAT program. The programs load and run through Option 3 of Editor Assembler.

Since I now have the 2 slimline drives installed, the external TI drive, purchased by the Group sometime ago is now for sale. The drive is still in good order and would be an inexpensive way for you to expand to two drives. The drive is a 110 V version and would require a $240-110 \mathrm{~V}$ step down unit to operate. Further particulars may be obtained by telephoning me on 02.7976313 or by writing to me at PO Box 149 Pennant Hills 2120. At the last Cammittee meeting the idea was floated that tapes containing quality programs should be rented to members at meetings for a nominal sum ($\$ 2$ or so) plus a deposit which would be refunded when the tape was returned at the next meeting. We have the equipment and necessary software to enable this to be done, but before doing so I would be interested in feedback as to whether it would be a going proposition. Again phone comments can be directed to the above telephone number or written comments would also be welcome.

Hello to all my young friends. I hope you all enjoyed the recent school holidays and that many of you got away for a well earned break. During the past month I have received 3 letters and here they are.

From Peter Lees of Pennant Hills who wrote and sent me a tape with an entry for the Mouse competition plus a program called Young Ones which he says is a musical demonstration. Peter I am very sorry but try as hard as I could your tape would not load on my recorder. Never mind perhaps you could re-record your programs and send them to me again. Thanks anyway Peter, for the time you took to write.

Kresh Sprem from Penshurst also sent in a Mouse entry. Kresh, your poor mouse, it seems to want to go in several directions at the same time. On the same tape, Kresh sent in 2 good graphics demos, a plane and a racing car. Well done. You have certainly been busy over the holidays.

As I only got 2 entries, and one wouldn't load I gress I will have to call the competition off. I think at least 3 entries need be received before any prizes are awarded. Again thanks to those who did enter.

Also in my mail bag a long letter fram Joshua Rust who tells me he has acquired a stand alone modem, TE2 module, Congo Bongo, Burgertime and Sneggit plus a host of other modules. Some of Joshua's high scores are Buck Rogers: 221991, Star Trek: 998300, Munchman: 187990, Blasto: 33720, Congo Bongo: 32820, Burgertime: 218997 and Car Wars: 21973. Joshua also sent me 2 cartons which I have passed onto Shane. Thanks Joshua. Can any of you Younger Set out there beat his high scores? Let me know if you do and you can have your name printed in this column.

Don't forget to come along to the big full day tutorial workshop to be held at Woodstock Community Centre on the Saturday of the forthooming June long week-end. It will be a day full of fun and surprises and there will be a big bar-b-que at lunch time to keep the hunger pangs away. This is a day not to be missed.

That's all for this month. See you next time!

EEFHCG

geITING MCRE OUT OF SPEECH - SOME useful hints
Written by Softwane co-ordinator - Terry Phillips
A lot of TI users haven't been associated with the group as long as me and probably have not had the opportunity to buy the module I will refer to later in these notes. The module was one of the first I bought back in 1981 long before I got an Extended Basic Module. The module is the SPEFCH EDITOR a 1980 release number PHM3011. I have not seen it advertised in recent copies of Micropendium so I doubt if it is still available although you may be lucky and pick up one second hand. Mine, from memory, cost $\$ 50$ when I bought it.

You are all aware that speech is available through Extended Basic provided of course you have a speech synthesizer attached. Pages 164 and 172 of the XB manual give a brief description of CALL SAY and CALL SPGET. Both pages direct you to the speech editor manual for a complete description of SAY and SPGET. Also on pages 203, 204 and 205 is the complete list of inbuilt speech synthesizer vocabulary.

To help you get more fram your speech sythesizer here are some usefull tips from the speech editor manual.

The first thing that causes same problems is the use of phrases such as Texas Instruments, That is incorrect and so on. These must be progranmed as follows:

CALL SAY("\#TEXAS INSTRUMENIS\#")

CALL SAY("\#THAT IS INCORRECT\#")
Another thing not mentioned in the XB manual is the use of Speech Separator Characters. You use the separator characters to give synthesized speech the cadence of natural conversation. Here is the camplete list :

SPERCH SEPARATOR CHARMCIERS

SINBOL	PAUSE ISe
+	0
space	.1
-	-2
\vdots	.3
\vdots	.8
\vdots	1.0

Iry experimenting with these such as -
CALL SAY("HOW, ARE: YOU")
CALL SAY("AL工, , 'TOGETHER--NOW+ONE;TWO;"THREE")
What do speech code patterns look like? Type in and run the following short program to see.
10 CALL SPGET ("HENLO",R\$)
20 PRINT "START";R\$;"STOP"
The words START and STOP are printed to show where th speech code begins and ends. While this short program is interesting it is not in itself very useful. Speech code patterns are made up of many characters that do not have a screen character representation. These data patterns can be translated into readable characters by using hexadecimal representation.

This next program converts a string of direct speech code into HEX. Enter the program and experiment with a variety of words from the resident vocabulary.

100 REM HEX DUMP OF SPEECH DATA
110 CALL CLEAR
120 INPUT "TYPE WORD: ":WORD\$
130 CALL SAY(WORD\$)
140 CALL SPGET(WORD\$,R\$)
150 HEX\$="0123456789ABCDEF"
$160 \mathrm{~L}=\mathrm{LEN}(\mathrm{R} \$$)
170 PRINT "LENGIH=";L;"BYTES"
180 FOR I=1 TO L
$190 \mathrm{DEC}=\operatorname{ASC}(\operatorname{SEG} \$(\mathrm{R} \$, \mathrm{I}, 1))$
$200 \mathrm{HIGH}=\mathrm{INT}(\mathrm{DEC} / 16)$
210 LOW=DEC-16*HIGH
$220 \mathrm{HIGH}=\mathrm{HIGH}+1$
230 LOW $=\mathrm{LOW}+1$
240 PRINT SEG\$(HEX\$,HIGH,1);
250 PRINT SEG $\$(H E X \$, L O W, 1)$;
260 IF I/10<>INT(1/10)THEN 280
270 PRINT
280 NEXT I
290 ERINT
300 GOIO 120
Line 120 gives a prompt to type in a word selected from the resident vocabulary, then line 130 directs the computer to speak the word you typed. Line 140 tells the computer to retrive the code pattern for the word you typed and assign the direct-string of speech data patterns to R\$. In line 160 the value of " L " tells you how long the pattern is. Line 190 picks a single character (byte) of speech code and expresses it as a decimal number between 0 and 255. Lines 200 and 210 return the HIGH and LOW order HEX digit of DEC. Lines 220 and 230 shift each digit by one to correspond with the proper symbol in HEX\$. Lines 240-290 direct the computer to print the speech data in HEX. Notice that the first two digits (60 HEX) are the same on all wonds. They represent a command to the Speech Synthesizer. The next four digits indicate the number of bytes of speech code to follow. The length of the speech code cannot exceed 252 bytes.

Of historic interest in the speech editor manual is the promise of more plug in speech modules to came. To my knowledge these were never made but that is why you have the flap on your speech synthesizer as that is where the planned modules would be inserted.

With the addition of the speech editor module you can actually program speech in TI BASIC (naturally you can also do so with the TE2 module, but that is a different story) and several programs in the library do need it to run. One particular one that springs to mind is Speak and Spell, a TI release that has the entire phrase and word vocabulary on disk for use with the master program.

THE FOLLOWING IS A SPECIAL GUIDED TOUR OF THE LATEST HARDWARE AND SOFTWARE FOR THE TI-99/4(A) PREPARED BY OUR REPORTER - Steven Schraibman, WHO HAS JUST RETURNED FROM THE U.S.A AS OUR REPRESENTATIVE OF TISHUG (AUST).

Following my article in the April TND comes this review of the Summer ' 86 catalogue from Tennex Computer Express and some other new releases from the states.

We start with Cor Comp peripherals. The only new release from Cor Comp is their new 256/512k memory expansion. This comes in two formats. One is a card for your PEB which replaces your 32 k card. It comes in 256 k ($\$ \mathrm{US} 189$) or 512 k ($\$ 239$) sizes. The second is a stand alone unit which plugs in between your PEB or the Cor Comp micro-expansion system. The advantage of the stand alone unit is that the 256 k is recognized on top of your 32 k card giving you 288 k ($\$ 219$) or a whopping 544 k ($\$ 279$) of memory. Some of you may say "So what? another 256 k card, there's already several others on the market". Well not sol! This oneis different. Apart from the RAM disk feature there is that Cor Comp is developing word processor/spread sheet/data base software to recognize the 256 k or 512 k extra. That promises to be interesting.

Next we have Myarc. (By the way, I spoke to Jerry from Tex Comp and he told me that Myarc are next to bankrupt and that they probably won't last much longer. Who knows? Only time may tell.)

The latest news about the much heralded new computer comes from the New England 99 Fair in Boston. Myarc has decided to go two ways with the computer. One is an independent computer and the other is a "computer in a card" for the PEB. The card was displayed and operational at the faire however it short circuited after a while.

The card is configured like an Atari 520 or a full blown IBM PC with 128 k VDP and 512 k CPU RAM. It uses a sound chip similar to the $4 A^{\prime}$'s with room to address other sound chips. It interfaces with other cards such as the RS232 and disk controller. The card features an MS mouse interface. The joysick interface is undecided, either the TI wiring or the standard Commodore/Atari оле.

The computer features RGB and composite video output using the $99 / 38$ chip. It has an 80 column text mode, 512×212 graphics mode and 512×424 interlaced mode. In the super high resolution mode each indivdual pixel can be one of 256 colours.

Under developement are BASIC III, an interface that allows you to use an IBM keyboard and software to save cartridges to disk as the computer doesn't recognize the cartridge and cassette ports.

Back to the catalogue, Tennex is already taking names for "reservations" on the Myarc Computer 1ist, no obligations. They expect heavy demand. They project a $\$ 300$ to $\$ 600$ price range.

New on the scene is a German company, Mechatronic. They have Extended Basiic II+ (\$79.95). This is TI XB plus new commands such as screen dump and disable quit key PLUS 40 hi-res graphics routines such as RECTANGLE, CIRCLE, ELLIPSE and TURN. Tennex offer a $\$ 20$ rebate on your old XB module.

Also from Mechatronic comes a mouse interface ($\$ 119.95$). The package includes the mouse, and a mouse based cataloging program, calculator and game. It is not compatible with present programs. They aslo have an 80 column card ($\$ 219.95$) which is supposed to be compatible with most programs including TI Writer and Multiplan.

The next two pages are a bit of a let down as Tennex offer an Apple and an IBM compatible because "many of our customers have asked us to recommend other computer systems." There's something fishy going on!!

The rest of the magazine, some 40 pages do not offer anything new excepting a new old release from Britain. Sounds confusing? Well it is.

Long long ago Thorn EMI developed three games for the TI but when TI bailed out the games were never released. But recently a member of the UK users group got the rights to the games so now for $\$ 29.95$ you may buy all three; Computer War is based on the movie War Games, Submarine Commander is a simulation of a submarine patrol mission and River Rescue where you save refugees from the river in your boat.

Tennex Computer Express, P.O. Box 6578, South Bend, IN 46660, USA. Phone: (219) 259-7051

Looking elsewhere we find Miller's Graphics. Miller's Graphics offer a variety of items. For $\$ 9.95$ you may buy "The Orphan Chronicles", a book by Dr. Ron Albright that takes us from the inception of the 9900 chip right through to the $4 \mathrm{~A}^{\prime} \mathrm{s}$ demise and beyond.

The Gram Kracker allows you to save and edit modules and program in GPL. It also allows you to replace or change TI Basic and create your own "super modules" with several modules all in memory and on the master selection screen at the same time ($\$ 189.00+\$ 4$ for s / h).

The DISkASSEMBLER (\$19.95) allows you to disassemble right of the disk FIXED 80 or PROGRAM IMAGE files. It produces fully tagged object code with complete REFs, DEFs, EQUATEs and a Symbol Tables.

The EXPLORER ($\$ 24.95$) emulates the 9900 processor allowing you to actually see step by step how a program, cartridge or even TI Basic work.

ADVANCED DIAGNOSTICS ($\$ 19.95$) is the combination of a disk manger, disk fixer and disk tester all in one with added features such as being able to read and write tracks.

NIGHT MISSION (\$19.95) is an extended basic game and tutorial in one. The five screened game won first place in a NY State competion against games for TI, Atari, Commodore and Apple. The manual takes you through the game line by line showing how it is done.

The latest release from Miller's Graphics is the IBM keyboard interface. It allows you to use an IBM keyboard as if it were the TI's. You can put the the TI aside but you still need its cartridge port. An IBM keyboard gives you a number pad, deicated cursor keys and programmable function keys.

PERFECT PARTNERS: ASSEMBLY AND EXTENDED BASIC by ROLF SCHREIBER TIsHUG/ILLAWARRA REGIONAL GROUP

A TI 99/4A with 32 K memory expansion, disk drive and Extended Basic, can load Assembly Language programs into Low Memory (LO MEM) with the CALL LOAD ("DSK1.file name") command. The XB assembly loader, which resides in LO MEM once CALL INIT has been executed, can only handle tagged object code. This means DIS/FIX 80 files which have been assembled without the ' C ' option.

The area in memory where the loader places the files lies between $>24 F 4$ and $>3 F F F$ ($9460-16383$ in decimal). In the past, loading assembly files into High Memory (HI MEM) required special loaders or loading absolute origin (fORGed) code. THIS IS NOW NO LONGER NECESSARY!

What was never documented by TI in their XB manual, or anywhere else, was the fact that it is possible to use the resident $X B$ loader to load relocatable tagged object code ANYWHERE in the 32 K memory expansion (ie in both LO MEM and HI MEM). In order to load object code anywhere in $H I$ MEM requires an adjustment to the pointers at >2002 and >2004 in LO MEM, which direct the XB loader where to start loading the files.

Linking to assembly routines loaded into HI MEM presents no problems, once a valid entry has been made in the DEF table and the loader pointers readjusted in LO MEM.

Enough of theory, here is a run-down of how to load a single assembly file into HI MEM and then to LINK to it from an XB program (also in HI MEM, but located at the "other end".

1. Initialize LO MEM with 'CALL INIT'. This will also allow you to execute the necessary CALL LOADs later on. Execute 'CALL PEEK (8194,G,H)'.
2. Load the $X B$ program that you want to LINK with the assembly routine. RUN it, then BREAK the program with 'CLEAR' (FCTN 4). Enter 'CALL PEEK ($-31866, C, D)^{\prime}$. This address points to the highest free address available to assembly language routines in HI MEM, once the XB program has reserved space for its numeric values.
3. Decide where in High Memory you want to start loading the assembly routine. Express the address in decimal as two consecutive bytes, A and B.
4. Adjust the pointers at >2002 and >2004 in LO MEM with CALL LOAD (8194, A, B,C,D), where A, B,C and D are the decimal values previously PEEKed in steps 2 and 3.
5. Load the Assembly Language file using CALL LOAD ("DSK1. XXXX"), where XXXX is the filename of the program to be loaded.
6. Execute a 'CALL PEEK (ADDR, E,F)' where ADDR is two bytes lower in memory than the highest free address determined in step 2 , and ' E ', and ' F ' will contain the address of the routine's entry point. ADDR will be a negative number, viz $\mathrm{ADDR}=256 * \mathrm{C}+\mathrm{D}-65538$.
7. Poke the values for the program name and entry point into the DEF table. eg to enter the program name 'DEBUG', type 'CALL $\operatorname{LOAD}(16376,68,69,66,85,71,32, \mathrm{E}, \mathrm{F})$ ' 〈enter〉, where the $68,69,66,85$ and 71 represent the ASCII values (in decimal) for 'DEBUG', the '32' represents the space character to "pad" the name out to six characters and E and F, the address bytes, were PEEKed in step 6.
8. Update the pointers at >2002 and >2004 with 'CALL $\operatorname{LOAD}(8194, G, H, 63,248)^{\prime}$. This restores the first free address in LO MEM and updates the last free address in LO MEM to >3FF8.
9. Link to your assembly language program from XB (immediate mode or from within a program) with a CALL LINK eg in our example 'CALL LINK("DEBUG").'

For people interested in finding out more, the Editor/Assembler manual pp262-5 is a good starting place. The procedure detailed above can be written as a program which in turn can easily be modified or expanded to load multiple files in both LO and HI MEM

Another fact not widely known is that the HI MEM portion of the 32 K memory expansion can be made "invisible" to XB programs, so that they can be made to reside in, and RUN from, VDP RAM, even though the 32 K is otherwise operational. This makes it possible to load up the full 32 K with assembly language routines, make the HI MEM part "invisible" to XB, THEN load the XB program, so that it will RUN from VDP.
N.B. Since LO MEM is still recognized by the XB program, both the CALL LOAD and CALL LINK sub-programs are still operative.

If a CALL FILES (1) has been executed first, then 12869 bytes of memory would be available for the XB program in VDP, PLUS 6924 bytes in LO MEM and 24544 bytes in HI MEM for assembly language routines, ALL callable from the XB program while it is running. If you total all that up, you arive at 44,337 bytes or 43.3K of usable RAM, which is about 6 K more than another well known (but vastly inferior) 64K home computer.

Perhaps the best compromise is for the XB program and the assembly routines (or at least that part of them which won't fit into LO MEM) to share HI MEM, the $X B$ program occupying the $>$ FFF end, and the assembly part occupying the $>A 000$ end.
N.B. It would be a good idea to initially PRINT all PEEKed values and write them down on paper, at least until you are familiar with the method.

The card has a 32 k buffer allowing for macros and batch files. (No price available yet but the keyboard will cost you $\$ 50-\$ 100$ on top of the card.) (Miller's Graphics, 1475 W. Cypress Ave., San Dimas, CA 9173, USA)

Byte Data distribute Mechatronic in the US. The Mechatronic 80 column card (previously mentioned) has 256 colours and a resolution of 256×208. It allows multi-coloured sprites in all 256 rows, with 192 k of video RAM. It uses a version of the $99 / 38$ without the MFX option. Also from Ryte Data besides Intern and the GPL Assembler (see elsewhere in the TND) is te GRAM-KARTE which combines th Gram Kracker and a 128 k card. It is expandable to 512 k and will soon have software to turn it into a RAM disk. (No pres available.) (Ryte Data, 210 Mountain St., Haliburton, Ontario, Ganda KOM 1SO.)
From Texaments, TI ARTIST V2.0. This extremely friendly menu driven graphics package rivals GRAPHX. It has all the standard features plus a powerful fonts option and slides ($\$ 19.95$). Also from Texaments Artist Companion \#1 (\$17.95), five disks of pictures, slides and fonts.

Also Artist Companion \#2, two disks at \$9.95. Artist Extras has more pictures and fonts plus a DSR to use a Sketch Pad or a Mouse with TI Artist (2 disks, \$6.95) and Display Master has several utilities to help use TI ARTIST pictures in presentations (\$14.95). (Texaments, 53 Center St., Pachogue, New York 11772, USA.)

Not to be out done Asgard Software has its own Artist Companion, 2 disks for $\$ 7.00$. Asgard also have a Graph companion, 4 disks for $\$ 14.95$. (Asgard Software, POB 10306, Rockville, MD 20850, USA.)

Well that about all for this month. I hope you have found someting of interest in this article. Remenber all prices are US $\$$ and don't include postage.

Regards, STEVEN (TEXPAC BBS Username:SUS)

Hello once again from the shop.
Efforts to source a 'cheap' disk have continued during the past month. We currently have a sample batch on trial. If these prove sucessful, they will be carried as a shop item. Price is expected to be around the $\$ 2$ mark.

All copies of Navarone's Data Base Manager have now been sold. Sorry if you missed out. There are no immediate plans to import further packages of this item. We still have copies of Console Writer and Paint and Print. I you want one of these modules, order now to avoid disappointment.

If you are buying our premium quality disks, why not buy two boxes and take advantage of our promotional offer of a free digital watch (grey and attractively slim). This is a limited time offer.

Those of you who receive Micropendium will see in the April issue there is to be a price increase of US $\$ 2.00$ on the annual subscription rate. Just how this will flow through to the club is still uncertain, but it will effect our selling price for copies from May onward. If you feel as I do that the magazine is good value, I recommend you take a subscription through the club. In this way we can be sure firstly that we order sufficient magazines and secondly we do this at the best price.

Over the past few months a number of you have requested Navarone Cartridge Expanders, and waited very patiently for them to arrive. They are currently in Sydney with the customs agent and by the time you read this they will be "on the shelf". If you still want the cartridge expander, please reconfirm your order now as we have only 12. Price including sales tax and customs changes should be less than $\$ 50$.
An agent of the AMP Society contacted me about 6 weeks ago. The approach to the club initially was to offer a form of insurance cover for computers and peripherals. That initial approach has now developed into an offer to underwrite ANY form of insurance for members. Rates charged to members would be the standard company rate with a cammission payable to the club. At the last committee meeting, this scheme was put into limbo pending our incorporation, however, if you are interested in taking up any of the policies offered by the AMP drop me a line. Incidentally, there is no obligation and the particular agent will not be approaching individual members until they request his services.

Elsewhere in this magazine (space permitting) you will see a review of a smart modem. This is one of two available through the club at special prices. Don't think you have to go outside the club to purchase supplies and peripherals just because they are not part of our regular stock. Check with us first. We may be able to come up with a super deal for you.

Regards, Chris Buttner

UPGRADING YOUR TI - 2 DRIVES IN THE PE BOX

By Terry Phillips

A couple of months ago I placed an ad in the SND seeking to buy 2 slimline drives for my PE BOX. I had two main reasons for doing this. One being that a lot of others had done it and from what I had seen of their systems it looked very neat with 2 drives in the slot in the box. The second reason being that I had been running the 2 drives I had continuously for about 3 years and intermittent faults were developing mainly in the No. 1 drive in the box. When a lot os software is being copied for club members for a drive to suddenly pack it in would be disastrous.

Well my ad bore results. Fred Morris, our tireless Group Co-Ordinator, rang me to advise he had rounded up the 2 drives I needed and that they were mine. With a bit of sweet talking to the wife (it was around about my birthday) I became the owner of 2 slimline double-sided, doubled-density EPSON drives for the sum of $\$ 320$. I should mention here that I had never heard of Epson drives. I knew they made good printers and had a vague recollection that they were marketing a PC campatable but that was about my sum knowledge of Epson.

I picked up the drives from Fred at the April meeting and took them home anxious to put then through their paces. I realised that I would need a special edge connector and power cable to instal both but at least I should be able to use one of the drives immediately. I hooked it up and tried it - it didn't work. I tried again but still no go. Very strange the light was coming on but it wouldn't read or write. Then it dawned on me. The drives have a push button mechanism which is akin to closing the door on the old drives. Put in the disk, push the button and prestol It worked. First job to initialise a disk - select double-sided, double-density and away it goes. After a few minutes the job is done and I have 1438 sectors available on my disk. What a saving this is going to be in disk storage space. Can't wait to get them both going.

Fred, as mentioned earlier, being a tireless worker, lets me know he will do the job for me, which he did on the Friday Anzac holiday. The job he did I don't recommend for those who would rather not have holes drilled in their PE Box, but this is necessary as the screw holes on the slimline drives do not align with the pre-existing holes where the old large drive fits. Anyway you can't see the holes once the top is back on the box. We only had one minor problem with instalation of both drives. When first tested they didn't work but with the addition of a 2 pin resistor pack in the first drive they both ran smoothly and very quiet. Those used to the clatter of the old drives switching on and off will really notice the difference.
Anyway, as mentioned both are now installed and operating very well. Disk storage space amounts to 720K and this is as much as the "big boys" are offering. So if you want to upgrade your TI get a couple of double sided slim line drives. Even if you don't have the Corcomp DD controller card your normal TI Card will double your disk capacity and in time save you a heap of $\$ \$$ on disks. Fred, by the way, tells me that he can get more of these drives if you require them.

JOYSTICK CONVERTION
by Shane Andersen

Do you have an old pair of TI JOYSTICKS which no longer work, or don't work as good as you would like?

Now you can convert the ' Y ' cable from those TI JOYSTS, and place
Atari/Commodore style joysticks on them direct.

The ATARI P.C.Board...
FIRE $=$ ORANGE
UP $=$ WHITE
LEFT $=$ GREEN
RIGHT $=$ BROWN
DOWN $=$ BLUE
LIVE $=$ BLACK

TI JOYST WIRES...
FIRE $=$ BLACK
UP $=$ ORANGE
LEFT $=$ BROWN
RIGHT $=$ BLUE
DOWN $=$ GREEN
LIVE $=$ WHITE

You will notice that all motion on the screen will be smooth \& the joysticks fun to use...

HOWEVER, when you try to move diaginal(both at the same time) all motion will slow to a stop. You then have to remove the diodes from the PCB tracks of the TI-JOYST, and place them on the same tracks of the Atary type joysicks. This can be done by drilling two small holes in each track, and cutting the track between the two holes before soldering the diodes in the right direction,

IF YOU DON'T HAVE TI JOYSTS for
conversion, but want those other brand (Atari/Commadore style) to work on your TI, then follow these details...
All you need is (1)The Joysticks, (2) Ten $\ln 4001$ diodes [available from any electronic component shops], (3) One 9 pin plug \& case.

Your first step is to solder in the diodes, which can be done in one or two ways, either solder them in the p.c.board track of the Atari style joysticks. You need to drill 2 small holes in the track EXCEPT the track off the black lead where no diode is required here, cut the solder between the two holes in each track so as to make a bridge, then insert the diodes in each track, making sure to point the cathode toward the joystick, as this is most important or the joystick will not work. Then solder the diodes in, (you must do this to BOTH joysticks).
THE SECOND WAY: is to cut each wire off the joystick (except the black wire), cut the wire about $3 / 4^{\prime \prime}$ away from the
clip of the p.c.b then cut the wires of the diodes about $3 / 16^{\prime \prime}$ from each side off the body of the diodes, and solder the diodes in line, straight to the wires, remembering to point the cathode toward the clips, then put a strip of insulation tape around each diode, making sure to cover the naked wires. Screw back the joystick neatly.
Both methods have been tried and tested, successfully. The next step is to solder your plug together, firstly cut off the Atari plugs and disgard them. You must now solder the wires on both joysts together (i.e:white lead to white lead, orange lead to orange lead etc).
Do this to all colours except BLACK, these must stay seperate. You can please yourself how you connect the plug together, but you must put the right colour wire to the right pinhole as shown on this diagram...

> I suggest that before you solder your joined wires to the pins, that you solder one inch of wire to each join, making a 'Y' shaped union, this will make it easier for you to solder on the pins.

> Before you put your plug together, remembr to put some insulation tape around all naked wires. Now put the plug together, and you're in business.

In our club Software Library, we have a program entitled "LIGHTPEN TIC-TAC-TOE" or Naughts and Crosses with your Lightpen. It displays 9 black boxes in the middle of your screen with a white colour block zooming through them. You have to STOP that white block in its tracks, by placing the tip of your TI LIGHT PEN on a black square, where you want to place either a naught or a cross, and as soon as the white block passes in front of the pen, it stops and draws the desired symbol, ten the computer thinks and places the opposite symbol where it feels it should go.
One other member of this club, has designed an assembly routine enabling you to draw on the screen with your light-pen, however, he kept it to himself, and we never saw it in action (HINT!!!!!)

The following LIGHT PEN diagram, comes direct from one of the biggest BBS'S in the U.S.A. (TEXNET-SOURCE)via Bernie Elsner and his modem in TI-UP...Please note that the *TIL404 transister has since been discontinued, however, there are alternatives which can be purchased from such places as Tandy's etc.

So, lets start with the LIGHT PEN ... first, you'11 need the following parts:-

1) 9 pin " D " CONNECTOR to plug into your JOYSTICK port. 2) RG 174/U COAXIAL CABLE.
2) DA 20961 SHIELD.
3) FELT-TIP or BALL POINT PEN CASE.
4) 470 K-OHM RESISTOR.
5) 47 K -OHM RESISTOR.
7).047uf CAPACITOR.
6) TIL404 TRANSISTOR.*
7) 2N2907 TRANSISTOR.

The photo-trasistor *(TIL404) is connected to one end of the wire and inserted into the pen case. It can be held in place by silicone glue about 5 to 10mm from the tip of the pen. The rest of the components can be connected together just before the joystick connector. It is added by using pins $8 \& 7$.

Terminal
 Emulator II W.R

TE II - A WORDPROCESSOR IUU!

by Daniel Harris -TIshug

I am sharing my advice on HALF DUPLEX WORD PROCESSING which is available to all of you with a Terminal Emulatoe II and a Modem (The other requirement is of course a RS232 interface). To get into HALF DUPLEX you select this option at the beginning of the job where it says on the Menu to choose Full or Half Duplex.

Once there, anything you type will appear on the screen. The good points are 40 characters viṣible and full screen editing! (Refer the TEII manual for cursor contols). eg. CTRL H enables your BACKSAPCE erase.

With the WRAP function ON you can type, almost endlessly and all the print will go into the buffer. You don't have to watch for the end of a line as you would when using a typewriter! However, you need to watch it when doing underlines - one character too many then the underline gets dragged down to the next line complete with any nearby words!

If you want columns then CTRL J moves the cursor down to the next line. Press ENTER to start at the beginning of the new line or CTRL H to backspace to the starting position. The spacebar advances the cursor.

Begin every screen with a double row of asterisks or any other character you choose. The reason for this is because the top line is apt to disappear or get mangled somehow. This is a serious gremlin to get tricked by because there is no way to recover your work. You will have to start at the beginning - CTRL A does this as does WRAP ON/WRAP OFF. The entire buffer is cleared ready for more mistakes?

If each screen is saved to cassette you can then edit it using a program knowing that DISPLAY 80 files are involved. A loop puts each string up on the screen - at this stage you have the chance to delete it, leave it ar change it. Whatever your choice you can then save it to CS2. You may the print the file using the "scrubbed" version from Cassette.

It is possible to use the screen to print a short pamphlet or if you go on typing until the buffer is full - checking for and correcting mistakes as you go, many copies may be printed without even saving it to cassette. Saving your work to cassette can be valuable - just in case! At least 200 lines can be stored in an array if you have 32K expansion. Using a good quality 45 minute tape (C90) you can store a lot of typing.

It has to be saved screen by screen, but once on tape and edited it will type the correct message through your printer. Remember, DISPLAY Variable 80 files! I have submitted a program that allows a screen to be edited before saving and/or printing. This program will enable any cassette saved material from the BBS to be retrieved and studied, screen by screen, with words broken up into the 28 character screen of TI BASIC. If required, also printed, spoken or copied onto CS2.

There are a lot of people out there who may not have a printer or simply do not want to waste paper. Thus by saving everything to cassettee first they can choose what to print. Moreover, they do not have to log on again to get a fresh copy. This applies to any data/text from any BBS as well as that which you write yourself using this HALF DUPLEX method. I am not saving this letter to casette bu WRAP ON/OFFing it to limbo!.

COMMENT.

DANIEL, I WISH YOU HADN'T "WRAP OFFED" IT BECAUSESOMEONE ELSE.... HAD TO RETYPE IT FOR THE MAGAZINE. THUS YOU DEFEATED ONE OF THE.MORE POSITIVE ASPECTS OF YOUR HINT! A GOOD IDEA THOUGH FOR MEMBERS WISHING TO SUBMIT ARTICLES TO TIshUG NEWS DIGEST. ED.

Here is the program submitted with this article.
100 CALL CLEAR
110 DIM A\$(26)
120 FOR $N=1$ TO 25
$130 \mathrm{~A} \$(\mathrm{~N})=" "$
140 NEXT N
$150 \because$ SCREEN (14)
160 - SET=1 TO 13
170 CALL COLOR(SET,16,14)
180 NEXT SET
190 REM*******************
200 REM* D.N.HARRIS
210 REM* 20TH FEBRUARY
220 REM* 1986
230 REM*TI CONSOLE BASIC* 240 REM*YOU MUST ADJUST * 250 REM*THE CONTROL CODE* 260 REM* IN THE PRINT * 270 REM*CODE 10 IS LINE 280 REM*FEED.
290 REM*CODE 29 IS CHANGE 300 REM*PEN COLOURS
310 RFM******************
320 REM*This Programe *
330 REM*enables Terminal
340 REM*emulator Data
350 REM*to be stored on
360 REM*Cassette and
370 REM* ${ }^{\text {retrieved or }}$
380 REM* ${ }^{\text {copied }}$ in four 390 REM*ways.
400 REM******************
410 REM* CODE 11 BACKS 420 REM*SEE YOUR PRINT 430 REM*"MANUAL
440 REM*FOR THE CODES
450 REM*YOUR PRINTER

460 REM*OBEYS
470 REM****************
480 REM
490 CALL CLEAR
500 PRINT ,"PRESS 1 TO":"BAC K PAPER
510 PRINT ,"PRESS 2 TO":"SCR EEN PRINT
520 PRINT "PRESS 3 TO": "HAR DCOPY
530 PRINT :"PRESS 4 TO": "CAS 540 PRINT ,"PRESS 5 T0": "SPE ECH OUTPUT
550 PRINT ,"PRESS 6 TO": "END RUN
560 PRINT, "PRESS 7 TO": "REA D TAPE OF SCREENS
570 PRINT ,"PRESS 8 TO": "EDI T
$5 \overline{80 \text { INPUT "NUMBER } 1 \text { TO } 8>\text { ": R }}$
590 IF R<1 THEN 580
600 IF R >8 THEN 580
610 ON R GOSUB $850,900,740,1$
770,1840,2020,630,2040
620 GOTO 490
630 REM READ TAPE
640 OPEN \#1:"CS1", INPUT ,FIX ED 80,DISPLAY
650 R=0
660 FOR N=1 TO 24
$670 \mathrm{~N} \$=$ STR $\$(\mathrm{~N})$
$680 \mathrm{Z}=15-\mathrm{LEN}(\mathrm{N} \$)$
690 PRINT TAB(Z);N
700 INPUT \#1:A\$(N)
710 NEXT N
720 CLOSE \#1
730 RETURN
740 REM HARDCOPY**PRINTER
CODES FOR LINEFEED CARRTAGE
RETURN AND COLOUR CHANGE**

750 FOR M=1 TO 24
760 OPEN \#2:"RS232.LF"
770 PRINT \#2:CHR\$(11)
780 PRINT \#2:A\$(M)
790 PRINT \#2:CHR\$(29)
800 CLOSE \#2
810 NEXT M
820 RETURN
830 INPUT R $\$$
840 IF R $\$=$ " $Y^{\prime \prime}$ THEN 750
850 REM BACK PAPER
860 OPEN \#1:"RS232.LF"
870 PRINT \#1:CHR\$(11)
880 CLOSE \#1
890 RETURN
900 REM SCREEN PRINT
910 REM **COUNT LINES
920 FOR S=1 TO 24
930 REM INITIALIZE SUBSTRING $940 \mathrm{U} \$==" \mathrm{C}$
$950 \mathrm{~V} \$=" \mathrm{\prime} \mathrm{\prime}$
$960 \mathrm{~W} \$=" \mathrm{"}$
$970 \mathrm{X} \$=" \mathrm{"}$
$980 \mathrm{Y} \$="!$
$990 \mathrm{Z} \$={ }^{\prime \prime \prime}$
1000 REM HOW LONG A LINE?
1010 A=LEN(A\$(S))
1020 IF A<28 THEN 1030 ELSE 1060
1030 L=28-A
1040 PRINT TAB(L);A\$(S)
1050 GOTO 1730
1060 IF A<56 THEN 1070 ELSE 1290
1070 Q=INT(A/2)
$1080 \mathrm{U}=\mathrm{Q}$
$1090 \mathrm{U}=\mathrm{U}-1$
1100 IF U<1 THEN 1130
1110 TEST\$=SEG\$(A\$(S),U,1)
1120 TF TEST $\$=$ " " THEN 1130 ELSE 1090

100 ! *******
110 ! *CUBIC*
120 ! *******
130 ! EXTENDED BASIC
140 ! AUTHOR UNKNOWN
150 ! TIsHUG JUNE 1986
160 CALL CLEAR
170 TURN=0 :: TU=28
$180 \mathrm{BLF}=5:: \mathrm{BLF} 1=8:: \mathrm{BL} P=6$ $:: B L P 1=8:: G R=2:: G R 1=6$:: $\mathrm{BL}=2$:: $\mathrm{BH} 1=8:: \mathrm{BZ}=2::$ $\mathrm{BZ} 1=6$
190 CALL CHAR $(96, " 0000000000$ 03070F1F0F070000000000000000 0000C0EOFOF8F0E00000000000") 200 CALL CHAR (112, "FFFFFFFFF FFFFFFF"): : CALL COLOR (11, BL F,BLF1): : CALL COLOR (10,BLP, BLP1)
210 CALL CHAR (92,"01070E0701 3F2F232F2F0F1F1F080838C0F0B8 FOC0FEFAF2FAFAF8FC7C08080E') 220 CALL CHAR (108,"0103070F1 C3C3E7773793C1E07031E3CC0E0F 0F89C9EBEF7E7CF1E3CF0E03C1E"

230 CALL CHAR (140,"1F3066CE8 AC0E1F0FF7B3C1F1C187878F018C CE6A2060E1EFEBC78F838181E1E")
240 CALL CHAR (104,"FFFFFFFFF FFFFFFF")
250 CALL $\operatorname{CHAR}(105,1 \mathrm{FF} 7 \mathrm{~F} 371 \mathrm{~F} 0$ F070301")
260 CALL CHAR (120, "FF7F3F1F0 F070301")
270 CALL CHAR (106, "FFFEFCF8F 0E0C080")
280 CALL CHAR (121, "FFFEFCF8F 0E0C080")
290 CALL CHAR(122, "FFFFFFFFF FFFFFFF" ${ }^{\prime \prime}$)
300 CALL CHAR $(123, " 0103070$ F1 F3F7FFF")
310 CALL $\operatorname{CHAR}(124, " 80 C 0 E 0 F 0 F$ 8FCFEFF")
320 CALL COLOR(12,GR,GR1) 330 CALL CHAR (128,"0103070F1 F3F7FFF" $):$: CALL COLOR (13,BL , BL1)
340 CALL CHAR(129,"FFFFFFFFF FFFFFFF")
350 CALL CHAR (136 ,"0103070F1 F3F7FFF'): : CALL COLOR(14,BZ ,BZ1)
360 CALL $\operatorname{CHAR}(130, " 80 C 0 E 0 F 0 F$ 8FCFEFF")
370 CALL CHAR(113, "FF'TF37170 F070301")
380 CALL CHAR (114, "FFFEFCF8F 0E0C080")
390 GOSUB 2230
$400 \mathrm{~A}=18$
$410 \mathrm{~B}=-2$
420 FOR I=5 TO 18 STEP 3
$430 \mathrm{~A}=\mathrm{A}-3$
$440 \mathrm{~B}=\mathrm{B}+6$
450 CALL $\operatorname{HCHAR}(I, A, 104, B)$
460 CALL $\operatorname{HCHAR}(I+1, A, 104, B)$
470 CALL HCHAR (I +2 , A 104 , B)
480 NEXT I
490 RESTIORE 950
500 FOR $\mathrm{I}=1$ TO 15
510 READ H,V,T
520 CALL $\operatorname{HCHAR}(\mathrm{H}, \mathrm{V}, 112, \mathrm{~T})$
530 CALL $\operatorname{HCHAR}(\mathrm{H}+1, \mathrm{~V}, 112, \mathrm{~T})$
540 NEXT I
550 RESTIORE 970
560 FOR $\mathrm{I}=1$ TO 10
570 READ H,V
580 CALL $\operatorname{VCHAR}(\mathrm{H}, \mathrm{V}, 112,3):$: CALL VCHAR(H,V+1,112,3) 590 NEXT I

600 FOR I=3 TO 27 STEP 6
$610 \operatorname{CALL} \operatorname{HCHAR}(19,1,105):: C$ ALL $\operatorname{HCHAR}(19, I+4,32,2)::$ CAL $L \operatorname{HCHAR}(19, \mathrm{I}+3,106)$
620 NEXT I
630 CALL MAGNIFY(3)
640 RESTORE 980
650 FOR $\mathrm{I}=10$ 'TO 23
660 READ HP,VP
670 CALL SPRITE (\#I, 96,7, HP*8
,VP*8+9)
680 NEXT I
690 RESTORE 990
700 FOR I=1 TO 15
710 READ HH,VV
720 CALL $\operatorname{HCHAR}(\mathrm{HH}, \mathrm{VV}, 128)$
730 CALL HCHAR (HH, $\mathrm{VV}+1,122,2$)
740 CALL HCHAR ($\mathrm{HH}, \mathrm{VV}+3,124$)
750 CALL HCHAR (HH+1, VV, 120)
760 CALL $\operatorname{HCHAR}(\mathrm{HH}+1, \mathrm{VV}+1,122$,2)
770 CALL HCHAR (HH+1, $\mathrm{W}+3,121$
780 NEXT I
790 CALL $\operatorname{HCHAR}(7,18,136)$
800 CALL $\operatorname{HCHAR}(10,15,136)$
810 CALL HCHAR $(13,12,136)$
820 CALL $\operatorname{HCHAR}(16,9,136)$
830 CALL HCHAR $(16,15,136)$
840 CALL HCHAR $(13,18,136)$
850 CALL $\operatorname{HCHAR}(10,21,136)$
860 CALL $\operatorname{HCHAR}(16,21,136)$
870 CALL $\operatorname{HCHAR}(13,24,136)$
880 CALL $\operatorname{HCHAR}(16,27,136)$
890 CALL $\operatorname{HCHAR}(4,18,130)$
900 CALL $\operatorname{HCHAR}(7,21,130)$
910 CALL $\operatorname{HCHAR}(10,24,130)$
920 CALL $\operatorname{HCHAR}(13,27,130)$
930 CALL HCHAR $(16,30,130)$
940 GOTO 1000
950 DATA $6,16,2,12,10,2,11,1$ $3,2,12,16,2,11,19,2,12,22,2$ 960 DATA $18,4,2,17,7,2,18,10$, $2,17,13,2,18,16,2,17,19,2,1$ 8,22,2,17,25,2,18,28,2,0,0,0 970 DATA $9,13,8,16,9,19,14,1$ $0,14,16,14,22,15,7,15,13,15$, 19,15,25,0,0,0
980 DATA $3,14,6,11,6,17,9,8$, $9,14,9,20,12,5,12,11,12,17,1$ $2,23,15,2,15,8,15,20,15,26,0$,0,0
990 DATA $4,15,7,12,7,18,10,9$ $, 10,15,10,21,13,6,13,12,13,1$ $8,13,24,16,3,16,9,16,15,16,2$ $1,16,27,0,0,0$
$1000 \mathrm{~A} 1=3 * 8+1:: \mathrm{B} 1=6 * 8+1::$ $\mathrm{C} 1=9 * 8+1:: \mathrm{D} 1=12 * 8+1::$ E1 $=15 * 8+1$:: F1=18*8+1 :: G1=2 1*8+1 :: $\mathrm{H} 1=24 * 8+1$:: $\mathrm{I} 1=27 *$ $8+1$
$1010 \mathrm{~J} 1=14 * 8+1:: \mathrm{K} 1=11 * 8+1$
:: L1 $=8 * 8+1$:: $M 1=5 * 8+1$:: N $1=2 * 8+1$
$1020 \mathrm{BH}=\mathrm{J} 1:: \mathrm{BP}=\mathrm{E} 1:: \mathrm{PO}=\mathrm{J} 1$ $:: \mathrm{PV}=\mathrm{A} 1$:: POL=J1 : : PVL=I 1
1030 DISPLAY AT(3,1)SIZE(11) :"-..-......-.-"
1040 DISPLAY AT(4,2)SIZE(9):
"C U B I C"
1050 DISPLAY AT(5,1$)$ SIZE(11)

1060 CALL SPRITE(\#24,140,16, $21 * 8+1,3 * 8+1$)
1070 CALL SPRITE (\#25,140,16, $21 * 8+1,9 * 8+1$)
1080 CAIL SPRITE(\#26,140,16,
$21 * 8+1,21 * 8+1$)
1090 CALL SPRITE(\#27,140,16, $21 * 8+1,27 * 8+1$)

1100 CALL SPRITE (\#1,140,16,B H, BP)
1110 CALL SPRITE (\#2,108,11, P O,PV)
1120 CALL SPRITE (\#3,92,10,PO L, PVL)
1130 DISPLAY AT(3,18)SIZE(11):"-_-_-_-
1140 DISPLAY AT(5,18)SIZE(11

1150 SC=0 :: DISPLAY AT $(4,18$)SIZE(11)BEEP:"SCORE:";SC : : MOVE $=1$
1160 CALL KEY(0,TX,DF):: IF $\mathrm{DF}=0$ THEN 1160
1170 CALL $\operatorname{KEY}(0, \mathrm{~K}, \mathrm{~S})$
1180 IF K=ASC(${ }^{\prime} W^{\prime \prime}$) THEN BH=BH -24 :: BP=BP-24 :: GOTO 1660 1190 IF $\mathrm{K}=\mathrm{ASC}\left(\right.$ " $\left.\mathrm{E}^{\prime}\right)$ THEN $\mathrm{BH}=\mathrm{BH}$ $-24:: \mathrm{BP}=\mathrm{BP}+24$: : GOIO 1730 1200 IF K=ASC("S")THEN BH=BH +24 :: BP=BP-24 :: GOIO 1800 1210 IF K=ASC("D")THEN BH=BH $+24:: \mathrm{BP}=\mathrm{BP}+24:$ GOIO 1830 1220 CALL COINC(\#1,\#3,8,X7): : IF X7=-1 THEN GOSUB 2090
1230 CALL LOCATE (\#1,BH,BP)
1240 GOSUB 1860
1250 IF MOVE=1 THEN 1270
1260 CALL OOLOR (\#GOT, 2): : IF GOT<>4 AND GOT>9 AND GOT<24 THEN SC=SC+1 :: DISPLAY AT 4,18)SIZE(11)BEEEP:"SCORE: "; SC : : MOVE=1
1270 CALL COINC (\#1,\#2,8,XXX) :: IF XXX=-1 THEN GOSUB 2010 1280 GOSUB 1360
1290 CALL LOCATE (\#2,PO,PV)
1300 CALL COLOR (\#GET,7)
1310 GOSUB 1530
1320 CALL COINC (\#1,\#2,8,XXX)
:: IF XXX=-1 THEN GOSUB 2010 1330 CALL LOCATE(\#3,POL,PVL) 1340 CALL COINC (\#1, \#3, 8, X7) : : IF X7=-1 THEN GOSUB 2090
1350 GOIO 1170
1360 CALL CHAR (108,"0103070F 1C3C3E7773793C1E07031E3CCOE0 F0F89C9EBEF7E7CF1E3CF0E03C1E
1): : CALL PATTERN(\#2,108)::

CALL COLOR $(\# 2,4)$
1370 IF PO=J1 AND PV=A1 THEN LET GET=21 : : PV=C1 : : REIU RN
1380 IF $\mathrm{PO}=\mathrm{J} 1$ AND $\mathrm{PV}=\mathrm{C} 1$ THEN LET GET=28: : PV=E1 : : REIU RN
1390 IF $\mathrm{PO}=\mathrm{J} 1$ AND PV=E1 THEN LET GET $=22$: : PV=G1 :: REIU RN
1400 IF $\mathrm{PO}=\mathrm{J} 1$ AND PV=G1 THEN LET GET=23 :: $\mathrm{PV}=\mathrm{I} 1$:: REIU RN
1410 IF POGJ1 AND PV=I1 THEN LET GET=19 : : PV=H1 :: PO=K 1 :: REIURN
1420 IF PO=K1 AND PV=H1 THEN LET GET=18 : : PV=F1 :: REIU RN
1430 IF $\mathrm{PO}=\mathrm{K} 1$ AND $\mathrm{PV}=\mathrm{F} 1$ THEN LET GET=17:: PV=D1 :: REIU RN
1440 IF PO=K1 AND PV=D1 THEN LET GET $=14$: : PV=E1 : : PO=L 1 :: RETURN
1450 IF PO=L1 AND PV=E1 THEN LET GET=15 :: PV=G1 :: REIU RN
1460 IF PO=L1 AND PV=G1 THEN LET GET=12 :: PV=F1 :: PO=M 1 :: RETURN
1470 IF PO=M1 AND PV=F1 THEN LET GET=10 :: PV $=\mathrm{E} 1$:: $\mathrm{PO}=\mathrm{N}$ 1 :: REIURN

1480 IF PO＝N1 AND PV＝E1 THEN LETT GET＝11 ：：PV＝D1 ：：PO＝M 1 ：：REIURN
1490 IF PO＝M1 AND PV＝D1 THEN LET GET＝13 ：：PV＝C1 ：：PO＝L 1 ：：RETURN
1500 IF PO＝L1 AND PV＝C1 THEN
LET GET＝16 ：：PV：＝B1 ：：PO＝K 1 ：：REIURN
1510 IF PO＝K1 AND PV＝B1 THEN
LET GET＝20：：PV＝A1 ：：PO＝J
1 ：：REIURN
1520 REIURN
1530 IF POL＝J1 AND PVL＝I1 TH EN POL＝J1 ：：PVL＝G1 ：：REIUR N
1540 IF POL＝J1 AND PVL＝G1 TH EN POL＝J1 ：：PVL＝E1 ：：REIUR N
1550 IF POL＝J1 AND PVL＝E1 TH EN POL＝J1 ：：PVI $=$ C1 ：：REIUR N
1560 IF POL＝J1 AND PVL＝C1 TH EN POL＝J1 ：：PVL＝A1 ：：RETUR N
1570 IF POL＝J1 AND PVL＝A1 TH EN POL＝K1 ：：PVL＝B1 ：：REIUR N
1580 IF POL＝K1 AND PVL＝B1 TH EN POL＝L1 ：：PVL＝C1 ：：REIUR N
1590 IF POL＝L1 AND PVL＝C1 TH EN POI：M1 ：：PVI＝D1 ：：REIUR N
1600 IF POL $=$ M1 AND PVL $=$ D1 TH FN POL＝N1 ：：PVL＝E1 ：：RETUR N
1610 IF POL＝N1 AND PVL $=\mathrm{E} 1 \mathrm{TH}$ EN POL＝M1 ：：PVL＝F1 ：：REIUR N
1620 IF POL＝M1 AND PVL＝F1 TH EN POL＝L1 ：：PVL＝G1 ：：REIUR N
1630 IF POL＝L1 AND PVL＝G1 TH EN POL＝K1 ：：PVL＝H1 ：：REIUR N
1640 IF POL＝K1 AND PVL＝H1 TH EN $\mathrm{POL}=\mathrm{J} 1$ ：：PVL＝I1 ：：REIUR N
1650 REIURN
1660 IF BP $<A 1$ AND BH＜J1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \mathrm{BP}=\mathrm{BP}+24:: \mathrm{GOT}$ － 1220
1670 IF BP＜B1 AND BH＜K1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \mathrm{BP}=\mathrm{BP}+24$ ：：GOT － 1220
1680 IF BP＜C1 AND BH＜L1 THEN
$\mathrm{BH}=\mathrm{BH}+24$ ：： $\mathrm{BP}=\mathrm{BP}+24$ ：： GOT ○ 1220
1690 IF BP＜D1 AND BH＜M1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \mathrm{BP}=\mathrm{BP}+24::$ GOT － 1220
1700 IF BP＜E1 AND BH＜N1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \quad \mathrm{BP}=\mathrm{BP}+24:: \mathrm{GOI}$ － 1220
1710 MOVE $=0$
1720 GOIO 1220
1730 IF BP＞I1 AND BH＜J 1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \mathrm{BP}=\mathrm{BP}-24::$ GOT ○ 1220
1740 IF BP＞H1 AND BH＜K1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \quad \mathrm{BP}=\mathrm{BP}-24::$ GOI － 1220
1750 IF BP＞G1 AND BH＜L1 THEN $\mathrm{BH}=\mathrm{BH}+24$ ：： $\mathrm{BP}=\mathrm{BP}-24:: \mathrm{GOT}$ － 1220
1760 IF BP＞E1 AND BH＜N1 THEN $\mathrm{BH}=\mathrm{BH}+24:: \mathrm{BP}=\mathrm{BP}-24:: \mathrm{GOI}$ － 1220
1770 IF BP＞F1 AND BH〈M1 THEN $\mathrm{BH}=\mathrm{BH}+24$ ：： $\mathrm{BP}=\mathrm{BP}-24$ ：：GOT － 1220
1780 MOVE＝0

1790 GOTO 1220
1800 IF BH＞J1 THEN BH＝BH－24
：：BP＝BP＋24 ：：GOTO 1220
1810 MOVE $=0$
1820 GOIO 1220
1830 IF BHっJ1 THEN BH＝BH－24
：：BP＝BP－24 ：：GOIO 1220
1840 MOVE＝0
1850 GOIO 1220
1860 IF $\mathrm{BH}=\mathrm{N} 1$ AND BP＝E1 THEN GOT＝10 ：：RETURN
1870 IF BH＝M1 AND BP＝D1 THEN GOT＝11 ：：RETURN
1880 IF $\mathrm{BH}=\mathrm{M} 1$ AND BP＝F1 THEN GOT＝12 ：：RETURN
1890 IF $\mathrm{BH}=\mathrm{L} 1$ AND BP＝C1 THEN GOT＝13 ：：REIURN
1900 IF $\mathrm{BH}=\mathrm{L} 1 \mathrm{AND} \mathrm{BP}=\mathrm{E} 1$ THEN GOT＝14 ：：REIURN
1910 IF $\mathrm{BH}=\mathrm{L} 1$ AND $\mathrm{BP}=\mathrm{G} 1$ THEN GOI＝15 ：：REIURN
1920 IF $\mathrm{BH}=\mathrm{K} 1$ AND BP＝B1 THEN GOT＝16 ：：REIURN
1930 IF $\mathrm{BH}=\mathrm{K} 1$ AND BP＝D1 THEN GOT＝17 ：：REIURN
1940 IF $\mathrm{BH}=\mathrm{K} 1$ AND $\mathrm{BP}=\mathrm{F} 1$ THEN GOT＝18 ：：REIURN
1950 IF BH＝K1 AND BP＝H1 THEN GOT＝19 ：：RETURN
1960 IF BH＝J1 AND BP＝A1 THEN GOT＝20 ：：RETURN
1970 IF $\mathrm{BH}=\mathrm{J} 1$ AND $\mathrm{BP}=\mathrm{C} 1$ THEN GOT＝21 ：：REIURN
1980 IF BH＝J1 AND BP＝G1 THEN GOT＝22 ：：RETURN
1990 IF BH＝J1 AND BP＝I1 THEN GOT＝23 ：：REIURN
2000 GOT＝4 ：：RETURN
2010 CALI $\operatorname{CHAR}(108, " 00000000$ 030301080 C 060301000000000000 0000606040081830 EOC 000000000
＂）：：CALI COLOR（\＃2，16）：：CAL L PAITIERN（\＃2，108）
2020 CALL $\operatorname{SOUND}(220,200,0)$
2030 CALI MOITION（\＃2，－20，0）
2040 FOR $\mathrm{I}=1$ TO 250 ：：NEXT I
2050 CALL MOITION（\＃2，0，0）
2060 PO＝K1 ：：PV＝B1
2070 SC＝SC＋10
2080 REIURN
2090 TURN＝TURN＋1
2100 IF TURN＝2 THEN LET TURN $=0$ ：：TU＝＇TU－1
2110 CALL DELSPRITE（\＃TU）
2120 CALE $\operatorname{SOUND}(-100,300,0):$
：CALL SOUND（－200，400，0，800， 0，1000，0）
2130 IF TU＝24 THEN 2160
$2140 \mathrm{BH}=14 * 8+1:: \mathrm{BP}=15^{*} 8+1$ 2150 RETURN
2160 FOR I＝1 TO 200 ：：NEXT I
2170 CALE CLEAR
2180 FOR Z＝10 TO 23
2190 CALJ DELSPRTTE（\＃Z）：：NE XT Z
2200 DISPLAY AT（12，1）：＂SCORE ：＂；SC
2210 FOR I＝1 TO 400 ：：NEXT I
2220 END
2230 CAIL CJEAR
2240 DISPLAY AT（10，3）：＂CUBI
C－ERASE RED DOTS（ 1 PT）EAT J
OKER（10 PTS）MOVE ONLYIN ST EP．．．KEYS－W，E，S，D．＂
2250 DISPLAY AT（15，3）：＂JOKE R－RESET RED DOTS．．HE IS WORTH（10 PTS）AND ONCEEATEN HE WILL START BACK ALWAY S AT HIS STARTING POINT＂

2260 DISPLAY AT（20，3）：＂DEVI L－WATCH FOR HIM，HE GOESROUND AND ROUND AND HE IS OUT T O GET YOU．．GOOD SCORING＂
2270 CALI $\operatorname{HCHAR}(10,2,140):$ ： CALE $\operatorname{HCHAR}(11,2,141)::$ CALL HCHAR $(10,3,142):$ ：CALL HCHAR （11，3，143）：：CALL COLOR（14，1 6，8）
2280 CAIL $\operatorname{HCHAR}(15,2,108):$ ： CALL $\operatorname{HCHAR}(16,2,109):$ ：CALL $\operatorname{HCHAR}(15,3,110)::$ CALJ HCHAR $(16,3,111)$
2290 CALL $\operatorname{HCHAR}(20,2,92):: C$ ALJ $\operatorname{HCHAR}(21,2,93):$ ：CALJ HC $\operatorname{HAR}(20,3,94):=$ CAL工 HCHAR（21 ，3，95）
2300 DISPLAY AT（24，1）：＂＊＊＊＊＊ ＊＊＊＊＊＊K E Y＊＊＊＊＊＊＊＊＊＊＊＊！
$2310 \operatorname{CALC} \operatorname{KEY}(0, F, M):: I F M=$ 0 ITEN 2310
2320 CAL工 CLEAR ：：CALJ COLO $\mathrm{R}(14,2,6)$
2330 REIURN

100 REM＊＊＊＊＊＊＊＊＊＊＊
110 REM＊ON SAFARI＊
120 REM $* * * * * * * * * * *$
130 REM TI BASIC
140 REM FOOLED ABOUT WITH
150 REM BY RUSSEL WELHAM
160 REM TIsHUG JUNE 1986
170 CALL CLEAR
180 CALL SCREEN（5）
190 FOR I＝1 TO 14
200 CALL COLOR（I， 16,1 ）
210 NEXT I
220 PRINT TAB（7）；＂＊＊＊＊＊＊＊＊＊＊ ＊＊＊＂：TAB（7）；＂＊ON SAFARI＊＂： TAB（7）；＂＊＊＊＊＊＊＊＊＊＊＊＊＊＂：： ：：
230° PRINT＂YOU ARE AT YOUR B ASE CAMP．＂
240 PRINT ：＂YOU ARE JUST LEA VING TO FIND

THE TREASU RE．＂
250 PRINT ：＂POSSIBLE EXITS：－
SOUTH，EAST，WE
ST．＂：：
260 PRINT＂WHAT SHALL I DO N OW？＂
270 INPUT＂＂：WSN $\$$
280 IF WSN $\$=$＂GO SOUTH＂THEN
420
290 IF WSN $\$=$＂GO EAST＂THEN 3 20
300 IF WSN $\$=$＂GO WEST＂THEN 5 20
310 GOTO 1420
320 PRINT ：＂
YOU ARE NOW
AT A RIVER CROSS
ING．＂
330 PRINT ：＂ACROSS THE RIVER YOU SEE A

TREASURE C HEST．＂
340 PRINT ：＂POSSIBLE EXITS：－
CROSS RIVER，
WEST．＂
350 PRINT ：＂WHAT SHALL I DO NOW？＂
360 INPUT＂＂：WSN
370 IF WSN $\$=$＂GO WEST＂THEN 2 30
380 IF WSN\＄＝＂CROSS RIVER＂TH EN 400
390 GOTO 1440
400 PRINT ：＂AS YOU CROSS THE RIVER YOU ARE ATTACKED BY PIRANHAS AND KILLED．＂ 410 GOTO 910

420 PRINT : "YOU ARE NOW IN A BEAUTIFUL CLEARING. YOU SE E:-":" A GUN, KEY,AMMO.": :
"POSSIBLE EXITS:-":" EAST, NORTH, SOUTH."
430 PRINT : "WHAT SHALL I DO NOW?"
440 INPUT "":WSN\$
450 IF WSN $=$ "TAKE GUN" THEN 930
460 IF WSN $\$=$ "TAKE AMMO" THEN 960
470 IF WSN $=$ "TAKE KEY" THEN 990
480 IF WSN\$="GO NORTH" THEN 230
490 IF WSN $\$=$ "GO SOUTH" THEN 590
500 IF WSN $\$=$ "GO EAST" THEN 5 70
510 GOTO 1460
520 PRINT : "YOU ARE NOW INSI DE A":" DAMP CAVE":"YOU S EE:-A BEAR AND CUB": :"POSSI BLE EXITS:-":" SOUTH, EAS T.": :"WHAT SHALL I DO NOW?" 530 INPUT "":WSN\$
540 IF WSN $\$=$ "GO EAST" THEN 2 30
550 IF WSN\$="GO SOUTH" THEN 640
560 GOTO 1480
570 PRINT : "AS YOU WALK ALON G YOU SINK IN SOME QUICK SA ND AND DIE."
580 GOTO 910
590 PRINT : "YOU ARE IN A EMP TY CLEARING. YOU SEE:-A FEW R OCKS.": :"POSSIBLE EXITS:-NO RTH, WEST.": :"WHAT SHALL I DO NOW?"
600 INPUT "": WSN\$
610 IF WSN $\$=$ "GO NORTH" THEN 420
620 IF WSN $=$ ="GO WEST" THEN 7 10
630 GOTO 1500
640 PRINT : "YOU ARE NOW AT Y OUR SUPPLY DEPOT. ": : "YOU SEE:-YOUR SUPPLIES. ": :"POSSIBLE EXITS:-NORTH, SOUTH"
650 PRINT : "WHAT SHALL I DO NOW?:
650 INPUT "":WSN\$
670 IF WSN $\$=$ "TAKE SUPPLIES"
THEN 1020
680 IF WSN $\$=$ "GO NORTH" THEN 520
690 IF WSN $\$=$ "GO SOUTH" THEN 710
700 GOTO 1520
710 PRINT : "YOU ARE NOW IN A SMALL CLEARING. HERE Y OU SET UP CAMP TILL MORNIN G.": :"POSSIBLE EXITS:-":"NO RTH, SOUTH, EAST, WEST.
720 PRINT : "WHAT SHALL I DO NOW?"
730 INPUT "": WSN\$
740 IF WSN\$= "GO NORTH" THEN 640
750 IF WSN $\$=$ "GO SOUTH" THEN 790
760 IF WSN $\$=$ "GO EAST" THEN 5 90
770 IF WSN $\$=$ "GO WEST" THEN 8 50
780 GOTO 1540
790 PRINT : "YOU ARE ON THE B ANKS OF A RIVER UP STREAM YOU SEE A WATERFALL.": :"P OSSIBLE EXITS:-NORTH, EAST."

800 PRINT : "WHAT SHALL I DO NOW?"
810 INPUT "":WSN\$
820 IF WSTI\$="GO NORTH" THEN 710
830 IF WSN $\$=$ "GO EAST" THEN 1 100
840 GOTO 1560
850 PRINT : "YOU ARE IN A LAR GE CLEARING.": :"POSSIBLE EX ITS:-EAST.": :"SUDDENLY YOU
ARE ATTACKED
BY LEOPA
RDS.'
860 PRINT : "WHAT SHALL I DO NOW?"
870 INPUT "":WSN\$
880 IF WSN $\$=$ "SHOOT LEOPARDS" THEN 1050
890 IF WSN $\$=$ "GO EAST" THEN 7 10
900 GOTO 1580
910 PRINT : : "HA, HA, YOU LO
SE! NOW TRY AGAI
N.": : :

920 GOTO 230
$930 \mathrm{GU}=1$
940 PRINT : "YOU NOW HAVE THE GUN."
950 GOTO 440
960 AM=1
970 PRINT :"YOU NOW HAVE THE AMMO."
980 GOTO 440
$990 \mathrm{KY}=1$
1000 PRINT : "YOU NOW HAVE TH E KEY."
1010 GOTO 440
1020 SUP=1
1030 PRINT : "YOU NOW HAVE SU PPLIES."
1040 GOTO 660
1050 IF GU=1 THEN 1080
1060 PRINT : "YOU HAVE NO GUN
LEOPARDS EAT YOU."
1070 GOTO 910
1080 PRINT :"LEOPARDS ARE DE AD.:
1090 GOTO 870
1100 PRINT : "YOU ARE AT THE BOTTOM OF A WATERFALL. BEHI ND THE WATERFALL IS A
CAVE.": :"POSSIBLE EXITS:-EA ST, CAVE."
1110 PRINT : "WHAT SHALL I DO NOW?"
1120 INPUT "":WSN\$
1130 IF WSN $\$=$ "GO EAST" THEN 1160
1140 IF WSN $\$=$ "ENTER CAVE" TH EN 1270
1150 GOTO 1600
1160 PRINT : "YOU ARE ON THE BANKS OF A RIVER.":
:"POSSIBLE EXITS:-NORTH, EA ST.": :"SUDDENLY YOU ARE ATT ACKED BY PANTHERS.
1170 PRINT : "WHAT SHALL I DO NOW?"
1180 INPUT "":WSN\$
1190 IF WSN $\$=$ "GO NORTH" THEN 570
1200 IF WSN $\$=$ "GO EAST" THEN
570
1210 IF WSN\$="SHOOT PANTHERS " THEN 1230
1220 GOTO 1620
1230 IF AM=1 THEN 1260
1240 PRINT : "YOU HAVE NO AMM
O YOU ARE
EATEN."
1250 GOTO 910
1260 GOTO 1170

1270 PRINT : "YOU ARE IN A CA VE YOU SEE:A LARGE C HEST.": :"POSSIBLE EXITS:-WE ST.": :"WHAT SHALL I DO NOW?

1280 INPUT "":WSN\$
1290 IF WSN $\$=$ "GO WEST" THEN 1330
1300 IF WSN $\$=$ "OPEN CHEST" TH EN 1350
1310 IF WSN $\$=$ "TAKE CHEST" TH EN 1390
1320 GOTO 1640
1330 PRINT : "AS YOU LEAVE TH E CAVE YOU SLIP AND BREAK
YOUR NECK."
1340 GOTO 910
1350 PRINT : "AS YOU OPEN THE
CHEST EVERTHING SPINS , AND YOU AREBACK AT YOUR CA MP. WITH THE

TREASUR
E."

1360 PRINT : "YOU HAVE FINISH ED, WELL DONE!!!!!"
1370 PRINT : "NOW TRY AGAIN"
1380 GOTO 230
1390 PRINT : "AS YOU TAKE THE CHEST A GENIE APPEARS, AND"
1400 PRINT "CAST A SPELL ON YOU."
1410 GOTO 910
1420 PRINT : "CAN'T DO THAT"
1430 GOTO 260
1440 PRINT :"CAN'T DO THAT"
1450 GOTO 360
1460 PRINT : "CAN'T DO THAT"
1470 GOTO 440
1480 PRINT : "CAN'T DO THAT"
1490 GOTO 530
1500 PRINT : "CAN'T DO THAT" 1510 GOTO 600
1520 PRINT :"CAN'T DO THAT"
1530 GOTO 660
1540 PRINT : "CAN'T DO THAT" 1550 GOTO 730
1560 PRINT : "CAN'T DO THAT"
1570 GOTO 810
1580 PRINT : "CAN'T DO THAT" 1590 GOTO 870
1600 PRINT : "CAN'T DO THAT"
1610 GOTO 1120
1620 PRINT : "CAN'T DO THAT"
1630 GOTO 1180
1640 PRINT : "CAN'T DO THAT"
1650 GOTO 1280
1660 END

100 REM	$* * * * * * * * * *$		
110	REM	*TIMARQUE*	540

$800 \mathrm{~S}=99$ 810 REIURN $820 \mathrm{P}=120$ 830 Q $=97$ $840 \mathrm{R}=122$ $850 \mathrm{~S}=123$ 860 REIURN $870 \mathrm{P}=103$ $880 \mathrm{Q}=100$ $890 \mathrm{R}=124$ $900 \mathrm{~S}=110$ 910 REIURN $920 \mathrm{P}=96$ 930 Q=97 $940 \mathrm{R}=125$ $950 \mathrm{~S}=32$ 960 REIURN $970 \mathrm{P}=103$ $980 \mathrm{Q}=100$ $990 \mathrm{R}=124$ $990 \mathrm{R}=124$
$1000 \mathrm{~S}=126$ $1000 \mathrm{~S}=126$ $1240 \mathrm{R}=135$ 5
1490 CALL CLEAR
1500 INPUT "SCREEN COLOUR (2
-16) :":SC
1510 PRINT ::
1520 INPUT "CHARACTER COLOUR :":CC
1530 IF CC=SC THEN 1490
1540 CALL SCREEN(SC)
1550 FOR $A Z=1$ TO 16
1560 CALL COLOR (AZ , OC, 1)
1570 NEXT AZ
1580 CALL CLEAR
1590 PRINT "INITIALIZING PLE ASE WAIT -AZ"
1600 PRTNT ::::::::::::::: 1610 A $\$(1)=$ "FFFFCOCOCOFFFFCO "
1620 A\$(2) ="COCOCOCOCOC 0 " $1630 \mathrm{~A} \$(3)=" \mathrm{FCFCOCOCOCFCFCOC}$
-
1640 A $\$(4)=" 0 C O C O C O C O C O C "$
1650 A\$(5)="COCOCOCOFFFF" 1660 A\$(6) $=$ "E0F0381838F8FOFC "
1670 A $\$(7)=" 0 \operatorname{COCOC1CF} 8 F 0 "$
$1680 \mathrm{~A} \$(8)=" \mathrm{FFFFCOCOCOCOCOCO}$
,
1690 A\$(9)="FCFC"
1700 A\$(10) $=$ " $00000000 \mathrm{FCFC} "$ 1710 A $\$(11)=" F 0 F 81 C 0 C O C O C O C O$ C"
$1720 \mathrm{~A} \$(12)=" 0 \mathrm{C} 0 \mathrm{C} 0 \mathrm{C} 1 \mathrm{CF} 8 \mathrm{FO} 0$
$1730 \mathrm{~A} \$(13)=" \mathrm{FCFCO} 00000 \mathrm{COCO} 0$
$1740 \mathrm{~A} \$(14)=" \mathrm{FCFC} 000000 \mathrm{FCFC} 0$ $C^{\prime \prime}$
$1750 \mathrm{~A} \$(15)=" 0 \mathrm{COCOC} 0 \mathrm{CFCFC} \mathrm{C}$
1760 A $\$(16)=" \mathrm{COCOCOCOCOFFFFC}$ 0 "
1770 A $\$(17)=" 0 C O C O C O C O C F C F C O$ $C^{\prime \prime}$
$1780 \mathrm{~A} \$(18)=$ "FFFF03030303030 3"
1790 A $\$(19)=" 03030303 \mathrm{FFFF}^{\prime}$
1800 A\$(20)="COCOCOCOCOCOCOC $0^{\prime \prime}$
1810 A $(21)=" \mathrm{COCOCOCOCOC} 0 "$
1820 A $\$(22)=" 0 C 1 \mathrm{C} 387060 \mathrm{C} 0 \mathrm{C} 06$ $0^{\prime \prime}$
$1830 \mathrm{~A} . \$(23)=" 603030181 \mathrm{C} 0 \mathrm{C} "$
$1840 \mathrm{~A} \$(24)=" \mathrm{COCOCOCOCOCOC} 0 \mathrm{C}$ $0^{\prime \prime}$
1850 A $\$(25)=" F 0 F 0 F 8 F C D E C F C 7 C$
$3^{\prime \prime}$
$1860 \mathrm{~A} \$(26)=" 3 \mathrm{C} 3 \mathrm{C} 7 \mathrm{CFCECOC8C0}$ C^{11}
1870 A. $\$(27)=" O C O C O C O C O C O C 8 C C$
$C^{\prime \prime}$
1880 A\$(28)="ECFC7C3C1C0C"
$1890 \mathrm{~A} \$(29)=" \mathrm{FCFCOCOCOCOCOCO}$
$1900 \mathrm{~A} \$(30)=" \mathrm{~F} 8 \mathrm{FC} 0 \mathrm{C} 0 \mathrm{COCFCF} 8 "$ 1910 А $\$(31)=$ "OCEC7C3CFCFC" $1920 \mathrm{~A} \$(32)=$ "COE070381C0C" 1930 A $\$(33)=" F F F F C 0 C 0 C 0 F F F F "$ $1940 \mathrm{~A} \$(34)=" 00000000 \mathrm{FFFF} "$ 1950 A $\$(35)=" F C F C 000000 \mathrm{FCFC} "$ 1960 A\$(36) $=$ "030303030303" 1970 A\$(37)="0COCOCOCOCOCOCO $\mathrm{Cl}^{\prime \prime}$
$1980 \mathrm{~A} \$(38)=" \mathrm{COC} 060603030181$ $8{ }^{\prime \prime}$
$1990 \mathrm{~A} \$(39)=" 0 \mathrm{COC07070303"}$ 2000 A $\$(40)=" 0 C 0 C 18183030606$ 0 "
2010 A $\$(41)=" \mathrm{COC} 08080^{\prime \prime}$
2020 A\$(42)="C0COCOCOCOCOC3C $7{ }^{\prime \prime}$
2030 A $\$(43)=" C F D F F D F 8 F 0 F 0 "$ 2040 A $\$(44)=" 0 C 0 C O C O C O C O C O C 8$ $C^{\prime \prime}$
2050 A\$(45)="CCECFC7C3C3C" 2060 A\$(46)="C0C06030180F0F1 $8^{\prime \prime}$
2070 А $\$(47)=" 38306060 \mathrm{COCO} 0$
$2080 \mathrm{~A} \$(48)=" \mathrm{C} 0 \mathrm{C} 06030180 \mathrm{C} 070$ 3"
2090 A $\$(49)=" 0 C 0 C 183060 C 080 "$ $2100 \mathrm{~A} \$(50)=" \mathrm{FFFF} 00000001070$ $\mathrm{F}^{\prime \prime}$
$2110 \mathrm{~A} \$(51)=" 3 \mathrm{C} 78 \mathrm{E} 0 \mathrm{C} 0 \mathrm{FFFF}{ }^{2}$
$2120 \mathrm{~A} \$(52)=$ "FCFCOC3CFOE0800 01
2130 FOR AZ=1 TO 52
2140 CALL CHAR(95+AZ,A\$(AZ))
2150 NEXT AZ
2160 CALL $\operatorname{HCHAR}(8,1,32,32)$
2170 Z\$(1)=".
AZTEK"
$2180 \mathrm{Z} \$(2)="$.SIMULATIONS AND
2190 Z\$(3)=" ALSO PROGRAMS" $2200 \mathrm{Z} \$(4)={ }^{\prime \prime \prime}$
$2210 \mathrm{Z} \$(5)=$ " TI MICRO MARQUE $2220 \mathrm{Z} \$(6)={ }^{\prime \prime \prime}$
$2230 \mathrm{Z} \$(7)=1 \mathrm{BY}$ ANDREW ZAGNI $2240 \mathrm{Z} \$(8)=" \quad$ TASMANIA
$2250 \mathrm{Z} \$(9)=" \quad$ FOR TISHUG
$2260 \mathrm{Z} \$(10)=" \quad$ AUSTRALIA
2270 Z (11) $=$ "'"
2280 Z\$(12)=" CONTINUE Y OR $\mathrm{N}^{\prime \prime}$
2290 GOSUB 2820
2300 CALL KEY ($0, \mathrm{~K}, \mathrm{~S}$)
2310 IF $\mathrm{S}=0$ THEN 2300
2320 IF $\mathrm{K}=\mathrm{ASC}$ ("N") THEN 1470
$2330 \mathrm{Z} \$(1)={ }^{\prime \prime \prime}$
$2340 \mathrm{Z} \$(2)=$ "'"
$2350 \mathrm{Z} \$(3)=" \cdot$
$23602 \$(4)=" \cdot \prime$
$2370 \mathrm{z} \$(5)=\cdot " \cdot$
$2380 \mathrm{Z} \$(6)=" \cdot "$
$2390 \mathrm{z} \$(7)=$ " INPUT ANY WORDS
$2400 \mathrm{Z} \$(8)=" \quad$ BUT MAKE SURE"' $2410 \mathrm{Z} \$(9)="$ THAT YOU ONLY" 2420 Z $\$(10)=$ " USE LEITERS AN D"
$2430 \mathrm{z} \$(11)=1$ THE MESSAGE ET C'
2440 z\$(12)=" WILL BE PRINIE $\mathrm{D}^{\prime \prime}$
2450 CALL $\operatorname{HCHAR}(13,1,32,384)$
2460 GOSUB 2820
2470 CALL $\operatorname{KEY}(0, \mathrm{~K}, \mathrm{~S})$
2480 IF $\mathrm{S}=0$ THEN 2470
2490 FOR V=1 TO 5
2500 Z (V) $=$ " $"$
2510 NEXT V
$2520 \mathrm{z} \$(6)=" \mathrm{AT}$ THE START OF
2530 Z\$(7)=" EACH INPUT LINE

2540 Z\$(8)=" PUT A FULL STOP
$2550 \mathrm{Z} \$(9)="$ IT ISNT PRINIED $2560 \mathrm{Z} \$(10)="$ BUT IS NEEDED 2570 z\$(11)=" FOR PLACEMENTS
$2580 \mathrm{z} \$(12)="$ OK BUD LETS GO
2590 CALL $\operatorname{HCHAR}(13,1,32,384)$
2600 GOSUB 2820
2610 CALL $\operatorname{KEY}(0, K, S)$
2620 IF S=0 THEN 2610
2630 CALL CTEAR
2640 INPUT "SCREEN OOLOUR :" :SC
2650 INPUT "CHARACIER OOL :"
:CC
2660 IF SC=OC THEN 2640
2670 CALJ CLEAR
2680 CALL SCREEN(SC)
2690 FOR W=1 TO 16
2700 CALL COLOR(W,CC, 1)
2710 NEXT W
2720 PRINT "REMEMBER A DOT A
T THE START OF EACH LINE AND
A MAXIMUM LENGIH OF 15 LETT ERS A LINE"
2730 FOR V=1 TO 12
2740 INPUT STR\$(V)\&" :":Z\$(V)
2750 IF LEN(Z\$(V)) 216 THEN 2
740
2760 NEXT V
2770 CALL CLEAR
2780 GOSUB 2820
2790 CALL KEY $(0, K, S)$
2800 IF $\mathrm{S}=0$ THEN 2790
2810 GOIO 2630
$2820 \mathrm{C}=2$
$2830 \mathrm{Y}=1$
2840 FOR AZ=1 TO 12
2850 CALL $\operatorname{SOUND}(100,550,5)$
2860 FOR $X=2$ TO LEN ($Z \$(A Z)$)
2870 CHAR $=A S C(S E G \$(Z \$(A Z), X$, 1))

2880 IF CHAR=32 THEN 2950
2890 CHAR=CHAR-64
2900 ON CHAR GOSUB $170,220,2$
70,320,370,420,470,520,570,6 $20,670,720,770,820,870,920,9$
$70,1020,1070,1120,1170,1220$,
1270,1320,1370,1420
2910 CALL HCHAR (Y,C,P)
2920 CALL $\operatorname{HCHAR}(\mathrm{Y}+1, \mathrm{C}, \mathrm{Q})$
2930 CALL HCHAR $(\mathrm{Y}, \mathrm{C}+1, \mathrm{R})$
2940 CALL $\operatorname{HCHAR}(\mathrm{Y}+1, \mathrm{C}+1, \mathrm{~S})$
$2950 \mathrm{C}=\mathrm{C}+2$
2960 NEXT X
$2970 \mathrm{Y}=\mathrm{Y}+2$
2980 C=2
2990 NEXT AZ

1130 FOR $\mathrm{P}=1$ TO U
1140 U $\$=\mathrm{U} \$ \& \mathrm{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1150 NEXT P
$1160 \mathrm{~V}=\mathrm{U}+28$
$1170 \mathrm{~V}=\mathrm{V}-1$
1180 IF V <1 THEN 1740
1190 TEST\$=SEG\$(A\$(S),V,1)
1200 IF TEST\$=" " THEN 1210 ELSE 1170
1210 FOR P=U TO V
$1220 \mathrm{~V} \$=\mathrm{V} \$ \& \operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1230 NEXT P
1240 FOR $\mathrm{P}=\mathrm{V}$ TO A
$1250 \mathrm{~W} \$=\mathrm{W} \$ \& \operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1260 NEXT P
1270 PRINT U\$:V\$:W\$
1280 GOTO 1730
$1290 \mathrm{Q}=\operatorname{INT}(\mathrm{A} / 3)$
$1300 \mathrm{U}=\mathrm{Q}+28$
$1310 \mathrm{U}=\mathrm{U}-1$
1320 IF U <1 THEN 1350
1330 TEST $\$=$ SEG $\$(A \$(S), U, 1)$
1340 IF TEST\$ $=$ " " THEN 1350
ELSE 1310
1350 FOR P=1 TO U
1360 U\$=U\$\&SEG\$(A\$(S),U,1)
1370 NEXT P
$1380 \mathrm{~V}=\mathrm{U}+28$
$1390 \mathrm{~V}=\mathrm{V}-1$
1400 IF $V<1$ THEN 1430
1410 TEST $\$=$ SEG $\$(A \$(S), V, 1)$
1420 IF TEST $\$=$ " " THEN 1430
ELSE 1390
1430 FOR P=U TO V
1440 U $\$=\mathrm{U} \$ \&$ SEG $\$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1450 NEXT P
$1460 \mathrm{~W}=\mathrm{V}+28$
$1470 \mathrm{~W}=\mathrm{W}-1$
1480 IF W >1 THEN 1510
1490 TEST\$=SEG\$(A\$(S), W, 1
1500 IF TEST\$=" " THEN 1510
ELSE 1470
1510 FOR P=V TO W
$1520 \mathrm{~W} \$=\mathrm{W} \$$ \&SEG $\$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P} .1)$
1530 NEXT P
1540 IF A-W<28 THEN 1550 ELS E 1600
1550 FOR P=W TO A
$1560 \mathrm{X} \$=\mathrm{X} \$ \& \operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1570 NEXT P
1580 PRINT U\$:V\$:W\$:X\$
1590 GOTO 1730
$1600 \mathrm{Q}=\operatorname{INT}((\mathrm{A}-\mathrm{W}) / 2)$
$1610 X=W+Q$
$1620 \mathrm{X}=\mathrm{X}-1$
1630 IF $X<1$ THEN 1650
1640 TEST\$=SEG\$(A\$(S), X, 1)
1650 IF TEST $\$=$ " " THEN 1660
ELSE 1620
1660 FOR P=W TO X
$1670 \mathrm{X} \$=\mathrm{X} \$ \& \operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1680 NEXT P
1690 FOR $\mathrm{P}=\mathrm{X}$ TO A
$1700 \mathrm{Y} \$=\mathrm{Y} \$ \& \operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~S}), \mathrm{P}, 1)$
1710 NEXT P
1720 PRINT U\$:V\$:W\$:X\$:Y\$
1730 NEXT S
1740 REM BEAUTY!
$1750 \mathrm{R}=0$
1760 RETURN
1770 REM CASSETTE COPY
1780 OPEN \#5: "CS2", OUTPUT,FI
XED 192, INTERNAL
1790 FOR C=1 TO 25
1800 PRINT \#5:A\$(C)
1810 NEXT C
1820 CLOSE \#5
1830 RETURN
1840 REM SPEECH OUTPUT
1850 PRINT "IS TERMINAL EMUL
ATOR IN?"
1860 INPUT "Y/N":Q\$
1870 OPEN \#99:"SPEECH", OUTPU T
1880 FOR T=1 TO 25
1890 A=LEN(A\$(T))
1900 FOR B=1 TO A
$1910 \mathrm{Z} \$=\operatorname{SEG} \$(\mathrm{~A} \$(\mathrm{~T}), \mathrm{B}, 1)$
$1920 \mathrm{P}=\mathrm{ASC}(\mathrm{Z} \$)$
1930 IF P<97 THEN 1960 ELSE 1940
1940 TF P >122 THEN 1960 EI SE $1950 \mathrm{P}=\mathrm{P}-32$
1960 X $\$=\mathrm{X} \$ \& \mathrm{CHR} \(P)
1970 NEXT B
1980 PRINT \#99:X\$
1990 X\$=""
2000 NEXT T
2010 RETURN
2020 END
2030 REM M N S C T COUNTERS
2040 FOR ED=1 TO 26
2050 PRINT A\$(ED)
2060 PRINT TAB(28);
2070 PRINT "PRESS ENTER IF 0 .र."
2080 PRINT "ENTER REVISED VE
RSION IF YOU HAVE ONE TO
ENTER, THEN PRESS ENTER."
2090 PRINT TAB(28);
2100 INPUT ED\$
2110 IF ED $\$=" 1$ THEN 2140 ELS E 2120
2120 A $\$(E D)=E D \$$
2130 REM EDITING LOOP*****
2140 NEXT ED
2150 RETURN

Liseporres isom auir Rextwonal Romergrovip 1pender
 "See you there 'cause we care"

The TIsHUG Illawarra Regional Group

This group holds regular monthly meetings at Saint Matthews Church Hall, Philip Crescent, Mangerton, on the third Monday of each month (except January). We also hold occasional hardware and other special interest group meetings at irregular intervals. We are offering memory expansion and other simple hardware expansions upon request, and are working on software for systems without disks but with memory expansion.

The meetings normally start with a tutorial session on Extended BASIC, followed by a talk and demonstration of some other topic of interest. This leads to some refreshments while members meet each other and chat about problems. We maintain various libraries for the use of members.

The TIsHUG CARLINFORD Regional Group

The April meeting was held on 16 April. It was a free for all night with informal discussion and copying of programmes. Once again, shop items were available for purchase including the Micropendium magazine.

Ray Brown has now upgraded his system to two double-sided drives. This was very much a DIY effort. Any members in the area wishing to go down the same road can get the necessary information at Regional Group meetings.

The June meeting is to be held on:-
Wednesday 18 June : 141 Beecroft Road Beecroft (Ray Brown).

If you plan to attend, please call Ray (86-4602) if possible. His home is on a battle-axe block on Beecroft Road (left hand side travelling to Epping just past the tennis courts and almost opposite the Nursing Home). Hope to see you there.

So you want to attend one of our TIsHUG Reqional Home Groups and need more information...
GLEBE REGIONAL GROUP meeting with Mike Slattery (02)6920559 for mone information.
PENRITH REGIONAL GROUP with Mel Copeland (047) 351340
CENIRAL COAST REGIONAL GROUP with Russel Welham (043)924000
LIVERPOOL REGIONAL GROUP with Stan Puckle (046)256157
BANKSTOWN REGIONAL GROUP with David Mayo (02)7084293
IILIAWARRA REGIONAL GROUP with Rob Montgomery (042)286463
ZARLINGFORD REGIONAL GROUP with Chris Buttner (02)8717753
MEMBERS LIVING IN SUIHERLAND SHIRE should
contact PETER YOUNG on (02) 5288775 with the
view to forming a Regional Group in that
area.
MEMBERS LIVING ON THE NORTH SHORE should contact KEITH DE HAAN on (02)4513032 with the view to forming a Regional Group in that area.

If you want to run a TIsHUG Regional Home Group and want to know what is expected of you...send in the special section on the latest version of the CIT-UP-PAGE and send it to P.O.Box 149, Pennant Hills, NSW 2120

SAVING PARTIAL PROGRAMMES

by Rolf Schreiber
Illawarra regional group - TISHUG
Sometimes a programme contains sections of code or useful subroutines that you might like to use in your own programmes. Unfortunately, saving only part of a programme is not as straight forward as entering the commands 'SAVE DSK1.filename:L1-L2'....... or 'SAVE CSI:L1-L2' where L1 and L2 are first and last line numbers, respectively, of the section you want to SAVE. These commands are illegal in both BASICs, although a similar option is allowed with the 'LIST' command.

For the cassette-based programmer there is, unfortunately, no simple alternative to typing in that section of code, or else DELeteing all the unwanted lines. Either way is SLOW, unless many of the 11nes are very similar (eg CALL SOUND statements), in which case the REDO key (FCTN 8, XB only) will save a lot of typing in.

For disk-based users there are alternatives that are much less time consuming (on the part of the programmer), since the computer does most of the work. So, if you are disk- based, READ ON...

METHOD \#1

This involves typing in the utility listing on p49 of MICROPENDIUM, DEC 1985, v2n11 and SAVing to disk in MERGE (DIS/VAR 163) format. Full instructions are included in the article. To use this program, do the following:

1) MERGE the utility with the main program already in memory.
2) RUN the resulting program and follow on-screen prompts.
3) When the cursor re-appears, SAVE the new file under a DIFFERENT filename using the MERGE option.
4) To check on the procedure, clear the memory with 'NEW', followed by 'MERGE DSK1.name', where 'name' is the filename under which the subroutine was saved.

It is useful to leave these subroutines (or partial programs) in MERGE format, since they can then be easily incorporated in your own programs.

METHOD \#2

As luck would have it, the listing which needs to be typed in for this method is to be found in the same issue of MICROPENDIUM, on p51. Full instructions are shown on p50. Save the utility to disk using the filename 'XLATE', then use the following procedure:

1) With the main program in memory, determine the first and last line numbers of the subroutine to be saved.
2) In the immediate mode type in 'LIST "DSK1.name":L1-L2', where 'name' is a filename different from the original program and L1,L2 are the starting and ending line numbers of the subroutine in question. The file produced by this procedure is in DIS/VAR 80 format and could be READ with either TI WRITER or the E/A editor.
3) Clear the memory and load 'XLATE'. RUN the program and follow the on-screen prompts. Choose a filename for the output file which is different from the previous two. This latest file is in DIS/VAR 163 or MERGE format.
4) Clear the memory and MERGE in this latest file to check on the procedure.
The subroutine is best left in MERGE format, allowing easy incorporation in your own programs.

METHOD \#3

This method involves using the 'EDITOR' program, which is on the Prograids3 disk (part of TI's PROGRAMMING AIDS III package). I won't detail the method since full documentation is supplied with the disk, but I will tell you that it is a more laborious procedure than either of the first two methods.

I have personally tried all the three ways and, in my opinion, Method \#l is the preferred one, in that it is the quickest way. The 'XLATE' utility involves an extra step; it is mainly used to convert BBS listings of BASIC programs back into program or 'memory image' format. The Prograids 3 'EDITOR' utility is the most involved of the three methods; it is also capable of other functions, such as RESequencing line numbers in only a part of the program, and the ability of moving portions of code within a program.

70015

OOPS - MINI MEMORY MODULE MANUAL.

By James Jackson

MMM Manual page 37 incorrectly lists the GPL status bits as:

H GI COND CARRY OVF 0 0 0

- is correctly listed in the

Manual sec 16.2.1 page 250
H GI COND CARRY OVF 0 O 0
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
This inverted numbering of Hex $>837 \mathrm{C}$ is repeated on page 38 under GPLINK Under the heading of linking to Grom-Resident Routines-XMLINK There is a routine noted as DATA >2300 Convert Integer to
Floating Point(CIF) on page 50 of the MMM manual. This routine will only work with the Editor Assembler and Memory Expansion not on the MMM alone. Instead DATA >7200 should be used with the MMM, as this is the correct routine.

I have noticed articles that mostly conclude that a TV "isn't up to video monitor quality." Well that "isn't necessarily so" it is more often that the IV is more complicated to adjust for monitor use.

You can set a TV for monitor use with the following XBasic commands: "FOR I=0 TO 14 :: CALL COLOR $(I, 16,5)$:: NEXT I : : CALL $\operatorname{SCREEN}(6):: \operatorname{ACCEPT} \operatorname{AT}(1,1): \mathrm{I}^{\prime \prime}$; press <ENTER>. [if you're using C-Basic you will need to write a program, starting with: "100 FOR $\mathrm{I}=1$ TO $16^{\prime \prime}$ ending with: "140 GOIO 140" instead of "ACCEPT AT $(1,1): I$ ", then type <RUN>, 〈ENIER>.
Now adjust the Fine-Tuning and the focus, the contrast and the brightness to get the sharpest view of the text on the screen. Next adjust the Colour and Tint to get the bluest colour for the lighter blue bands at the screen top and bottom. Finally press (CLEAR) and <QUIT> to get the main title screen, and give the colour a last adjustment if it is needed.

Retyped for TIsHUG by Kevin Watts from Sacremento Users Group Newsletter (NEIWORK) via Aloha 99ers.
$\therefore . .$. THINGS TO DO WITH YOUR TI
Texpac BBS-May'86 \& TND-JUNE' 86
by Shane Andersen
\#

On both this system last month, and in the current issue of the Sydney News Digest, I presented the first of my on-going articles on things to do with your computer. Two others...Laurie Marsh (VK2DWH) \& Ross Mudie (VK2ZRQ - Username:MUDDY.

In this article I want to briefly look at other peripherals that many of you have never heard of before , which will connect to your TI-99/4A to assist you with International Information/Communication retrieval.

How about these for peripherals...

* PK-80 UNIVERSAL PACRET CONTROLLER.
* KANTRONICS CHALLENGER TERMINAL UNIT.
* THETA-777.
* UNIVERSAL TERMINAL UNIT.
* INTERFACE II
* Plus HAMSOFT for your TI-99/4A

I can just imagine you asking yourself ... What the heck is all this? I thought that the only peripheral for the TI were the 32 k card, RS232,MODEM,DISK DRIVE \& CONTROLLER, etc.

Ah! For those into Amateur Radio (HAMS) in this club , you will have some idea of what I am talking about.

Let's take a look at each one of the items listed above and see what they do, and how many of them are inter-related in one way or another with special software like HAMSOFT or TE\#2...

The PK-80 is a glorified Modem (unlike the others I will mention) and priced at $\$ 472$ aprox...its hardware features are:

* Z80A ONBOARD CPU
* 16K PROGRAM EPROM EXPANDABLE TO 32K
* 8R RAM
* HARDWARE HDLC FOR FULL DUPLEX (ESPECIALLY NICE FOR SATELLITE OPERATION).
* TRUE DATA CARRIER DETECT (DCD) DISTINGUISHES BETWEEN ACTUAL PACKET DATA AND INTERFERRING QRN.
* WORKS WITH 300 , 1200 , 2400 , 4800 , AND 9600 BAUD

TERMINALS.

KANTRONICS CHALLENGER TERMINAL UNIT:
A quality product at a fair price is what Amateur operator wants. The Challanger includes many of the popular features you pay extra for on other units. Individual LEDS show both Mark and Space tones, with scope outputs available. Crystal controlled AFSK tones guarentee consistent RTTY (RADIO TELETYPE)/ASCIT/AMTOR tones , and direst FSK keying is also available. Challenge transmits at the standard 170 Hz shift, and all shifts of RTTY can be received. Challenger can also be used to receive CW (MORSE CODE), but the unit does not have internal CW keying circuits for transmission. The Challenger is compatible with the TI-99/4A with the

The Challenger Terminal Unit is available for $\$ 245.00$

THE THETA-777:
The revolutionary new Thete-777 allows AMTOR , RTTY and CW operation with a homecomputer. This unit has complete software communications which saves you (I believe) the trouble of having to load the software into your computer. Some of its features include...TWENTY-EIGHT LEDS with Bar Graph tuning , CW identification , Automatic Idle Signal Insertion , Echo function, Automatic CR/LF , CW RANDOM GENERATOR , VARTABLE CW WEIGHTS, TEST MESSAGE FUNCTION , CW PRACTICE FUNCTION , MARK-AND-BREAK SYSTEM , CRYSTAL CONTROLLED AFSK MODULATOR , etc. Confused? Well , read on and I will endevour to explain the uses for these peripherals with your TI. But before that...here is another unit called...

KANTRONICS "INTERFACE II":
Like others mentioned in this article, this unit sells for a mear $\$ 479.00$ and features... DUAL TONE DETECTION
, SELECTABLE SHIFT OPERATION for RTTY \& CW , AM \& FM OPERATION , QUARTZ SYNTHESIZED TONES , TWO CHANNEL OPERATION , RS232 Compatib1e. and last but not least:..

THE UNIVERSAL TERMINAL UNIT:
A new concept in COMPUTER TO TRANSCEIVER(2 way radio) INTERFACING and priced at $\$ 399.00$. With this unit , a standard TERMINAL EMULATOR program can be used, like our own TE\#2 , FAST-TERM or 4A TALK... this is a real God-sent, as the \#HAMSOFT TI CARTRIDGE sells for a very high $\$ 215.00$ in the States.

Still confused? O.K. then let me remind you of that article I wrote last month on SHORT WAVE LISTENING and QSL'ing with overseas Radion Stations that you can pick up on a standerd Short Wave Radio. In between the transmissions of stations such as RADIO MOSCOW , RADIO AMERICA and all of the other countries , there are tones being transmitted the world over. And on those tones or carriers, are CW (MORSE CODE) , RTTY
(RADIOTELETYPE or World News being telexed which you can convert to understandable and readable text on your computer screen and which can also be sent to your printer for later reading. Or...if you are an AMATEUR RADIO OPERATOR, you can not only RECEIVE these signals but also REPLY to them via your computer keyboard. One of our members in TISHUG has made his own mini peripheral and software to do just what I have spoken about, and it is hoped that we will hear more about his device either on TEXPAC BBS next month and/or printed in our TISHUG NEWS DIGEST (TND) this or next months issue. You have got to see it for yourself to really be thrilled with what can be done with your TI-99/4A and show you what you have been missing out on by not even knowing that these things even existed.

If you are interested in World events, and are sick of the either condenced or sensationalism of our Australian Media...then you will want to hear the truth and/or ALL THE FACTS as they are being transmitted from its source or received by our media. Items which our News media may think is too trivia to report, may be news which you need to hear and which you can receive on your TI-99/4A computer screen.

By the way, without sounding like an advert...each of the peripherals I have mentioned earlier in this article are available from EMTRONICS at 94 Wentworth Avenue Sydney $2000 \mathrm{Ph}(02) 2110988$. You' 11 find JOHN GEORGE very helpful. And for the HAMS in this club , his CALL SIGN on air is VR2PCC. They also sell a huge rage of both SHORT WAVE RADIO's and 2 WAY RADIO gear.

Now, lets hear from you with what you are using your TI-99/4A for...drop me a line $\mathrm{C} /-$ the club address or on the TEXPAC BBS to Username:SHANE
Bye 4 now
Yours in Computing the TI WAY

100 REM $* * * * * * * * * * * * * * *$
110 REM * FINANCIAL *
120 REM * MATH.
130 REM *C.M. EHNINGER*
140 REM ***************
150 OPTION BASE 1
160 DIM C\$(8)
170 CALL CLEAR
180 CALL SCREEN (2)
190 DISPLAY TAB(10);"FINANCI
AL":TAB(12);"MATH.":::::: :
: :
200 FOR X=96 TO 152 STEP 8
$210 \mathrm{Y}=\mathrm{Y}+1$
$220 \mathrm{C} \$(\mathrm{Y})=\mathrm{STR} \(X)
230 NEXT X
240 FOR X=1 TO 8
250 C=VAL(C\$(X))
260 CALL $\operatorname{HCHAR}(X+2, X+2, C, 29-$
2*X)
270 CALL $\operatorname{VCHAR}(\mathrm{X}+2, \mathrm{X}+2, \mathrm{C}, 22-$
$2 * \mathrm{X}$)
280 CALL VCHAR (X $+2,30-\bar{X}, C, 22$
$-2 * X$)
290 CALL HCHAR $(23-X, X+2, C, 29$ $-2 * X$)
300 NEXT X
310 FOR X=9 TO 16
320 CALL COLOR $(\mathrm{X}, 1,1)$
330 NEXT X
340 CALL SCREEN (8)
350 FOR X=1 TO 100
360 NEXT X
370 FOR $Y=1$ TO 2
380 FOR X=16 TO 9 STEP -1
390 CALL COLOR (X,X,X)
400 NEXT X
410 FOR X=9 TO 16
420 CALL COLOR (X,X-7, X-7)
430 NEXT X
440 NEXT Y
450 FOR X=16 TO 9 STFP -1
460 FOR $Y=2$ TO 9
470 CALL $\operatorname{COLOR}(X, Y, Y)$
480 NEXT Y
490 NEXT X
500 FOR $X=9$ T0 16
510 FOR $Y=2$ TO 9
520 CALL COLOR (X,Y,Y)
530 NEXT Y
540 NEXT X
550 FOR $X=1$ TO 100
560 NEXT X
570 F\$="00"
580 CALL CLEAR
590 CALL SCREEN(2) 600 DISPLAY TAB(6);"FINANCIA L MATH": : :'TAB(9);"INTEREST": :"SINGLE-VALUE PROBLEMS:" 610 DISPLAY " 1..COMPOUND V ALUE":" 2..VALUE OF PRINCIP AL":" 3..NUMBER OF PERIODS" 620 DISPLAY " 4..INTEREST R ATE"::"ANNUITIES:":" 5..SUM OF ORDINARY ANNUITY"
630 DISPLAY " 6..VALUE OF A N: "• "Y":" 7..VALUE OF PAYME Ni
640 DISPLAY " 8..PRESENT VA LUE OF SUM":" 9..NUMBER OF PERIODS":" 10..INTEREST RATE ":
650 DISPLAY " 99..TERMINATE" :: : "FUNCTION";
660 CALL SCREEN(8)
670 INPUT Q
680 IF $\mathrm{Q}=99$ THEN 3770
690 IF $(Q<1)+(Q>10)<>0$ THEN 670
700 CALL CLEAR
710 ON Q GOTO 2000,2120,2240
,2370,2750, 2920,3090,3200,25 80,3450

720 REM ************
730 REM * SCREEN *
740 REM ************
$750 \mathrm{E}=0$
760 FOR X=YY TO YY+LEN(E\$)-1
$770 \mathrm{E}=\mathrm{E}+1$
$780 \mathrm{ED}=\mathrm{ASC}(\mathrm{SEG} \$(\mathrm{E} \$, \mathrm{E}, 1))$
790 CALL HCHAR (XX,X,ED)
800 NEXT X
810 RETURN
820 REM
830 REM SHOW VALUES
840 REM
$850 \mathrm{YY}=3$
860 E\$="PERIODIC AMOUNT:"
870 GOSUB 750
$880 \mathrm{E} \$=$ STR $\$(\mathrm{R})$
890 GOSUB 1390
900 GOTO 1340
910 YY=3
920 E $\$=$ "FUTURE VALUE:"
930 GOSUB 750
$940 \mathrm{E} \$=\mathrm{STR} \$(\mathrm{~V})$
950 GOSUB 1390
960 GOTO 1340
970 YY=3
980 E\$="INTEREST RATE:"
990 GOSUB 750
$1000 \mathrm{I}=100 * \mathrm{I}$
$1010 \mathrm{E} \$=\mathrm{STR} \(I)
1020 GOSUB 1390
1030 GOTO 1340
$1040 \mathrm{YY}=3$
1050 E\$="NO. OF PERIODS:"
1060 GOSUB 750
$1070 \mathrm{E} \$=$ STR $\$(\mathrm{~N})$
1080 GOSUB 1390
1090 GOTO 1340
$1100 \mathrm{YY}=3$
1110 E\$="PRESENT VALUE:"
1120 GOSUB 750
$1130 \mathrm{E} \$=\operatorname{STR} \$$ (V)
1140 GOSUB 1390
1150 GOTO 1340
$1160 \mathrm{YY}=3$
$1170 \mathrm{E} \$=$ "SUM AMOUNT:"
1180 GOSUB 750
1190 E\$=STR\$(V)
1200 GOSUB 1390
1210 GOTO 1340
$1220 \mathrm{YY}=3$
$1230 \mathrm{E} \$=$ "PRINCIPAL AMOUNT:"
1240 GOSUB 750
$1250 \mathrm{E}=\mathrm{STR} \(P)
1260 GOSUB 1390
1270 GOTO 1340
$1280 \mathrm{XX}=24$
$1290 \mathrm{YY}=6$
1300 E $\$=$ "RETURN TO CONTINUE"
1310 GOSUB 750
1320 CALL $\operatorname{KEY}(0, B, C)$
1330 IF C=0 THEN 1320
$1340 \mathrm{XX}=\mathrm{XX}+2$
1350 RETURN
1360 REM
1370 REM NUM TO STR
1380 REM
$1390 \mathrm{E} \$=" 0000000000$ "\&E\$
1400 F $\$=$ SEG $\$(E \$$, LEN (E $\$$)-9,10)
1410 E $\$=\mathrm{F} \$$
$1420 \mathrm{E}=\mathrm{POS}(\mathrm{E} \$, " . ", 1)$
1430 IF E>0 THEN 1460
1440 E $\$=\mathrm{E} \$$ \& " $^{\prime \prime}$ "
1450 GOTO 1390
$1460 \mathrm{G}=\mathrm{ABS}(8-\mathrm{E})$
1470 IF Gく3 THEN 1500
$1480 \quad \mathrm{E} \$=\operatorname{SEG} \$(\mathrm{E} \$, 2,9)$
1490 GOTO 1390
$1500 \mathrm{E} \$=$ SEG $\$(\mathrm{E} \$, \mathrm{G}+1$, LEN(E E$)-$ G) \&SEG $\$(F \$, 1, G)$

1510 E\$=SEG\$(E\$,1,1)\&","\&SEG
\$(E\$,2,3)\&", "\&SEG\$(E\$,5,6)
1520 FOR X=1 TO 12

1530 IF SEG\$(E\$,1,1)="0" THE
N 1550
1540 IF SEG $(E \$, 1,1)<\rangle^{\prime \prime},{ }^{\# 1}$ TH
EN 1570
$1550 \mathrm{E}=$ =SEG $(\mathrm{E} \$, 2, \mathrm{LEN}(\mathrm{E} \$)-1)$
1560 NEXT X
1570 YY=33-LEN (E\$)
1580 GOSUB 750
1590 RETURN
1600 REM ************
1610 REM * INPUT *
1620 REM ************
1630 REM
1640 REM SIM
1650 REM --
1660 INPUT "ENTER SUM: ":V
1670 IF $\mathrm{V}<=0$ THEN 1660
1680 RETURN
1690 REM
1700 REM RKTAGIEAL
1710 REM
1720 INPUT "ENTER PRINCIPAL: ":P
1730 IF $\mathrm{P}<=0$ THEN 1720
1740 RETURN
1750 REM
1760 REM INTEREST
1770 REM
1780 INPUT "ENTER INTEREST:
":I
1790 IF $\mathrm{I}<=0$ THEN 1780
$1800 \mathrm{I}=\mathrm{I} / 100$
1810 RETURN
1820 REM
1830 REM PERIODS
1840 REM
1850 INPUT "ENTER NUMBER OF
PERTODS: ":N
1860 IF $N<=0$ THEN 1850
1870 RETURN
1880 REM
1890 REM RENT
1900 REM
RENT
1910 INPUT "ENTER PERIODIC A
MOUNT: ":R
1920 IF R<=0 THEN 1910
1930 RETURN
1940 REM ****************
1950 REM * PROCEDURES *
1960 REM ****************
1970 REM
1980 REM COMPOUND VALUE
1990 REM
2000 GOSUB 1720
2010 GOSUB 1780
2020 GOSUB 1850
$2030 \mathrm{~V}=\mathrm{P} *\left((1+\mathrm{I})^{\wedge} \mathrm{N}\right)$
$2040 \mathrm{~V} 1=\mathrm{INT}(100 *(\mathrm{~V}+.005)$
$2050 \mathrm{~V}=\mathrm{Vl} / 100$
2060 E\$="COMPOUND VALUE"
$2070 \mathrm{YY}=10$
2080 GOTO 2450
2090 REM
2100 REM PRINCIPAI,
2110 REM
2120 GOSUB 1660
2130 GOSUB 1780
2140 GOSUB 1850
$2150 \mathrm{P}=\mathrm{V} /\left((1+\mathrm{I})^{\wedge} \mathrm{N}\right)$
$2160 \mathrm{P} 1=\operatorname{INT}\left(100^{*}(\mathrm{P}+.005)\right)$
$2170 \mathrm{P}=\mathrm{P} 1 / 100$
$2180 \mathrm{YY}=8$
$2190 \mathrm{E} \$=$ "PRINCIPAL AMOUNT ${ }^{\text {tI }}$
2200 GOTO 2450
2210 REM --.....
2220 REM PERIODS
2230 REM -...-
2240 CALL CLEAR
2250 GOSUB 1660
2260 GOSUB 1720
2270 GOSUB 1780
$2280 \mathrm{~N}=\mathrm{LOG}(\mathrm{V} / \mathrm{P}) / \mathrm{LOG}(1+\mathrm{I})$
$2290 \mathrm{M}=\mathrm{INT}\left(100^{*}(\mathrm{~N}+.005)\right)$
$2300 \mathrm{~N}=\mathrm{M} / 100$
$2310 \mathrm{YY}=8$

2320 E $\$=$ "NUMBER OF PERIODS" 2330 GOTO 2450
2340 REM ------
2350 REM INTEREST
2360 REM
2370 GOSUB 1660
2380 GOSUB 1720
2390 GOSUB 1850
$2400 \mathrm{I}=\left((\mathrm{V} / \mathrm{P})^{\wedge}(1 / \mathrm{N})\right)-1$
$2410 \mathrm{IN}=\mathrm{INT}\left(1 E 4^{*}(\mathrm{I}+5 \mathrm{E}-5)\right)$
$2420 \mathrm{I}=\mathrm{IN} / 1 \mathrm{E} 4$
2430 E\$="INTEREST"
$2440 \mathrm{YY}=13$
2450 XX=1
2460 CALL CLEAR
2470 GOSUB 750
$2480 \mathrm{XX}=5$
2490 GOSUB 1160
2500 GOSUB 1220
2510 GOSUB 970
2520 GOSUB 1040
2530 GOSUB 1280
2540 GOTO 580
2550 REM -
2560 REM PERIODS
2570 REM --_- 2580 GOSUB 1660
2580 GOSUB 1660
2590 GOSUB 1910
2600 GOSUB 1780
$2610 \mathrm{~N}=\mathrm{LOG}((\mathrm{I} * \mathrm{~V} / \mathrm{R})+1) / \operatorname{LOG}(1+$ I)
$2620 \mathrm{M}=\operatorname{INT}\left(100^{*}(\mathrm{~N}+.005)\right)$
$2630 \mathrm{~N}=\mathrm{M} / 100$
2640 CALL CLEAR
$2650 \mathrm{YY}=8$
2660 E\$="NUMBER OF PERIODS"
$2670 \mathrm{XX}=1$
2680 GOSUB 750
2690 XX=5
2700 GOSUB 1160
2710 GOTO 3370
2720 REM -------
2730 REM ANNUITY
2740 REM -
2750 GOSUB 1910
2760 GOSUB 1780
2770 GOSUB 1850
$2780 \mathrm{~V}=\mathrm{R}^{*}\left(\left((1+\mathrm{I})^{\wedge} \mathrm{N}\right)-1\right) / \mathrm{I}$
$2790 \mathrm{~V} 1=\mathrm{INT}\left(100^{*}\left(\mathrm{~V}_{+} .005\right)\right)$
$2800 \mathrm{~V}=\mathrm{V} 1 / 100$
2810 CALL CLEAR
2820 XX=1
$2830 \mathrm{YY}=4$
2840 E $\$=$ "COMPOUND VALUE OF A NNUITY"
2850 GOSUB 750
2860 XX=5
2870 GOSUB 910
2880 GOTO 3370
2890 REM --...-_
2900 REM PAYMENTS
2910 REM ---_-
2930 GOSUB 1780
2940 GOSUB 1850
$2950 \mathrm{R}=\mathrm{V} * \mathrm{I} *\left((1+\mathrm{I})^{\wedge} \mathrm{N}\right) /((1+\mathrm{I})$ ${ }^{\wedge} \mathrm{N}$) -1)
$2960 \mathrm{R} 1=\mathrm{TNT}(100 *(\mathrm{R}+.005))$
2970 R=R1/100
2980 E\$="PAYMENTS TO RETIRE"
2990 CALL CLEAR
$3000 \mathrm{XX}=1$
$3010 \mathrm{YY}=6$
3020 GOSUB 750
3030 XX=5
3040 GOSUB 1160
3050 GOTO 3370

3070 REM RETIRE SUM
3080 REM ------------
3090 GOSUB 1660
3100 GOSUB 1780
3110 GOSUB 1850
$3120 \mathrm{R}=\mathrm{V}^{*} \mathrm{I} /\left(\left((1+\mathrm{I})^{\wedge} \mathrm{N}\right)-1\right)$
$3130 \mathrm{R} 1=\operatorname{TNT}\left(100^{*}(\mathrm{R}+.005)\right)$
3140 R=R1/100
3150 E\$="PAYMENTS TO ACCUMUL ATE"
3160 GOTO 2990
3170 REM --~---
3190 REM --
3200 GOSUB 1910
3210 GOSUB 1780
3220 GOSUB 1850
$3230 \mathrm{~V}=\mathrm{R}^{*}\left(1-(1+\mathrm{I})^{\wedge}(-1 * \mathrm{~N})\right) / \mathrm{I}$
$3240 \mathrm{Vl}=\mathrm{INT}\left(100^{*}(\mathrm{~V}+.005)\right)$
$3250 \mathrm{~V}=\mathrm{V} 1 / 100$
3260 E $\$=" A N N U I T Y-P R E S E N T$ VAL UE"
3270 CALL CLEAR
3280 XX=1
$3290 \mathrm{YY}=6$
3300 GOSUB 750
3310 XX=5
3320 GOSUB 1100
3330 GOTO 3370
3340 REM ---
3360 REM ---.
3370 GOSUB 850
3380 GOSUB 970
3390 GOSUB 1040
3400 GOSUB 1280
3410 GOTO 580
3420 REM
3430 REM INTEREST
3440 REM -- -
3450 GOSUB 1660
3460 GOSUB 1910
3470 GOSUB 1850
$3480 \mathrm{~T}=4$
$3490 \mathrm{~B}=0$
$3500 \mathrm{TT}=\mathrm{R} * \mathrm{~N}$
3510 IF TT $>=V$ THEN 3710
3520 TST=ABS (T-B)
3530 IF TST<1E-5 THEN 3620
$3540 \mathrm{IN}=(\mathrm{T}+\mathrm{B}) / 2$
$3550 \mathrm{IT}=\left((1+\mathrm{IN})^{\wedge} \mathrm{N}\right)-(\mathrm{V} * \mathrm{IN} / \mathrm{R})-$ 1
3560 IF IT=0 THEN 3620
3570 IF IT $>=0$ THEN 3600
$3580 \mathrm{~B}=\mathrm{IN}$
3590 GOTO 3520
$3600 \mathrm{~T}=\mathrm{IN}$
3610 GOTO 3520
$3620 \mathrm{I}=\mathrm{INT}\left(1 \mathrm{E} 4^{*}(\mathrm{IN}+5 \mathrm{E}-5)\right) / 1 \mathrm{E}$
3630 CALL CLEAR
$3640 \mathrm{XX}=1$
3650 E $\$=$ "INTEREST RATE"
3660 YY=10
3670 GOSUB 750
3680 XX=5
3690 GOSUB 1160
3700 GOTO 3370
3710 CALL CLEAR
$3720 \mathrm{XX}=23$
$3730 \mathrm{YY}=3$
3740 E\$="INTEREST RATE 0 OR NEGATIVE"
3750 GOSUB 750
3760 GOTO 3400
3770 END

Diagnosing hardware malfunctions
by Geoff Trott
Illawarra Regional Group - TISHUG
It is becoming more apparent that when troubles strike our computer, it can be quite difficult to find out what the problem is so that a repair can be attempted. With TI not providing a very useful service in this regard, we are going to have to do something ourselves. If the computer is running, it is easy to trouble shoot a peripheral which is not working. It only requires a program which tests all its functions and reports any errors. Several of these are available for RS232, P-code card, Expansion memory, and so on. There is even a module which runs tests on the VDP memory, keyboard, sound and arithmetic functions. However none of these will help if the computer will not get past the title screen, or not even get to a title screen. For these cases all would appear to be lost, but is it?

The 9900 processor has two non-naskable interrupts. The first of these is the RESET, which is the one used to get into the system monitor, using two vectors at addresses 0 and 2. This is the one which happens at power up and when a cartridge is plugged in. If the console is not working then this is no use tc us. The second one is the LOAD interrupt, which is not used in the system, but does come out the IO port at the side of the console. This uses two vectors at FFFC and FFFE which are at the top of memory expansion. This interrupt could be used to force a program stored at the top of memory to start up, and this program could be a diagnostic program for the console!

The hardware would be quite simple, consisting of an EPROM containing the program and the vectors and occupying the last 8 K of the expansion memory address space, a RAM chip in the next to last 8 K of memory (or less if available), a push button and circuitry for the LOAD signal, address decoding for the EPROM and RAM, and some simple way to enable some LEDs to be turned on. It could all fit into a small box which would plug into the $I 0$ port and use the 5 volt supply from the console. If a console was in trouble, any internal memory expansion would need to be removed before this box was attached to ensure no address conflicts.

The operation would be as follows. The console with the box attached would be powered up and the LOAD button pressed. This would start the diagnostic program, and if the processor was working one of the LEDs would turn on. Then the system RAM would be checked and if OR another LED would turn on. Then the VDP RAM would be checked to see if data could be stored and retrieved and a third LED would then turn on. If all is OK so far, the programe would set up the VDP with a screen for the diagnostic program, with perhaps a menu. It would need to check the system ROM against a check sum and then the GROMS to see if they have the correct data and are behaving properly. Once the screen is working the results of these tests can be displayed on the screen to give more information about the problems as found. The keyboard, sound, joystick and cassette functions could also be checked.

This would provide a simple, portable and relatively cheap way of checking out consoles, and providing information to determine exactly what is not working or program loops to enable troubleshooting with CROs etc. It could be easily upgraded as more experience is gained. I will be working on such a device in my limited free time, but the more who contribute their expertise to such a project, the quicker and better the result should be.

SPECIAL NOTE:
GEOFF, HAS LEFT YOU ALL WITH A THOUGHT STARTER FOR A PROJECT, NOW. ... LET'S SEE IF OUR GROUP IS ABLE TO "WIN THROUGH". OVER TO YOU -- ED.

LINKING TO ASSEMBLY from EXTENDED BASIC.
by Ross Mudie of TISHUG.
Part 4 in a series of articles. June 1986 issue TND.
Unfortunately the program for ALPHA LOCK detection was omitted from last month's column so this month it is in the middle of the article.

One question which I received recently was "How can assembly be used with extended basic, since you can't plug in extended basic and the minimem at the same time?" The assembly programs which are to work with an extended basic program are prepared using the TI Editor Assembler (e/a) or BEAXS. The assembly source file is saved to disk and assembled in the normal manner for an assembly program, except that the compressed format cannot be used. The assembly program is loaded from disk into the extension memory after extended basic is loaded. It is also possible to include the assembly program information in the extended basic program as a series of CALL LOADs, programs have appeared in the pages of the SND from time to time in this format. The 32 K extension memory is required to use assembly with extended basic.

I will be presenting tutorial material on linking to assembly from extended basic at the Full Day Tutorial Workshop on 7th June 1986 at Woodstock. I will provide printed tutorial information for people in my group. Don't forget to study all the references to linking in the e/a manual before the day, including the following pages in the e/a manual: 273 to $290 \& 410$ to 419. Full details of the Tutorial day appear elsewhere in this issue of the TND. Remember to bring a note pad, pencil, e/a manual and your lunch to the Tutorial Day.

If you have been trying to use XMLLNK with extended basic, the DATA equates are to be found on page 416 of the e/a manual. Disregard the note on the bottom of page 261 of the e/a manual, the XMLLNK CIF routine works fine with the data >20.

The GPLLNK utility presented in this month's article responds to the DATA values stated in pages 251 to 257 of the e/a manual, but don't forget if passing values from extended ${ }_{\text {po }}$ hasic to use the equivalent decimal values from x / b, the

Both these programs are stand alone routines. These programs and a number of others will be available on disk MUDIE 86/3 from the club shop in July. The cost of the disk will be the club's usual media fee of $\$ 5$.

[^0]* information when the alpha lock key is released. Nat
* This module is designed as a stand alone programi * for the either the 32 or 40 column mode. Change the
* LI value in the line with the lable MODE to 32 or 40
* as required for the environment of your x / b program.
* The following x / b program will allow convenient
* testing of the assembly module in graphics mode.
* 100 ! SAVE DSKl. LOATJ
* 110 CALL INIT
* 120 CALL $\operatorname{HCHAR}(1,1,46,768)$
* $130 \mathrm{~N}=2$
* 140 CALL LOAD("DSK1.AL")
* 150 CALL LINK ("ALPHA",N)
* 160 DISPLAY AT(8,1):"PRESS ALPHA LOCK IN AGAIN"
* 170 DISPLAY aT $(10,1)$:"ENTER NEXT LINE NUMBER ";N
* 180 ACCEPT AT(10,26) VALIDATE (DIGIT) SIZE $(-2): \mathrm{N}$
* 190 FOR L=8 TO 10 STEP 2
* 200 DISPLAY AT(L,1):".......................................
* 210 NEXT L
* 220 GOTO 150

DEF ALPHA source ALOCK object AL

VMBW	EQU	>2024
NUMREF	EQU	$>200 \mathrm{C}$
XMLLNK	EQU	>2018
KSCAN	EQU	$>201 \mathrm{C}$
VMBR	EQU	$>202 \mathrm{C}$
FAC	EQU	$>834 \mathrm{~A}$
KEYVAL	EQU	>8375
STATUS	EQU	$>837 \mathrm{C}$
GPLWS	EQU	$>83 E 0$
BUFFER	BSS	28
MYWS	BSS	32
D24	DATA	24
BH40	BYTE	>40
FF	BYTE	$>$ FF
	EVEN	

* Screen message MSG is in hex with hex 60 offset added
* ** R EL EA S E A L P

DATA $>$ A8A1 $,>80 \mathrm{AC},>A F A 3,>A B 80,>A B A 5,>B 980,>8 A 8 A$
ALPHA LWPI MYWS
CLR $\bar{R} \bar{O}$ Use for $C B$ then NUMREF element zero CB @ >8312, RO Any arguments?
JEQ DEFALT No
LI R1,1 First argument
BLWP @NUMREF Get numeric first argument
CB @FAC,@BH40 Is arg value in range 1 to 99 ?
JNE DEFALT No
BLWP @XMLLNK (Convert floating point number in DATA >12B8 \quad FAC to integer in FAC
C @FAC,@D24 Is line number greater than 24?
JGT DEFALT Yes
MOV @FAC,R1 Place line number in R1
JMP DECLNE Avoid default value
DEFALT MOV @D24,R1 Places default line \# in R1
DECLNE DEC R1 Dec R1 for line number in assy MODE LI RO, 3232 for GRAPHICS, 40 for TEXT MODE Multiply line number by number of

* MOV RO RO columns in line for MODE
$\begin{array}{ll}\text { MOV R2, } \overline{R O} & \text { Multiplication result into RO } \\ \text { INCT RO } & \text { Start at col } 3 \text { in designated line }\end{array}$
RO contains where to read from for VMBR
LI R1, BUFFER Where to save line from the screen
LI R2,28 Number of bytes to be saved
BLWP @VMBR Save the line into the buffer
* The TEST routine responds to the release of the alpha * lock \& keys 1 to 5. The routines at NOTON \& WAIT trap * a number 1 to 5 being pressed, sending the program
* back to TEST when a number key is released.

TEST

CLR	R12
SBZ	21
NOP	
TB	7

CRŪ Base address of zero
See editor assm manual page 409

JEQ NOTON
Test for alpha lock Jump if ALPHA LOCK is off

Gex
 Tindits II
 A series of Extended
 Basic Tutoials for the Geginners

Hello aqain! I pity those who, on seeing this article, say to themselves: "Dh no! Not again!". (as if anyone would!) Eut I warmly welcome those who welcome my little (!?!) article!

If you wish to send me anything, address it to:
Wade Bowmer
Lot 11 Yanderra Ave.
Bangor
NSW 2234
This month I've got 4̌í quirks. (4!\%? You'll see why later.)

Both BASICs allow you to add a remark after a line number. (Didn"t know that, did you?) Here's an example:

GOTD 1000, SOMEWHERE
But there are always exceptions:
ON A GOSUB $1000,2000,5 T A T E M E N T$
That is a no-no. But it works after nearly every line number, after GDTD, GDSUE, \& IF.. THEN. .ELSE. Eut this remark is treated like a variable; so no spaces! There is, however, a bonus:
100 GUSUE 1000, TEST : : FRINT "YAY!!"
Yes, that's right, a remark in the middle of a 1 ine!
(This appeared in COMFUTE! January $1985, \mathrm{Fg} 16$)
Now for \#2. Have you ever found DISFLAY AT useful? I have. (I prefer it for certain things sometimes, too. instead of CALL CLEAR and CALL HCHAR.) SIZE is an almost indispensable clause in DISFLAY, as withnut it, DISFLAY erases the rest of the line. So SIZE clears a window. (You should already know that...

But, apart from separate DISFLAY ATs, what if the display list is complex, like Aक;":";K ? Well, you could do
DISFLAY AT(1, 1)SIZE(LEN (A\$\&": "\&TR\$(K))) :A\$;": "; K
but this is cumbersome, using 37 bytes! Alternatively you can guess and do:

DISPLAY AT(1,1)SIZE(10):A\$;": "; K or
DISFLAY AT (1, 1)SIZE(10):USING"\#\#\#\#\#
\#\#\#\#": A\$;":"; K
which use 27 and 41 bytes, respectively. Eut the best way is:
DISFLAY AT(1, 1):A\$;":";K;
using just 21 bytes.
The secret is the final semi-colon. When ${ }^{\text {a }}$ display-list ends in a semi-colon, the rest of the line is left untouched!? So the display-list doesn"t take any more space than it needs.

My third quirkis also to do with DISPLAY AT: the colon. If you use
DISPLAY AT (22,1):"a string constant"
then use
: : : :
to scroll the screen up two lines and then "another string constant"
my advice is to use
DISPLAY AT (22, 1):"a string constant":
FRINT : : "another string constant"
instead because otherwise "a string constant" will remain on line 2.3 and "another string constant" will end up on line 2!

The colon goes down a line, fair enough, but you'd expect the screen to scroll when it reaches the bottom. No, It doesn"t! It comes back on the top of the screen (1ine 1) instead of scrolling! (Incidently, DISFLAY AT with SIZE can be used to blank out part or all of the text row columns 3 to 30) with the space character. If you wish to

COLOR EDITOR

The following program allows you to mix any two colors and displays a large block of the new color. After using it for a little while we made a couple of small modifications that allowed it to run a little faster. We left the original code in place with REMs in front of it so you could see the difference. There are many ways to get the computer to do something and its always fun to see how another way works.

This program places 15 double sized sprites down the right hand side of the sereen to form the color selections. You are then allowed to move another sprite, the marker, up and down this column to make a selection. When you are on the color you want just press the fire button on the number one joystick or any key but the up and down arrow keys. The program then uses this color as the foreground color and the next color chosen will be the background color. It is fun to play with and it shows you which colors mix well to form a new shade for use in another program. We would like to thank Mr. Reitinger for sending us this program. We also hope he doesn't mind the minor modifications to his program.

11 COLOR EDITOR
for mixing any desired
2 colors with joyst or keyborad.

21 With Greetings
E. H.REITINGER

Vienna, Austria
3 ! TI99-Journal-Klub
A-1150 Wein
Felberstrabe 24/26
10 CaLl SCREEN(16): CALL CL EAR
 $A=122$

30 Call Magnify (2): : Call CH AR(64, RPT\$("Fn, 16), 34, "FF818 1FFFFFF", 128 , "FFFFFFFFFFFFFF
n, 73, M\$): : CALL COLOR(3,16,2
,4,16,2,6,1,1,5,2,1)

40 CaLL VCHAR(1,27,64,192): :
CALL HCHAR $(23,1,64,162):$: H $=1$
$50 \mathrm{G}=-2$: : FOR I=3 TO 16 ::
CALL SPRITE(*I, 64, I, (G+I) 12 , 230):: NEXT I : : CALL SPRIT E(\#2, 34, 16, 5, 230) $1+16,128,16$, 17, 230)

60 CALL SPRITE(1,42,2,A,231
)
70 FOR S=4 TO 22 :: CALL HCH AR(S,3,73,24): : NEXT S

80 CALL JOYST($1, X, Y$): : ON (S GN(Y)+2)GOTO $90,130,110$
> $90 \mathrm{~A}=\mathrm{A}+12:$: IF $\mathrm{A}>170$ THEN A $=2$

100 CALL LOCATE (1, 1,231$):$: GOTO 130

Glear a whole text line, then Just use DISFLAY AT (row, 1)
or if you wish to ciear any column to 30 then use DISFLAY AT (row, column)
It uses 1 ess memory than CALL HCHAR!)
And for \#4: XBASIC's RND function is slow. I'm Sorry, I don't know why. But I do know how to get RaNDom numbers faster!

First of there is LALL FEEK ($-\overrightarrow{18} 180$, variable) which returns a value in the range of 0 to 99 , but you must exerute a RANDOMIZE between each CALL. If you require a different range, then multiply by the (range required)/100, or work that out beforehand.

Secondly, CALL FEEK (- 31808 , varaible1, variable2) which returns two numbers in the range o to 255. Once again, FANDOMIZE is needed between each cAlL. If the range you need is different, multiply by range/256, or work it out beforehand.

Incidently, it doesn't matter whether RANDOMIZE has a seed (numeric-expression after it) or not! Even if it's the same seed the numbers returned will be different every time!

The third one is CALL PEEK (-31879 , variable) which also returns a valuerange 0 to 255 . But this one doesn't need RANDOMIZE between each CAALL. Why?

Location -31879 (>8379) is the VDP (Video Display Frocessor) interrupt counter. It counts o to 255, continuously. But...

Where I read about this location (SND Sept. 95 Fg 13) it said that it takes the computer 44 seconds to complete a cycle, hut on my computer it takes just 5 seconds! Why?

Now for my 'h quirks the sound processinig routine uses the VDP interrupt to time the sound. That's why when I enter CALL SOUND $(4250,440,2)$ it takes about 5 seconds to complete the note, instead of 4 亿.

Finally, my end-of-article question: Why does it take 5 seconds instead of $4 \frac{1}{4}$?

Incidently, last article's problem had nothing to do with the computer, rather, the TV! Sometimes, it loses some Fied signal..

* SFEECIAL NITE *

These TIDBITS articles are aimed at the programmer in general. There are beginner programmers, advanced programmers, and many others in hetweens I cater for all for at least I try to...)

If you read something you already know, remember that there will be other readiers who hadn't know it before.

If you find something to difficult to understand remember that someday you will understand it, and that there are other meaders who already do.
FREVIEW:
Starting ne:ct article, I will print "Beqinners Tips", specially written for those just learning to $r^{\text {renam. }}$
OFI; : :
wish to offer my services in the following way: If you have a meagre or mediocre program that you wish inproved (or "jazzed up"), you can send it to my address (already printed). Send it in the following way: SAVEd at least twice on a cassette, preferably with different. head azimuth settingsbut don't go to extra trouble! And please include as much dorumentation you think the program
needs, it's possible that 1 will ask for more, but please don't overdo it!

At present, I can only do BASIC \& xBASIC programs on a "bare-bones" console with joysticks, but 1 will eventually be able to do programs with the MiniMem. You may include a list of improvement suggestions, so don"t hesitate to (I may not improve it to your liking, otherwise...). I would prefer the programs didn"t use files, either (partly because I don't have a remote socket on my cassette recorder...). And include you address and telephone number please! I will contaet you when I've finished to negotiate a fee.
$110 A=A-12$:: IF $A<0$ THEN $A=$ 170

120 CALL LOCATE (1, A, 231)
130 CALL KEY(1,K,S): : IF $S=0$ THEN 80

140 IF $K=5$ THEN 110 :: IF $K+$ $1=1$ THEN 90
$145 \mathrm{~F}=\mathrm{INT}(\mathrm{A} / 12+2):$: CALL SOU ND (200,660,2):: GOTO 180 I T his was inserted to replace line $150,160 \& 170 \mathrm{Ed}$.

150 1FOR $\mathrm{F}=2$ TO 16 :: CALL C OINC($1, \neq F, 3, C)::$ IF CTHEN
CALL $\operatorname{SOUND}(200,660,2):: \operatorname{GOTO}$ 180

160 INEXT F
170 GOTO 80
$180 \operatorname{CALL} \operatorname{COLOR}(6, F, H):: \operatorname{DISP}$ LAY AT(24,9)SIZE(7):USING " *\# $\#$: $\mathrm{F}, \mathrm{H}:: \mathrm{H}=\mathrm{F}:$: GOTO 8 0

NEW*NEW*NEW*NEW AJTO-THUNDERER MODEM NEW*NEN*NEW*NEW

* Reliable Auto-Answer/Auto-Disconnect with new improved circuitry.
* Auto Time-out/Reset on nuisance calls
* ALL V23 MODES 1200/75;75/1200; 1200 half duplex
* 300 Answer and Originate V21 and BELL 103
* Standard RS232 interface will fit most types of computers.
* 2 YEAR Warranty!
$\% \%>\$ 260$ COMPLETE with cable
(plus \$6 post)
FREE INTRODUCTORY SOFTWARE OFFER
A 1imited supply of software to run a BBS on your TI-99 is given free with your purchase of the AUTO-T modem. This is a 2 disc system from the US which can be modified to suit your needs. Comes with Documentation!

Auto-T modem

P.0.Box 28

Kings Cross. 2011 or phone Peter on (02)358 5602

RS232 TUTOR

The meihod for accessing the RS232 interiace in Assembly language is not very difficult once you have gleaned all out of the EDITOR/ASSEMBLER manual. The information is in the manual but it is not all in one plare. And unlike what we encountered in BASIC with various conligurations and examples with explanalion of each, in Assembly. we have nos examples. just the information with nothing to really tie it all together for us.

Let's go through this information in the EDITOR/ASSEMBLER manual and begin building a general purpose routine that we can use for manv applications
first of all, if we try to look in the index of the manual for pages where theKS232 interface is referemed, we will come up empty-handed. Instead, we are going to have to use a little logic and intuition to lorate the pertinent information.

First of all, il you will remember how operation of the RS232 interface is handled, thus gives us a bigkey on where to look. That's right - the RS232 interface is handled just like a file, i.e., open. close file \#, etc. So. if we look under file in the index we find several places we can look To save time, and as you probably know. I have already looked at all of these references. So, let's look at the section on fils management.

It is in this section we begin to see some things that really help us to better understand the operation of our compu ter and its peripherals. We learn that all devices, with the exception of the keyboard and its screen, are handled with DEVICE SERVICE that DSRs are accessed via a utility program called DSRL.NK. By setting up a series of parameters in certain locations of memory, we can use this routine to gain control of the RS232 interface.

Then we are informed that we must have something called PERIPHERA ACCESS BLOCK (PAB) set up VDP RAM before we call this rounine. Well, this litite bit of info sends us back to section 18 on file management.

In subsection 18.2.we find the detint tion of the PAB and how to set it up. We find the PAB is a series of bytes by which we can pass data to the device we are trying to control or access.

The firsi byte of the PAB inust contain the up-code. These codes are explane in subsection 18.2.1. Here we see that the operation of the RS232 is going to be sim ilar in function to the way is is operated in BASIC. That is, we are going to have to first perform an opening operation for the RS232 interfase and then change the op-code so we can use the RS232 for out put. And when we are finished we are going to have to close the RS232 operation.

The next byte of our RS232 PAB will contain the information on the file characteristics. Here we will use the default characteristics that we used for the RS232 uperations in BASIC. So, we will set up our RS232 PAB for variable record length. display type data. update operation, and squential file.

Next we need to decide where we are going to put the data we are going to serad to the R 232 interlace. This data must be in VDP RAM. So, not only do we need to decide where in VDP RAM we are going to put this data, we must now make a note that any data we will be sending to the RS 232 interface will need to be plated in the VDP RAM before we can send 4 For the purpose of this routine we will use VDP RAM address >0002 for the location of our datd. This is also the third location of the screen image lable. So we will be ble to see the data that we are sending to ble to see he dana thatwe sending to RS232 interface

The fourith byte will contain the value 0 . This is the default value of the record ength for the $\mathrm{R} \$ 232$ interface when w. are using BASIC. The next byte contains he information on the number of byter os betransferred Therefore, this byte will contain the lengith of our character stimg we will be sending to the RS232 interface card.

We will put zeros in the next three bytes. since we don't need to spealy the record number when the the is sequentia and we're not using the cassette interface

The next byte contains the length of the file descriptor. The file descripior itself is identical to the information we enter in BASIC to access our printer and RS232 interlace In our example, the fil Sescriptor is RS232 $\mathrm{BA}=1200$. So, ihe descriptor is RS232.BA 1200 . So. the value in this byte will be 13. And since have already given our file descriptor, it will start in the byte following the name length byle; in other words, byte number 10 of the PAB

Now that we have built our PAB. let's go back to the section on the DSRLNK, a continue developing our RS232 accessing routine

The next piece of information we get from the section of the DSR link utility is the CPU address" 8356 and >8357 mus contain the VDP address of the nam length byte in the PAB. Since we will be putting the PAB in VDP RAM at address >1000, the name leng th byte will reside at VDP address >1009. As a note of interest I have found that you need to replace this pointer each time you call the DSRLNK because you can never be sure of its value after you have returned from DSRLNK

Now. we see that the manual informs us of an area of memory called UTLTAB. but this information does not pertain to us in this application

Lastly, we see that upon returning from the DSRLNK, if an error occurred the equal bit of the CPU STATUS REGIS TFR will be set. So, if we test the equal bit after executing DSRLNK, we can jump in an error routine which will display the error. If an error occurs, the error code is placed in workspace register 0 of our workspace registers.

We now have all the information we need to write our routine. I have written a sample routine for this article which is


```
0043
ต@44
0045
0046
0647
0648
ต1049
6050
0050
9052
0053
G054 ER
@655 NO TEXT "@123456799ABCDEF'
0056 * PERIPHERAL ACCESS BUFFER (PAB)
0057 PB BYTE 0 % OP-CODE
Ø日58 BYTE >10 ;FLAG/STATUS
0059 DATA ;बढ\emptyset2 %VDP BUFFER
0060 BYTE BO :RECORD LENGTH
0961 BYTE 62 % OF CHARACTERS
0962
0063
0964
0965 -
0066 T1 TEXT 'The quick brown fox jumps over the lazY dog' 's'
0067 TEXT " back. 1234567890"
0068 EVEN
0069 END
6ब70
2071
MOVB RG, R2
SWPR R2
MOVB \(\mathrm{BNO}_{\mathrm{N}}(\mathrm{R} 2), \mathrm{R} 1\)
LI R0,49
BLWP avsBw
LI RO, 42
LI RI, ER
LI R2,7
BLWP gVMBW
LIMI 2
JMP \$
TEXT 'ERROR=
TEXT ' 6123456799 ABCDEF'
AB)
BYTE 310 ;FLAG/STATUS
BYTE BO \(\quad\) RECORD LENGTH
BYTE 62 ; OF CHARACTERS
DATA 6
BYTE 0
BYTE 13
NAME LENGTH
TEXT 'The quick brown fox jumps over the lazy dog' 's'
TEXT "back. \(1234567890 "\)
END
2971
```

 to get wise on the jargout.'

FOR SALE:
Editor Assembler .. \$70
32K Ch1ps \$25
Extended Basic , . $\$ 40$
Speech Synthesizer \$65
5 Games Modules $\$ 10$ each
$\mathrm{K} /$ board + a11 cables\$110 Joysticks $=4$ * . $\$ 20$ Or the lot for $\$ 320.00$ Please phone J. Richards on (02) $863860 \mathrm{a} / \mathrm{h}$.

100 CALL CLEAR
110 INPUT "SPEED (100) FAST
(500) SLOW? ${ }^{17}: F$

120 PRINT " 2 OR 3 NOTE SEQUE NCE": : : : : : : : : : : : : : ;
$130 \operatorname{CALL} \operatorname{KEY}(0, X, Y)$
140 IF $Y=0$ THEN 130
150 IF X<50 THEN 130
160 IF X>51 THEN 130
170 ON X-49 GOSUB 440,460
180 CALL COLOR $(2,5,5)$
190 CALL COLOR $(3,7,7)$
200 CALL COLOR $(4,11,11)$
210 CALL CLEAR
220 CALL SCREEN(16)
230 FOR A=220 TO AA STEP 110
240 FOR B=220 TO AA STEP 110
250 FOR $\mathrm{C}=220$ TO A.A STEP 110
260 FOR D $=220$ TO AA STEP 110
270 FOR $\mathrm{E}=220$ TO AA STEP 110
280 CALL $\operatorname{HCHAR}(4,1, \AA / 11+20,6$ 4)

290 CALL $\operatorname{HCHAR}(7,1, B / 11+20,6$ 4)

300 CALL $\operatorname{HCHAR}(10,1, \mathrm{C} / 11+20$,
64)

310 CALL $\operatorname{HCHAR}(13,1, \mathrm{D} / 11+20$,
64)

320 CALL $\operatorname{HCHAR}(16,1, E / 11+20$,
64)

330 CALL SOUND ($F, A, 2$)
340 CALL SOUND ($F, B, 2$)
350 CALL SOUND (F,C, 2)
360 CALL SOUND (F,D,2)
370 CALL $\operatorname{SOUND}(\mathrm{F}, \mathrm{E}, 2)$
380 NEXT E
390 NEXT D
400 NEXT C
410 NEXT B
420 NEXT A
430 END
$440 \quad A A=330$
450 RETURN
$460 \quad \mathrm{AA}=440$
470 RETURN

300 \& 1200 BAUD Originate or Auto-Answer Fully Guaranteed

EXTENDED BASIC, National
Cassettes + Books; Console, Music Maker module all for \$120.
Please phone (02)6008932
after 6 pm and ask for Rolf Wisael.

WANT TO BUY:
I want to buy MICROSOFT MULTIPLAN If you have one for ale, please phone JIM on $305694 \mathrm{a} / \mathrm{h}$

Second lease-of-life for Teledata e-mail

New moncy to the tune of over $\$ 1$ million has been breathed invo the Teledata electronic network service by three Melbourne busiessmen and a MIC.
David Frenkel, formeriy general manager with Computervision, is the new president. The MIC is Western Pacific Investment Company, and the two other private investont are Peter Joss and Jim Marks, who established Melllwraith Davey Indus: tries before selling it to Email in 1984.
Teledata's service has ,500 business and home subscribers. It offers eleg-
tronic mail, telex, Canberra news and electronic shopping services, plus gatewass to other international networks.
Noel Fenton, vicepresident, operations, said the investment "gives us the ability to fund owersess and Australian developments: Before we didn't have the money and we were struggling."

Frenkel said Teledata intends to become the premier public dial-up access information and communicationts utility,"

The new owners plan to develop and extend the company's services.

- BHUG
 VIDEO DISRLAY PROCEBSORS PROGRAMMER'S GUIDE

Dated Aug.84. A quarto (11" X 8 1/2") format 110 pages TT publication.
The volume is kept in the TISHUG library and is avallable to registered library users.
It is an invaluable aid to graphic programming. The rather cryptic references to graphic programing contained in the user's manuals of the TI-99 resp. the XBasic makes graphic programming a daunting task. This very well prepared volume written in an easy to follow style takes the reader through the fascinating world of the TI Video Display Processors. Altough it concentrates on the newer generation TMS9118/28/29 VDPs , it also covers their predecessors used in the TI-99: the TMS9918A/28A/29A.
The reader is advised to consult the Data Manual of the TMS9918A/TMS9928A/TMS9929A also, to appreciate the differences of the two VDP series
also available from the TISHUG library).
The book explains the interface communication of the CPU - VDP - EPROM and VRAM (dynamic screen refresh memory or V(ideo)RAM). Description of the VDP registers and their protocol is a useful chapter. The publication deals with assembly language programming only.
Other chapters deal with CREATING PATTERNS, DISPLAY MODES (e.g. graphicsI, graphicsII, text and multi colour modes) and SPRITES.
Horizontal and vertical scrolling as well as animating sprites are discussed under the heading PROGRAMMING TIPS. This chapter also explains the function of the sprite coincidence flag. Appendices take up almost one half of the volume. A number of useful data tables and a complete graphics mode character set is included. Finally assembly language program examples are given in 6502, 8088, TMS7000, TMS9995 and TMS9900 assembly languages.
As mentioned earlier this book should be read in conjunction with the TMS9918A/28A/29A VDP Data manual. Altough the data contained in this edition is very similar to that of the Programmer's Guide, it is solely devoted to the VDPs used in the TI-99, thus there is no ambiguity. It is also a more technical publication primarily written for system designers. This volume is a UK edition dated 1982. I have found both books very informative, easy to digest and a useful aid to understand the TI-99 architecture.

teXAs instruments terminal emulator protocol manual.

Dated May 1981. A quarto format booklet of 53 pages produced by direct printing of a word processor prepared original.
The manual is a companion volume to the Terminal Emulator II owners manual. It provides an indepth explanation of the features of the TEII module. The book deals with the video control, the graphics and text mode supported by the module. The protocol to change from one mode to the other is explained. Detailed description is given of the sound generators and the speech option.
A very clearly written chapter deals with the disk file organisation of the TI-99/4. This chapter is universally applicable to the TI-DOS and contains valuable information for the users of the TI-99 disk systems. Section 3 explains the data coding process -performed by the terminal emulator. Further chapters detail the control characters and escape sequences one may receive with the terminal emulator. This chapter is very concise. It does not mention that in addition to the characters listed all other control codes in the range of ASCII 1-31 may be sent and received. Some not listed in the manual are definitely supported by the TE-II (e.g. CTRL S and CTRL Q, X-off resp. X-on).
Character definition, sound and speech command sequences are also detalled together with screen colour change commands. One could not hope to write
programmes around the TE-II without these rather complex command sequences. These are contained under a chapter heading EXTENDED WRITES (I would really 1tke to have an explanation of this expression). An indepth description of the file transmit / receive protocol concludes the main body of the book,
followed by appendices. Two very useful appendices, App.B \& C, deal with examples of host to remote resp. remote to host file transfers. Who should read it? Users of the TEII, programmers, and anyone who wants to gain a better understanding of the architecture of the TI-99/4.
The volume is kept in the TISHUG library and is available to registered library users.

THE DRIGINAL "THUNDERER"
DEEUX MED M

PHINE: RETER SCRHEEERT ON

[^0]: * ALPHA LOCK DETECTION for extended basic by
 * Ross Mudie of TISHUG, 27th March 1986.
 * Extended basic format:
 * CALL LINK ("ALPHA"[,Line \#])

 This module tests if the ALPHA LOCK key, (TI99/4A

 * only), is operated. If the alpha lock is operated it * provides a message: "** RELEASE ALPHA LOCK KEY **" * and waits until the alpha lock key is released.

 If the optional line number is a number from 1 to * 24 inclusive the message will be displayed on that * line if necessary. If the line number is outside the

 * valid range or is not specified the default value * will be 24.
 * The module saves the screen information present * where the message will be displayed and restores the

