

## DECEMBER 1984 Vol. 2 No. 12

The December meeting will be held on Thursday. December 20 at Cuyahoga Falls High School at the corner of Fourth and Stow streets in Room 413 - Physic's Lab. Please remember to sign in. The January meeting will be held on January 17 th.

This month we will have a Christmas party for our December program. We are asking that those attending this month's meeting bring 1 dozen cookies. We will supply coffee and punch.

## SWAP MEETING

You can bring your blank tapes and copy tapes from our library or any public domain program. It would be wise to bring your cassette recorder if not your entire system to take advantage of our library.

## BASIC CLASS

Rich's subject this month will be 'How to Load and Save on Cassette". Bring your unit: monitor, keyboard, cassette recorder, and blank tape. He will also have a Question and Answer period on all levels of Basic.

## MEMBERSHIP DUES

Those people whose membership dues are due in January will be due in January. Remember the constitution voted on this year. increased the dues to $\$ 15.00$ from $\$ 10.00$ last year.

## FFESIDENTS COFINEFI

I want to start by wi shing you all a very Merry Christmas and a Happy New Year 1

Christmas tome, is a very special time of the vear. not because of all of the presents, parties and fattening food. ( they are all oreat and I love them, Eut I think of all the loved ones and friends I have. and just how much they all mean to me. In the time I ve been in this group. I"ve come to think: of most of vou as friends. for this I am thantful.

I have some good news, it loots as though we will continue to meet at the Cuyahoge Falls High School as we did for the last year. Eut with this major differance. we will be insured and leagal with a contract for one year, from the school.

The comming vear looks to be quite interesting. The companies that expected to mate a killing off of the computer boom that was going to sweed the country. And so called experts, analists, and Madison Ave. Fitchmen, have had the wind knocked out of thelr sells.

Thev forgot one very imoortant variable. Feodle! Some people, and the world as a whole are not ready to have a computer $1 n$ every home, or access to a nete Ease at their finger tipe, no matter where they are at the time.

Dne good thing did come of this rush and rude awat:enimg, cheap computers! This lead manv who atherwise would not have even thought of using a computer, to buy one if not two or three.

Many people have them stored away with their C.E.'s and camera equigment, waitima until the: have enough time to figure out all of the technjcal stuff. While others have hust 三old out." It"s iust not for me". "It costs too much to get software". "I can"t get the tiang of programing" - ar - the classic " The manufacturer got out and stuct; me with something $I$ ann't use". Any exclee is better than none.

There are also a few who have heard all of the eicuses and sad stories, they could become true computer lovers if they tate the tame to thinik instead of feeling that changing from one brand to another, will cure all of the arotelems that the first computer didn"t.

This all leads us to the ooint of my story. After alj of the shouting and scrambling, the ones that are left will firid that the wait was worth $1 t$ and that the future $1 s$ bright. Lite anything else with a little information, and shoort from friends our fears fade away.

At our last meeting we had a visitor. named Larry Moyer and his family. He told us of a mail order T. I. subolier. the name and address is EDU-COMF GE16 o'HENFY CIFCLE N. FIDGEVILLE, OHID 440ふ9 FHONE (216) 327-6579. The person that $I$ contacted $i s$ called Judy Thalner. She pretty mum runs a one person show. the speed and professuonalisim that I was shown, along with the price and speed of the processing of $m$ order wes verv impressive.

Aqain MEFFY CHFISTMAS and trv to mate our party.

TIPS FROM THE TIGERCUB
*16

Copyright 1984
IIGERCUB SOFTMARE
156 Collinquad Ave., Coluabus OH 43213

Distributed by Tigercub Sottware to T1-99/4A Users broups for promotional purposes and in exchange for their newsletters. hay be reprinted by non-profit Users' Groups, with credit to Tigercub Software.

These Tips are being sailed, iogether with oy new cataiog i5, io every Users froup that I know of. I hope that you will aake both the Tips and the catalog available to your esebership, I al sorry that I cannot take out paid ads in your newsletters, but to advertise in each one of thee would cost me adre than 1 have made in the past 6 eonths, and I mould not get enough business to breat even.

If you mould like to continue receiving these lips; put oe on the mailing list for your newsletter, and give ae some indication that oy Tips are really reaching your neabers and not going into somene's private file. If I receive snough busiaess froe this alling to pay for its cost, 1 will then continue to senc you ey Tips. If not, this di!! be the last issue of the Tips frm the Tigercub.

Copies of oy catalog are available for $\$ 1.00$, which is deductable froe your tirst order. I have over 130 absolutely original quality prograns in Basic, many of then nom also availatele in XBasic; on casette or dask for only $\$ 3.00$ each plus \$1.50 per order for casette; package and postage, or $\$ 3.00$ for daskette, packaqe and postage (higher overseas). I give one-day service, I give bonuses for repeat orders, I give bonus progratas on diskette orders.

In addition, any User's Group seater who eentions his/her users'group when sending we an order before 1 Jan. 1985 eay deduct $10 \%$ froe the cost of the prograns.

Tips froe the Tigercub 1 thru 014 are now available, with eore added, as a diskfull of 50 orograms, routines and files for only $\$ 15$ postpaid.

I have also now coapleted ey NUTS : BOLTS disk of 100 XBasic utility subprograss in MEREE format, ready to eerge into your own proqrass, for just $\$ 19.95$ postpaid.

In The last Tips, I mentioned that 1 wished 1 knem who to credit for that rearkable routine to redefine the cursor. Dave Peden has written ae that credit should be given to Terry $L$. Attinson of 28 Savona Ct., Barteouth, WS B2N 4RI CANADA.

And I would like to strongly recomend that you support the 99'ers Users Group Association, 3535 So. H st., 193, Bakerstield CA 93304. They are atrictly non-profit group, devoting a lot of tiae and effort to welping us all, and they publish a great newsletter..

Every Tips aust include a bit of eusic, and ey grandson has requested that 1 pass this one on to all other two-year olds.

## 100 ! ALPMABET SONG - by Jia

## Peterson

110 DIN M(21)
120 CALL MAJORSCALE("C",N(1)
130 CALL SCREEN(5): : DISPLAY
AT(24.1)ERASE ALL: "READY -
TYPE THE ALPHABET": : CALL h AENIFY(2)
140 CALL KEY( $3, K, S T):$ : IF (S
1(1)+(K<65)+(K>90)THEN 140 :
: CALL SPRITE (11, K, 16,96, 120
l: : IF Ka87 THEN GOSUB 220 E
LSE GOSUB 200

60 ELSE 140
160 FLAS $=1$ :: $\operatorname{MS}={ }^{\circ}$ C115566D5C
443322D1": : $T=150$
165 FOR $\mathrm{J}=1$ TO $18:$ : CALL $5 P$

RITE (13, 64t 1 , IMT (11IRRND+6),9
$6,128,285,185)$

X)58THEN $\mathrm{T}=150 \mathrm{t}(\mathrm{X}-64):$ : 60

TO 190
$180 \quad \mathrm{x}=1-48:$ : CALC SOUND (T, N
(X), O)

190 MEXT J : : FLAEx0 : : CALL
DELSPRITE(ALL): : 6010140
200 YzVAL ISE6s( ${ }^{\circ} 115566544332$
22215543325332', K-64, 111
210 CALL SOUND (500, $N(Y), 0):=$ RETURN
220 CALL SOUND (500, $\mathrm{N}(5), 0):$ : CALL SOLND $(500, N(5), 5):$ : CA $L L$ SOUND (500, N(4), 0): : RETUK M

230 SUB RAJOFSCALE (KS, N())
240 FsVaL (SEG:('110123131147

1183-2,311
$250 C 5={ }^{1} 1010110101011010110$;
$0101101011010101^{\circ}$
260 FOR Jx TO 36 :: IF SE6s
(Cs, $J, 1)=0^{\prime} 0^{\prime}$ THEN 280
$270 X=X+1:$ : $W(X)=F \$ 1.059463$
$094^{\wedge}(\mathrm{J}-1)$
280 MEXT J : : SUBEMD
Liaes 230-280 of that routine are an exaple of the kind of handy-dandy subprograss you will find on ey Nuts $\&$ Bolts disk.

We haven't had a Tigercub Challenge for some tife, so-

How can you store a hundred or aore values ot any size, positive or megative, integer or non-integer, even in exponential notation, without dieensioning an array or opening a file?

Mow, how can you link your prograe to another by a RUN statement 2 thereby losing all data, and recover those values? Yes, I know you can save thee on the screen and read thee back, but can you find a better may?

Here's a little demo progral of how cotion can be created by the repetitive redefinition of characters. I call it ETEKNITY. 100 CALL CLEAF : : CALL SCREE W(2): : CALL COLOR (1, 16, 1):: CALL CHAR(33,"",34,"',35," 36, "-
120 FOK $k=1$ TO $12:$ : CALL HC

NAR (R,R+4, ju, 2̂b-R12):: NEXT
R
150 FÜR $h=131024$ :: CALL $H$ CHAR (R, 29-R, 34, (R-12) 12):: N
EXT K
180 FOK $C=5$ TO $16:$ : CALL VE HAR(C-4, C. $55,34-C 12):$ NEXT
C
210 FUR $C=171028:$ CALL V CHAF(29-C,C, Jó, C12-3J): : NEX
I C
$2 \div 5$ FUR $\mathrm{J}=0$ TO 7 : : As $(1+1)$; Bs (8-J)=SE6\$("00000000000000

230 C $\$(1), 0 \$(8)=\operatorname{RPI} 9\left({ }^{\circ} 80^{\circ}, 8\right)$
$:$ : Cs (2), DS (7) $=$ RFTS $\left({ }^{\prime 4} 40^{\prime \prime}, 8\right):$
$: C s(3), D S(6)=K P T s\left({ }^{\circ} 20^{\circ}, 8\right)::$
Cs (4), Ds (5) =RPTS (" $10^{\circ}, 8$ )
240 Cs (5), DS (4) $=$ RPT $\$\left({ }^{\circ} 08^{\prime \prime}, 8\right)$

: Cs (7), Ds (2) =RPIs ( $\left.{ }^{\circ} 02^{2}, 8\right):$ :

250 FOR $C=2$ TO 15 : : FOR $\mathrm{J}=1$
$108:$ CALL CHAR ( $33, A 5(J)$, 34, $85(\mathrm{~J}), 35, \mathrm{C}(\mathrm{J}), 36,05(\mathrm{~J})):$
: MEXT J :: CALL SCREEN(C)::
NEXT C :: 60TO 250
Next, I would like to share with
vou a dee of a "why dion't I think of
that " routine which John Taylor sent
es.
100: 2y COLUAN TEXT ROUTIME IN EXTENDED BASIC (ERSILY CUNVEKTED TU BASIC) BY JULIE
PACK, B.U.6., P.O. BOX 1402
PALA BAY, FL 32906
110: ERHANCED EY JET
SHOALS 94'EhS, P.O. BUX 2928
MUSCLE SHOALS. AL 35062
120 CALL CHAK (64, "00282828')
130 ! PROGRAM TO COPY STARTS

## HLSE

140 CALL CLEAKA : : $1=-1$
150 RESTOKE
160 IF $X>=21$ THEN $x=1:$ : CAL
$\lfloor$ WAll
170 KEAD AESS
160 IF MESSS= ${ }^{\circ} \mathrm{F}^{\prime}$ THEM DISPLA $Y \operatorname{AT}(x+2,1): 2 ;: x=x+4:: 2$ s="•: 6070160
190 IF AES5s='122' THEN DISP
LAY AT(X+2,1):2\$: CALL MAI
T: END
200 IF LEN(2s) 70 THEN MESS $=$
254" "dnES5s
$210 x=x+2$
220 If $X>=21$ THEN $X=1$ : : CRL $\perp$ WAIT

230 IF LEN(MESSS)(29 THEN DI

:1 GOTD 160
240 FOR $A=1$ TO 29
250 I=POS (HESSS, * ', A)
260 IF (I $=0$ OR I 729 ) AND $A=1$
THEN A.J=29:: 60TD 290
270 If I=0 OR I 229 THEN $A=29$
:: 60TO 290
$280 \mathrm{~J}, \mathrm{~A}=1$
290 NEXT A
300 IF $X\rangle=21$ THEN DISPLAY AT
( $\mathrm{X}, 1$ ): SEEs (MESSS, $1, \mathrm{~J}-1$ ): : $X=$
$-1::$ CALL HAIT :: $60 T 0320$
310 DISPLAY AT (X, 1): SEES MES
3 $\$ 1,1, \mathrm{~J}-11$

HEN I=1 ELSE I=0
330 2s=SE6s (MESSS, J $+1,163$ ): :
MESS $5=2 \%$ :: IF LEN(2\$) $) 28$ T
HEN $X=X+2:$ : $60 T O 240$
340 60TD 160
350 DATA -THIS SHORT ROUTINE
WILL Emable you to hrite lo
ng text matenial in your dat
a statements so you won't ha ve to noray about counting*
360 DATA 'THE LENGTH OF YOUR SEntences all the time. th IS ROUTINE HILL AUTOMATICALL Y EDIT YOUR TEXT TO FIT A 28 column screen."
370 data 'a suggestion- IT I
5 a good idea to put a buote
at the deginning and end of
THE DATA STATEMENTS SO YOU
WON'T HAVE TO WORRY ABOUT'
380 DATA 'COMMAS LIKE THIS, "AND THEY HILL REMAIN IN Y OUR TEXT PROPEKLY."
390 DATA "THIS ROUTINE WILL also clear the screen cheen
filledl and continue neadijhg YOUR DATA AND DISFLAYING YO ur text on the next screen.* 400 DATA $P$
410 DATA - TO START A NEH F ARAGRAPH ENTER THE LETTER EP
e as a seperate data statene wt, then Indent your text on YOUR NEXT NEXT DATA"
420 DATA 'STATEMENT 2 OR 3 S
PACES (IF DESIRED). ${ }^{\circ}$ P, "TO S
KIP LINES, ${ }^{\circ}, P$, 'JUST ENTER EP
©",p, "WhERE EVEf YOU WAMT TO ',P,"SKIP."
430 data p. "hake sure that y OUR VERY LAST DATA STATEAENT

IS ellige, AND JUST REFLACE THESE DATA STATEAEMTS WITH*
440 DATA "YOUR OKN. "P, 'YOU'
LL ALSD FIND THIS ROUTINE IS
MOST USEFUL WHEN CONCATENAT
ING STRINGS, E.6., EELIZAE T
YPE PROGRAMS-". P
450 DATA 'AN EXAMPLE: ${ }^{\circ}, f,{ }^{\prime}$ As
xPJACK AND JILL WENT UFe','B
*reTtiE HILL 10 FETCH AE", 'Cs
*PPAIL OF WATER.e", DS=AstEs
HCSEDF", "PRINT DS", P
460 DATA "JACK AND JILL WEAT
UP THE HILL TO FETCH A PAIL
DF WATER.'. F. F, F. ${ }^{\text {PHAPPY PKO }}$
GRAMAING!"
470 DATA 112
480 SUB HAIT
490 DISHLAY AT(24.8): ${ }^{2}$ FRESS
ANY KEY"
500 CALL KEY $(0, K, S):$ : IF $5=0$ THEN 500 ELSE CALL CLEAR 510 SUBEND

Thank you, Julae and John. This 25 beconing one of the cost useful routines on ay utality disk. I was areparing a dask of PD orograms tor our U6 library. Sone of thea needed extra instructions, so I typed thea out on Tl-writer, 50 that people could run then off on their printer. Then 1 resesoered that sose folks don't have orinter 5. So -
50 CALL CLEAR :: INPUT 'file
MAME? DSK1. ${ }^{\text {? }}$ ? F
60 DIM ES(150): : OPEN 11:"DS
K1. 'GFS, IMFUT, DISPLAY , VAR
IABLE 80
$70 \mathrm{~A}=\mathrm{A}+1:$ : LINFUT 1: BS(A)
80 IF EOF $(1)=1$ THEN $B \$(A+1)=$
'121" ELSE 70
and chanae line 170 to -
$17090+1:$ MFSSs=8s(e)
And there you have a quickie proaras to check out those DISIVAR BO files that show ud on your disks under tilenames that you can't reaesber using.

HEMOKY FULL IN LIME 32767 ?

## *** HOLDING FORTH ***

by John F. Schnidt * A Colunn on the TI-forth Language *

This coluan is devoted to those who are interested in making their $\mathrm{Tl}-99 /$ do nore than they ever dreaned it could do using Basic. To use the Tl -FDRTH language it will be necessary to have at a mininum a disc drive system with the nenory expansion systen. If you don't have that, 1 suggest that you get in contact with some club nenber who does, and work with hin, or get involued in one of the informal FORTK interest groups which are springing up. The article which follows describes a comand word which will draw a 'sox' or square anywhere on the screen in Bitthap node. If you are interested in Bit Hap graphics of any kind, FORTH is definitely for you. It is easy to learn and is vastly nore powertul than Basic, and accesses all of the resources of the $\mathrm{TI}-99 / 4 \mathrm{~A}$ without a lot of fuss.

Here is a description of hou to use the 'BOX' routine uritten for the TI-FORTH language. The progran BOX uses the bit-mapped node of screen display so that the programer has the highest resolution available to hin. Either 'SPLIT' or 'SPLIT2' node can be used, although one nust assure that the row and coluan chosen fits the active portion of the screen uhich is available.

The Box word uses the already-defined FORTH word 'LINE' four tines in order to nake a box or square. The input format required is three nunbers: Dotcolum, Dotran, Dotiength of one side. The Drow, Dcol nunbers locate the upper left corner of a square with a side of length 'LEN'. It is necessary to push these numbers into the stack before calling the word. An example would be a box located near the cester of the screph. The comand would be entered as ' 128 /8 25 BOX ' .

Here's how it is done (and this certainly isn't the last mord on how!). Line 2 tells the computer to save the return address so the computer can return to what it was doing before we called the definition. The word 'DECIMAL' tells the computer to regard all nunbers you give it as decinal, as opposed to hexidecinal or binary or whatever.

Line 3 defines three variables and puts $2 e r o s$ into then. These are the Length, the Dotrow and the Dotcoluan. We will need these after we get then off of the stack.

Before we discuss liaes 4 through 7 let's look at the nain oriver progran that is found in lines $B$ to 13. Notice that the first thing we find in line 8 is a colon (:). That tells the computer that we are going to define a new word. It's nane is whatever follows the colon; in this case, 'BaX'. Until the computer finds a seaicolon (;), it will regard all subsequent numbers, words, etc as belonging to the offinition of the operation of the word 'BCX'.

Line 9 calls our variable 'LEN', and puts it's address on the stack. The "!" sign, which is actually a word, tells the computer to take the nunber below 'LEN' on the stack and put it into the nemory location assigned to 'LEN'. Renember that the last nunber we put on the stack was the length. That is at the top of the stack. (The next one down is Draw, then Dcol on the botion). The rest of line 9 repeats the same type of operation described for LEN for the variables 'DRON' and 'OCOL'. When line 9 finishes executing, the data we put on the stack before we called 'BOX' is now in three vaariables called LEN, DROW, and DCOL. Once me have then defined, we can use then over and over, without losing then like we would if we took then directly off of the stack when we needed then. This is like 'LET LBE123' in Basic.

In line 18 we see the use of the word 'LINE'. This a 'Systea' word and is there for us to use. It requires us to tell it the Dotcol and Dotrow of one end of a lins, and the Dotcol and Dotra of the other end of the line; it draws the line for us when we call it. That's pretty handy for us. Line 18 uses two mords 'OP1' and 'OP2' to do our book keeping for us. DPI puts the values for Dotposition 1 onto the stack, and DP2 does the same for Dotposition 2. See how it becones easy to nake up words which contain complex instructions? If you will visualize the box corners as nunbered 1 through 4 starting at the upper left and proceeding clockuise, then the lines 10 through 13 becone easy to read and understand. Notice that line 13 ends with a senicolon ( $;$ ). Renenber why?

Lines 4 through 7 define the words $D P 1,2,3$ and DP4. These take the data we saved in 'LEN', 'OCOL' and 'OROW' and calculate the correct dot and row positions for us to use in lines 18 through 13 . Let us look at two representative samples of these to see how they work. Line 4 describes DPI and DCOL + . DPI takes the address of our variable DCOL and pushes it onto the stack. The ' $\partial$ ' sign ( again, another comand word) instructs the computer to take whatever is stored at the address of Dcol and put that number onto the stack in place of the address. (The word " $\partial^{\text {: }}$ does just the oppositie of "!" .) The next word conbination does the same for Orow, 50 that when we encounter the senicolon after the second' a - on line 4 we have put the value for Dcol onto the stack. To repeat: The calling of DPI word puts the dot colunn value onto the stack, then puts the dot rou value onto the stack. When it has done that it is finished, and returns to where it was called. The word DCOL is a special for of DCOL. Recall that the corners of the box are defined starting at the upper left corner, and the length is given as LEN. Fron this infornation, ti is easy to define the other corners. For instance, the 12 corner 〔upper right ) can be defined as ( DCOL + Len ), ( DROW ). That is, the rou nunber hasn't changed at all, oniy we have noved over fron Dcol to Dcol plus LeN. Using this logic, we can see how DCOL+ works. Look at line 4 again. The definition for OCOL+ begins after the semicolon ending the definition for DP1. The colon starts the new definition.

## Beginning November 5, 1984

The first comand word following the nane of the routine is DCOL. Renember that when a variable nane is stated like this in FORTH, the meaning is to put the address of the variable on the stack....( not the value of the variable). The " $a^{\prime}$ sign, a comand word in its own right, tells the computer to take the value stored at the address found on the top of the stack, and replace the address with the value on the stack. So the conbination of 'OCOL $\gamma$ ' puts the DCOL value on the stack. The conbination 'LEN ${ }^{\prime}$ 'put the value for length on the stack next. The' ' ' sign following these is a comand to get the top two values off of the stack and add then together, and put the result back onto the stack again. The senicolon follows, since we have acconplished tibe desired result: To create a new DCOL value increased by the mount 'LEN'.
if you will stuoy iine 5 , you will notice that essentially, we have just repeated the sane kind of operation for the other dot and coluan locations. When we are finished, we have defined words which give coordinate values for each of the corners of the box. All that would renain to do is to use these to call the line routine four tines, using the appropriate coordinate words. We have already seen that done in lines $18-13$.

The last line is just the reset of the return address, which is the opposite of what was done in line 2. Note that your computer will stay in decinal mode unless you change it cosing out of this screen. It is good practice to set the base of the nunber systen on entering a word definition.

Keep on PRESSING FORTH while I continue HOLDING FORTH!

```
SCR 38
    - ( BOX ROUTINE. ENTER DCOL,DRON,LEN THEN 'BOX')
    1
    2 BASE-)R DECIMAL
    3 V VARIABLE LEN & VARIABLE DRON & VARIABLE DCOL
    4 : DPI DCOL 2 DRON a ; : DCOL + DCOL 2 LEN 2 +;
    5 : DP2 DCOL+ DRON ? ; : DCOL+ DRON 2 LEN 3 + ;
    6 : DP3 DCOL+ DRON+ ;
    7: DP4 OCOL % ORON+;
    8: BOX
    9 LEN! DRON! DCOL!
    18 OP1 DP2 LINE
    11 DP2 DP3 LINE
    12 DP3 DP4 LINE
    13 DP4 OPI LINE i
    14
    15 R->BASE
```


## CHANNELS 45/49

A 12-WEEK T.U. SERIES, BITS AND BYTES

MONDAYS AT NOON

THURSDAYS AT 10:30 PM

SATURDAYS AT 6:30 PM


An exciting new way to learn about computers

Television Series made possible by grants from Computerland and Second National Bank of Warren.

by John F. Schmidt

## THE BOX PROGRAM

When 1 first purchased ny TI-99/4A, it was with the idea that 1 could write a progran which would be able to duplicate sone of the behavior of the Atari Gane 'Star Raiders', which I had seen in a store. I thought it was the nost interesting gane 1 had ever seen on a hone computer. 1 did not try writing such a progran right off the bat of course, but 1 endeavored to learn enough to soon do the job. One of ny first najor disappointnents was the discovery that the graphics in "barefoot basic" were 50 primitive that continuous sprite notion was inpossible. Also, there was no 'PEEK' and 'POKE' comands like the little Tinex computer had. That neant that I had no direct access to the nachine's nenory, Later, 1 discovered that those comands would have been useless anyway, since TI had thoughtfuliy structured their computer's menory 50 that there was no read CPU menory to ness with anyway. (It's all in the video chip - not accessibie uniess you buy extra comand cartridges. That way they could 'Comand' a few nore bucks fron you.) Now I'n not trying to suggest that the $99 / 4 \mathrm{~A}$ doesn't have sophisticated graphics capabilities, it's just that they aren't ivailable for the average person like you and 1 . We nornally don't have a degree in aduanced prograning, and nost of us have no reliable relationship with greenbacks (except when waving goodbye to then as they are carted off by the JRS or bill collectors.) So to nake a long story short, I had just about given up on ny plan to write a Tl version of Star Raiders when $I$ heard about FORTH.

Ah, Rapture!! T] FORTH is to TI Basic what an M-16 is to a Water pistol. It is considerably different than Basic, and that perhaps explains why you nay not know nuch about it. It has similarities to gasic, and that will help you learn it, and it has differences which will require some getting used to. Do you own a scientific calculator? A Kewlett Packard perhaps? If you do (J don't) you will find the nethod of operation a 'natural', since FORTH used the equivalent of 'Reverse bolish Notation'. (Really, that's what it's called) Reverse Polish Notation or 'RPN' for short, describes the nethod by which variables are entered to do a calculation. For exanple, suppose we want to add two nunbers together, like 3 plus 5. The 'algebraic' method of operation requires the numbers to be entered like this: ' 3 ' ' + ' ' 5 ' ' $=$ '. The answer then appears. RPN requires this form: '3' '5' ' $\downarrow$ ' That's ill, The answer generally appears on the calculator display at that point. The difference is that with RPN, you push the nuabers into a 'stack' format and with the 'algebraic' systen you enter the numbers and comands in the sequence you would nomally write then. In FORTH, to display a number fron the stack onto the screen you type a ' ' period). That is a 'PRINT' statement in FORTH. Note that you nust have whatever nunber you want to print already on the stack. It nay be the result of a calculation, or it nay be a number you just typed in. It doesn't natter. To put a number on the stack, type and (ENTER) it, or follow
it with a blank and another number if you want nore than one on the stack. The ' comand word prints off of the top of the stack, so it is like pushing and popping coins in and out of a spring loaded coin dispenser. The last coin in is the first coin out. Three periods in a row '. the stack, one by one, and print then to the screen. They won't be on the stack anymore when you finish. You 'spent' the coins.

Now that is just an idea of the way the stack works. To use the little progran called "BOX", it is necessary to understand what the stack is, and a little about how it works. To use the box progran you nust specify the 'SPLIT' or 'SPLIT2' node. That puts the conputer in 'bitapa' node. (That's the node you nust use to write a Star Raiders gane, by the way) Bitnap allows you to separately define every single 'pixel' on the screen. By way of illustration, consider that a period (".') is four pixels in a square pattern. Pixels are the snallest mark the conputer can make on the television screen or a printer. The box progran draws a rectangle of length "LEN" and positions it's upper left corner at the coordinates 'DOT COLlat', 'DOT ROU'. These two numbers locate a point on the screen as if it were agrid with each cell nunbered. The row numbers start with the top ron of one and the colums with the left coluan being nunber one. The upper left pixel then, is $(1,1)$. The screen is 256 pixels wide and 192 pixels high. The louer right point on the screen is then (DRON,OCOL) $=(192,256)$. By defining dots in a line, one after another, a line can be drawn on the sereen. Now FORTH has thoughttully taken care of the comands for a dot and a line. So it should not be very difticult to take the Line comand word and use it repeatedly to make a square or "B0X'. That is just what the little progran does which is explained in HOLDING FORTH.

The comand structure of FORTH is really very easy to use. Aside from the language being constructed around the concept of a stack, it is also built up fron very simple comands called 'words'. Sone languages call this process building a 'aacro'. The users of the language can build his own set of special comand words. To execute a word in FORTK, you just type it in and enter it. You night be wondering how one urites a progran this way, It really is simple, and it forces you to construct the progran in a systenatic way called 'structured programing'. Now that is not 50 bad really....It's just good thinking. Beyond that, structured prograns are very easy to troubleshoot, since their logic is 50 siaple to follow. To progran with FORTH, you begin by analyzing the task and naning it by sase word. This word nust be defined as a series of other words. These other words in turn, acconplish the series of steps necessary to do the function desired. it is sonetines necessary for each of the first words to thenselves be broken down into other simpler words, and so on. In this way, the problen is broken into managable pieces. Each 'piece' or word can be separately tested also, so that debugging becones nuch simpler since the components of the proran have already been tested.

TIFS FROM THE TIGERCUE
\#17
Copyriaht 1984
TIGERCUE SOFTMAKE
156 Collinamood Ave., Columbus OH 43213

Distributed by Tigercub Sotware to $11-9, / 4$ a Users Groups for proational purposes and in exchange tor their nemsletters. May be :eprinted oy non-drofit users' brours, with credit to Tigercub jottmare.

My new catalog $\$ 5$ now avaisable for st.00, which is decuctable tran your first order. It zontans over 130 prograts in Basic anc Entended basac at only $\$ 3.00$ each Dilus $\$ 1.50$ der order for casette, packing and postane, or 33.00 for :15:ette, Fidal.

The enture contents of Tips tron the Tiaercub Nos. 1 through 14, with bore asoed, are now avallable as a tell dask of 50 prograss, routanes and files ter only $\$ 15.00$ postpadd.

Nuts \& Bolts 15 a diskfull of 100 (that's right, $100!$ ) XBasic stality subproqrans in MERGE fornat, ready for you to aeras into your own programs. Contents include 13 type tonts, 14 text display routines, 12 sorts and shuffles, 9 data saving and reabing routines, 9 wipes, B pauses, 2 eusic, 2 protection, etc., etc., all for just $\$ 19.95$ postpald!

And if you send an order before 31 vecescoer 1584 and sention your user aroup, you nay take a 10\% alectunt.
my 2B-Coluan Converter, sublished in tips this, has a buq which causes a lane to orsappear it the wrap-around causes it to begin with a period and you are using the ficratter option. Here 15 the fix -

Change line 300 to read: 300 fof $k=1$ TO $5:$ : READ CHSRS

Linande line 280 to read:
 other mords, your DATA iters mall be the "at" sion above the 2, the left
brace on the front of the $F$ key, the aapersand on the 7 key, the right brace on the front of the 6 , the carat sign above the b, the tilde on the front of the $m$, the asterisk above the 8 , the whatsit? on the front of the $A$, the period, ano the backslash on the front of the 2 .

A couple of other changes wall autonatically turn off the autonatic thll and adjust, and turn at back on. At the end of line 180, ado :: print 12:".NF" and change line 270 to MEXI

:: CLOSE 2 : : CLOSE 11:: EMD
Now, as long as the text strinas in your proaras don't contan those 2000ail characters, all snould be well. homever, the proaraa has one more bug which 15 coman to all 28-coluan converter proorans, ano for wnicn I can find no really good fix. If a proaran line 15 exactly 60 characters long, the next prooran line mall follom innediately atter it anstead of starting on the neat line. So, load the file in the foitor moce and scan it before you print at. If any of you miz kids lor wniz grandpas) can figure out a may to progras around that proolea, please let ae know!

A challenge in Tips was to write a l-line XBasic progran which mould take only 70 seconos to scranble the numbers froe 1 to 255 into a conoletely randon seouence without duplication. kichard hatcnell, the editor of Super 99 Honthly, case up with an algoritna which 15 shorter than sine and runs about 10 seconas faster - but it sure does chem up a lot of neaory! 1 DIM A(255), C(254):: RANDOM
IZE :: CALL FEEK(-J1808, E1::
IF $B=0$ OR $A(B)=B$ THEN $1 E L S$
$E C(D)=B: A(B)=B: D=D+1$
:: If $D=255$ then End else 1
And if you're not subscribing to Super 99 Monthly, you should be! It's only $s 12$ a year, and full of very useful prograns, routines and tips. The address is Eytenaster Conputer Services, 171 nustang Street, Sulphur LA 70663.

Also be sure to get the National

Ninety-Niner froi the 99ers Users Group hssociation l3535 So. H 5t. 493, Bakerstield CA 93304), also only 312 a year. Thesr roster of writers 15 deginang to look lake the who's who of the Il worlo.

Danny michael has written an assembly lanquage proaras wnacn will suand a qradhics screen to a dot atrix printer (Epson or Geams, ano orobady others) in less than 50 seconds - and he's giving it akay. Just send ma an indtalized disk in a diskette maller with an acoress label back to you and enough return postage. His aooress is houte 9, box 460, Florence al 35630.

Please, can anyome tell ap where can buy diskette mailers at a decent price? The cheapest I have founs are $\$ 0.65$ eacn tor an $11^{*} \times 9^{*}$ prece of cartodara!

Sonebody sald they liked ay Alphabet Song in the last Tips, and soaedody else wanter soase sore routines for the speech synthesizer, so 1 put it all together and here's what I case up with. If you can typg the alphabet wathout a alstake, you get an encore.

100 Chll cleak
110 PRINT - ALPhGEETS
ON6"
120 FOR $\mathrm{J}=1$ TO 20
130 FFINT
140 NEXIJ
150 FGINT - DV Ji

- feterson": :'Wast, please"
- 

160 OFEN $11:$ 'SFEECH', OUTFUT
170 DIM ( 126,2 )
180 Data $12,12,4,4,1,1,4,7,7$
, 8, 8, 10, 10, 10, 10, 12, 4, 4, 7, 8,
$6,10,4,6,8,10$
190 FUR $J=11026$
200 KEAD X

4SThs(x/108:2)
220 (s)( $\mathrm{J}, 2$ ) $=$ Cheis ( $\mathrm{J}+64$ )
230 Next J

"ぬ"し"
250 ChLL CLEÁR
260 FFint ready - type the

ALFHAEET"
$2701=0$
280 : $2=64$
2:0 LALL K.E1! $3 . K, 5 T)$

hen 24
310 1F $k_{1} \cdot K_{i}+1$ THEN $3 \pm 0$
$301=T+1$

-04, 2)
340 Call hlhaf(12,17,K)
$350 \mathrm{k} 2=\mathrm{K}$
360 IF K 2100 THEN 200
j70 JF $1=2 . \operatorname{INEN} 3+0$
3世0 EuTV 270
350 FUFi $k=559070$
400 CALL HuHih (12, 17, K)

-64, 2)
420 NEXTK
430 FFINT 1:TSU,1): HON IV

: "A Ex: I! (3. 1$):$ 'SEET"
440 FFINT 1:18(3, 1): 'MUNT Y
OU":TS(10.1):"CDME AND":1511
2,11:"FLAY W!1H":T\$11.1):ME
4506010270
Terfy htxinson's routane to redefane the cursor nas aroused some interest. so 1 thdoled around and zase un wath thas version to change the cursor autoadically to whatever enaracter, noraal or recefined, that you input.
100) Clukgur latraef, oy Jan p

## sterson


CHLL CHAKPAT(A, AS): : FLR J=1
 J,2): : Call hex vec(hs.j)::
$\mathrm{T}=\mathrm{T}+1:$ : H(T)=0 : : MEXT J ::
120 CALL IHIT : : CALL LDADIB
196.63.248)

130 CALL LUAD (16376,67, 85,82
, $85.79,82,48,8$ )
140 CALL LOAD (12288. H(1), H(2
$1, H(3), H(4), H(5), H(6), H(7), H$
( (I) $^{1}$
$15 \cup$ CALL LOAD $12296,2,0,3,24$
$0,2,1,48,0,2,2,0,8,4,32,32,3$
6.4.911

160 CALL LINK ("CUKSOR")! THAH
KS TD TEffy ATRINSUN
170 SUE MEX_DEC(HS, D):: N=1 : $\operatorname{DEC}=0$

180 FOR J=1 TO LEN(HS):: As:
3E6s(HS,LEN(HS)-J+1,1):: IF
ASC(AS) $) 5$ THEN HT $=A S C(A s)-5$
5 ELSE HT=VAL (A 3 )
190 DEC=DEC+HIHT: : N=N116: : NEXT J
200 IF DECく 32768 THEN D=DEC
ELSE $D=-(65536-D E C)$
210 SUEEKD

And of course you can almays color the cursor with CALL $\operatorname{COLOR}(0,5,11)$ or whatever colors yous like.

Most folks don't sees to know, and sone folks refuse to believe, that the hesory Expansion can't store strings. If you are one of the disoelievers, plug in your Mesory Expansion and try this -

100 FOF J=1 TO 255 : : Ms=ms*
CHES(N): : NEXT J
110 DIM As(100): : $x=x+1:: A$
$3(x)=\mathrm{Hs}::$ PKINT $x::$ GOTO 1
10
Now RUN that. On console, I qet MEmOKy FULL when $x=43$ although the SIIE coamand snows I have 24399 bytes of progran space teee (an the Expansion) - but only 204 bytes of free stack (in the console). Without the meaory Expansion I can get $x$ uo to 51 , and in Bassc to 53.

Thas can be a serious handacad if you are running a proaran whach reads in a large number of strings from DATA statements, or generates strinọs while running.
of course, when the Mesory Expansion is attached, the proaran and the nueeric variables are stored in the Expansion, leaving all the console eemory available for strings - out if you do not generate strings, the console aesory remains unused, because nueeric data cannot overflon into it!

If your proaran generates aore nuerac variaoles than the neaory Expansion can holo, you can however store then in the console by convertina the to strinas, using jTks, and convert the back to numbers with VAL. Thas will allow you store an adostional 700 to 900 or aore numbers. Try this -

100 DIM AlSu40), A3(1000): : F

FMNTX: MEXTX
$110 y=y+1:$ : A! $(y)=5 i n!(59)$
: : HiNT Y:: כŪT̃ 110
When you qet REMOFy F!lll, t,pe SIIE.

Dave herikerderqer sent ae a nez: little routine, and ! olayed arcund wath at a bat. for you wro are not. tootball tans. I'd better euplam that the wave 15 performers a: tootbell stadums wnen the cheerleaders qet the tans tu Etar and cheer, one seating sect:on at a tane. acrose the stadice - ary tres Jrunks on the root are wesily cut of seouence.
qu! THE WAVE by David Rerke: beroer/accitied oy Jia Peier $50 n$
100 CALL CLEAR : : CALI SCREE $N(4)$
$110 \mathrm{fj}=$ "11the wavell*
120 DISPLAY AT(4, 14-LENIAS)/ 2): As

130 Ej="press any key to ste D"
140 DISPLAY GI 122.14 -LEN(E)
72):

150 85="995A3C3C3C3C2466"
$150 \mathrm{~A}={ }^{2} 000018187 \mathrm{EBD} 3 \mathrm{CJC}{ }^{\circ}$
170 FOR CH=91 10 118:: CALL

): : NEAT CH: FUF R=E $10: 2$
:: DIEFLLHY ATIR,I):MS :: NE
XT R
1/5 FOR T=: 1026 STEF : : :
DISFLAY AT (22.T):SEESMS.T.!
1: : NEXT T
180 FOR CHEF1 10123 :: CALL
CHARICH.BSI:: CALL CHARICH-
5.A3): CALL SOUND(-999.-7.5
(RND):: CHLL KEY(3.K.ST):: 1
$=$ ST<>0 THEN SIOP
190 NEXT CH: : 6070180

```
MEMSMY PULL
```

Mapoy hask1 $n^{\prime}$
Jla reterson





| January meeting | January 17 | Modems |
| :--- | :--- | :--- |
| Board meeting | January 24 |  |
| February meeting | February 21 | Forth Demo |
| Board meeting | February 28 |  |
| March meeting | March 21 |  |
| Board meeting | March 28 |  |

## NEWSLETTER DEADLINE

The deadline for the January newsletter is Januarv 5.

Walter Mott has for sale a new Mini-Memory for $\$ 65.00$ or Logo II. You can reach him at 724-7240.

Everyone on the board would like to wish you and yours the best wishes for this holiday season. Hope this coming year is full of happiness for all our members and the Users groups across the country. Come and join us at the coming meeting and help us celebrate all of our good fortunes.

Kathi Anderson, Editor

