

JULY 1984 Vol． 2 No． 7

The July meeting will be held on Thursday，July 19 at Cuyahoga Falls High School at the corner of Fourth and Stow Streets in Room 413 －Physic＇s Lab．The August meeting will be held on August 16．Our meetings are always held on the third Thursday．Please be sure to sign in．

We will have a class on Basic for beginners．Please bring your Blue book that came with your keyboard．

This month＇s prograre will be on printers．\because ．ie have lined up some people to come and demonstrate their printers．

Bert Hawse called to say Rex＇s Salvage on Arlington has TI joysticks in the original boxes for $\ddagger 6.88$ ．

F゙ロッドロ
DATE：September Meeting
FLACE：Cuyahoga Falls High School Rm 413
TIME： 8 PM
Hst prize＝Extended Erect Module
End Frize＝TJ 99 4／A Console
Ir Gr Fr ae Fer sec Game Module
Att Frize＝Fair of Joysticks
Eth Frize＝Cassette Interface Cabbie
TICKETS－$\$ 1.50$ Each or 5 for $\$ 5.00$
Ticket sales will start at the July 17 meeting at 7 FM
Jackets can be purchased between meetings by calling Marilyn Bowen at 920－1884，Members may sign out up to 100 tickets for sale．Tickets and money must be turned in not later than 7：4FF September Doth．Member c are responsible for lost tickets or unsold ticketemot turned in by the deadline．

For those of you who do not subsreate to the Home Computer Magazine I strongly recommend that you purchase the August 1984 issue. This issue has many hew hardware and software items as well as many new venters. For those of you trying to decide on a word froreseing syctemithere is a gond review of the Companion system by Judy Sanoian of the HCM staff These interested in mating your own cassette cables peter Bloch has written a article on how to mate the cable c complete with pert numbers of the components that can be purchased from Fedio Shark A review of the popular hurgertime game by the HCM staff plus many other interesting articles.

In the past two months our lither y has grown fer beyond oupertetione thanks to the hard wort of the library committee and the sharing of firogrems from other user groups. We need additional funds to purchase more blank tapes, disks end other items. Thanks to our new vice president Norman Sorkin we will be able to raffle the following items. Extended their module, Tl gT 4/A consoles a Fared module, Joysticks. and a cassette cattle. We urge exch of you to support thiceffort to expand our library while at the same time having the opportunity to get ore of these items etta berger price.

NEW COMPUTER $5 T O F E$ IN FAVENA

The Computer Store offered irifawema 1 east weer anal wal support that party software tor the Tl. $994 \% \mathrm{~A}$. They also have Eficon and Gemini printers et competive prices. The store is operated by Mr. Foul Fiosejct. THE COMFUTEF STORE -mG NOFTH CHESTNUT FGUENA, OHIO 44260
DAY FHONE 216-296-5961 NITE FHONE 216-296-2202

Micro-Biz has sent us a list of the software that they offer. Here is the list: Savings Bond Manager, C/D; Failing Address/Label, $C / D ;$ Personal Record Keeping, C/D; Bingo Generator, C / D Nr. Jumbo C/D; Jet Interceptor, C / D; Gongo, C/D; Color the Tune, C/D; Facant, C/D; Stop, C/D; TV Pattern Generator, C/D; Easy key, C/D; ABCABC, C/D; Catalog, D; Purchase Order/Invoice Blanks, C/D. C stands for cassette and D stands for disk. For more details on what the software is supposed to do, see the bulletin board at the meeting. They are offering discount rates for group orders. Contact Norm Sorkin if you are interested in any of their software.

Abstract

Another software group has sent us their catalof. They are Intellestar. Their catalog will be posted on the bulletin board. They are offering group discount rates. If you are interested in any of their software, let us know?

We have recieved TI Assembly De-buE from TI. It is on disk and is available to members from the library.

This article comes to us from THE HUGGERS HOOSIER USERS GROUF, June 1984.

BEST OF THE NEWSLETTER!

THE HEART AND SOUL OF PERSOMAL RECORD KEEPING
by Don Donlan (Part II)
The HEADER subprogram which resides in the Personal Record Keeping command module provides access to "data dictionary". This dictionary defines the data that has been created by the PRK module. As I mentioned in the last article there are two formats or ways to code the "call" for this subprogram. For numeric information use [CALL $H(R W, I N F D, F L D, W)$) and to read/write character information use the format $[$ CALL H(RW,INFO,FLD, Vs) J. If the "RW" variable is "1' the subprogram will "read" information from the Header record. If the "RW" variable is " 0 " (zero), the subprogram writes information to the Header record. " U " and "ws are used, depending on which kind of information you wish to retrieve (U for numeric; Us for character). The "FLD" variable is sometimes ignored, sometimes required, depending on what number is in the "INFO" variable. "INFO" is a number between 1 and 14 which determines what Header record information you will read or write. A "FLD" iumber is ignored for the first 8 kinds of information; the rest require a "FLD" number. The fourteen kinds of information stored by the Header record are as follows:

```
1 = File Name up to 10 characters long.
2 = Day of the month (a number from 1 to 31).
3 = Month (a number from 1 to 12).
4 = Year (a number from 0 to 99).
5 = Number of fields per record <a very important number because it will de-
            termine how many times we will need to ask for information found for the
            information types }9\mathrm{ thru 14 shown below). This number is automatically
            incremented each time a new "highest numbered" field is defined
6 = Number of records in this PRK file <also autonatically incremented each
            time a new "highest numbered record" is written).
7 = Size of Header record (length is automatically calculated and entered).
8 = Size of the Data record (this too is automatically calculated and stored).
```

Now we come to the Header record information that describes the indiuidual fields within each data record. This sequence of information is repeated for each of the fields, up to the number of fields indicated in Header record information 5 (see above). If "FLD" is 1 , the first Data record is defined; if 2 , the second; if 3 , the third and so on.

```
9 = Name of the data field (up to 10 characters long).
10 = Type of Data field: 1=character 2=integer 3=decimal 4=Exponential.
11 = Size of Data field. This depends on the type:
    Character data fields are 1 to 15 bytes long.
    Integer data fields are 1 to 10 bytes long.
    Decimal data fields are 2 to 11 bytes long.
    Exponential or scientific notation fields are 8 to 13 bytes long.
12 = Number of decimal places. For character and integer data, this is zero.
    For decimal data, the number tould range frmm 1 to "size" minus 1.
    And for Exponential or scientific notation the number is 0 to 5.
13 = Amount of space required for the Data field (as set by Header subprogram).
14 = Position of this field within Data record (as set by Header
```

As you can see, with this kind of information you can reveal the data base structure of this PRK file. I don't know if you could use a BASIC program and the Header subprogram to write your own data base structure. It would be interesting to see what would happen. A typical Header record night look like this:

MYRECORDS_10_22_83_2_15_50_30_NME_1-15_0_15_1_PHONE NO.-1_15_0_15_16
I use the "-" character to set the "INFO" fields apart. Above would be header record for a file called "MYRECORDS" which was last used October 22, 1983. It says there are 2 fields for every Data record, 15 such records in the file. The length of the header record itself is 50 bytes; the size of each data record is 30 bytes. The name of the first of our two fields is "NAME", which will have up to 15 characters of information in it, so we'll reserve 15 bytes. This first field starts in position 1 of the Datarecord. Dur second sample field is called "PHONE NO.", again a 15 byte character field that needs up to 15 positons in the record, so we'll start it in position 16 . The sample Header record above could be the start of a phone and telephone number data base that was created by the PRK command module. If you have the PRK module you might want go ahead and make up such a sample file and store it on disk for use by the programs that we will be presenting at the end of these articles. That way you will be able to 'test things out' on your own.

Next month we will review the GETPUT subprogram, the utility that reads and writes the Data records created/retreived by the PRK command module.

This "Best of the Newsletter" appeared in the November, 1983 issue of the HUGger Newsletter.

I would like to thank Rich and Ian and of course Pat for their articles. If you have an article that is news-worthy, I would like to include it in the next newsletter. The deadline for August is August 4.

This article comes to us from Ian Mariano, one of our members.

ASSERELY LANGUAGE FROGRAIN. ING IF

Here are some tips on food assembly language programming:
1......SUDY ALI NE ONIC INSERUCIONE
2...... AE! UKIZE
3...... FINE SHCFACUS
4......FLONCHAK! FFOGFAVES
5...... $\mathrm{MANSLA} E$ FIONCHAR ING ASSENEIY SOURCE CODE
6...... ES: ANE IOLIFY THE FRCSA:
these steps will help you to program assembly with greater potential. I will discuss each step with you in this article and ty the time you are done reading it, I hope that you will gain a better grasp on programing ascemtiy language.

Gaining ar understanding of the instructions will help you create all kinds of routines that will help you make the program.. Start from the beginning of the Editor/Assemtler manual and read through it, try some of the application programs in it, that will help you understand what each instruction does. Always keep the manual somewhere where you can access it for reference, place markers where each section begins and where any important material is so you can just directly access the section you need to. STET NO:MENOLIZE

As you learn the mnemonic instructions, memorize them, for if you do, you won't have to flip through the manual to find the format that the instruction takes. Also, memorization will allow you to program faster and more accurately in assembly language.

When you develop a routine for a program, such as clearine

```
a scretr inage tatle or ciearime the soreen, chech over the sourra
```

coit and find amplace in it whert you can make the routine erorter
and therfore save memory or time. for exanple, if a screen irraes
iakle starte at $>_{1} 800$ and you rurt initialize >00 to >FF thref
tines, your routine woulu prokariy look like tris: ItE EYE YOO
FiAE EY Z >00
SAEIE EQU >1800

LOCFA II R2, 700
ELAF @u:
LOC: II RO,FLAC=
iNC FLACE
CE UFLA: L, \quad PFF
JNE LOOF
LCE 1 DEC FLACE

JNE LCOF1
INC: In E
CE I: E, AFOR
JNE LUCTS
R:
You want to speed it up, so make it into:
HAX EA A >0100
\therefore IME EYE >00
FLACE EYEE >00
FON EY E >04
S.AELE II K2, >0 E
EINE : OE:
LGGF II RO,FLAGO
INC FJACE
CB EFLACE, 这AY
JNE LOC:
INC - IID
CE M. ILE, WHOF
JE K KE', URN
DECFIA DEC FIACE
CE GLACE, >00
JNE DECtIA
JI.1 S:ASIE
RE URN K',
If speed is what you want, use example two, for tyte saver, use
nurber one, see a choice in there?

Decide what your program is to do，write it down as steps that． the probrar．will have to take in order to get the jot done，iris． ＂diagram＂of some sorts tells you what order to put your routines of the program in，or simply，a flowchart．Suppose we need a program to accept screen input for the entire screen，but it is only a test to see if we are advanced enough to do it，here is the flowchart：
 2－GE゙ュ KEY FESS \longrightarrow IS I＇NOFEY？NO $\longrightarrow D I S E L A Y$ ON SCREEN 3－LAS－SCREEN FOSI：ION？YES－．．．．．．．．．．．．．．．．
Cnn ono
here we have a flowchart，now we must translate it into source code． Let＇s find what variables we need first，maximur screen positions： 900，current position：0，key asciis $\quad 8375$ ，hokey pressed：\rangle FF，incriment： 1．Let＇s see，ah yes，here is the first part and second par now completed，all we have to do is put in into source code，which． could te：

DEF SCREEN
REF LIEN，KSCAN，NE．
UNI．EYE >00 SCan entire keyboard
FIring End >8375 ASCII \because Glue of key pressed
luCk EY＇E＞FF No key pressed
rOSE DA＂A 0 Current screen position
LAX DATA 961 Fiaximum screen position＋1for all positions
ONE DA A 1 Increment or decrement

FT，WF avis mode
CLEAR HOVE＠>8374 ，UNI
CLEAN II RO，FOSI
LI RI， $\mathbf{2 0}$ Space character
LI E2，1

A 2 EOSI，ONE
C ふFOSI，＠UAXF All screen cleared？
JNE CLEAK If not，continue
LOOK $ふ$＠LOST，ONE
C＠rOSI，0
JNE LOON
GE＂YEY EL VF＠YSCAN
CE 心FIFE，＠NOK No key pressed？

```
    JEqGENEY Yes, Ecan agair
IILriY II ro,bOSI
    IIHI,PIFEMOVB@FMRE,RI
    lI k2,1
```



```
    A シгONI,GCNE
```



```
    JEQ CIEAK Yes, clear screer
    JHE GE:KEY NO, Coniinue
    EN
```

viol. flowchartine, writing the program. is a lot easier for you -o
do=
SELSIX: EON AND MODIFY KP ENGRAM

Now that the prograr is complete, you mus' check for any "tugs" in tine program. Now you can add any cosmetic changes if you wish. If au all possible, use ire $2 E=y$ program that came with your E/A. wite DebUg you can edit the proErari. while i" is in use.

YE ENE

This article comes to us from Rich and Doris Williams, who are members of our group.

```
BIO-RHYTHHAS
```

The theory behind Bio-Rhythms is that our bodies produce, store up and release energy in regular cycles. These cycles are started at birth and never gain or lose a second; maintaining perfect time; during our lifetime.

Bio-Rhythms are measured in three different cycles: a twenty-three day physical that governs your physical strength, endurance, energy, confidence and sex drive; a twenty-eight day emotional cycle that governs mood, sensitivity, creativity and friendliness. The last cycle is a thirty-three day mental cycle that governs learning ability, logic and memory.

The Eio-Rhythms are charted as low cycle, high cycle and caution days. When a cycle is high, these are good days for you and your outlooks are good. When a cycle is low, your outlook is negative and depressed and these are not good days. Caution days occur when a cycle crosses the midline. These days mean your system is in a state of flux as it switches over. On these days, you can be more accident and error prone. It is even more important to watch for double or triple caution days when two or more cycles cross on the same day. Take extra care on these days.

The physical cycle on the high side means you feel stronger, healthier and energy is flowing through your system. The low side means your energy flow has become a trickle, you are less energentic, less confident, more prone to illness and tire more easily. Physical caution days cause your energy flow to shut down; timing, reflexes and perceptions are dulled and you are, statistically, up to five times more accident prone.

The high side of the emotional cycle makes you more optomistic, cheerful, affectionate and your creative processes are stimulated. The low side causes you to be moody, nervous and less creative. Emotional caution days can be very upsetting and when in conjunction with a physical caution day can cause unsettling problems for some.

The mental cycle high side means your learning ability, logic and memory are operating at peak efficiency. The low side means your analysing perspective and grasp of new ideas are reduced. Dental caution days are not a potent on the system as other caution days but important decisions and major scholastic exams should be avoided on these days.

When you run this program, the first thing to cone up after the misspelled title is the question of whether or not a thermal printer is attached to your system. A "yes" answer will enable an output for printing the chart.

The next inputs are the subjects name and then said subjects date of birth divided into month (MM), day (DD) and year (YY(YY)). Year designations are set up to accomodate
two or four aicits (82 or $19 \varepsilon \bar{c}$) . [unc inportant notc for year abireviation to two digits; the program will corcluae you were born in the twertieth century.] All dates must be separatcd by comas. These notes also apply for the noyt input statement of the current date.

Oncc these dates have bcer entcred, the program will calculate the total nunbor of days the subject has lived and an approximation of the total ycars. From this, the program will create the Eio- Rhythm chart starting with the current date entered.

The evaluation of the chart is as follows: the red "F" stands for the physical cyclc; green "I" stands for the mental (intellectual) cyclc and the yellow "E" stanas for the emotional cycle. A star "*" is to show an overlapping of cycles and does not sifnify critical days. The chart is divided into a minus(-) for the low side, a pius(+) for the high side of the cycle and a $z \in r o(0)$ to indicate the critical Iine.

Pressing the space bar will cortinue to run the day to day chart until function 'clear' is used to break in.
...hen compared with a mathmatically calculatca chart, this program is comparatively accurate.

For a "Dasic" procram, it seers to be well-written and the graphics are suited to the program.

Ey Fich and Doris iilliars
This progran will be availablc from the library at the coming meeting.

LIST OF BOARD HEBERS AMD THEIR HOME FHORU NUREERS
President, Pat Bowen 920-1884
Vice President, Norm Sorkin 678-2560
Librarian, Leroy lartin 666-3984
V.P. Program, john Tuesday

Secretary,
$\begin{array}{ll}\text { Treasurer, Betty Duncan } & 633-5217 \\ \text { Educational Director, John Curry } & 929-8824 \\ \text { Editor, Kathi Anderson } & 923-7530\end{array}$

This article comes to us from the pLi! OliU $99 / 4 \mathrm{~A}$ HU: COFPUTER USERS GROUP newsletter, June 1984.

FOR BEGINNEFSS RANDOM NUMEEFS

This 2 s for those just learning to progran. Many times: especially with oames, or programs being written to teach kids, one wants an element of randomness. You have a very powerful function available, FiND. This command is used as a numeric variable in your program statements. To non mathematicians it is a bit confusing as to what happens, but in a minute you will see the extreme versatility we have with this command. A random sequence of numbers is a very elusive thing. The $T I$ 99/4A FND command actually uses a routine that generates a pseudo-random sequence of numbers. Each time you run the program you will get the same random sequence.

To help make this more truly random, you have two simple options. At the beginning, or even multiple times throughout a program. use as a command in a line of the propram, FANDOMIZE or RANDOMIZE followed by a number, or any numeric expression. This number is called a seed. Note that only the first two bytes of the seed are used. If you follow FANDOMIZE with a seed, you will oet the same rai:dom sequence each time you run the program if the first two bytes of the seed are the same. If you do not use a seed you will get a truly "random and different sequence of numbers each time you run the program.

Now, back to what FiND actually does. This command oenerates and returns a random number that is equal to or
oreater than 0 and less than 1. When I read that for the faret tame an the user's guide. 1 thought good orief. that sure sounces worthless. What you disfover though wher vou use the connano that they left out some very valuable information. Thas number 15 actually a 10 dagt number. whach meane that simply by multipying RND by 10.000, 000,000 you can generate a random number between 0 and 10 billion. Of course you can multiply it by any number or add any number to it. etc, so that you are limited only by your imagination in creatang random numbers to fit any need. Usually you want an integer, that is you don't want all those digits to the right of the decimal point. Use the INT function. They do give you a formula in the users guide. which 1 will repeat below, but it is mucn nicer to understand why the formula works, because then you are not limited by it.

To get a random anteger between and including A and B, where $A<E$, do the foll owing:
10 RANDOMIZE
$20 C=I N T((E-A+1) * R N D)+A$
Adding A at the end sets your lower limit, as the rest of the expression generates a number either 0 or greater. A is subtracted from B in the portion that is multiplied by RND because otherwise your final number will exreed your upper limit as A is added back on at the end. 1 is added to the multiplier so that the end result will include the upper limit. That is because the INT function drops the digits to the right of the decimal point for positive numbers, and for negative numbers returns the next lowest integer (INT $(-2.3)=-3)$. Frank Krautter

SUMMIT'99ers USERS GROUP Kathi Anderson. Editor 3240 Bailey Road
Cuyahoga Falls, Ohio 44221

