December 1987

The Q $\mathrm{QB}_{\mathrm{H}} \mathrm{HITOR}$ is the Newsletter of the $\mathrm{CB}-99$ 'ers User Group, is printed Sept, thru June and sent in exchange for other User Group Nemsletters. Send Exchange Nemsletter to Frank Cotty, Qupensborough Conaunity College, Bayside, MY 11364. Credit original sources.

The QB 99^{\prime} ers meets the second Saturday of each month September through May, at Queensborough Community College, Bayside New York, room S225. See the calendar at right for the dates

Dues axed due

In January all $Q B$ 99'ers must pay $\$ 10.00$ Dues. Failure to pay dues will cause revolation of membership and termination of subscription to the Monitor. Forward your check for dues to Frank Cotty at Queensborough Community College.
$\operatorname{con} t \rho 12 t s$ PapeEditor's Note2
FORTHward HO! 3
Fortune of Wheels 5
Setting Your Printer 6
CTRL Key Codes and Rave 101 Keyboard 8
LA STYLER 9

QB MONITOR ~ QB-GS*er NEWSLETVER

Editor's Note

The current issue of the QB Monitor contains items of interest to most TI-99/4A computer users. Programming information in FORTH and in Extended BASIC. Both articles by very articulate and knowledgable programmers. For those without a printer Mike continues with FORTHward Ho! and Ed has contributed FORTUNE OF WHEELS. I'11 let Ed describe that one for you.

Ed loves to chat with his fellow computerites. The result is often enlightening to those just sitting by and watching. Tom Freeman of the LA 99'ers wrote some programs in the TopIcs newsletter in addendum to Ed's "BASIC tinygram". His results are given here with Ed's last word (yes he said that). LA STYLER is Ed's last word on print styles.

For those with a RAVE 101 keyboard there also appears in this issue a listing of the Control Key Codes as used for the Rave keyboard.

Thanks to John Wilforth of the West Penn 99'ers we have the following listing of T.I. Vendors. This listing includes cnly current distributers of TI Hard and Software. I urge you to support these and other suppliers which have not been listed. If you write them they will return information to you regarding their products.

Horizon RAM Disk, P.O. Box 554, Walbridge, OH 43465

Quality 99 Software, 1884 Columbia Rd. \#1021 Washington D.C. 20009-5161
--DM IV, Draw n' Plot, Screen DumpII
Amnion Helpline, 116 Carl St. San Francisco, CA 94117, Free not for profit help and freeware programs

Disk only software P.O. box 244 Lorton, VA 22079, Horizon, MYARC etc.

McCann Software, P.O. box 34160, Omaha, NE 68134. Printers Apprentice

DataBiotics P.O. Box 1194 Palos Verdes Estates, CA 90274

Tenex Computer Express, P.0. Box 6578, South Bend, IN 46660

Tex-Comp, P.O. Box 33084, Granada Hills, CA 91344

Texaments, 53 Center St. Pathogue, NY 11772

Triton Products Co., P.O. Box 8123, San Francisco, CA 94128

Genial Computerware, 835 Green Valley Drive, Philadelphia, PA 19128

Ryte Data, 210 Mountain St. Halburton, Ont. KOM 150

Micropendium, P.O. Box 1343, Round Rock, TX 78680

Corcomp, 2211-C Winston Rd., Anaheim, CA 92806

THIRD ANNUAL T.I.C.O.F.F. IS MARCH 26

TI.C.O.B. '88
at Roselle Park High School
(Exit 137 - Garden State Parkway)
Saturday March 26, 1988
9 AM to 4 PM Admission $\$ 5.00$

Featuring:
Huge Indoor Vendor's area, Work Shops - Fairware - Hardware/Software -Swap-Shop. For TI-99/4A, MS/DOS and IBM computers.

Pre-paid admissions get a free disk of IBM-TI software ---Send check and ASAE to TICOFF 185 W . Webster Ave., Roselle Park, N.J. 07204

For further information call 241-45550/8902

Nom thet tay ye yined a basic -inatyianding of FORTH, lets become a i ! ! ie more intimate with the way fofit handes, stores, and manipulates various types of data.
-by MikeHI 08 प̧'ers

One of the final goals in learging how to program in a new lanquage is to be able to write that allotime great program, isn't it.... Hell, in order to accomplish this, we as programers will ieed to know how the data to be used in our program is to be entered, stored; manipulated; and output.

Againu we will be using EASIC es a reference platform in order to more easily explain sone of the new concepts we will be discoyering in our trak down the road to becomming a proficient Forth programmer.

ALL FROGRAHMTNG LANGUAGES ALLGW THE PROGFAMMER THE ABILITY
TO RESERUE THE NECESSARY SFACE IN menory for all data that bill be lsed IN THE FROGRAM. THE FROCESS OF FESERUING NEMORY FOR DIFFERENT TYFES OF DATA IS REFERFED TO AS DECLARING UABTAELES.

```
    In TI GASIE we never really
had to deciare a variable before
using it ; with the exception of
arrays that contained more than 10
elements which had to be declared
with DIM statements ). FORTH is
different. IN FORTH UE MUST
EyFLIEITLY DECLARE ALL. VARIABLES
bEFGRE THEY CAN EE ISED.
```

AS in TI BASIC, FORTH allows us NUMERIG TYFE variable as well as ETRING TYPE VARIAELES. There is, however: a sioghty different way in which Fught looks at these variubles when compared to TI BASIC. This is important, $=0$ lets pay attention..

NUMEFIC VAFIABLES UF TO 255 ARE CONSIDEFED TO BE ONE EYTE LONG, GND

WILL GNLY requife 1 memory cell in WHICH THEY CAN BE STORED. These are called single length variables, and can be declared as follows...

VAFIABLE AGE

This statement declares the variable AGE, thereby reserving 1 byte for 1 memory cell) in memory for it.

Now if we wanted to store a person's age in AGE, we would use the FOFTH word ! (pronounced store) to put the persons age at the memory location referenced by the veriable AGE.

12 AGE :

...is how it ie done.

Supposed we wanted to find we didn't know what the persons age was, but it was already stored in the variable AGE, how would we get it? We would use the FORTH word © (pronounced fetch) to get a 1 byte value from the variable $A G E$, and put it on the stack. To print it we use forths dot command.

AGE E.
...is how you do it.

0k, lets look at NUMERIE VARIABLES THAT COMTAIN VALUES LARGER THAN 255. Since 255 is the largest value that can be stored in a single menory location, any number greater than $255_{\text {will }}$ need 2 memory locations in which to hold its data.

FORTH allows for this by praviding the words necessary to declare a DOUBLE LENGTH VARIABLE, store data to a DOUBLE LENGTH VARIABLE, and to fetch data from a DOUBLE LENGTH VARIABLE (there is also provisions in FORTH for doing a lot more with double as well as single length variables...more on that later).
...uses the FORTH word 2VARIABLE

2UARIABLE YEAR
to declare the double length variable
1号7. YEAK 2!
.. stores the value 1987 to YEAR with the forth word 2 ! (pronounced 2storei.

YEAR ZR 0.
.fetches 1987 from year with Re (pronounced fetch) and puts it on the stack where it is printed with the forth word D_{0} (pronounced doubse-print ??).

Don't forget the period after 1987 for any double length number:

```
    0., that starts us on our way
with numeric variables. Next we will
look at STRING VARIABLES in FORTH.
In \(\quad\) ! BAsie we didn't have to pres declare a string variable, and storing a value to a string variable was as simple as At="hello there". In FOFTH strings are handled a bit differently... (again). The simplest way, and the way that will serve to demonstrate how string variables are declared is as follows...
```

Vafitable ghymame go allot
...uses the familiar
FORTH word VARIABLE to declare the variable Anymade, then 30 ALLOT uses the FORTH word ALLOT preceded by the number 30 to reserve 30 more bytes in memory for the variable any mene. We now have a st byte block of menroy recessed for a string of characters that are referenced by the variable name ANYNAME.

Now how do we store data to: and fetch data from, ANYNAME. Well, logically we would use a variation on the FORTH word ! (store) to store a string value... right??

Well.. you're not quite right, but you're not entirely wrong either..

ANYNAME 30 EXPECT

...introduces the
new FOFTH word EXFECT. This causes the computer to immediately wait for the next string of characters entered terminated by a carriage return (the ENTER key) to be stored at the location ANYNAME in the order that they were entered. The number Wo preceding EXPECT $i=$ the maximum number of characters to EXPECT from the keyboard.

To see the string stored at ANYNAME, We mould...

ANYNAME 20 TYPE
.. TYPE is a FORTH WORD that types out the designated number of characters at ANYNAME.

There are other ways to declare and aces strings in FOFTH, which we will go into later.

Ok, we 'va covered the basics of variables in FORTH as it applies to the TI-99/4A. This should provide a little food for thought. Take some time to do a little experimenting with what you 'vi just learned...

Next installment will look at strings in depth, and cover loops, and conditional branching. Then we will be able to begin work on our first real program in FOFTH.

[^0]
FORTUNE OF WHEEL8

A Tinygram
by Ed Machonis
Last month 1 promised that I would have something this month for the people without printers. In lieu of Epsons and Axions I give you a Fortune of Wheels. Just to prove that I CAN write a progran that doesn't use a printer.

1 must admit l had a littie help. The Tinyoram presented here is an enhanced version of son Michael's WORDGUESS which is on the TIMARC disk. Originally a TI Basic 10 Liner, it has been recast in Extended Basic and the hidden phrase display reseables that used in a popular TV show of similar name. Sorry, no Vanna White to turn over the letters. What do you expect from a TiNYgran?

Unlike the TV show, where the amount of the prize depends on the randon spin of a wheel, the prize in this gane is proportionate to the relative difficulty of the puzzle and how quickly you solve it. The longer the phrase, the greater the prize; the fewer tries, the greater the prize.

Fortune of Wheses is two player or two tean gane. The first player or tean leaves the room or turn their backs to the sereen while the second player or team enters the mystery phrase. As soon as ENTER is pressed the screen will clear. Alternatively, if you are sure of your typing, the TV brightness or contrast can be turned down, or the progran revised to black out the screen during entry.

If you wish to black out the sereen during entry of the mystery phrase, change Line 2 to read as followsi

```
2 CALL SCREEN(2):1 INPUT M\$
1: CALL CLEAR i: CALL SCREEN
( 8 ): \(: \operatorname{LIEN}(M \$)\)
```

The first player or tean can now try to guess the individual letters or the entire phrase. You must enter the entire phrase to be recognized as a winner. If you do not enter the entire phrase, do not enter more than one character.

Entering a wrong letter, or more than 1 letter; or an incorrect phrase will cost you etry and reduce your prize.

Cumulative totals can be kept on paper. (Horrors! Let it be a challenge to you. Either sharpen your pencils or your programing skills!l Negative amounts won (Possible!), should be subtracted from the cumulative totals.

This Tinygram is easy to type in, quick to load lcassette users take notel, and FUN to play. It can be as siaple or challenging as you and your opponents care to make it.

Minimum requirements are Console, Cassette Player, TV and Extended Basic.

```
1 ! *** FORTUNE OF WHEELS **
    * A TINYGRAM *
    * by Mike & Ed Machonis*
    *************4**********
```

2 CALL CLEAR II INPUT "ENTER THE MYSTERY PHRASE ":M\$ |: CALL CLEAR i: L=LEN(M)

3 D\$:RPT\$(CHR\$(30),L):1 FOR
 $>$ " $"$ THEN 4 ELSE D\&=SEG\$(DK, $1, J-1) \& "$ "\&SE日乡 (D\&,J+1,L)

4 NEXT J :I PRINT D\$

5 TET+1 I: PRINT $\mathbf{z}^{\text {"TRY NO.": }}$ Tif: : I INPUT "TYPE LETTER O R ENTIRE PHRASE": A\$ II IF LE $N(A \$)>1$ AND LEN $(A \$)<L$ THEN 5
$6 \quad W=L+1-T$ i: IF $A \neq M$ THEN 9

7 FOR J=1 TOL II IF SEG\$(M\& $, \mathrm{J}, 1)=A \$$ THEN $D \$=8 E 8 \$(D \$, 1, \mathrm{~J}$ -1)\&A\&\&SEG\$(D\$,J+1,L)ELSE 8

B NEXT J : : PRINT :D\& : GOT 05

9 FOR J=1 TO W $1:$ CALL SOUND $(200+\mathrm{J} * 10,330+40 * \mathrm{~J}, 0): 1$ NEXT J : : PRINT:"YOU WIN "ISTR\$ (W);",000 WHEELS!" 811 is INP UT "PRESS ENTER TO PLAY AGAI

SETTING YOUR PRINTER

by Tom Freeman, LA 99ers
from an idea by Ed Machonis, QB-99ers

My article this month is going to go "back to basics" - literally! It began with a "BASIC Tinygran," as he called it, sent to us by Ed Machonis of Floral Park, NY, to show what could be done with just 16 lines of Basic code. It follows this paragraph in exactly the form that Ed sent it to us, with two exceptions: for some
reason I typed an extra space before the ? in line 5, and I have provided the XBasic Checksues for all the programs in this article. Although this is a program that can be run in Basic as well as XB, I advise you to do your typing in XBasic and use the Checksum program, so as to ensure accuracy.

EST", "2 ELITE","19 EXIT","3
EXPAMED","11 SUPERSCRIPT"," 4 COPPPESSED","12 SUBSCRIPT"
!984
5 INPUT 5 EPHASIZED $131 /$
2 LIME SP ITALIC 14 L
MARGIN 137 D'ELE STRIK 15 R

MARGIN 678 UNDERLINE ?": 9 IF IK>18 THEN 4 !244
I!221
 θ
7 IF IN 1 THEN 91293

! 233

Some things to nate about this version．It is still a Basic progran，although again I have provided checksums so you can type it with accuracy in XBasic．Also，the fourth data iten did not have to be separately defined． Where you see a space on this page you should type CTRL O．Although you will still see a blank on the screen what is actually there is ASCII 143 ，which is an acceptable printer code for compressed mode．By the may， I believe I made a aistake in this version－the third to last data itea which is presently a 1 should be an A ．

159 DIM P $\$(16):$ ：FOR $X=1$ TO
16 ：：READ Ps (X) ：： $\operatorname{NEXTX} X:$ OPEN \＃1：＂PID．CR＂！ 163 119 DISPLAY AT $(3,1)$ ERASE ALI ：＂1 PICA／REEET 9 NO LONRLI NE2 ELITE＂，＂1G TEST＂，＂3 EXPA NCED＂，＂11 EXIT＂，＂4 COMPYESSE D 12 SLPERSCRIPT＂！131

129 DISPLAY AT $(7,1):$＂5 EPPHA
SIIED 13 SUBSCRIPT 6 ITALI
C $14 \times / 72$ IM．LF 7 D＇BLE STRIK 15 L ．MARGIN X 8 LINEER
LIEE 16 R MARGIN X＂！ 168 138 ACCEPT AT（11，1）VALIDATE（ DIGIT）BEEP：I ： 926
149 IF ID16 THEN 118 ELSE IF

Type it the＂wrong＂may first，to get the correct checksum，then acke the substitution．

Hy next version（which follows the 2nd below）eerely put the above progran into true χ Basic format，with mitiple statement lines．It actually takes up one bite HORE of code，despite being 11 progran lines shorter，but it should be easier to type in．Note that the aistake mentioned above is corrected here，and that the 4th data item is still CTRL 0 ．

［ $)=14$ THEN DISPLAY AT $(12,1)$	\＄（M）！ 936
：＂X？＂：${ }^{\text {a }}$ ACDEPT AT $(12,3) \mathrm{VALI}$	179 IF［\＞11 THEN 119 ELSE C
DATE（DIGIT）日EEP：M ！ 225	LOSE \＃1！119
156 IF［＝10 THEN PRINT \＄1：Ps	180 DATA $\mathrm{C}, \mathrm{M}, \mathrm{W1,*}{ }^{\prime \prime}, \mathrm{E}, 4,6,-1$
（10）\＆CHR\＄（13）\＆CPR（10）： 607	
01161972	OVER THE LAZY RED D06 123456
	8 边

［ $>=14$ THEN DISPLAY AT $(12,1) \quad \$(M)!636$
：＂X？＂：：ACDEPT AT $(12,3)$ VALI 176 IF $1<>11$ THEN 110 ELSE C DATE（DIGIT）BEEP：M ！225
156 IF I＝10 THEN PRINT $61:$ Ps
（10）\＆CHRS（13）\＆CYR（10）：：60T $0116!872$
：IF I $1=14$ THEN PRINT Hi：CHR 8

For the last version I decided to take a completely different approach．I noted that many current printers ave a＂master＂print control code，usually Esc ！n． Seven of the eight bits in the number n each control a print sode．For the Citizen Msp－19，starting with the rightnost bit，they are elite／pica，no effect， coapressed，eaphasized，double strike，expanded，italics， and underline．The advantage of this aethod is that each mode can be toggled on and off separately by toggling the appropriate bit on and off．All bits＂off＂（ASCII 0）is the equivalent of resetting to defaults，except that 1 continued to have the problem that even when I did this the underline was not turned off－aust be some quirk in ay printer！I decided that I would also like to be able to toggle near letter quality on and off，and that I wished to display on the screen what the current ＂settings＂are．

To understand how I did this，you need to know how YBasic handles＂logical operators．＂This will also be applicable to asgeably language programaing．There are four such expressions：AND，OR，XOR，and NOT．When used on numbers，they operate on full 16 bit numbers（which because the highest bit aust be reserved for the sign of the nuaber range from -32768 to 32767）．NOT cperates on a single number and reverses each bit in it．The other hree work on two nusbers and produce a third．In the case of $A N D$ ，corresponding bits are compared in the original two nuabers，and a 1 put in that＂place＂if both bits were 1，otherwise a 9 ．For OR ，the result is a 1 if either number contained a 1 －only if both were g is the
result a 6．And finally XOR will place a 1 in the proper position in the result only if one of the numbers had a 1 there．If both were 1 or both were 9 then the result is ag．For you asseably language programers exactly the sase procedures apply，but see your annal for addressing modes．

Now we can combine these operators with the ASCII codes that oust follow Esc！to the printer．Since we want to treat each bit independently，the logical operators make it easy to reverse thee or test them． Note that the first seven data items are numers each of which have only one bit on，namely bit 1 and 3 to 8 （2 is not used）．By using $A+1$ on this value and the current value of G all the bits of Q except the one of current interest are turned off，and this particular bit is also off if it was off in Q（remember that AND insists that the bit be on in both numbers）．The resultant number will still be a power of 2 however．By using the SEN function it becomes either a 1 or a 8 and this is listed on the screen to indicate the current state of the particular print code．This is all done in line 138.

The rest of the lines through 176 complete the setup of the menu．Note that I have also read some of the menu lines into an array with data statements－this was done so that I could use the SIZE comamid in line 150 and not erase to the end of the lines on the screen．Line 183 accepts the input number，and also sets $\gamma=0$（used in menu items 19 to 13 ）because（ffos（i）will always be sent to the printer，but we want it to have aeaning only for

19－13－C1RS（g）has no effect on the printer，unless it is needed by a previous code．Line 190 now sends the progran to the appropriate line number．Line 209 is for id 0 wode．The logical operator $X 0 R$ is used here．Since it requires that only one of the two numers operated on have $a l$ in the bit position under consideration，we can reverse the state of the bit by doing an XOR with 1 ． Siailarly line 230 does an appropriate bit reversal for each of the first 7 aem iteas by using XOR on Q and the current data item，wich has only 1 bit turned on．

The rest of the progra follows closely those that appear above．However please note the quoted string in line 298 ．What looks like two spaces following the nusbers is NOT－you should type CTFL J and CTRL M ！！ Also，type line $3 \beta \%$ carefully，or the screen setup will
not be correct．The progran is presented in 28 colums here，so＂what you see is what you get＂and the checksum should also help．

I aight add that with careful attention to these operators you can use one variable to represent 16，if they are to be only 1 or 6．Each variable that you are interested in can be one bit in the progral variable，and you can use the logical operators to anipulate them．

This program mas written core out of ay interest in progracring techniques and in teaching the to our readers．Hopefully it may also be of some use to you． Just reaember not to turn off your printer after sending the codes to it！

150 DIM P $\$(16)!156$
110 FCR $X=1$ TO 16 ：：PEAD PS （X）：：NEXT X ：：FDR $X=1$ TO 4 $:$ ：READ T $\$(X):$ ：NEXT $X:: N$ Las（1）＝＂ON＂：：MQ（g）＝＂OFF＂
：：OFEN \＃1：＂PID．CR＂！141 129 DISFLAY AT $(3,1)$ ERASE ALL ：＂MODE＂，＂ $1=0 \mathrm{~N}, 8=0 \mathrm{FF} ", ~ " 1$ EIIT E／PICA＂： 2 COMPRESSED＂：＂3 EM PHASIZED＂：＂4 DOUBLE STRIKE＂： ＂5 EXPANED＂：＂6 ITALICS＂：＂7 LNDEPLINE＂！ 199 139 DISPLAY AT（13，19）：＂12＂： ：FOR $X=14$ TO 16 ：：DISPLAY
 149 FOR $X=1$ TO $7:$ ：DISPLAY

AT $(X+3,14): S E N(Q$ AND VAL $1 P \$ 1$
XII）：NEXT X ！189
15月 DISPLAY AT（11，1）：＂8 SUPE
RSCRIPT＂：＂9 SUBSCRIPT＂：：FD R $X=1$ TO 4 ：：DISPLAY AT $(X+1$ 2，11SIIE（18）：T\＄（X）：：NEXT X ！233
169 DISPLAY AT（17，1）SIZE（23） ：＂14 NEAR LETIER QUALITY＂！2 19
170 DISPLAY AT（18，1）：＂15 TES T＂：＂16 RESET＂：＂17 EXIT＂！251 189 ACCEPT AT $(21,1)$ VALIDATE DIGIT，＂＂）SIIE（－2）BEEP：I ：： 10 ！ 481
199 IF ID17 THEN 189 ESE ON

I $6050239,230,230,230,230$,
$239,239,259,259,249,249,249$,
249，259，269，229，299！932
$206 \mathrm{P}=\mathrm{P}$ XOR $1:$ ：IF P THEN P
$\$(14)=^{n} \times 1^{\prime}$ 日SE $P(14)==^{n} \times 9^{\prime \prime}$
！ 926
219 GOTD 259！073
220 Q，$P=8:$ ： $5010259!214$
230 Q $=0$ XOR VAL（Ps（1））：：GOT
0270 ！199
240 ACCEPT AT $(1+3,19)$ VALIDAT
E（DIGIT，＂${ }^{\text {PSIIE }}(-2)$ BEEP：M！ 226
258 PRINT 1：CHR（27）：：DISP

260 PRINT \＃1：P（I）\＆CHR（M）：：

IF I＝16 THEN L3E ELSE 149！

201
279 PRINT 1：CHR（27）女＂！＂\＆CH R（ C ）：：6070 149 ！ 68 B
280 CLISSE E1！151
299 DATA $1,4,8,16,32,64,128$ ，
SF，S1，A， $1, Q, N, \times 1$ ，＂＠IOX BROW K FOX JMPS OVER THE LAZY RE D DOS 1231567899 ＇，e！995 323 DATA $10 \times / 72 \mathrm{IM}$ ．LF $X=$ ， I1 L MARGIN $\quad x=12 R$ IARG
IN $X=, 13$ SKIP X LINES $X=$ 11 L MARGIN $\quad X=12$ R MARG
IN $\quad X=, 13$ SKIP X LINES $X=$ ！ 61
lá styber

by Ed Machonis

Based on a Program bys
fom Freeman LA 99ars

ANOTHER Print Styler??? l can hear the "Who needs it?"E. If you own a printer, you do! l pronise this is the last styler we will print. (GRIN)

But there is more here than eeets the eye. First, read the acconpanying article by Tom freman, reprinted from the August issue of LA Topics, paying particular attention to the last paragraph. As you nay have gathered, ulterior notives are afoot.

These short prograns are not only useful utilities, they are excellent learning tools. (For the programer as well as the reader.) 1 , for one, learned a great deal from rom' article:

Did you notice these techniquesi Displaying menu text using a FOR-NEXT loop in line 150 and placing the text in a DATA statesent in Line 300 ? Using loops in line 110 to read in the data? Using DN 6070 in line 190 to branch to the program sector associated with the menu selection? And, the essence of the progran, use of the "naster" print control code, EBC ! n.

This was ay first contact with the aster print control code as ay, anything but "current", Epson RX-80 does not support it. Another first was the use of the XOR "logical operator". have never seen the Exclusive OR function used in a progran before, in fact, I didn't oven know it was available in Extended Basic. Although i did have a passing acquaintance with Exclusive OR gates when 1 dabbled in digital electronics, using them in prograsey just nevar occurred to an. Yet it's all there in the canual, just another case of "In One Eye and Out the Other!"
l typed in Ton's last version, knowing it could not possibly work with my RX-80. When 1 saw the menu and status display, 1 knew it was a progran 1 wanted to have. When a print style is selected a "1" appears alongside the selected style on the menu. If that selection is repeated, the print style is canceled and "o" replacas the 1. Thus individual print oodes can be turned off without using the aster reset code, which cancele all selections.

1 mas able to adapt Tom's progran so that it would work with ay RXX-80. I have called the result LA STYLER in deference to its origins. It should work with cost Epson Coapatibles.

Tom toggled the print modes on and off by reversing the state of the respective naster control code bit using XDR. since 1 did not have a master control code, a different approach was required.

Both cancel and enable codes for each aode were placed in the DATA stateaents. P\% was made into a two dimensional array, with 16 rows (for manu ltees 1 thru 16) and two columes, the first holding the cancel code and the second the enable code. Where cancel and enable were not applicable, as in menu iteas 10 thru 16, the same bata was placed in each coluan of the respective eleaent.

A second array, M, was added and is used to display the status of modes 1 thru 9 on the menu, and to point to the appropriate column of the $p \neq$ array when the print code is sent to the printer. N is equal to either 0 or 1 and is toggled by the XOR function in Line 190.

As an example, let us say you elect to turn on Compresed, solection 2 on the menu. $p \$(2,0)$ holds the cancel Compressed code, and $P \$(2,1)$ has the enable Compressed code. Since this mode had not previously been selected, N(2) has a value of 0 . In Line 190 the xOR operator will change the value of $N(2)$ to 1 and the enable Compressed code is sent to the printer in line 270. If Compressed is selected again, xOR will change the value of $N(2)$ from 1 to 0 and cancel Compressed is sent to the printer.

RX-80 mode prioritias are 1 Elite, 2. Eaphasized, 3. Compressed and 4. Pica (Default hode). Once a node is enabled, a lower priority mode cannot be enabled; sending its print code to the printer will have no effect. Line 135 was added so that the status display mould accurately reflect the priorities enforced by the printer.

On the $R X-80$, subscript and superscript eodes toggle each other on and off, depending on the last one selected. Line 136 was added to reflect this toggle.

Another change deaned desireable was adding the provision for user input of text as provided in sTYLEALINE, which appeared in a recent issue of the monitor. Line 275 ade this possible.

LA STYLER..................................Cont'd

Use of this feature caused the enu to scroll off the screen. An M array was added to store the Line Space, Margin, and skip over Perf values so that they could bedisplayed when the eenu was restored. Coh the tangled wab we weave When we alter what others concaive!) One plus, we can place values into this array (Line 100) which reflect initial printer status.

Another change was to reset the printer upon initialization (End of Line 110) so that the initial menu display truly reflects printer status

Although the RX-80 does not have a Near Letter Quality mode, provisions for it were left in for those with printers supporting this ade. Print codes are compatible with the Epson LX-80. The values in the N array (Shades of FDR) are used to display status of this mode, which enabled eliaination of the NLQ array used in Ton's progran.

The 3rd and 4th DATA iteas in Line 290 are not blank spaces but CHR\$(18) (Type CONTROL plus k) and CHR\&(15) (CONTROL 0), respectively. similarly, the apparent two blank spaces at the end of EACH quoted string in line 295 are actually (CHR\& (10) (CONTROL J) and CHRs (13) (CONTROL N). The blank space at the beginning of EACH quoted string is a true blank space and required in this program (as it saves sending an additional Escape code to the printer).

If you have a adern printer that supports a master print control code, you undoubtedly will want to use Tom Freenan's progran which is considerably shorter and, cost likely, faster. If, on the other hand, you have an obsolete 3 year old printer like mine, you alay find LA STYLER useful. In any event, there is sonething to be learned from both prograns. And reaember - Dbsolescence is a state of aind!

90 ! ** LA STYLER *** by Ed Machonis QB-99ers Based on Progran by Ton Freman LA 99ers

100 DIM P\{(16,2),N(18):1 M(1 $)=12: 1(2), M(4)=0$ it $M(3)=$ 80

110 FOR X=1 TO 16 : 8 FOR $\mathrm{J}=0$ TO 1 HREAD P\$(X,J):1 NEXT J : \because NEXT X I: FOR $X=1$ TO 4 II READ T\& $(x): 1$ NEXT X II N
 : 1 OPEN 1:"PIO.CR" $: 1$ PRIN T HICHR (27)\&"

120 display at (3, 1)erase all !"MODE","1=0N,0=0FF","1 ELI TE":"2 CDMPRESSED": 3 EMPH ASIZED":"4 DOUBLE STRIKE":" 5 EXPANDED:"6 ITALICS":"7 UNDERLINE"

125 DISPLAY AT(11,1):"8 SUP ERSCRIPT":"9 SUBSCRIPT"

135 IF $N(1)=1$ THEN $N(2), N(3)$ $=0$ ELSE IF $N(3)=1$ THEN $N(2)=$ 0

136 IF I=8 THEN N(9)=0 ELSE If

140 FOR X=1 $109: 1$ DISPLAY AT $(X+3,18): N(X): 1$ WEXT X

150 FOR $X=1$ TO 4 i: DISPLAY AT $(x+12,1)$:T $\$(x)$; STR $(M(x))$: 1 NEXT X

160 DISPLAY AT(17,1)812E(23) " 14 NEAR LETTER OUALITY"

170 DISPLAY AT(18,1):"15 TES T"'"16 RESET/PICA":"17 INPUT TEXT":"18 EXIT"

180 ACCEPT AT $(22,1)$ VALIDATE 1 DIBIT," ")SIZE(-2)BEEP:I

190 IF I>18 THEN 180 ELSE N(1) $=$ N(I)XOR 1 U ON I GOTO 27 0,270,270,270,270,270,270,27 $0,270,240,240,240,240,210,27$ $0,220,275,280$

210 DISPLAY AT(17,24):NLQ\$(N (14)): 6070270

220 FOR $X=1$ TO 14 औ $N(X)=0$ is NEXT X : $:$ GOTO 270

240 ACCEPT AT (I $+3,19$) VALIDAT E(DIGIT," ")SIZE(-2)BEEPIMII -91

260 PRINT 11,CHR\$(27)\&P\&(1,N (I))kCHR (M(1-9)):1: B0TO 135

270 PRINT \|1:CHR\$(27)\&P\$(1,N (1)):I IF I=16 THEN M(1)=12 $\because M(2), M(4)=0 \quad 11 M(3)=80$ 1: 60T0 135 : 1 ELSE 135

275 PRINT "INPUT A LINE OF T EXT":"(Z22 RETURNS TO MENU)" : LINPUT A\$ 18 IF A\$="222" OR A\&="z2z" THEN 120 EL8E P RINT 1:A\&\&CHR\$(10)\&CHR\&(13) is 60 TO 275

280 CLOSE 1

290 DATA P, M, , $F, E, H, 8, M O$, $W 1,5,4,-0,-1, T, 50, T, 81, A, A, 1$, $1,0, Q, N, N, \times O, X 1$

295 dATA " QUICK bROWn fOX J UMPS OUER THE LAZY RED DOG 1 234567890 "," QUICK BROUN F OX JUMPS OUER THE LAZY RED D 061234567890 ", ©,

300 DATA $10 \times / 72$ IN. LF $X=$, 11 L MAREIN $X=, 12$ R MARG IN $X=, 13$ SKIP X LINES $X=$

[^0]: till next time...

