
■

SEPTEMEEP? 1987
The PUNN Newsletter-Portland, Oregon

•••••••••• •••••••••••••••• ■ 11E11 ■ ■ ••••••

From the Editor
$$$$Ittfttt$111$1111tt$111111111$11Itt$111$11$1

U-Nait's Inside •
1 From the Editor 	 Page 1 $
$ Club News 	1 $
t Tinygram 	2 1
$ DM 1000 Bug 	2 1
1 September Program 	2 1
I How to Load Disks 	3 1
1 Tips for Multiplan 	3 1
: Secthr Editors 	4 2
t Design Your Own Screen 	4 $
$ Loading Program 	5 1
I Change Your Cursor 	5 1
1 Program Design 	6 1
t How to Clean Modules 	6 1
t Assembly Language 	7 $

111111111t111ISItt1tIttItttttltt$1$111,1t$11111

$$$

Club 4DFFicers
1 President

't Vice-President
$ Secretary
$ Treasurer

1

$ $2121t1

PUNN Staff

Keith Fast 777-1531 $
Dale Kirkwood 646-4354 1

Don Barker 223-1749 1
Mike King 357-4413 1

Librarians 	 Ron Mayer 232-7363 1
Walt Morey 239-5105 1
Jim Thomas 284-2425 $

Hardcopy 	Mike Calkins 636-1839 t
$ Program Chairman 	Ted Peterson 244-1587 $
1 Workshop Chairman 	(open)
1 Membership Chairman Terry Priest 649-9583 $
$ Newsletter Editor 	Charles Ball 639-0466 $
1 16576 SW Matador Lane-King City, OR 97224 1

Ass't Editor 	Dan Hawes 620-9725

11 1 $ 1$ t 	 1
1

BBS Committee $

Chairman: Al Kinney 640-5860 t
Ron Mayer 232-7363 $
Mike King 357-4413 1

1
1 BBS Phone Number 	 503/233-6804 t

12111211111$1111$111111$21111111M1111111MIS

Each month when I have this opportunity to sound
off, I wonder what will I say this month?

As I look back over the years I remember when I had
a part in producing the school newspaper. I assure you
it was many years ago. We set the type piece by piece
and it took the work of many and consumed literally hun-
dreds of hours just to produce a few pages. Later and
still a good number of years ago I had the editors job
for a local service club. Then I used my trusty type-
writer and a mimeograph machine and somehow was able to
come up with bulletin that did the basic job of getting
the news out to the members.

As some of you know I retired from the printing
business a couple of years ago. I watched the computer
revolutionize the printing process. I wish some of you
could see first hand what is happening. There have been
more changes in the printing industry in the last 10
years than from the origination of printing so it seems.

When I look back over the years that I was in the
business and compare the relative ease of communication
today with the way things were done when I was much
younger, I marvel! I wonder sometime if we fully appre-
ciate this fantastic medium we are working with. To be
able to print out and communicate accross these many
miles is something I didn't even dream of in those ear-
lier years.

Who knows exactly what tomorrow will bring. 	One
thing I think we can be sure of it that tomorrow will
make today seem obsolete just as todays modern miracle
makes my early years seem very old indeed.

Chuck Ball

flews Fi Views
If you missed the picnic last month, too bad, it

was great- - - There was no board meeting in August,
but board members should plan on one in September- - -
Ted Peterson has a good program planned for the
September meeting, it's on word processing-read about it
inside this bulletin- - -Bill McCabe is one of our
newer users of the BBS-he got his system up and running
thanks to Mike King- - -Don Barker is busy painting
his house and reports that any one that would like to
volunteer some help would be welcome- - -Rich and Sue
Hill are organizing the carpooling for the Seattle
TI-Faire- - -If you're planning to go and want to
share a ride contact them- - -The TI-Faire is being
held at the Seatac Holiday Inn in Seattle-the date is
Saturday September 26th. from 10am until 5pm-admission
to the show is $3.00- - -We are trying to find a bug
in the Multi-Column print program promised for WordPlay-
we'll try to find it and publish the program next month-
- -In the meantime this months issue is filled with
goodies- - - We still need your help in producing
Wordplay- - -Why not send something in-A program. an
article, most anything that would be of interest to the
members.

1 !ISMIDULCIMEPtlitlittlit
tititittA TINYGRAMIttilititt
IttittBY JIM PETERSONMIttt
2 CALL CLEAR :: DIM S(26)::
F=262 :: FOR N=I TO 25 :: S(
N)=INT(Ft1.059463094A(N-1)):
: NEXT N READ N C=S(N)

D=S(N)
3 RESTORE 7 :: FOR J=1 TO 63

6OSUB 5 :: NEXT
4 U=U+2 :: CALL SOUND(-200,S
(N),U,C,U,D,U):: IF U>27 THE
N U=0 :: GOTO 3 ELSE 4

5 READ N :: CALL SOUND(-500,
S(N),0):: CALL SOUND(-500,S(
N),8,C,9):: CALL SOUND(-500,
S(N),0,C,9,0,19):: D=C
6 C=S(N):: RETURN
7 DATA 5,6,8,8,10,13,5,5,6,5
,3,3,5,3,1,I
8 DATA 5,6,8,8,10,13,5,5,6,5
,3,3,5,3,1,1
9 DATA 8,13,17,17,17,15,13,1
3,8,8,10,10,13,10,8,8
10 DATA 1,1,1,3,5,5,8,5,3,3,
5,3,1,1,1

Word Play 	The PUNN Newsletter-Portland, Oregon-September 1987
	

Page 2

September Progrcim
Our Sept. program will be a complete

program on "Word Processing". The speaker
will be your program chairman Ted Peterson.

He will show you how to type letters,
newsletters and other documents on your com-
puter. He will cover all the different me-
thods of typing from the most simple that do
not require a program to the more complex
that require intricate programing. Some of
these methods only require a computer, a rec-
order, and some type of printer. Others need
a module, computer and some type of printer.
Another type only needs a computer and a pri-
nter.

He will then explain the types that re-
quire a complete system. In addition to word
processing programs he will show you how to
correct your spelling. One of the programs
will let you correct the spelling after you
have typed in your document. Another one
will correct your spelling continuously while
you are typing and will show you all the
words that are spelled wrong and a list of
words that may work.

Another thing that he will take up is
breaking up words so the lines in BA writer,
TI Writer, etc do not have large blank sec-
tions in some of the lines. Ted is also go-
ing to demonstrate a program that will print
out copy in 2 columns to the page.

Finally he will show you a way to make
your TI Writer module work without any wait-
ing time between sections. There is a way.

Most of the programs that will be shown
are in the PUNN libary and we will have them
on a disk for sale at this meeting. Some of
you may want them.

We need to know what you want to see as
programs at our meetings. Let Ted know.
Maybe an item that you want demonstrated or
the program you want explained is something
that other members would also like to see.
You can call Ted with a suggestion for a pro-
gram. You'll find his phone number on the
front page of this bulletin.

Club Library
Don't forget your club Library! It is

there to serve you and Just loaded with
programs. You'll find games, utilities and
much more.

Our librarians are on duty each meeting
night. A list of the various porgrams is
displayed and you can even obtain a disk with
all the programs so you can look over the
various listings at your leisure.

Take advantage of this library. It will
make your computing day!

We're bombarded with so much
useless information these
days. I mean do I really
have to know our waiter's
name is Bruce?

Tiny Gram
What is a tinygram you may ask? 	The

definition of a tinygram is a program which
can be listed on one screen. Here is a musi-
cal tinygram by Jim Peterson. It was taken
from the Dallas 99 Interface. It's called,
'The Wildwood Flower'.

And, what's more is that you can change
the program to play your own musical tune.
This program pus a two-octive scale in a 25-
element DIMension. Take the tune you want to
hear and break it down, note by note. Then
use the values below to represent their re-
spective notes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C C# D D# E F F# G G# A A# B C C# D

16 17 18 19 20 21 22 23 24 25

D# E F F# G G# A A# B C

Put these numbers into the DATA state-
ments. Each number is approximately one
quarter long. To make the note longer, play
it twice. Finally, count all your numbers
and alter the FOR-TO statement in line 3.

DM 1000 Bug
DM 1000 - - has an annoying little bug

if you happen to own a CorComp disk
controller. When DM1000 formats disks in
double density. it put 16 sectors/track on
the header, even though it formats 18
sectors/track. This is all very fine and
well if you keep it on a CorComp controller.
for the reason the CorComp never even heard
of 16 sectors, so it doesn't care what the
header says. However. if you send the disk
to someone who has a MYARC disk controller,
then the MYARC controller looks at the header
and sees "16 sectors per track". So it reads
the disk based on that information.. But
it's 18 sectors per track! So, the MYARC card
reports a blank disk. 	Now a fix has been
developed for that situation. 	If you have
version 3.5 of DM1000 edit the first sector
of the MGR1 file. At byte 216, you should
see (in hex) 10 00 02 DO 00 5A. Change the
10 to 12. Write the sector back to disk, and
you should aleviate this problem. Earlier
versions of DM1000 may also contain this
problem and you should be able to find the
sector in MGR1.

Word Play 	The PUNN Newsletter-Portland, Oregon-September 1987 Page 3

How to Locici Cl Disk
We have published information on loading

from disk in prior issues but it seems from
questions we hear from members that another
article on this subject is warranted.

Disk files tfiat can be loaded directly
into the computer can be found in the follow-
ing forms.

PROGRAM
INT/VAR 254
DIS/VAR 163
DIS/VAR 80
DIS/FIX 880

Any other file format represents a data
file which cannot be directly loaded, but re-
quires a program already in the computer.
For example: INT/FIX 108, INT/VAR 128,
DIS/VAR 64.

PROGRAM
This is the most common file and the

vast majority are TI Basic or XBasic pro-
grams. Many TI Basic Programs load and run
correctly from XBasic but not vice-versa.
However, if after loading the program file
into XBasic and you get a bad value error
when you attempt to run the program, you need
to reload into Basic. The bad value error is
caused by the use of CALL CHAR above 143,
which is not allowed in XBasic.

If you attempt to load an XBasic Program
into Basic it will seem to load properly, but
when you run it you will get a FOR-NEXT error
message. Listing the line will produce a
screen of unrecognizable characters.

Occasionally a program file will not
load in either version of Basic, producing an
I/O error 50 when you attempt to do so.
These files are likely to be Assembly Lan-
guage programs that need the Editor/Assembler
module to make them load. Other programs are
specialized and require the module they work

Tips for Multiplairk
Here are a couple of tics for those of

you who use Multiplan.
1. Tired of seeing just the same old

white characters on a blue background? 	Well
try this. 	After you have chosen the option
to load Multiplan from the main menu do not
press enter. Instead press the space bar to
see the 12 choices for screen color. Each
time you press the space bar the colors
change. Your color choice will remain in
effect only for the Multiplan session that
follows. When your color choice is on the
screen, press Enter. At this point the
program disk files will be loaded from your
di skette.

2. The time it takes to initialize
Multiplan and the response time when it is
working with the OVERLAY file is effected by
the location of the files on the disk. 	You
can load the files in the desired order by
copying them one at a time to a newly
initilized disk named TIMP. The best order
seems to be: OVERLAY, MPHLP, MPCHAR, MPDATA,
MPINTR, and then MPBASE.

with: such at "Adventure", "Personal Record
Keeping", "Tax-Investment Record Keeping",
etc.

INT/VAR 254
These files are normally long XBasic

programs that load and run in the normal way.
They usually exceed 45 sectors and require
memory expansion. They must be loaded with
XBasic and cannot be saved to tape.

DIS/VAR 163
These files represent an XBasic subrou-

tine in merge format. They can be merged in-
to a program already in memory. To load
these files, type merge DSKn.filename and
press ENTER. The program that you LOAD will
become a part of the program already in mem-
ory. One thing to remember is that any line
number already in the computer will be re-
placed if the merged program uses a similar
line number. The merge option cannot be used
in Basic.

DIS/VAR 80
These are text files which can be read

from the screen, edited, and printed using
TI-WRITER or one of the clones. This type of
file often accompanies a complicated program
with documentation on how to use the program.
Quite often they will be on the same dis1 and
have a name such as TAX/DOC which would be
the instructions for the program TAX. And of
course they are used in letter writing, manu-
script production and editing articles and
programs for PUNN.

DIS/FIX 80
These are assembly language programs

which must be loaded and run with 	the
Editor/Assembler 	or 	Mini-Memory modules.
With the Editor/Assembler try Option #3. If
this doesn't work then try Option #5. Use #3
to load from the Mini-Memory module.

When you go to the bank
you'll have $50,000!

Word Play
	The PUNN Newsletter-Portland, Oregon-September 1987 	Page 4

Sector Editors
Over the past several years a number

of different programs have emerged that
will allow you to change data on the
various sectors of your disk. Advanced
Diagnostics, Disk Master and Sector/Edit
are but a few of the programs available.
What they all have in common is the
ability to look at data on the disk and
change it.

If you decide to use one of these
programs on any of the data on one of
your files, it's a good idea to do it on
a copy so if anything goes wrong you
won't loose valuble data.

One example of the use of a sector
editor (S/E) is in correcting a problem
that many users have had with PRBASE in
accessing the default printer - PIO.
After looking at the orpgraa file FRB:I,
I noted that the printer default is
P10/1 - designating the 01 PIO output.
That was as expected. However I also
noted that there were a number of blank
spaces following the P10/1, indicating
that either the printer designator had
originally been longer and had been
changed with an S/E or the original
assembly source code had specified a
longer default but had not been changed
to reflect the actual one. In any case
the byte in hexidecimal (hex)
immediately before the P10/1 (>12) did
not agree with the length that it is,
>05. Upon changing the >12 to >05 the
default printer designation now works
for my system.

It is also possible to change the
P10/1 to any other default as long as
the name entered does not exceed the
existing blanks. For example, the P10/1
could be overtyped with
RS:72.BA=1200.PA=E, with the stipulation
that the byte immediately preceeding the
name is changed to >12 (decimal 18) to
tell the system the number of characters
to read for the default name. That is
the 	problem 	with the existing PIO
default. The system is reading a P10/1

name along with the blank characters,
however there is not DSR routine with a
matching name (with the blanks after the
PIO/1). Therefore the system hiccups
unless the default is erased, forcing
the system to count the actual number of
characters that are typed from the
keyboard for whatever printer setup is
necessary.

Another example is a more general
one, and is illustrated again by PF.EASE
and FastTerm. I run many of my most
used utilities on my ramdisk and I
prefer to keep my RD designated as DSKx
where x is higher than any of my floppy
disk drives. (O514 for my 3 disk
set-up). This causes a problem in
several ways. The first is in the case
of an inteTactive systea of programs
that specify a certain disk drive to
access for support files, such as
character sets (CHAR type files). In
fact, this becomes a double whammay for
the RD. Not only is the DSK number
incorrect, but many of the character
files are still CHAR1 or CHAR2, thus
colliding with existing character sets
for TlWriter or whatever else is on the
specified drive.

With an S/E and some browsing through
the program files to locate the existing
specific designator, e.g. DSKI.CHARA1,
it is possible to use the S/E to change
just the CHARAI to CHARA6. In this case
not changing the length of the program
name. (It's still 6 characters long).
The only thing necessary to do is change
the name of the correct CHARAI file and
copy it to the disk that contains the
other programs for the utility set.
This enables the programs to co-reside
on a single disk drive and have the
correct character sets selected for the
utility in use.

In a similar fashion it is possible
to change the disk specifier so the
loading program will look at the drive
which actually contains the sought for

program. PRBASE serves to illustrate
the changes which are necessary. PREAGE
files are loaded from a floppy which
must be named PRBASE as the full file
specifier is DSKLPFBASE,PRB:l. This
set-up forces the system to search the
attached disk drives until it finds one
named PRBASE. Convenient if one uses a
changing set-up s but not so if one wants
to run the files from a RD or from a
utility disk which contains more than
just PRBASE files. First the S/E is
usei to change the full specifier to
BS14.PRB:1. 	(This assumes that the file
name itself is not to be changed). 	The
final change which needs to be made is
the byte which immediately preceeds the
DSK. In this case it will read >OF
(decimal 15) and needs to be changed to
>09 (decimal 9) to tell the system the
length of the name of the disk specifier
and the program.

As long as one keeps in mind the need
to change the byte which specifies the
length of the name of the disk specifier
and the file name, and to not use file
names so long that the name exceeds the
available space, these changes will
work.

This should alleviate those problems
that I have experienced. One particular
problem comes to mind in which I had
formatted a disk and then taken it to
another person to get some information
copied. That person used a MYARC disk
controller. After using it on my system
I had a lot of problems with garbage.
When I looked at it with a sector editor
I found the 17th and 18th sector or each
track wee• 	not used - no doubt because
the MARC controller looked at 	the
sector information and only used 16
sector per track!

I hope that this will help others who
have experienced unusual problems when
going from one type of controller to
another.
(Rudy Johnson-South. Nevada Users Group)

Design
100 CALL CLEAE
110 CALL SCREEN(5)
120 FOR 1=2 TO 8
130 CALL COLOR(I,I6,1)
140 NEXT I
150 CALL CHA4 1 43, 1 FFFEFFEFFFFEFFFF 1)
160 CALL CHA7-44, 1 7E3F1F0F070301 1)
170 CALL CHAR(45, 1 80C0E0FOWCFEFF 1)
180 PRINT • 	+ + +++ + + ++0
190 PRINT' 	+ + + + + + +
200 PRINT 	+++ + + + + +++'
210 PRINT.' 	+ +++++,
220 PRINT ' 	+ +++ +++ + . + 1

230 PRINT
240 PRINT 	+++ + +++ + +++ ■

250 PRINT ' 	+ + + + +'
2e0 PRINT 	+ + + + +++'
r? PRINT ' 	+ + + + + 6
2B0 PRINT ' 	+ + + ++ +++'
24 PENT
300 PF: 117
310 PRINT ' 	YOUR CREDIT LINE HERE': : : :
320 FOR 1=1 TO 3000
330 NEXT
340 CALL CLEAR
350 PRINT 'PROGRAM STARTS HERE...'

This little program will lets you design
your own title screens. You can use it for
any new program that you have written or
modify the title of an older program.

The program as described changes '+'
into a solid character; ',' into a ;land
1 - 1 into al. .

The ',' and the 1 - 1 enable you to make a
slant on the 'Ft' in the title shown.

You could of course modify and find many
other patterns and uses with a little work of
your own.

This program should be merged in front
of your program.

Your Own Screen

**
* 	 *
* 	Murphy's Rule: 	 *
* 	 *
* 	 Leakproof seals will - 	*
* 	Self starters will not - 	 *
* 	Interchangeble parts won't. 	*

 **

You can Improve
the Quality of this newsletter.
Articles's needed!

Word Play 	The PUNN Newsletter -Portland, Oregon-September 1987
	

Page 5

Rnc•thor Lc•cricJing 1Progrcim!
What! Another Loader Program? Well

just hold on. We have seen many load pro-
grams over these past years. They all do
pretty much the same basic thing. You put a
load program on your disks and then when you
want to load a particular program, you in-
sert the disk and the load program takes
over listing the various programs and files
on the disk with either numbers or letters
for your selection.

That's exactly what this program does -
- but more too! It also allows you to cat-
alog the contents of the disk in a condensed

print-out that you can paste on your disk
jacket. In addition you can delete any un-
wanted file.

The program takes up only 10 sectors --
many we have seen use from 5 or 6 up to 20.
You might want to type in this program and
give it a try. It is devoid of fancy grap-
hics to save space but it does work Quite
nicely.

Like all the programs published in your
WORDPLAY it will be available in the PUNN
Library if you don't want to take the time
to type it in.

10 CALL CLEAR :7, DISPLAY AT(
3.6):IRUN AUTOBOOT? Y' :: AC
CEPT AT(3.20)BEEP SIZE(-11VA
LIDATE('YN'):XXS IF XX$C>
'Y' THEN END
100 X$="1'
110 DIM A$(97),H(98),J(97),K
(97)
120 CALL INIT
130 FOR 1=1 TO 5 	READ TYP
E$(1):: NEXT I
140 DATA 'DIS/FIX'.'DIS/VAR'
,'INT/FIX','INT/VAR','PROGRA
M'
150 CALL LOAD(-31806,16)
160 OPEN 01:'DSK1. 1 ,INPUT ,R
ELATIVE,INTERNAL
170 INPUT 01:111$,U,U,V
180 A,R,S=0
190 GOSUB 440
200 (14+1
210 INPUT 01:A$(0),H(0),J(Q)
,K(11)
220 IF LEN(A$(0))=0 OR 0=97
THEN 230 ELSE 200
230 S=S+I 	R=R+1
240 IF ABS(H(S1)=5 THEN 8$='

:' ELSE B$=° °I/STRCK(S))
250 T$=TYPECABS(H(S)))&SEG$
(BS,LEN(B$)-2,3)
260 GOSUB 470
270 IF R=15 OR 5=0 DR H(S+1)

=0 THEN 280 LSE 340
280 R=0 :: 6072 490
290 ACCEPT AT(24,22)BEEP VAL
IDATE(DIGIT,")SIZE(-3):PR6
300 IF PR6=00 THEN 620
310 IF PRG=97 THEN 330 ELSE
IF PR6=98 THEN 340 ELSE IF P
R6=99 THEN 370 ELSE IF PR6=9
99 THEN 510 ELSE PRO6$=ACPR
6)
320 6010 340
330 60SUB 680 :: DISPLAY AT(
23,1):'INSERT NEW DISK':'PRE
SS ENTER WHEN READY' ACCE
PT AT(24,23):AA$:: CLOSE 01

6010 160
340 IF PRO6$0" THEN 360 EL
SE IF SO AND H(S+1)00 THEN
230 ELSE 290

350 CLOSE 01
360 CALL PEEK(-31954,A,B)::
60SUB 380 :: RUN °DSK1.DOWN/
GEM'
370 END
380 Z=A$256+8-65536 :: CALL
PEEK(Z,A,B):: Z=Al2564-6553
6
390 CALL LOAD(Z+29,LEN(PROG3
)+5):: CALL LOAD(Z+33,ASC(X$
11
400 FOR 1=1 TO LEN(PRO6$1::
P=ASC(SE6f(PRO6S,1,11):: CAL

L LOAD(Z+34+I.P):: NEXT I
410 IF LEN(PROGW10 THEN 42
0 ELSE 430
420 FOR 1=LEN(PRO6$)+1 TO 10
:: CALL LOAD(Z+34+1,130)::

NEXT I
430 RETURN
440 DISPLAY AT(1,1)ERASE ALL
:'DSK';X$:' -DISKNAMEe;Al$:
'AVAILABLE=';V;' USED=';U-V
450 DISPLAY AT(3,4):"FILENAM
E SIZE 	TYPE':'

460 RETURN
470 DISPLAY AT(R+4.1):USIN6
▪ :: DISPLAY AT(R+4,4):
AUS):: DISPLAY AT(R+4,14):J
(S):: DISPLAY AT(R+4,19):T$
480 RETURN
490 DISPLAY AT(21,1)000 DEL
ETE A FILE':'97 READ NEW CAT
ALOG'098 NEXT SCREEN 999 PR
INT CAT':'99 END SELECT!
ON:'
500 6010 290
510 GOSUB 680 :: DISPLAY AT(
21,1):'ENTER DATE' :: ACCEPT
AT(21,12):D$

520 OPEN 112:"PIO' :: PRINT 0
2:CHR$(27):CHR$(66);CHR$(3);
CHR$(27):CHR$(51):CHR$(20);
530 PRINT 020$

540 PRINT 02: 11)SX':X$:'.°;'-
DISKNAME="0180AVAILABLE=';
V;' USEDetU-V
550 PRINT 020 	FILENAME
SIZE 	TYPE':'

560 COUNT=S 	S=I
565 FOR 1=1 TO 0-1
570 IF ABS(H(S))=5 THEN Me

' ELSE lif="liSTRCK(S))
580 T$=TYPECABS(H(S)))1(SE6$
(11$,LEN(B$1-2,3)
590 PRINT 02:1:TP8(51:ACT);
TAB(15)0(1);TAB(191;T$ S
=5+1
595 NEXT I
610 CLOSE 02 	S=COUNT :: 6
010 490
620 GOSUB 680 :: DISPLAY AT(
23,1):'DELETE WHICH FILE NAM
E?"
630 ON ERROR 650
640 ACCEPT AT(24,1)BEEP:DELS
:: 60T0 660

650 DISPLAY AT(24,1):'FILE I
S PROTECTED' :: FOR 1=1 TO 5
00 :: NEXT I :: 6010 490660
DELETE 'DSK1.4iDEL$
670 CLOSE 01 :: 60T0 160
680 CALL HCHAR(21,1,32,125):
: RETURN

Chainge Your Cursor
This program will change your cursor

pattern. It is an XBasic loader and will
work in XBasic only. It can be used as a
program in itself or merged to any of your
existing programs. It is not relocatable, so
if your program uses assembly language LOADS
then caution in using the program is required
to prevent writing over the program.

Line 140 contains the new cursor pattern
data. Simply determine the data for your
pattern and substitute them following the
address for start of data in that line
(12288). Your editor used the following 255,
128, 128, 128, 128, 128, 128, 255 which
produced a C for a cursor.

If you need some assistance in deter-
mining how to compute character pattern
codes, read pages 56-59 in your Extended
Basic manual.

110 CALL INIT
120 CALL LOAD(8196,67.248)
130 CALL LOAD(16376,67,85.82
.87,79.82,48,8)
140 CALL LOAD(12288.255.128,
128,128,128,128,128,255)
150 CALL LOAD(122Q6.2.0.7,24
0.2.1,48.0.2,2,0,8,4,72.72,3
6,4,91)
160 CALL LIM ("CURSOR")
170 CALL COLOR(0,16,1)

Word Play
	

The PUNN Newsletter-Portland. Oregon-September 1987 	Page 6

Progrcim Design
How many times have you heard this?

'I wish I had a program that would. . .
'Even though there are many talented
programmers 	out 	there 	writing 	good
programs for your TI, you still might
someday 	need 	a 	program 	that 	is
particularly suited to your need.

You can write that program if you are
willing to expend a little effort. The
best program for any need is one that
works efficiently for that need without
giving you information that is
unimportant.

The lain thing in writing any program
is to first sit down and decide what you
want the program to do. Supose you wanted
to know how much it costs to own and
operate an automobile for a year. You
would need to start out with the initial
cost, determine how much the monthly
payments are, find out what the insurance
figures are and then consider the trade in
value after a stated period of years.
Other expenses would include gas, oil,
regular maintenance costs, etc.

In programming there a number of ways

to approach any problem. In the case of
the car you could sequentially add the
cost of the car and then the expenses and
divide the total by the number of years
involved. In other words you could build
your program on logical steps one after
the other.

If some of the expenses were repeated
over and over again you might resort to
looping or subroutine to save memory and
avoid repeated instructions. If you
needed to compare cost to some other
vehicle or criteria then branching would
come into play. A combination of these
processes would produce a program suited
to your needs.

The language that you use for your
prograa is up to you but you might
consider who has to use and understand the
instructions. Good plain instructions
would make it easier for a less
experienced person to use.

Another technique used by not a few
programmers is the modular concept. In
other words determine the different tasks
that are needed and write a series of

small routines that fill each need. 	This
allows you to check and debug each small
segment and make sure it runs. Then when
you have each routine working you put them
all together and you have your completed
program.

Now I don't mean to imply that anyone
who has never written a line can go right
to his keyboard and write an award winning
program. What I'm saying is that you
start a program first with a need and then
plan it in a logical manner.

If you've always wanted to get into
programming, try starting out this way.
Determine a need and decide just what
needs to be accomplished to fill this
need. Then in steps you can program each
segment in order before combining the
whole thing.

Before starting a review of your User
Guide might help by refreshing you with
what each command accomplishes.

I guarantee that once you design your
own program, you'll be on your way to more
advanced programming.

How to Clenn Moc.Jules
Dirty 	contacts can 	screw-up 	any

electrical device and the 4A is not an
exception. The only place you are fairly
likely to run into this problem is in using
command modules. Both the module contacts
and the port itself can become dirty but
cleaning the port itself is a bia job as you
have to disassemble the console The good news
is that cleaning the cartridge will almost
always 	suffice and can be done quickly
without any special tools or cleaners. 	All
You need is a regular screwdriver. some sort
of rag, a standard pencil eraser, and in some
cases a medium phillips screwdriver

Remove the screw from "C" if there is
one. Then pry the clips in slots "A" and "B"
outward to pop open the cartridge. If there
is a clip in "C" pry it back after "A" and
"B" are loose. If it should bend off, don't
worry. it won't affect the performance of
your module.

The module board can now be removed. Do
this carefully and note how the spring-loaded
"door" is assembled if there is one so that
you can put it back together if it pops out.
Once you have the board removed take your rag
to kleenex will work but a cloth is better)
and rub off any residue from the contacts
"D". Remember to do the contacts on each if
the particular module has them. Once the
worst is removed take any soft pencil eraser
and rub the contsct gently to remove any
remaing contanimant. When you have finished
reassemble the cartridge and you are back in
business. Some symtoms of a dirty contact
are the console locking-up, strange errors
and display on your screen and a syntax
error. Don't jump to clean a cartridge on
your first error though, it could be a number
of other things. But if you find that you
have a continuing problem cleaning the
contacts is auick and may correct what was
wrong.

Word Play 	The PUNN Newsletter—Portland, Oregon—September 1987 Page 7
==

Assembly Laingucoge
This article was gleaned from the

SNUG Newsletter of the Southern Nevada
User's Group. Perhaps what is printed
here will awaken some interest in those
(like myself) who would like to learn
something about Assembly Language.
There is nothing really awsome about As-
sembly Language. The most frighting
part, I think is the tremendous manual
that Texas Instruments published with
the disks they furnished with it and ex-
pected that you could go right to work
and use this great utility.

So hang on and listen to what John
Martin of the SNUG group tells us about
this useful tool.

John says, locate 	your 	EDITOR/-
ASSEMBLER manual and dust if off. -He
will be referring to it and help you un-
derstand what many of the passages say.

First turn to page 39 in the manual.
This is the beginning of the chapter en-
titled 'General Programming
Information'. This page refers to the
'Registers' that are use: by the compu-
ter: THIS IS IMPORTANT. INFORMATION.
There are 3 hardware registers located
within the TMS9900 processor chip. None
of them are directly accessable (you
can't just change them arbitrarily), but
there are instructions that automatical-
ly take care of it for you.

The first register is the Program
Counter (PC). What this register does
is hold the address of (points to) the
next instruction to be executed. This
is normally going to be the next consec-
utive even address after the
instructions being currently processed.
This register is affected by several in-
structions however, so where it actually
points to depends on the current in-
struction. Some examples of instruc-
tions that change the PC would be JMP
instructions and Branch instructions.
The processor looks at the address in
the PC and executes that instruction.

The second hardware register is
called the Workspace Pointer (WP). This
is the one that does all the really neat
tricks for us. The WP contains the ad-
dress of the first software register
(RO) in the current workspace. The
Workspace consists of 16 consecutive
words of RAM. These 16 words can be lo-
cated virtually anyplace in memory.
When your program references one of the
registers, it is relative to this ad-
dress. For example, if you LI R6,15 the
computer checks the WP to find out where
RO is and then goes 6 words beyond that
to get to register 6. It then places
the value 15 into that memory location.
The exciting thing about this method of
addressing registers is that you can ea-
sily set up as many workspaces as you
need and branch back and forth between
them without loosing or changing the in-
formation stored in them. This is
called a 'context switch' and can allow
you to do some very interesting things.
There are several ways to change the WP.

These would include BLWP,LIMI, and XOP.
Most of the tile, the BLWP (Branch and
Load Workspace Pointer) instruction is
the one you would use because it stores
the information of all three hardware
registers into three of the software re-
gisters so that you can easily go back
to the old workspace.

The third hardware register is no
less important. It is called the Sta-
tus Register. The Status Register is
updated after every instruction. The
status register is bit mapped and keeps
track of the effect of the last instruc-
tion executed. Page 40 describes what
each bit indicates, and page 41 tells
which bits are affected by each instruc-
tion. The Status Register us checked by
all Jump instructions except JMP which
is an absolute instruction. All the
rest make a comparison of some sort to
determine whether to jump or not. By
looking at the chart, one can see that
it would be inappropriate to try to use
a JOP instructions based on the results
of A (Add words) instruction. One
could, however follow and AB (Add Bytes)
instruction with a JOP and get some kind
of results. because the AB instruction
does affect the Odd Parity bit of the
Status Register while the A instruction
does not. The point is that what deter-
mines whether to jump or not is the Sta-
tus Register and not all instructions
affect all bits of it.

The next thing I would like to cover
is decoding the Syntax definition of the
instructions. For this, lets go to page
79. This is the first page of the first
section of actual instructions, 	the
Arithmetic Instructions. 	This page is
reprinted as the first page of each
suceeding section, so you won't have to
remember where it is. Just look at the
first page of whatever section you are
looking in to find this information.
Near the top of the page, you will see
definitions of a number of abbrevia-
tions. The most important (at least
from my limited experience) are gas,
gad, wa, iop, and wad. It would be a
good idea to memorize at least these 5
abbreviations. 	Doing so will save you
hours of frustration later on. 	At the
bottom of the screen there a group of
symbols that are used to graphically
display the execution results. These
results are printed for each instruc-
tion. By translating them, you can fig-
ure out what to expect from each in-
struction.

Also printed for each instruction is
a chart that depicts which bits of the
status register are affected by the in-
struction. By looking at the caret sym-
bols under the chart, you can tell at a
glance which bits are affected by each
instruction.

Now let's look at how to decode all
this information on some actual instruc-
tions. Turn to page BO. This is the
description of the Add words instruc-
tion. Look at the Syntax description of

the word. It says:

[(label)] b A 	b 	(gas>,<gad) 	b
((comment))

Translated, this means that in field
1 there is an optional label. The
square brackets indicate that it is op-
tional. Next are one or more spaces (b)
to separate the fields. Field 2 is the
mnemonic (instruction). In this case
the instruction is A. Again we have a
space or spaces (again indicated by the
b). 	Now we get to the part that can
make us or break us. 	This part is
called the operand field. Notice the
abbreviation gas and gad? That means
that virtually any type of address is
acceptable for both the source operand
and the destination operand. There are
many instructions that require specific
types of operands for either the source,
destination or both. The next field is
the comment field. This field is optio-
nal.

We should now look at another in-
struction. Please turn to page 85.
This is the instruction Al or Add Im-
mediate. Notice that the first 2 fields
look similar to the A instruction, but
in the third field we have (wa), <iop).
Looking back on page 79, we discover
that wa is Workspace register Address
and that iop is Immediate OPerand. That
means that this instruction expects (de-
mands is more like it) to have a regis-
ter (RI, R2, etc) for its first operand
and a real number (no addresses, regis-
ters, etc) for its second operand. In
this case, the first operand is the des-
tination operand. This is typical of
immediate instructions. 	Most 	other
types of instructions require that the
second operand be the destination oper-
and. 	Looking at the execution results
we see (wa) + iop 	lwa). This trans-
lates to 'add the immediate operand to
the contents of the register and put the
result back into the register.

By paying attention to the things I
have mentioned here and having LOTS of
patience, it is possible to

having
 your-

self how to write ASEEMBLY LAWJAGE pro-
grams. Make sure that you check the
syntax definition to find out what kind
of operands are expected by the particu-
lar instruction that you are using. Be
aware of the affect of the instruction
on the Status Register. Look at the ex-
ecution results diagram for each in-
struction. If you follow these simple
rules, you will find that writing in AS-
SEMBLY is not quite as hard or frustrat-
ing as you thought. If you ignore these
things, you will be spending an awful
lot of time going back and forth between
the Editor and the Assembler looking for
Syntax Errors.

(Editors Note):
PUNN has a group that meets regularly

and discusses Assembly Language. You
would be welcome at those meetings.

SIZL6 aO 'PUe fl 10d
/COSI. x0121 'O'd

DISCLAIMERS! The PUNN User's
Group is not affiliated with or
sponsored by TI and has no
relationship with them, implied •
or otherwise.
Mention of a company or product
is not an endorsement of that
company or product.
We are not a subsidiary or branch
of any other User's Group and any
relationship we may have with
other groups is on the basis of
equals.

ALL GENERAL MEETINGS ARE HELD
ON THE FIRST TUESDAY OF EACH

MONTH, FIT THE FGE BUILDING
3700 SE 17TH. PORTLAND, OREGON

H NEXT MEETING DATE H
SEPTEMBER 1ST. 1987

THE KINN NEWSLETTER

Wordplay
P. ❑ .E ❑ 	15037

PORTLAND, OREGON 97215

POINTING THE WF-1Y FOR
USERS OF TIs. 99/4 COMPUTER=

SEPT
	

1987-VOLUMN VI ISSUE 9.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

