

DOBLBLE FEEATRURE
 （面以思區區 居

EDTMORS NOTES

bv Marg. D'Connor

I am a ittle sad to be stepping down as editor but as things stand I think it wise to let someone else try their hand at it and maybe they will bring fresh new ideas to the newsletter.

Futh O'Neil has said that she will take over in November and I am Sure she will succeed in doing a bang up job. I hope that you, the memberss will support her as you have done in the past for me. Flease bring her lots of articles for her to print, she needs them to make g good newsigeter.
ruth has a modem so you can download to her. Her phone number is 234-8050. Lets make it better than ever.

I will say goodby now it has been fun and welcome Ruth and hope she has as much fun as I have had in the past.

Don"t forget the deadline for next month.
 oLir THIRD TI-FEST and ask for volanteers as it takes a lot of hands to make a show a successg so get out and help where you can. WE NEED YOU. See Jane at the meeting.

NOTES FRTC THE VC

This month our meeting will see the election of a new slate of officers. They will need our support for the many activities and projects that the club conducts. An extra hand is always welcome. Don't hesitate to offer whatever assistance you feel can be provided. Our club needs you!

At our last meeting we sold about half of Berry*s inventory. The sale exceeded my expectations and $I^{\prime \prime}$ m therefore looking forward to the next auction. The popularity of this method of giving members access to TI software and hardware suggests to me that periodic auctions would be a good thing.

You are reminded to check last month's Newsletter for a listing of the meeting dates, through to June 1988.

URITER-MRCUTES

by Jinue Latilaquer

This month's article will be just a little different. I ${ }^{2} m$ throwing a few little tips about TI-Writer in Editor mode. (Hopefully, it will help those of you that are using that great Australian creation; Funnelwriter, but do not have full documentation on TI-Writer. And may I take this opportunity on behalf of the Ottawa TI-97/4A Users' Group, to thank Will McGovern and his fellow Australians for such a wonderful utility.)

```
Ind you know?
```

That in FRINT FILE - in command mode, function 9 , type in FF (cr):
You can "print" a file to disk? DSk (n). FILENAME
You can strip all control codes from a file? C DSK(n). FILENAME You can write a DIS/FIX file? F DSK (n). FILENAME Print line numbers with your file? L DSK (n). FILENAME You can witite a partial file AND strip control codes? C 345655 DSK (n). FILENAME
(In this examples lines 345 to 655 have been printed to disk and stripped of all control codes.)

Did you know?
That rather than deleting many lines within a document, you can save partial files and then merge them together?

In command mode type SF (Save File) (cr) then:
1145 DSK (n). NAAE 1
506 E DSK (n). NAME2
In command mode; type Lf (Load File), (cr) then:
DSE゙ (n). NAME1
In command mode again, lf (cr), then:
145 DSK (n). NAME2 (Or "E DSK (n) "NAME2")
where after line "145" of the first files (or "E"for end), is where you wish the second file to be placed. When this file is saved under its original name, you have in effect, deleted 355 lines much faster than the delete function itself.

Did youi know?
To get to the top or bottom of a large document in a split second, in command mode, type S for Show (cr), then 1 (cr) for the first line, or E (cr), for the end of the document. (Good for the Feplace String search when you wish to start at the top of a document.)

You can replace control codes in the replace string function by entering control U?

You can replace string with a "null"; eg: FiS(cr), /HELLO//. Here, "HELLD"s will be deleted.

You can replace or search string within specified columns; eg: FS(cr) or FS(cr).
Example $1: 12 / \mathrm{Hi} / /$ in this instances it will search columns 1 and 2 for the string "Hi" and delete it.
Example $2: 3439 / H /$ it will search columns 34 to 39 and find the first instance of an "H". It will only find both strings AFTER the cursor. To search the whole document, place cursor in row 1 . column 1.

If you have a document without carriage returns, you can use the replace string in fixed mode (Control g): That way, TI-Writer will not make a jumbled mess of your document.

You can "cut and paste" with the best of the word processors. Flace your cursor at the beginning of the blocle you wish to move (can be mid-line), and then press "Insert character". Function 2 ; move your cursor to the end of the block, and again, press "Insert Character". Then you can enter Move from command mode and place the block AFTEF any ine you wish. Should it be in the middle of the line, break the line by once again using "insert character".) Reformat (Control 2) and voila!

And finally; after 2 years of publishing our great Newsletter, Margaret G'Connor has felt it is time to step down. Thank you Margaret for putting up with our continuous late deadlines, complaints, and headaches associated with a major undertaking such as this. And thank you also to husband John for picking up my article which was just about always too late or 1 was too busy to drop off: and promised myself it wouldn"t happen next month but did!! You both have been great. Thank you again.

And to Futh o'Neill who is about to undertake our Newsletter. it"s great to have another woman on board, and best of lucki. (I) promised to try and be better....)

GAME SCORES
 BY
 SCOTT BALDNIN

BASIC_TI INPUTS_AND_OUTPUTS_PARI_S
 (conclusion)
 BUILDING_AN EXTENSION KEYBOARD

by David Caron
NOTICE: See second paragraph concerning the reliability of the keyboard pin numbers.
The Table presented in the last newsletter (September 1987) is very benifical for input from external devices (not nessessarily keyboards). By simply connecting two wires together manually or through a transistor, a simple BASIC program with CALL KEY can detect that connection.

Incidently I should warn you that the keyboard pins numbers are correct in comparison with the connector of my keyboard, BUT are REVERSED in comparison with the keyboard mapping schematic of the TI-99/Q1 (the beige computer). Because there are numerous other errors in the schematics, I suspect that this may simply be another one, therefore my pin numbers are probabiy right and the schematics wrong (thats the way it usually is). If I have not yet convinced you, I will also point out that the "Q" line (pin 3 on schematics) and the "A" line (pin 10 on the schematics) are REVERSED. THIS HAS BEEN EXPERIMENTALY TESTED, THE HARD WAY. If you are stili in doubt as to which pin system is correct, then I suggest that you manually connect two of the pins yourself and see what CALL KEY returns ito do this of course you will have to separate your console into five pieces or more to get at the keyboard bus). Should you decide that I am wrong and the schematics correct, you can simply "fix" the keyboard bus table by substituting 15 for 1,14 for 2, 13 for 3 , etc... Enough of that.
If you have not already noticed you might notice that CALL KEY detects things like CTRL $1-7$, and also things like FCTN J, K, G etc... If you find yourselves running out of FCTN's and CTkL's here are some more. The ascii codes for these undocumented special keys are given in the keyboard bus table.

Another great application using the keyboard bus is an additional keyboard so you can push the console to the back of your desk. giving you more room for "other things". "take care not to push the console off the end of your desk in your enthusiasm to make your workspace look uncluttered). This operation involves a male and female $15-p i n$ connector and at least 6 feet of cable, (ribbon or coxal), a spare keyboard, a flat type 15 pin connector (Active has these with about $26-39$ pins which can be broken off into proper lengths). All these components can be obtained at Active with the exception of the keyboard which can be obtained from ADDISDN for less than \$3. 09.
DIRECTIONS:

1. Take the computer apart to the point where only the keyboard remains in the caseing. If you feel you need advice on this operation, call me at 745-4618. However the only trouble you should have is with the GN/GFF switch on black and silver consoles. The switch must be pulled out directly away from the console.
2. Drill, cut, melt or punch a hole in the region left and up of the joystick port where the surface of the console levels out, making sure the hole is barely larger than the size of the male connector- Do this is small steps to avoid "overshooting" the size. Remember that the connector must be mounted on the outside of the console NOT THE INSIDE. A file should be used near the end of the operation.
3. Drill two holes on either side for nut and bolt type of screws. When mounting the $15-$ pin MALE connector, the bolts go on the outside and the nuts on the inside.
4. This is the tricky part. If you bought a non-solder type FEMALE connector for easy connection to a ribbon cable then you might as well solder individual wires from the internal keyboard bus to the MALE connector in the same fashion as the ribbon cable
on the FEMALE connector. HOWEVER if the condition is not true then you should solder individual wires between the internal keyboard bus and MALE connector, pin for pin.
5. Connect the cable to the FEMALE connector in the same fashion as above using the conditions. Try to make the odd colour wire pin 15.
6. Solder the other end of the cable to a flat type $15-p i n$ connector similar to the one on the mother board.
7. Reconnect the mother board and powersupply and test the extention keyboard. If problems are apparent use the CALL KEY routine and compare the ascii codes with the chart from the September 1987 issue.

And that"s it folks! I've depleted everything I know about INTERFACING BASIC with the outside world via the keyboard bus, joystick connector, and cassette connector.

ARE YOU T.I.R.E.? (TI RUNNER EXPERT)

by Henri Monat, M.R.A. (Master in Runner Administration)

This article is an analysis of II-Runner. by EE Software and gives our family evaluation of what we consider to be the best action game ever made for the 1.1.99/4A.

FULES OF THE GAME
In this game, our heroe (the Runner) must collect keys, treasures and other goodies, without being caught by some funny joggers. To do so, our Runner must manage to find the best route between bricks, walls and ladders. But be carefull: the joggers are also collecting the same and if they touch vou, you are dead. Fortunately, you may defend your-self: by pressing the fire button, you make a hole in the bricks for few seconds and any joggers who falls into it looses the treasure until it be picked it upgagain When you have picked up all the goodies for that level, new ladders appear on the screen which you must climb up to the next level. Each level is in fact a new screen, having new bricks, new walls; new ladders, having also new treasures and goodies but having stili the same good old joggers. You so proceed to run and run again, and climb and climb again, from level to level, from screen to screen, from ladders to ladders until such time as you find out that you have reached ... your level of incompetence.

EEIf:ZS ERINCIFLE KEVISITED

We are all familiar with the famous Principle of Laurence Feter:
"In every hierarchy, whether it be government or
bussiness each employee tends to rise to his (which
ought to be read "his or her") level of incompetence."

TI-Runner questions now this well accepted Frinciple. Discover it by your-self: load the program and play; when you have reached your level of incompetence, just press FETN 5 and see what happens: your favourate game skip over this level and jumps to the next one. No bonus is given to you though. but no dammage was done.
Fressing FCTN 5 is not just a mere routine gesture. It is a whole revolution! ro give you an idea of how powerfuli it is, here arte some practical applications:
-- you can save and accumulate lives to concentrate your efforts on a target screen;

- you can skip over boring screens;
- you can satisfy your curiosity by seeing what is after level 50;
- you can search for nice screens because you like that;
- you can search for easy screens to get experience;
- you can look for tough challenging screens;
- how about non accountable benefits such as mental health, relief
from stress, relaxation, or even pretending, when vou socialize, that you cannot reach your level of incompetence.

Since TI-Fumner is teaching us a new fact of life, I would reformulate Feter ${ }^{\text {s }}$ S Frinciple and call it Runner"s Frinciple:
"In every hierarchy, whether it be government, bussiness
or leisure activities, people tend to rise to their level
of incompetence, unless they can jump to a higher level."
OTHER PDINTS_OF INTEREST
Don't fool around by pressing FCTN 6 or 8 , unless you need to. FCTN 6 makes you begin the same screen again; FCTN 8 returns you to level 1. The "P" key is for pause. It is a good strategy to make many pauses: it permits you to re-asses the situation and change your plan accordingly.

Before beginning a new screen, make a route plang in some cases. there is no come-back". Find safe places; sometime, there are places where you can safely stay and observe how joggers behave. Take risks; you may have pleasant surprises.

Be patient; for some difficult screens, it took me up to 50 lives to solve thems a good game may take 2 hours or more.

Thanks to the authors, SCOTT EMERY and JON BURT of EE SOFTWAFE for having thought of such a wonderfull and terrific game.
QuI?
Since I pretend to detain the record (hurray for my humbleness) of TI-Runner, 1 claim a right to aste a little question to see if there was an interest in writing this article.

There are screens that have some kind of meaning: there is for example a boat, or a castle, or an I. B. M. logo. The question is: HOW MANY SCFEENS CAN YOU RELATE TO T.I. AND WHICH ONES?

If you find none, try the Runner's Frinciple; if you can find 1 ar 2, you are becomming a "gameaucrat" (a "gameaucrat" is somebody who plays video games just for fun and likes to talk about it) if you can find 3 , you are a Funner addict: if you can find 4, I would like to know if you can beat 199 , 800 points for a game of 3.30 hours and I will give you an M.R.A. (Master in Funner Administration): if you can find more than 4 , either you have a lot of imagination or you have gone back to Feter*s Frinciple....

EVALUATION

The following chart is our family evaluation of each of the screens and is self explanatory Anybody can get in touch with me for a supplementary clue or hint, but unless you twist my arm in which case get ready for a legal action), I will not give the solution fot any screer.

TI-RUNNER EVALUATION CHART

GRAFHIC LEVEL OF FLEASURE TIFS/HINTS/COMMENTS

01	FAIF		EASY	FLAT					
92	FAIF		1 EASY	FLAT					
03	NICE		2 EASY	FLAT					
04	FAIF		З+MEDIUM	FLAT		KEEF	ONE JOGGER OUT		
05	NICE		3 MEDIUM	GOOD					
06	VERY	NICE	2 EASY	G00D					
07	FAIR		2 MEDIUM	GOOD					
98	FAIR		\bigcirc MEDIUM	GOOD					
99	FAIR		3 MEDIUM	FLAT					
10	NICE		3 MEDIUM	GOOD					
11	NICE		4 HAFD	VEFY	GOOD	HAVE	JOGGERS FOLLOW	THE	GUIDE
12	NICE		3+HARD	VEFVY	GOOD				

TI BASIC continued from September

by Steven Shaw

Just as with English, your ability to use BASIC increases with use. Examine as many $99 / 4 \mathrm{~A}$ programs as you can and 100 k to see i) WHAT each part of the program does
ii) HOW it does it
iii) WHY it does it.

Then try to improve the program!

COLOUR DEMONGTRATION PROGRAM:

This program has been provided to give a practical demonstration of some of the features of TI GASIC described earlier.

The program has been written in small blocks, and each block will be described separately.

The first section, lines 190 to 420 form the start of the program. The first block is intended to display the colours available, and by making them cross over each other, show the relative contrasts.

Because some raridom patterns are created later, RANDOMIZE has been used to provide different patterns each time the program is run. The array F contains frequency values for use with CALL SOUND later on. As it will contain 1 gQ values, DIM is used to instruct the computer to allocate memory to hold the values.

The DEF function is used to create a new random function, which will provide integer (eg no fraction) numbers from 1 to the figure used with the new function in the program: watch out for the new function RAN(X) in the program.

M多 has been set to "g" (a string with a zero in it) for use in defining all the characters as blanks (eg spaces) in the following loop in 1 ines 1 日g to $2 \mathscr{0} 0$. The string "g" could have been placed in the definition function in line 19\%, instead of the string variable.

NB: Al though the TI99/4A distinguishes the number 0 from the letter 0 on screen by squaring the 0 , in listings a slashed 0 usually represents the number.

Each group of eight characters is in a separate character set, and each set may be a different colour. Lines 210 to 240 change the colour of each set: TI Basic has 16 sets, and 16 colours. The foreground colour of every set has been set to WHITE (cade 16).

Line 230 places a number of vertical stripes on the screen. each a different colour. As the screen is 32 columns wide, the stripes have been set to 2 columns wide each, and therefore each CALL VCHAR uses 48 characters ($2 \times$ the 24 rows).

So that we know which colours are which, they are labelled by the routine in lines 256 to 349 .

Lines $350-360$ give a sinall delay.
It is not possible to provide 16 horizontal bands with a space between each, as the screen onlv has 24 rows, but 1 ines 370 to 396 cross the screen with as many rows as can fit.

In 1 ines 430 to 5 ag, r andom characters are placed on a blank screen, and in lines 510 to 590, random stripes and colums are placed on screen.

Lines b60 to 690 redefine the characters for the purpases of the following sections of the program. Femember that the strings used with CALL CHAF can onlv contain the numbers 9 to 9 and the letters A to F.

709 to 729 aqain place random characters on screen.
Lines 730 D to 776 fill the F array with values to be used with subsequent CALL SOUNDS. Line 730 sets the lowest possible frequency, and line 740 sets the basis for the tones: the formula used creates what is known as microtonal music, with very little difference between adjacent tones.

Then, accompanied with random tones, the character colours
are varied at random in lines 789 to $83 \mathrm{E}_{\mathrm{g}}$.
lines 840 to $96 \varnothing$ provide sound, colour changes, and small bars of random characters.

Lines 970 to 1040 use the FRINT routine to place random characters on screen, and the colour is varied in 1059 to 1070.

In lines 1080 to 1290, characters are given a random definition and in 1220 to 1269, the colours are varied, random chracters placed and tones generated.

1270 to $131 \varnothing$ again varies the colours, and uses a different random tone generation method (line 136ϱ).

The remainder of the program again uses FRINT to provide a random display and the colours are varied.

Note in particular the usefulness of the DEF statement in this program.

There are many *loops", and some loops contain other loops: see for example ines 840 to 960. These loops are "nested", with the COUNT loop inside the Z loop.

An AFRiAy is used to store frequencies.
The loop counters (eg CHARR, SET and so on) also function as numeric variables in the loops. Their value increases by one for each cycle of the loop until the maximum value (set by the To X in FOR TO NEXT, has been reached.

In line 1120, SEGE is used with the string variable Mo (set in 10日() to create a random definition of a character. A letter is chosen at random from the string variable Mo, and used to create the definition in the variable f'\$

Note that $\mathrm{F} \dot{\mathrm{Q}}$ is reset to a "nul (empty) string after each character has been defined. Then it is reused with different letters to form a new definition.

CDHPUTER DDWNLDAD

 UNLIMIITED
CANAFIA DATA INC.

264 Weber $5 t . W$ KITCHENER, Ontario N2H 4A6
(519) 578-3873

II BASIC GLOSSARY

A list of all the commands and functions available in TI BASIC, with brief descriptions.

ABS (X)

CALL SCFEEN (NUMB)
Used to change the colour of the screen.
CALL SOUND (TIME,F1,V1,F2,V2,F3,V3,N,V4)
Used to generate sound. Up to three tones may be used with an optional noise channel. TIME is in milliseconds and F1,F2 and F3 are the
frequencies in cycles per second.
CALL VCHAF (FOW, $\left.\mathrm{COL}, \mathrm{CH}_{2} \mathrm{NO}\right)$
As CALL HCHAF, but the character $C H$ is repeated vertically NO times.
CHF要(CODE)

CLOSE
CONT INUE
$\operatorname{CaS}(x)$

DATA

Used to matie a character CODE available as a string.

Used to close a data file.
Used to resume a program when execution has been halted with the CLEAR Eey or a BFEAK command.

Frovides the cosine of angle x, where X is in radians.

Used as a heading on lines containing values to be FEAD.

DEF
DELETE
Used to DEFine a function of your own.

D1M
DISFLAY

EDIT
END
EOF
EXP (NO)
FIXED

Used to establish loops which execute until the
counter reaches the value following TO.
GOSUE
Used for a line transfer when the program is to RETUFN to the line following the GOSUB line
after the section transferred to is completed.
GOTO
IF. . . THEN. . . ELSE
Used to make conditional line transfers, with an optional alternative transfer if ELSE is used.
INFUT

INT (NO)

INTEFNAL

LEN(STRING\$)

LET
LIST
LOG (NO)
NEW

NUM / NUMEEF:

OLD

GN. - - GOSUE

ON. . - GOTO

OFEN
Used with the diski system to DELETE a file.
Used to DIMension an Array.
i. Same effect as PRINT
ii. One of two file storage formats. DISFLAY uses the same codes and format as the computer uses for screen displays.

One method of entering EDIT mode.
An optional marker for the end of your program.
"End Of File" Lsed with disk files.
The inverse of the natural logarithm function
LOG. Thus $x=E X F(\operatorname{LOG}(X))$
Used to define data files. The alternative, not available with cassettes, is VARIABLE.
FOR. . . TO. - (STEF)

Used to make a simple line transfer.
i. Used to fill a variable from the kevboard, or other device if a data file is used.
ii.Used to specify a file is to be used for INPUT only.

Used to provide the INTeger of a number NO. eg any fraction is removed.
Used to specify the format of a data file. INTEFNAL specifies the codes used by the processor internally. The alternative is DISFLAY.
Used to provide the LENgth of the string STRING声.

Optional. LET $A=2$ and $A=2$ are both accepted.
Lists a program on screen or other device.
Frovides the natural logarithm of number NO.
Used to clear the console memory in preparation for a new program.

Provides line numbers automatically when a program is to be keyed in. Starting number and increment may be defined. Default is to start at 100 and increase each line number by 10.
Used to load a program from cassette or other
storage device.
Used for GQSuB transfers when the value
following ON determines which of the line numbers following GOSUE are to be used.
Similar to the above, but for simple line transfers when it is not wished to RETURN to the line following the transfer.

Used to OFEN a file to a device．The format of the file is specified after the OPENCommand．

Used to set the minimum value of an array to zero or one．

```
FAST EXTENDED BASIC:
by Lucie Dorais
```

A longer program this month，but as useless as the one last month； believe me，you will not impress anyone，its purpose is totaly educational．And the lesson is loaded！So much in fact that it will give me something to write about nest month．．．

So first study，type，debug and run the program；please be very careful with the character definitions，and with the text in line 200．Do not try to include the expanded text in［］s in lines 160 and 380，it is only comments．Then read all about our subject today：FFE－SCANNING！

18 m	REM＊＊HEI： $\mathrm{D}^{* *}$
110	OFTION EA： 1.1 ：DIM NOTE（5）： $1=-200:=V=4$
120	
	CALL SOUND ：CALL SCREEN：CALL COLOF ：CALL CHAFE
$13 め$	CALL HCHAF ：C CALL vCHAF：：CALL CHAFFAT ：CALL CHARSET
140	data dummy
150	DEF $D(X)=-(3 * X)$
160	！¢F－
176	
180	FOR 1＝1 TO $5:$ FEAD NOTE（1）：NEXT I
190	DATA 1047，1175，1319，1397，1568
206	DISPLAY ATi9， 3 SEFASE ALL：＂\＃ant to have A surprise＂
210	CALL WAIT ：CALL SCREEN（16）
229	REM＊＊define char＊and play music＊＊
230	A事＝＂FEFEFEFEFEFEFEFE＂
249	CALL SOUND（T，NOTE（1），V）：CALL CHAF（S6，A\＄，57，＂ZFSF3FSFSFSFSF
256	
266	
270	CALL SOUND（T，NDTE（4），V）：CALL CHAR（72，As）
280	CALL SOUND（D（T），NOTE（S），V ）：CALL CHAF（85，A\＄，86，＂FEFEFEFEFE
290	
3090	FEM＊＊draw
310	CALL VCHAF（7，11，56，6）$=:$ CALL VCHAF $(7,13.57,6)$
	CALL VCHAF（ $7,14,58,6)$
320	FOR $1=1$ TO $6:=\operatorname{READ} A, B, C: \operatorname{CALL} \operatorname{HCHAR}(A, E, C):=N E X T I:=$ CALL COLOR（4， $9,16,5,9,16)$
336	DATA 9，11，59， $9,12,64,9,13,65,10,11,66,10,12,67,10,13,63$
340	CALL VCHAF $(7,16,72,6)=$ CALL COLOR $(6,5,16)$
358	CALL VCHAF（7，19，85，4）：CALL HCHAF（11，19，86）：
	CALL HCHAF（12，19，87）：CALL COLOF（7，12，16）
360	CALL WAIT ：CALL CLEAR ：CALL CHAFSET
376	DISFLAY AT 9,3 ：＂NOW．．．＂：＂THAT WAS AN EASY ONE？＂：
	CALL WAIT ：STOF
380	
390	SUF WAIT ：DISFLAY A「（24，6）BEEF：＂press a key please＂
$41 \ddot{10}$	

When vou ran this program，did you notice that it started right away，instead of the long waiting you would normally expect？Why？ Each time you ask Tex to run a program for you，it first reads it all to check for errors and，more important，to set aside memory space for your variables，arrays，data，etc．Actually，Tex needs only the first reference to each of those，so the creators of XE have provided you with a means to put this pre－scanning off and on at will；in other words，you can identify the sections of your program that will be included in the pre－scanning and those that
reed not be．
As the＂Extended Basic Product Information＂booklet（ins巴rted into the XE manual）says，＂careful planning is required＂；and it then sets up five rules，all dutifully followed in the above program：
i＂Enter Your tirgt Dera statememi within the premean ．In order to keep the pre－scanning to the minimum，and leave the data lines where I wanted them，I invented a dummy DATA（line 146），that I then read（but do not use further）in line 170．You could also frame your first data line by the pre－scan statements：here，we could add a line＂195 ！\％f＋＂，ong and＂205 ！\％P－＂，off．

2．＂Include the first use of each variable and／or array（also the OFTION BASE if used）＂．But what happens if you do not use all your variables at the beginning of the program？Well，xB provides you with the possibility to put themall in one line or two at the beginning；but you MUST precede that line with a GOTO to the next program line for it to execute properly．In our example，all the variables that are not used before the computer encounters the pre－scan line（which is line 160）are thus declared in line 120； since the variables T and V ，and the NOTE（）array，were used in line 11% ，they are not repeated in line 120.
3．＂Include the first reference to each CALL statement of any subprogram＂，whether they be TI＇s or the ones you created yourself， like CALL WAIT．This is done in lines 120 and $13 \emptyset$ ．You will notice that I have not declared the CALL KEY statement in line 4øø， since it will be pre－scanned with the SUB（see 5）．

A．＂Irolude all DEF statements for user－defined functions＂，as i did in line 150；the definition itself is used in line 280.

5．＂Include all SUB statements and SUBEND statements in the pre－scan＂．That of course applies to the user－defined subs；since as a rule they have to be put at the very end of your program，the easiest thing to do is to put the pre－scan off statement on a line before your sub，as I have done in line 380．Since we learned last month that the variables in our own subs are totally independent from the ones in the body of the program（I could have used A and B instead of K and S ），Tex needs to know them if you want it to save memory space for them too；the CALL KEY statement will also be ore－scanned here．

Now you know what is a FRE－SCAN；the best way to implement it is first to make sure that your program works，then gather all you variables and CALL statements．A long task，so I have written the following program；it will print a convenient form that you can use for your gathering of information．Note line 110，another way to put the＂pre－scan off＂statement in your program．

```
19\varrho L$=RFT$("""34):: LL$=RPT$(" ",73):: S$=" ":: V$=" VARIABLES"
110 CALL CLEAR :% GOTO 12G:: PGM$,X :: !%F-
120 OPEN #1:"PIO" ! or your printer
130 PRINT "PRE-SCANNINGY&V$: : "FOR FROGRAM (title): ": :
    :: INPUT ">":PGM$
140 FRINT #1:CHR$(27)&"巨":" FRE-SCAN FOR: "&CHR年(14)&PGM$: :
    " will be on line ": :
150 PFINT #1:TAB(12);"NDMERIC"&V#; TAB(52);"STRING"&V&:S*&LL*
160 FOF X=65 TO 90%:: PRINT #1:S&&L&&"; "&CHR悉(X)&" |"&L$::
    NEXT X
17ø PRINT #1:"":"":". CALL STATEMENTS:":"" :: FOR X=1 TO 4 ::
    PRINT #1:S$&LL$:: NEXT X
18\emptyset CLOSE #1 : : END
```

What happens if you forget to include a variable or a statement in your pre－scan？well，fex will inpolitely stop and warn you with a ＂＊SYNTAX ERROR IN nn＂．Just go back to your pre－scanning line（s）， and include it．

As for the extra goodies，they concern simpler ways to use the graphic CALL statements in XG；I will leave that for next month， and we will use the same program，so please keep it．

FROM
P.O. BOX 2 . 4 .

आr.myrin oot IISER'S GROUP
FIMDNTON, ALBERTA

