
/ME 	 _AIME 	 .41•111

—

-

AMINE.
AMMI

7. .

-

.■•=1.

	 am.

1

IL

kr.
11

■"'Igtax 	Sim sun '5

115"jr&11

tril I s'a
--114li.C." 	nil

1) Rill ILO

7.11

V `ilurs.a.

I 	.4
r:°"7:1. •

_ 	 6
it Jr isupl

.r1 •

4

J
r

17 0 (k

Lall= 11

wt) T65,

The Ottawa T.I.99/4 Users" Group

an_

	

ilM, .. ■■ 	 AMIM

	

--.M111—■—.411 	 .MIE .

	

.■■-- wil■ 	 AMMIS ...II•....—JI—...■

	

Mt— AN. ■. ...MM. . 	 J.M.M .—.0L—..■—.L.- AWE.=
.._■1■. ..Y...4—.J... al■..

■■MI,
- ■■■•

	

.1111,••=— AWN 	 .1••■
	 .dMMI■ 	 .1■111

■•■•■11J/M..

■■••
—.....

MUM .•••■•.
1=M, •—... .■1..

AIME 	 ,••=. 	 .

- 	

.■■■•■
...■ 	.■•■•111.
	 ■■=I...

	.■•■ • 	 IN■
	 AM=

—.MOM
'•=1 	 .

VOLUME 5 NUMHE Ft 10 	 ID E C E MB E Ft 1_986

F.0. HOX 2144 , TAT I C) 1\7 ID, 	T A 14 A
C•NTARI 0, 	 F 3143 -'"c 111/4 oc

_ • • •
i t s # : : : : 	

:1:::::1:*:•:.

:!:! : !4.2 . 2!R

Di.mkgitt
Hews

•

Need a second Diskt
Drive? We have
Pan.osonics on at a
special price of:

Looking For

Printer?

E-:-:-:-:-:-: :

$169.00
The Siekosha SP-1000 A. is a Hear
Letter Quality printer that can't
be beat.. It sports a draft mode at
100 cps and a 141-0 mode of 22 cps..
With both tractor and friction feed
the price can't be beat at

$369.00

Bulk DS/DD
Diskettes

$7.95
DD-10ft

Diskette Box
S14.95

CHAIRMAN'S TWO CENTS WORTH

by Berry Minuk

Well those of you who braved the storm and made it to the December
meeting were lucky enough to have your first look at the Geneve.
The birth pangs were interesting but not astounding. We must all
remember that what we had was only a prototype and the final
product should be much superior. I don't think that we will be
able to get a newer board for a while but we may be able to get a
newer operating system for our next Geneve show. In the meantime
we will just have to wait a while longer. There was also a report
on the faire at the last meeting mostly given by the ever amiable
Bob Boone with addendas by Jane Laflamme, Mike Taylor and Lucie
Dorai s.

In the last newsletter I mentioned that the tutorials had been
cancelled until further notice but that workshops would be arranged
instead. We are happy to announce that an Assembly Workshop led by
Art Green has started. 	We will meet once a month on Saturday
mornings. If you are interested please phone Art. 	The first
project is to write an Archiver program that will compress files as
well. If there is interest in other workshops they can also be
arranged but you must let us know.

I would like to take the oppurtunity at this time on behalf of the
executive and myself personally to wish you all a Merry Christmas,
Happy Chanukah, Joyeux Noel, Bonne Annee and Happy New Year. Let
us hope for new advances for humanity in 1987 and also continued
growth for our poor orphan.

One thing that I would like to stress is that it is time to renew
your membership. Early renewal helps the Membership Person keep
her lists straight and gives us a good indication of how many
members we will have in 1987 so that we can plan properly. If you
have not yet renewed just mail in your cheque for $20.00 and let us
have any changes in address, etc.

At the next meeting we should have demos of the long-awaited
programs from Databiotics. We hope that our new multiple monitor
system will be available so will all be able to see the demos
properly. 	Also there is a good possibility of a demo of the new
diagnostic package that TI has put into the public domain. 	This
package which includes extensive documentation will be available as
a special disk of the month for $4.00.

Remember that we still have a cassette library and tapes are
available by contacting Jack McAllister.

I will see you all at the January meeting and let's have a super
turnout for it.

FROM THE EDITOR

By Marg O'Connor

A special thanks to Bob Lanoy this month's guest Editor for all his
typing and assembling of the bulk of the Newsletter.

An appology to David Caron, his second article on Basic Inputs for
the TI console will have to appear in next month's Newsletter, we
ran into several mutipage items this month.

GETTING STARTED WITH C

by Hal Tonkin
At a recent meeting there was a request for some form of turorial
or beginner articles to be written for the newsletter. The intent
of this article is to outline a method of naming and oranizing the g
files necessary to create, and run a C program, then with an
example, create, compile, load and run a simple C program.

In order to run C you will 	need 	the 	following 	minimum
configuration. Console, expansion memory, one disk, and the
editor/assembler (or TI writer). More disks, printer, etc are
nice, but not necessary.

The C disks contain several types of files, and one problem is
sorting out just what you need, and where it is. In order to keep
track of what is in each file I have renamed some of the files, and
all the files I create, according to the following simple file
naming convention. The last two characters of each file name are a
suffix consisting of a semi-colon (E) and a file type identifier.
This still leaves eight characters for a meaningful file name. The
file type identifiers that I use are:

;A Assembler Source File
;C C Source File
;I C Include File
;L Assembler Listing File
;O Assembler Object File

The one exception is RUN PROGRAM FILES which have no suffix, since
if there is more than one, there is an automatic increment of the
last character.

The C disks which you have may contain run program files, source
files, include files, documentation files, and object files. The
following procedure will help you select the necessary files to get
started. -

1. Put WRITE PROTECT TABS on all your original C disks!

2. Load.up DM1000 and get a catalog of all the disks.

3. Format and initialize 3 or 4 disks to become your working set.

4. Printout and/or read the files C99MAN1, C99MAN2, C99MAN3.
These describe the C compiler.

5. Copy to a new disk the following files.

C99C 	The C compiler (three files)
C99D
C99E
CSUP;O The object support library
STDIO;I The standard I/O include file
TCI0,0 The enhanced I/O include file
FLOAi;I The floating pointinclude file

I also like to put the editor (EDIT1) and the assembler
(ASSM1, ASSM2) on this disk as well.

This disk will be the basis for program development. Put a
write protect tab on it!

6. Copy to the same disk, if double sided, or to a separate disk
if single sided the following files:

C99PFF;0 The final file loaded when using SAVE to produce run
program file

C99PFI;0 The initial file for SAVE
CFIO;O 	The file I/O object file
CSUP;0 	The object support library
TCIO;0 	The enhanced I/O object file
FLOAT•0 	The floating point object file

0 SAVE1 	From your Editor/Assembler disk
PRINTF•0 The printf object file
FPRINTF;0 The fprintf object file

This will be your object library disk. Put a write protect tab
OD it also!

7.- Copy your program development disk to another disk. This is
the one that we will use. Every time I start on a new program
I make a copy the development disk to use as a starting point,
then add or delete files from it as required.

Later on you will want to add more to your development disk, and
you r object disk, but this should be enough to get you started.

We are now ready to create and run a C program. For the following
example, I will assume that everything is being done on DSK1.

I will outline the procedure using the C program described below.
This program will fill the screen witfi asterisks. The
corresponding EXTENDED BASIC program is described at the end of
this article, so that you can compare the language statements, and
the difference in execution times between them.

The process of producing a running C program involves the following
five steps.

1. Create a file containing the C program
source statements. 	 STARS;C

2. Compile the C source statements to create
an assembler source file. 	 STARS;A

3. Assemble the assembler source statements
to produce an object file. 	 STARS;O

4. Load the assembler object file, and any library
object files required.

5. Run the program.

The first step is to use the EDITOR to type in the following C
program. The blank lines are not necessary, but make it easier to
read the program. Similarly everything between /* and the next */
is a comment, and is ignored by the compiler, but makes it easier
to follow what is going on in the program.

/* FILL SCREEN WITH STARS */

#include DSK1.STDIO;I

main() 	 /* allprograms are called main */
/* start ofprogram */

int row, col ; /* define integer variables */
char star ; 	/* define character variable */

/* start of program

putchar(FF) ; /* clear the screen */

star = '*' ; /* character to put on screen */

for (row = 1 ; row = 24 ; row++) 	/* rows 1 to 24 */
{

for (col = 1 ; col = 40 	col++) /* columns 1 to 40 */

{

locate(row,col) ; 	/* position cursor */

putchar(star) 	/* write * character to screen */

/* end of col loop */

/* end of row loop */

} 	 /* end of program */

4

Save this program in a file called DSK1.STARS;C and exit the
editor.

For step two we return to the main menu, and using option 5, load
and run the C compiler file DSK1.C99C.

The compiler will ask the following questions, with the default
answers in square brackets. The answer column indicates what you
should type in. 'enter' means pressing the enter key.

question 	 answer

include c-text? [n] 	y if you wish to see how each C statement is
converted to assembler code, otherwise n,
followed by 'enter'.

inline push code? [n] 'enter' to select the default no.

input filename? 	DSK1.STARS;C

output filename? 	DSK1.STARS;A

At this point the compiler will begin to compile the source file
and create the assembler input file and produce an assembler source
output file. If there are no errors, then you will get the
message:

compilation complete

If you have made a typing error, then the compiler will stop at the
line in error, and give some indication of the type of error.
Press 'enter' to continue compiling.

When the compiler has finished it will indicate the number of
errors, if any, and ask the following questions.

question 	 answer

c99 exit-rerun (y/n)

PRESS ENTER TO CONTINUE 	'enter'

There should be no errors in this program, however if you made- a
typing error, o back to the editor, correct it, and recompile the g
program. When there are no errors, continue on with the next step
in the process.

The third step is to assemble the output file from the compiler
DSK1.STARS;A. The assembler will produce an object file for the
loader, and optionally a listing fi_,e for us to look at.

From the main menu, select 2, the assembler.
The assembler will ask the following questions. The answer columns
indicat- e what you should t- y;:: 	in.

question 	 answer

 FILE NAME? 	DSK1.STARS;A
OBJECT FILE NAME? 	DSK1.STARS;O
LIST FILE NAME? 	DS}(i.STARS;L for a listing,otherwise 'enter'
OPTIONS 	 LC if you requested a lisEing, otherwise

just C.'

If all goes well, then there will be no errors, and you are ready
to continue on with the next step.

The fourth and fifth steps are to load your object file, and the C
library file that contains '1--1e routines your 	program 11,13 	called,
and then run your program. 	Return to the main menu and select
option 3, LOAD AND RUN

The question 	 ar 	ae

quEstlor,

FILE NE-' 	 -",
FILE N7-=_
FILE NAME r
PROGRAM NAME 	START

At this point the screen should clear, 	and then fill with
asterisks. The program ends by asking c99 Exit-rerun (y/n). 	Enter
y to rerun the progiTam, n to exit.

Congratulations!! You have now created and run a C languag(
program! This is just a beginning. To learn more about C, read ofir
or more of the books that are available in the library. One boob
which I have read and can recommend is C PROGRAMMING GUIDE by Jach
Purdum. Also, don't be afraid to ask any for help from any of the
club members that are familiar with C.

Here is the equivalent =ENDED BASIC i - 1- 3gram t3 fill the screc:
with stars. Note that C works in 40 column mode, and XS only has
28 columns when using the DISPLAY AT statement.

100 REM FILL SCREEN WITH STARS
110 STARS="*"
120 CALL CLEAR
130 FOR ROW=1 TO 24
140 FOR COL=1 TO 2S
150 DISPLAY AT(RON,COL):STAR$
160 NEXT COL
170 NEXT ROW

P 'ASO= 	41

FLOPPY DRIVE
149.00
AL 1200L
329.00

EXCELTRONIX COMPUTING INC.
217 BANK STREET

230-9000
6

MAR'S BYTES

by Marilyn Boone

First, let me say how nice it is to get some positive feedback
from people who read and like my articles.

Now for a lighter look at Chicago!!

I packed very carefully and got everything required into a
small suitcase for Bob and I - only to find out that I could take a
larger one. 	Oh,joy!!! Room to bring back more! Jane and Lucie
arrived shortly after this and their three suitcases 	(not each!!)
were arranged in the trunk. Mike Taylor arrived on the scene and
there was still room for his suitcase! So with several hundred km.
ahead, we started our journey (Wed. afternoon) and arrived near the
U.S. border about 10 pm. The task then was to find a motel and
have something to eat. We arrived at the motel and unpacked the
trunk.

Next morning, after packing five suitcases back in with
everything else, we had an almost uneventful trip. I say ALMOST
uneventful- most turns are made at stop lights....WE made a U turn
on a four lane highway and were finally off in the right direction.
We arrived in Chicago none the worse for wear at supper time. After
unloading the trunk - AGAIN of 5 suitcases, boxes of diskettes, books,
(well, you fellows who help Bob unload the trunk for meetings know
what I am saying!), a video camera, recorder, tripod

Frida 	was a beautiful day. We planned an early breakfast and y
a tour of Chicago. Our tour guide was Lucie Dorais who did a
fantastic job. We toured tfie art museum. I was impressed by the
paintings. I've been to the Louvre in Paris, but this was totally
different. There were sections on Mexican art, Medieval costumes of
many eras, gun cases, glass and porcelain displays. Also, in the
same building was the famed Chicago stock exchange.

I lost Bob in this building, but soon caught up with Jane and
Lucie. We explored the impression era of Rembrante, Dante and
Picasso to name a few. Then we did Madison Avenue. Lucie pointed
out various styles of architecture in the city and we all went
around(with our noses in the air) looking at the various buildings.
One thing I did enjoy was the sculpture by Picasso in the down town
section but the piece de resistance was our trip up to the top of
the Sears Tower. The building was secure but if I stood still- I
swayed -only slightly. The view was fantastic! We could see for 20
miles (so the brouchure said) on each side. The expressways were
like trails of red lava with all the car lights exiting the city.
Everyone enjoyed their day!

Saturday was the day of the Chicago TI faire - the only day it
rained. We were a bit sluggush getting started but after breakfast
we were full of anticipation at seeing the new computer. We arrived
at Triton College and set up. As in New Jersey, everyone came to
greet these Canadians from Ottawa. We, however, were not the only
Canadians. 	There was a group from Hamilton, Bruce Ryan (of Ryte
Data) and his family , and a few other individuals. 	We had an
extremely busy morning. 	Hardly anyone from our booth had time to
leave for any reason. If they did, it was hurried. 	Later in the
afternoon, things slowed down and I left to do some shopping. No
use travelling for two days if I can't go shopping. The shopping
plaza was easy to find this time and I spent two hours and a
fortune. The problem was_; how do I get it all into the suitcase.(I
was not the only one with this dilema.) I arrived back at Triton in
time to see the new computer by Myarc. I was a bit disappointed as
I was expecting a whole, new system- not just a board and disk. Oh
wel1 1, !I 1

Jane had a chat with Lou Phillips about importing the new
computer. 	We even got to bring a couple of boards Rome. Mike
bought a printer at a fantastic low price. 	"Where do weput
it?"(A2B) We were thinking about a car top carrier for Mike and his
printer 	

Everyone bid a fond farewell to new and old friends with
promises to see them at the buffet supper. We relaxed a little too

7

long and missed out on seeing everyone . So we ajourned for a late
supper. 	Most of us were too tired to consider Hank Ellerman's
gracious invitation to visit his home after the buffet. 	Everyone
crashed.

Next morning, Mike was at his task again - that of finding room
for everything. His printer was neatly tucked away in his suitcase.
I wore most of the clothes I bought and everything was packed in
like a jig-saw puzzle with the fervent hope that it would only have
to be disturbed ONE more time. Late that night we stopped and very
carefully undid Mike's work. Mike was so good at this by now,
everyone had great confidence that he could tackle the task once
more in the morning. We weren't dissappointed. Monday morning Mike
did it again, but this was to be a day unlike any other. We came
back south - of the Great Lakes. Later on, after covering about 500
km the car started to sway. I thought it was the road because it
was a bit slanted but it was - a flat fire. Out came all the boxes,
suitcases,clothes, etc. to get to the '50 km' tire. Then
everything was put back , not as carefuly this time. We found a
service centre and hauled everything out only to find out they had
no spare to match. So back in again. We continued on to a
tiny town and found a reasonable facsimile of our original tire to
get - us home. Now in the trunk, in addition to all we had before is
Ehe flat tire. All the purchases at the duty free shop now had to
travel as 'passengers'. The time at this point is 10pm. Everyone
breathed a sigh of relief when we breezed through customs. The
trunk was repacked a total of 8 times - 5 of which happened on our
way home. Mike has proved to be a very valuable asset on a trip to
Chicago!

	

One other funny item 	the car was so heavy in the back that
the oncoming traffic and trans ort trucks we were behind all kept p
flashing their lights at us. It took a while for us to realize that
our low beams were hitting their mirrors and they thought we were
using high beams.

TI - 99/4(a) Disk Format

The following is a complete and, to the best of my knowledge,
accurate description of the Disk Directory format and file storage
allocation used by the TI-99/4(A) computer.

SECTOR 0 - Volume Information Block

ADDRESS 	 CONTENTS

Disk name - up to 10 characters
Total number sectors on disk
(0168=360, 02D0=720, 05A0=1440)
09 (# of sectors/trk)
'DSK' (44534B)
50 = Disk backup protected, 20 = not protected
of tracks per side (28=40, 23=35)
of sides/density (0101=SS/SD, 0201=DS/SD, 0202=DS/DD)
Sector allocation bit map. See note below

NOTE on 0038-end:
This is a sector-by-sector bit map of sector use;
1=sector used, 0=sector available. The first byte
is for sectors 0 through 7, the second for sectors 8
through 15, and so on. Within each byte, the bits
correspond to the sectors from right to left. For
example, if byte 0038 contained CP00 then the
first byte equals 1100 1111. This means that
sectors 0 through 3 are used, sectors 4 and 5 unused
and sectors 6 and 7 used. Information for the 2nd
side of a DS/SD disk starts at byte 0065 and ends
at byte 0091.

0000-0009
000A-000B

000C
000D-000F
0010
0011
0012-0013
0038-end

8

SECTOR 1 - Directory Link

Each 16-bit word lists the sector number of the File Descriptor
Record for an allocated file, in alphabetical order of the file
names. The list is terminated by a word containing 0000•
therefore, the maximum number of files per disk is 127 [(256/2)-1.
If the alphabetical order is corrupted (by a system crash during
name change, for instance), the binary search method used to locate
files will be effected and files may become unavailable.

SECTOR 2 TO 21 - File Descriptor Records

ADDRESS 	 CONTENTS

0011
0012-0013

OO1C - end

File name - up to 10 characters
Filetype: 	01=Program.(memory-image)

	

00=DIS/FIX 	02=INT/FIX

	

80=DIS/VAR 	82=INT/VAR
File deletion protection invoked by Disk Manager 2

will be shown by 08 added to the above.
It of (MAXRECSIZE) records/sector
Number of sectors allocated to the file. (Disk
Manager 2 will list one more than this number,
thereby including this sector in the sector count)
For memory-image program files and variable-length
data files, this contains the number of bytes used
in the last disk sector. This is used to determine
end-of-file.
MAXRECSIZE of data file.
File record count, but with the second byte being
the high-order byte of the value.
Block Link (see note)

Note on file storage:
Files are placed on the disk in first-come /
first-served manner. The first file written will
start at sector 0022, and each subsequent file will

	

be placed after it. 	If the first file is deleted, a
newer file will be written in the space it occupied.
If this space isn't big enough, the file will be
'fractured, and the remainder will be placed in the
next available block of sectors. The block link map
keeps track of this fracturing. Each block link is
3 bytes long. The value of tfie 2nd digit of the

_.second byte followed by the 2 digits of the first
byte is the address of the first sector of this
extent. The value of the 3rd byte followed by the
1st digit of the 2nd byte is the number of
additional sectors within this extent.

0000-0009
000C

000D
000E-000F

0010

Sectors 2 through 21 are reserved for File
Descriptor Records and are allocated for file data
only if no other available sectors exist. If more
than 32 files are stored on a disk, additional File
Descriptor Records will be allocated as needed, one
sector at a time, from the general available sector
pool.

Earl Hall

1I8/ HENEUHL
$ 2 0.0 0

If yo u hav e n ot don e it y e t f S e n d
to: ThC OTTt4U, T I9/tiff US rhS' !3 r o Grp ,

P.O. ^O H 	I ti 4, STATION 'a'
OTT^1U^ , ON T. 	HIP 5U3

0 r`: br i n g i t t o nC X t n e e# i n {a

9

TIMP TIPS _TECHNIQUES
by

Steve Zimmerman
Many thanks to those of you who left questions for me on the TI SIG
and SCCG boards! I'll try to answer some of them here this month.

One of the most useful features of Multiplan (and one that I miss
on my Tandy 200 portable!) is WINDOWS! Windows are a BIG THING
now--just read the magazine reviews and ads for programs such as
Framework and Symphony. Windows enable you to see two parts of the
screen, in different areas of the worksheet, at the same time.
Sounds simple enough, but what good is it? Well, let's say that you
have a worksheet with about 60 rows of labels in Column 1, and that
you enter data for each day in a month in columns 2-32. Since your
basic column width shows only 4 columns, you can see the labels
only while entering the first 3 days data. If you make the columns
narrower, of course, you can see more--if the numbers aren't too
long! If the numbers are too long, and you make the columns narrow,
you just see "#####", an error symbol which means that you have too
many numbers to display in that column width. To enable you to
enter later columns of data in the proper rows, you need to create
a window.

To do this, position your cursor (the cell pointer) in R1C2 (one
column to the right of your labels), and hit the W key (for
Windows). On the next menu, you want to key S (for Split). On the
next menu, key V for vertical, and Multiplan will respond with "at
column 2", Linked yes no, with the NO highlighted. Use the Tab
(Ctrl 2) to move the command cursor from the 2 in "at column " to
the Linked field, key Y to link the windows, and then key Enter.
With practice, this command sequence becomes W S V Tab Y Enter.
You now have a window, linked vertically. As you move the cell
pointer down in the active window (the one you just created), the
labels move along. As you move the cell pointer to the right,
columns will disappear on the left side of the second window, - but
the labels will remain in view.

To 'uncreate' this window, key W (for Window) C (for Close);
Multiplan will respond with #2, key Enter, and the window closes.

You can do the same thing with horizontal windows, if you have
labels across the top and you want to see them as you move up and
down. One thing you cannot do, however, is to link windows which
intersect in the same cells. R1C1_cannot be in 2 linked windows,
one for R1 (horizontal) and one for Cl (vertical).

You can move the cell pointer between windows by using Crtl 6
(change window), which makes a different window the active window.
Ctrl 6 again will take you back to the original active window.

I hope that this 'raises the shades' for those of you with
windowing questions! To cover some other questions, I don't know of
any way to load the recalc routines when you start out in
Multiplan. This will, of course, cause those with only one drive
to have to swap disks, starting with the Multiplan disk, then your
data disk, and then back to the Multiplan disk to load the recalc
routines. The program will also have to access the system disk to
set up Names, to do Xternal copies, to show you your disk
directory, and to load the routines for logical operators. It
appears that these are handled by some type of overlay, which is
loaded from the system disk only when needed. I don't know for
sure, but it is possible that one or more of these routines uses
the same (or overlapping) addresses in memory. Oh, yes, one more
thing which requires access to the Multiplan system disk is the
Help files. These can be quite handy, though! To get Help, just
move your command line cursor to the command you need Help with,
and key Fctn ?. To get Help with Help, move the command cursor to
Help and hit Enter.

I C)

One more handy hint on recalculation--to recalculate a single cell,
move your cell pointer to that cell, key E (for Edit), DON'T CHANGE
ANYTHING, and hit Enter. This will cause the contents of THAT CELL
ONLY to be recalculated. Of course, if you left recalc turned
on

Other handy hints--to Un-Name Names, enter the Name, and delete the
reference in the "to refer to" field--this deletes the name by
making it refer to nothing. To delete an Xternal reference or
link, 	the same procedure is used. You enter X (for Xternal) , C
(for Copy) , from sheet (sheetname) , Name 	(enter the name) , to:
(delete anything in this field), Linked (yes), Enter. This
redefines the Xternal copy link to refer to nothing, and the value
placed in the cell by the Xternal Copy command will disappear, and
the cell will now be unlocked. To change the target of an Xternal
copy, use the same procedure, but specify the new cell or cells in
the "to:" field. Since each cell or range on the supporting sheet
can have only one target (on the dependent sheet), the old link
will be replaced by the new.

Well, I suspect that I've written more than I should, so I'll cut
it short for now. There are a few more questions that have been
sent in, and I'll try to cover those next month. Until then, have
fun with MulTIplan!

WRITER-WROUTES

by Jane Laflamme

As a personal preference, I like to work with a screen only of text
by setting my left (L) and right (R) margins by entering "T" for
Tabs, at 1 and 39. I then get rid of the line numbers By using
Fctn. 0. (BUT never do this for a variable file for mail
listings. The letter can be typed with these margin settings, but
not the variable filei the left margin must be set at "0" or the
printing will stop when it accesses the variable file and you will
be returned to the menu screen. Took me a long time to figure THAT
one out!). Also, remember the finished document's margins will be
set through the Formatter with the .LM n and .RM n.

Of course, I only work with a screen of text while in word-wrap
(Solid cursor, or power-up) mode. I can usually work around all
problems sin that mode but sometimes I need to work in Fixed mode
(Hollow cu-k- sor or toggle with Ctrl. 0). If within my document I
need to use fixed mode to align my data, I set up a separate file
and include it in my document at the appropriate place, with
the DSK2.ADDLDATA. Within the fixed mode file, I set my left
and right margins in Tabs to 0 and 79, or appropriate settings, and
needed Tabs for use with Fctn. 7. That way, I only need to window
over in Fixed Mode. I then continue with the original document in
word wrap and a screen only of text with no need to window over 80
columns.

When reworking your file in fixed mode, be sure to toggle on
Ctrl. 0, for if you inadvertantly use Reformat, Ctrl. 2, you'll
have one "heckava" jumbled mess!

If you have questions please don't hesitate to contact me, either
by phone or writing to me in care of the Newsletter. I will
attempt to answer your questions in future columns. If you have a
tip of your own, or a better way of doing things, I'd also like to
hear from you! Until next time...keep on TI'ing!

11

FORTH TO YOU1 TOO! - SESSION 2

by

Lutz Winkler

You have determined which of the editors suits you and found a
display color you like. They could be entered from the key board
each time FORTH is booted. But there is a better method: Let the
disk do it for you! To begin with we'll use the simple - and later
on a more elegant - way.

(If you haven't made up an overlay yet, better do it now, else
i editing isn't going to be easy. Programming in FORTH is done by

editing SCREENS and the various editing functions are made a lot
easier if you can refer to the overlay.)

So boot your FORTH disk again and when the MENU shows up, enter
either -EDITOR or -64SUPPORT. Now get out your manual and go to
Appendix I (Contents of the Disk) and look at SCREEN 3. This is
the one that givesou the first inkling that something is going on
by displaying "BOO

y
TING". So you get an idea of the way FORTH

works, let's scan its content before going on :

Line 0: The parenthesis () act like a REM in Basic, so we see that
it is called the Welcome Screen. GOTOXY is like DISPLAY AT, note
the coordinates 0 0 preceding it.

Line 1: Forget the BASE-R for now, but let's do someting with HEX.
From your keyboard enter
HEX 83C2 DECIMAL .

Don't forget the period, actually a FORTH WORD called DOT. 	(Look
up each word in the GLOSSARY) What did you get ? -31806 is correct.
In plain English line 1 states: Switch to BASE 16, put 10 (16) on
the stack, and C! (C-STORE, seepage 17, Glossary) it at 83C2.
This is how FORTH does the CALL LOAD for FUNCT-Quit Off. (You have
seen that one before!)

Line 2: DECIMAL returns us to Base 10, ignore the (84 LOAD) , 20
LOAD loads SCREEN 20 (look at scr # 20 and you'll sae that it's the
menu which appears at boot time. 16 SYSTEM is CALL CLEAR (more
about System Calls later) and finally MENU displays the menu.

Take a moment to digest this, as it gives some idea as to how FORTH
works. The command 20 LOAD booted scr # 20 at which time a new
FORTH WORD was compiled (see scr 20, line 1). MENU is now part of
the DICTIONARY. Anytime MENU is invoked, FORTH looks it up and
executes it. Try it, enter MENU. You get the menu and 'ok . If
you enter something FORTH can't find you'll see a '?', sometimes
followed by an error message (see Appendix H). Most mistakes made
by beginners are simple ones, such as missing spaces, colons or
semicolons or a LOAD OPTION not booted.

OK, back to the Welcome Screen. But now let's put it on display.
Enter 3 EDIT and watch it come up. Skip to line 4 and note that
here we have the menu words defined, i.e. :-EDITOR 34 LOAD ; etc.
The first word after a ':' is the new word being added to the
dictionary. Any words that follow will be executed, provided FORTH
can find them in the dictionary. The definition ends at ';'. Now
move the cursor down to line 12 and type

-EDITOR (or -64 SUPPORT) enter. Are you surprised that nothing
happened (except the cursor moved to the start of the next line)?
That's because you are in the EDIT mode. If you are sticking with
the normal Editor type in the number which you selected with the
SEE experiment as you display color followed by 7 VWTR. If you
chose the 64-column Editor dont' bother, type : COLD TEXT COLD ;
instead.

Hit the ESCAPE key (F-9) to get out of EDIT. Your additions to scr
3 are NOT actually on the SCREEN but in a buffer and you must enter
FLUSH before going on.

12

Remember that ever 	time you EDIT a SCREEN you must FLUSH,
otherwise all your efforts forts will be for nought.

So let's check if your edit was successful. Enter COLD. This word
is like NEW except you don't have to do anything else, FORTH will
re-boot. (It'll take longer now because you are hooting the editor
also.)

Now let's recap:

You have 'edited' SCREEN 3 so it boots your editor and sets up the
screen color for you. This was done while in the EDIT mode. You
have also worked in the 'interactive' mode when you defined the
word SEE to determine your color choice. In this mode you can try
out your definitions beforeyou use them in a program. You'll find
this to be tremendously helpful because unlike BASIC there is no
need to go to RUN and see what happens and then finding the line
which needs to be changed.

Having worked my way into TI-FORTH the hard way, I will leave you
with a few suggestions which I feel will be helpful:

Look up each new word in Appen. D of the manual. See how it is
defined.

Mark the chapters and appendices in your TI-FORTH manual for easier
access to them. You'll be using it frequently because - even
though it may not seem so at first - it DOES contain a lot of
information.

Get a FORTH book, preferrably Leo Brodie's STARTING FORTH. It is
sold in many bookstores/software houses. The manual (Appendix C)
explains the differences between fig-FORTH, which Brodie uses, and
TI's implementation of it.

Thodgh it may read like Greek, scan through the manual. As we go
along you might just remember having seen something that rings a
bell. (Finding it again may be something else!)

If you have any problems, feel free to call me at 277-4437. 	I am
usually

TI TUTORIAL #2

by ROBERT COFFEE

;Communications Register Unit 8K

Let's run down the CRU again.
50000-03FE CRU TMS 9901 space, required.
>0404-10FE For test equipMent use on production line.
>1100-11FE Disk Controller.
>1200-12FE Modem.
>13Q0-13FE Primal RS232, serial ports 1 & 2 and parellel port #1.
>14d0-14FE Unasst ned.
>1500-15FE Second ry RS232, serial ports 3 & 4 and parellel port *2.
> 600-16FE Unassigntd
> 700-17FE Hex-buS (tm),
>1800-18FE Thermal printer.
>l900-19FE EPROM ro rammer, something that TI planned but never came out wi

> B1 a
TO0-1AFE Unassi ne

Q0-BFE Unssi ned
> C00-1CFE Video ontroller Card .

>1D00-1DFE IEEE 4 8 Controller Card,apparently something else that TI didn't
re ease.

>1E00-1EFE Unassigned
>1F00-1FFE P-Code Card.

13

I VDP RAM 16K

>0000-02FF SCREEN IMAGE TABLE (.75K)
This portion of VDP Ram contains the characters that you see on

tour screen. Hex 0000 is the character in the top-left corner of he screen. The ascii values have offset value of >60.
>0300-036F SPRITE ATTRIBUTE TABLE .1K)

This table holds the intormation for all 28 sprites.
eq. position(dot row, dot column), character number, and its color.

>0370-077F• PATTERN DESCRIPTOR SPRITE PATTERN TABLE (1K)
Contains the patterns for characters sprites.
eg. address for the space is (768+8=1024).

>0780-07FF SPRITE MOTION TABLE (.12K)
This holds row and column velocities for all 28 sprites and it used

i by the Interrupt routine in console ROM. The routine executes 60
times a second(or 60 Hertz)and since it is interrupt driven it will
use the values i this table to update the Sprite Attribute Table.
Each srite uses 4 bytes. One for row velocity, one for column
velocity, and 2 for the system to use.

>0800-081F COLOR TABLE (.03K)
This portion contains the foreground and backround color information
for each chars ter set. The defini 	n tio for eac co h 	for uses Qne byte,
bytes 0-3 tor foreground and 4-I tor backround. there are 3z byts
ih the table (Sets 1-32). Sets 1-3 aren't used by the 'COLOR' State-
ment. Set 4(in table) is character set 0, set 5 is 1, etc. up to set
18(for table) 14 for character set. Sets 19-32 aren't used by the
'COLOR' statement in Extended BASIC.

>0820-35D7 DYNAMIC MEMORY SPACE (11.5K)
This holds your program and other things like PAB(Peripheral Access
Block) strings, symbol table numeric value table, the line number
table(tor finding the lines of your program thats in the crunched
format).Your BASIC program is loaded frOm >35D7(bottom) and up.Lines
appea11r

0,1
 as
 20

 they as typed in, not in the order of line numbers (like
1100,)

>35D8-3FFF FILE BUFFERS (2.5K)
CALL FILES(n) will change this startin address but with CALL FILES
(3) it start repectivel -9 at >35D8. If E

g
 lle power up routine finds a

disk controller then the computer will automatically reserve this
this space for drive control, file allocation, and data buffering.

Console GROM 18K I

There are 3 GROM chips in our consoles. Each has 8K of space but only 6K is
used. The difference between ROM and GROM is that GROM automaticallt increments
itself everytime it is accessed.GROM is also written in GPL(Graphics Programming
Lanquage) t which TI wrote themselves. Here are those 3 GROM chips:
GROM 0 >0O00-17FF The title screen power up routine, title screen character set,

standard character set(Upper Lower casd), cassette DSR messages and the
trigonometric functions.

3ROM 1 >2000-37FF Vector tables for BASIC, the error messages, and part of the
BAISC interpreter.

3ROM 2 >4000-57FF Part of the BASIC interpreter,the reserved word list and their
associated token values.

GROM chips 3-6 (24K)are in the Extended BAISC cartridge and contain the
Following

 3 '6U00-77FF X/BASIC vector tables, the error statements for X/BASIC and
part of the X/BASIC interpreter.

MOM 4 8000-97FF Part of the X/BASIC interpreter.
3ROM 5 >A000-B7FF Part of the X/BASIC interreter.
3ROM 6 >C000-D7FF Part of the X/BASIC interpreter, the reserved word list and

their associated token values.

1

>0000

Video Display Processor RAM for Extended BASIC

VDP , a complete look.

VDP SCREEN IMAGE TABLE 	 768 bytes

each screen location takes up 1 byte, the character
value at each location is of/set by >60.

>02FF

>0300 	 SPRITE ATTRIBUTE TABLE 	 112 bytes

Each sprite takes up 4 bytes. (room enough for only 23)
These tor bytes consist of vertical postion -1, hotizontal

LOCATION=COL+32*(ROW-1)

14

EXTENDED BASIC SYSTEM BLOCK

>0371 Auto Boot (needed flag)
>0372 Line to start execution at
>0376 Saved symbol table "GLOBAL" pointer (used with

subprograms).
>0378 Used for CHR8
>0379 Sound blocks
>0382 Saved program pointer for continue and text pointer

for break
>0384 Saved buffer level for continue
>0386 Saved expansion memory for continue
>0388 Saved value stack pointer for continue
>038A ON ERROR line pointer
>038C Edit recall start address
>038E Edit recall end address
>0390 Used as temporary storage place
>0392 Saved main symbol table pointer
>0394 Auto load temp for inside error
>0396 Saved last subprogram pointer for continue
>0398 Saved ON WARNING/BREAK bits for continue
>039A Temp to save subprogram table

>039E Merged temp for PAB (Peripher 1 Access Block)pointer
>039C Same as above but used in sulrograms

>03A0 Random number generator seed
>03A5 Random number generator seed 1
>03AA Input temp for pointer to prompt
>03AC Accept temp pointer
>03AE Try again(Used when you input a string instead of a

number)
>03B0 Pointer to standard string in VALIDATE
>03B2 Length of standard string in VALIDATE
>03B6 Size temp for record length. Also temp in relocating

program
>03B7 Accept "TRY ?GAIN" flag
>03B8 Saved pointer in SIZE when "TRY AGAIN"
>03BA Used as temp storage place g
>03BC Old top of memory for relocating program / temp for

INPUT
>03BE New top of memory for relocating pro ram
>03C0 Roll oUt area for scratch pad RAM whe

g
n certain

operations are performed
>03DC Floating point sign

t>0300

'>0370

SPRITE ATTRIBUTE TABLE
	

112 bytes

Each sprite takes up 4 bytes. (room enough for only 28)
These /or bytes consist of vertical postion -1, horizontal
position, character # + >60, clock bit, color.

>036F

>03EF

>03F0 	 PATTERN DESCRIPTOR TABLE 	 912 bytes
/ SPRITE DESCRIPTOR TABLE

Each character take up 8 bytes. There are 114 characters
here. They are numbered from 30 to 143.

>077F

>0780 	 SPRITE MOTION TABLE 	 128 bytes

Each sprite takes up 4 bytes, These.4 bytes contain the
vertical velocity, horizbntal velocity, & the last 2 are
for system use.

>07FF
>0800 	 COLOR TABLE 	 32 bytes

Each character set requires only 1 byte. This byte is
broken up into the foreground & backtound.

>081F
>0820 	 CRUNCH BUFFER 	 160 bytes

This area of VDP is used when the system needs to crunch
valuesASCII

>08BE ,
>08C0 	 EDIT / RECALL BUFFER 	 152 bytes

What you type in at the command line is stored here.
>0957

4 	
>0958 	 VALUE STACK 	 16 bytes

Used by these ROM routines : SADD, SSUB, SMUL, SDIV, & SCOMP
>0967

>39E3 File Control Block for 2nd file OPENed (6 b) s 518 bytes

>39E9 File Desriptor record (256 bytes)
>3AE9 Data Buffer area (256 bytes)

DISK DRIVE INFO

>3EEB Last drive number accessed
>3EEC Last track access on drive #1
>3EED Last track access on drive #2
>3EEE Last track access on drive #3

not use by the 4A , it might have been used
by the 4

d
 (?)

518 bytes

>3DEE

252 bytes

>3EEA
4 bytes

>3EEE
6 bytes

>3EF4

256 bytes

+
>3DEF

t>3EEB

+
>3EEF

>3EF5 VOLUME INFORMATION BLOCK

>3BE9 File Control Block for 3rd file OPENed (6 b)

>3BEF File Descriptor record (256 bytes)
>3CEF Data Buffer area (256 bytes)

VDP STACK AREA

1-

>0968 	 11888 bytes

The items in this area move according to the size of the
crunched program & the system always reserves 48 bytes of
area.

The SYMBOL TABLES are generated during the pre-scan peroid
after you type RUN. The strings are placed Into'memory when
they are assigned.

WITHOUT MEMORY EXPANSION:
-STRINGS
-DYNAMIC SYMBOL TABLE & PABS
-STATIC SYMBOL TABLE
-LINE NUMBER TABLE
-PROGRAM SPACE(crunched program)

>37D7
>37D8 	 DISK BUFFER AREA [default 'CALL FILES(3)' 	5 bytes

>37D8 Validation code for the disk controller DSR (>AA)
>37D9 Points to TOP of VDP memory (>3FFF)
>37DB CRU base identification
>37DC Maximum number of OPENed files (>03 default)

WITH MEMORY EXPANSION:
-STRINGS
-DYNAMIC SYMBOL TABLE & PABS
-STATIC SYMBOL TABLE
-Numeric values, line number table,
&program space are moved into
Hiqh-memory expansion(>A000)

File Control Block for 1st file OPENed 	 518 bytes
>37DD Current Logical record offset
>37DF Sector numt5er location of File Descriptor Record
>37E1 Logical Record Offset(used woth VARIABLE files only)
>37E2 Drive number(usin the high order bitl

File Descriptor Record(brOught ught from the disk 256 bytes)
>37E3 File name
>37ED Reserved (>0000)
>37EF File status flags(file type & write protection)
>37F0 Max number of records per Allocation Unit.(1 AU=1 Sector)
>37F1 number of sectors currently allocated (256 byte blocks)
>37F3 End of File offset within the last used sector
>37F4 Logical record length
>37F5 # of FIXED lenght records OR # of sectors for VARIABLE

length
>37F7 Reserved (>0000 >0000 >0000 >0000)
>37FF Pointer blocks
>38E3 Data Buffer area (256 bytes)

An exact copy of sector >0 from the disk last accessed.
>3FF4

>3FF5 	FILE NAME COMPARE BUFFER 	 11 bytes '
Contains disk number & 10 character file name from last
access.

>3FFF

16

A LOOK AT TI BASIC

by R. A. Green
As you may already know, TI BASIC programs can be executed from
GROM/GRAM as well as from VDP RAM. Several TI modules (ie Personal
Record Keeping) contain TI BASIC programs. Now that there are some
GRAM devices such as MAXIMEM and GRAM KRACKER you have the
capability of putting your favorite TI BASIC program (not Extended
BASIC) into GRAM for execution. TI BASIC programs executed from
GRAM have the whole VDP RAM available for data storage thus
allowing larger arrays, more variables, etc.

There is one little problem -- there has to be, otherwise this
article wouldn't be interesting. I have found that there is a bug
in TI BASIC when processing a - RESTORE statement that refers to the
line number of a DATA statement. TI BASIC forgets, in this
instance, to check if the program is in GROM/GRAM and usually ends
up doing a restore to the first DATA statement in the program.

This is the case on my console at least. 	Heiner Martin in his
execellent book, "TI 99/4A INTERN" says he knows of no variations
in the TI BASIC GROMS, so I imagine it is the case on your console
also. The following is a short TI BASIC program which will show
the bug. The program works correctly when executed normally from
Vr)P RAM. It fails when executed from GRAM.

I PRINT "SHOULD PRINT 220,110,100":::
100 DATA 100,"ONE HUNDRED"
110 DATA 110,"ONE ONE OH"
130 RESTORE
140 READ N,N$,N,NS,N,N$
150 PRINT N,N$
160 RESTORE 110
170 READ N,N$
180 PRINT N,N$
190 RESTORE 100
200 READ N,N$
210 PRINT N,N$
220 DATA 220,"TWO TWO OH"
230 FOR I=1 TO 2000
240 NEXT I

There is a fix 	there has to be, otherwise this article
would only be a little interesting. The GRAM device I have is
Miller's Graphics GRAM KRACKER so I'll give the fix using it.
Miller's Graphics supplies with the GK routines to put a TI BASIC
program into GRAM. I will not duplicate their directions for doing
it here. Just remember to turn the LOADER switch to OFF when
executing a TI BASIC program.

In order to apply this fix you must have a GK that has GRAM 0
and GRAM 1-2 (ie for the console GROMS). The steps to fix the bug
are listed below.

1. Copy the console GROMS 1 and 2 to disk.
2. Load the console GROMS 1 and 2 into the GK.
3. Locate the code with the bug.
4. Patch a branch to the fix over top of the bug.
5. Patch in the fix.
6. Test the fix.
7. Save the fixed GRAM 2 to disk.

Steps 1, 2 and 7 are fully described in the GK manual. Steps 3, 4 and 5
are done using option 5 "Edit Memory" from the GK menu.

When the Edit Memory screen comes up, switch the LOADER switch to OFF,
the GRAM 1-2 switch up and the W/P switch to BANK 1 (ie allow writing).
Press FCTN = to change the display to HEX. View memory at address
G420E. The memory display should then begin with:

C5 4A BO 36 42 1F D5 ...

The first four bytes are the instruction in error. They represent the
CPL instruction:

DCH 	VDP*8336,@834A

17

Which is comparing the line number in the line number table to the line
number in the RESTORE statement. This instruction assumes the line
number table is always in VDP RAM.

Now we will patch a branch over this instruction to our fix. Press FCTN
9 to put the cursor in the memory window and type the following three
bytes begining at address G420E.

05 53 00

Which is a GPL branch instruction to address G5300 which is where we
will put our fix.

Press FCTN 9 again to exit from the memory window and view address
G5800.

The memory window will display a lot of junk because TI GROMS are 6K
bytes and GK GRAMS are 8K bytes. If we needed it we have 2K bytes for
fixes. Again press FCTN 9 to enter the memory window and begin typing
the fix at address G5800. The fix is shown below.

8E 80 89
58 OE
C5 4A BO 36
42 IF
05 42 14
33 00 02 00 00 00 36
C5 4A 00
42 1F
05 42 14

Which are the GPL instructions for:

CZ 	@8389 	 Test if pqm in GROM
BR 	GRAM 	 Branch if yes

* Program in VDP RAM
DCH 	VDP*8336,@834A Original instruction
BR 	421F 	 Instruction after original
B 	4214 	 Continue original code

* Program in GRAM
GRAM MOVE 2,G@0(@8336),@8300 Get line # from GRAM

DCH 	@8300,@834A 	Compare line numbers
BR 	421F 	 Instruction after original
B 	4214 	 Continue with original

Now test the fix by running the sample program normally in VDP RAM and
then running it from CRAM.

BROWSING THE LIBRARY
--with STEPHEN BRIDGETT

Disk sales have been brisk since we re-introduced the 'DISK OF THE
MONTH', and except for a batch of bad copies in Nov., things are
running real smooth.

At the monthly meeting, the members voted to purchase 500 disks to
back up the software disk library and a further $500,00 to have
disk jackets made up with the club name and insignia embossed on
them. When new disks are to be purchased the embossed jackets will
be sent to the manufacturer. Members are encouraged to promote
pride and notoriety of our club by purchasing their disks with the
embossed jackets. The extra charge is very minimal.

Many offers to help with the LIBRARY have been gratefully received.
Most activities will take place early in '87 and people will be
contacted. One job that will need to be done is typing in programs
gleamed from various sources, Micropendium etc. There are some
excellent programs out there just waiting for someone to spend an
hour or so doing a little finger work. If just a few people offer
to type one program a month, the library can grow in leaps and
bounds. - ANY TYPISTS ?

PLEASE use the SUGGESTION BOX. This is your easiest most efficient
feedback to the executive and committee people. What do you want
from YOUR SOFTWARE LIBRARY ? Or call me at 521-3631, there is an
answerering machine on this line.

SEE YOU AT THE MONTHLY 	STEPHEN

18

L31.31)1 	 SNV311:10

WAIL-LEO 04000 01 ul 	.101001

0 14001.10 la 4des0NS

'W 	
Vol

d 004 	 seid000lowl uo seoud !Bloods •
"-V 004 NOR se3pd mai iv Bunupd Amen° •

N3d0

ONIAd00010Hd • inookyi • ONIINII:Id 1.3SA3O

INIUd

Canada 1

FROM 	
7-,,,,,..:::,

	

.., 	 ,.r.„ 	=‘, -....,

P. orD . E 0 X 2 1 4 4, Ei TAT 1 0 N ID , 	 1? ?--,,, ---,-

	

0, .,... -ge 0Na-1 .AR-I 0, CANADA K1P 5143 	
14 iv4 -, ..,-,:,--.\,

0/1/., -.......,...

... 	,

Tom Hatt
3-107c Ctinicat Scienm Bldg.
Univeuity of Atbekta
Edmonton, Atta.
T6G 2G3

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

