
TI-COM BBS 	 1-419-385-7424

PRESIDENT... MARK MAISONNEUYE 1-415-893-9314
ADDRESS 1046 URLL,HRUHEE 	OHIO 	43567

VICE-PRES... Jo SYNINCTON

SECRETARY. H .-ARILYN SCHAFSTALL

TRERSURER..EARL U.Horrszs

SOFTURRE LIBAGROCRIus DENEY

NEUSLETTER LIB. BURR MALLORY

EDITUR,...RocER FEINAUER

CONPILER..Juoy FEINAUER

1-419-474-4128

1-419-822-6270

1-419-475-0461

1-41'3-475-3871

1-419-822-6769

1-517-263-6144

Vol. 7 No. 7 September 1989

NEW FiC)REC)NS

NElA)5 LETTER
NORTHWEST OHIO COHPUTER CLUB FOR THE TEXAS INSTRUNENTS 99/4A

AND THE HYRRC GENEVE 9640 PERSOHRL AND ROHE COMPUTER

This newsletter is published by New Horizons TI-99/4A Home Computer User's
Group. Material may be reproduced without permission provided that the Author
and the source are Acknowledged. For more information consult one of the
following officers: Yearly Dues $15.00 per Family or Individual 	

THIS MONTHS MEETING SEF.09,1989 SATURDAY AT UNITY CHURCH 12:30 PM.
Behind Wendy's off Secor Road on Executive Dr.

ATTN:IARI U. HOFFSIS
U. OHIO 99 ERS USERS GROUP

FIF6I CHURCH UNITY
KI4t. EXECEIVE PARMMAY
MEM OHIO 43606

T Amp

galEvE you cAni
//

LEARN FiZoM °THEW,
pEopLE:s" Mr5TAIcEs,

AND x MAKE EN0LIGN

To TRAIN EVERYgoDY
HERE!

-THAvE5 7- i9

FER5'0NNeL.

m I

.H0111 14 0

•

OH-MI-TI and NEN HORIZONS
	

page 12
	

SEPTEMBER 1989

!RESIDENT'S
HOP.. -,LiDt4 C tiniEn "A

Mark Ma isonneuue

Hello again, we are starting
the fall season. At this time I
regret to announce that I have
decided to step down from the
Presidentship of New Horizons
Computer Club. Due to the
demands on my time, I find that I
cannot give the attention
deserved to the club. Because of
this I am now handing over the
reins of the presidency to Jo
Symington. I do intend to remain
a active member of OUT'
organization.

This month we will have as
always

the club disk, last 	three
issues 	of the Micropendium
magazine, 	and 	as 	schuduled
various demos.

At this time I would like to
thank all the people who have
helped me through the year. So
with this closing, bye for now
and I hope to see you all at this
months meeting.

9,600-bps Modems
My company needs to set up a number

of PCs at different locations with di-

rect, point-to-point communications

capabilities. To make data transfers

faster, we would like to equip the PCs
with 9,600-bit-per-second modems.

My question is this: are telephone

lines capable of carrying 9,600-bps

signals and, If so, what else is involved

in sefting up a 9,600-bps communica-

tions network?

Daug Barcus

Pinsfielc4 Massacirusew

Yes, you can achieve 9,600 bps over or-
dinary phone lines. All you'll need is a
9,600-bps modem at each site and soft-
ware that supports a high-performance
file transfer protocol such as Kermit or
Xmodem.

It was once true that a 9,600-bps mo-
dem could converse only with an iden-
tical model from the same manufactur-
er. No longer. With the advent of
CCITT V.32, the modulation charac-
teristics of 9,600-bps modems have
been standardized. High-speed mo-
dems conforming to CCITT V.32 are
now available from Hayes and other
modem manufacrurers. You can safely
mix brands it- each one supports V.32
and is full-duplex.

Avoid 9,600-bps modems that don't
fully support V.32 or operate in half-
duplex mode only. Hayes V-series mo-
dems fall into this category. If for one
site you buy a modem that uses propri-
etary technology, you'll have to buy the
same type of modem for the other sites.

FRANK & ERNEST

OH-MI-TI and NEN HORIZONS page 13 	SEPTEMBER 1989

fourty odd programs. 	You see, 	1
the Geneve spoiled me and I miss!
it. 	Some of the programs that
load 	from 	four 	are
TI-Writer,TI-Artist,Masstran
,DSKU,ARC303,SYSTEX,XS EMULATION
OF E/A,CALENDER PROGRAM,AND A DIR
PROGRAM which will load XB
programs and view text prgrams, I
also found a catalog program that
I rewrote to catalog any disk
drives 1-9 and at each page allow
you to load either in XB or EA
opt5 that prgram. All this and
much more on drive four. So you
see this summer wasn't a total
waste.

The following is the boot
program for TI-ARTIST. You will
notice that in line 1 that must
first load a program called
ARTIST, also make sure that you
let the system know where your
loading it from. This has been
tested with a Myarc hard drive as
well. Such as WDS1.ART.ARTIST.

In line 2 you will see the
statement Alg=2"DSKI." this can
easily be anything you wish, but
remember the period must end the
statment for it to work right.
What is happening is after ARTIST
is loaded into memory you are
inserting what-ever is in A*. To
the program ARTIST, this program
runs the different modules of
TI-ARTIST.

RIMER FEMUR

I'm glad to be back 	from
summer vacation. 	First off, I
have had disaster after disaster.
First, in the beginning of this
summer my Geneve died and as of
this witting is still not
working. Tried to get hold of
Myarc but get nothing but busy
signals on the telephone, but
still trying. So, everything
this month is done on my 99/4A,
GramKracker, and 4 disk drives.

After hooking up my GramKraker
I found that the screen was
nothing but a multicolor mess. I
haven't use it in two years.
Also, I couldn't find my manual.
Well lafter playing with it for
about a week I found a loose wire
on the reset switch. There I was
up and running again.

Hare I 	sit with over a
thousand dallars worth o4 the
Geneve, and Ramdisks in a shoe
box waiting for Myarc to answer
there phone.

The summer wasn't a total
loss. The first thing I did was
to set up a disk on drive *4 as I
don't use drive number four very
much. Set BK to load a program I
call PRLD instead of LOAD at
drive NO. 4. This program is a
menu program that will load about

1> DISPLAY AT(12,3)ERASE ALL1
"Booting.— Please wait." za
CALL INIT le CALL LOAD("DSK4.
ARTIST")
2> Att="DSK4."
3> FOR Ims12288 TO 1228S+LEN(A
110/1 ss CALL LOAD(I,ASC(SE015(
AS,I-122617,1))):: NEXT I is C
ALL LOADC(12318,0,LEN(A*))it
CALL LINK("START")

With the above routin • you can
load by adjusting li nes one and
two of the program to any valid
store device. I've even made
TI-ARTIST run from a hard drive.

Roger

FILM nu 	..urvo 	 fl 	 W1.1 	 6..1.1•■ •....• • • 	 •

CALL LOAD TO ASSEMBLY AND BACK
MOSWIIM ==ii WM ======== MEM MY=

by Tom Freeman

This article and the programs
that accompany it are another in
my intermittent series to help
those interested in understanding
assembly programs better. You
will find XBasic programs that
will convert assembly language
programs in various formats,
which might have one of two
purposes. Either you wish to
increase the portability, of a
program, or you wish to
disassemble it to understand what
the programmer was doing.

Many 	programs 	that use
assembly subprograms are
published in a "CALL LOAD"
format. In other words, the
XBasic program directly "pokes"
the assembly program into memory,
byte by byte. This is done
because it might be cumbersome to
type in the source code for the
assembly program and then
assemble it, or you might not
have the Editor/Assembler
(everyone should, however!).
Nevertheless I have published
most of my programs this way.
The author might also publish the
(uncompressed) DIS/FIX 80 object
file, but if you have ever looked
at one of these, each line is
just a long string of numbers and
letters that make no sense, and
it would be almost impossible to
avoid a typing mistake! The CALL
LOAD's on the other hand, are
full of commas and easily read
numbers, so typing them in is
easier. However that portion of
the program must be run every
time the program is run, which
takes extra time, so it would be
nice to be able to convert them
to a real assembly file. Two
recent examples of pograms that
use this method are:
"Artist to XB" 	in 	Smart

Programmer, September 	1986 -
contains two columns packed with
CALL 	 LOAD's, 	 and

...Improved Unrunnable Basic 	in
Topics, September 1986.

The first program, entitled
CL/ASL, that follows this article
(I have placed all the programs
together, for neatness' sake, so
that they could be in 28 column
format which looks EXACTLY the
way you type it in) provides a
method of turning a CALL LOAD
XBasic into either a source code
file, which can be run through
the Assembler to produce an
object filo, or an object file
directly. Thus there are really
two programs here - lines 190-280
could be deleted if you only want
to make source code, or 290-350
for only object code. I haven't
been able to test this program on
lots of files, so I suggest you
use them both, in case one
produces errors. 	Naturally
have tried to account for all the
errors I could think of! One that
cropped up was when the CALL LOAD
began with an odd address.
Assembly files normally insist on
even addresses. 	I compensated
for this by backing up to the
even address one lower and
beginning with the last byte from
the previous line. Try this out
with a sample two or three line
file to see what I mean. The
assembler automatically backs up
one byte if the AORG or RORG
address is odd, and inserts a
zero byte first. This would mess
up the code, which is why I
retained the previous byte.

The only constraints on the
input film are that it must I) be
saved in merge format (DIS/VAR
163) not as a program file, 2)
contain only CALL LOAD's (delete
all other lines and any other
statements on the CALL LOAD lines
before saving) and 3) only one
CALL LOAD(Address,byte,byte,...)
per line. The program makes
heavy use of a knowledge of how
the program lines are tokenized.
You can see this for yourself by
running the last program in this
article on a sample file and

OH -NI -TI and NEN HORIZONS page 15 	SEPTEN1ER 1,89

comparing the bytes generated
with the list of tokens also
provided.

I found one interesting quirk
in the way TI handles these
assembly DIS/FIX 80 files.
Normally the author of a CALL
LOAD type program needs to set
the REF/DEF table just below
16384 (hex >4000) byte by byte,
and then insert the address of
the beginning of the table into
8196 (>2004). I originally tried
to do this just with AORGs, but
the XS loader just won't insert
the bytes there even if the
assembly file tells it to! CALL
LOAD works fine however. I fixed
this up by assuming that all code
above 16225 is for the REF/DEF
table (this leaves room for 20
DEF's and it appears that no one
ever has actual assembly code at
this location) and then actually
construct a real DEF table. Then
the loader sets the proper
address into >2004 by itself.

Now when the file is ready you
can replace ALL the CALL LOAD's
by CALL LOAD("DSK1.YOURFILE")
where YOURFILE is whatever you
named your DIS/FIX es file
(produced directly by my program,
or assembled from the source code
it produced). By the way, I lied
a little when I wrote above that
the assembly program needs to be
reloaded every time you RUN the
X8 program. When a program is
finished, the assembly code
remains in memory unless you quit
or CALL INIT again. So you can
add a line to any such program
that "PEEKus at a couple of bytes
that you know the value of (do
the peeking after the program is
run the first time) and then
bypass the CALL INIT and the CALL
LOAD if the bytes are what they
should be. This works with
either method of loading the
assembly file (CALL LOAD(dis/fix
eo file) or CALL
LOAD(address,bytes).

By the way, the program takes

quite a bit of time to run,
especially if the CALL LOAD's are
numerous, but at least it only
has to be done once!

The second program, Entitled
ASL/CL, reverses the process.
Why would you want to do this'?
Therm arm two possible reasons'
one might be that you have an XS
program and wish to publish it,
or list it for a friend. Putting
the assembly code into CALL LOAD
format makes it all readable in
one program. Another reason
could be that you wish to have
the program on tape for someone
who has memory expansion but not
a disk drive 	(my son was
originally in this 	position).
The program as listed also is a
"double program, as it allows you
to construct te CALL LOAD file
from a memory range, or directly
from a DIB/FIX 80 file. Most
object files can be *imply loaded
from command mode by CALL INIT ss
CALL LOAD("D8K1.XXX") and my
program then run with the memory
range option. [This part of the
program runs considerably
faster.] WARNING - a few files
insert the start address into the
ISR hook at >B3C4, and will thus
auto start. You will need to run
the program on the DIS/FIX
directly or use a sector editor
to change that value (you would
find at the end of the file
something like 983C4SXXX where
XXX is the start address. It
should be changed to 000).
Please note that the program ends
with a statement on the SCREEN
that you should type in one or
two extra CALL LOAD's. I could
have had the program do this, but
I didn't get around to it and
time is short! [Please note that
if the program does use the above
auto-start method, then you will
need to add one additional CALL
LOAD(-3184,x,y) where x and y aro
the decimal representations of
the two bytes following 9B3C4B
above, e.g. if you saw 24F4 than
x and y would be 36 and 244].

OH-NI-TI and NEW HORIZONS page 16 	SEPTEMBER 1989

If you are going to use the
memory range option after loading
the DIS/FIX file, there is an
additional program that will help
you, called ORIGINS. Many object
files do not load all the bytes
in the whole range of address
used, but instead leave some
blank, to be used later by the
program (this is signalled by the
BSS directive in the source
code). ORIGINS will search for
these breaks - actually it just
lists al the origins, and you can
see if there are large gaps as
normally a single DIS/FIX record
can only contain about 22 bytes.
You can then specify each memory
range separately in the program
and not wasted a lot of CALL
LOAD's unnecessarily.

There is one additional type
of assembly file that I haven't
mentioned. Some authors have
written assembly code, and then
"hidden" it in the XB file, using
various method:: such as Barry
Traver's ALSAVE program. You
should suspect this when the XB
program as listed has more
sectors than could be accounted
for by the number of lines you
see, or if you see a CALL LINK or
a CALL LOAD(-31804,x,y) when no
assembly file was loaded. The
program called HIDDEN will-search
for the area containing the
assembly file and inform you of
the range. If you save the
ASL/CL program in merge format,
and then merge it into the hidden
program, you can specify the
memory range and produce a CALL
LOAD file. I must warn yu
however, many of these are quite
long and would produce a gigantic
CALL LOAD file! You would
probably be better off in that
case to use SAVE to produce a
separate program image file and
then DISkASSEMBLE it! (See my
article in November 1986 Topics
to see how to use SAVE).

Finally the last program is
called PRINTMERSE. This will
take a MERGE type file and

produce a neat 	listing 	in
compressed format on a printer of
each byte of each line and the
ASCII representation if possible
underneath it. You can do this
on a few lines of code to see how
program lines are tokenized. If
you run it on a single CALL LOAD
line for instance you would find
the following: the first two
bytes represent the line number
(multiply the first by 256 and
add the second). The rest of the
bytes are the tokens, or strings,
and the last is always a 0.
After the line number bytes you
will finds 157 (CALL), 200
(unquotod string), 4 (length of
next string), 76, 79, 65, 68 (L,
0, A, D) iS3 (left parenthesis)
200 (unquoted string) x (the
length of the string) x x x (the
actual string, in this case the
address to be loaded) etc. Have
fun with this one, but DON'T use
it on large files, unless you
have lots of paper!

Ultimately my purpose in
writing these programs was to be
able to disassemble the CALL
LOAD's to understand them. What
I did was to produce files that
DISkASSEMBLER could read.
Reversing the process merely
became a challenge! Here's hoping
you find these programs useful.
Enjoy.

Tom Freeman

"There's your trouble. You're going to
laugh when you see all the ntistakes

you made assembling that unit."

pH -HI -TI and NEW HORIZONS page 17 	SEPIEKBER 1989

Using Systems

1. Load Machine language file
to be saved. The ml should be
relocatable. 	(If 	absolute
origin, see Addendum)

2. Load and run SysTex (Error
o If you have not loaded a messages discussed below)

program (i.e. the DEF table is
empty) SysTex will say bad DEF 	3. Save resulting program to
table. 	 disk.

o All three errors will abort
	

* And That's IT! *
Systex

The resulting program lines
3. Sample session 	 (0-9) must NOT be modified in any

way! Doing so will destroy the
integrity of the program. You

For this example, have an may, however, add to the end as
XBASIC relocatable ml 	utility much as you like. 	(See the
ready. 	 Exempla Session at the end)

SysTex Version 1.8
* Program Hybridization 	•

Utility!
•

* (C) 1985 By Barry Boone • ********************************

CALL 	INIT 	ss 	CALL!
LOAD("DSKx.filename") !Loads the
program to be saved. RUN
"DSKx.SYSTEX"

! SysTex will now ask 	if
you've loaded the assembly to be
saved. Type a "Y", then hit
ENTER.

! If there are no errors,
SysTex will Now prompt you to
type in the followings

CALL LINK("SYSTEX")

Addendums

1. Absolute origin files

You must find the address of
the first byte following the end
of the ml program and CALL LOAD
it into address 8194. You may
then run SysTex.

2. Error messages

Thmre are 3 types of errors.

! At this point, you may LIST 	o If you haven't yet done a
to look at the file created. 	CALL INIT, SysTex will tell you.

SAVE DSKx.filename ! Save the 	o If you have loaded an MORS
file to disk. 	 file, and haven't done *1 above,

BysTex will complain.
! When you RUN this file in

the future, it will load the ml,
then stop. You may add whatever
you wish to the generated
program, but you must NOT alter
the existing lines (8-9)

* And That's All! *

SysTex is a utility to allow
you to save your XB machine
language programs/ utilities as
X8 program files.

,

MX-

DOS
MX-DOS 	3 . 0

Copyright 01986, 88 by
Milo Isukroft 1

MX-DOS 3_0 For TI-99/4A Disk Systems Released

At the January '89 Nutmeg TI-99ers Users Group meeting, Milo
Tsukroff released his MX-DOS 3.0 for TI-99/4A disk systems. The
MX-DOS 3.0 system is a utility which combines features of a disk
manager and an auto-loader.

The MX-DOS 3.0 system allows the average TI-99/4A user to see
files on a disk. The user can then run programs, view or print text,
and even delete files. MX-DOS 3.0 uses a "MacIntosh"-style graphical
interface. The user can use just a joystick to perform nearly all
MX-DOS operations. The keyboard is also fully supported.

The MX-DOS 3.0 system is distributed on one single-
sided/single-density diskette. Demonstration programs and full
documentation are included.

At the Users Group meeting, MX-DOS 3.0 was given out as the 'Disk
of the Month'. Milo is distributing it on the 'Fair-Ware' concept, with a
fee of $8.00 suggested. This fee includes registration, support, and

_one free copy of the next major update.
Minimum requirements for MX-DOS 3.0 are a TI-99/4A console; TI

Extended BASIC; a single disk drive; and, a 32K memory ,..iyrrerision.
Additional peripherals supported are joysticks, print ior
monitor, and more than one disk drive.

Additional features for MX-DOS, and speed improve:
come when version 3.1 is released. Milo is waiting to se,_ 	.
Fair-Ware registration response is before continuing to impro:o his
product. Even in its current condition, which includes long '
times and sluggish response, MX-DOS 3.0 represents an er 	-ly
easier operating environment to work on disk systems with

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

