TIFF \& TIDBITS

Memory Full:
When your completer is turned on, it reserves 1554 bytes for tile manipulation. This is equivalent to CALL FILES (Z). Using the command CALL FILES (2) will free bF 518 bytes of memory and CALL FILES (1) will free up 10Gt bytes. Witt memory expansion and nothing a goaded, SIZE should show 11840 Bytes Stack Free and 2448 By Eyes Program Free Space. Load your program and enter SIZE again. Now the Program Free Space should decrease showing the space your program has occupied. Enter FUN and then FCTN (4) to break. SIZE now should show a decrease in both. telling how much memory is used up by Variables, forays, CALLs. GOSUBs etc.. Ir addition, while running your program, each disk file or printer port that is opened will access an additional 518 bytes until it is closed.
So don "t use GDSUEs uni less the SUB routine is used several times; keep variable names short: dimension arrays only in the size and quantity needed; use DFTION 1 if arrays do not use $0^{\circ} 5$. Each line number uses 2 bytes so combine lines as much as possible. Convert numeric variables into string variables for storage in the 32 K . MA allowing larger programs in console memory-

TI Writer Little Known Tips:
CTFL K - deletes all text to the right of the cursor.
CTR V - moves the cursor to the
beginning of the line.
FCTN o - moves line numbers off screen displaying more text.
To print out file with line numbers select FrintFile and enter L FID note: maximum line length printed is 74 characters per 1 inc.
The last in e number is preferred to as E. Thus Deletelines (Enter) zs E E Enters deletes lines Zs to the End. When not in Word Wrap, Control (U) Shift (M) Control (U) will insert the CF carriage return symbol.

Spreadsheet data from MLLTIFLfiN can be stored in DW日O format by selecting FFINT TO FILE instead of SAVE FILE. The file can then be edited and/or merged into TI-Writer.

Maze Maker
by Steve Karasek

This program will print mazes for you to solve. It asks for the number of mazes to print, then for the level of difficulty, from 0 to 9. Level 0 is a VERY trivial maze (a child's first maze, perhaps), while level 9 is fairly challenging. The level number is printed at the top of the maze.
No matter what level you select, the maze will be printed to fill as much of the page as possible, so the lower-level mazes will have wider pathways which are easier for young children. There will always be exactly one path from Start to Finish.
The higher-level mazes take a while to compute. In particular, level 9 mazes take over 20 minutes each. You can always start up the program and come back a few hours later. The program keeps track of how far it has gone in computing each maze by displaying a line of the form M/N on the screen, where N is the number of squares in the maze and M is the number of squares the program has computed a path to. When M equals N , the maze is done and is sent to the printer.
If your printer is not named "PIO", change the name in line 110. The last part of this line sets the printer line spacing to $7 / 72$ inch. If you do not have an EPSON-compatible printer, you will have to change this to the codes needed by your printer to set the line spacing. If you can't set it to $7 / 72$ inch, set it to 8 or (preferably) 10 lines per inch.
The !'s and numbers at the end of each line are the checksums for Tom Freeman's CHECKSUM program, and are not needed by the maze program.

- MAZE - THE PROGRAM

100 RANDOMIZE :: OPTION BASE 1:: DIM M(39,39):: INPUT " HOU MANY MAZEST": : : : PRINT 1223
110 INPUT 'LEVEL OF DIFFICUL TY(0-9)? ':L : : IF L(SO OR L) 9 THEN 110 ELSE OPEN II:'P1O ",OUTPUT :: PRINT II:CHRsI27) ;'A';CRRs (7);1131
$120 \mathrm{~N}=1 \mathrm{NT}(\mathrm{L}+1) \neq 4+(\mathrm{L}=1$ OR L=9
X:80/n :: s:InT(x):: ss
) 1138
,
; FOR Y:I TO $N:: M(x)=0:$,
: NEXT Y :: MEXT X : : IF $\mathrm{H}=3$
9 THEN 150 ! 174
110 FOR $x=1$ T0 $N: 1 \mathrm{M}(\mathrm{N}+1, \mathrm{~K})$, $M(X, N+1): 16$:: NEXT X !203 ALL AT(12,12):'1/'; ${ }^{*+N}$: :

ON ERROR 290 ! 059
$160 V=\operatorname{INT}(R N D+1): \leq 0 X=X+(U=0$
)-($(V: 1):: \quad D Y: Y+(\psi=2)-(V=3)::$
KEM(DX, DY):: IF K THEN
$160!229$
$170 n(X, Y)=n(X, Y)+2$ 세 :: If
IMT(V/2) $\mathrm{I} 2=\mathrm{V}$ THEN $\mathrm{V}=\mathrm{V}+1$ ELSE
$\mathrm{V}=\mathrm{y}-11125$
$180 X=D X:: Y=D Y:: ~ M(X, Y)=N$
$(X, Y)+2 \wedge y:: C=C+1::$ DISPLA ₹ at(12,9$)$ size (t):usimg 'In
P:C: : IF C=NEN THEN 24010 53
190 IF X X THEN IF $M(X+1, Y)$: 0 THEN 160 !198
200 IF YSN THEN IF $M(X, Y+1)=$
0 THEN 160 |l99
210 IF $\gamma 11$ THEN IF $M(x, y-1)$:
0 THEN 1601117
220 IF $x)$ THEN IF $M(x-1, y)=$
0 THEN 160 1116
$230 \mathrm{x}: \operatorname{INT}($ RNDIN $)+1$: : Y:INT(
RNOENSTI: : IF M(X,YTHEN 19
0 ELSE 2301248
240 ON ERROR STOP :: PRINT
$1:$: PRINT \#1:'f"; TAB(S+1);R PTS('11,St(N-1)+1):: S:S

Ti(${ }^{\prime \prime}(1, S) 1069$
$250 n(M, N)=N(N, N)+8::$ FOR Y $: 1$ To $N::$ FOR $\forall=1$ To $S:: ~ P$
 :: PRINT II:SS!1076
260 IF M(X,Y)AND 2 THEN PRIN

084
270 NETT X : : PRINT II :: ME
IT $V::$ PRINT II:'I;
$X: 1$ TO $N::$ IF $M(X, y$) AND
8 THEN PRINT II:SY;ELSE PRI
NT H: Xs:! 244

: PRINT II :: MEXT Y :: S:St
$1:$: PRINT II: :TAB(SN-4) ${ }^{\prime}$
Finish':CHRS(12);: 2:2-1: :
IF 270 THEN 130 ELSE END 10
20
290 ON ERROR 290 :: RETURN ! $60!159$

$$
\because
$$

Do you enjoy playing the "CONNECT THE DOTS" game ??
Here is an easy fun way to play an elaborate advanced version of it. Simply printout a level 9 MAZE and go on from there. This may produce a too highly skillful time consuming game for some of you couch potatoes so I ghess you could start out with an easier lower level Maze.

Perbo Tjme 64 K bytes of Memory on the 16 bit bus

by Lou Arradio and Geoff Troxt

Ever since I first read about the " 16 Bit 32K Memory In The Console" by Ron Marissen about 6 months ago I have been curious to find out just how much difference it would mike compared to the standard 32X as provided by $T I$ (on the 8 bit data bua). The project, however, vas put off for a long time for one reason or anocher.

Recently, an opportunity arose to do some hardware hacking, so I approached Geoff Trotr. Geoff did not need much persuading as he enjoys the odd hardware project, especially after many long hours editiag the TISHUG New: Digest. With the availability of 324 byte static RAM chips, we naturally wanted to use these as they are a good deal cheaper (per byte) than the 8K chips which Ron Mariasen used in his origigal version. Ron described hou to inacall 4. 8X RAM chipe over the 2 system ROM chips. Although we now had 32 K in oee chip we scill had to use 2 chipa as each host chip in the console (the system ROMs) were only connected to half of the data bus of the TMS9900 CPU.

Apart from the 32 I chips (2 of), we also needed another control chip. Geoff settled for a 74 LS21 (dual quad input AND gare). Where the original article called for a total of 7 chips, Geoff managed to do it with only 3 - this simplified the conscruction considerably. So in fact, we ended up installing 64K byte of static RAM of which only 32 X bjte vere required by the CPU. We vere vondering whether ve could bank swatch the remaining 32 Z bytes, but this vould require special software to be written. Geoff then etruck upon the idea of manually switching different benks of this "free" 32K memory withia the normal address rage of the CPU (see notes on enhancements).

In the process of installing the 32 X chips, Geoff decided to remove the 6810 Consol (scratch ped) RAM (256 bytes) in order to give better access to some PCB tracks and simplify the eircuit. The scratch pad RAM yould now be part of the "free" 32 F and thoe vas quadrupled in size to a full 1024 bytes. The nomally unavailable 768 bytes could now be used for soae unique utility software requiring high sped RAM, ach as interrupt rourines or laad interrupt rontines. Routines using this area would not be corrupted by running any current progran.

This is how we initially used the new static menory:

32I CPU RAM on the 16 bit daca bus
Low aemory >2000 to >3 FFF
High memory $>A 000$ to $>$ FFFF
If Console RAM on 16 bit data bus
If bytes evailable at >8000 to $>83 F F$
The above mewory could have battery back-up if required.

How did it perform?

Improvements in speed vere expected since access to the 32 K wat now done as a "MORD" (16 bits) rather than than as a "BYIE" (8 bits), and also due to the elimination of meswory "wait states" which were incorporated by I inco the design to allow for slow access memory chips. With all timigge in microseconda, reading a word or byte takes .667 ineread of 2 , while writing a word or byte takes 1.5 instead of 4.333 .

It was found that power requirements of the console were marginally reduced with this modification (including 26810 RAM ehipa removed).

The following programs vere superficially tested In order tc quickly gauge the performance of the new memory expanaion.

TI-Writer - approrimately 30% faster for Leplace String: approximacely 50% faster for enter/delete functione.

Parsec - no difference?
II Runner - noticeably faerer
Buck Roger: - noticenbly faster
TI Areise - satisfactory
Munchman - noticeably faster
Computer War - too fast?
The following prograns did not work vith the 16 bit 32K, possibly due to the way that the programa aceess VDP RAM:
Tenria, Ant Eater. River Boat Rescue. Submarine Commander.

How to do it

The dastructions and diagrass below describe how to inseall the nev memory chipa. This article is not intended to be atep by seep guide and anyone not thoroughly faniliar with hardware hacking should consult the advice of theit local "techo".

Mindmum parts required are: 2 of 62256 , $32 \mathrm{x} \times 8$ bit static RAMs

2 of 24 pin IC sockets
1 of 74LS21, dual quad input AND gates

1) Locate and remove the system ROH chips (U610 and U611) on the TI99/4A mother board and solder IC sockets in their place. These chips are in socketa In order co facilitate removal of the 32 I memory expansion at a later date, if required. A good solder sucker is recomended for this scep to prevent posaible dasage to the PCB or the chipa. (Hote that it is poasible to add the 32 X vithout removing any chips, but extra chipa vill have to be installed and other tracka/pina cut.)
2) Resove and discard the two Console (scrateh pad) RAM fehips (U608, U609 - part aumber 6810). This atep
frees up an input to stop the wait state generator an vell as allowing the expanaion of the ecratch pad RAM to a full IX byte.
3) Descolder pin 8 of USO7 froe the motherboard, cut the bee of the pin and bend it out for furcher connection. You may find it easier to completely remove this chip, bend out pin 8 , then replece it.
4) Carefully bend the lege of the 62256 chips in a little (mand ocatic lectricity) so that they will sit firaly on top of the hont chips. Bend out pins 1, 2, 20, 22, 23, 26,27 and 28 of each 62256 prior - to inacallation to facilitate fring lacer.
5) P1ace one 62256 ch1p over U610 and the other over U611. factag them the same vay as the host chip. Plai 1, 2, 27 and 28 of the 62256 w 111 hang over the end of the ROMs. Solder as per inarructions below. Do not forget to mark each set in some vay so that the bottoa chips (U610. U611) are inserted into their correct sockeca on the mether board.
6) Bend legs 7 and 14 of the 74LS21 in a little and bend all other pins out for further connections. Locare chia chip over U507 (facing the same way) and solder an per lastruction below.

Make the folloving connections using thin gauge inaulared single core vire where necesamy:

Pin 1 of boch 62256e to pin 3 of प504 (AO(H)).
Pin 2 of both 62256ato pin 1 of USO4 (A2(H)).
Ping 3 to 14 of 62256 so pins 1 to 12 of host rom (U610 or U611).
Pias 15 to 19 of 62256s to plas 13 to 17 of hoat raM (U610 or U611).
Pin 20 of boch 62256 to pin 8 of 74LS21 (CS(L)).
Pig 21 of both 62255 to pin 19 of hoat ROM.
Pin 22 of both 62256 so pin 11 of 4602 or pin $9 / 10$ of U508 (28DN(L)).

Pin 23 of both 62256 s to pin 6 of U 503 ($\mathrm{A} 3(\mathrm{H}))$.
Pins 24 to 25 of b2256s to pins 22 to 23 of host ROM (U610 or U611).
Pin 26 of both 62256s to pin 2 of U504 (A1(H) i.
Pin 27 of both 62256s to pin 16 of 4608 (WE(L)).
Pin 28 of both 62256s to +5 volts.
Pin 1 of 74LS21 to pin 14 of U504 (>2000 page select).
Pin 2 of 74LS21 to pin 10 of USO4 ($>\mathrm{AOOO}$ page select).
Pin 3 of 74LS21 not connected.
Pin 4 of 74LS21 to pin 9 of U504 (>0000 page select).
Pin 5 of 74LS21 to pin 7 of U504 ($>\equiv 000$ page select).
Pin 6 of 74LS21 to pin 9 same chip (expand the selection gate).
Pin 7 of 74LS21 to pin 7 of U507 (host chip).
P1n 8 of 74LS21 to pin 20 of both 62256s (for chip select) and pin 12 of U 606 (to disable the vait states and 16 to 8 bit converter).
Pin 10 of 74LS21 to pin 8 of U507 (scratch pad RNM select). Note: pin 8 of U507 should be disconnected from the mother board.
Pin 11 of 74iS21 not connected.
Pin 12 and 13 of 74LS21 to p1n 14 same ch1p.
Pin 14 of 74LS21 to pin 14 of U507 (hose chip).

Enhancements

The following enhancements were intended to make use of the avallable "free" 32 Z arising from installing 2 of 62256 chips inside the console. These modifications should only be carried out with caution. Depenaing on hou the switching is arranged, the possioility exists for tyo lots of memory chips to be accessed simulcaneously within the same address space. The results could be facall (to the chips that is!)

1) It is posaible to invoke sesory in the 8 I cartridge space (>6000 to $>7 \mathrm{FFF}$) simply by installing a double throw switch from pin 12 (or 13) of the 74LS21 to pin 13 of U5O4 ($\mathbf{\gamma 6 0 0 0}$ page select). If pin 12 is linked to pin 14 as per instructions above, this link wust be removed and the connection to pin 14 is wired as one of the switch positions (see diagras). This memory space must not be used by any other cartridge or device while this switch is active. It is advisable that this requirement be incorporared an part of the switching. Switch pin 12 of 74LS21 to +5 volts (pin 14 of 74iS21) to de-activete this function.
2) The DSR space (>4000 to >5 FFF) can also be made available in acatic RAM by switching pin 12 (or 13 if already uned) of 74LS21 to pin 12 of USO4 (>4000 page select). Siritch pin 12 of 74LS21 to +5 volve (pin 14 of 74LS21) to de-activace this function. The same precaution with respect to accesaing more than one active memory applies as mentioned above.

If all of these modificaciona are carried out, then you have effectively used 49X bytes out of the 64 X byte upgrade. The remaining 15 I bytes cannot be caally used at this time. Perhaps what we need now is some sort of indicator to show that all is working as intended?

Watch this space!

The next hardware project will degcribe how to produce a truly versatile "SuperModule" concaining Minimen, Editor Assembler and 4 manually switched 8í byte banks of battery backed RNM at >6000.

I got busy this month and actually did some programing. The first program was written because of inspiration I got when talking to Irwin Hott at the Milwautee Faire. Irwin said Ehere is no word processor on the TI for blind people: even though the TI is well guited ferr them with lhe inexperrive, quality speech syrithesizer and easy operating systen it uses.

The second program, which I am sure has been written in a similar form by someone else in the past, is a utility which I needed to print out the first program. It must be used with XB because of the requirement of a LINPUT statement (so that commas will be input.) It will print out up to 7 screen lines per line number, and will automaticaljy adiust the left margin after 75 innes so you can get the printout sfown on the next page., You must adjust the paper back to top of form yourself. If you don't have an Epson compatable printer you may have to change the codes in 1 ines 140 and 460 . In line 140 the codes tell the printer to print condensed, double strite at the left margin input in line 130. Line 460 adjusts the left margin over fe columns at each pass.
You should be advised that printer manufacturers don't recommend that you turn the platen manually with the power on. I've been doing it on my Gemini $10 x$ for years with no problem though. You can always reinsert the paper and use the line feed button on the printer to adjust the paper as well.

This program could also be used as a typing tutor with your eyes closed. or just as a demo of the speech capability of the Ti. If you change the FFiNT \#1 statements to FRINT you could make it into a BASIC word processor. The program requires BASIC because it needs the TE II module in order to wort. Because it uses BASIC you are not able to input strings containing commas from disk. you can put commas in your text and print them out. You just can't get them off from disk!

The program uses a file named MENU when you press the AID key. You will need to make this up using this or another word processor. It should contain the following lines:
FUNCTION KEY LISTING?

1. DELETES THE LAST WOFD.
?. INSERTS 1 OR MORE LINES E 4 SOME LINE NUMEER?
S. ERAYSSES A LINE AND LETS U CHANGE IT?
2. STOFS THE FRO-GRAM. ENTEF: CONTINUE TO FRO-CEED?
3. BEGINS A DISK SAVE DF LOAD. DEFAULT IS DISK 1. TEXT?
4. FRO-CEEDS TO PFINT DUT THE FILE.
5. IS AID?
6. LETS YOU RE-DO ALL TEXT STAFTING AT SOME LINE?
7. REEDS BACK THE LAST TO LINES.

UF. AIFO TELLS THE CUFFENT LINE NUMBEF.
FIGHT. AIFO TELLS THE COLUMN NUMEER?
DOWN. AIFO LISTS THE FILE.
LEFT. AIF:O SFELLS A LINE OUT SLDEWLY
USE ENTEN? FDF CARFIAGE FETUFN?
TO DELETE A LINE FRESS FUNCTION J. THEN ENTER 1 SPACE FOF NEW TEXT.
As each word is entered it is spoken. (When you hit the space bar.) The Term Emulator only pronounces letters for text written in lower case, so I wrote a conversion routine so the words would be gronounced, while still feeping the letters in lower case. If over ちK of memory is used (about pages) a warning is issued. There is also a bell for the left margin like on a typewriter. There is no screen display. you may have a problem importing files from TI Writer. I assume it is because of the use of commas. Some files do load DK.
You can input text at a 25 WFM rate. This includes the words being spoken back. You have to type at a slow. steady pace for best results. especailly when typing double letters. as in "good".
If anyone uses this program I would appreciate hearing from them. You can use any printer. Thats why I didn*t add printer sensitive options lite tabs and left margins. You can add those yourself!

John Winete 109 Frantlin St. Late Mills. Wi 535Si

100 DIM Ws (200)
110 OPEN II＂SPEECH＂OUTPUY
120 PRINT HII＂INPUT RRINT WI DTH？＂
130 INPUT C
140 FRINT $1: C$
！F PRINT HI＂INPUT PAGE LEN
160 INPUT FL
170 PRINT NIIPL
180 1＝1＋1
190 PRINT HIILINE＂I！
200 CALL KEV（C，K S）
220 if K＞96－F4680
$\begin{array}{ll}230 \\ 240 \text { IF K K } 32 \\ K=32 \\ \text { THEN } & 700\end{array}$
250 ON K GOTD $1020,200,260,1$
$820,200,930,1190,1500,1270,1$
290，190，780，520，1700， 910
260 IF WS（1）《）＂THEN 280
$270 W 8(1)=A$
＂E：IF W！（1）＜＞＂＂THEN 330
$\because 1=1-1$
300 A＝LEN（W！（1））
310 A $\$=$ W $\$(1)$
$320 \mathrm{~B}=1$
330 If $\mathrm{As=*"}$ THEN 200
340 FOR $J=L E N(A)-1$ TO 2 STE P－1
$350^{\circ} A=A-1$
360 IF SEEB（A！，J， 1 ）＝＂＂THEN
380
370 NEXT J
380 PRINT III＂DELETE＂
390 IF J >1 THEN 420
$400 \mathrm{~A}=\mathrm{s}=\mathrm{n}$
410 GOTO 200
420 A！$=$ SES $(A \& 1, j-1)$
430 IF G 〈》 THEN 200
$440 \mathrm{~B}=0$
450 60TO 540
460 PRINT 11 Bs
470 Al＝Al\＆C
$480 \mathrm{~B} 5=\mathrm{*W}$
$490 \mathrm{C}=7 \mathrm{Fl}$
s00 IF FE！THEN 520
5106950700
$520 \quad \mathrm{~F}=0$
530 IF $\mathrm{G}=1$ THEN 590
540 W （1）$=\mathrm{A} 5$
$550!=1+1$
$560 \mathrm{~A}=0$
$570 \mathrm{~A}=* *$
5806070200
590 IF $A S={ }^{\circ}{ }^{4}$ THEN 1940
$600 \mathrm{~W}(\mathrm{H})=\mathrm{A} \$$
610 $M=M+L E N$（Rs）
620 IF M 7000 THEN 650
630 CALL SOLND（220，1000， 01
640 FRINT HII MEMORY GETTING
FULL！
$650 \quad 6=0$
660 A $\$=\boldsymbol{n}$
670 6070 190
$680 \mathrm{~B}=\mathrm{BS} \mathrm{CH} \mathrm{CHR}(\mathrm{K}-32)$
6906070710
700 BS＝BS\＆CHR（K）
710 C $=$＝SSKCHR（ K ）
$720 A=A+1$
730 IF $A\rangle C$ THEN 200
740 CALL SOUND $100,2000,01$
$750 \mathrm{~F}=1$
$760 A=0$

7706070200
780 DPEN \＃2：＂PIO＂
$790 \quad \mathrm{~S}=0$
800 FOR $E=1$ TO 1
$810 \quad 5=5+1$
820 IF $S\rangle P L+1$ THEN 860
8JO PRINT II ${ }^{\text {PPAGE } 18 \text { DONE，}}$
PRESS ANY KEY？＂
840 INPUT BS
$850 \mathrm{~S}=0$
860 PRINT $21 \mathrm{HI}(E)$
870 NEXT E
 D？${ }^{2}$
$90060 T 0190$
910 PRINT NIIWI（I）\＆A
9206050200
930 PRINT Ill＂START DVER AT
WHICH LINE？＂
9401 14VUT S
$950=\therefore=\mathrm{K}=\mathrm{STO}$
$960 W(K)={ }^{n \prime}$
970 NEXT K
980 I＝S
990 A＝0
1000 A $\$=4$
10106070190
1020 OPEN 21＂DSK」，MENU＂，DIS
PLAY ， LA^{-2} ：ABLE 80
1030 21Y
1040 FESNT H1Y
1050 IF EOF（2）OO THEN 1030
1060 CLDSE \＃2
1070 EOTO 190
1080 FOR $S=1$ TO I
1090 PRINT 2 ： H （S）
1100 NEXT 5
1110 CLDSE 2
1120 EOTO 190
$11301=0$
1140 I $=1+1$
1150 INPUT Z2HS（1）
1160 IF EOF $(2)=0$ THEN 1140
1170 CLDSE 2
$11800-3190$
1190 PRINT UII＂EHANGE WHICH
LINE？＂
$1200 \mathrm{~A}=\mathrm{an}_{4}$
1210 INPUT H
1220 IF H）I THEN 1190
$12306=1$
$1240 \mathrm{~A}=0$
1250 PRINT II＂ENTER NEN TEX
T？
1260 60TO 200
1270 PRINT \＃1：＂COLUMN＂；A
1280 GOTO 200
1290 PRINT HII＂START LIST LI
NE NU＂：シミワn
$1300: \therefore=-1$
1310 IF LII THEN 1350
1320 PRINT＂II＂LAET LINE IS＂ 11
1330 PRINT \＃1：L
1340 60T0 1290
$1350=:-L=L$ TOI
1360 FOR $j=1$ TO LEN（WS（L））
1370 Ys＝SEES（WS（L），J 11
1380 IF Ys）＂：THEN 1910
1390 2 $\$=25 k y 5$
140060701430
$1410 \quad K=A S C(Y \$)$

1430 NEXT J
1440 PRINT 11 ＂LINE＂ILIZ
1450 21：＂＂
$1460 \mathrm{CALL} \mathrm{XEY}(0, K, 8)$
1470 IF K＝32 THEN 200
1480 NEXT L
14905070200
1500 PRINT II＂SPELL WHICH L
1NE NU゙ミジロ＂
1510：
：－：if Ásin THEN 1540
15？：WI（1）＝A\＄
1540 IF L（El THEN 1570
1550 PRINT HIILAST LINE IS＂
1
56060101500
1570 FOR $s=1$ TO LEN（WS（L））

1600 PRINT $1:$ ： $1 / 40$ 128＂
1610 PRINT 11：Y
162050101650
1630 PRINT $\| 11 " / 150$ 160＂
1640 PRINT IIMS
1650 IF SEGS（WS（L），S，I）（＞＂＂
THEN 1670
1660 PRINT I：＇SPACE＂
1670 NEXT 5
1680 PRINT \＃11＂／150 160＂
16906010200
1700 PRINT 11 ＂ENTER FILE NA

ME？

1710 INPUT A
1720 IF Asく〉＂＂FEN 1740
1730 AS＝DDSK1，TEXT＂
1740 PRINT AlIAS
1750 OPEN N2：AB，DISPLAY，VAR
IABLE 80
1760 PRINT 111 SAVES FILE？
2 ABORTS？J INPUTS FILE，＂
1770 こかL KEY（？Y，S）
1780 IF K＝49 TEX 1000
1790 IF Ka50 ：EEN 190
1800 if $K=5!$＂uét 1130
1810 G070 1770
IS20 PRINT II＂INEERT LINES
B 4 HHICH LINE？＂
1830 INPUT K
1840 PRINT IIITNSERT HOH MA NY LINES？＂
1850 INPUT L
1860 FDR $G=1+L$ TO K $+L$ STEP－ 1
1870 W 18 （ 8 W $(8-L)$
1880 NEXT S
$18901=1+L$
1900 FOR $S=K$ TOL
$1910 \mathrm{H} \$(\mathrm{~s})=$ ：
1920 NEXT 5
19306050190
$1940 \quad 1=1-1$
1950 FOR SaH 101
1960 WIS $(S)=W(5+1)$
1970 NEXT 5
1980 60T0 190

100！ 28 CR．MA PRINT UTILIT
Y BY JOHN W：E OF MADAREA
99ERS，MAL：ER4 HI
110 ！XE RE：FED，LIST PRO
GRAM TO EE FRINTED TD DISK I
FIRST，EXAMPLE：LIST＂D
SKI．PRINT28＇THEN RUN THIS P
RDG，
120 DPEN \＃11＂P10＂
130 INPUT＂START PRINT AT WH
AT COL M，mic

14CHES（C）
150 DPEN 12I＂DEKI．PRINT2G＇，D
ISPLAY VARIABLE BO
160 LINPUT 2：A
170 IF $A=75$ THEN 420
180 PRINT $1: S E 6(A \$ 1,28)$
$190 \quad A=A+1$
200 IF LEN（As）（29 THEN 380
210 PRINT \＃IISEG（Al，29，28）
$220 A=A+1$
230 IF LEN（A）<57 THEN 380
240 PRINT 11 GEG（Al，57，2日）
$250 A=A+1$
260 IF LEN（AB）＜ 85 THEN 300
270 PRINT II：SEG5（A\＄， 85,28$)$
$280 A=A+1$
290 IF LEN（A） 10113 THEN 380
300 PF！A^{7} \＃1：SEG（A\＄，113，2B）
$310 A=A+1$
T20 IF LEN（AD）＜141 THEN 380
Tif PRINT IISEG（AB，141，28）
$340 A=A+1$
350 IF LEN（A\＄）＜169 THEN 380
360 PRINT 11 SEGS（A！，169，28）
$370 A=A+1$
380 IF EOF $(2)=0$ THEN 160
390 CLOSE $\$ 2$
400 CLOSE M1
410 END
$420 \mathrm{~A}=1$
430 PRINT＂READJUSY FAPER， 7
HEN PRESS ENTER＂
$440 \therefore$ OTT 8
450 的 $=8+33$
460 FRINT 11 CHRS 127 ）KCHRS 17
7）\＆CHR：（B）
470 PRINT \＃1：
4806070 180

Cleaners and Solvents:
WDAO is an excellent solvent but a lousy ilthranant as it attracts dirt and sometimese eats at piastic 50
 ori metal. Never try usirg it to reviteliae used prireter ribtorns. It may gumi lip your prinithead pins. DENATURED alcohod is a good cleaner nowever regular isopropol alcohol is not reccmmerideds it leaves a residue. To ciean printer print heads. insert a 4 layer lint-free cottori cloth in Place of the ribbon. Dttain an aerosol can of Coior TV Cleaner (Fiadio Shack. \#64-2ア90) or equivalent. Mate sure the latel states thet it contanns silicone wi:l rot harm plastic and has a Fiastic tute to plug into the spray roazle. Now gentiy spray the cloth rext to the pin guides turn on the printer and print out a paragraph. Move the cloth to a clean spots spray another shot of fluid and do another prinit out. Repeat as necessary.

We BUY, SELL and TRADE
TI Equipment/Hardware/Software

9721 W. Greenfiald Ave.

COMPETITIQN CQMPUTEER PRODUCTS
 2629 W. NATIONAL AVE. MILWAUKEE, WIS. 53204

$414-672-4010$
BANKCARDS - CHECKS - DISCQVER CARDS - COD WELCOME:

* NOW - DISKS - S4 EACH: *

GENUINE TI JDYETICKGSIORRノEEE GENE
WE WILL BUY ANY TI HARDWARE OR SOFTWARE YOU NO LONGER NEED - CALL!
STORE HOURS; MON THRU FRI 10-6 SAT 10-3
WE TAKE TI SYSTEMS IN TRADE ON IBM COMPATIBLES.

NEW-NEW

NEW AND UBED TI99/4A COMPUTERS AVAILABLE! EXPANSION SYSTEMS AVAILABLE - NEW AND USED!
: HUGE SOFTWARE INVENTORY - MORE IN BTOCK THAN EVER BEFORE:
BEFORE YOU MAIL ORDER OR BUY ELSEWHERE - GIVE UB A CALL - WE WILL TRY TO MEET OR BEAT ANYEODY'S PRICES. REMEMBER THAT WE ARE HERE TO HELP YOU HAVE A OUESTION OR PROBLEM. WE DO NOT CHARGE EXTRA FOR EANKCARDS. WE WANT YOUR BUSINESS AND WEMLL PROVE IT! TED, GENE, IIM \& RON

