「エー・・ノーム
 HOME COMPUTER BPECIAKIETE

WE HAVE WHAT YOU NEED FOR YOUR TII COMPETITION COMPUTER PRODUCTE

$$
2629 \text { W. NATIONAL AVB. MILWAULBR, WI8. } 53204
$$

8TORE HOURS；MON THRU FRI 10－6 8AT 10－3
$672-4010$

BANKCARDS－CHECKS－DI8COVER CARDS WBLCOME！

WOW 2 DS／DD DIBKB ． 54 EACHI

GENUINE TI JOYETICRES \＆O PERR PAIR\＆ （with this flyer only－regularly 829.95 －while mpply lasts）

PICK UP YOUR COPY OF OUR CATALOG EOON we mill buy any ti hardmare or goptwarb you mo longer need－callt

WE CUBTOM BUILD IBM COMPATIBLE COMPUTBRS tAKE TI ITBMS IN TRADB．
featuring panasonic \＆8tar micronics printers from $\$ 1891$
NEW AND USED TI99／4A COMPUTERE AVAILABLE！
EXPANSION BYBTBMS AVAILABLE - NBW AND USBD!
＊HUGE SOFTWARE INVENTORY－MORE IN STOCK THAN BVBR BEFOREI＊ CALL US FOR TBCHNICAL HELP．WB WILL HBLP YOU WITH YOUR problems．We will try to meet or beat anybody＇s prices． rembmber that we are here to help if you have a question or PROBLEM．WB WANT YOUR BUSINESS AND WB＇Ll PROVB ITI OUR 218 T YBAR IN BUBINBES IN MILWAUKBE AT $27 T H \& N A T I O N A L!$

TBD，GENB，MIKB，JIM AND JBRRY

> WOISi tEvS
> Ey Harold A. VanDusen Milwatee Area User Group

ARE YOUU BOTHERED/BY NNOISY KEYS? My TI99/4A was very generous by oroviding more characters than I typed. I would often recelve two or nore u 's or N 's when I hit those particular keys. There appeared to be o way to gain access to the key contacts for cleaning so I bought one of the TI surplus keyboards available from fadio Shact: (Arifer alpha-numeric keyboard eat no. 277-10231.
did not use that keyboard as a replacement because I felt that (after sittang in stock: for a number of years) it probably had corroded or firty contacts and would be troublesome. In addition the console must of almost completely disassembeled to replace the keyboard; so, rather than inviting possible damage, I decided to leave well enough alone. I was able to study the replacement keyooard and find a way to gain access to the contacts.

The individual keys are removable from above, but a special tool is required. The keys are tapered and slippery such that they cannot be sulled free with fingers or pliers. It is necessary to grip the bottom :ge, but they are too close to each other to allow much of a tool to :nserted. There is sufficient space at the corners between adjacent sto allow passage of a $0.080 "$ wire, especially when that key is
rossed. This is the clue to the design of a special tool that can -e used to pull individual keys ofi.

The tool is made of a $4.5 "$ long piece of 0.080" dia. hard drawn steel wire as shown in figure 1 . The wire was obtalned from a wire coat तanger (The two piece type where the horizontal member is a cardboard tube). Many of the one plece coat hangers are made of a heavier wire which will not be satasfactory. File two notches as shown. the depth should be to the mid point of the wire diameter. I found it convinient to file the notches before bending the wire. File a slight round or taper contour to the wire ends to provide a smooth surface to ease its Jassage between the small gaps between the keys.

In operation the tool is placed over the selected tey diagonally across its corners and forced downwards. It will cause the key to depress and Lhe notches will hool: the edges of the key. It can then be pulled iree. The contacts can then be seen. This is illustrated in figure 2. afuriof - I had a case where the ley stuck too tightly into its -ontact housing and pulled the housing out with it. I was able to e-insert the housing but much care was needed to avoid damage to the =ontact assembly.

The concacts are recessed and it takes another special tool to clean chem. I used a small flat fale from an automotive ignition tool kit. This file was .04s" thick and $5 / 16^{\prime \prime}$ wide. I ground the end down to 1/4" width to allow it to be inserted into the contact housing. This tool 15 described in figure 3 . The file fits nicely between the =Intact faces while it bears on the plastic separator between the zontacts. When the contact housing is depressed by pushing down on the file the contacts come into contact with the file and are burnished by novenent of the file. Work: the file up and down several times and then -eplace the key. the job 15 finished.

a. BEFORE FOKHINC

8. FINISHEO TOOL

$$
\begin{gathered}
\text { FIG-1 KEY REMOVAL TOOL } \\
\text { MATERIAL: .OEO DA. HARD DRAWN } \\
\text { STEEL WIRE. }
\end{gathered}
$$

$$
\begin{array}{ll}
\text { FIG-3 } & \text { MODIFIED FILE } \\
\text { MATERIAL: } & \text { S/16 } \times . O 45 \\
\text { IGNITION THICK } \\
\text { POINT FILE }
\end{array}
$$

SPEECH Part 1

HARNESSING THE POWER OF SPEECH

by Craig Dunn

(Rtprinted from the Central Texas 99/4A Users Group newsletter, Fet 1986,)

The TI Speech Synthesizer is an amazing little device. It was a breakthrough for the lower end (priced) computers. Unfortunately, many $99 / 4 \mathrm{~A}$ owners still don't know how to access speech along with all its little features. Sure, a lot of games use speech to add interest and excitement, but the aplications of speech goes far beyond games.

One of the major features of the speech synthesizer is its ability to let you add speech to your programs. There are several ways to do this, including Tl's Terminal Emulator Il, XBASIC, and through the use of assembly language routines. XBASIC provides a rather limited vocabulary unless you are using one of several recent utilities that give you unlimited speech in $\times B$ but that's another story). TE2 allows for unlimited speech directly from BASIC. This built-in text-to-speech capability of TE2 will be the focus of this article.

First, plug in the TE2 command module, turn on the computer, and splect TI BASIC. Now type and run tte following program:
100 OPEN \#1:"SPEECH", OUTPUT
110 INPUT A\$
120 PRINT \#1:A $\$$
130 GOTO 110

If you get an error, make sure you have the sppech synthesizer ccinected properly to the side port. Now we have a very simple text-to-speech editor. Line 100 contains the OPEN command needed to access TE2 speech capabilities. Line 120 sends the text strings that you type in to the text-to-speech interpreter, which thrin sends the info to the syrithesizer. Experiment with this for awhile by typing in phrases, foilowed by an ENTER.

Ir. the aboue example, you were in tr default speech mode. This
means that no commands have been sent to alter the voice. We can change the voice easily using the "//" commind. The proper formet is:

//PITCH SLOPE

ex. $/ / 34118$

The PITCH is a number between 0 and 63. A zero causes the speech synthesizer to wisper phrases. Pitches from 1 to 63 range from the highest pitched (1) to the iowest pitched ($\delta 3$). For best sound, figure the SLOPE using the following formula:

$$
\text { SLOPE }=32 \times(P I T C H / 10)
$$

Round this result to the nearest whole number. Now, when you enter the command atong with these two numbers, it will appear that nothing has happened. But type in a simple phrase and press ENTER. You'll notice the change in voice. For example, at the prompt in our simple little speech editor, type - //55 176" and press ENTER. (Be sure to include a space between numbers.) Nothing happened, right? Well, now trpe something in and press ENTER. See how the voice changed' It became much deeper. Now try $/ / / 00^{\circ}$ and press ENTER. Again, type in a short phrase. Another voice toner Experiment with these and other PITCH SLOPE combinations to get the feel of working with these.

Before we wrap up this tutorial. we'litake a look at the inflection symbols. The symbols are; "n" (carat), "_" (underilne), and ")" (greater than). The "A", when placed in front of a word, indicates a primary stress point to the text-to-speech interpreter. Only one "A" may be used per string. The "_" is used to indicate a secondary stress point arid may be used without limit through the string. The ")" will shift the stress points within a word. Experiment with all these to make words sound better and more human like. Remember, all inflection symbols must precede the word they are to affect.

Well l hope someone benefitted from this article. On a final note. remember that the text-to-speech interpreter is not perfect. Sometimes you might have to alter a words spelling drasticaly to make it sound right. Have fun!

SPEECH Part II

TURBO SPEECH

(or How to Speed up the Spoken word)

by Stephen Shaw

(Excerpted from the TIg9/4A Exchange TI*MES of Great Britain, Issue M6, Autumn 1984)

Now on to something really juicy. SPEECH. Old hat huh? Well, this information will give you speech in TI BASIC with the Mini Memory, or if you have XBASIC with 32 K BAM, will give you speech just a mite faster than using CALL SAY which slows programs down no end.

For this information I am indebted to Neil Lawson who has been deluing.

Speech requires ither:

XBASIC with 32k memory

or: Mini Memory
and: Speech Synthesizer

Program framework (For timing purposes):

20	CALL INIT
30	$\mathrm{S}=-27648$
100	FOR I=1 TO 1000 : : NEXT
110	PRINT • START.
120	FOR $X=1$ TO 20
130	REM TEST ROUTINE HERE
140	FOR T=1 TO 30
150	PRINT -) ${ }^{\text {; }}$
160	NEXT T
170	NEXT \times
$180{ }^{\circ}$	PRINT END.

This standard routine sets up a framework to test our new routine in, and gives a basic time reference.
<NB: Times quoted are for MY system: yours may be different, but the ratios should be similar.)

Running the above program, with the loop in line 140 running 30 times as shown, takes 18.7 seconds from "START" to "END". Change line 140 to loop just 20 times and the timing is 12.7 seconds.

Now we can insert our two possibilities:

The first is available only in XBASIC:

130 CALL SAY("\#THAT IS INCORRECT\#")

Run the program again: If line 140 is looped 20 times, the time is 44 seconds. If line 140 is looped 30 times, the time is 50 -seconds.

The : time for the speech is constant, it adds about 21 seconds to the pragram.

Now for something different, (also works with Mini-Memory):

$$
\begin{aligned}
& 130 \text { CALL LOAD }(S, 70, m, S, 65, \cdots ", \\
& S, 72, * \cdot S, 70, *, S, 64, *, S, 80)
\end{aligned}
$$

If you now run the program, it says the same thing as many times, but look at the timing:

If line 140 loops 20 times: 26.3 S 30 times: 26.5 S

We know that looping line 140 an extra 10 times adds 6 seconds... so where have those 6 seconds gone?

The CALL SAY routine holds everything up until it has finished speaking. But using the CALL LOAD equivalent, while the computer is speaking, it gets on with the next chore too. The "dead time" is used, and soaks up those σ seconds.

Thus using the CALL LOAD equivalent, the computer speaks faster, and also permits your program to run more quickiy if there is work for it to do between speech outputs.

That's the clever demonstration! (Impressed?) Now for the .theroy.

References: Editor/Assembler
Manual, pages 351, 355, 422 to 427
(Errata: The reference in para 1, page 355, should be to Section 2.1.4, not as printed in the manual.)

Address -27648 is the SPEECH WRITE address. We keep feeding it with bytes, and in due course the computer speaks. The bytes to feed to that address are found out as follows:

First, decide what you want to say fron the standard vocabulary. Then look in the table (p. 422-427) for the address of that word or phrase. "That IS INCURRECT" is
given as 6816. That is Hexadecimal ?st a Decimal number. The four ismbers are reversed, and become 85.
. we offset them by Hex 40 and ed thein in. As we are dealing i. decimals with our CALL LOAD, "iat means we add decimal 64 to :act digit in turn:

$(3+64)$	$(1+64)$	$(8+64)$	$(6+64)$
70	65	72	70

©If the numbers were Hex A-F these lave a decimal ualue as follows:
$=10 \quad B=11 \quad C=12 \quad D=13 \quad E=14 \quad F=15$
Ew we must indicate end of word by oading a zero, again offsri, thus $0+64=64$. Finally, instruct the computer to speak by loading Hex 50, Decimal 80.

Thus we have loaded, in order;

$$
70,65,72,70,64,80
$$

Heck back to the listing. Note ie way CALL LOAD has been used; a ngle command to load the same idress with several different alues.

To assist your experimentation, here are some Hex addresses from the manual. Remember to reverse tham, translate to decimal and offset.

TEXAS INSTRUMENTS...6696
WHAT WAS THAT.......77E9
iOU WIN.............7DDB
ANSWER. 1913
CHOICE. 1 DA2
E.SE................. . 28B6

EEP.... 3571
\because ISTRUCTI ONS. 398 E
: WIN................37CF
NAME. 47 CO
PLEASE. 5093
THAT IS RIGHT........ $68 F E$
READY TO START......56E3
AGAIN. 1745
CHECK................. 1 D82
IOMTAND.IFIA
GOODBYE.............. 3148
;iURRY............. . . . 3757
:................... 3793
rorstick............. $3 A E D$
'HICE TRY.............49AS
his is not only a useful or gramming aid in its own right, tu. b; demonstrating a part of the ! $/$ manual's sometimes complex in: tructions, it should assist you 1.ti n you are ready to move on th Ei iH or Assembly language proper.

CARE AND QLEANING OF DISK DRIVES CORRTLANO GFAY NUTE 6 II-CTERS

Load your progran, load your data, save your data. Load another progran. In all these operations you disk drive is revolving your disk at the rate of 5 times per serond with the read/urite heads in contact with the disk. Dur:ng this contact the read/write heads pick up sedil partizles of iron eirde which is the coating on the disk that contairs our valuable inforsation ieither prograns or datal. The heads require periodic cleanirig of these particles in order to ealitatn error-iree operation.

The trequency of cleaning is dependent upon the frequency of use; every three months, six manths or a vear. The sethods of cleaning dre also many. There are "dry" cleaning disks, "met' cleaning disks, "met" cleaning disks (using a special disk and a solution) and disassemoly of the drive from its box and cleaning w_{1} th a swab and DENATURED alcohol. Requular isopropol alconol is not recomended because it leaves a residue on the heads.

Considering the three methods available, the least desirable is the "dry" eethod as it is abrasive to the heads and leads to preadure mear. The disassemly and smab method is the most efficient and the technique used by professional drive service comanies. The simplest eethod and the one mast of us would use is the "wet" disk solution. These are avallable as Disk Cieanang Kits, avallable through office supply houses and computer supply 5 tores. These kits range in price from so to $s: 0$ and offer multiple cleanings wich make the per-cleaning cost average between $\$.50$ and $\$ 1.00$.

Last. but not least. if you are transporting your drives, place the carctoard shipping protectors in the drive and close the door. Lacking the shiping protectors, put an old dish in the drive backurds. This prevents the heads froe vibrating and alsalignent.

FIN THIS PROGXH WILLE CLEANIMG YQR DRIVE

100 KEM HEADCLEAN
I10 REM HERI Cleanimg proeran
120 RER !! II Txtended BASIC only'!
13) FEM by hilo Isukroff NUTHET TI-A9ers

140 CAL CLEAF
 progras mile the cleaning disk is in the ': 'drive."
160 OISFLAY AT(9,1): "To stop 1t. press and hold DEAR (FCTN
4) until the ": "prog ram stops."

170 DISPLAY AT (15, 1):"DISX DRIVE: 1"
180 accept af(15,13) 5liE (-1) VALIDATE (DIGIT):G
110 on error 200
200 OPEN

BO
210 QLOSE 11
220 END
230 PRINT "REIRY ${ }^{-}$;
2
$240 \mathrm{I}=\mathrm{x}+1$
250 privi 1
260 RETHEX 190

DS \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃

＊Caich 1 t ：

This month＇s gane is one that was from the Kansas City og＇er newsletter runs in Extended BASIC．

A THOUGHT FOR 1997

und in the TIC TAC Newsletter．．．thanx．
77JJ S3／PRO News V1ews
－Dec－36 15：5こ：42
：Thought for 1987
：Roy gartea 71コざb，\｛36
：hbl
L ！EyER NEEDED TO KHOW I LEARMED IN NDEAGARTEN．．．by Robert Faughua nsag City Tiaes Gapt．j7th 1986

Mog：of what $!$ really need to know about w to live，and what to do and how to be，！ arned in kindergarten．Wisdoa was not at e too of the graduate school mountatn but ere on the sandbox at the nursary setooal．
ese are the things ！dearned：
Shar averything．
Play falr．
Don＇t hit peoola．
Put things back where you found then．
Clean up your onn wess．
Oon t take things that aren＇t yours．
Say your sorry whan fou hurt somebody．
dasn your nanas before you eat．
Flush
hara cookies and cold ailk are good far you．
Live a balanced life．
Learn some and think some and drat and paint and ging sand dance and play and wor＇x avary day 50 ife．
Take a nap avery afternoon．
then fou go inta the world，wateh for trit：ic，hold hands and stick together．
Be awarg of wander．
aqeaber the little seed in the olastac cuo． e roots go down and the olants ga up，and bady really knows how or why，but we are l like that．

LDGOES TO THE CCMPUSERVE TI FORUM

100 ：Catch ${ }^{19}$
110 ！Finity COMPIJ！
120：FEPRUARY 1997
IJO！TRAMSLATED AY Y．blood 160 Cidll CLEAR ：for $\mathrm{T}=1 \mathrm{TO}$
12：1：CALL COLORIT．16，11：：
WeIf i 1：Call scexem（s）170

：1）FixRPII（＇F＇，（b）

1F0F07050［FF0000000000000000
－11：CALL COLOR114．7．11
190 CaLL Chafatios．है，84． 31
I：CALL CHAR（129，ESi336F3）：

this
220 DISPAAY AT（2．J）ERASE RLL
：＇yelesa！to catch lit＂
230：．：AY ATH，1）：Use the （＂iurli＇）and 〈＇，AHs；＇）Xey ${ }^{2}$
240 OISFLAY AT（5，2］：＇to dove your＇ichri（3）；＇catcher＂； 6 HRS（3）
ZOOLSPLAY AT（6，b）：＇up and 80 mn ．
260 DIEMAY AT18．11：＂The god
1 is to eatch＂ChRsiJublit CHRS（J）
270 DISPLAY AT 19,1 ：${ }^{\prime \prime}$ defope
is hits the right．
280 DISMAY at（10，11：＂bor dep
of the screan．
29 D OfPay ailiz，II：Please
select the level ${ }^{\circ}$
3000159 Lay a $=(13,1):$ of dif
ficulty you preter．＂
J10 DISPLAY AT（15，1），Yould
you like＇

sy＇：＇（2）soderate，ar＂
Jio Disptay af（19，1）：＇（3）ha

J40 ACCFPT AT（21．5）एEP？SIIE
（1）val！datal＇l2jel：Ks
350 DOsyAL（XS） 1.5
360 RJa1 ：：5c：0
390 OISPRAY ATIIL，9）ERASE AL
L：＂Set Ready！＂
400 FOR OE－1 TO 1000 ：：MEXT

420 Cab $\because=::\} 130,281$
430 CHLL－：－：：2，136， 301
$440 \mathrm{CaLL}-:=242,136,301$
450 CHL V：：：： $3,1,138: \because$

490 OISPLAY Alll， 11 ：${ }^{\circ}$ Round：
$i^{\text {RO }}$
$\$ 00$ OISPLAY ATH，131：＇SCORE： ${ }^{\circ} 15 \mathrm{C}$
$510 \quad 1=10$ ：1 $5 \mathrm{~A}=1$

 90
$560[=l+001(1(x), 5)-\{(M(.5)$

2） 2211
580 DISPLAY AT（HI，HY）SIIE：－
inis

$\$$
610 CALL KEY（5，X，5）：：IF 5＝0
THEK 550
$620 \mathrm{ks}=\mathrm{CHR}(\mathrm{K})$
 HES S 50
 $4\left(\begin{array}{l}4 \\ 51\end{array}\right.$
$6501 \times 1-(X(4)+(y) 20)$
650 DISPLAY ATH2，24）Sictid！ 142s
670 0ISPLAY AT（1，21）SILE（1）：
P1：： 6010550
690 DISPLAY AT（H！，HY） $51 I E(2)$
1N：S
700 If l－132．5 0R l－ICO THEM $y=Y+2: 15010810$
720 DISPLAY AT（ 2,231 SILE（I）： As
7 JO FOR Tx5 TO 6 A
740 CALL COLOR 12, RMOH1OO 6 ，RK B55 1 1）
750 Call sotmal200，1125＋110，
$01: 15 C=5 C+10100$
750 DISPLAY Al（1，19）：SC ：：K EIf 1
770 CALL COLCR $12,16,1)$
780 OISPLAY Af（Z，2J）SIIEII） Cs
790 FOR DEz？ 10200 II NEIT DE I： 5010520
Blo hyy i：Yxyt．j ：：DISPLA

820 D15MAY a $\quad . \cdot$ SIIE［3）：

380
BSO OISPAAY ATIS，5JERASE AL！
：Soppy，you，assed＇LCHRS｜
HIt［ACHRSMJ）
870 oisplay af 110,91 ：＇Three

tises！

core mas＇isc：＇solats．＇
890 OIEPLAY All15，11：＇Yould
you like ta＂
\＄00 0！5play at（17，1）：＇（1）a！
ay aqain：at the wae！ evel：
910 DISPLAY AT（19，11：•12）se
lect a ney level or ${ }^{\circ}$
920 015天AY ATl：0．11：＇（J）すU
relre：ra to basic？

your choace，＂

950 ACCEPT AT（24．5）EEEP ב：こ
l11validate（＂123＂）：Ks

R：1：ENO
970 ！5 Yisoto THEN CAL CLEA
R ：1：－7： 290
980 6uia 360

PROGRAMS THAT WRITE PROGRAMS Part 2
by Jim Paterson
Last month I promised you something more useful, so here it is. This routine will come in very handy for formatting screan taxt into neat 28-column lines, and will save the text in program lines of DATA statements. When you ar* r*ady to save, type จबఎ and enter as the last line, thon NEW and MERGE DSK1.LINEFILE -

100 'LINEWRITER to ald in to rmatting screen text into 29 -column format and saving it
as DATA program lines in ME RGE format - by Jim Peterson 110 !strings containing comm as and quotation marks will be ACCEPTed, and converted t - DATA statements whien FUN correctly ever though they 120. !are not enclosed in qu otation marks!
130 CALL CLEAR :: OFEN \#1:"D

SK1.LINEFILE", VARIAELE 163 : : $\mathrm{LN}=30000$
140 FDR R=1 TO 24: DISPLAY AT(R,1)SIZE(1):" ": ACCEP T AT (R,O)SIZE (-28):AS: : IF
$A S="$ iDiD" THEN $180: ~ B S=B \Phi$: A HFW (2OO) \&CHFS (LEN (AS)) \&A\$
$150 x=x+1$: : IF $x / 4=\operatorname{INT}(x / 4)$
): : GQTO 170
160 GOSUB $210:: \quad \mathrm{LN}=\mathrm{LN}+1 \%$
170 NEXT $\mathrm{R}: \mathbf{X}: \mathbf{X O}$: : CALL CL EAR : : GOTO 140
180 IF Es\#"" THEN 200: : IF
SEG\$(B\$,LEN(B\$),1)=CHRS(173)
THEN ES=SEGs(B\$, 1,LEN(BS)-1)
190 GOSUB 210
200 FRINT \#1:CHETs (255) \&LHRES (
255): CLOSE \#1: END

210 PRINT \#1:CHRS (INT LLN/こE6)) \&CHRS (LN-256*INT (LN/25E)) \& CHR (147) \&B\$\&CHR\$ (0): : Es=NU L\$: : RETUFN

On - that puzzle in last month's articlu? Try ereating those DATA statements with this LINEWRITER program!

Now, let's get down to business and learn how to do all this. First, let's write a program that will write a program to list the token Eodes that you nead to use to write a program that will write a program -

100 OPEN \#1:"DSK1.TOKENLIST" , DISPLAY , VARIABLE 163, OUTPU T: FOR N=1:29 TO 254 : : L1= INT(N/256): $\mathrm{L} 2 \times \mathrm{N}-256 * \mathrm{~L}$!
110 PRINT \# 1:CHR\$ (L1) \&CHR\$ (L 2) \&CHRs (131) \&CHEs (N)\&CHRs (O) : : NEXT N
120 PRINT \#1:CHRS(255):CHR\$(
255):: CLOSE \#1: END

Key that in, RUN it, then
enter NEW, MERGE
DSK1. TOKENLIST. Now LIST it and you will set a list of ASCII codes 125 through 254 and thelr token meanings. Delete lines 171 through 175, 185, 198, 226 through 23i, and 242. Change the definition of 139 ts QUOTED STRING, of zro to UNQUOTED STRING, and 201 to LINE NUMEEF, and ade line 255 !END UF FILE.

You don't need all those extlamation points, sis Ehange the program to a DIS/VAR go file by LIST "DSKI. TOKENLIST". Then key in this little routine.

100 OPEN \#1:"DSK1.TOKENLIST"
, INPUT :: OPEN \#2:"PIO" :or
whatever
110 PRINT \#2:CHRs(27);"N";CH R. ${ }^{(6)}$

120 LINPUT \#1:A\$: : PRINT \#2 : TAB (10);SEG\$(AS,1,4)\%SEG\$(A \$,6,255):: IF EOF (1)<>1 THEN
120 ELSE CLOSE \#1 : : END
RUN it, and print out a list of all the token codes. Keep $1 t$ handy, you'll be needing it. Notice that every Extended Basic statoment has its own ASCII token code - even the ones you perhaps never heard of, such as LET and GO. Notice also that overy koyboard symbol which affects program execution, such as + and m, has itg own ASCII token code which is NOT the same as its keyboard ASCII code. And noticethat the double colon, used as a separator in Extended Basic multi-statement lines, has its own token.

Now, let's take a look at how a MERGE format program is put together. This routind will do that for you - and you will also find it very usoful in debugging tha MERGE programs you are going to write.
100 DISplay at 3,5)ERASE all :"DN 1G3 FILE READER": :" by Jim Patarson": : :" T - edit a file saved or":"ere ated in MERGE format." 110 DISPLAY AFFT:12,1):"Output to? (S/P)S"r"x (S)ereen":" (P)rinter": : ACCEPT AT(12,17)SIZE(-1)VALIDATE("SP"): CO 120 IF Qse"P" THEN DISPLAY A T(14,1):"PRINTER? PIO" :: AC CEPT AT $(14,10)$ SIZE(-18): P\$: : D=2 : : OPEN \#2:Ps 130 DATA ELSE,"::",!,IF,GO,G OTO, GOSUB, RETURN, DEF, DIM, END , FOR, LET, BREAK, UNBREAK, TRACE 140 DATA UNTRACE, INPUT, DATA, RESTORE, RANDOMIZE, NEXT, READ, stop, delete, Rem, on, PRINT, CAL L

150 DATA OFTION, OFEN, CLOS: UB, DISFLAY, IMAGE, ACCEPT, E: R, WAENING, SUBEXIT, SUEEND,: , linfut
leu data , ,, , THEN, TO, STE:

, NOT, =,<, >, +, -,*, /, ^,
170 DATA QUOTED STRING,UNGL 3
TED STRING,LINE NUMEEP,EGF,A BS, ATN, COS, EXP, INT,LOG,SGN,S IN
180 DATA SQR, TAN, LEN, CHFTS, FN
D, SEGs,POS,VAL,STR\$,ASC,FI, R:
EC,MAX,MIN, EPTT\$, , , , , , NUMEFI
C, DIGIT
190 DATA UALFHA,SIZE,ALL,USI
ng, beep, ERASE, AT, base, , VAKiA
gle, relative, internal, seduen
TIAL, QUTFUT, UFDATE, APFEND
200 data Fixed, permanent, TAB , *, VALIDATE
210 DIM T\$(126):: FOR J=1 TO 126 :: READ T(J): : NEXT J
:: Es(1)a"LINE NOT CLOSED WI TH CHES(0)"
220 DISPLAY AT(16,1):"FILENA
ME? DSK" : : ACCEPT AT(16,14) : F\$
230 ON ERFOR 240 :: OFEN \#1: "DSK"\$Fs,VARIABLE 163, INFUT :: GOTO 250
240 DISPLAY AT (20,1):"I/O EP ROR" :: ON ERROR STOP :: RET URN 220
250 ON ERROR 260 :: LINFUT \# 1:AS: $: X=A S C(S E G \$(A \$, 1,1)):$: Y=ASC(SEG\$(As,2,1)):: IF X $=255$ AND $Y=255$ THEN 410 ELSE 270
260 PRINT \#D: "FILE NOT CLOSE
D PROPERLY":"WITH CHRs(ZS5),
CHED(255) ?": : STOP
270 PRINT \#D: "LINE NUMBER": X
1"TIMES 256="; X*256:Y;"PLUS"
; Y;"=": X*256+Y
280 FOR J=3 TU LEN(As)-1 : :
$X=A S C(S E G S(A \$, J, 1))$
290 IF $x=201$ THEN FRTNT \#D: x ;"LINE NUMBER" : : $X=A S C(S E G T$
(As,J+1,1)): : Y=ASC(SEGS (AS.
$\mathrm{J}+2,13):$: $\mathrm{J}=\mathrm{J}+2$: : PRINT \#D:
X:"TIMES 256="; X*256:Y;"FLUS
"; Y;" =": X*256+Y
300 IF $x=199$ THEN FRINT \#D:
;"QuOTED STRING" ELSE IF $x=$
OO THEN PRINT \#D: X: "UNQUOTE:
STRING" ELSE GOTO ЗEO
310 JaJ+1 : : X=ASC(SEGक (As, ,1)):: FPINT \#D: X ;"OF"; X ;"C: aRACTERS"

3こO ON EFROR 340 ：：FDR L＝1
TO X ：：Y＝ASC（SEG\＄（A\＄，$J+L, 1)$
）：：PRINT \＃D：Y；LHRゆ（Y）：IF
$Y<32$ OR $Y>1 こ 6$ THEN FRINT \＃D：
＂UNFRINTABLE CHAR－ERROR？＂
330 NEXT L ：：J＝J＋X ：：GOTO
370
340 FRINT \＃D：＂ERROR！INSUFFI
CIENT BYTES IN＂：＂STRING＂：：
IF ASC（SEGs（As，LEN（As），1））＜$>$ O THEN PRINT \＃D：E\＄（1）
350 ON EFROR STOP ：：RETURN 250
3€० IF $x<129$ THEN PRINT \＃D：X ；CHR\＄（ x ）；＂VARIAELE NAME＂EL
SE PRINT \＃D：X ；T $\$(X-1: 28)$
370 CALL KEY（O，K，S）：：IF S＝0 THEN 390
380 EALL $\operatorname{KEY}(O, K Z, S 2):$ ： IF S
2く1 THEN 380
390 NEXT J ：：IF ASC（SEGs IAs ，J，1））＝0 THEN FRINT \＃D：＂O EN D DF LINE＂ELSE PRINT \＃D：E®C 1）
400 GOTO 250
410 PRINT \＃D：XiX；＂END OF FIL
E＂：：CLOSE \＃：：STOP

PROGRAMS THAT WRITE PROGRAMS Part 3
 Jim Peterson

Let＇s start learning now to actually write a program that writes a program．

A MERGEd program is a D／V 163 fller 50 －
OPEN \＃1：＂DSK1．（iflename），VARIABLE 163，OUTPUT
Every program line begins with a line number，$\quad f$ evurs＊．In MERGE format tine line number， whother 1 or 32767，is squished into two sharacters．We don＇t need to get into now this $1 s$ done，but you can accomplish it with EHRs（INT（LN／255））\＆CHRS（LN－25 S＊INT（LN／256）），where LN has ben predefined as the lint number．

To print a statement or command，anything that is represented by a token in the token list，jugt print the CHís of its tisken ASCII．For ingtance，the token for DATA is 147，so you would print CHR\＄（147）．

To print a variable name，
either mumeri：or string，jus enislose it in quotes，＂A＂or As＂
ro print a valuer or a gtrin which is not in quotation mark． （surn as in a DATA statement＇，D the word which follows a LALL you must arint CHRS（zool followe by a token giving the number a characters to follow，surn a CHFís（5）for a s－letter wara suif as CLEAR，then the value $\quad 1$ quotes．For instancer the toke for CALL is 157，so CALL CLEAR 1 CHR（ 157 ）\＆CHR\＄（200）\＆CHR＊（S）\＆＂CLE $R^{\prime \prime}$ ．

Similarly，tiokens for paren theses are 193 and 19% ， 50 th variable name $A(1)$ is＂A＂\％CHF
 1日2）．

A quoted string is handled 1 the same way $\begin{gathered}\text { exrept that } 1 t \\ 1\end{gathered}$ prectatd by token 139，so FFIN ＂HELLU＂ 19 CHRS（156）\＃CHF\＄（19Э \＆CHF\＄（5）\＆＂HELLO＂．DOn＇t worr about the quotation marks，th computer will handle that．

If you need to refer to a lin number，as in GOTO Soo，us＊toke 201 followed by the 12 n n numbe formula，thus CHE\＄（134）\＆CHF\＄（201 \＆CHR（INT（500／256））\＆CHR\＄（500－（5E INT（500／256））

Don＇t orint misre than 1E characters in a record．You Ea print multiplestatament XBasi lines，but be sure ta usa th doublecolon token 130 as th separator，not two of the 18 colon tokens．

Each program line must end wit CHFs（ 0 ）as the end－ig－lin indisator，and the last resor you print must be CHF\＄（255）：LHF （255）ag the end－igf－ill 1ndicator．

If you get an I／O ERROR 25 whe you try to merge your program， 1 means that you laft off the fina qouble－255．If the prisgra merges，but erashes when you ru it，you will prooagly be agle t spot an ouvious errior in the lin when you L［ST it．If the 1 in looks DK but gives you a DAT ERROR or SYNTAX ERROF，you 1 e of i a Chrs（o）or gave the wrisn count of inaracters aftar tike 199 or 200．The progra published in Part 2 will help yo
to track down these bugs．
Now lat＇s write a program．What is the longest possible one－liner program？

Well，RANDOMIZE is the longest statement that $c a n$ stand alone． It is represented by tho single tokan 149，and to repeat it must be followed by the doublewcolon token 130．Since any 11 n ． s number will take two bytes，let＇s use a 5－digit line numbar．And dron＇t forget that final CHRS（O）．That still leaves us 150 of the 163 bytes，so wo can repeat tokens 147 and 130 for 79 times， followad by a final $1+7$ ．

100 OPEN \＃：＂DSK1．LONG＂，VARI ABLE 163，QUTPUT
110 FQR J＝1 TO 79：M\＄M ： HRS（149）\＆CHR\＄（130）：NEXT J ： 1 M 3 CHR $(254) \& C H R \$(254)$ ） 4 Ms \＆CHF\＄（149）\＆CHR\＆（O）：：PRINT \＃ 1：Ms ：：PRINT \＃1：CHR（255）\＆C HF＇ 3 （ 255 ） 120 CLOSE \＃1

RUN，NEW，MERGE DSK1．LONG ：ت＇ LIST－over 34 lines long！घuた that one－liner doesn＇t c． anything，so＇try this one－

100 OPEN \＃1：＂DSK1．LDNG＂，VARI ABLE 163，OUTPUT
110 FOR $J=1$ TO 52 ：：Ms＝M\＄\＆C HRs（162）\＆＂X＂\＆CHRs（130）： T J 1：M $=$＝CHR\＄（254）\＆CHR\＄（254 ）\＆M事\＆CHR\＄（152）\＆＂X＂\＆CHRS（0）：： PRINT \＃1：Ms 120 PRINT \＃1：CHR\＄（255）\＆CHR\＄（ 255）：：CLOSE \＃1

Again RUN．enter NEW，then MERGE DSK1．LONG，then RUN． You＇11 g＊t Om＊sagag BREAKPOINT IN 32510 （donmeakk m＊why！）but just enter RUN again．

We EUY：SELL and TRADE ［ Equipment／Hardware／Software

THE
UEED \quad NEW CロMFUTER STDFE

MILHAU'EE :=EA USER GROUP

President...D. Walden	5292173
Vice-Pres.....Schroeder	2644735
Treasurer.....Norton	4628954
Secretary.... Kiling	5295161
Librarian...E.VorDerEhe	5490593
Librarian...F. Pabian	3273618
Newsletter...Hitz	550133
S.l.G.....Schroeder/Walden/Hitz	

HAFFY BIFTHDAY

Next Group Meeting - 2nd Saturday June 11, $1988-12$ noon til 4 FM Haumatosa S \& L - 7500 Hest State

North Sub-Meeting - Ist Tuesday June 7, 1988-7 PM til 10 PM

South Sub-Meeting - 3rd Tuesday
May 17, 1988-7 FM til 10 FM
Franklin State Bank - 7000 So 76th
Membership Dues $\$ 10$ - Family $\$ 15$

《<<<< HOCUS NEWSLETTER INDEX, $/ \ggg$

Noisy Keys
Harold YanDen 02
Fower of Speech $\begin{gathered}\text { Craig Dunn } 04\end{gathered}$
Turbo Speech
part 2 Stephen Shaw 05
Cleaning Disk Drives
Courtland Gray 06
All I Ever Needed to Know
Robert Faughum 07
Catch It (game)
Family Computing .. 07
Programs That Write Prograns

It was just 7 years ago when a small group of struggling pioneers aet to form some sort of computer self-help unit in the void that was Texas Instruments at that time. Gene Hitz, Phil Norton, Ken Schmidt, Earl Schultz, Dean Cleveland and Lucretia Harmon were just the beginning, soon to joined by James Uraanski, Jim Steinhart, Mark Geer, Jim Vincent, Dave Zigler and the Browns. The beginning adaittedly was pretty rough at times, with no support, no software and very little in the way of any hardware or peripherals. And besides, who even could possibly afford then, at prices prevalent then. He've gone through a lot of good and bad times since then. Rementer the Crash of '83 lhas it really been almost 5 years ago ?). Every one remenbers what they were doing when the news reached them, and how they reacted.
lamediately our group doubled in membership and we couldn't find enough seating room at our meetings. After about a year though, the membership dropped back to the pre-crash years and has held steady since right up to today. Hopefully we can still squeeze a few more good days out of the old console. Mine is still getting just as much use as always, and is still perking along on all four burners, still giving me as much pleasure as when it has fresh out of the box. I'm very comfortable with it and it never ceases to amaze me with what it can do. If ever this group does disband for lack of interest, my old TI will be my faithful and trustwothy companion for many long years hence.

