

Next meeting: Monday, June 17
Community Room, Fifst Nat ${ }^{\text {P }} 1$ Bank 7:30 PM as usual, we hope. 7th and Hamilton, Allentown

THE 10 PORT

Yes, we have no BASIC this month.
Your worst fears have been realized: your slightly frazaled editor is sofewhere in the bit streas..... Or have they?

The I/0 PORT is presenting a two-up hardware special is5ue. The first is fros that hotbed of II activity, the Northwest Ohio 99 ers laka OH-MI-T? and New Horizonsl. In their Jan newsletter, John Clulow and fion fries add 8 K , to the EdAse cartridge. The other is froit the II Users of Perth, Hestern Australia, whose members Bernnie Elener and Phil Hest are on the cutting edge of TI hacking, If miting and ay all-tiae list of best articles anywhere, anytice. They add three chips to the console, creating the first-ever internal 32 K expansion.

Between the two lurk the following possibilities:
for a bare console ouner: A 32K expansion without a p-box. (price range: $\$ 27$ to $\$ 40$)
for a hardarare hacker: A battery-powered RAM cartridge. Or a battery-powered 32K expansion aesory.

Better prices for the 6264-LP15

The Hitachi static ram chip used in both articles way be goten such cheaper than the reprints iaply. Computer Shopper, for instance, has three ads in their May issue that range froa $\$ 12.90$ to sive.zo. if recail a fourith for a guaranieed but used thip at担核, but can't find it).

```
DFAMEN 1-500-4J8-7825 HM6264LP-15 $12.90
MICROPROCESSORS URLIHITED 6264LP-15 $10.50
    24,000 S. PERORIA AVE.
    BEG6S, OK 74421 1-918-267-4961
1. C. EXPFESS 6264LP-15 $11.50
    gyeg valley goulehamd
```



```
                            1-300-892-8887 orders $10 nin
```

Replacenent 6ROM extenders available fron il
For aheut E, you :an of the rioht-angle carticge connecter.

The 1/O Port, foundeped on the Reefs of Disady, is liaping towards the Keys, under half-power and nearly rudderless. Dis May masn't, note our new issue nuiber and dis June arks our first atteapt to adil everyone their issue by for nearly) the first of each sonth.

An unsolicited rave

Those of us blessed with a disk drive or two, but without the new double-density cards, are often blessed with about a hundred disks. Unlike the tape user with stacks of (is it empty or full) little boyes, the disk user can't read/urite the disknase on the edge of the disk sloeve. Thus, sieple stacks are a mo-no, leading us to such inovations as the plastic shogbox. These devices let us put 25 or 50 disks inside with four or five dividers that you flip back and forth to find, sort and keep track of....

One probles is that they don't expand, so as you get to and exceed the advertised lisits, disks get harder to find and easier to ash. Plus if you use the achine wuch at all, how do classify an XBASIC FORTH systea, when you've only five categories and FORTH was squegzed in with the EdAs disks?

Enter the DISKBANK, THE SYSTEK.
 giving each sat of 10 disks their oun trapdoor, labelspace and portability. The great thing about the is mhen you pull a disk to use it you can leave the door apen.... Then when you'ra done using the disk the open door shows you where to look for the sleeve. Real practiced types (the second tiae), you'll find that you leave the slege in front. That way you cen read what's in the drive without opening it. Yeah, I know you ca: put the sleave in front af the shoebor, but then you've got :o figure gut inhere it's supposed to go a'l aver agati.

If HRURAN has a flan, it just isn't cheap enough. Fire of than will cost you about 522 (at gervice

[^0]SLFFEF-MDDLIE:

Adding OK to Your E/A Madule
by Ron Gries and John Clulaw New Horizons

Duestions about this project may be directed to Ron Gries:
(419) 874-1414

The project described here adds $3 K$ of RAM memory to the Editor/Assembler Module. At the present time, a circuit for battery backup is not available. We hope to present one sometime in the near future (when Ron gets time to do it.) Eut you should find the $8 K$ addition useful even without battery backup and especially so if you ds misth asesmbly language programming.

As usual, neither Ron and I nor the New Horizons users group can assume any responsibility for any loss or damage arising from the information presented here. We also do not assume responsibility for its accuracy or completeness. If you decide to attempt this project, you do so entirely AT YOUR OWN FISK.

The memory used is the Hitachi CMOS HMS264P-15 ($\$ \mathbf{3 4 . 9 5)}$. If you want the capacity for battery backup later on, you'll need the more expensive LP-15 version ($\$ 59.95$). Prices on both devices will probably drop in the next few months. One source of the RAM chip is JDR Microdevices, 1224 S. Bascam Ave., San Jose, CA 95128 Fh: (800) 538-5000.

Another required item is TI game module which is foiled on both sides. To determine this, push back the sliding door and see if there is metal showing on both sides of the edge card. Several games have such a board; we happened to use a Munch Man dHoule wirich was purcirased for \$ -99.

You'11 also need an Editor Assembler module. of course. Eecause the project involves transplanting the E/A GROM chip, it does involve some risk of destroving the E / A module' it would be a good idea NOT TO TRY IT WITH AN E/A MODULE YOU CAN'T AFFOFD TO LOOSE.

The only other parts you*ll need dre a lk resistor (e.g.. Fiadio Snack 271-023) and some insulated wire - preferably wire wrep (e.g.. 279-501). rou.ll also need a vacuam-type soljer remover, rosin core sclder, and a soldering pencil.

We strongly recommend that if you have had no prior experience handiang cmos devices. desoldering camponents from printed circuit boards, etc. you should AEK SOMEONE WHO HAS TO HELF YOU.

First un-screw the shell of the game module and open it by pulling the case apart at the ends of the slotted side.
Remove the board while halding the sliding door down. Note the position of the spring device and the groves it fits into in the sliding door. Note that the spring is on the UNDEFSIDE of the PC board.

Un-solder and remove the GROM and ROM chips. They should be located as shown in FIG. 3. The fom chip is the larger of the two. To remove them heat each solder connection on the undersicie of tile board and use the vacuum device to remove most of the solder. Then gently pry up on one end of the device while heating pins on the underside of the board at the same time.

A capacitor should be located next to pins 21-24 of the ROM. Desolder the ground end from its soldering pad, leaving the $+5 V$ end (nearest the back of the board) attached. With a knife, carefully break the foil between the two adjacent soldering pads where the capacitor was connected -- See Fig. 2. Then resolder the ground end of the capazitor to the pad on the right. Finally, salder one end of a short piece of wire to the Fad on the left (where the capacitor used to be) and the other end to hole 18 of the removed FiOM (See Fig. 1 for ROM pin numbering). This will be the seventh hole from the back of the board on the side closest to the capacitor.

When a command module is inserted, it normally resets the computer. If you want to disable this autorreset in the new E/A module, remave the resistor at the opposite end of the board (See FIG. 3).

Figure 1 gives a pin diagram of the HMS 264 RAM with a typical $4 K$ ROM superimposed. You will note that the actual width of the two chips is identacal but the FAM is longer. The FOM is drawn narrower simply for clarity in showing corresponding pin numbers. In the fallowing. all pin numbers will be preceded with "ROM" or "RAM" to indicate which numbers are involved.

In handing the CMOS RAM chip tale precautions to minimize seatic electricity. Don't work on carpet, touch a ground before handling the device, handle it by the plastic body, and touch the pins as little as necessary. When soldering, hold the pencil on the pins for the least time required to make the connection - try not to use more than 1 to 2 secands. Remove the RAM from its anti-static tube. Figure 1 is a top view. Place the device on its side on a table or other flat, hard surface and move the body of the device to bend the pins closer to a right angle wath respect to the body. Do this for both rows of pins, and check to make sure that the pins roughly line up with the hales in the game FC board. Orient the chip as 10 Figure 1 and bend RAM Dins $1 \quad 2 \quad 20 \quad 27$ and 29 straight out. Now insert the RAM into the game PC board such that the notched end is flush with the back of the board fiAM pin $\overline{\text { P }}$ stould go into FOM hole 1 , RAM pin 26 into ROM hole 24 ete.

With the FAM in place, solder in one pin on each side to hold it. Connect a wire from RAM pin 27 (bent up) to the Write Enable pin on the edge connector. This is the thard one from the left looking at the top of the board (see FIG. J) and it is not connected by foil to the PC board. Connect a wire from RAM pin 2 (bent up) to Address line 12 on the edge connector (7th pin from the left). This edge pin also doesn't have a fail connection to the board.

Solder a short wire from RAM pir. 29 (bent up) to RAM pin 22. If will be relatively easy to solder one end of the wire to RAM pin 20 but RAM pin 22 is in a hole and a little more difficult to get at. Solder the wire as close to the board as possible using as little solder as possible. Solder one lead of the $1 火$ resi=tor in the ouldering pad just below the left side of the GFOM holes. This pad is in a foll path leading from the gnd end of the capacitor to the right-most edge card pin. The resistor lead can be pushed through the hale. Solder the other end of the resistor lead to RAM pin 20 (bent up).

Solder a short wire from the +5 end of the capacitor lead inearest the back: of the board) to RAM pin 28 (bent up).

Now all that remains is to lnstall the EfA GFOM. Open the E/A module and remove the PC board. Unsolder and remave the GतUM using the same procedure as
ascye. Place the E/n GFiOM on the rew board in the holes left by the old GFDM with the notched enc of the GFiCM toward the back cif the board.

Finally，solder all IC pins in their respective pads for both the FAM and GROM．Place the spring in the GOTTOM of the E／A module case，locate the siiding door properly，put the new FC board in place，and snap the case closed．Then replace the screw．

The first thing to do is make sure your EiA GROM still works C．Y．Then you can test out your RAM with the following program．

100 INPUT＂NUMAER $0-255$ ？＂： X
110 CALL LOAD $(24576, x)$
120 CALL PEEK（24576，x ）
130 PRIMT＂MEMDRY HAS＂；X
140 PRINT
150 GOTO 100
When you enter a number from 0
to 255，you should see the same
number displayed on the screen
haviny teen storeu oy iic and
read by line 120．If the number
the computer returns is dif－
ferent from the one you entered，
the device is not working pro－
periy．Remove it and retrace
all steps above until you find
the problem．The address 24576
is toond．Your new RAM goes
fror >6000 to $>7 F F F$ or in
decimal from 24576 to 32767.
You may want to check out
several addresses in this range
to make sure they are working properly．

There are a number of things you can use the new RAM for．In assembly language programs you can use an AORG＞6000 directive to have to loader place your object code in the new RAM． Alternatively，you can change the First Free Address in $\mathrm{H}_{\mathrm{g}} \mathrm{gh}$ Memory（FFAH）to＞6000 with a CALL LOAD（8223，96，0）and then load your program with a CALL LOAD（＂DSK1．NAME＂）as usual．If you plan to load other programs， you can change the FFAH back to $\because A O D G$ by CALL LOAD（8228，160，0）．

1 have been using the new 8K of FAM to hold the DEBUG program when working on asミant！y 2an－ guage programs．An article by Jon Eannister of 9 T9 users group in Toronto described a modifi－ cation to the speech synthesizer tu activate（ground）the LOAD interrupt line on the 44 pin I＇O tus．This causes the computer to do A BLWP to vector SFFFC where $\because F F F C$ contains the work－ space Fointer and $\backslash F F F E$ the Frogram Counter．So at any time in the execution of a program ilike when it inevitably locks up）I press a button and branch to the debugger．

Jon＇s device 15 pretty easy to make．You need a momentary contact，nommaily open push button switch llike Fadio Shack 275－1547）．a． 1 mF bvpass capa－ citar（272－155），and a 2．2K resistor（271－1325）．Solder the capacitor across the switch keeping the leads as short as possible Solder one lead of the resistor to one side of the switch and the other lead toa $7^{\prime \prime}$ insulated wire．Connect the other end of the wre to the LOAD pin on the Speech Syn． This is pin 13 on the $1 / 0$ bus． Looking at the edge card at the upper right of the console，pin 1こ． 15 the seventh pin from the left on the bottom．Jon re－ commends that you flip the board upside down so that you cannot see any components，and place the black female connector on the right side．Pin 13 LOAD is then the sevenion pin from the bottom．

A second 7 in．insulated wire should be soldered to the other side of the switch and then to Ground－leads 111213 and 14 fron the battom with the black connector on the right．You can

そラミi：recognize them becaus． they $=r$ e soldered together．

All that remains 15 to moun： the switch inside the speect synthesizer．If you＇re using the Radio Shack switch，you＇l： need a 5／ís in．hole．

```
Now，if you＇ve made it this far，put in your E／A module． connect the modified Speech Syn． place the E／A disk with DEBUG or it in drive one and run the fol－ lowing progrem：
100 CALL INIT
110 CALL LOAD（822B，96．0）
；20 CALL LOAD（＂DSK1．DERUG＂）
130 CALL LOAD \(1-4,131.224,112,196\)
140 CALL LDAD（8228，160．0）
150 PFINT＂FFEESSQ THEN ENTER＂
\(1 \leq 0\) CALL LINk（＂DERUG＂）
```


170 END

Tiñ wili ioad the denug uili－ ityo Now enter EYE to leave basic and select an option of Editar Assembier－e．g．，Load and Fiun．When you press the LOAD button on your speech sym． You should be 10 the debugger． T．leave the debugger．use FCTN OUIT．

FIG． 1

FIG 3

from TIUN
 32X MATCHBOX EXPANSIOA

june 1985 Special Feature

LEHIGH 99’ER COMPUTER GFOUP

THE TI－99／4 AT

（ ADVANCED TECHNOLOGY）
PART 1.
32人 UF CMOS RAM INSIDE THE TI－99／4AT
（ The＇MATCHEOX＇expansion！）
By Bernie Elsner and Phil West． TI－99／4AT＇AB－USERS＇of FERTH． WESTERN AUSTRALIA．（ T．I．U．F．）

THE＇ISADUDD＇Club．
Anyone using a computer which has been discontinued by the manufacturer．automatically qualifies for free membership of the rapidly expanding International Society of Amalgamated Dodo Users and Dead Ducks．（ISADUDD＇s）

TISADUDD＇s are Juckier than most．Despite the＇dODO＇image， there are some real advantages in belonging to this group．

New，and sometimes＇PRE－LOVED＇ hardware and software are often avalable at bargain（ DUMFED） prices．

Initial awe and fear of damaging expensive equipment has disappeared．（ Who＇s afraid of a $\$ 49.95$ computer ？）

Tons of software，books and technical information are readily avaliable．

Contact with many other users has been established．

Creating useful programs is a lot easier than when you first started．

Tha＇PANH ACCCURT＇has hat chance to recover some lost condition．

At this stage，like us，you may develop an interest in the computer hardware．How it operates，how to fi：some of the things that annoy you and how to provide extra features．

SUCCESSFUL MODS．
Hardware enhancements that we have added include ：－

Installation of a great UTILITY device called＇FINGEF FRINT＇and the addition of five EXTERNAL dip Smitches for the Tl－（MX Bu）－ FRINTER．（ For changing Eaud Rate and 7－8 Data Bits quackly．）

Eeefing up the Expansion Eox fower supply to permit the use of two internal．CHINNON law power．double sided，slimline， dish drives，FLUS．two optional e：ternal drives and without ANy e：ternal orives and WITHOUT ANY
FAN ELSNEF＇s MEGA－CKAZY＇

supermod＇（Foundation memoer of ＇NDFANS＇－The Noise Of Fans is Againgt Nature Society．）

Installation of a＇GfonOs＇load intarrupt button．（ The makk 2 ＇LA－USERS＇version．）

Addition of the＇NEW HORIZON＇S USERS GROUF＇real time l battery backed）clock．

Conversion of a mini memory to a＇WESTRALIAN INSTRUMENTS＇ MAXI MEMDRY，by replacing the $4 K$ ROM and 4 K FAM with an 8 K RAM chip．Fietaining the MM GROM and battery backup carcuat．The ROM data can be restared from cassette with a $m-1$ routine 1 or from disk，using a CORCOMF DD disk controller card．（ To be featured in Fart 2．）

Location of＇CONSOLE ROM＇in an日K（ battery backed）RAM CHIF on the g bit data bus．Slowed things down by 25% but has some interesting potential．

Expansion of CFU memory with a＇MATCHEOX，JEK CMOS RAM EXFANSION sinside the TI－99／4AT． （ Described in this article．）

These last three mods were made possible by substantial price reductions of a great memory chip，the ：－

HITACHI HMGIG4LF－15

This is a 28 pin－日k a bit CMOS RAM chip．A Eig brother to the $2 K$ 日 Dit HMolldif－4 used in the MINI MEMORY．

There are several versions of the chip．The ane we used is LF－ 1 for Low Power－which is requared if you intend to use battery bachup）and 15 （for 150 nanoseconds，whien 15 plenty fast enougn for ol． TORTOIEE－TI．．．．

A year ago，in ferth，the chip would have cost you $\$ 140.00$ and two months ago it varied in price from \＄42．00 to \＄7E．0U． it 15 now avallable， 10 sticlis of TEN chaps from：－

＂rkumafir electifonics＂

$$
\text { P.O. } B 0 \%=81 .
$$

CROWS NEST. NSW 2OES. or,
F.O. Eo:: 115, NUNAWADING，VIC こiさ1．

For \＄250．00（\＄25．00 per chip．） （This ancludes 2uz sales tax and \＄4．0ن́ for postage＇）

The HMG2t4 chip 15 just made for the TI－99／4AT hacker．It is STATIC RAM which does not need tive cumpizi refresii Eircuitry etc．of DYNAMIC RAM and the size is just right for the EK blocks of CFU FAM．

ON THE DRAWING EOARDS．
We are developing several other enhancements for the TI－99／4 AT． All components will be mounted on a board IPISIDE the computer． （ An additional external power supply will be required later．，

The projects will include ：
Estensive［ful decading to allow for new faclities．

Frovision of a CRU selectable BK CMOS FAM Ehip in the DSR area of CFU RAM from $24000->5 F F F$ ．

Console ROM to be hardware switchable between KOM and battery backed CMDS RAM．

1 We just maght end up with an日ok computer，or better！）

Installation of an EFROM copier－ programmer in the computer．Two Zero Insertion Force sockets to De mounted above the ventilation siots at the rear，raght hand side of the console．（That＂ll really Cnak es！！

Froviston of a GROM and ROM selector for access to external module cards．

Some of the mods will require M／L routines and we will list those when apropriate．

UAFOUR WAFE．
Other 1 mprovements to be Investigated（ straight from the DFEAM TIME，include ：－

A FAM DISK，large enough to load a full，double sided，douale aEncity むisk（ l44i）sectors or ZeEo4ú bytes．hmmm．．．．．that＇s 45 HMOZロ4 chips which would cost \＄1197．001 Well maybe next year． Just thinf，they might even come down to 4.95 ea．That would be douut $\$ 0$ for a $5 S-50$ FAM DIGK or $\$ 250$ for a DS－ED FAM DISK．

32W Matchoox Expansion icont．J

Pelosation of the 22 C CMOS RAM erpangion on the 16 bit data bus to eliminate the 16 to 9 bit bus conversion for operations in CPU RAM．＇Too fast for existing software フフロ ，

Replacing the UDP processar with a TMS 9ここ日 and building VDP RAM up to 256K．wDW＇An 日o column MULTICDLDUR tert mode．A bit map mode mere every pixel san be any one af 16 colours from a palette of 512 colours．Sivteen sprites in any row．．．．．

Realacing the TMSg900 with a TMS9995 running at 12 MHz ． （ We＇ve done a ROM \＆RAM＂BRAIN＂ exchange，why not a＇HEART＂ transplant too 77 ，

This would be tough．The experts say it＊s IMPOSSIBLE but having acquired a Tins 9795 processor in some recent＇horse trading＇we might just be crazy enough to try．After all．the experts dion＇t tell us we could put 32 K of CFU FAM inta the consale．．．．．

If we ever get this far．Phil will have re－written just about all the TI software and we will change the name of the computer to the＂WESTRAL IAN IPSSTRUMENTS｀．
＇TUREO WI－99／9 AT＋＊
IMPORTANT DISCLAIMER．
These articles are written by＇AMATEUR COMPUTER HOREYISTS＇． （Amateurs by our definition are happy souls who learn less and less．about more and more．as distinct fram enperts．who rarely smile and learn more and more about less and less．）

We cannot guarantee that any modifications or enhancements described will work on YOUR computer．

We develop our projects on old equipment and accent the risk that it may be damaged．If you have never taken your computer apart，handled CMDS chips or used a soldering iron you should NOT attempt any of the projects described $($ unless you can obtain assistance from someone who has．）

By modifying your equipment you will void any manufacturers warranties still in force．

 －IF YIU ATtEMFT ANY DF THE： －MODIFICATIONS DESCRIEED IN －THIS SERIES DF ARTICLES YOU ： ＊DO SD AT YOUR DWN RISr＇1＇！
ZEK．MATCHEOX EXFANSION．
Our J2F matchbo\％expansion works fine with the mapor software pactages． 1 This article 15 being written with TI－WRITER usina the orototive．，

EXTENDED RASIC．TI－WRITER． T1－MLULIFLAN．TI－LOGO 1 ： 2. TI－FOFTH，EDITOF ASSEMELEF and
 CONT．CORCOMP DD DISK CONT． cards．have all been used Without any＂AFFAFENT＂problems． However．we pause for another lmportant messaqe ：－
 ＊
－Moving CPU RAM into the computer is a major change t to the TI－99／4A expansion －system and may cause some＊ software problems．Machine language programs thac use －SPEECH or are derendent on －eritical timing．MAY NOT －operate correctly．
t

This project should be regarded as a＇EUDGET＇MEMORY EXFANSIDN for the unexpanded TI－99／4A user rather than as a replacement for existing ご2f：expansion cards＂

If you wish to add tie 32K espansion but don t have a disk drive or contrallpr．you should alsobe aware that the estra memory is not fully useable by cassette based users．

For instance，you may only SAVE Es：tended Basic programs up to 12k in size to cassette，though the programs will have a much larger operatirig space for arrays etc．$($ you could for example．read a lak Text file into a 12 k program－ 14 you＇re the patient type．．．．．）

If you thave a MINI MEMORY module the project has some interesting potential．using EXPMEMI and EXFMEM2 and also for Machine Language programs．

Later．using the＇Westralian Instruments MAXI MEMORY and with a battery backed ごK memory expansion on board．itwill be possibie to create a ri－bASIC program that utilisses a 24t．data file located in ExFMEM2 assisted by Er of M／L routines（ Display At＂。＂Accept At＇etc．＇located in the＇MAXI MEMDRY＇．If the TI－Easic proqram was less than日r．in size it could be saved in EXPMEM1．

EVERYTHING WOULD EE INSTANTLY AVAILABLE ON FOWER UF AND WDULD OFEFATE WITH THE ACCESS SPEED OF A RAM DISH．
（ Although not documented．it is possible to save programs to EXFMEMI．before doing 50. you must CALL LOAD（ $8192,90.165$ ）． EXFMEM1 can also be used for data fulps by loading similar \checkmark dilues to those used for FXFMEM2 inta location 6194．）

Whilst pondering these fringe＇ idfas we lept hearing a qhostly chorus crying in thp distance．
－TI．．．．．DH．．．TI．．．．．WHY．．．．．DID ．．．YOU．．．DESFFT．．．US．．．．\rightarrow ．

FGRTOTYFE．
The project was developed on an old TI－99／4（without case） and the four fAM enips were ALL －F！GGY－EACI．ED＇in one 28 pin socket＇It was suprisinglv easv to do and and tnot up an
unbelievabiy small amount of space．Hence the name＂MATCH EOX evpansion．（ TI＇s Zizt memorv P：ipansion sard uses $\overrightarrow{3}$ chips．）

To make it more reliable we mounted the four RAM chips in two socrets on a small piece of strip boapd saldered to the grom estencer．This made a tight fit in the space where the speaker used to be in the old Tlu99／4 computer．

To allow for future proyects we have decseted to mount evervthing on a single piese of STRIFROARD． zJ 5me wide by 9 Em deep and up to 2.5 cm．high．which can be mounted on（ self adhesive）NON－ CONDUCTING stand－offss on top of the shielding covering the main computer board．（In the empty spacp between the kevboard and the back of the computer．）

For＇ONE OFF＇ennstruction， stripboard is faster to use than printed circuits and cheaper than wire wrap or other connection methoos．It is also permanent enough for use，whilst allowing quick alterations if necessary．

Whether you end up with a ＇RATS NEST＇or a neat job． depends on the care you take． If you work carefuliy and neatly the whole project can be finished in a few hours．Much less time than it takes to write l or read，this article．

Only a small portion of the board is needed for the IZk expansion and you may find it easier to mount the four RAM chips in separate sochets．This would increase the amount of wiring required but eliminate the tricky FIGGY－BACr．sol dering．

FARTS REQUIRED．
4 HITACHI HMG264LP－15 RAM CMIPS． I For M／L use you may add then one at a time as required．l
l piece of copper strip board． 134 strips wide and $2 \overrightarrow{\mathrm{~cm}} \mathrm{em}$ ． long．if you intend ta add other projects later．，

2 （ or 4）2日 oin Chio sockete
$12 a$ uF Tantalum Capacitor．
An edge connector or small plug ＊socket for 30 or more wires． （ We will need more mires for future projects．so use larger zonnector $i f$ available．）

Several Non－ronducting standoffs or a sheet of insulating material to separate the strip board from the metal shielding around the computer

Coloured lengtis of thin． insulated．single conductor ware for use on the stripuoard

Lengths of thin．multi－stranded wire or ribbon cable to provide fle：1ble connections between the board，Grom E：tender and main computer board．

Solder．tine tipped tron．etc．

6 FIG． 6 nows a simplified block diagram of the memory expansion． Tharteen lines of the address bus（A3－A15），eight lines品 the data bus（DO－D7），the WE $11 n e,+5 V$ and Earth，are all obtained by soldering wires to the back of the GROM EXTENDER．

$$
\begin{aligned}
& 1 \text { This is the 'GIZMO' that } \\
& \text { computer board and causex all } \\
& \text { computer board and causes all } \\
& \text { thase Extended Easic lockups } \\
& \text { whan not making proper contact.' } \\
& \text { Five other lines are obtained } \\
& \text { from the Ti-99/4AT Mother Eoard. } \\
& \text { Elieve } 1 t \text { or not, all the } \\
& \text { decoding to separate the EIGHT } \\
& \text { 昨 blocks of CFU ram } 15 \text { already } \\
& \text { done in the computer }{ }^{1} \text { The lines } \\
& \text { for the } 32 K \text { expansion were just } \\
& \text { left unused,Shereereeesh! } \\
& \text { Four chip select lines are } \\
& \text { required for the blocks :- } \\
& \text { L- } 2000 \text { to } 3 \text { BFF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HIMEMFF - EOUO to JFFFF }
\end{aligned}
$$

One ather line required is DEIN （ Not DEIN）and this 25 also obtalned from the main board．

The＇easlest＇way to connect to these five lines is to solder wires（with a fine tipped iron） directly on to the pins of the console chips．We know this is crude but it sure is easy！

What else do you expect fram a TIN－FOT outfit like＇WESTRALIAN INSTFUMENTS＇？？？（ when the cover is back on，no one will ever know and it will work just fine．．．．）

To make future mods easier； bring all lines through some type of connector．Dne with as many pins as you can find for future projects．（ Si：ty wires should be enough．．．．）If you can anly obtain smaller connectors， you can use more than one．

Mount the connector at the rear of the STFIP HOARD and use flexible wires or ribuon cable to connsct batween the grian extender，main computer board and the edge connector．（ It is a good idea to anchor them somehow 1 ？，to prevent movement breaking connections．）

FIG． 2 shows where to connect the 5 wires on the TI－99／4AT and Fig．JA shows the numbering of the pins at the back of the grom extender．

The complete expansion 15 shown in Figs． $\mathrm{IA}, \mathrm{BB}, \mathrm{ZC}$ and tables A\＆Elist the 29 wires needed to connect the various bus lines to the RAM sackets．

The exact layout to use is up to you．Just keep socliets as compact as possible while still allowing access for connections．

Cut the strip board where necessary to \quad solate active lines and be as neat as you can with your wartrig．（ inim，bingle conductor wires are easiest to heep neat．）

32K Matchbox Expansion（EEnt．）

WIRE NAME And Function TI's Bus	PIN NOS. ON rear of the Grom ExTEMDEA	Pin No. on Both Ram Chir Sockets	WIRE NAME ow htrachi RAM Chif
+ 5 Volt	19	28,26,1	$\mathrm{YCC,CS2,NC}$
1 EARTH	2	14	GND
WE ENTGE	32	27	WE
A3 7	24	2	A12
A4	30	23	Al1
A_{5}	28	21	A 10
A6 6	26.	24	A 9
A7 1	22	25	A 8
A8	20	3	A 7
A9	18	4	A6
$A_{10} \sim$	16	5	A5
A11 11 10	14	6	A 4
	12	7	A 3
A_{13} a	10	8	A2
A 4	23	9	Al
A15	8	10	A \varnothing
D¢ 7	17	11	I/O1
D1	15	12	$\mathrm{I} / \mathrm{O}_{2}$
D2 ${ }^{\text {a }}$	13	13	1/03
D3 ${ }^{\text {a }}$	11	15	1/04
D4	9	16	1/05
75	7	17	$1 / 06$
D6 A	5	18.	$1 / 07$
27	3	19	I/08
TABLE-B.			
WIRE NAME + Fun CTION	FROM COMATEA CHIP NUMAER of PIN Ns.	TO RAM Citir No. q Pin No.	WIRE NAME ON HITACM RAM CHIP
SGIN 2nmesin	U508/90010	22 ON ALL.	$\overline{O E}$
LOWMEM	U504/14	2 OONCHIPI	$\overline{C 51}$
AIMEMAB	1504/10	20 ON CHIP 2	Cs 1
HIMEMCD	U504/9	20 ON CHP 3	$\overline{C s} 1$
HM MEMEF	U504/7.	20 ON CHIP 4	Cs1

NOTES (1) PIN NOI ON RAM CNIPS NOT USEO (CONMEET TO 5 F)
(a) Pins $1,4,6,21,25,27,29,31$ Ano 33 тo 36 ON GROM EXTENDER NOT USEOHERE.
(3) TEXAS insTruments numate their

BUS LINES IN REUERSE ORDEA TO MOST OTHER MANUFACTURGR!
(4) DBiN is AVAILABLE ON GROM PIN 26 BUT WOU-D NEED TO BE INVERTEO TO GFT DBIN
(3) RAM CHIPS ARE "PIGGY BACKED" in PARSS. OR MOUNTED INDIVIDUQLY.

32K matchoox Expansion 1 cant．

Although we didn＇t use one on our prototype（slack）it 1 s probably a good idea to add a 22 uf tantalum capacitor between ＋Ev and earth．at the sockets． to decouple the power supply．

Don＇t plug any RAM chips in until everything is comoleted and checked．Leave connection of the chip select lines（pin 20） for the TOP TWO（piggy－back） chapstill last．

Which chips eventually connect to which chip select lines doesn＇t matter although it＇Ear idea to use some system so you can fault find if necessary．

When you have connected all the wires except for the two chip select lines mentioned earlier，

－CHECK EVERYTHING－TWICE！

Check that every termination is correct and that there are no short circuits between adjacent pins or tracks．

Would you back yourself for $\$ 100$ not to make at least one mistake in 250 odd connections ？？

never make any connections －OF CHIP CHANGES WITH POWER －COMAECTED TQ．OR TURNED ON －AT，THE COMFUTER．ALLOW TIME ＊AFTER SWITCIIING the PGWER＊ off for all capacitors on －the power line to discharge．

DON＇T use all four ehips at once，just try low memory on its own．If that works or you Gan proceed with the others．
I ONE BLOWN CHIP IS CHEAPER THAN FOUR！＇

Various precautions are advised for handling CMOS chips．We＇ve never har problems with stztic electricity or lost any chips but it is probetlva good idea to acquaint yourself of the correct procedures before handling vour own chips

The quiekest way to try each 日k block is with eASY RUG in the MINI MEMORY．If you don＇t Mave a MM then you cam use Extended Fasic or Editor Assembler to －Call init•，call loá ${ }^{\circ}$ and －CALL FEEK into each bioch of memory．If you don＇t Mave those． why qua

If the first block tests or．you can＇PIGGY－BACh．＇the top two chios and connect their CS lines．Carpfully bend pin 20 of ameth uppar chip out at right anqles and salder the CS line direct to the pin．

Do a minimum of bending to the pins and use as little solder a gongiblr．you might want to uga the enipa again olgewhere

As mentioned previously our original protoype had all four Enips＇PIGGY－BACKED＇in one sactpt．Initialiy the chips were NOT SOLDERED．their pine were carefully bent to exert just the right amount of tension to mal：e firm contact with the chip below．They were then carefully aligned and piaced on top of each other．Finally the chip select lines wupe soldered to pin 20 of mach chip．

Yess know this articim gets worse and worse as you qo slonge Want to buy my ？2k card ？？？

When you have tested all four tlocks．carefully solder the 27 pins（ not pin 20 ）of the top chip，to the matching pins of the lower chip of each pair．

This is the mogt difficult part of the whol job．If poisible， practise with some cheaper chips to get the idea．Use a fine itipped soldering iron，take your time and be careful．Shaky hands are out．if you spread solder between adjacent pins use＇solder wick＇to remove it．

If any pin fails to make contact with its lower partner or short circuits to a neighbour you will end up with some nasty faults to find．．．or worse．．．COOKED CHIF＇S！

That was added just to get your hands shaking．．．．．

FOWER CONSUMFTION．
The $+5 V$ power supply of OUR TI－99／4 \＆4A computars proved to be capable of supplying the extra load of the Jご expansion． If you modify your computer you should verify that YOUR power supply can aiso support the added load．

CMOS RAM chips mainly use power when they are being＂AcCESSED＂ or＂CHANGING STATE＂therefore only ONE chip at a time，will present any significant load to the power supply．

Data sheets for the HM6Z64LF RAM chips state that the troital operating current consumption is $60 \mathrm{~mA}, 110 \mathrm{~mA}$ MAX． 1

Lad on the $+5 V$ supply varies depending on whether the SFEECH SYNTHESIZER is attached，which module is plugged in．ithe Extended Basic module appears to use most power ，and which particular function is being performed by the processor．

We measured current drain on the ＋5V supply with a digital meter ta get same idea of the avpraqe （ NOT FEAK，curpent consumption and obtained the following rerillte．
gare Concole 9E末 mA E：tended Basic Module 9i：mA Speech Synthesi＝er 45 mA

Total ling mA

We then measured the acisreat e：：tra eurrent used ty \rightarrow ue $\leq E \not \subset$ memorv expansion．whilet ssixe the rompistar for sume topictit t．asks．（When ！flathe ごさと
expanston produced a negligiti： load of 25 Mícro Amps．）

Using Disk Manager－－－ 1 to a ma TI－WRITER Loaded．Idle－－－ $2 m a$ Loading Text－－－ 7 mA Key Pressed－－ 19 mA Finding Strings 21 mA Ext．．Basic Run Music Frogo 19 mA M／L Frogram＂Locked up＂－－ 26 mA

At no stage did the measured EXTRA current exceed So mA or 3% of the maximum total unexpanded． cansumptian。

Whilst these figures are not chaimed to be comppehmesive or atcurate．they indicate that the power supply of the comouter should be able to cope with the entra load of the RAM enipo for most applications．

In ouf next article we will provide details of a reliable non－corrupting．self charging battery backup for the full $32 k$ expansion．

CONCLUSION．
We would 1 ike to hear fram other TI－99／4A users who have created useful mods for their computers and expansion systems ar from anvone with ideas for other hardware improvements，in the ＇PRACTICAL－TO－CRAZY＇range．

In return we will put vou on the mailing list for details of our future projects．Write to：－

WESTRALIAN INSTRUMENTS．

 F．O．Bo：：246．Mt．Lawley， WESTERN Australia．b050．（Home of the America＇s Cup＇）
TEL．092718642．SOURCE－ID TIO147
This project provided a great deal of enjoyment for the staff at WFSTRALIAN INSTRIJMENTS and we hope that anyone attempting it． will receive the same thrill we did．when we typed＇SIZE＇in E：：tended Basic and recpived the message ：－

15928 Bytes of Stack Free 244日日 Qutes Frogram Space Free

Not to mention the satisfaction from being able to use Ti－LOGO with＂JuSt＂a console，monitor and cassette recorder．

GOOD LUCK．

Bernie Elsmer and Fhil West．

Edikor＇s Comment
Great etuf gernle ond Phil－ t think that there aromany T lisers who will benetit frow this artille．I look formard to peading your tuture articles devoted to hardwere modificat－ Inns．

This articie would have man wy prite sor the best suheitelan for thle newslettor had lt been on time．still， 1 l 1 dan＇t get ony entries for the＇Editor． program comactition that am running．you can ghare half． －Car ware＂module esch for tha －＇ror．

computer fleamarkets

If you*ve never been to one, try one out. Stuff is offered 'as is" but the price is right: TEAC double-side drives for $\$ 65$ (asking price), parts galore, disks at 85 cents with sleeves and preflippied! Stuff and prices to boggle the mind: I got a TI 990 board for $\$ 10$ (marked down to $\$ 150$ from 270 , retail $\$ 590$ or 50.) John Stover got an FG2J2 go column terminal for $\$ 35$, that he can use with a modem by itself; no 99/4A) to call up BES's. He probably can use FORTH in the SWCH mode and have a true BO column editor/system.
disemblers. thud.
Response to the Disembler's project* has been underwhelming. Ee that as it may, some figures about our facts: Dur EQUate list identifiem some 246 different names and locations (fewer, some are named twice or more). PAD" 5 documentation presentyy takes up atout two and haif pages, just listing EQU names and their references. The machinedependent jump table (partial) contains some 40 different addresses. All told, the memory map documentation is up to nine pages.
*Disemblers: we're trying to document the operating systam. Ey breaking the console ROM down to pages of 25 bytes and letting individuals, groups and so on have-at just one page, the profect 1 m feasable. The EQUate list ensures that we're talking about the same locations in the operating system.

Interested participants are invited to write to mes either care of the Lehigh 99° er or at 1020 N Gth Street Allentown, PA 1 giol. Send a SASE, a SSSD disk with return postage and packaging. Because response is so limited, the list of participants will be made available August 1st. (There's still time to join in.) What you"ll nead: interest, some assembly experience and a willingness to chase down the OS. By the way, the project results is limited to the original participants, who do with the documentation as they wish. >Frederick Hawkins

LEHIGH $\boldsymbol{\circ}^{\circ}$ ER COMPUTER GRDUP P.O.Bax 4837 * 1501 Lehigh St. Aldericown, Fenna. 1equs

[^0]:

