
President
Vice—pros
Secretary
Treasurer

h/1A
vol. I

Y
II,

Editor

Mark DeNardo
Mike Mattes
Ann Halko
Mark Appleby
,S/c>c,e71 . r
no. 4 April 1985
Frederick Hawkins

elf

WODO C3rn

•

-3t

EFL ZDMPLJ r 	GFt1=11_11=6

791-1015
252-3468
262-8206
965-3549

432-5913

Next meeting: Monday, May 20
7:30 PM as usual, we hope.

XBASIC:
DATA x1%111=4_1 -1"

sorting the nefarious widget

In my last article, (December} we explored

several ways to sort numbers or strings. As I

promised, here is a program to input some data. This

routine is for addresses ,but you could use it for
other data by changing line 1020 thru 1090 to suit

your needs. It is written in Extended Basic which

eliminates the continual scrolling that can be

disturbing while inputing a lot of data.

aLc1 (dr- 	-f 1 4ED

an s_ut rout i rm 4EP

pgm by Mark DeNardo

10 DIM LN$(100),FN$(100),ST
$(100),CT$(100),ZI$(100),PH$
(100)

1005 ! INPUT ROUTINE
1010 ! ADDRESS FILE
1015 I=1
1020 DISPLAY AT(2,3)ERASE AL
L:"LAST NAME:": 	:" FIRST
NAME:": : :" STREET ADDRESS"

:" CITY, STATE": : :" ZIP
CODE": : :" PHONE #": :
1030 ACCEPT AT(4,3)SIZE(-24)
:LN$(1)
1040 ACCEPT AT(7,3)SIZE(-24)
:FN$(1)
1050 ACCEPT AT(10,3)SIZE(-24
):ST$(1)
1060 ACCEPT AT(13.3)SIZE(-24
):CT$(1)
1080 ACCEPT AT(16,3)SIZE(-9)
:ZI$(1)
1090 ACCEPT AT(19,3)SIZE(-24
):PH$(1)
1100 DISPLAY AT(21,1):"PRESS
1—FOR MORE 2—FOR REV. 3 FOR
MENU"

(continued on page two-->

Community Room, First Nat'l Bank
7th and Hamilton, Allentown

AT THE 10 -PORT
The elusive M. Dehardo, long becalmed near the Sargasso Sea,
has returned! Bob Wenger, a meteor in our cosmos, goes out in
a blaze. His talent shall grace our shores but once -- he's
bought a Panasonic. Or was that a Sanyo? Dunno they all PC

alike. Ronald Hartranft, saves this issue from p-shaw and me
from writer's cramp, delivering the second episode of a
survey of Pascal and UCSD p-System. The Sieve didn't this
April. Thus, your editor having editted an all -everybody-
else issue mounts the aft wheelhouse: Aha! A farce, a
recommendation, and assorted denizens of the deep.

April fools and dunderheads

Last issue, page 9: The text on this page was proofread,

reprinted and last. What got printed was the mistakes. The

low SYSTEM STATUS byte is at)83FD. This byte when set

signifies the soundlist is in the VDP. When)83FD (NOT

)83CE} is reset, the soundlist is in GROM. A consistent

error in the 'flow chart': the high byte of the SYSTEM STATUS
word is the one that adjusts the sound and cursor flash rate.

The address is >83FC, not)83Ft. The decimal value is
-31748, not -31746.

February's assembly language doesn't work atoll. Mea culpa.
I simply translated the EDUs from the MINIMEM routines I was

using. For some reason, the XBASIC AL requires that you

chinge workspaces. So, an expedient fix for most of the
routines would be:

MYWS 	BSS 32
SAVRTN DATA 0

NUSTART MOV R11,@SAVRTN
LWPI @MYWS

* the routines, adjusted
NUSTOP LWPI >83E0

MOV @SAVRTN,R11
RT

Unfortunately, by having to dedicate a workspace, much of the
interest in the routines leaks out. A hunch, maybe to be
tracked down, is that an effective method would hardcode an
out-of-the-way location for the workspace and DATA. Like
44010, say, where XBASIC doesn't use often.

page 2 april 1985 	 LEHIGH 99'ER
COMPUTER GROUP

XBASIC: sorted inputs, continued
4

1110 CALL KEY(0,K,S)::IF S=0
THEN 1110 :: IF (K>51)+(K<49
)THEN 1110 :: ON K-48 GOTO 1
120,1030,2000
1120 I=I+1 	GOTO 1020

2000 !MAIN MENU
2010 DISPLAY AT(1,5)ERASE AL
L:"---- MAIN MENU ----":" --

". " 1 — IN
PUT DATA":" 2 — SORT"
3000 GOTO 3000

In this routine we are loading the input
data into six arrays. This allows us to compare
the array we wish to sort by, then reorder that
array. To keep the person's other data with
his/hers say last name, we also reorder the other
arrays. Suppose we sort by last name LNS, you
would insert this routine after the sort routine.
Then if the sort routine needs to reorder LNS, we
got to this routine. since the 'D' sort is the
fastest sort routine I'll rewrite it for this
address file:

in CI 	-IF al 't 4E? SE. it. 2"

100 ' "D" SORT
110 SORTS 6 ARRAYS BY LN$
WITH N ELEMENTS IN THE ARRAY
120 S=1
130 MN$=LN$(S) 	IMIN=S
MX$=MN$ 	IMAX=S
130 FOR I=S TO N
150 IF LN$(I)>MX$ THEN MX$=L
N$(I) 	IMAX=I
160 IF LN$(I)<MN$ THEN MN$=L
N$(I) 	IMIN=I
170 NEXT I
180 IF IMIN=N THEN IMIN=IMAX
190 TEMPS=LN,(N) 	LN$(N)=L
N$(IMAX) ::LN$(IMAX)=TEMP$
191 TEMP$=FN$(N) 	FN$(N)=F
N$(IMAX) ::FN$(IMAX)=TEMP$
192 TEMP$=ST$(N) :: ST$(N)=S
T$(IMAX) ::STS(IMAX)=TEMP$
193 TEMP$=CT$(N) 	CTS(N)=C
T$(IMAX) ::CT$(1MAX)=TEMP$
194 TEMP$=ZI$(N) 	Z1$(N)=Z
IS(IMAX) ::ZI$(IMAX)=TEMP$
195 TEMP$=PH$(N) 	PH$(N)=P
H$(IMAX) ::PHS(IMAX)=TEMP$
200 TEMP$=LN$(S) 	LN$(S)=L
N$(IMAX) ::LN$(IMAX)=TEMP$
201 TEMP$=FN$(S) 	FN$(S)=F

N$(IMAX) ::FN$(IMAX)=TEMP$
202 TEMP$=ST$(S) 	STS(S)=S
T$(IMAX) ::ST$(IMAX)=TEMP$
203 TEMP$=CT$(S) 	CTS(S)=C
T$(IMAX) ::CTS(IMAX)=TEMP$
204 TEMPS=ZIS(S) 	ZI$(S)=Z
I$(IMAX) ::ZI$(IMAX)=TEMP$
205 TEMPS=PHS(S) 	PH$(S)=P
H$(IMAX) ::PHS(IMAX)=TEMF$
210 IF N>S THEN 130
220 ! PUT YOUR RETURN OR GOT
O YOUR MENU/SELECTION ROUTIN
E LINE #

Another useful thing to notice in the input
routine is the DISPLAY AT command in line 1020.
Here I use only one command to fill the screen
with my input prompts. DISPLAY AT uses the PRINT
separators 	; :' and TAB1121 just like PRINT and
DISPLAY do. One note is to use two :'s in Extended.
Basic you must type ': :' (a space between them)
so ExB doesn't interpret them as command
separators. (e.g. 234 A=1 :: B=31

This covers sorting and data input. In my
next article, I'll cover a routine/module to save
your data. Then we'll do all the other parts we
need to make our program complete.

>M. DeNardo

at: c:: t-: 3 m-1 cg
-it 1-1 ii? 	—sy•—mt,

The serious errors in the Introduction to PASCAL
in the March newsletter (Vol. III, No. 31 occurred
in the discussion of wild cards. In the last
paragraph of page 3, two '7 were omitted. The
corrected sentences follow:

' 7.TE1T' is all files on the default device which
end with '.TEXT'. 'A7' is all files beginning with
'A'.

DFORMAT doesn't with DOUBLE SIDED disks either.
If you try you won't get any indication of an error
until you try to write to the 181st block. So the
moral is: Initialize disks with the Disk Manager
module or similar software if you have DS, DD, or
both.

Write the following on a slip of paper, and keep
it handy while working with the UCSD p-Systems

< set)4 > s < CTRL C >
< mesc > = < CTRL >

{keep going, top right , f } 	 >Ronald Hartranft

LEHIGH 99' ER 	 apri 1 1985
	

page 3

COMPUTER GROUP
peal ing the p-system

IF' PS S Ps L- for 	1-■ see ir I 450450 / 4Ps „ pi am r- -t I I
by Ronald J. Hartranft

I1 est 1...scsr- k -F i. 1 m.

Two files, tSYSTEM.WRK.TEXT and tSYSTEM.WRK.CODE, are
treated specially in the UCSD p-System. (Remember that the
prefix 1' stands for the root volume, the disk in drive 1 at
system initialization.) The former, if present, is
automatically loaded by the editor when you press 'E' at the
system command level. In addition it is automatically
compiled when 'C' is pressed at system level to start the
compiler. When ISYSTEMARK.TEXT is compiled, the compiler
automatically stores the p-code version as iSYSTEMARK.CODE.
One command, 'R', works only with workfiles. If
tSYSTEMARK.CODE is present, pressing 'R' will execute it.
If it is not present, then pressing 'R' will compile
tSYSTEMARK.TEXT (if present), store the p-code version as
tSYSTEMARK.CODE, and execute it. In addition, if
tSYSTEM.WRK.TEXT has been changed since the last compilation
(either 'C' or °R'), 'R' will compile the new text file and
replace iSYSTEMARK.CODE by the new p-code version. If there
is no workfile present when you press 'R', you will be
prompted for a text file to be compiled and a name for the
p-code version to be created. A workfile by the latter name
will be created, and compilation and execution will take
place automatically.

There are some convenient file handling commands to deal
with the workfiles. Without them, it would be necessary to
do a great deal more typing to transfer the work to named
files for storage. The filer command, "S", (Save) does a
transfer of both files after prompting for a new file name.
You enter a name of no more than 10 characters and the system
will add the '.TEXT' and/or ".CODE' extensions, as
appropriate. If you've used the Prefix ('P') command to make
the name of the disk in drive 2 (45) the default prefix,
there isn't much typing to do. The reverse of Save is Get
('S') which will designate the files you choose (.TEXT and/or
.CODE) to be the workfiles.

These named workfiles are not very convenient to work with
unless you have room in your disk system for both system
disks, ED-FILR and COMPILR, as well as a disk for storing
your named files. You can accomplish this if you have three
drives, of course, or if you have transfered the contents of
both system disks to one double sided or double density disk
which you keep in drive 1 all the time. The command, What
('W'), gives information on the current workfile, and New
(°N°) deletes $SYSTEM.WRK.TEXT and *SYSTEM.WRK.CODE and/or
removes the workfile designation from the named workfiles.
When your programs reach any significant length, you'll want
to use named workfiles so that they don't have to be stored
on the root volume. In addition you'll want to exit from the
editor with the write option if the text workfile is too
large for the available space on the root volume.

It isn't necessary to use workfiles at all, but they can

simplify your work once you become familiar with the process
of using them. However, if you wish to avoid using them, use
the filer command 'N° to clear out any existing workfiles.
Then when you start the editor, you can name the file to be
edited (or create a new one) and write it to a named file at
the end of the editing session. For compiling, you will be
asked for the name of the file to be compiled. If you use
I', you'll be asked for the name of a '.TEXT' file to be
compiled and a name for the new ".CODE' file (which becomes
the new workfile. You can use 'R' to execute this new
workfile without recompilation, or you can use 'X' to execute
any '.CODE' file you name. Note that you needn't (and
shouldn't) type the ".TEXT' and '.CODE" extensions.

I—s 	Ul 	 pig 	cps-rim -a Iry 4=1

In the filer system, we've discussed the workfile related
commands, Save, Set, What, and New. Other commonly used
commands covered were Zero, Prefix, Remove, Change, Transfer,
and List (or Extended list). The remaining Filer commands
are Volumes, Date, Make, Krunch, Bad blocks, Xamine blocks,
and Quit. VOLUMES,lists currently attached devices. In
particular it lists disk drives which contain disks and the
names of the disks. DATE updates the date stored on the root
volume so that your files are stored with the correct date of
creation. MAKE sets aside a specified (or default) number of
blocks on a disk for a future file. BAD BLOCKS tests for
damaged regions of the disk. XAMINE reads a block suspected
of being bad until it has consistent data. You can have this
data written back to the block to compensate for a possible
error in the previous write. QUIT exits from the Filer
system to the Command level.

The command I've saved until last, KRUNCH, won't be clear
and could be dangerous if you aren't aware of the structure
of data on the disk. In the UCSD p-System, a file always
occupies contiguous blocks. If a four block file is followed
by other files, and is then altered (by editing, e.g.) so
that it occupies eight blocks, it will be written in the next
unoccupied space available which is at least eight blocks
long. The four blocks in the original location will now be
unused and available for storing a short file. The original
file can be recreated in the original location by using the
Make command in the Filer. See the section of the Filer
manual on 'Recovering Lost Data' (pages 54-57) for some of
the methods available. After some time, you will find that
your disk has several unused areas interspersed among the
files you have stored. The Extended list command shows where
they are. The Krunch (9(2) command is designed to
consolidate all of these unused areas into on big one so that
the space can be used for storing larger files than could be
put into any of the little pieces. After Krunching, the

april 1985 	 LEHIGH 99' ER page 4
COMPUTER GROUP

Cap'n Krunch, the p—serial continues

previous contents of those scattered areas will be destroyed.

Krunching is also somewhat risky if there may be defective

blocks on the disk. Files are moved forward on the disk one

at a time from the beginning to completely fill all the
unused areas, and if a file gets written to a defective area,

the result could be merely annoying, or it could be

disastrous. Some errors can be fixed by editing -- '.TEXT'

files only. A '.CODE' file can be recompiled if the original

source code is available.

Backup copies can relieve the anxiety caused by living in

a state of tension caused by all the things that can go

wrong. You can test disks for bad blocks by using the '8'

command. Any blocks suspected of being bad can be
extensively tested with the Xamine ('X') command. This will
list the files which have data on the blocks you wish to

examine and ask for your OK to 'fix them?'. If you say yes,
it will sake several attempts to read the data on the block,

and, if it manages to read the same thing twice, it will

write this data again, presumably fixing it (but perhaps

writing erroneous information). If it can't read the data

after several attempts, it asks for your OK to 'mark bad
blocks?'. This time, if you say yes, it creates a dummy file

on the bad blocks. These dummy files are distinguished by

the extension, '.BAD', and are not moved by the Krunch

command. However, putting a '.BAD' file in the middle of an
existing file destroys the original file.

Manuals which give warnings like the above can cause too

much anxiety. In practice things are not as .BAD as they
sound. Of my hundred or so disks, only one has ever been

defective -- the p–System detected a disk that DFORMAT hadn't
done right for a double sided disk. The computer thought

that blocks 181-360 the second side) were defective.

Nevertheless, I try to maintain backup copies of everything
so that when something does go wrong, I can recover easily.

A second disk drive makes maintenance of a backup copy easy

for you to do.

I hope you can now find your way around the Filer. Get

familiar with the manual so that you know where to look for

that detail that you had overlooked before. The details I

haven't covered have to do mostly with prompts for file names

or warnings that you may be about to cause your own
catastrophe. The prompts are self explanatory, but the
warnings tend to be rather cryptic. The REMOVE command has
the safest logic. TRANSFER is dangerous: if it responds to

your input by saying, 'Destroy 	?", you've just listed a

disk name (no file names) as the destination. Press "N'
unless you want to replace the directory of the destination
disk with the directory of the source disk. Other warnings

ask if it is OK to 'Throw away' a file, or to 'Remove

old 	?'.

Other system commands you should refer to in the manual

are 'C' for the compiler, 'I' to reinitialize the system (new
root disk or new peripheral connected since booting), 'X" to

execute a program, and 'U' to do it again. For most

programming, these commands are simple to use. For advanced
techniques you'll need to study all the compiler options as
well as the linker ("L') and the assembler ("A").

the UCSD p —System Editor

The editor is invoked by pressing 'E' at the system command
level. The workfile, if present, will be loaded and displayed
for editing automatically. If there is no workfile, you

choose between loading some file by name or beginning a new

file. To insert new material (into an existing or an empty

file), press 'I". When you are done inserting, press "(etx>°,

which means "end of text'. You won't find this on the

keyboard. Press "KCTRL>m, hold it down, and press 'C'. Most

commands in the editor can be aborted by pressing " ,:esc>',

which means 'escape'. You press "CTRI.>" and "." together to

'Kesc>'. Once you have some text, you should save it
periodically by pressing "0' (Quit). You will have the option

of "LI', writing (Updating) the text in the workfile,
tSYSTEMARK.TEXT (1 = root volume) and exiting; "E", leaving

(Exiting) the editor without saving the changed file

(sometimes you don't make any changes--use "E"); "W', putting

(Writing) the changed file on a file other than the workfile

(and then you have the option to edit some more or exit); or

'R' if you didn't mean to press '0'. All editor commands can

be displayed on the-promptline by pressing "?" except Margin,
Set, and Page.

Some of the editing features are like those in the TI BASIC
system. The arrow keys are functional for moving the cursor

around, and, while in Xchange ("X') mode, the usual function
keys, <FCTN 1> and (FCTN 2), can be used to delete or insert

material. For other editing, you will find this editor's 'I"

(Insert) and 9" (Delete) commands to be very convenient. One
of the convenient features available with most commands is the
repetition factor. Pressing a number or "/' before a command

causes it to repeat that many times or to the end of the file.
For example, pressing '1' and '2' and then the down arrow

moves the cursor down 12 lines. The spacebar is the same as

the right arrow initially. Various other commands, such as

Find, depend on what is called the global direction. The

global direction is indicated by '>' (forward) or "i'

(backward) in the promptline. To change it to backward press
"C"; to change to forward, press 1)". The spacebar will be
equivalent to the left arrow if the global direction is

backward. A search for a string can take place in either

direction that you choose. "(enter)" moves the cursor to the

beginning of the next or the previous line, depending on the

global direction which you set.

=ILL..— in 11=1 r- Fl C7 Nor — m

I've already mentioned the arrow keys, <space>, and enter

<return) as controlling cursor movement. The Tab key, '<CTRL
I>', moves the cursor eight spaces in the global direction,
'P' (Page) moves it 24 lines and scrolls the text. The "=1

LEHIGH 99'ER 	 april 1985
	

page 5
COMPUTER GROUP

how to get there: blaised trails

also moves the cursor -- to the beginning of the last text
inserted with 'I' (or found with 'F" or replaced with 'R',
whichever was most recent). To jump, press 'J' and "B" or 'E'
to jump to the beginning or end of the file. You can jump to
preset markers put in the text with the Set command, 'S'.

The best way to move the cursor to a particular point of
the text is with the Find ('F') command. Press "F", and
you'll see the promptline,

>Find(113: L)it (target>
or (FindEnl: L)it (target>

where In] is the number (or "/') you pressed before pressing
'F°. The "(1 or 1 >° indicates the current global
direction--the direction in which the file will be searched
from the current location of the cursor. The presence of
°L)it' means you are in Token mode and should press °L.' to
change to Literal mode. In the Token mode, target strings
entered won't be recognized unless they appear in the text as
complete words bounded by spaces or punctuation marks. In
Literal mode, the target string may be a substring of a longer
string. 1 prefer the Literal mode. You should enter the
target string you wish to find should be enclosed in
delimiters. Most people choose "I', but whatever you choose,
as soon as you press the delimiter key a second time, the
search will begin. Note that if the delimiter is part of the
target string the search will begin, before you've entered the
complete string. For example, if you respond to the prompt by
just typing "/UNTI1.1°, the search will be in the global
direction. The cursor will be left at the character following
the "L°. A subsequent ' 1 = 8 moves the cursor to the first
character of "UNTIL'. To find the next occurrence of 'UNTIL',
press 'F° and 'S° (for Same).

—r m.›c -t. Al te rcet i arm

The Insert ("I') command allows you to add material just
ahead of the currently displayed location of the cursor.
'(etx%" ((CTRL C> remember) actually puts this new material in
the internal representation of the file being edited. The
disk contents are not changed until a 'Q' followed by a "U' or
oW' is entered. You can also delete ('D') material. Move the
cursor to the beginning of the text to be deleted and press
'D'. Then move the cursor to the end of the material with the
arrow keys, "J°, or "P'. Then if you're sure, press 1 (etx>".
If you're not sure, press "(esc>° ((CTRL .> remember). The
Delete command normally stores the deleted material in a
buffer so that it can be reinserted at the same or several
other locations in the file. More on the buffer later.

The Replace ('R") command looks a lot like the Find
command. The prompt after pressing "R' is

>Replace(nl: L)it V)fy <targ> (sub>
or (Replace(nl: L)it V)fy <targ> (sub>

to indicate the direction of search, the repeat factor, (n],
and the fact that you are in Token mode and must press 'L° to
get to Literal mode. The target string will be replaced by
the substitution string; both must be enclosed by delimiters
as discussed for Find. The Verify ("V') option allows you to
veto any substitution by giving you the prompt,

>Replace(nl: R)plce Slave (esc> aborts

when it finds the target string. Pressing 'R' will permit the
substitution to take place and go to the next occurrence of
the target string (unless it's already performed the command
'n' times). Pressing '9" will not make the change (things
stay the same), and the cursor will move to the next target.
Pressing 1 (esc>" terminates and skips the remaining
substitutions.

The Xchange ('X') command presents you with editing
features like those of TI BASIC. You can move the cursor with
the arrow keys, replace characters by typing new ones, and
insert and delete characters with <FCTN 2> and (FCTN 1%.

There is a 'copy buffer' in which text is stored by Delete,
Insert, and Zap. The size of the buffer is limited--the limit
seems to be related to how much of the total file size of
12500 bytes is used. If you want to put text in the copy
buffer for use elsewhere, the safest way is to use the Delete
command. If the text to be deleted is too large for the copy
buffer, you will get a warning and will be able to press
1 (esc>'. With Zap there is no warning. Zap deletes from the
beginning of the last string Found, Replaced, or Inserted to
the position of the cursor when °Z" is pressed. This deleted
material is put into the copy buffer to the limit of its
capacity. Text Inserted ('I') is also put into the copy
buffer. The current contents of the copy buffer can be copied
to any position in the text by using the Copy ("C") command's
Buffer (1 11') option. The other option is File ("F') which
copies data from whatever file you name to just in front of
the current cursor location. Markers placed in the text by
the Set command can be used to Copy text if you plan ahead.

Kolumn ("K') and Adjust ("A') are both used to move lines
or groups of lines to the left or to the right. You can use
arrows or the repeat factor. Refer to the manual for details
on these and for the Margin ('M") and Set ('S'l commands.
These are used primarily for word procesing types of
applications.

11°- —F ercrrees

In the next article of this series, I'll present some
elementary PASCAL syntax. And we'll start looking at more
examples of PASCAL programs. You should buy the reference
manual for PASCAL. The compiler manual which TI supplies with
the compiler disk describes only the differences between UCSD
PASCAL and standard PASCAL. The standard reference to
standard PASCAL is the "PASCAL User Manual and Report", 2nd
edition, by Kathleen Jensen and Niklaus Wirth, Springer,

april 1985 	 LEHIGH 99'ER page
COMPUTER GROUP

practical Pascal books and practice

1974. This will be difficult reading until you've gained
some familiarity with PASCAL through this series. There are
some textbooks intended for learning PASCAL which you may
want to purchase. They are no substitute for the reference
manuals, but they can be useful for beginners. A good text
is °Programming Microcomputers with PASCAL', by M. D. Beer,
van Nostrand, 1982. An alternative by one of the originators
of the UCSD System uses turtle graphics routines as the
primary teaching tool. However, turtle graphics has not been
included by TI in our version of PASCAL. There are
alternative text processing types of programs in the book to
learn from. The book is 'Microcomputer Problem Solving using
PASCAL', by Kenneth L. Bowles, Springer, 1977. I recommend
this book highly, and if there is sufficient demand I'll
supply turtle graphics procedures to be used with the TI
99/4A at a moderate cost.

procedures

EXERCISE 2: An Interactive Program.

[The instructions are for a two drive system. If you have
three drives, put the compiler disk, COMPILR, in drive 3
(119). If you have only one drive, refer to the compiler
manual, pages 12-14. Use 'a' parts the first time with the
exercise. Use 'b' the second time. If your program was
perfect the first time, make a deliberate error (like
omitting a "19 and see what happens.]

1. Turn on drives, put ED-FILR disk in drive 1 (14), put your
formatted disk in drive 2 45), and turn on computer. If
already on, press 'I'.

If you would like another elementary introduction to the
UCSD System Editor and Filer, as well as some elementary
PASCAL programming, try 'Beginners Guide for the UCSD PASCAL
System', by Kenneth L. Bowles, Byte Books, 1980.

2. Press 'F', 'P', 45(enter>", 'D', enter the date, 'Y'.

a.For your first session with this exercise, press 'N'
(and perhaps 'Y') and 'Q'.

b.For a later session, press 1', 'EX2(enter>', and I'.

'7\ 3. Press 'E'. Editor should respond,
>Ronald Hartranft

in gar— i=31 —_ —_ 14C

Two references that are found in local mainstream bookstores are
published by - SYBEX. One, 'Introduction to the UCSD p-SYSTEM' by
Charles W Grant and Jon Butah has the best map available of the
p-System's layout. Although a picture may be worth a thousand,
the book retails for $14.95. Its table of contents: Basic
Concepts, An Excursion into the System, the Filer, the Editor,
Creating Short Pascal Programs, Preparing Large Pascal programs
and Appendices. The book additionally contains many sample
screens that help you follow its text. This book will be very
useful early on and become less needed as you get more
practiced.

The second isn't so immediately handy. 'The PASCAL Handbook',
compiled by Jaques Tiberghien, shows syntax diagrams* for
'Standard' Pascal and five other popular implementations,
including UCSD Pascal. Following the brief preface and the
remarks, 'How To Read This Book' and 'How To Read a Syntax
Diagram', page one begins an alphabetical list of symbols,
predifined indentifiers, and concepts. This is a book to use --
not to read. Thus, it's barely more interesting than a
telephone book. And equally indispensible, as it will alert the
more-than-casual Pascal user which procedures etc are not found
in other dialects, as well as UCSD's peculiarities. The
Handbook retailed for $19.95, when I purchased mine; it gets
easier to use with practice.

>Frederick Hawkins

*Syntax diagrams are an important element of PASCAL, much in the
same way stack diagrams are to FORTH. One suspects that Pascal
and its diagrams fall into a subset of chicken/egg situations.
For the most part, however, one may use them exactly as one uses
TI BASIC's Quick Reference Card -- as a recipe for use.

a.'No workfile'. Then press '(enter>'.

b.By displaying the text of EX2.TEXT.

4.a. Press 'I' and insert (type) the program, 'EXERCISE2',
found below. Spacing and indentation are not critical,
but be sure to use the same punctuation. Press '(CTRL C>'
to accept the inserted text.

b. Use editor commands to modify the program so that it is
like the one found below or to accomplish some other
purpose. Feel free to modify the program to suit yourself
(and the compiler, of course).

Note that 'CTRL 	represents the key for escape, 1 (escP.

5.Press 'Q','U'.

6.Remove your formatted disk from drive 2 (15) and insert
the COMPILE disk in its place.

a. Press 'R', (and wait). If the program works, respond
to its prompts. Press 'N' if you don't want to repeat the
program. If the compiler finds a syntax error, you have
the option, if you press 'E', to go to the location of the
error in the text file and begin editing immediately. You
will then be at step 4.

7.Remove CONPILR from drive 1 (15) and insert your
formatted disk in its place.

Cox. 74.44((/

,LEHIGH 99'ER
COMPUTER GROUP

april 1985 	 page 7

pascal: unput input

B. Press 'F',

a.'EX2(enter)", and any 'Y's that may be necessary.

b.If you are offered 'EX2' as the workfile name, just
press '(enter)", and as many 'Y's as may be necessary.

9. If your program works, press '9', 'EX2(enter>', and 11'.
If not, just press 1'.

10 You can also run your program now by pressing 'R'.

11 And as in the last exercise, you can also run it by
pressing 'X', 'EX2(enter)',"(space>', 'U', '(space>', 'U'.

12 Congratulations.

Here is the program, 'EXERCISE2'.

PROGRAM EXERCISE2;
VAR 	S:STRING;

CH:CHAR;
BEGIN
REPEAT
BEGIN
WRITELNi' 	ENTER A STRING OF ',

'CHARACTERS');
WRITELN;
WRITE");
READLN(S);
WRITE");
WRITELN(S);
WHILE LEN8THIS) > 0 DO
BEGIN
DELETE5,1,111

()editor's note: DELETE is a predefined non-standard proc-
edure found only in USCD Pascal. It will delete specified
characters in a string. Syntax is similiar to BASIC SEM)

WRITE(');
WRITELN(S);
END; it WHILE t)

WRITELN(' 	REPEAT? (Y/N)');
WRITELN;
WRITE(');
READLN(CH);

END; it REPEAT t)
UNTIL CH = 'N' I

END. it EXERCISE 2 t)

1-1 aoLlt r-- salmi rl ci s MGR

What would you think of a program that you never RUN; a

program made up of nothing but REM statements?

Useless, right?

Wrong!! I find it to be one of my most-used programs. I
call it 'Reminder Calendar'.

BASIC programs are ENTERed as a line number and a statement
or statements. No matter what order the line are ENTERed.

BASIC always sorts thee into line number order.

Suppose I wanted to remember the following information:

Wife's birthday is August 15
Anniversary is November 3

Doctor's appointment on February 18 at 11:00 AM

Dentist appointment on April 3 at 2:30 PM

Dinner at Sayths on March 22 at 7:00 PM; bring booze

I would ENTER these items in the following way:

815 REM wife's birthday

1103 REM anniversary
(NOTE! The day is ALWAYS TWO 'DIGITS!)

218 REM 11:00 AM doctor appt

403 REM 2:30 PM dentist appt
322 REM 7:00 PM dinner iSmitty's; bring Ripple

In order to see the entire calendar, type LIST and the
calendar will scroll up in date order. if you wish to see

reminders for February, type LIST 201-228 (200-300 is OK,
too). If you want to see only the next appointment, then
type LIST (today's date) and the next appointment will
appear. For example, typing LIST 225 might produce:

322 REM 7:00pm dinner iSmitty's; bring Ripple

Obviously, I've got nearly a month to get the bottle.

In order to ENTER sore than one item for a single date,

bring the date up with EDIT, then either insert the new

information anywhere after the REM or add it to the end of

the line. The limit is 255 character per date (line
number), so abbreviate whenever possible. Be sure to insert
a marker (colon, slash, etc) to separate the items.

You say point to the lines out of range of the days of the

month. No month has 40 days, so 340 should be acceptable.

LISTing 300-400 for the month of March would then show those
items that spilled into the extension.

There you have it... a useful program you'll NEVER RUN!!

>Robert Wenger

page 8 	 april 1985
	

LEHIGH 99'ER
COMPUTER GROUP

r3 r— og r— a. rn m 4lar— " s p of in our r I.

XBASIC people rejoice! Courtesy of the LA 99'ers and their Tom
Freeman, we now have a public domain version of FORTH that LOADs
from XBASIC. Considering that one may SAVE an auto-booting LOAD
program, XB_FORTH gets going faster than the more familiar
ED/ASM-based version. Otherwise, it runs identically.

Radical Distribution items: The TI network served four new (to
us, the rest of the world is 'bout four months ahead) XBASIC
programs. Tops on my list is Danny Michael's NEATLISTER which
formats a BASIC program to a printer or file. The variable list
and line number reference options are its best practical use;
they completely replace TI's Programming Aids. The later now
look quite flat-footed. (And guess what? They are./

Back to D. Michael: We also recieved his screendump program
which can even be used with Super-Sketch, after you add a LOAD
switch to the console. This is also a machine language program
that you CALL LOAD/LINK. It will do double-size, etc, and the
source code is included so one may recompile for RS232 printers
like mine. I haven't yet so my details are pretty sketchy.

Still in the XBASIC radDIST vein, two more disks from John
Taylor: A complete SPRITE BUILDER system. His program is mostly
XBASIC with some AL routines that speed up the works immensely
-- select the Rotate option and your working image rotates, NOW!
Not in five minutes, not when you SAVE, not while you wash the
car. Ditto for the inverse video.

SPRITE BUILDER is accompanied by SLIDESHOW, which contains in
MERGE format some 100-plus four character (CALL MAGNIFY(4))
sprites. The namesake program will show them all to you. The
alphabets,)no kidding<, are especially handsome.

BY THE WAY: PLEASE EXPECT TO MISS ONE OR MORE ISSUES OF THE I/O
PORT THIS SUMMER. I finished! a program this month and like to
finish the five or six diddley projects begun in previous
months. So, taking a page from Craig 'now you see him, now you

don't' Miller, we are going to a summer schedule.

Speaking of SMART: PROGRAMMER types who rushed out and
subscribed after I recommended Miller have finally recieved
August '84. Be that as it may, it's time for another BLACK
SPOT. The year's magazine is MICROpendium. They're steady,
current and publish 30-plus pages for the '4A EVERY MONTH.

Around the beginning of the month, we recieved a news release
about the software for the MYARS 99/18. Many have been talking
up the hardware details but I'm an advocate for the programmer.
So, I figured people might like to hear about the new and
enhanced op-codes like WSWS or BLWP2. (WaSh WorkSpace is for
sloppy programmers and the other, Bread Loaf and Wurst Platter
Too sends out to the corner deli for a sandwich. Structured
programmers will like more details on the General Addressing,
Relative Branching and Guaranteed Entropy language as will BBS
writers the MUltiple Random Protocol Handler with 'I-bundling.
"Why', I suppose, because we love you. Others may prefer the
Assembly Language macros for system operators and developers --
things like RTSP and FFD. The last stands for the built-in
protection scheme, Fry Floppy Disk. The powerful ReTurn and
Shred Programimer) is particularly awesome with its optional
indirect addressed letter bomb.

Other news to share include the still in-development analog User
Input/Output Interface, Unfortunately, until the battery
back-up is totally debugged the system is limited to the IRTCL
with its useful Chain commands. The companion option to the
Interrupt-driven Real Time Cigarette Lighter is still undpr
development -- the potentially useful Auto-servo Coffee IV.
(That's IntraVenous, not 4). MYARS's development team is having
problems with the feedback loop on the blood sugariauto
sweetner. Until their lead analyst recovers, they're running
the Beta (for black) version only.

For the older user, there's the adult 10 Meg Hard--oops!outofsoL
;Frederick Hawkins

P.O.Box 4837 * 1501 Lehigh St.
Allentown, Penna. 18103 1 stamp target 	1

I 	put it
1 	here, pal
Allentown, PA.18102
1 PERMIT NO.2018

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

