
•

- • .4'.31‘

dent Rowland Buc k wal t :sr 264-5790 T 	 :4.

4. ...- •ka4e. —pros Joe Birchak 	 759-4052
' - 	-aucr.etary Ann Halko 	 262-13206

- •___,—.Tr_easurer Mark DeNardo

. . 	 .

•••

%.""--: •

791-1015
"U•-kr -4.1(• At 7,4
III, no. 2 February 1985

or 	Frederick Hawkins 	432-5913
DIRIDUIF'

ity Room, First Nat'l Bank
7th and Hamilton, Allentown

Next meetings Monday, Mar 1121
7s30 PM as usual.

t6e to port
Now hear this, now read this:your editor

reclaims his voice from the ubiquitous third-parties, er, make
that third person. After an 'obtuse' issue we'll at least
make an attempt at friendly and forget the users... Editorial
stalwarts are in short supply this month. Our usual motley
band of stevedores have balked at loading the great saw. All
save the Chief Petty Officer Schreiber -- (note the raise in
rank) -- who submits two XBASIC printing programs.

Faced with this near-mutiny, your editor, no Cap'n Bligh nor
Ahab either, braves the high seas from a lifeboat. So, a
'letter is proposed, containing less news than views.

In IA qa Agl. 1 8 tt-me-- esaaid i cs egg
it: in GEP 131 	ami IL lt: wmt

caught 1-secif ac:oeci, he toes the Em- lc. . .
First off, CHECK41 is ok and better than it deserved.
Its fate was sealed by a DUMB MURPHY'S law violation.
Guilty, your Honor: Doubtless, the more energetic reader
may have tried the sample base 41 loads. And herewithin
lies the trap: If you did them in sequence, the first
didn't work. No snickering in the gallery, please! 'Your
Honor, 'tweren't ALL my fault -- I was just tryin' to fix

a bug. It's like this, see--' (Murphy has 'im fer sure)

The whole routine as printed in MID SOUTH's
newsletter went like this:

Meanwhile, March promises to be different
A sea cable has arrived, announcing the first of several UCSD
PASCAL tutorials by Ron Hartranft. Tentatively, he'll be in
charge of four pages per month, worthy of an Admireship.
Pascal, by the way, can be used to design programs that are
NOT written in Pascal. From TI's TM990 FAMILY SOFTWARE
DEVELOPMENT HANDBOOK (MPA29, $8.30 or sal:

'A design language can be regarded as a generalised
programming language, with the following characteristics:

(1)Syntax need not be completely rigid, as long as the
logic is clearly defined and unambiguous.

(2)Operations can be identified by verbal description to
start with, and liter described precisely -- eg
'calculate mean'.

(3)Only standard, 'universal' constructs -- sequence,
selection, iteration and standard data structures --
are used. Language-dependent constructs arm not
included.

'The aim of the design language is to establish the precise
logical structure of the application before proceeding to
implementation.... PASCAL WAS DEVELOPED AS A LAN6UA8E
THAT WOULD IMPLEMENT, MORE OR LESS DIRECTLY, THE FEATURES
REQUIRED FOR SOFTWARE DESIGN. It was not designed for any
particular machine architecture and hence has a
'universal' structure.

'IT IS POSSIBLE TO USE PASCAL ITSELF AS A DESIGN LANGUAGE.
THE ADVANTAGE OF THIS IS THAT A DESIGN CAN BE CHECKED
AUTOMATICALLY FOR LOGICAL CORRECTNESS, EVEN IF PARTS OF
THE DESIGN ARE INCOMPLETE.' 	(caps mine -ed.)

from GARY NOEL CIS 173166,324

10 CALL CLEAR::CALL INIT:: CALL LOAD(8196,63,248)::
CALL LOAD(16376,84,32,32,32,32,32,48,0)
20 CALL LOAD(12288,2,224,131,224,2,1,240,129,216,1,
131,212,216,1,140,2,6,193,216,1)
30 CALL LOAD(12308,140,2,2,1,244,135,216,1,140,2,6,
193,216,1,140,2,6,155)
40 CALL LINK('T')
50 INPUT A$::IF A$='C' THEN CALL CLEAR:: GOTO 50 EL
SE 50

Careful consideration of the code above -- well, within
limits! None but the most obsessed can read AL in decimal
bytes -- reveals that the following is done:

At decimal 8196 (>2004, XBASIC's REF/DEF table pointer)
is loaded with 63,248 which converts to >3F,>F8.

>3FF8, in turn, translates to an address value (word) of
16376; that's the next LOAD-- the string "1 	'
and the address where 7" begins.

Decimal 48,0 is equal to >3000 or 12288 in decimal. So,
there's no surprise in lines 20 and 30: they're just
putting the routine in place.

- . •
. 	 `

So where's the bug? Well, firstly the First Free Available
Memory (FFAM) pointer in XBASIC is at 8194 (>2002). It
usually starts out with >24F4 (9460 or 36,244). Between
>24F4 and >3000 is 2828 bytes. The routine above barely
uses 1/100th of that space -- one could even count it to
check. As AL routines go, to even consider a count means
SHORT bordering on TINY.

(continued on pikgE?

LEHIGH 99'ER
COMPUTER GROUP

page 2 	 february 1985

60 !!!! NOTEPAD " 1 "
70 !*****************WW*
• 1985 FOR LEHIGH 99'ers *

BY JACK SCHREIBER
XXXXXXXXXXXXX***************
80 ! Press REDO to print

CLEAR to quit
ERASE clears screen

90 CALL CLEAR
100 T=2 :: L=1
110 CALL KEY(0,K,S):: CALL H
CHAR(L,T,30):: IF S>-1 THEN
110 :: IF K>13 THEN 140
120 IF K=8 THEN 170 :: IF K=
9 THEN 180 :: IF K=10 THEN 1
90 :: IF K=13 THEN 210
130 IF K=11 THEN 200 :: IF K
=7 THEN 90 :: IF K=6 THEN GO
SUB 250 :: IF L<1 THEN 100
140 CALL HCHAR(L,T,K):: Q=T+
1 :: IF T>31 THEN 210 	IF
L=24 THEN 100
160 CALL HCHAR(L,Q,30):: CAL
L HCHAR(L,Q,32):: T=T+1 	G
OTO 110
170 IF T<2 THEN 220 :: CALL
HCHAR(L,T,32):: T=T-1 :: IF
T<2 THEN 220 :: CALL HCHAR(L,
T,30):: CALL HCHAR(L,T,32)::
GOTO 110
180 CALL HCHAR(L,T,32):: T=T
+1 :: IF T>31 THEN 210 :: CA
LL HCHAR(L,T,30):: CALL HCHAR
(L,T,32):: GOTO 110
190 CALL HCHAR(L,T,32):: L=L
+1 :: IF L>23 THEN 100 :: CA
LL HCHAR(L,T,30):: CALL HCHAR
(L,T,32):: GOTO 110
200 CALL HCHAR(L,T,32):: L=L
—1 :: IF L<1 THEN 100 :: CAL
L HCHAR(L,T,30):: CALL HCHAR(
L,T,32):: GOTO 110
210 CALL HCHAR(L,T,32):: T=2

L=L+1 :: IF L>24 THEN 10
O :: GOTO 110
220 T=31 :: IF L<=1 THEN L=2
5 :: L=L-1 	GOTO 110 ELSE
110
250 CALL HCHAR(L,T,32):: OPE
N #1:"RS232.BA=4800.CR"
260 ! PRINT #1:CHRS(27);CHR$
(49) !a printer control
270 FOR R=1 TO 24 :: P$="" :
: FOR C=2 TO 32 :: CALL GCHA
R(R,C,Z):: P$=P$&CHR$(Z):: N
EXT C
280 PRINT #1:P$;CHR$(10);CHR
$(13);:: NEXT R
290 CLOSE #1 :: RETURN

›C 1=1 ae3 i c = r4 4=t =PR aft 4=1

Notes about notepad: A man of few words, Jack programs
and I get to document then. It's not a bad methodology for putting
together an article. In other words, you too can become famous....
Anyway, here is the discursive material--

NOTEPAD lets you use the XBASIC system as a poor man's word processor.
It simulates a full screen editor, allowing the cursor to move both
vertically and horizontally. You move the cursor around the screen with
the FCTN arrow keys, depositing text where-you-will. When you're
satisfied, you may then send the screen to the printer. On line 110,
'S>-I' works best on some XBASICs; on others, try 'S=0'. (The second
doubled most keys on the faster version of XBASIC. Line 250 has the
printer's device name. At line 260, when unREMarked, a printer escape
sequence may be sent with each screen-full.

Interestingly, the last COMPUTER SHOPPER has a piece about RealType for
KAYPRO systems. The idea is remarkably similiar -- essentially, both
turn a computer into a typewriter.

Jack admits that this program is dated B.G. --Before Good programming.
NOTEPAD should not be viewed as either engraved in stone or the epitome
of great XBASIC. Both Jack and I made some quick going-to-press changes
to NOTEPAD and we don't warrant anything. Simple enhancements might
include:

t Try to calculate the value K so you can use the ON K GOTO or ON
K GOSUB constructs. Advantages include speed, size and
clarity: K would get evaluated just once and all of the IF's reduce
to one statement.

t Work up some editing functions: insert, delete, a non-erasing
Cursor.

PS: CTRL N,J,M & L may be used with Epson and compatible printers to get
the following results: N=emphasized, J=linefeed, M=carriage return and
L=form feed.

sc to AR IS 	 HIcet.-41. c1 ?

As a follow-up to last month's 28 character colusnizer, Jack sends this
control program. This technique can be much more direct than last
month's LIST to disk program, particularly when all one needs is a
LISTing. Again, this sequence works with Epson compatibles; check your
printer's documentation. TI WRITER users may duplicate the control
sequence from the Editor:
SET COLUMN WIDTH: CTRL U, FCTN R, CTRL U, 0, (character for ASCII I)
(in our example program 28 would be CTRL U, FCTN 1, CTRL U)

program by Jack Schreiber
90 ! Set Printer width for s
mailer than 80 character col
umns.
100 OPEN #1:"RS232.BA=4800"
105 PRINT #1:CHR$(27);"E"
110 W=28 :: PRINT #1:CHR$(27
);"Q";CHR$(W)
120 ! Change W in line 110 t
o the width you want the pri
nt—out to be.

LEH I GH 99 ' ER
COMPUTER GROUP

dim -tail 1 i Ing

february 1985
	

page 3

continued &
34:130mtfE; I (:: sws AL man vi r^- calm meNtri 	--

using a decimal load notation for C-64 ML routines and
hardly ever published the code. This habit leads to an
ML-fluent elite that don't really share... and readers
that get tired of the same old one -up -manship. Comment
your code, explain it in text and people will thank you
for it. 	

(k- 	mg 1 di. yt. N —v)

Another and more significant bug
is that the FFAM isn't changed. Thus, a legitimately
LOADed AL program could collide with 'T', which
wouldn't bother its REF entry at all, but it would
bother you when LINK('T'l crashed.

The base4l version took care of the location problem:

none of the code was absolute (I disassembled it to see)
so a quick fix was good enough. You can fix it too--

in line 10: change the 8196 load to catch 8194 (the FFAM)
and LOAD the next address after the program:
That would be 38 more than the load address
and broken up into 2 decimal bytes.

Thus: CALL LOAD (8194,37,0,63,248)

Then change the REF table LOAD (16376) from ,48,0)
to ,36,244. Now you've a new start address.

in line 20: change 12288 to 9460
I line 30: change 12308 to 9480

And that's what the base4l conversion used. But I wasn't
so bright as this month's hindsight implies. I had LOADed
the FFAM.with the start address plus the length of code.
So my first available memory address was also my DL CR11
word. 'T' could get really long if another routine was
normally LOADed.

P-TtigrainiMdd liMRY EXPANSION ADDRESSES

Aix rd:Cimal bytes 	contents after CALL INIT

>2000 	8192 	32,0 	>205A

	

used by XMLLNK(7) 	this points to the
CALL LINK routine.

)2002 8194 	32,2 	>24F4
FFAM: First Free Address in low Memory.

Point; to next available byte AFTER
last LOADed Al routine/program.

>2004 	8196 	32,4 	>4000
LEAN Last Free Address in low Memory (plus 1)

Points to REF/DEF table's start. >4000 is
end of lo sea, thus no programs are
LINKable.

>2006 	8198 	32,6)AASS 	170,85
Valid byte >AA is tested by CALL LOAD, LINK,
INIT. No: >AA will gat you a : SYNTAX ERROR t.

So as the bug caught my eye, Murphy tripped me up. Since
I knew how the base4l conversion worked and how the
checksum was calculated, I figured, well I'll add 2 to
both the checksum and the base4l number for the FFAM.'
THIS WAS A MAJOR INFRACTION OF MURPHY'S LAW. Given a
foolproof method (checksums, automatic DATA statement
generation, let-the-computer-do-the-calculating-of-base4l)
I found the one way to wreak havoc. So I added two to the
REF table pointer 9UH to make 9UJ and NOBODY could LINK to
IT'.

Avoiding Murphy: USE the long way around. SKIP
shortcuts. DOUBLE CHECK that it still works.

The bug41 correction is to change line l's 59R,9UJ to
50T,9UH. So ahead and do it. If you typed it in, likely
it's saved someplace.

One omission was purposeful, though: Those three routines
were not accompanied by their assembly language. I did it
to force the curious to try base4l notation. Henceforth,
the 10 PORT will try to print at least a disassembly, and
commented code with labels whenever we've the space and
time.

An editorial aside: BARE CODE
is better than none. I realize that XBASIC buffs are
proud of their AL, but let's not get into an elitist
trap. COMPUTE!, notorious for their lousy taste in TI
literature, is equally a pain among Commodore users for

START of BLNP vectors for AL subprograms

WS PC Name of subprogram
>2008 a >2038 >2096 NUMAS8 NUMeric ASsiGnment
)200C = >2038 >217E NUPIREF NUMeric REFerence
)2010 = >2038 >21E2 STRAS8 STRing ASsiGnment
>2014 = >2038 >234C STRREF STRing REFerence
>2018 = >2038 >2432 XMLLNK eXecute King LINK
>201C ■ >2038 >246E KSCAN Key SCAN
)2020 • >2038 >2484 VSBN Vdp Single Byte Write
)2024 a >2038 >2490 VMBW " 	Multi. 	II

>2028 = >2038 >249E VSBR ' 	Single 	' 	Read
>202C = >2038 >24AA VMBR ' 	Multi
)2030 = >2038 >2488 VWTR WriTe to Registers
>2034 ■)2038)2090 ERR ERRor report to BASIC

Notice that XBASIC omits these standard utilities:
DSRLNK - Device Service Routine LiNK
BPLLMK - Graphics Programming Language Link
LOADER - assembly language tagged object code loader.

>2038 • UTLWS UTiLity WorkSpace Registers used by all
of the above routines.

>2058 	DATA >6520 ('A ' if it's a string) Use unknown.
>205A CALL LINK routine: checks LINKnaae with REF/DEF

table, and performs a simple Branch to the
routine's start or when no match is found falls
through to ERR routine with >2500 error in
>8322.

LI R3,LFAM
NOY tR3,R4
DECT R4
INC R2
NOV R2,1114

LI R5,6
S R5,R4

NOV R4,tR3
DEC R4

NOV R5,1114
NOV R4,R2

B tR11

point to REF table pointer
get REF table pointer
point to ALl's routine vector
R2 now contains ADDR+1
put ADDR+1 into next routine vector

change R4 to point where ALl's name
will be placed.
It's also our new REF table pointer.
Point just in front, remember what
happened to ADDR.
This time we set the maximum STR$ to 6
STRREF expects R2 to have starting loc

return to XBASIC

INC RI 	Now we get third parameter: 'FASVID'
BLWP 2STRRF 	put it in.

page 4 	 -February 1.985 LEHIGH 99'ER
COMPUTER GROUP

Simply astonishing!
As your typical jack of all and master of none, this month I
FINALLY started to write some assembly routines for BASIC.
The writing of same turned out to be so simple and seemingly
effortless that I was at loss to explain why I never did it
before. (I had a slight advantage over XBASIC systems in
that I was using the MINI MEMORY system, a truly under-
rated cartridge -- if you see it on sale, get it!' A very
good price is $60. This cartridge can put the console and
cassette user at a par with XBASIC in power. There are some
irritating aspects of the MINIMEM: It has only a byte dump
and your readable AL code disappears when you go back to
BASIC from the Line-by-line assembler. But the MINIMEM lets
you watch the assembly process happen and illegal opcodes
and rookie operand errors are simpler to correct than the
big-time ED/ASM.}

In truth, FORTH made the difference.
If I've an explanation for why assembly language has gotten
easy it must be FORTH. It gives one the familiarity with
the system's details that BASIC users can only read about.
Nearly all of the system utilities are FORTH words -- VSBW,
VSBR, DSRLNK, GPLLNK, etc. A week with FORTH can pay (and
has paid} dividends that two years with %BASIC and all the
assembly language texts you'd care to read can't match.

As a sample of how powerful AND easy
utility subprograms can be used from XBASIC, take a look at
the adjacent program. This routine accepts from BASIC an
address, a string of machine language (we'll get to that),
and a program name. It LOADs the ML at the address plus one
and updates the REF table with the program name. It happens
much faster than you read this word: FAST!

Think about it: NO CALL LOAD.
Not from the program. Not from the disk. Further, your
routines take up no more space than the code itself. They
come in from the disk WITH THE XBASIC PROGRAM. That means
they're already there when your program is RUN, skipping the
tedious uncompressed XBASIC LOAD.

Obviously, just short routines are
possible. But these can be ones that do such niceties as
change the entire XBASIC color set, display a form on the
screen instaneously, check a coincidence, or convert decimal
to hex or even base4l. There are two limits on length:
first, DATA statements hit a maximum at about 155 characters
and second, strings truncate after 255. With a slight
modifications the routine could load two or three strings,
but after a point there are better ways to skin the cat.

QUICKLOAD needs some AL to LOAD,
so we'll offer up an XBASIC FASVID -- a go-anywhere VMBW, a
ED/ASM cursor and color routine -- CURCLR, and a MINIMEM
multiple line VDP write. And of course, a couple BASIC
utilities that drive the whole works. Read on...

11_1 NIIKamezpinem: —

LJ I GKLDAD DATA L_ 	r-

$ 	program by Fred Hawkins

t XBASIC version for ED/ASM assembly
t 	loads a STR$ of ML into memory.

fused: 300 RESTORE 303:: READ ADDR,AL$
303 CALL LINK(ILI,ADDR,A13,'FASVID 1 1

t 	305 DATA 9763,sachine_language.routine.here
"this location must be odd!

NUNRF EQU >200C 	names are changed to avoid interfering
STRRF EQU >2014 	with ED/ASM predefined references.
BILK EQU)2018

FFAM EQU)2004 First Fret Address- not used by this pgm.
LFAM EQU >2006 Last From Address- ref table pointer
FACC EQU >834A Floating Point ACCumulator

QLOAD CLR RO 	NUMREF expects an array element $ here
LI R1,1 	which param in CALL LINK: here ADDR
BLWP BNUMRF go and get ADDR from BASIC

BLWP OXIILLK Convert BASIC's floating point to an
DATA >1200 	(hex integer value. (returned in FAC)

NOV BFACC,R2 ADDR is now in FAC; and copied into R2

SETO tR2 	STRREF expects a sax string length. we
will take up to BASIC's max of 255.

INC RI 	point to the second param: AL$
BLWP iSTRRF STRREF puts ALS at ADDR+1, and ADDR

(the actual memory location, not the
BASIC variable) will get ALS's actual
length.

XBASIC: 	 AL sse_et:p r— coca r— a ► m
(from page 3)
Aha! Another PAD location deciphered:

—31966 is XBASIC's ERRor report.

the yellow brick road

A simple analogy for a computer's memory is to
view it as if each location is a brick. Just
as you can build walls, houses and doorways with
a pile of bricks, you may equally build 'data
structures' with memory. The point, of course,
is that the bricks don't change from the wall to
house to street, and neither does RAM when it's
a number or a character or a program or a
register. It's all in oser organize and view
them. 	 V

h ew lar.s

The bricklayer's bag of tricks includes five
different ways by which the memory locations can
be named. (Unlike bricks, every location has
its own and separate name.) Assembly language
adds a layer of ease, by which you can tell the
assembler a name that it'll remember for any
location. This is done with the EgUate direct-
ive. A 'directive' isn't a machine language
command but merely a control signal to the
assembler program. This name is termed
'Symbolic'; however when you get down to the ML
level what you'll find is merely a hex number.
(PAD EAU)3300 will generate the same code no
matter whether you LI R1,2PAD or LI R1,7>8300.
The 	sign specifies that you're using a
symbolic or named memory reference.) That's the
only trick, the rest we can do with pictures:

workspace register
(what's in the reg?)

WS register indirect 	$R3
(what does it point at?)
(net 4..4ct-c

symbolic
(what's in a name?)

indexed symbolic
(req offsets a name)

WS req ind. auto-increment 	$R3+
(point and point past)

LEHIGH 99'ER
	

f ebruary 1985 	 page 5
COMPUTER GROUP

L— a It In es r— 1 sees Ica -F .t. I-1 me road

Very 1 i kely, much of this is obscure to the unstudied
user. So what follows is an attempt to demystify assembly language and its
notation as practiced by the TI-taught.

Fundamentally, PROGRAMMERS read and write ASSEMBLY LANGUAGE. AL consists
of a set of commands, often called mnemonics that correspond one for one
with the computer's instruction set. They're called mnemonics because
they are memory aids, and maybe partly because they seldom approach enough
letters to warrant readability. The computer's instruction set is
fortunately limited, so it's possible to learn all of the phrases.

An assembly language isn't read directly by the COMPUTER but by an program
that constructs from the AL text the MACHINE LANGUAGE version of the AL.
This ML version can be loaded into the computer, and finally be RUN or
executed. It is important to realize that in both parts of the translation
process, just exactly WHICH assembler and WHICH loader determine in a very
large extent how the ASSEMBLY language will be written. However, once the
process is complete and the program is in memory, there is very little
difference, if any, between the different assemblers and loaders output.
In other words, MACHINE language is pretty well fixed and assembly is
pretty flexible. This is because an assembler is a PROGRAM -- software,
and a CPU is hardware -- a fixed machine.

So it's possible to write assemblers that do more or less and loaders that
do an equally variable job. A common enough item is a cross-assembler, a
program that writes the machine language for a different computer. Equally
common is the lack of an assembler for an enviroment. XBASIC lacks an
assembler, not because it CAN'T but because no one has bothered to write
one. The gUICKLOADer at left is a homemade loader. It's not very
complicated and it can't load output from, say, the ED/ASM but in the end
analysis what either DO is the same. (Well nearly, gUICKLOAD doesn't
handle the FFAM. It CAN however, if we bother to write the code.)

Assembly languages have 'conventions', or a way of expressing what a
particular instruction will do. In this, an assembler is no different than
BASIC: one can't expect 'HI THERE' PRINT to work 	better than one could
CLR BOTH RO AND R2. In both cases, we have to know what either program
expects. Learning an assembly language places an additional burden on its
student -- because you're controlling the machine directly. One has to
learn the ins and outs of that as well. Until FORTH, TI 99/4A users had
been at a handicap compared with other systems in how much we knew about
the system. Much of it was purposely boxed in by TI, and the rest an
effect of TI's withdrawal making it difficult to find a forum for system
level information. In this respect, the Chesire cat HCM hurt us
grieviously.

A thumbnail about the commands used in QUICKLOAD.

Certain commands operate only on workspace registers. Several of these are
called Immediate; they all use the next memory word as a value that
modifies the register. Thus,

LI (Load Immediate) Put the value into the specified register. Operand
order in AL's convention mimics memory contents-- value follows the ML
instruction (which specifies the register).
(continued on page 6)

bie at 1
XBASIC, AL to DATA

pg. by Fred Hawkins

Automatic LOAD of an assembly language routine into
a DATA statement. Adjust L and DATA until routine's

length is correct; remove tail REMark in line 190.

100 L=35 !ADJUST THIS
110 CALL PEEK(-31952,A,B)
120 A=A*256+8+2
130 CALL PEEK(A,B,C)
140 B=B*256+C
150 FOR A=0 TO L STEP 2
160 CALL PEEK(9460+A,C,D)
170 CALL PEEK(B+A+3,E,F)
180 PRINT C;D,E;F
190 !CALL LOAD(B+A+3,C,D)
200 NEXT A
300 DATA ABC45678901234567890
1234567890123C8A

Program shows set up for a 18 word routine length.
BIG_AL will always LOAD into the last DATA statement
of the program. By changing the offset in lines 170
and 190 greater than 3, you may LOAD into a second

field in the DATA statement.

XBASIC will not permit this line to be edited -- the
system can't handle the curious material in it. In
other words, try to use the right line number in the

first place.

MERGE will perform without any problems. BIG_AL can (4:
resequenced and dropped into any program. (Programs
with SUB's have not been tried; let me know how it
goes.)

BIG_AL assumes the assembly language routine was
LOADed after a CALL INIT, and therefore doesn't
bother to INIT itself. Adjust the 9460 in line 160
to pick up from another memory location.

To use BIG_AL with MINI_MEM'and ED/ASM BASICs,
change the PEEK in line 130 to PEEKV and the LOAD in
line 190 to POKEY. Otherwise, the routine works
identically with the XBASIC version s 	 OKA-
traett• -et ow WO" 4 cier wont Kea, 41; t,

BIG_AL can be very likely be made into a NV-line
XBASIC program. (One caution, BASIC doesn't keep
its programs on word boundaries. If you attempt to
LINK to these DATA statements directly, you run the
risk of LINKing to a program that can not work. In
other words, look before you leap.

pagt6 	 february 1985
	

LEHIGH 99'ER
COMPUTER GROUP

A L_z lo IL 1 cp 11.- atm " se progress

(LI is easy to spot when PEEKing memory. Look for 2 followed by 0 through
15. Immediate commands always start with 2 except for LIMI which is 3,0.
All are followed by two bytes that are used Immediately.)

More common than the WR operand commands are those that can refer to any
location in memory. What's unusal about these commands is that they are
variable in length; they may be one, two and sometimes three memory words
long. In this respect, the TMS9900 MPU chip was in 1975 quite revolutionary.

'The 1115 9900 product line has for some time been one of the enigmas of the
microprocessor industry. Even a casual examination of the TMS 9900
instruction set shows that the programmer's viewpoint, this microprocessor
was at least two years ahead of its tiet....lt was the certainly the micro-
processor of choice for data processing-type, program-intensive applica-
tions, yet it was not widely used in these markets.

'The reason for this lack of acceptance has been poor support from TI.'

From Osborne 16-bit Microprocessor Handbook, 1981, Osborne/McGraw-Hill.
Though strictly speaking, it's stretching the context to say that variable
instruction size was all Osborne and Kane were refering to.

Anyway, two bits in these instructions are used to signal what sort of memory
location is meant. (Two bits can be 00, 01, 10, and 11; or four different
flags. 10 is used twice in conjuction with four more bits that can specify
either 0 or an INDEX register 1 through 15. Since 0 is used to determine
which mode (Indexed or Symbolic) register 0 can not be used as an index
register. The point to remember here is there are five modes of memory
reference. All the different modes are diagrammed at left.) Since there are
so many General memory referencing commands, it's simpler to categorize them

by their common operations. So,

arithmetic:
DEC (DECrement) Subtract one from memory location. (one operand)
DECT (DECrement by Two) Subtract two.
INC (INCrement) Add one to memory location.
S (Subtract) Subtract first location from second and store result in second.

The first is unchanged. 	 (two operands)

memory manipulation:
CLR (CLeaR) Puts 0's into 16 bits of memory; 	(one operand)
SETO (SET to Ones) Puts F's into 16 bits of memory. 	' 	The inverse of CLR.

MOV (MOVe) Transfer memory contents to memory location. (two operands)
This may transfer a location to itself; in that case the programmer is
usually checking memory against zero.

program control:
B (Branch) Unconditionally branches to new program location. (one operand)
BLWP (Branch and Load Workspace Pointer) Unconditionally branches to new

program location. Additionally, change the workspace and place in
Register 13: the old workspace pointer
Register 14: the old program counter (points just past the BLWP
Register 15: the old status register.

Two quick points -- RTWP (Return w/Workspace Pointer) is the exact inverse of
BLWP; those saved values in R13,14 and 15 are loaded back in. Of course if
you change them before the RTWP, you'll end up someplace else, doing
something else. More interesting, these three values are the only internal
CPU registers the program can manipulate -- the rest is STORED in the RAM reg-
isters.

LEH I GH 99' ER
COMPUTER GROUP

XBASIC: FASVID
pgm by Fred Hawkins

f ebr uar y 1985 	 page 7

AIL_: qri vat -F or t1--r 	rn I. 1 1
Gl)! continued

The code looks like this: (compare with page 4)

FASVID is written for ED/ASM assembly and XBASIC.
To use: CALL LINK('FASVID',VADD,STRINS$)

VADD should be within 0 to 767; additionally the
length of STRINS$ and VADD should not exceed 767 --
No range checking is performed. It's possible to
write the string (offset by BASIC >60) anyplace in
the VDP RAM. Works like a DISPLAY AT.

MW EQU >2024 VMBW 	t FASVID uses the next 256 bytes of
IN EOU >2018 XMLLNK 	t memory. Overwriting of the next
SR EQU >2014 STRREF 	t LOADed program is possible.
NR EQU >200C NUMREF 	t
FC EQU >834A Floating point aCcumulator

FV MOV R11,R6 	save BASIC return
LI R10,>04513 Put B 11311 code in RIO
BL RIO 	Put address of HR in RII;

t This is used to make the pg■ 'position independent'
t which can be POKEd (instead of legitimately LOADedl
t anywhere and still work.
HR CLR RO

LI 	R1,2 	take second parameter first
NOV R11,R2 get HR's location
AI 	R2,>3E offset that to word after pgm's end
SETO tR2 	We'll take up to 255 len BASIC string
BLWP iSR 	Set string from BASIC

DEC RI 	Now we'll get the first parameter.
BLWP OR 	Get a number from BASIC
BLWP 2XM 	and convert to
DATA >1200 	an integer.

t SET up for a VMBW
NOV BFC,R0 Get Vaddress
MOV R2,R1 	Get address of str$ len byte (BSR)
INC RI 	Point past to string
MOVB tR2,R3 Get the length byte
SRL R3,8 	Limit to just the byte
MOV R3,R2 	Specifies how such to write to VDP
LI 	R5,>6000 Offset of 96 for BASIC char. set
MOV R1,R4 	Point to beginning of string

AD AB 	R5,1R4+ t
DEC R3 	t add constant to every character of
JNE AD 	t 	the BASIC string

BLWP OW
	

write string to screen
B 	tR6 	return to BASIC
END

GIL— ID!
A brief and absolute addressed QUICKLOAD, designed
for a CALL LOAD. Use this to LOAD the longer
QUICKLOAD.(MINIMEM version below)
CALL LOAD(32000,4092,20,00,2,2025,23,4,32,96,76,5
030,200,2,127,254,4,91,0,2551 REM that's the routine.
CALL LOAD(32760,81,76,68,33,32,32,125,0, 11 ,28702,127,2541

DEF OLD! 	for ED/ASM BASIC""'
REF STRREF 	->>OLD! MUST BE YOUR FIRST LOADed program

OLD! CLR RO 	tto use: READ your ALS from the DATA
LI 	R1,1 	t string you've created with 816_AL
LI 	R2,>A001 t then CALL LINK("OLD!',ALS)
BLWP iSTRREF 	t
INC R2 	t ALS will be put into memory and OLD!
MOV R2,P3F36 t will point to it. (It modifies its
B 	tR11 	t awn REF table vector to point to your
DATA >FF 	I routine.) To use ALS, CALL LINK to

t 'OLD!' with the appropriate parameters

By the way, there's no reason why you can't reuse the CALL
LOAD sequence (like the MINIMEM version) aver and over.
Your ALS's will then always go into the same spot and all
be LINKed as OLD!.

CURCOL: ED/ASM BASIC
DEF CURCOL 	t
REF VMBW 	t There's nothing particularly new about

CURCOL LI R0,1008 	t this program. It does, however, serve
LI R1,CU 	t as an object of contemplation: once it
LI R2,8 	t is LOADed into memory CURCOL becomes
BLWP BVMEN 	t 'position dependent'.
LI R0,783
LI R1,CL 	t Compare this with FASVID. Can you see
LI R2,13 	t how to write it so it say be put another
BLWP OW 	t place than originally LOADed and work?
B tR11

CU 	DATA >FF,>8181,>8181,>81FF
CL 	DATA >7171,>7171,>71C1,>C1C1,>C1F1,>F1F1,>F100

Noel 's program disassembly
(from page 1>

LWPI >83E0 	Interesting. Unnecessary. (note B)
LI 	R1,>F081
MOVB RI,B>83D4 System copies to VdpRl on keypress
MOVB RI,P8CO2
SWAP RI 	I Otherwise this is a pretty
MOVB Rld>8CO2 t standard VDP reg setting
LI 	R1,>F487 	t program. Note that the low byte
MOVB R1,2>8CO2 t is sent first. Note that the high
SWPB RI t nybble sent is >8: write-to-V REGs
MOVB RI,B>8CO2 t second nybble has B of register.

BL 	IRlI
	

Bug here? see note:

Ordinarily it would be at least bad form. Remarkably, this
routine doesn't work correctly without the Branch and Link,
even if one bothers to clear the 6PL STATUS byte at >837C.

NOTE B: BASICs always start out your routines and programs
with >83E0 as your WS. RII always has the return to BASIC.
CORRECT: Just skip this instruction.
Lastly, consider using LIMI 0 when using the VDP. As. it stands,
an interrupt can muddle the system. eg: Where's the VDP addr?

(continued on page 8/

page 8
	

february 1985 	 LEHIGH 99'ER
COMPUTER GROUP

IANIL.. 2 spring 4:1 c2LAr—sis
Noel annotated

As brief as this program is, it can be very easily be
shortened by nearly a third. One overlooked aspect
of the PUS i>83E0 is that register 15 always
contains the VDP Write Address. Not surprisingly
that's >8CO2 and by using workspace indirect
addressing we can save four words of memory. The
routine speeds up as well. Two possible versions:

LI R1,>F001
	

NOV RII,R10
MOVB R1d>8304
	

BL BST
MOVB RI,4R13
	

DATA 4,>F081,>F467
SWPB RI
	

ST MOV $R11+,R0
MOO R1,tRI5
	

MOVB 41111,003D4
LI R1,>F487
	

LP MOVB tR11+,4R15
MOVB RIOR15
	

DEC RO
SWPB RI
	

JNE LP
MPS R1,XR15
	

B $R10
BL

The first can go anyplace in memory; the second will
only work in the place it is first LOADed. It's
fair trade, though, because by adjusting the DATA
statements one can easily set all of the VDP
registers with a minimum of fuss. Note especially
the passing of a data pointer in register 11.

Confessions and caveats.

FASVID, for sure and perhaps some of the other
routines seem not to work as this issue goes to
press. Humbug! I haven't the time nor the sharpness
of mind to quickly catch the bug. Simply put the
routines were OK for MINIMEM. But FASVID hangs up
someplace, though I must admit I direct-assembled it
in the correct (>24F4) location with MINIMEM's Line
by Line.

If my assembly process is the culprit, then a
standard ED/ASM sequence should work. However, I
suspect that XMLLNK works differently from ED/ASM and
MM BASICs. The ED/ASM manual has a curious pointer
for XBASIC's CFI: EDU)12B8. On the other hand, this
may be a red herring, and perhaps I've transposed a
register. Arrrrggggghhh. So be warned FASVID, ain't.
How about a sharper mind than mine rendering
assistance? EI, HELP!

Otherwise, ensure that you don't stack these routines
together, as cost if not all of them use a block of
memory following themselves. They can overwrite the
next routine with remarkable ease.

>Frederick Hawkins

MEMBERS' ADVERTISEMENTS

(Send a postcard and we'll print the details. Buy,
swap and sell.

Al Notak, phone 433-6001 work and 439-0483 has been
in the hospital. He's out now but hasn't the same
drive to learn about computers, so he's selling in a
bundle the following:

TI 99/4A console, program recorder and manuals
Amdek COLOR 1 monitor
Digital double disk drives (SS but there's two.

Not converted to TI as yet, but Mike Mattes
knows how.)

$550 for the lot.

Two members have cloned on to IBM PC land. So they're
offering the works. One, Jeff Albert, has just
couple items left:

TI MULTIPLAN $75, Parsec $10, TI cassette recorder
$35, cassette cable $5, Personal Report Generator
$10.
Also a monitor cable $5, and lastly an Epson MX-BO
Dot Matrix printer with Centronics interface,
extra ribbon, and paper, all for $225.

Call Jeff after 6:00 N-F, anytime weekends at
691-5756.

Robert Wenger, proud possessor of a new Panasonic SR.
Partner, has the following:

Anchor Signalman modem $65
TI Joysticks $12
connector for ATARI joysticks $4
monitor interface cable $8
keyboard cover $4
TI-WRITER $70, MULTIPLAN $70, EXTENDED BASIC $70
A-MAZE-INS cartridge $5, Household Budget
Management $10
And two books:

-TI99/4A in Bits and Bytes $10
-COMPUTE! Programmer's Reference Guide $10

Contact Bob between 6 and 10 pm at 717-421-5475 or
write: Robert Wenger 1 61 South Green St. I East
Stroudsburg, PA 18301.

We're late--
And how. In case no one has noticed the 10 PORT has
been pretty stale of late. I sure would like some new
(and old) writers. I've a push down stack approach to
things and in the last two months, the stack hasn't
cleared. In FORTH, stack underfloor is OK but overflow
is always fatal. As a partial remedy, the ID PORT
presents:
The nekkid Steffen--

In our first reprint from the other newsletters, I'll
grab George Steffen (in TOPICs -LA 99'ers1. He's
found a way 'round a problem I mentioned in Dec 	

LEHIGH 99'ER
	

february 1985 	 page 9
COMPUTER GROUP

reprinted from TOPICS -LA 99'ers January 1985

SUBROUTINE EXTRACTOR by George F. Steffen

In the latest issue of the Lehigh Computer Group's Newsletter, there
was an article by Frank Hawkins commenting on the use of "Translator"
programs to convert TI Writer files to programs. Since I wrote such a
program (which got garbled in printing by the TI Writer Formatter), I
was quite interested. The use on which he was commenting had been
suggested by many writers of such programs, but I had never thought of
putting the program to such use since I do have TI's Programming Aids
III.

The comments concerned the use of TI Writer to delete a large number
of unwanted lines from a program. The problem arises when you have a
long program which contains a subroutine you wish to save. If you do
not have the PA-III, you must delete the lines one at a time (quite
time consuming as well as boring), list to a printer and retype only
the lines you want to save (subject to error), or list to a disk and
edit out the unwanted lines with TI Writer then translate back to a
program. The point of Frank Hawkins' article was a little routine
which used PEEK to find the beginning and end of the Line Pointer
Table and then calculated the changes necessary to restrict its range
to the routine which you are interested in saving. However, this
program took two passes and required that you count the number of
lines before and after the routine so that it could calculate the
corrections to be posted to the Table.

As usual, when I see a program, I always try to find out how to make
it better. I see no need for you to count lines when you have a
computer available to do the job. The attached program will request
beginning and ending line numbers of the routine which you wish to
save and will do the job automatically. Its speed of operation
depends solely on the distance from the highest line in the program to
the lowest line to be saved. It checks about ten lines per second.

This program can be used in Extended Basic only. It should be stored
in MERGE format and then merged with the program you wish to
dismember. If there is a line below 7 which you wish to save, your
program should be resequenced before merging this. RUN the program.
When it stops, LIST. You will have only the lines you asked to be
saved. You should save the shortened program using MERGE so that the
unused lines, which are still in memory, are not saved.

How can this program wipe itself out while running? The Operating
System refers to the Line Pointer Table only when it is looking for
another line of Basic. Regardless of what else is happening, it
continues on to the end of the current line unless directed elsewhere.
So, the entire routine which makes the change is in Line 6, the rest
of the program is just calculations.

Page 3

1 CALL CLEAR :: CALL INIT
INPUT "Line numbers of rout
ine to be saved: 	First, La -
st? 	":L,M :: G=256 :: CA
LL PEEK(-31952,H,I,J,K)
2 C=INT(M/G):: D=M-C*G 	F=
(J-G)*G+K :: FOR E.(H-G)*G+I.
TO F STEP 4 :: CALL PEEK(E,

A,B):: IF A=C AND B=D THEN 4
3 NEXT E :: PRINT :"Line";0;
"not found!" :: STOP !@P-

4 H=INT(E/G):: I=E-(G*H):: H
.H+G 	C=INT(L/G):: D=L-C*G
:: FOR E=E+4 TO F STEP 4 ::
CALL PEEK(E,A,B):: IF A=C A
ND B=D THEN 6 , !@P-
5 NEXT E :: PRINT :"Line";N;
"not found!" :: STOP !@P-
6 E=E+3 J=INT(E/G):: K=E-
(G*J):: J=J+G :: CALL LOAD(-
31952,H,I,J,K):: STOP !@P-

page 10
	

february 1985 	 LEHIGH 99'ER
COMPUTER GROUP

p .m w assoslype 	C3 In C3 LI III

Following hot on the heels of last month's newsletter
article on bulletin boards comes a tour through several
boards across the country. Our travel starts to the
southwest in the nearby town of Reading 215-929-5348.
This board is one of many TIBBS(tml systems around the
country. The program is copyrighted and was written by
Ralph Fowler of Kennesaw, Ba. The Reading board
features messages, a newsletter section and upload-
downloads. The featured program in the download
section was a terminal emulator named COMM.

Leaving Reading and traveling southeast we arrive in
the City of Brotherly Love, Philadelphia 215-927-6432.
Another TIBBS(tm) system, Philly's security is so tight
that you must request an application by sail (SASE)
before you will be allowed access. If you do not use
the board for more than a month then you will have to
re-apply.

We hightail it out of toms and follow 1-95 south to
Washington 301-434-0117. Finding another TIBBS(tm)
system at least leaves us feeling comfortable about the
sign in procedures. The 99ers Bull Board has a two week
inactivity period so be sure to use it often or face
re-applying. This board has some great features like
Aseebly, Pascal, and Forth columns and tips on
mini-memory, disk mapping and peek & pokes. To access
some of these will require a higher access level, which
you must request.

gig a* 31. ••■ GNP

From Tampa it's Westward Ho! until we reach the
scourge of last month's newsletter Houston, home of the
HUB TIBBS. After giving HUB a second chance I managed
to download the music to the movie Bhostbusters and a
print art file of a 'Peanuts' calendar. There were also
several tutorials and the usual message section. HUB
is constantly updating the download files and I have
since downloaded the Beatles song 'If I fell in love
with you'. Although this program is very good, the
Bhostbusters music is the finest music I have ever
heard come from my TI. Keep up the good work HUB, I'll
be back!!!!

As we head for home we pause briefly in Indiana to
check in (see Jan. 85 1/0 PORT). We fail to stop in
Allentown and end up visiting our friends in northern
New Jersey 201-929-8161. The Dragon's Lair has many
downloads on-line. On my last trip there it contained
three music , three game and three utility programs
plus information on Pascal, Forth and Assembly. To
gain full access requires a $10 donation to the C.J. 99
Computer Club. Details are available upon initial log
on.

We finally end our journey and sit back in our easy
chairs to review and digest the vast wealth of
information we have collected during our little trip
through the phone lines.

)Dave Hendricks
We decide to leave our nation's capital and head for

warmer territory. Our next stop is sunny Tampa,Florida
813-677-0718. Again faced with a TIBBS(tml we find the
going easy. This board features a Forth download
section and an I-Basic TI-WRITER program for those
people with access levels high enough to permit
downloading. A twenty minute tin limit is placed on
calls.

A 	, L / A /Lie
kjAiS /:Clod ;#1 It(4 ✓7 or 414 s

-th 41 a s /eel? ►el -eLc 1 .2 ((e

P.O.Box 4837 * 1501 Lehigh St.
Allentown, Penna. 18103

1 stamp target
1 	put it 	1

here, pal 1
Allentown, PA.18102
1 PERMIT NO.2018 1

The Real Programmer finds that deadlines and bugs are in direct proportion. The
strength of coffee, however, is in an inverse relation to other two.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

