

ドANトニドモE Tッ பSEF゙S GFロールF F＂－D＿EロX 1945

MEETING DGTE』

EDMONTON qq＇EF USERS
EXCHANGE
F．O．H0X 11983
EDMONTEN ALBESTA CANALA TEJ－SL！

DO YOU HAVE A. TI DISK CONTROLLER CARD?

DISK CONTROLLER UPGRADE KIT

Users of the TI disk controller card can now enjoy some of the features of the never disk controllers at a fraction of the the features of the never disk controllers at a fraction
cost! By installing a few components, the tI card can be cost! By instailing a few componenta, the it card can be purchate of anev disk controller.

The TI disk controller upgrade kit adds the ability to connect fourth single or double sided floppy diak drive to the aystea, just like the never cards. The ability to uae lover case drive names like "dskl" is not only more convenient. but it allovs the user to access a floppy disk drive if a RAK-Disk has been set up to use the same drive number. As an option, the head step tiae of the drives may also be decreased from 20 milliseconds to 12 milliaeconds to reduce the time required for some disk operations. This upgrade does not provide double density.

This upgrade is for programera, data base usera, bulletin board operators, or anyone who needs access to more online diak apace and extre features but does not vant the extracost of a non-TI card. With the low cost of disk drives (especisily drives renoved from aysten upgraded to holf-height units), upgrading the il disk controlier can be the aos cost effectiv way to enhance your aystea. The cost or the upgrade kle ia disk controller (not to gention the cost of your TI card which then gets to ait on the shelf).

Installation of the upgrade kit is acconplished by* replacing the two ROM chips on the TI disk controller and, stacking a fer additional chips. The abilficy components is required. No modification to the disk drives are needed. An illustrated installation anual is included with the kit.

If the faster head atepping is desired, che drives used with the system MUST be capable of handing the faster apeed. faster head step times should not be requested unless the user knows that the head step time can be accommodated by all the drives in the astem. There is no extra charge for faster head stepping.

To order, send $\$ 19.95$ (cash or check, please) to:

$$
\begin{aligned}
& \text { John Guion } \\
& 1192 \text { Quincy Lane }^{\text {Quin. }} 75230 \\
& \text { Dalias. }
\end{aligned}
$$

Please atate whether normal or fast head stepping is desired.

DO YOU USE A TI RS232 CARD?

RS232 UPGRADE KIT

With an RS232 upgrade kit, users can expand the softuare compatibility of their systems a vell as add convenient features. Once installed the upgrade kit provides two new devices:
"TP" - In addition to the PIO and RS232 devices, TP is added to provide full enulation of TI's Solid State (theral) Printer by an Epson compatible printer. This allows the user to run goftvare which is set up to access only the Solid State Printer. Nodule software that was previously unable to print vitha parallel or berial printer will use these devices as though the Solid State Printer was atrached. Additionaliy, program iiatings can be aade in 60, 32 , or 28 coluans so the printout is juat as 1t appears on the screen. hiy option avaliable co the or bit Solidstate Piller the beer to write one-line acreen dupa gationded BaSIC pronrana complete with Braphtcal

MSIOM - Either aerial port may be set up to
"SIO" - Either gerial port may be set up to respond as SIO The port, bad rate, number of deta bits, and parity aay be opecified when the upgrade kit is ordered. Instead of having to
 tise a port ia accessed, "SiO" may be used. Not only ia this gore convenient than ryping long device name each time the device is accessed, it allows the user to easily modify programs that previously used only PIO for printer output. All the user needs to do is change occurrences of PIO in the program to Sio. Softvare awitches such as ". LF" end ".CR" may be added to SIO if required by a particular progran.

The TP, SIO, and PIO device names aay also be entered in lover case so that errors cauaed by having the Alpha Lockin the wrong position are eliminated. None of these features incerfere with the noralal operation of the RS232 card.
The parameters for both "TP" and "SIO" ports must be specified when ordering to correspond with the configuration of the user's systea. Inatallation of the upgrade kit requires the ability to desolder and replace one ROM chip on the II RS232 card.

To order, send $\$ 14.95$ (caeh or check, please) ro:

$$
\begin{aligned}
& 119 \text { John Guion }_{\text {Gu }} \\
& \text { Dalias, TX } 75230
\end{aligned}
$$

Please use the enclosed form to specify your systea configuration.

SIMPLE LABELER
(continued)

Lineg 370 to 470 allow for input from the keyboard. Line 380 clears the 5 creen and shows the header. Line 390 sets E to the number of lines that can be input or printed: 5 for a $\frac{1}{}$ inch and 8 for a 1.5 inch label. Line 400 displays any previous text that has been entered (as a default) along with numbered lines, 50 that you always know where you're at. Line 410 displays on the screen the number of lines that you may enter for the label size you have selected. Lines 420-440 allow for the ingut of the label text. In the SIZE command you will notice that it has been set to a negative number.... Well this allows any terit on the screen to be selected by pressing iENTER , the same as if you had typed if in yourselft Lines 450-470 allows you to edit what has been entered or go on to the printing stage. It you select "y" then line 470 clears the bottom line.

370 ! Line Entry
380 DISPLAY AT(1, 1)ERASE ALL:CTRS("Enter Your Text")
390 IF $D=1$ THEN $E=5$ ELSE $E=8$
400 FOR $E=1$ TOE : : DISPLAY AT $(8+8,3): S T$ R\$(e)\&" "\&A\$(g): : NEXT E
410 DISPLAY AT(J, 1):CTR\$("you may enter" \&STR\$(E)\&" lines")
420 FOR $\mathrm{e}=1$ TOE
430 ACCEPT AT ($2+8,5)$ SI2E(-A):A\$(e)
440 NEXT ?
450 DISPLAY AT $(24,1): C T R(" i s$ text alrig ht (Y/N)?")
460 CALL KEY $(0, K, 5):$: IF $S=0$ THEN 460 470 IF $K=78$ THEN CALL $H C H A R(24,1,32,32):$: GOTO 420 ELSE IF K $\subset>89$ THEN 460

Lines 480 through 510 get some very valuable data. Line 480 asks if you want your text centered, setting SWs equal to your answer to be used in the printer routine. Line 490 gives you an out 50 that you can still abort the printing at this stage. While line 500 gets your answer for the print or Return question. Line 510 asks for how many labels you want printed, and places the value the variable TNL, and then also if TNL equals 0 then you are returned to the main menu! Lastly if youselect a number greater than o the "ABORT" message is displayed and printing begins.

480 DISPLAY AT (24, 1):" center text IY (N)? Y" : : ACCEPT AT (24,24)5IZE(-1)V ALIDATE("YN"):SW\$
490 DISPLAY AT(24,1):"1>print 2> retu

500 CALL KEY $(0, K, S):$ IF $S=0$ THEN 500 EL SE IF K $=50^{\circ}$ THEN 330 ELSE IF Kくン49 THEN 500
510 DISPLAY AT(24,1):" how many labels? 1": ACCEPT AT $(24,20) S I Z E(-3): T N L:$: IF TNL=0 THEN 330 ELSE DISPLAY AT (22,1):"-- hold any key to abort! --"
Now finally to the pinter routine dines 520 to 640 . Line 530 opens a file to the printer using the p s variable (your printer paraneters) plus the addition of LFF.CR which disables the jine feed and carriage return unless those codes are sent to the printer. Line 540 sends the following commands to the printer: printer reset, enphasized print, double strike, double width, and a carriage return. Line 550 is a loop for printing multiple labels. Line 560 shows what label is being printed. Line 570 is the loop that prints the individual labels, also here if $5 W 5=" N "$ then we set the A variable to the same length as the string to be printed (thus left justifing the fext), because if the A value and the string length are the same no space characters will be added Line 580 prints the information to the printer. Line 600 prints a blank line to skip over the gap between the labels. Line 610 checks to see if a key is being pressed, if it is then it sends you to fine bjo to print the reset command to the printer, close the file, and return you to the menu.
520 ! Printer Routine
530 OPEN ${ }^{\text {U }} 1: P \$ \& "$ LF, CR"
540 PRINT 1:PR\$\&EPS\&DSI\&DWSECR\$;
550 FOR $0=1$ TO TNL
560 DISPLAY $\operatorname{AT}(24,1): "$ printing latel... *\&STR
570 FOR $[=1$ TOE: IF SW $\$=" N "$ THEN $A=(L$ EN(As([)))
 $[=E$ THEN 600
590 NEXT [
600 PRINT \# $1: C R S \& L F \$$
610 CALL $\operatorname{KEY}(0, K, S):$: IF $S(>0$ THEN 630
620 NEXT
630 PRINT $1:$ PR $: ~: ~ C L O S E ~ \# ~: ~: ~ G O T O ~ 330 ~$ 640 END

Fron Mike Wright of The Boston Computer Society:
Tom Freeman of the LA Users Group who is the author of DISkASSEMBLER for the TI99/4A is presently working on a 9640 version of DISKASSEMBLER. Will it beat the MYARC HDFCC?
Myarc's DOS = Discover our secrets
If you have a Myarc 9640 and just have to know who was responsible for the writing the bulk of DOS, you can enter XYZZY at the DOS prompt to find out.

A SIMPLE LABELER
BY: Paul E. Scheidemantie

This months article came about one evening while looking through my tons of label programs, and not finding one that would allow me to make the kind of label that I wanted. Namely a label with double width print in as bold a print as possible. This progran requires 4 main segments, lst: the internal data must be supplied \{printer commands, variables for limjting input of text); 2nd: Select the label size needed (majn menu); Jrd: accept input from the keyboard (info to be placed on the labell; and 4th: print the Text to the printer. Now lets look through the program to see how this can be accomplished!

Line 110 clears the screen and sets the colors to white lettering on a dark blue background. Simply window dressing to spruce it up!

100 ! SIMPLE LABELER
 110 CALL CLEAP: : CALL $\operatorname{SCREEN}(5):$: FOR e $=0$ TO 14 :: CALL COLOR!e,16,1):: NEX T e

In line 120 we set values for some of the variables in the program, which will be explained as we go along. And the oN WARNING NEXT statement....
$120 \mathrm{~A}=17: \mathrm{B}(1)=17: \mathrm{B}(2)=20: \mathrm{ON}$ WAR NING NEXT

[^0]```
130 ! Centers Screen Text
```



```
))/2);责?$
150 : Centers Printed Text
160 DEF CTRP$(Y$)=RPT$(" ",INT({A-LEN(Y$
))/2)|&Y
```

Even though this program was written for the Star SG-10 printer the codes used are compatible with most Epson type printers. Line 180 is the printer parameters, such as shown here "plo" or it can be changed to "RS232...." as required by your system set-up. Lines 190 through 300 are the printer codes used. They can be easily checked against your manual for compatibility and changed.

```
170 ! Printer Name
180 P$="P10"
190 ! Printer Reset
200 PR$=CHR$(27)&CHR$(64)
210 Double Strike
220 DS$=CHR$(27)&CHR$(71)
230 Emphasized Print
240 EP$=CHR$(27)&CHR$(69)
250! Expanded Print (double width)
260 DW$=CHR$(27)&CHR$(87)&CHR$(1)
270 ! Line Feed
280 LF $=CHR$(10)
290 ! Carriage Return
300 [R$=CHR$(13)
```

Here starting with line 310 we have the main program. This js where all the work is done. Linie 330 and 340 display the main menu. You will now notice how we use the CTR ${ }^{\text {(I }}$ ), by placing the string that we wish to have centered on the screen in the place of the $z$. Line 350 checks the keyboard to see if any key has been pressed, if no key is pressed then we check the keyboard againg if a key is pressed and it is an ASC Il code less than $4 B$ or greater then 50 then back to 350 again $(48=049=1$ $50=2)$, now finally if the key pressed is equal to 48 (0) then we clear the screen and end (stop the program). In line 360 we set $A$ to equal the correct amount of characters to be allowed for due to the size of the label. Also we set D to equal the option that has been selected.

310 ! Main Program
320 Main Menu
330 CALL CLEAR : : DISPLAY AT(4,1):CTR 5 (" Main Menu"):CTR\$(RPY\$("=", 18$)): " ": " "$ :"":CTR ("1) $3.5 \times 1.0$ LABEL"):"":" ":CTR $\left.{ }^{(1) 2>4.0 \times 1.5} 4 A B E L "\right)$
340 DISPLAY AT(15, 1):CTRS《"O) Exit Progr am "):"":"":"":"":CTR("choice (1-3) ? ${ }^{\text {an }}$,
350 CALL KEY $(0, K, S):$ IF $S=0$ THEN 350 EL SE IF K 448 OR K $>50$ THEN 350 ELSE IF $K=48$ THEN CALL CLEAR :: END
$360 \quad A=B(K-48): 1 \quad D=K-48$

## *** PRINT AN ID ***

The changes I've made to Ed Machonis "PRint a tag" program on page 5 of this newsletter are shown below. This will now make an identification label for meetings and get togethers where people may not know each other ( T.I. meeting or Fair ). Printing the label will be easy and all the information entered remains in for the next tags default data. In other words each pass may require changing the name of the participant. See sample below. The standard gum label will stick to clothing but not damage it. John F. Willforth WPgg
Below I'm giving you only line information changes
 program into an ID program. Enjoy it, I know I do! d JOHN d CHANGE LINES : $\quad$ WILLFORTH CHANGE LINES : $\quad$ NEWSLETTER EDITOR
 190 DISPLAY AT(1,3)ERASE ALL:**** PRINT AN ID **** 200 DISPLAY AT $(3,2)$ :"HEADER? (17 CHAR'S MAX)" :: DISPLAY AT(3,25):D\$ :: ACCEPT AT(4,2) BEEP SIZE (-17):D\$ 330 DISPLAY AT(13,2):"LINE 1? (12 CHAR'S MAX)" :: DISPLAY AT(14,2):R\$ :: ACCEPT AT $(14,2)$ BEEP SIIZ $(-12)$ : $\mathrm{R} \$$
360 DISFLAY AT(15,2):"LINE 2? (25 CHAR'S MAX)" :: DISPLAY AT(16,2):M\$ :: ACCEPT AT (16,2)BEEP SIZE (-25):M\$
ADD LINES :

$366 \operatorname{DISPLAY} \operatorname{AT}(17,2): " L I N E ~ 3 ? ~(25 C H A R A C T E R S ~ M A X) " ~:: ~ D I S P L A Y ~ A T(18,2): G \$:: ~ A C C ~$ EPT AT(18,2)BEEP SIZE (-25):G\$
CHANGE LINES :
450 PRINT \#1:B\$:" ";N\$:" ";R\$; CHR\$(13);CHR\$(10)
460 PRINT \#1:B\$;MM\$B\$;CHR\$(13);CHR\$(10)
The above changes to ed's program can now be resequenced.
MYarC has moved from Basking Ridge to Martinsville, NJ. The new phone \# is (201) 805-0006

Speaking of MYARC, Jerry Petrulak received a letter from Susan Coffey on april 15, 1988 in regard to a problem he was having with his Myarc memory expansion card. She stated "MYARC'S 128, 256, and 512K memory expansion cards were never advertised or sold to be used with external power supply. However, approximately one out of four will function with an external supply. If yours is one of these, the correct power supply specs are 9 volt dC tip positive and 500 milli amps. "I find this interesting. and particularly distressing FOR THOSE 3 WHOSE DON'T HOLD MEMORY! IF YOUR MYARC (RAM DISK) LOSES IT'S MEMORY WHEN THE PEB is shut down, remove the card from the peb following instructions, and remove the shell. Lay the board on a non-static surface (non-conductive also), and plug the dC supply that you mysteriously came by (since MyArC didn't send it to you) into the card. Measure the DC voltage on the bottom leg of the top regulator. It must be +5 dC in order to support the logic and memory on the board. If it is in the 3 to 3.5 VDC range, forget it, you'll lose it everytime. Larger memories, chips drawing more current, dC adapters that are too small, all cause this problem. You may try a dC power supply rated at about 5 volts, and as the lefter from MYARC says, 500 Ma. (1 A.). I'd suggest 800 Ma. to be safe, unless you KNOW That your card uses all low power dynamic ram memory chips. caution: be particularly EXACT in polarity on the dC adapter you use. The Tip must be positive ( + ).
YOU TAKE RESPONSIBILITY FOR ANY DAMAGE THAT MIGHT OCCUR AS A RESULT OF ANY ATTEMPTED USE OF THE ABOVE INFORMATION. WE INTEND THIS ONLY TO HELP YOU GET THE MOST OUT OF YOUR TI SYSTEM.

$3 / 8$ inch length, and insert then carefully into the holes. You way need to bend sone of then slightly to get a good fit. After they are all inserted, CAREFULLY solder the ends, being VERY careful not to connect ends that were not previously connected by the traces on the board! Nom carefully reinstall the board and the connectors, and before installing the cover of the $P$-box, turn it on. Buickly check for 12 V across the 1000 uf capacitor leads. If all is ok, reasseable the P -box, taking care not to pinht the drive mires along the back of the box. (\$) If you will only use the drives norally, this is sufficient. However if you have unusually pomer hungry drives, or will use the for LONG durations, such as in a BES for uploads and domnloads, or for lots of copying, the clip on heat sink is not sufficient. You will need to use mires to "renote" the regulator, and attach it to a LARGE heat sink, placed in front of the fan, or just attach it to the back of the F-box, as near the fan as possible, in the sane may you mould mount it to a heat sink (You will have to drill holes for the wires and the mount bolts.l. If you use a separate heat sink, be SURE to u5e a ground wire from the sink to a chassis ground, or mount it with a scremed on metal strap!

## A CHILD'S FIRST LOOK AT MULTIPLICATION <br> by Tony Falco <br> reprinted from MUNCH Nemsletter

'Dad, today I heard someone talk about three tiens four. What does that mean?'
'get that jar of pennies in your roon and I'll try to shom you. Three tiess four eeans three fours. Make a row of four pennies. Now ake two core like that one.. That's four plus four plus four or twelve. You can see it is also four rows of three each. Four tiens three is the sane as three tiees four. hey, we could do this on the computer."

The progran listed below grem out of a conversation mach like the one above. I strongly believe that understanding nunerical concepts at all levels is aided by, or maybe even only possible with, a physical or uental picture that gives the learner a confortable and faniliar feeling. With this in aind, I try to help ey child build a conceptual basis for ideas that tend to becone rote with tiee. With a progran that is conceptually sound, the computer's infinite patience provides an ideal eeans for acquiring insight into basic numerical concepts.

To use the progra you pick athe highest fator the child is to work with. For example, for products up to $6 \times 6$ or 36 pick 6 . The program randoely picks probless and displays the problea with an array of astericks to show the factors to be aultiplied. The user types an ansmer. If
wrong he tries aain until correct. The fornat in which the array apears on the screen encourages the child to try repeated additions or, as a last resort, counting. To end the progran enter $\langle\theta\rangle$ instead of an answer. The interaction between coaputer and learnert is reinforced with speech. I feel this eakes a progran wore fiiendly and faniliar. The II-99/4A has been, and coninues to be, the only machine for inexpensive, high quality and easy to use speech.

| 10 FOR $5=1$ TO $14: 1$ CALL COLOR( $5,2,12):$ NEXT 5 |
| :---: |
| 20 CALL SCREEN(12) : : Call $\operatorname{COLOR}(2,2,16):$ CALL CLEAR |
| 30 INPUT * HIGHEST FACTOR $=*: H$ |
| 40 RANDOMI2E : : CALL CLEAR |
| $50 \mathrm{~A}=\mathrm{INT}(\mathrm{HtRND})+1:: B=[\mathrm{NT}(\mathrm{HTRND})+1$ |
| 60 IF AIB HHEH $^{\text {THEN }} 50$ |
|  |
| $805 \$=R P T\left(\$\left({ }^{\circ} 7, B\right)\right.$ |
| $90 \mathrm{FGR} \mathrm{T}=1$ T0 A |
| 100 DISPLAY AT(T+7,14-LEN(Es)/2):+55 : $:$ NEXT T |
|  |
|  |
| 130 DISPLAY AT(9+A, 13) : 8 |
| 140 ACCEPT AT (5,12+LEN(P) 3 ) BEEP: ANS |
| 150 If ANS $=$ " $\mathrm{Q}^{\prime}$ OR ANS $\$=$ ' $\mathrm{q}^{\prime \prime}$ THEN 180 |
| $\begin{aligned} & 160 \text { IF YAL (ANSS) }=\text { AIB THEN R=R+1 : : CALL SAY ("600D" :: } \\ & 60 T 040 \end{aligned}$ |
| 170 CALL SAY ("SDRRY TRY A6AIN") : : $W=\boldsymbol{W}+1: 56010140$ |
|  |
| 190 PRINT * "; ${ }^{\text {a }}$ +R; ${ }^{\text {a }}$ TRIED* |
| 200 PRINT " ';R; ${ }^{\text {c }}$ CORRECT" |
| 210 PRINT * ${ }^{\text {P PCT; }}$ " ${ }^{\text {a }}$ |
| 220 CALL SAY("600DBYE") |

230 END
these files mere dounloaded from the los angeles 9640 bbs accessible through pc pursuit calan area at 947-7777

The farst tells you hom to iaprove cooling in the PE Box by iaproving airflow or by installing a better fan. The second tells you how to install a nem voltage regulator to increase the power capacity to handle power hungry drives - even hard disk drives - in the box.

## IMPROVING P-BOX COOLING

The following instructions will guade you in iaproving the cooling of the P-box without installing a fan with higher air flow.

Resove the outer cover from the P -box, and use duct tape or adhesive weatherstrip to seal the large gaps under the "floor" of the card area. This is not nearly as hard as it sounds, only about 15 screws. Just be sure not to pinch the drive wires going behind the card area when you slide the cover back on. If you have a Triple Tech, or any other card without a case, sandwich it between two other cards to channel the airflow to it. Use duct tape to seal the holes in the floor of the card area. It is a good idea to rake a saall cardboard air dan to put on top of the transforaer (hold in place with duct tape) to direct air to the pomer supply board, especially at the center area, where the regulators are lsee the file on increasing P-box power output). An overheated power supply will give the same syaptoss as one that is failing, or doesfi't have enough pomer for your drives: It overwrites files! Cooling of the power supply area will not be inproved or decreased by these procedures. If you want to ieprove that, and/or cut domn on noise, obtain a $31 / 8$ inch square boxer fan with no less than 10 watts power consumption. Fans with less 10 watts of power will have less airflow than the original. Also, fans with more than about 15 watts may ake as much or more noise than the original, but mill REALLY cool the box. My fan is 23 matts, sakes a little more noise, and the cards are hardly wara to the touch when the box is opened! Be sure that the electrical connections are sound; it is a good idea to already have the mires made up and attached to the fan. The wires should have autoootive ale spade type terainals on thea. If you have the patience, you can also enlarge the holes that the fan exhausts froo, or cut out that area entirely. Also, if you have your P-box pushed up very close to a wall, the hot air put out by the fan is being recycled into your supposedly cool air intake. To prevent this, nake a cardboard deflector to fit around the fan opening. It should stick out about $11 / 2$ inches on the side near the card area, but only about $1 / 2$ inch on the botton and on the side away from the box. It should ain upwards and away from the box. This will deflect the hot air away from the intake area. Be very careful that you don't restrict the airflow very ouch!

The following directions will increase the output of the P-box power supply to handle 2 power hungry drives.

Syaptoes of lack of power include overuritten files, and the 'sectors used" count on a disk catalog does not eatch the sul of the lengths of the individual files. Also see the file on p-box cooling, as an overheated regulator, regardless of its capacity, will cause the same probleas! CAUTION - It is possible to danage the systea and cards if this is not perforeed correctly!
Parts list:

## 112 V regulator, RCA SK9341/933 or equivilant

43 asp diodes, RCA $\#$ SK3848/5806 or equivilant

11000 uf capacitor, at 35 volts

1 clip on heat sink ( $\ddagger$ - see note at end!) for the regulator (iaportant)

54all amount of silicon heatsink compound

Reaove the P-box cover by reaoving the 15 or 50 phillips head screms and sliding the cover formard. Remove the power supply board (the only printed circuit board in there) and disconnect the wire connectors by pushing the tabs through the board and pivoting thes away. You will see the regulator in the iiddle of the board. Carefully unsolder the connectors on the back, and use solder wick or a suction device to resove the eelted solder. DO NOT force it; but gently lift it away as you reheat each connector pin to soften any realaining solder. Apply silicon heatsink conpound to the back of the new regulator, and install it in the sase place. Be careful to apply only as auch solder as needed, to avoid aking a solder bridge underneath the regulator. Install the heat sink. lanediately next to one end of the regulator, you will see a sall black 47 uf capicitor. Cut the leads of the 1000 uf capacitor to a reasonable length, and solder the + lead to the + lead of the saall black capicitor, and the - leadtto the - lead of the sall black capacitor. This mill give a boost to the drive notor to help get the disk turning when a drive is selected. Now for the hard part. The 4 diodes uust be installed in place of 4 saaller diodes on one corner of the card. You will see B small tubular devices in a row on one corner of the card. Four of these (the dark colored ones with a colored stripe or band on one endl are the diodes. The other four (iighter colored) aust not be disturbed. Carefully note which direction the bands point (ey board had arkings on it to indicate direction, but all boards nay not have then/, and then renove the diodes. Use the same sethods used to reaove the regulator. Nom you aust slightly enlarge the holes to eatch the wire size of the new diodes. Use a sall drill of just slightly larger size than the wire to do this. Use a pin vise, or some other holding device to do this by hand. DO NOT atteapt to use a aechanical or electric drill to do this. Watch the trace on the board carefully while drilling to be sure that you are not ripping it off the board! Cut the wires on the new diodes to about


[^0]:    Lines 140 and 160 are identical except where the value of 28 has been replaced by the variable $A$ in 160 . To makejjte a little easjer for me so that 1 don't have to count the length of each string that 1 send to the sereen and adjust them manually 50 that they are centered, we have these two DEF statements. To start with a DEF statement is a method of defining a series of functions that we wish to do over and over. Here in line 140 we are defining the function CTR $3(7)$ to be equal to enough blank (space characters) spaces plus the string 750 that it is centered on the screen. For exanple if the string is 16 characters long we subtract that from the width of the screen (28) which is 12 and then divide that by 2 to get 6 blank spaces. So now if you place it on the sereen in the lat column, then the text will be centered. Line 160 does the same thing except that by using the variable A 1 can use it to center text for variable widths, by setting A to 17 or 20 I can now use it for both labels that are 3.5 inches or 4.0 inches wide. Thus the values for $B(1)$ and $g(2)$ in line 120 . These were obtained by multipling 5 characters (double width) per inch tines the width of the label.

