```
                        DIGITIZEF FOF TI?!!
Frgm the Charlotte TI 97/4A UG Newsletter
```

An article $3 n$ the $T I$ Forum on Compuserve, by Steve Languth, $-a u g h t m y$ attention this month. In it he describes a new product called the ImageWise Video Digitizer, developed by Steve Ciaraia, of EYTE magazine. The system is composed of a digitızer/transmitter and a receiver/displays which are boards which may be purchased assembled, or bought with the one necessary EFFOM and constructed by the buyer for about \$150 total. The board receives input from a video amer or VCF ar laserdisc player, and stores the picture with atomadant detail. With conversion through a program written by Lancyuth, the image is then downloaded into the TI through the FSSES port, and written to disk. Another simple XE program converts it to TlArtist format.

Languuth did not repeat the source of the board, which is certainly available from BYTE magazine (to which I do rot subscribe). But he did give his own address, for more information:

Steve Languuth
2956 South Barnes
Springfield, MO 65804
This is one letter I am GOING to write!

1

MEETING DATES

BOUFEDNNAIS
MUNICIPAL
CENTER
$1 \quad \square \pi \pm i 14 \pi$

HJ Th USERS GROUF חELISLETTER

SNAF"-CFACFLEEFVGF•
 Ey Eeverly Coot:

On Iume B, 1787, as my husband, z children and I were sittinig on a friend's dock fishing, a storm blew up to the south of us. We started gathering our things together just as it started to rain. When finished, we ducked under a roof overtiang to keep as dry as possible (it didn"t help much?. As we waited, the storm got stronger ffrequent lightning and heavy rain). A very sharp cract: of thunder sent us all ducting. When the rain let ub. we started for home, about a block away. The closer we came to our house, the more I noticed that something didn"t look right. Needless to say, I was right. Our beautiful $\operatorname{Gog}(a p p r o x)$ year-old oak tree that sat in our front yard had been hit by lightning. Our van was almost invisible under the debris. After a quict once over to make sure there was no more damage outside, I went inside to discover that our power was dead in the living room. Another quict: \quad chect: found a blown circuit breaker. Onice reset, I started checking electronics. My computer was on a surge protector. It held- I thint. Dur television, stereo and VCF and my printer were on another surge supressor. The surge supressor, I am happy to say. is still doing its thing. The television, stereo and VCF were undamaged. I am sorry to say that my computer didn't do 50 well. The power surge was so strong that the circuit breaker had taken the shoct:. The surge went into my printer, through the ribbon cable, and had taken out EVEFiY card in the F-box. The surge supressor held until the circuit breateer blew. Thankfully, our homeowners policy covered the damage, but we waited for almost o weets before things were settled.

Since I have a mixed bag of cards: things weren"t as simple as I had hoped they would be. The Flex-cable card and Memory Expansion were shipped back to T. I. after finding out the repair charges. The FSS32 and CorComp Controller went to CorComp. I received the Flex-cable in 10 days and Memory in 12. (Why they weren"t shipped together, I don"t know.) CorComp took $\overrightarrow{3}$ weeks. My new printer came in 1 week. After spending the summer without a computer, I was suffering withdrawal symptoms.

The breakdown went as follows: Flex-cable- \$25.75+\$5.00 SQH -- Memory Expansion -- $\$ 44.00+\$ 6.00$ SkH. CorComp charges $\$ 50.00$ per card. that includes shipping. Needless to say. whenever I am not using my computer, EVERYTHING is unplugged. Several others in our User's Group have adopted the same practice. I hope this tale of woe helps someone else. Surge Supressors will NOT stand a powerful surge such as a close lightning strike. We never expected our tree to be hit since we live in a heavily wooded area, but it was. Oh, by the way, the tree had to be cut down the next day before it fell on the house. I guess God loves us.

USE OF COMMAND FILES
 By Filct: Felzien
 West Ja\% ger ${ }^{\text {E }}$

-

Now that we have covered the basics of the TI operating system, we can now Ge ante the use of Advanced Diagnostics by Miller's Graphics (DIAS).

Command files are made up of a group di DIAGS. commands and key codes which ban be executed by the program to accomplish task: concerning disk files while freeing you of the tedium of executing each and every item. For onetime operations, the Command files are of little value unless you want to write one for the practice. Where the command files are extremely helpful is in the area of tasks that will be repeated from time to time. With a command file you can do these operations through DIAGS. while you have a cup of coffee or something.

As most of you know, each keystroke such as [FCTN f] (BACK), which is used in DIAGS. to Exit Sector mode etc. has ASCII rode of [15]. These are typed into the file to mate the computer execute the keystrokEs without our having to do them. Note the brackets around the number 15, they are used by DIAGS. to denote that the value 15 the node for a keystroke. Another nate on brackets, a pair of empty brackets [] is DIAGS. way of detecting the end of a command file, so be sure to end all your command files with a pair of empty brackets.

In our Feta. issue, I listed a command file that I had written to mat: a DS/DD cody of FILDTg9. Let us take this file and go through this process step ty step. One of the first things we need is a spare EDP y of the filgTof disk and we also need a blank initialized disk set Up for DS/DD. We also need DIAGS., the TI-Writer module and program set, and a dist: to store the command file. In the Jan. issue we had a command file for converting the DIAGS. disk to DS/SD, this allows room on the DIAGS. dist: to store our command files, which is convenient as it saves dist swapping to some extent. DIAGS. used DV/80 files, so the TI-Writer editor is ideal for writing our command files. A very important thing to remember is that when we save cur file, we cont want the margin and tab info so we want to use the print file rather tan Save File as this will eliminate saving the unwanted data. Incidently, the reason that I wanted to make a DS/DD was to have room on the FILOT disk to save disk swapping all the time.

Now that we have what we need, the first thing to do is to fire up TI-Writer and select Editor. A couple of things to keep in mind that there are two Command Lines, each 26 characters long and we must write Our command files accordingly. Also, when we Print file, the trailing spaces are stripped off, so at the end of a line, we need to use [32](SFACE) so that DIAGS. knows that there should be one at that point. Another important item is that the code [7] which is FCTNS (erase) erases the command line or if we are in Edit Sector mode, it erases the sector data and zeroes it out so you could wind up writing a blank sector to the disk. Therefore, we must consider very carefully where to place these keystrokes in our file.

I have included the complete command file for you to refer to while reading the following information.

The first line of our file will be [25sj[7], this sets up high speed execution and clears the command line. Next, type in

Master in DSK1. [צ2] (places information on the first command line and denotes a space.)

Copy in DSkz. [EZ] (more info on line 2)
 the

Eeep FA［iS］［7］（Executes a teep then pauses for you to continue
 11皆に，
$S D=F D=D$ FILDTGq［1J］［7］（SElerts drive 2 and tells DIAGS．to format dist 2 for double sided D for double density with the name of FILITOO．）

SD Z CW $\mathrm{CW}[1 \mathrm{~S}]$ Selects drive 2 and Copy Writes the sectors．）
These commarids are continued，increasing the sector rumbers appropriately until all ata is transferred from drive 1 to drive 2. It 15 not necessary to use［7］every time if the next command is the三ame length or longer as it will overwrite the previous one anyway． The［254］on the last line af capy commands sets uf slow speed enecution so you Ean watch the data being typed in for the shanges to sector 0 ．After the copy commands we are ready to make the chances to sertor o．

Now we type in SD 1 ES $G[1] \quad$ which selects drive 1 and does an Edit Sentor G then \＆ENTEF＇s to exerute．We next need twenty［9］right arraw key to place the the number of formatted sectors．Next we need a［10］（down arrow）then sisteen［B］（left arrow）to type in oozoz for double sided doutle density．Now we need si：［10］and si\％［8］codes to type in the appropriate number of zeroes to indicate the unused sectors for a DS／DD Jist：Now we use［15］（FCTN 9）to exit Edit Sector mode，then type in SD 2 WS $G S D 1$［1S］［7］［］to select drive 2 write sector o and go back： to drive 1．Note the empty set of brackets to denote the end of our file．

Hopefully this has helped you to understand how to write a cominand file for the DIAGS．program．Any questions that you may have are welcome and I will try to give you a satisfactory answer．

MASTER IN DSK1．
［32］
［32］
［25 $][25.3[25,3][25][250][7]$
彐ep FA［1玉］［7］
三D 2 FD 2 D FILロT［13］［7］
3D $1 \mathrm{CF} 036[\Xi 2]$
5 S こ $\mathrm{CW} 0 \mathrm{O}[1 \mathrm{~S}]$
SD 1 CF $3636[32]$
SD $2[W$ S6 उ́［13］
SD 1 CF 72 Sb 5 S$]$
SD $2 \mathrm{CW} 72 \mathrm{Sb}[13]$
SD 1 CF 108 36［32］
$5 D=C W 10836[1 \Xi]$
SD 1 CF： 144 Sb［32］
SD 2 CW 144 36［13］
SD 1 CF：180 $36[32]$
$S D$＝CW 180 Sa［13］
SD 1 CF 216 ت6［32］
SD $2 \mathrm{CW} 21636[13]$
SD 1 CF 252 J6［さ2］
5 D 工 CW S5S $36[13]$
SD $1 \mathrm{CF}: 28 \mathrm{~S}$ S6［32］
5 S 2 CW 2马E 36［13］

SD 2 CW 324 $\mathbf{S 6 [1 3] [7] [2 5 4] ~}$
SD 1 ES O［1こ］［9］［9］［9］［9］［9］
［9］［9］［9］［9］［9］［9］［9］［9］［9］
［9］［9］［9］［9］［9］［9］05A0［10］
［8］［8］［8］［8］［8］［8］［8］［8］［8］
［8］［8］［8］［8］［8］［8］［8］0202［10］
［10］［10］［10］［10］［10］［8］［8］［8］
［8］［8］［8］000000000000000000
000000000000000000000000000
000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 000000000000000000000000000 $00000000000[15]$
$S D 2$ WS 0 SD 1 ［1马］［7］［］

The following is a step-by-step description of how to add 64K of RAM memory on the 16 bit bus. The present modification uses only 32K. This corresponds to the memory space of the 32 K Memory Expansion. The modification yields a speed increase of about 50%.

Mike Ballmann is currently working on a circuit to allow CRU decoding of the remaining 32K. This will open up a whole new area of software, including such possibilities as a real DOS which could be loaded into RAM from disk on power-up. The 32 K modification described below can easily be modified for full decoding upon completion of Mike's work.

You will need two Hitachi HM62256LP-12 RAMs. One source of these is Microprocesors Unlimited. They cost around \$12. You'11 also need a 74LS21 and a 74LS153. These can be obtained from various electronics supply houses. All wiring should be done with wire-wrap wire. You should use a low wattage soldering pencil with a fine, pencil type tip.

The modification is done on the main board of the Black Silver console, and you'll need to refer to the Logic Board Component Location Diagram in the TI-99/4A Console Technical Data book.

1) Remove the board from the console, and identify the two ROMs. They are located between the GROM connector and the 9900 IC. One is parallel to the 9900 and the other is perpendicular to it. They are U610 and U611 on the Component Location Diagram.
2) Bend the pins on the HM62256 IC's closer so they will firmly contact the ROM pins when piggy-backed. One way of doing this is to place the RAM on it's side on a table and then move the body of the IC toward the table to bend the pins uniformly.
3) Bend out the foilowing pirs on both finion250 RAMs: i 2202223262728. These pins will NOT be soldered to anything on the ROMs. Holding the IC with the notch up and looking at the top, pin numbers start with pin 1 on the upper left, go down the left side, then across and up the right side. Pin 28 is opposite pin 1 on the end with the notch.
4) Place one HM62256 over the ROM that is parallel to the 9900. Make sure the notch points toward the 9900 and that the writing on the 9900 and the 62256 can be read from the same direction. Place the RAM such that pins 1227 and 28 extend beyond the end of the ROM. The un-notched end of the RAM should line up with the un-notched end of the ROM. There should be a sort of "spring tension" that clamps the RAM pins onto corresponding ROM pins below it. This will help to insure good solder joints. If the RAM doesn't fit tightly, remove it and bend the pins closer.
5) Solder all RAM pins not bent out to the ROM pins below. Use a low wattage pencil with a fine, pencil type tip. Inspect each solder joint carefully in good light, under magnification.
6) Place the second 62256 on the ROM that is perpendicular to the 9900 . The notch on the RAM points away from the .9900 and toward the edge of the board. As above, solder and inspect all pins that were not bent out.
7) Bend out the 74LS21 pins 124568101214 . Note that pins 1 and 14 are across from each other on this 14 pin IC.
8) The 74LS21 will be piggy-backed on the 74 LS 138 U 504 . This IC is located adjacent to the end of the board where the edge connector is. There are two 138 's next to each other. U504 is the one nearest the end of the board. You will place the 74LS21 so that the UN-NOTCHED end lines up with the un-notched end of the 138 (pointing toward the cassette connector). Pins 1 and 16 of the 138 will extend beyond the notched end of the 74LS21.
9) Before positioning the 74LS21, solder $1 / 2^{\prime \prime}$ lengths of wire-wrap wire to the 138 pins 7 and 9. Then position the 74LS21 on top of the 138 and solder all pins not bent out to the 138 pins below and inspect the connections.
10) Bend out all of the 74LS153 pins EXCEPT 8 and 16.
11) Place the 153 over U613, a 74LS194. The notch will line up with the 194 notch and point toward the edge of the board away from the 9900 . Solder pins 8 and 16 of the 153 to pins 8 and 16 of the 194 below.
12) At the end of the 9900 opposite to where the RAM's have been piggy-backed, you will see a line of three ICs. They are a 74LS00, 74LS32, and 74LS04. The 74LS00 is U606 and the 74LS32 is U605. Turn the board upside down so you can see the traces. Find the trace that runs from pin 11 of the 74 LSOO (U606) to pin 13 of the 74LS32 (U605). Double check to make sure you're doing the pin numbering correctly. When you've found the trace, cut it with a knife so there is no continuity between the LSOO pin 11 and the LS32 pin 13.
13) Identify the piggy-backed RAM that is perpendicular to the 9900 . Solder wire wrap wires connecting every bent out pin on this RAM to the corresponding bent out pin on the RAM that is parallel to the 9900 . Pin 1 to pin 1, pin 2 to pin 2, etc. There will be eight wires in all to solder.
14) Solder wire-wrap wires to make the following connections on the RAM that is parallel to the 9900. Pin 1 goes to pin 24 of the 9900 (solder the wire to the 9900 pin on top of the board). Pin 2 goes to the 9900 pin 22. Pin 20 goes to two places. Connect pin 20 of the RAM to pin 22 of the RAM and also to pin 8 (bent out) of the 74LS21. There should be three wires coming off pin 20 of the RAM. Pin 23 of the RAM goes to pin 21 of the 9900 . Pin 26 of the RAM goes to 23 of the 9900 . Pin 27 of the RAM goes to pin 61 of the 9900 (fourth from the top on the right side). Finally, connect pin 28 of the RAM to pin 20 of the 74LS244 adiocent to the piggy-backed 74IS?1.
15) Connect the following 74LS21 pins with a bare wire: 124 and 14. Connect the short wire from the 138 pin 7 to the LS21 pin 5 (bent out). Connect LS21 pin 6 to LS21 pin 12. Connect LS21 pin 8 (bent out) to the piggy-backed 153 pin 2. Connect the short wire coming from the 138 pin 9 to LS21 pin 10. Finally, connect the 74LS21 pin 14 to the 74LS244 pin 20 that you connected the RAM pin 28 to.
16) OK, we're almost done, so take a break and have a beer.
17) On the 153, connect pin 9 to pin 13 on the 74LS32 (U605). Pin 10 of the 153 goes to pin 14 of the 74LS74 next to it (U607). Also connect pin 10 of the 153 to pins 11 and 13 of the 153. Connect pin 12 of the 153 to pin 15 of the 153, and then connect pin 15 of the 153 to pin 7 of the 74LSOO U612 (next to the 74LS74). Connect pin 14 of the 153 to pin 11 of the 74LSOO U606; that's the one you cut the trace on.
18) That's it! Now have another beer before putting your computer back together. When you try it out, remember that this version isn't compatible with other 32 K in the system.

If you have problems with this I can't promise I can help but feel free to give me a call or write F.t?IL (419) 874-8838. Ask for John (or Hose-Head.)

DIJIT Systems, the San Diego based company that brought professional quality RGB display to the TI-99/4A, introduced its latest product at the 99/FEST-WEST/87 in Los Angeles: The Advanced Video Processor Card. The AVPC fits into the Peripheral Expansion Box and is compatible with existing TI99/4A software. It features 80 column text and advanced graphics with up to 512 colors. The AVPC also supports Mouse and Light Pen inputs. The DIJIT Systems card contains 192K of video RAM and is designed to work with the "DIJIT-EYEzer", an external Gen-lock and video digitizing accessory. It will allow titling and graphic overlays on home videos as well as computer manipulation of external video images. The DIJIT Systems AVDP gives the TI-99/4A video processing power comparible with the Atari ST and the Amiga. The product is scheduled for release in August for $\$ 195.00$. DIJIT Systems 4345 Hortensia Street San Diego, CA. 92103 (619) 295-3301

```
100 DIM Cक(4)
110 DIM BC(9,4)
120 CALL CLEAFi
130 CALL SCFEEN(2)
140 FFINT " CFASH"
EM": : : : :
15O FFINT " EY JIM E
ECK"
160 FFINN : : : : : : : :
170 FFINT "FFESS ANY KEY TO
STAFT GAME."
1BO FOF: D=1 TO 14
190 CALL COLOF(D,16,2)
2OO NEXT D
210 CALL KEY(0,K,S)
220 IF S=0 THEN 210
23O CALL CLEAF
240 FOF: D=1 TO 14
250 CALL COLOF(D,2,2)
260 NEXT D
270 SCF=0
280 LT=0
290 CALL CHAR(120,"101010101
0101010")
300 CALL CHAF(121,"00000000F
F000000")
#10 CALL CHAR(122,"00000000F
0101010")
Z2O CALL CHAFF(12\Xi,"10101010F
O000000")
SOO CALL CHAF(124,"000000001
F101010")
\Xi40 CALL CHAF(125,"101010101
F000000")
350 CALL CHAF(126."000000001
0000000")
\Xi60 C$(1)="0010387C7CS87C7C"
370 C$(2)="0000367EFE7E3600"
Z80 Cक(.3)="007C7CJ87C7C\Xi810"
390 C$(4)="0000D8FCFEFCD800"
400 FOF D=1 TO }
410 FOF: DE=1 TD 4
420 FEAD EC(D,DE)
4SO NEXT DE
440 NEXT D
450 FESTOFE
460 FOF D=1 TO 4
470 CALL CHAF(127+D,C生(D))
480 CALL CHAFi(135+D,C$(D))
490 NEXT D
500 FOR D=2 TO 12 STEP 2
510 CALL HCHAF'(D,D+J,124)
52O CALL HCHAF(D,D+4,121,25-
(D*2))
5.50 CALL HCHAR(26-D,D+3,125)
```

540 CALL HCHAF($26-\mathrm{D}, \mathrm{D}+4,121$.
25-(D*2))
5 EO CALL VCHAF (D+1, D+ $+120,2$
5-(D*2))
560 CALL HCHAF (D, 29-D, 122)
570 CALL VCHAF (D+1.29-D. 120.
25-(D*2))
580 CALL VCHAF (26-D, 29-D, 123
)
590 CALL HCHAF (D+1, D+4, 126, 2
S-(D*2))
600 CALL VCHAF (D+1, D+4, 126. 2
5-(D*2))
610 CALL HCHAR (25-D, D+4,126,
25-(D*2))
620 CALL VCHAR(D+1,28-D,126,
2S-(D*2))
6.3O NEXT D
640 FOR $D=15$ TO 17
650 CALL VCHAR (3, D, 32, 9)
660 CALL VCHAF $(15, D, \therefore 2,9)$
670 NEXT D
680 FOF D=12 TO 14
690 CALL HCHAR $(D, 6,32,9)$
700 CALL HCHAF (D, 18, 32.9$)$
710 NEXT D
720 CALL HCHAF (1玉, 16, シ2)
730 CALL COLOF: $(12,8,2)$
740 CALL COLOF (15,10,2)
750 CALL COLOF: $(14,10,2)$
760 CALL COLOF ($-16,2$)
770 CALL COLOF: $(4,16,2)$
780 DIF $=3$
$790 \mathrm{DOT}=0$
$800 L T=L T+1$
810 IF LT 10 THEN $8 \Xi 0$
$820 \quad L=1$
$830 \mathrm{DC}=\mathrm{BC}(L T, 3)$
B40 LC=EC (LT, 4)
850 CALL HCHAF (13, 16.LT+48)
$860 \mathrm{FF} \mathrm{C}=\mathrm{BC}(\mathrm{LT}, 1)$
$870 \mathrm{CFC}=\mathrm{BC}(L T, 2)$
880 ON DC GOSUE 1390.1420.14
50,1480
890 FIMC $=\times 1$
$900 \mathrm{CMC}=\times 2$
$910 \mathrm{FF}=2 \mathrm{3}$
920 LEV=5
$930 \quad 0 D=32$
$940 \quad C F=17$
$950 \mathrm{DIF}=\mathrm{DIF}+1$
960 ON DIF: GOSUE $1390,1420,1$
$450,1480,1510$
970 RM $=\times 1$
$\begin{array}{ll}970 & R M=X 1 \\ 980 & C M=X 2\end{array}$

990 CALL GCHAF: (FF+FMM, CF + CM, F
F)

1000 IF $F F=32$ THEN 1070
1010 IF $F F=135+D C$ THEN 2SBO
1020 IF FFi 126 THEN 950
$10 \mathrm{EO} \quad \mathrm{DOT}=\mathrm{DOT}+1$
1040 SCF $=5 C F+5$
1050 CALL SOUND (-10, $3-70,7)$
1060 IF DOT $=180$ THEN 18.50
1070 CALL HCHAF (FF, CF, 32)
$1080 \mathrm{FF}=\mathrm{FiF}+\mathrm{FM}$
$1090 \mathrm{CF}=\mathrm{CF}+\mathrm{CM}$
1100 CALL HCHAF: (FF, CF, DIF +12 7)

1110 CALL GCHAF (FFC+FMC, CFC+
CMC,FFi)
$1120 \mathrm{ND}=\mathrm{K2}$
1130 IF $F F=127+D$ IF THEN 23.30
1140 IF $F F=\therefore 2$ THEN 1170
1150 IF FF\& 126 THEN 1250
$1160 \mathrm{ND}=126$
1170 CALL HCHAF (FFC, CFC, OD)
$.1180 \mathrm{OD}=\mathrm{ND}$
$1190 \mathrm{FF} \cdot \mathrm{C}=\mathrm{F}^{\prime} \mathrm{F}^{\prime} \mathrm{C}+\mathrm{FM} \mathrm{MC}$
$1200 \mathrm{CFC}=\mathrm{CF} \cdot \mathrm{C}+\mathrm{CMC}$
1210 CALL HCHAF (FiFC, CFC, 135+
DC)

1220 IF FFFC=1: THEN 2OSO
1230 IF CFC=16 THEN 2180
$124060 T 01320$
$1250 \mathrm{DC}=\mathrm{DC}-1$
1260 IF DCンO THEN 1280
$1270 \mathrm{DC}=4$
1280 ON DC GOSUB $1390,1420.1$
450,1480
1290 FMC $=\times 1$
1300 CMC $=\times 2$
1310 GOTO 1110
1320 IF CM $\triangle 0$ THEN 1360
130 IF $F F=13$ THEN 1530
$1 \Xi 40$ IF $\mathrm{FF}=13-\mathrm{FM}$ THEN 1530
1350 GOTO 990
1360 IF $C F=16$ THEN 1680
1370 IF $C F=16-C M$ THEN 1680
1380 GOTO 990
$1390 \times 1=-1$
$1400 \times 2=0$
1410 FETUFN
$1420 \times 1=0$
$14.30 \times 2=-1$
1440 FETUFN
$1450 \times 1=1$
$1460 \times 2=0$
1470 FETUFN
$1480 \times 1=0$
$1490 \times 2=1$
1500 FETUFN
1510 DIF:=1
152O GOTO 1290
15.50 CALL JUYST (1,X,Y)
$1540 \quad C F=C F+X / 2$
1550 IF CF $=16$ THEN 1660
1560 IF $C F=4$ THEN 1660
1570 IF CF=28 THEN 1660
1580 CALL HCHFF (FF, CF- $(x-2)$.
32)

1590 IF $x=0$ THEN 1010
1600 CALL SCUND $(-40,220,3,22$
2, 3
1610 IF CF 916 THEN 1640
1620 LEV=LEV-X/4
1630 GOTO 1650
1640 LEV $=L E V+X / 4$
1650 GOTO 1080
$1060 \mathrm{CF}=\mathrm{CF}-\mathrm{X} / 2$
1670 GOTD 990
1680 CALL JOYST ($1, X, Y$)
$1690 \mathrm{RF}=\mathrm{FF}-\mathrm{Y} / 2$
1700 IF $F F=13$ THEN 1810
1710 IF $R F=1$ THEN 1810
1720 IF $\mathrm{FF}=25$ THEN 1810
1730 CALL HCHAR (FiF+ $(Y / 2), \mathrm{CP}$,
32)

1740 IF $Y=0$ THEN 1760
1750 CALL SOUND:-40,220, $\because, 22$
2, 3)
1760 IF FFF 1 S THEN 1790
$1770 \mathrm{LEV}=\mathrm{LEV}+\mathrm{Y} / 4$
1780 GOTO 1800
$1790 \mathrm{LEV}=\mathrm{LEV}-\mathrm{Y} / 4$
1800 GOTD 1080
$1810 \mathrm{FF}=\mathrm{FFF}+\mathrm{Y} / 2$
1820 GOTO 990
18 BO CALL CLEAR
1840 CALL SOUND (1000, 262,0. 5
$30,0,392,0)$
1850 CALL COLDF (3, 2, 2)
1860 CALL COLDF: $(4,2,2)$
1870 FRINT " YOU DID
IT!!"
1880 FFIINT : : : : : " L
EVEL": LT:"CLEAFED."
1890 FFINT : : : : :
1900 FFIINT " FRESS ANY KEEY T
O CONTINUE."
1910 DOT=O
1920 FOF $\mathrm{D}=1$ TO 14
1950 CALL COLOR (D, 15,2)
1940 NEXT D
1950 CALL KEY(O, K, S)

```
1960 IF S=O THEN 1950
1970 CALL CLEAF
1950 FOR D=1 TO 14
1790 CALL COLOF(D,2,2)
2000 NEXT D
2010 SCF=SCF+(100*LT)
2020 GOTO 500
2OSO IF LEV=LC THEN 1S2O
2O40 IF CFO: IO THEN 2070
2050 [TF:=-2
2060 GOTO 2080
2070 CTF:=2
2O80 CALL SOUND (-40,770,4)
2090 IF LC<LEV THEN 2140
2100 LC=LC-1
2110 CFC=CFC-CTF:
2120 CALL HCHAF (FF'C,CFC+CTF,
32)
2150 GOTD 1320
2140 CFC=CFC+CTF
2150 LC=LC+1
2160 CALL HCHAR(FFPC,CFC-CTF:,
Z)
2170 GOTO 1320
2180 IF LEV=LC THEN 1320
2190 IF FFCS1S THEN 2220
2200 CTF=-2
2210 GOTD 2230
2220 CTF:=2
2230 CALL SOUND (-40,770,4)
2240 IF LC<LEV THEN 2290
2250 LC=LC-1
2260 FFOC=FNFC-CTR
2270 CALL HCHAF(FF'C+CTF,,CFC,
32)
2280 GOTO 1320
2290 FF'C=FF'C+CTF
2300 LC=LC+1
2ゴ10 CALL HCHAR(FFC-CTF, CFC,
```

ヨマ)

BOARD MEETING MPNTES

\therefore GEDESE LEMFETTS

SECFETAFY
＊＊ $\boldsymbol{1}$

 nember partic：pate in the dpconing timonthly coard meeting（whith will be held at noon betore a frain meet：g ），

 Ed：tar－Mart haras All mentors are welame ta the tinonthiv bard meatang at noon，and the fot：grap neogs the

 ：wE neot：n？ ＊Me ng：nes＊：－

```
10O FFOGFAM EY CHFIS SLHFAN
110 CALL CLEAF:
120 OFEN #1:"DSF!1.x"
130 DATA 71,64,72,65,70.75.7
#,70,76,67, tt, t6, 65,6日,7t,68
,77,68,78,71,77,65,68,66
140 DfTA 56, 67.74., 07.74.77.7
4,68,7こ,71,54,57,72,68,7b,55
,72,68,?6.05
15O CALL INIT
160 LALL FEE}:-こEO-2,A)
1?O IF A% 9% THEN 270
1BO FOF: Z=1 TO 11
19! FFINT #1:""
```

100 FFOGFAM EY CHFIS SLHFAN
110 CALL CLEAF：
120 OFEN \＃1：＂DSFE1．x＂
130 DATA $71,64,72,65,70.75 .7$

，77，68，78，71，77，65．68，6
140 DfTA $56,67,74,07.74 .77,7$
$4,68,7 \pm, 71,54,57,72,68,76,55$
，72．68，75．05
150 CALL INIT
160 CALL FEEK：（－玉BO？，A）
17 IF AK THEN 270
180 FOF $Z=1$ TO 11
19に）FFIINT \＃1：＂＂

```
200 FOF }x=1\mathrm{ TO 4
210 FEAD A
220 CALL LOAD (-こ7648,A)
20 NEXT X
240 CALL LDAD(-27648,64)
250 CALL LDAD(-27648,80)
260 NEXT Z
270 CLDSE #1
271 DELETE "DSE゙.X"
280 STOF
ZOO FFINT "YOU DON'T HAVE A
SFEECH":"SYNTHESIZEF: ATTACHE
D"
```


From the SNuGLETter－April 1987
From the dist：of Mike Dodd．

DM1000．．．has an annoying little bug if you happen to awn a CorComp dist：controller．When DM1000 formats dists in double density，it puts 16 sectors／track on the header，even though it formats 18 sectors／track，which is all very fine and well if you keep it on a CorComp controllor，for the reason that the CorComp controller never even heard of is sectors．so it doesn＂t care what the header says．HOWEVEF： if you send the dist：to someone who has a MYARC disk： controller，then the MYAFC controller looks at the header and sees＂16 sectors per track．＂So it reads the dist based on that information．Eut it＊s 18 sectors per track！So，the MYAFC reports a blank disk．After havini several people complain about my＂blank＂disk，I found a fio for DM1OOO． For vis．edit the first sector of the MGFi file．At byte 216．you should see（in hex）： 1000 02 DO 00 5A

Change the 10 to 12 ．Write the sector back out to disk，and never worry about it again．If you are using another version of DM1000 that has the same problem（I don＇t know if any others do），search for the above bit of code．It should be very close to the beginning．

It $1 s$ also possible to change those disks formatted as double density by changing the sectors per track information in the first sector（Sector o）．Dnce again a sector editor is necessary．Sector 0 is called up for editing and byte 12 （decimal）or $[$（hex）is changed from the existing 10 to 12 （both in hes）．

NOTE：MYAFiC disk controller users should not reset the sector o byte from >10 to >12 ！If you do，the system will assume it is 18 sectors per track．In that case，you will see the same problems that we CorComp users have seen．

