THE GSGUILFORD 29 "ER MNMEWSLETTER

VOL.S ND.3 ' MARCH 1988

Larry Spohn, . resident Janice Snider, Vice President
Mack Jones, Secretary/Treasurer Herman Geschwind, Program Library
BBES: (?1%)274-5760(0FUS) ROS (719)-&21-2623

B T e e e s L B S L e T T S T S e e 1
The Guilford 99 'er Users’ Group Newsletter is free to dues paying members
{(One copy per family, please). Dues are #12.00 par family, per year.
Send check to 3202 Canterbury Dr., Greensboro, NZ 27408. The Software

Library is for dues paying members only. {Gearge von Seth, Editor)
s T T L e e s e S e e e S B R S e e e o s

DOUR MNEXT MEETING

DATE: Hafch 1, 1988. TIME: 7:30 PM PLACE: Glenwood Recreation Center
2010 €. Chapman Street.

Program for this meeting will be a roundtable discussion of what is
available for the TI??/4A five years after "Black Friday". Bring in any
information concerning software, hardware or repair facilities. We hope
to compile a software/hardware directory and a 1list of local repair
agencies.

MINUTES

The February 2, meeting of the Guilford 9%er Users™ Group was called to order by President Larry Spaohn at 7:50 PM. The
January sinutes were read and accepted as read.

01d Business: There was no old business discussed.

New Business: President Spohn announced that he may pretty likely be Ieaving Morth Caralina, but will let us know in
plenty of time so a new Pres. cap be elected to fill out his term, Larry also told of a project by the Winston Salem group,
of which he is alsp a member, of building Super Carts. It was also brought up that Data Bio techs has now started shipping
the Grand Ram, but prices are higher than crigionally advertised due to an increase in chip prices. The Sert. was acked #or
the nusber of members who has not paid their 1988 dues, and was told the number to be eleven,

The program was conducted by Bob Carmany on the use of the Mini Memory. Bob gave an excellent demo on the ability of the
Mint Memory to store files, much like a ram disk. At the end of his demo, Boh also gave mesbers information on the German
version of the BPL assembler that we have received from Germany. The text, which is over 200 pages, has been translated into
English, however aost of the commands in the assemhler are still in German.

It was suggested by the Secretary that the club purchass a 32 expanded memory for club use, and was given the permission

Volume 3 Number 3 Page I

to spend $30.00 of the club money for same. (Sec. note: a kit has been since bought for $15.00.)
There was an extended discussion on GPL and other subjects pretaining to the TI and its uses,
The aseting was adjurned at 9:30 PM.
Respectfully submitted, L.F. “"Mack" Jones, Bect./Tres,
FRES " FOKES

Thoughts of Departing President
By Larry Spohn

Regretably this is amy first, last and only column as your president. Untortunately for us, but fortunately for ay
family, I have accepted a science writing position with the Albuquergue Tribune, 1 will be leaving this month to bagin
prim.ily covering the development of Star War technologies at government labs in New Mexico. My family will join me later.
Although the chances are slim, it is possible I may be back in town during one of the monthly meetings and if I possibly can
will stop by.]

However, clearly you need a new president as it would be guite a drive for me every aanth from Albuguerque.

I certainly would recomsend Janice Snyder to you as my successor, although I'e sure that will make her uncomfortable.
Yet as a relative newcomer, she brings a much needed éresh approach that I think will invigorate the group and keep its feet
on the ground.

I wish I was going to be around for what say be a pivotal year for the group. Of course, in our history, what year
hasn’t been pivotal. But clearly, given Hac's mesbership report at the last mesting, our ranks continue tn dwindle. A=
president, I thought that the primary objective of the coming year would be mesbership and I would suggest (easier said than
done) that any reasonahle effort to bolster the ranks sheuld be tried. We've discussed computer fairs to direct mail appeals.,
Perhaps the best approaches are word of mouth, notices in the newspapers “things to do® coluans and posting notices in
computer stores, schools, libraries and recreation centers,

Certainly, given Herman's and Bob's reports last aeeting the user groups are integral to the machine's and its users’
future and increasingly they have mich, much to offer. [contimue to be impressed with the international efforts being made
to fully utilize this outstanding computer, I can tell you that whereever ! amy, I will do my best to participate in and
support these efforts.

I do plan to continue my turtle-paced efforts in exploring LOGD although the move probably will preoccupy e over the
next several months. [also hope to keep in touch with both the Guilford and Forsyth groups and hopefully to fullfill (at
sose point) ey promise to at least start up a LOSO program section in the two libraries.

I alse would reiterate that you will do yourselves well to establish a continuing liason between the two groups. You

have much to offer each aother, even if you never merge. The Builford groups strengths are its extensive international
connections, telecomeuncations and Forth programming expertise, while Forysth users have been exploring hardware alterations,
extensive use of data bases, unique prograssing efforts and the compatibility of the TI with the DOS and IBM compatible
systems. :
Certainly there is plenty of opportunity here for at least some occassional joint prograss over the year and these two
might be useful in attracting nem members across the Triad. Another idea I would suggest that might isprove communication
within the groups and between them, would be an alphabetical listing of your members in your newsletters, including phone
nusbers, addresces, computer expertise and interests. Such a listing might help bridge some gaps and certainly mould help the
novices, newcomers (and old-timers as well) with specific problems. Let's face it, while the opportunities for this machine
continue to blossom the number of us staying tuned is declining. We ought to be as supportive as possible.

Well, before I qet too excited, perhaps I better just say BYE and write off inta the sunset. Take care atl and good
tuck.

ATRAX TRAaCKS

By Bob Carmany

Last month we took a general view of FUNNELWEB 4.0 with a brief discussion of some of the more interesting additions and
improvements. Since we touched on using the CONFIE program to set up a menu, let's take a look at what one might look like.
fis an exanple, I'm going to use the systen that I have configured for myseif. ,

The first three options available on the menu are the pre-set paths that load, respectively: DTI-Writer, 2
Editar-Assembler, and 3) Return to XB. I have configured my system to offer two distinct sets of programs -- the next five
selections are a series of programs used for XB program develapment.

Option 4 loads XLATE which is an IB program that cenverts D/V 80 files into runnable programs. That allows me to write

Vaiume 5 Number 3 Page 2

~

progrags With a word processer like the FWEB editor and take advantage of the superior editing capabilities. I simply use a
template of line numbers and go from there. When I am finished, [run the resultant text file through XLATE and it is SAVEd
as a runnable program. KLATE has been altered so that instead of just @JITing, it RUNs "DSK1.LOAD" and thus restarts F'WEB.

Dption 5 loads another XB program called COMPRESSXB. This progrem removes atl of the REM statements from & program and
‘combines some of the progras lines to make a pore compact, faster running program. It has also be altered to reload F'WEB
when it is finished,

Optinn & loads FILE/READ, a program that I developed to read {and optionally print) ANY file except for thoss in program
image format, It is menu-driven and has some brief on-screen instructions with it. [t has also been altered to re—enter
F'WEB when it is finished. Although it is written in XB, it loads almast instantly.

Option 7 loads SYSTEX by Barry Boone. Systex is a utility for combining XB and A/L programs into a hybrid program that
will load and run in XB. The result is like the F'WED LOAD program. It has also been altered to reload F WEB when it it
finished.

Option 8 loads PRESCANIT by J. Peter Hoddie. PRESCANIT is an XB program that will process a program and turn off and
turn on the XB prescan function, replace variables and otherwise “crunch" an XB program to allow it to load almost
instantaneously, I used it on my FILE/READ progras. It has also bee altered to re-enter F'WEB.

Option 9 loads Will McGavern's DISKHACKER. It is a hybrid XB and A/L program that allows the user to examine disk
contents far beyond what is available with noraal sector editors. It allows you to view (but not alter! protection schewes
and look at some of the "strange-sectored® disks that appear froa time to tisa,

This takes care of the first half of the 1B options that the user has available on the first F'WER screen, The second
halt, designated A through I, contain a varisty of other prograss that I use frequently.

fption & loads John Birdwell's DISK UTILITES 4,0. These files are loaded as an A/L program image ¥11e load and contain a
series of sector editing utilities and disk manager utilities. The package comes in handy when you have made sose alterations
and want o move the files to another disk under a different nase. It is more powerful that the DISKO program furnished with
F'WEB. 1 use it mainly for "heavy duty” sector editing and use BISKD for the quick jobs. It is the program that ! use to
change the screen proampts in FMEB,

Option B loads Barry Boone's TRACKCOPY. It is an excellent track copier that will copy virtually any disk. It loads as
4 program image file(s) and comes in handy when you want to make a back-up copy of a protected disk that DMIOCO won't handle.

Option C loads ARCHIVER II ¥n 2.4. This just-released version loads from the GPL environment as a program image file.
It will pack and compress files (all of our BBS stuff is ARCHIVED) which will save you a bunch of time when uploading and

%7 downlnading prograes fros a BBS. It will aleo cave you 2 vast amount of space on a disk --- I recently cospacted the contents

.

of & 858D disk into twa! It makes sending programs across the country {or the world} much cheaper also. It is now fully F'¥ES
re-entrant and searches for UTIL] when you exercise that option.

Option D loads an XB Dis/assembler that is really a "budget model" for those short dic-assemblies. It doesn’t have a lot
of the convenienctes of some the longer programs but it IS efficient. It has alsc been altered to re-enter F'WER when it is
finished.

Option E loads PGM CONVERT. This program is used to convert D/F 80 A/L files into program image. TYhe result is a
savings 1n space and the program image A/L prograss aisoc load and run faster. It loads as a "Load and Run* D/F BO file with
the F'WEB assembly loaders,

Option F lpads another A/L program image file valled SBUG. This is basically a de-bugging tool for assembler programs,
It comes in handy when you have a bug in something you have put tugelher wilh ihe F'WEB E/A option and it just won't run
properiy.

Option G loads WYCOVE 4TH. It provides a reminder to insert the disk in the correct drive abd then loads the tow program
image files that make up the WYCOVE 4TH kernel.

Option H loads TI-FORTH, Since I “dabble" in beth of them, I wanted to be able to lpad either of them without having to
resort to another loader,

Option 1 loads an XB program called GEMINI that is just a short program to set up my printer in the font and rcharacter
style that 1 want. It has also been altered to re-enter F'WEB when it is finished. Since your printer will retain whatever
options you send it until it is either reset aor turned off, this program can be used to get differsnt font styles when using
the F'WEB Editor.

That takes us through the 18 options available on the initial menu screen. You can see that F'WEB can be configured te
loat just about any type of program imaginable as a menu option. On my copy, I have loaded XB programs, E/R program image
files, GPL environment program image files, and E/A object code (Load and Run). All of them load guite neatly and easily with
F'WEB. The fact is, there are VERY few programs that can’t be loaded as a menu option with one of the F'WER loaders,

There is no reason why you couidn't set up your awn initial menu of programs that you use most frequently as menu options
on the Main Menu and have them instantly available when F'WEB boots. ALl you have to do is fallow the instructions for using
LONFIG and then follow the prompts as they appear on the screen.

From here, we are going to examine the TI-Writer option {#1 on the main menu) and all of the optiens that it presents
including the Users List option that gives you B more A/L prograss immediately available, That is where we are qaing ta go

Volume 5 Number 3 Page 3

next menth ---- detailed TI1-Writer information and its supporting menu. The fnllowing month, we will look at option #2 on the
Main Menu --- the E/A options and the intermediate menu screen that it presents. That will include all of the A/L loaders and
using the Editor/Assembler as well. In the mean time, read your F'WEB docs and *play around” with a back-up copy using the
CONFIG file. If any questions come up, send thea in to the UG mailing address or bring them up at our meetings. “Til next
manth .

B TuTaAOR Il

By Temy McGovern
WELCOME to the first Extendsd Basic Tutarial fros Funnelweb Farm to appear in the new HUNTER VALLEY 99 MEWS. This will
be a continuation of the series of articles which appeared earlier in the TISHUG Newsdigest, but the HV99 NEWS will now be the
primary source. The series will go on in the same vein as before, intended neither as an elementary course for raw beginners
nor as a reference treatise. It is meant for the interested user who is willing to put some effort into understanding how
Extended Basic works in order to make best use of it, and wishes to develop a feel for how the machine actually goes about its
business. Plus assorted ravings, news items, and ramblings on.

Some copies, and &isﬁ—+ilas, of previous Tutorials will be available at HV3? meetings for newcomers or ex-TISHUBers who
don't have all the previous ones in their Sydney file. The Tutorials may even show up in User Group News letters arcund the
world., I have seen one in the TI#MES froa the UK. MNow HVYY meabers will be the first to see them, for whatever that is
worth, If other User Groups wish to reprint these Tutorials, please get in touch with me, either directly or via the HWS9
group, so that you can get a corrected and updated version on disk in the user group spirit of exchange. I usually do an edit
on the file after it has appeared in print to correct the littla goofs which hide so cunningly hefore printing, and sometimes
to clarify, correct, or extend what had appeared in print. The printed version has nat always been precisely what was on disk
gither,

Well, where do we go in the future ? So far the series has had a detailed look at user SUBpragrams and the ACCEPT AT
statement, the twe most powerful features of TI's Extended Basic, and also at the prescan switch commands lurking in the V110
sanual addendum. For the next few sessions we will continue with topics which are of imsediate relevance to console-only
users, namely squeezing prograes to fit in memory, and extracting maximum speed from XB. Please let me know of areas you
would like coversd. My policy so far has been to concentrate on those parts of XB which are especially powerful, not already
included in console Basic, not well documented, and not as widely appreciated as they should be. The next few tutorials will
be on getting the most into and gut of the machine while using XB. On the other hand I can see no point, and have evan less
interest in writing about, say, SOUND or SPRITEs from the very beginning, as these are fairly well docusented in the manuals
and the subject of many books and articles, That isn’t to say that subtleties in using thes won't come up froa time to time.

There has been a gap of a few months in appearance of Tutorials, mainly due to pressure of work. The tise spent aon the
TI-99 has been alaost entirely devoted to Assembly language prograsming, seuch of it in association with XB, and this will
provide some real substance for future HV99 News articles, either in this series or separately, One of these projects has
been to get Ti-Writer running from XB. Wby do that ? Well... TI have always been good quys in that most serious disk
software can be backed up on disk as often as needed, but they were of course relying en the infamous cartridge GROMs far
protection and exciusion-of others. MNow cartridges are a lot less fragile than disks, but they can die too. So I don't want
ever ta have to suffer Isagic Australia‘s less than impressive service and/er rapacious pricing policy if our TI-kriter module
ever claps out, May save sowe sodule swapping on occasion too, Yes, we do have a spare XB module!

0f late 1 have bheen working with Mirrosnft Basic and Turbo Pascal on P/M machines with I-BO processar in science
laboratory applications. I sust say that the more I see of Microsoft Basic the more I regard it as a cancer that should have
been eradicated years ago when computers grew up to have more than BK of memory. It is only now with their Apple Macintosh
version, judging that from reading magazine hype, that they have at last surpassed the level of expressivensss that X3 had
years ago. TI did a lot of things ta screw up this sachine, some of historical origin, some quite intentional, but it takes
coming from the engineerec TI-99/4z file and device handling system to CP/M to make you realize how weak and primitive CP/M is
in this area. On the other hand Turbo Pascal almost makes that Swiss straight-jacket feel comfortable, and even {P/M doesn't
seem s0 bad with Turbo. An excellent product at a realistic price that makes one realize that pirates are anly the miner
league of brigands in the software business. We can only dream that someane will bring out a native code Pascal anywhere near
as good as Turbo for gur machine. The TI P-code version is most unattractive at Imagic's past and present exorbitant price
{eight times that of Turbol. Now that more compact consumer type products are replacing the massive PE box, P-code cards wiil
tade into oblivian. Maybe I°11 be proved wrong but I get the feeling that Imagic Aust. is the sort of outfit that would
rather use things like that as hard-#ill in a swamp than let cosmitted users have them at a realistic price.

Volume 5 Number 3 Page 4

S

-

It is alsc another example of how TI had this death-wish to hothle the mast powerful aicra-processer in any home micro
available here, with interpreted languages. Shed a tear for TI-99 Basics with their two layers of interpretation (Basic and
BPLY, on top of working indirectly from the byte oriented VOF gemory and GROMs,

Encugh raving an for now and on to the real husiness. Let’s now look at how to face up to that ‘MEMORY FULL’ MBS5AGe.
This even comes up when you have memory expansion with a total of 48K of RAM in various quises. Frograps always seem to end
up needing more memory than ic available! I do feel some unease in discussing this topic as many of the things that are done
in compacting programs can only be regarded as poor progras practice otherwise, as they make the code obscure and difficult to
wodify cor develop further. The other great trade off that must be considered when scrunching prograss is speed of execution.
Given an equal level of skill in program writing, coding for speed usually results in a longer program than would otherwise be
witten, Ferhaps the easiest example to see is unroliing of a short loop which is repeated a fixed nusher of times. 4
FOR-NEXT loop gives compact code but carries a penalty of the loop overhead which could be avoided by writing out the contents
of the loop the appropriate nusher of times. The subject of coding for speed will be taken up in detail in later Tutorials,
and speec sacritices with compacted code will only be noted in passing. The richer the language the more opportunities there
are to optimize code ane way or the other. Comsale Basic offers many fewer ways to do this than does XB and is much less fun.

At what stage should you bother trying te make your code compact 7 Remember that XB can only QLD ar RUN cne program at a
tise, so apart from loading time from cassette, or disk space, there is no reason at all to scrunch a progras that runs in the
ssailest memory it is intended to run on. Most users with disks now have the 3% meeqry expansion, so this means the bare
console. Minimem Basic programs to store in the module’s RAM are the only gnes you have real incentive to make smaller still.
Unless you know from the start that you are going to run short of space because of large arrays of nusbers, or a need for
maxioum string storage room, be expansive —— document your program thoroughly with REMs, use lots of SUBprograms, use obvicus
explanatory names for variables, avaid reusing variahles for unrelated uses and then you run out of roos.

Now first of all a progras has to be short enough to load. This is purely a function of program length, Next it has to
be able to complete prescan when RUN. For prescan to succeed there aust be encugh room left over after the prescan for
variable pointer and subprogram tables to be set up, and room set aside for numeric values, at B bytes per nusber, String
variables are not assigned space until it is actually required, so it is possible for a program to crash later because it
tan’t find enough room for strings, The well known hiccupping of long Basic programs occurs while Basic scratches around to
reclaisa string space when it has run out of new space. XD does it too, but it is a lob faster at ‘garbage coilection’. New
fet’s look at how to squeeze programs in, starting with things that affect the program iength only. -

The most obvious thing to do is to remove REMs from your program. [would suggest that this be loft £ill later in the
developaent process as you put thes there in the first place to help. At the least keep some for now. If you have feen
following earlier Tutorial advice to use lots of clearly named subprograss then you don‘t need many REMs. For the same
reasons you shauld not abbreviate subprogram names beyond recognition at this stage. Basic as an interpreted language, where
the source code is alsa the run-time code, has this prohlem that cossentary and explanation are not eliminatad by a coapiler
or assembler and compete for memory space with the executing program. One way round the problenm is to restore RfMs to a file
copy after intensive development is over, even if it does make it too long to RUN. The REMS can always be remgved later.

Now it's time to lock at what makes an XB program as long as it is. To get started let's look at two very short programs
to clear the screen.

100 CALL CLEAR

Before entering this clean up the machine with NEW and SIZE it. Then enter this program and SIIE it again, The
difference will be the length of the program 1392013914 = 14 . I will mostly guote SIZEs an the basis of a consale only
sachine for simplicity, but there are some interesting differences. With mesory expansion XB lists high mesury and stack
separately, and ignores low memory altogether. B stores the progras and numeric variables in high memary (28}, while the
stack = 12t of VOP memory - contains variable descriptions, subprogras details, PABs, and the string storage space. This ALL
has to #it in 14K of VDP RAM with XB/console only. Console Basic doesn’t use meRary expansion for Basic at all. Now try a
second program which does almost the same thing

100 DISPLAY ERASE ALL

and SIZE it. Only 7 bytes now | Although the LIST of this second program is longer, the computer thinks it is shorter.
Cansult your XB manual p40 where you will find all three words DISPLAY, ERASE, ALL are listed as reserved words, as is CALL
but not CLEAR. Reserved words are treated differently -~ when you enter the line they are recogrized and “tokenized® as one

volupe 3 Number 3 Page 5

byte synbols with ASCII values >127. °‘CLEAR’ takes 7 bytes, one the token for a string without quotes, one for a length byte,
and 5 for the string itself. Why use tokens ? For ane thing it shortens the program length, and also mekes it easier for the
interpreter to recognize them when the progras is running. XB's range of tokens is very limited and built~in subprograms are
the way XB gets around this,

Now you don’t have to take my word for this. If you have an expanded system you can write programs using CALL PEEK to
explore stored programs, or better still use the £/A DEBUG (reassesblex] as uncompressed ob ject code so the XB loader tan
handle it) for a guicker look, With console XB you can at best get an indirect insight by entering {CTRL+varidus keys> in a
REM statesent and LISTing that. Be careful, you can crash the computer in nays wondrous to behold that way. Somecne forqot
to tell the computer not to try to turn token values back inta reserved werds when LISTing REMs. Ever notiee when writing
tile specifications that keywords that do extra duty elsewhere LIST with the extra space, but the others do not. EASY-BUG in
Minimem alsa allows you to leck directly into VOP RAM or cartridge RAM to see Basic programs in their internal state.

In TI Basics, unlike those which store programs as ASCID files, the line number is always stored as a 2 byte integer, and
it makes no difference to progras length to use line 41 or line #10000. Try various line nusbers in one of the exasples
above. If you are peeking arcund in the program, don't expect te find the line nusber at the start of its progran line, [t
is in a separate table below the program, and each 4 byte entry has the line nusber followed by the location of the line
itself. The iine # table is sorted into order, but new or edited lines are aiways added to the lower address end of the
program block. The program lines thesselves are preceded by a length byte and terminated by a null (200) byte. [won't go
into it here hut you can use this general information to interpret the various time delays when you edit a line or enter a new
line.

Frnﬂikﬂis you can see that there is a & byte overhead associated with every new line nusber. MNow enter the progras lines
dbove as lines #100 and $200 and SIZE. Next combine thes as a single line

100 CALL CLEAR :: DISPLAY ERASE ALL

and SIZE again, There is a saving of 5 bytes. The reserved word “::" has cost 1 byte, but & bytes have been saved by
having one line fewer. Now if you scruach a 500 line console Basic style of progras inta 200 XB multi-statesent lines you

have gained 1500 bytes. OF course you can’t do this to every line because iine nushers, as well as being line editor markers, -

are also where G0T0s and B05UBs go, so you will usually end up with a few short lines you can’t condense. FOR-NEXT loops work
perfectly well within or across sulti-statement lines. The use of prescan switch commands is costly because you end up with
18P+ and SUBEND on separate lines at the end of each cubprogram so treated. Still, it‘s usually worth daing even though a
long pragram may have several hundred hytes tied up in prescan switching. In desperation at the end you can always remove
prescan switches starting with the shortest subprograss.

How much room does a variable take up ? Take a sieple numeric varisble. There are 8 bytes for the radix-100 floating
point form that both TI Basics use for all numbers (they aven do 14 to 14 significant tigures every time - another reason
they are slow). Next the interpreter has to be able find where this value is stored so there's 2 brtes for a pointer to the
value, and 2 more to point to the name assoriated with this value, Further it has to record the nature of the variable,
" whether it is numeric or string, simple or array, DEFed or narmal. Also in a Basic language which allows long variable names
a length recard is also likely, though not absolutely netessary. All told there is a gpractical minisus of 18 bytes of
overhead for overy cimple numeric variable.

As 1 have noted in other connections in this series, TI in its self-defeating secretive way, never explicitly specified
the details. TI Basic is most likely highly consistent in this from medel ta model, herauss any consolw can ba called on to
wark with separate E/A or Minimea Basic support utilities such as MIMREF. On the other hand each XB module contains its own
set of support utilities, and enly has to be internally self consistent, There is informatien in TI's published data {XB,
E/Ry Technical manuals}, giving details of YDP stack entries built by the E/A CALL LINK with same hints as to changes for the
JB version. So to use XB LINKs at this level of detail you have to work by implication. Now it is done from time to time,
but Ti does not seem to have guaranteed explicitly to programmers that such procedures would work with all XB modules, or that
the LINK stack entries are similar to internal table entries. Mest likely they da and are. Only TI knows for sure, Then
again TI lost big while Apple and IBM make lots of soney being more open about their machines, though Apple sesss to be
develaping more sacretive ways as it gets older and mare arrogant,

Time for some little program experiments again. Enter the miniscule program
100 A=0

Volume 5 Number 3 Page &

N

Ny

Before you do anything else work aut how many bytes this uses. The answer is {{, In accepting the line the editar has
already figured 'A° for a variable {because it starts with an allowable character) and not a reserved word and it is
represented exartly as it occurs, no token involved. On the other hand it doesn't yet care that ‘0’ is meant to be a nugber
and treats it as an unguoted string. If it isn't an honest number, say 2N, it will only find qut later when it RUNg and tries
to convert it to a floating point number. '

SIZE the program, then RUN it and SIZE again. XB does not reset everything until you have made an editing change, as you
know from debugging efforts after BREAKing {fctn-4) program executign, At this stage you get more information from an
expanded system, which will show 8 bytes of memory used and 9 bytes of stack. Now repeat the process with a Ionger variable
name. The length is reflected bath in the original program length and in the stack used. The stack usage is 2 bytes plus the
variable’s name length more than the minimuz we tigured out before, Most likely the 2 bytes are for a linked list structure
to help table searching, and there is a symbol table entry of the variable name. Now turn off your expansion systes and be
like everybody else with cansole only, and repeat the above. Now you will find the increase over the progras length is always
the 14 bytes we figured earlier no matter how long the variable nase is. Now try

100 AZ3455787017345, 42745478
012345=0

what about the symbol table 7 the only cansistent canclusion is that it doeen’t have one as such, but points o the first
Iocation of the variable name in the program as located by the prescan, Read the Tutorial -gn prescans again. XB always
searches in VOP RAM for variable names sven it the program itself and the numeric values pointed to are storad in sxpansion
AERary.

If you wanted to make a faster interpreted Basic, you would, in the prestan, replace all variable names by some foken
plus a storage pointer to sliminate table searches. Which is just what TI claim in their Software Development Mandback to
have dane with the Basic for their 990 miniconputers. Unfortunately they failed to make an honest machine of the 9974,

That should be plenty to chew om for this inaugural issue of the HY99 News. The naxt Tutorial will continue with the
principles of program scrunehing, getting more into the program writing end of things.

LOGO

By Larry Spohn

Little BIG LOBO

While I have heen praising LOGO, virtually without reservation over the last several menths, you cught to be aware if Yo
haven't discovered it on your own, that LOGO has limitations,

Among these are its toreign or unarthedex progracaing freedom, which if you been used to other languages can take some
getting used to. 1 enjoyed your surprised looks when I told you that the main calling program of the Christmas Story program
was just zaven lines long and that I didn’t patter where 1t was in the program as a whole.

Secand and despite the zhove exampie, hy comparision with other languages LOGO can seem inefficient, that iz it usually
takes wmare LOGD cede to accomplish what some other languages do with less code, fnd, at least in T1 LOGG, you aren't itkely
to set any program speed recards although ['ve yet to test that argumentt language by language,

Third, the previcus limitatien is compcunced by limited memory, This is particularly cusbersome in the TI 1080
configuration hecause—as near as | ran tell-~there is no provision for accessing other storage devices, such as a disk or ram
disk, directly from a grogram,

Fourthy 1 know of no way o output LBBC program “results" tg the printer. L080 does have a procedure to print the
prograss themselves op a printer, but not the resuylts {answers, pictures, designs). While I suspect that this printing
procedure was designed for memory reasons or to make LOGD easiest for youngsters to use, I consider this the most seripus
application drawback of an otherwise delightful, fres-spirited language,

There may be some tricks I'm not aware of that might ameiiprate these limitations, particularly this last and most
depressing block to creativity, If you know ar can think of any please enlighten us, Otherwise, we LOGD lovers may have ta
wait for some experienced Robin Huod tu]iberate the tartrigge and modify TI LOBE to eliminate these shortcomings and reveal
LOGD s maximum power.

There 15 one trick I would lije tq pass alang that 1 Iearned from Gecrs= Arowne and Ken Hedrick of the Forsyth $9%er’s

Volume 5 Number 2 Page 7

Group. I had been complaining about the problem of converting LOBD programs into ASCII for publicaton in the newsletters. TI
LOGC does have a third device option in its structured Save/Load format, which will accept and I presume dusp to the RS23?
card for modem output. This is fine if the intended party has a oodem and a TI LOGD cartridge. Tony Kleen, Forysth's "99
LINES" editor has the forger but not the later. This presents a monumental road hlock, presuming that & transmitted TI LOG0 o
program is received by the other TI-99/4A as a program and nat an ASCII file. Tony would have no way to output the prngram‘ii
without the LOG0 cartridge, which as I mentioned at least does allow prograss to be printed by your printer.

Enter Ken and George. They suggested that when LOGO prompts for the printer device that I enter the disk drive
designation, ie, "DSKL. 2 or 3." I did and it worked. The program is sent to the disk in as Dis/Var 80 file, readabls by
Tl-Writer. Thank you Ken and George. Now if only someone could suggest how we might reconfigure the ASCII file intg a TI
LOGD program!

The lesson illustrates a couple of points, one of which has been most often made in the two Triad groups by Herman
Geschwind of Greensbara, and Roy West, of Lexington: without the user groups we are lost. [t might never have occurred to me
to try the option which was second nature to Ken and George. They may not be into LOGD as much as [am, but obviously they
know a lot more about the 99/4A and computers generally than do L.

The other point is that LOBO is such a “new® language to must of us—includi. | me—that there may well be various ways to
get around the image limitations it has been saddled with, as well as those I mentioned hersin.

Meanwhile, my previcus praises for LORO stand and I urge you to do some t.0B0; ny.

FORTH TUTORIAL.

By Lutz Winkler
FORTH TO YOU, 10O ! SESSION §

Introduction

According -to ocar source there are quite a few pecple out there who got the TI-FORTH disk and documentation when TI made
them availsble Lo user groups. But not very many do such with it. Khy? Well, the TI manual 1s not & tutorial, it assumes
that you know something about FORTH. Though packed with useful information there are no "HOW 10" instructions for the
beginner. We will try to get you started from the very beginming. Hopefully we'll strike a hapoy sedium, somewhers in
betwsen teaching and providing info that's useful to yau. N

What is FORTH?

There was much hype when it was made available, some of it was much overdune, but Forth is faster than DBASIC. Vet some
of the advantages of Forth will not imsediately be evident to a beginner. FORTH is a TIL (Threaded Interpretive Language) and
it'll be hard for you to believe that there is no G0TO command. If that is hard to swallow, there is more : It uses RPN or
post-ix notation (RPN = Reverse Polish Notation). In ather words, it's mot 2 + 2 that equals 4 but 22 + . We'll find out
#ore 3as e go along, for now let's just say that FORTH is very powerful, quite a bit faster than BASIC, compact, but perhaps
more difficult ta learn than BASIC. As a matter of fact, knowing BASIC may make it harder on you, because you'll be thinking
BASIC until you get the hang of FORTH.

Getiing started.

Before you do anything with your FORTH disk, get out a DISK MANAGER and make a backup copy. Do all your wark and
experimenting with this copy unless you are prepared to get a new FORTH disk. MNaw plug in the EDITOR/ RSSEMBLER, opt for 3
(LOAD AMD RUN) and enter DSKI.FORTH. After a moment the screen shows "BOCTING..." which is soon replaced by a menu. These
are the LOAD options. For right now you need to concern yourself with only 2 of them: the normal or the s4-column editors.
Your choice will depend on several factors: 1) your eyesight, 2} your monitor, and 3! how well you have adapted to using
‘windows’. 5o jump right in and enter -&4SUPPORT. After your disk drive is through you will see a tiny ‘ok’, meaning the &4
colunn editor has been booted. To see what your screen will look like type 34 EDIT <enter). If you can read what is
displayed on your screen, you'll want to stay with -b4SUPPGRT. 1§ it's hard on your eyes, settie for the 40 column editor.
Te get an idea what it looks like, hit FUNCT-9(ESCAPE), then enter TEXT COLD. FORTH will re-boat and when it is done, enter
-EDITOR. {From now on, ‘enter’ will mean to type in the word foliowed by the ENTER key.) Again enter 34 EDIT to see what yeur
46 colunn editor looks like.

Programming in Forth comsists of editing SCREENS, such as that number 34 screen you caiied wp for editing. But we are e
nat ready for that, yet. Hit ESCAPE {F-9) and enter FLUSH and do this: Make yourself an overlay strip so you can edit easily.
Keys and their functions are explained on page 5, chapter 3, of the TI-FORTH manual. Now here is another thing you might want

¢

Vaiume 3 Number 3 Page B

to find out right now: 3 display color that suits you. Since you are still in the so-called ‘interactive’ mode of FORTH (no
Pragram is running) you can enter this ditty :

TERE 2222 D01 DUP . 7 VTR
KEY 2 = IF ABORT ENDIF LOOP

Alter you get the ‘ok’y type SEE. Don’t worry 1f you can't read anything, at times the FG and BS colars match and
there's nothing to be read, keep hitting any key and the colars will change. When you see a combination which gives you a
good screen display, write down the last nusher (bottom of the screen) and continue to step through the loop {or exit via
FUNCT-4), '

You have accomplished 2 things:

) you know which editor you'll want to use

1
2) you have chosen a screen coler

ve+ END SESSION 1 ##3

Volune S Number 3 Page 9

