INEL

[E == 99’er ON LINE == FEPUARY. 1990 ==

EDMONTOMN
93’eR.
COMPUTER

USERS’

SOCIETY

INE

PO B 11583
EDMUNTON. ALBERTA
(ANADE ToJ 3L |

page $15.08.

1/4 page $10.98.

99°ER ON LINE... is the newsletter of the Edeonton 99°er Coaputer
User’s Societu published ten times a uear. Unless otherwise stated.
all articles may be republished in other Newsletters orovided that
gource and author are identified. We will in turn credit authors
quoted in 99’er ON LINE

Gruenewald, 131
T84 2R1 (4@3)

NEWSLETTER ¢ Editor: Waune
Garland Cres. Sherwood Park. Alberta. Canada.

467-9034.

OFFICERS: Vice President Jamie Moore: 2nd Vice President Andrew
Webster? Treasurer Dennis Miller: Secretaru Reme Aloisio.

OFFICERS AT LARGE: Paul Helwia Newsletter Librarui Gordon Bradlee
Book Library: Win Appelt Disk Library: Ron Hobmann Module & Cassette
Librarys - Suren Fustukian Sysop. T.1. -Bulletin Board
4332840, 300/ 1 208Baud.

DISCLAIMER: Inforeation published in this Newsletter is created Wy
and for amateurs. therefore. we cannot gquarantee the accuracy or use
of presented informatiqo.

FEGILAR MEETINGS: of the Edmonton 997er Computer User’s Society are -
held on the second Tuesday of each month in room B49 of the General
Service Building of the University of Alberta from: 7:88 till
18:00PM. and are open to all members in good standing., Non-members
mau attend their first meeting free of charoe.

mrmrs: Comercxal space is available in this Newsletter at the following ratest Full page $28.08. Half
Discuss your needs wit

h Wayne. at (483) 467-9834. or the next meetina.

alternatively send "photo reacdu® copies to him. Members may advertise their personal comeuter related items
for free but are asked to limit their ads to about 52 words. Mail your ads.. to the Editors address or hand it
to hin at the General Mesting: Newsletter deadline 3'rd Monday of the sonth.

MEMBERSHIP FEES: Familut 12 months $20.08. & months $15.88. Students: 12 months $15.08: & months $18.88. New mesber

initiationt $20.04,

{News Letter!}

NEXT_MEETING.

The next meeting will be March
13th, At 7:00PM. General

Services Building U of A Cameus

rooa B849.

‘BLOOM COUNTY

{News Letter}

—

©~ .~ by Berke Breathed '

Vruezzome 7 wonperac

W7 OF YOUR b B5vWA p,r..,,-- Fl#i S I prase t

LNIOR 9000 X+ "FM

RJRTADCEPE"'
APYTER * 7

re_t H'L'B!!."

TH'S ONE POES (TALL!
CMPUTES ! GORTS ! PRINTS !

SlEnl DI ST
WNTTER ANES !
FRANCED 1.,

AND MOST WPORTANT
‘OFALL..

~ITTURNS OFF.” _

WV@/
%er

. mﬂ

S T T e T e T e S e e TR 2

PAGE 1 =+4+=+=+smd=d=dz=+=+=+=

== 99’er ON LINE == FEBUARY, 1998 ==

Assesbly Lapaguage Won't Bute
By: Peter Lottrup

In the first part of this series, we saw how to use the first three of the seven directives of the Line by Line
Assembler included with the Mini Memory Command Cartridge and how to structure an Assembly Language program line. Now we
will start to write small programs and in that way learn our first words of Assembly Language vocabulary. We will also
learn how to END and e:z-ute a program once it has been tuped in and how to save.it on tape. Finally, we will learn a
new assembler directive: &, :

Displauing_a_Messaae

Before weFIngiRe ¥élldgr1¥|ig S?Eghgﬁrngga%ug?a;egé%gegi§P1?¥tfgeatfzgstgssgigg gﬁ“@cré%n*%“%trﬁ%_ﬁ?@. %hs Egekngsrﬁggi
PASIC, the screen is dividad into 2% rous and 32 columns, giving it 24 x 32 squares, or 748 positions. The top left
corner is the first position, and the bottom right is position 768. _] o .

To display the message, you have to tell the computer several things. VYou must first tell it in which screen
position uou want the message to begin, This number can be in decimal or in hexadecimal (base sixteen) form; if it 1in
the later, it must include the > sign fist to indicate this. You will also have to tell the computer how long the
message will be, exactly how many cheracters, including spares. Finally, you will have to inform the computer what the
address {or label) of the text is, so it will know where to find what it has to display. Your listing will look like
thist .

7000 8458 LI R®,J%2

7084 8354 LI R, ST

7008 8244 LI R1,12

7D8C A1B2 BLWPG>6B28

7D12 00e7 NN JMP NN

7D12 4188 ST TEXT' TEST PROGRAM’

{The first column of numbers is one memory location address; the second column is the present contents of that
addressy which at this stage rould be any hexadecimal number.) Follow the instructions in part 1 of this series to enter
the Line by Line Assembler and then begin entering these program lines.

Exelanatinn_nt;the-etngtn

The first line means load register number zero with the immediately following decimal value of 392. The
instruction LI (Load Imsediate) simply means "place the following value in ..." R® specifies a certain register, which is
defined in the Editor/Ascembler manual as a memory word that serves a specific purpose. For the time being, just think
of it as a box in the computer’s memory where you place a value that you want the computer to remember. Seeing it in
this way, you should understand from the first line of the program that we are telling the computer to load the value of
392 (the decimal position of the center of the screen) into "box® (register) number zero. we found this number in the
tollowing manner: The message had to appear in row 12, halfuay dotm the screen. As each row has 32 characters, the value
of the first position in that twelfth row was found by multiplying 12 x 32. Then, we added 8 characters to end up at the
place where we wanted the message to begin.

The next line is quite simslar to the one we have just seen: We are telling the computer to load into register
number one the label of the place containing the text to be displayed. In reality, the computer converts the label, 5T,
into a number (or memory address) for its use. In this way, the computer knous where to find the text to display.

The third line is similar to the other two! We are telling the computer to load the value 12 intoc register
number two. This will tell the computer how long the message is going to be.

The fourth line is the one that actually causes the message to be displayed on the screen. In this case, we
are trying to write a message which contained in the computer’s memory (CPU RAM) to the screen (VDP RAM). There is an
Assembly Language routine which does this for ust the VMBW, or VDP Multiple Byte Write routine. As the name tells us,
This routine takes bytes fram CPU memory and writes them into specified locations in the VDP memory (on the screen), If
we were using the Editor/Assembler, we could use the mnemonic VMBN in the following line:

BLUWP aVMRM

BLWP is similar to GOSUR in BASIC. It tells the computer to branch and execute the routine (VMBW) we are
specifying, We can’t write the line like this when using the Line by Lin: Ascembler unless we add some extra lines to
the program. This is because this assembler does not recognize what *\™EW® stands for. But from the Mini Memory manual
{page I5), we know that the VMBW routine is at hexadecimal address >4828. So in the Line by Line Assembler, if we write:

BLWP 36828

the line will be correct. Then, using *%= information we have already placed into the computers memory, the
message will be displayed on the screen. The \™Fw routine beginning at address >602C expects to find certain values in
certain registers: In register 8 it expects to find the fist location to use in its display. In reqister 1, it expects
to find the address of the message to display (in this case, a label which it interprets as the address >7D12). In
= register 2, it expects to find the length of the strina to display.

Stz mmdemtemgemdmds PAGE 3 =4smdmdesmdesmdesmdemdesmdesdgess

== 997er ON LINE == FEBUARY, 1990 ==

{continued)

. If we Just stop the program there, however, the message flashes on and off before we can even see it. So the
next line creates an endlpss loopy causing the computer to jusp (JMP) to that same line over and over. Note that the JMP
instruction in Assembly Language 1s the same as the G0TO statement in BASIC; neither is subject to any condition.

) . Finallyy the only thing we need to include in our program is the text we want to display using the TEXT
directive, which we discussed in part ome. This text must be labeled with the same label we used to refer to it in the
second line of the program: ST,

Bunning_the Progras

When you have finished typing in the lines as they appear in the program listing, you are ready to end. Tupe a
space, type END, and press ENTER. The following message will be displayed:

0200 UNRESCLVED REFERENCES

This means that all the labels mentioned in the program have been used in some way or othery that is, that you
have not mentioned a label in an operand field which did not exist in a label field. For instance, imagine that we had
not included the line with the TEXT directive and the ST label. Then, the second line of the program would be mentioning
a label which did not exist in the program. If you ended the program at that point, the message displaved would be:

8201 UNRESOLVED REFERENCES

Do not end the program if all the references have not been resolved because it will not run correctly. If you
press any key except ENTER, you will return to the memory location where you left off. Then you can use the SYM
directive (discussed below) to find the unresolved label or labels. If you do get the message!

2020 UNRESOLVED REFERENCES

meaning that all labels are correcty then press ENTER twice and you will return to the Mini Memory main senu.

Now let’s look at how to RUN our program using EASY BUE. (Next time, we will learn how to SAVE the program by
name so that you will be able to run it directly, like the LINCS demonstration program.) Return to the title screen by
pressing QUIT, and choose the EASY BUG option. Press any key to skip the menu, and when the question mark appears, type:

7E7000

and press ENTER. This means execute the Assembly Language program which starts at memory location number 7000
(which is where we began to write our program). You will see that the message we wanted to show is displayed immediately
on the center of the screen. Note that the only way to regain control of the computer in this program is by turning off
the power, and even if we do this, the program is still kept in Mini Memory.

If you now want to save the program on cassette, select EASY BUS, skip the title screen and tupe:

78
S means save the contents in semory to tape. The computer will then ask:
FROM?

With this prompt, the computer wants to know FROM what memory location you want to begin recording, To be sure
that you get everything, it is best to type 7800, as it says in the manual. It is not necessary to include the > sign.
The computer will then ask:

T0?

With this prompt, the computer wants to know the last memory address to save. Here type 7FFF, again to be sure
ou get evergéging. This mearz that you are storing the entire contents of the Mini Memory cartridge on tape. When you
ﬁave tuped 7FFF and pressed EMTER, the usual procedure to save on tape will follow.)
To load the contents later on, select EASY BUG and then choose the L command. The computer will then respond
with the standard sequence of instructions for loading from cassette.
When wou have finished loading the program and the question mar appears, type E (execute Assembly Language
program), followed by the hexadecimal address where the program begins, in this case >7D28.

Ztmdmtmbmtmtmtmtsmd = PAGQGE 4 =4=dmd=dmdmtsdsdmdes

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

