
'

BLOOM COUNTY by Berke Breathed

(News Letter)

107.4.=*. TOM 1000fthRit
ktv.." Or Yaw frir. tVeoz•;A
ikNOR 90X 6(77' Fula
PrA7k3LE PE.= ::rwi.
COMPUTER-7

731'5 OAS PCf..5 Ir ALL !
COMarrE5 5OZT5 ! PRK5!
PAIX? • FA 	5 ! 	f

! 	gfitST:e .
Ku. 	 !

+ 	+ + + + + + + + 	 pAGE 	+ 	+ + + + + + + +

== 99'er ON LINE == FEBUARY. 1990 ==

Ernonroll
93 "ER

COMPUTER
USERS'

SOCIETY

99'ER ON LINE... is the newsletter of the Edmonton 99'er ComPuter
User's Society Published ten times a gear. Unless otherwise stated,
all articles may be republished in other Newsletters provided that
source and author are identified. We will in turn credit authors
quoted in 99'er ON LINE.

PEWSLETTER CORRESPONDENCE: 	Editor: 	Wayne 	Eruenewald. 	131
Garland Cres. 	Sherwood Park. Alberta, Canada. 	T8A 2R1 (403)
467-9034.

OFFICERS: Vice President Jamie Moore; 2nd Vice President Andrew
Webster: Treasurer Dennis Miller; Secretary Rene Aloisio.

OFFICERS AT LARGE: Paul Helwig Newsletter Library; Gordon Bradlee
Book Library; Win APpelt Disk Library; Ron Hohmann Module & Cassette
Library; . Buren 	Fustukian 	Sysop, 	T.I. 	.Bulletin Board
433-2840.300/1210Baud.

DISCLAIMER: Information published in this Newsletter is created by
and for amateurs. therefore. we cannot guarantee the accuracy or use
of Presented informatian.

REGULAR MEETINGS: of the Edmontcm 99'er Computer User's Society are
held on the second Tuesday of each month in room 849 of the General
Service Building of the University of Alberta from: 7:00 till
10:03PM, and are open to all members in good standing. Non-members
may attend their first meeting free of charge.

P. a 1E 11E.
EHNEN. 111,13EITI

31 11
ADVERTISEMENTS: Commercial sPace is available in this Newsletter at the following rates: Full Page $20.10, Half
page $15.00. 1/4 Page $10.10. Discuss your needs with Wayne, at (403) 467-9834. cr the next meeting.
alternatively send *Photo ready' copies to him. Members may advertise their Personal computer related items
for tree but are asked to limit their ads to about 50 words. nail your ads.. to the Editors address or hand it
to his at the General Meeting; Newsletter deadline 3'rd Monday of the month.

MEMBERSHIP FEES: Family; 12 months $20.10, 6 months 315.00. Students: 12 months $15.00, 6 months 410.10. New member
initiation; $20.00.

(News Letter}

NEXLIMIS.

The next meeting mill be March
13th. At 7:00PM. General

Services Building U of A Campus
room 849.

X

in a simple and quickly-grasped

;manner, end then efficiently Mali.
Meg the Multiple procewirrs, mem-
orleS, and other internal workings

•or the ostarn autornatically.;-,!•;:. ••.!

The ballpark price far the new
srupercomputer will be about $10

.; 	.
Small supercomputers made by

Myrias have reteived high' marks
in tests at the Alberta Regearch
Council and the University of

"you've 9of computer virus. There's a 10F Of ir
going? arOthrld theSe day&

	■••

== 99'er ON LINE == FEBUARY, 1990 ==

JANUARY MEETING

By: Rene Aloisio

Jamie opened the meeting at 8:15 p.m. with a discussion of the MAGICFM program. He discussed uploading and
downloading with this program. Two 71994A coaputers were hooked directly together to demonstrate various features of the
program. He also demonstrated a new program call Mass Transfer.

Win showed us sone of the new features of TI-ARTIST PLUS.

Supercom uter could store 2,000 Bibles
,4 	 0400 tih

--•••••••

•

ED STRUZIK
Journal Staff Writer

Edmonton

An Edmonton company today
unveils a parallel computer so
powerful it has the capacity of "
storing 2,000 Bibles.

In fact, with the ability to har-
ness 1,044 off-the-shelf conunercial
processors, including 42 billion
bytes of memory, Myrias Research
Corp.'s computer is the most pow-
erful of its kind in the world.

"Industry experts now agree
that parallel computers harnessing
the power of hundreds of thou-
sands of 'off-the-shelf micropro-
cessors to work on a single com-
puter problem will be the high-
performance computing standard
for ,:•3 21st century," says Myrias
president Peter Gregory. "Myrias
has made it a reality in 1990."

Unlike. other massive parallel
systems designed to use custom
processors that ca.n operate on
only one to four bits of information
at a time, the Myriss system is
based on full 32-bit, off-the-she/I'
processors.

This makes it not onhr cheaPer,
but more broadly appliCahle. It
also allows for a higher level of
compatibility with industry Elan-
dards.

For those who speak the com-
puter language, the system , exe-
cutes 3,6'70 MIPS (million instruc-
tions per second) and 630 MFlops
(million floating point operations
per second). -

In comparison, large mainframe
computers typically execute less
than 100 MIPS.

,

Gregory expects the supercom,
puter will be of great value to'Ca-
nadian scientists and technologists.
Potential uses include weather
prediction and climate modelling,
designing new industry materials,
designing drugs, medical imaging
and diagnostics.

He also sees it being used in im-
proving _techniques in resource

exploration as well as in sea ,and
space exploration.. 	,•

The 1,044 processor system
backs up the company's claim that
programs which can scaleup in-
complexity by usini larger data
sets or by. increasing the level of
detail will 'result in speed
improvements on larger systems.

Starting at minicomputer prices,
and having the ability to expand to
virtually any practical size means
that . style of computing will be

—

avaiLable to a much broader range
of users than previous super-
computers.

Gregory clahns that the genius
of the Myrias system lies in the
company's unique software that

' helps users express their problems

—+—+—+ +—+—+—+—+—+— pAGE 2 —+—+—+ + +—+—+—+—+—

X

== 99'er ON LINE == FEBUARY, 1990 ==

Asmbly_Language_Wona_Byte

By: Peter Lottrup

In the first part of this series, we saw how to use the first three of the seven directives of the Line by Line
Assembler included with the Mini Memory Command Cartridge and how to structure an Assembly Language program line. Now we
will start to write small programs and in that way learn our first words of Assembly Language vocabulary. We will also
learn hou to END and c)erute a program once it has been typed in and hou to save.it on tape. Finally, we will learn a
new assembler directive: F7w.

Diselayins_a_Meisage

First.we will write.a small program tbat will displau the vords TEST.PROGRAM in the colter of the screen.
Before we begin to do this though, We must remember a little 	the dispiay screen's structure. AS we know trom
BASIC, the screen is divided into 24 rows and 32 columns, giving it 24 x 32 squares, or 768 positions. 	The top left
corner is the first position, and the bottom right is position 768.

. 	To display the message, you have to tell the computer several things. You must first tell it in which screen
position you want the message to begin. This number can be in decimal or in hexadecimal (base sixteen) form; if it in
the later, it must include the > sign fist to indicate this. You will also have to tell the computer how long the
message will be, exactly how many characters, including spaces. Finally, you will have to inform the computer what the
address (or label) of the text is, so it will know where to find what it has to display. Your listing mill look like
this:

7D00 045B 	LI R0,392
7D04 0354 	LI RlIST
7D08 0244 	LI R1112
7DOC A100 	BLWP&>028
7D10 0007 NN JMP NN
7D12 6100 ST TEXT'TEST PROGRAM'

(The first column of numbers is one memory location address; the second column is the present contents of that
address, which at this stage could be any hexadecimal number.) Follow the instructions in part 1 of this series to enter
the Line by Line Assembler and then begin entering these program lines.

Explanation_a_thelrogui

The first line means load register number zero with the immediately following decimal value of 392. 	The
instruction LI (Load Immediate) simply means 'place the following value in ...' RO specifies a certain register, which is
defined in the Editor/Assembler manual as a memory word that serves a specific purpose. For the time being, just think
of it as a box in the computer's memory where you place a value that you want the computer to remember. Seeing it in
this way, you should understand from the first line of the program that we are telling the computer to load the value of
372 (the decimal position of the center of the screen) into 'box' (register) number zero. we found this number in the
follouing manner: The message had to appear in row 12, halfway down the screen. As each row has 32 characters, the value
of the first position in that twelfth rou was found by multiplying 12 x 32. Then, me added 8 characters to end up at the
place where we wanted the message to begin.

The next line is quite simslar to the one me have just seen: We are telling the computer to load into register
number one the label of the place containing the text to be displayed. In reality, the computer converts the label, ST,
into a number (or memory address) for its use. In this way, the computer knows where to find the text to display.

The third line is similar to the other two: We are telling the computer to load the value 12 into register
number two. This will tell the computer how long the message is going to be.

The fourth line is the one that actually causes the message to be displayed on the screen. In this case, we
are trying to write a message which contained in the computer's memory (CPU RAM) to the screen (VDP RAM). There is an
Assembly Language routine which does this for us: the VMBW, or VDP Multiple Byte Write routine. As the name tells us,
This routine takes bytes from CPU memory and writes them into specified locations in the VDP memory (on the screen). If
we were using the Editor/Assembler, we could use the mnemonic VMBW in the following line:

BLWP aVKBW

BLWP is similar to GOSUB in BASIC. It tells the computer to branch and execute the routine (VMBW) we are
specifying. We can't write the line like this when using the Line by Line Assembler unless we add some extra lines to
the program. This is because this assembler does not recognize what 'V'SW' stands for. But from the Mini Memory manual
(page 35), we know that the VMBW routine is at hexadecimal address >6028. So in the Line by Line Assembler, if we write:

BLWP 3).6028

the line will be correct. Then, using 	information we have already placed into the computers memory, the
message will be displayed on the screen. The V"P.14 routine beginning at address >602E expects to find certain values in
certain registers: In register 0, it expects to find the fist location to use in its display. In register 1, it expects
to find the address of the message to display (in this case, a label which it interprets as the address >7D12). In
register 2, it expects to find the length of the string to display.

X
+ 	+ + + + + + + + 	 pAGE 3 + 	+ + + + + + + +

== 99'er ON LINE == FEBUARY, 1990 ==

(continued)

If we just stop the program there, however, the message flashes on and off before we can even see it. 	So tbe
next line creates an endlpss loop, causing the computer to jump (JMP) to that same line over and over. Note that the JMP
instruction in Assembly Language is the same as the GOTO statement in BASIC; neither is subject to any condition.

Finally, the only thing we need to include in our program is the text me want to display using the TEXT
directive, which we discussed in part one. This text must be labeled with the same label we used to refer to it in the
second line of the program: ST.

Minim the Prams

When you have finished typing in the lines as they appear in the program listing, you are ready to end. Type a
space, type END, and press ENTER. The following message will be displayed:

me UNRESOLVED REFERENCES
This means that all the labels mentioned in the program have been used in some way or other, that is, that you

have not mentioned a label in an operand field which did not exist in a label field. For instance, imagine that we had
not included the line with the TEXT directive and the ST label. Then, the second line of the program would be mentioning
a label which did not exist in the program. If you ended the program at that point, the message displayed would be:

0001 UNRESOLVED REFERENCES

Do not end the program if all the references have not been resolved because it will not run correctly. If you
press any key except ENTER, you will return to the memory location where you left off. Then you can use the SYM
directive (discussed below) to find the unresolved label or labels. If you do get the message:

0000 UNRESOLVED REFERENCES

meaning that all labels are correct, then press ENTER twice and you will return to the Mini Memory main menu.
Now let's look at how to RUN our program using EASY BUG. (Next time, we will learn how to SAVE the program by

name so that you mill be able to run it directly, like the LINES demonstration program.) Return to the title screen by
pressing QUIT, and choose the EASY BUG option. Press ang key to skip the menu, and when the question mark appears, type:

?E7D00

and press ENTER. This means execute the Assembly Language program which starts at memory location number 7D00
(which is where we began to write our program). You will see that the message we wanted to show is displayed immediately
on the center of the screen. Note that the only way to regain control of the computer in this program is by turning off
the power, and even if we do this, the program is still kept in Mini Memory.

If you now want to save the program on cassette, select EASY BUS, skip the title screen and type:

?S

S means save the contents in memory to tape. The computer will then ask:

FROM?

With this prompt, the computer wants to know FROM what memory location you want to begin recording. To be sure
that you get everything, it is best to type 7m, as it says in the manual. It is not necessary to include the > sign.
The computer will then ask:

TO?

With this prompt, the computer wants to know the last memory address to save. Here type 7FFF, again to be sure
you get everything. This means that you are storing the entire contents of the Mini Memory cartridge on tape. When you
have typed 7FFF and pressed EqTER, the usual procedure to save on tape will follow.

To load the contents later on, select EASY BUG and then choose the L command. The computer will then respond
with the standard sequence of instructions for loading from cassette.

When you have finished loading the program and the question mar appears, type E (execute Assembly Language
program), followed by the hexadecimal address where the program begins, in this case >7D00.

+ 	+ + + + + + + + 	 pAGE 4 + 	+ + + + + + + +
X

- 	1 I
lAhAerr-

1.11

== 99'er ON LINE == FEBUARY, 1990 ==

(continued)

Ihe SYM (Soballable) Directive

As we have seen,y it is very possible to get the message that there are one or sore unresolved references when
you END a program. If this happens, it is often very difficult to find those labels, especially when the program is
long. In these cases, use the SYM assembler directive. It is simple to use: Type a space to skip the label field, and
type SYM. Then press ENTER. All resolved and unresolved references will be displayed, up to a maximum of 32 unresolved
references. Then you can see exactly where the problem lies.

Try this out by typing the program to display text once again, except for the line where you include the text.
When you end the program, you will get the message:

0201 UNRESOLVED REFERENCES

as we have already seen. Press any key except ENTER to return to the assembler, and then type a space and SYM.
Press ENTER, and the following will be displayed:

RESOLVED REFERENCES
NN-7D10
UNRESOLVED REFERENCES (WORD)
ST-7D06

RESOLVED REFERENCES are all the labels which have been gien a value, or defined: UNRESOLVED REFERENCES (WORD)
are all the labels which are referenced in any instructions except JUMP instructions. (in our case, the ST label is
displayed, together with its memory location, indicating that our problem lies there.) A third possibility is:

UNRESOLVED REFERENCE (JUMP)

This is any label which has been referenced in a JUMP instruction but has not been given a value or defined.
For this situation, add this line:

7D12 xxxx 	JMP CV

and type SYM again. It will show you the resolved labels, the unresolved word label, and the unresolved jump
label (CV-7D12). In this way, it is easy to find out which labels are unreferenced in the program. Using the AOR6
directive, it is easy to move back to any line and correct it, or add anything missing.

Conclusign
In this part of the series we have learned many new things: how to type in, run and save short programs,

assembler instructions, and the assembler directives SYM and END.
Now that you are starting to understand the structure of Assembly Language programs, we are ready to look at a

whole list of important Assembly Language instructions so that you can start typing out your own programs. In the next
part of this series, we will also start saving programs by name, so we can run them directly.

You should not be able to experiment a bit by writing your own programs, based on what you have learned in this
article and prior knowledge. You will see that the dark cloud hanging over Assembly Language is beginning to diappear.

_ippmM ilis.■MiliMPPI.4%1411■•■■ils11111■•■•kih.,

+ 	+ + + + + + + 	PAGE 5 + 	+ + + + + + + +

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

