

99＇er Online

P．D．Box 11983
Edmonton，Alberta
Canada TSJ 3L1

To：

FEDFDFDD CDMDRitwrs

Canada＇s Largest Stock of 99／4A Hardware and Software．Many Third party $99 / 4 A$ and other computer products available．
－Extended Basic \＄1さ9．95
－Axiom Printer Interface $\$ 149.95$
－Super Extened Basic $\$ 129.95$
－Panasonic KXF 1090 Printer \＄$\$ \mathbf{F} 99.95$ －MBX incl．Baseball 1 other game $\$ 199.95$

Eのmロாtロா：A1 berta
Con dan TELATA

แSERS* SロCIETY

Date

New Membership Application
Renewal of Membership
Change of Address
/ /

NAME \qquad
ADDRESS \qquad

CITY \qquad FROVINCE or STATE \qquad

POSTAL or ZIP CODE \qquad TELEPHONE \qquad

* Please note that all membership money should be in CANADIAN FUNDS.
* May we release your name, address and telephone number on a club roster, to companies and other clubs?

YES \square No \square FOF ロFFICE LSE ONLY

99＇er oun LIME is the news letter of the Edaonton 99＇er Computer User＇s Society published ten times a year．All material contained in this news letter may be published in other news letters provided that source and author are identified unless otherwise stated．He welcome correspondence from all TI User Groups and will extend the same source crenit courtesy．

Mail news letter correspondence to：

$$
\begin{aligned}
& \text { E0D fFGS - EDITMR } \\
& \text { ST, ALE: ET: : : } \\
& \text { ST, ALLiAMABA } \\
& \text { 78N-266 }
\end{aligned}
$$

All other correspondence should be addressed to：

```
EDMONTON 9%'er COMPUTER USER'S SOCIETY,
            P/0 BOX 11983
            EDMONTON, ALBERTA
                    CAMADA
                    T5J-3L!
                    OFFICERS
                PRESIDENT----AILL CA:A:
                YIPGF-こ----PAUL HEL~O
                    çi:ご------SUSAN LIVINGSTON
```

Worthy assistants；Bob Pass（Editor），Bob Burley （Cassette Library and alectranics wizardry ），Gord Eradlee（Printed Media Library），Ton Hall（Disc Library）， and all of our members who contribute articles to this news letter！

DISLLALIER

All information published in this news letter is，for the nost part，the fruits of the labors of andeurs； therefore，we cannot guarantee that the inforation presented is always correct．

REEULARR MEETMGS

Reqular meetings of the Ednonton User：s Group are held on the second Tuesday of each menth on the g＇th floor of the General Services building of the University of Alberta from 7：00 till 10：00 Fh and are open to all meabers in good standing．Non－menbers may attend their first meeting free of charge．

The Erecutive Committee meets monthly also and members may attend these neetings as observers or to address a particular issue．Flease arrange with one of the officers listed above if you wish to attend．

ADVERTISIMG

Commercial advertising space is available in this neqs letter at the following rates：

Please dijcuss your combercial needs with Faul Helwig at the rext fecting or write to the F / D Bow above．
Members 䀦y advertise their personal computer related items for free tut are asked to ligit thair ads to about 20 words．Flesse màil your ads to the EDITOR＇S ADDRESS，
see above，or hand it to him at the gerieral meating；ads received by the 15 ＇th will appear in the next news letter．

MEMEERSHTP FEES

WORKIKG WITH FLRTH
by：Tom Hall and Michal Jaegermann
While most of us probably let our conouters collect dust during the fabulous summer we had，a few of us continued to plug away at uncovering some of the many aysteries still fo be discovered in the T199／4A．

This sumaer the major thrust of our activity was with II FORTH．After the usual number of blown disks and fraved neryes，we nanaoed to cone wo with a couple of useful utilities for FORTH：a Fast Copy routine and a disk zapper．In the process of writing the disk zapper， ae discovered a number of things about the way the il disk is put together that we didn＇t know before，sone of which we shared with you in the Septenber issue．One thing interesting to note is that，unlike most other programing languages which access files，TI FORTH＇s I／D is on a sector－fy－sector basis，not by files．It is possible to use Forth to write a conventional file，but FORTH will quite happily look at any part of a disk， ignoring the fact that it either is or is not part of a file．This wakes it quite，easy to accidentally erase something that makes it necessary to go back and start again．

Another aspect of FORTH that puts it in a class by itself is it＇s portability－－that is，a routine written in FORTH an one computer is frequently adaptable to another CPU with minimal nodifications．We discovered this for ourselves this sumber when we domiloaded a FORTH application written by Mr．Warren Hard in the 3086 version of FORTH，and we were able to get it rumning on the $T I$ with alwost no modifications at all．

One thing which we tackled fairly early on in our work with FDRTH was the 64 calumn aditar．He both aoreed that the white letters on a black screen with a dark blue strip at the botton left a lot to be desired．For those of you who use ordinary iv sets as menitors，one of the ＇facts of lifen we have to put up with most of the time is something called＂oversean＂．this condition causes the picture to appear to＂bloom＂and usually makes it difficult or impossible to see the tar left and／or right coluans on the screen．Depending on the type of TV you use，you may have a particular color combination which is both personally pleasing and which allows you to see the extrede edges of the screen．

In the 64 －column editor there are five separate parameters which you can set individually：the color of the bit－map（or＂tiny＂）character set，the background color of the upper portion of the screen，the color of the cursor，and the foreground and background colors of the split－screen strip at the botton of your screen．The two FORTH words ahich accomelish a！lhese things are With and YFILL，With is the cowimand wich，if you know much about TI＇s assenblar，you will recognize as the same as the word that instructs a prograi to write to one of the registers in the VDF portion of your console＇s fim． The word VFILL operates in a similar manner，except that it will write a specified character beginning at a specified location in UDP wenory，and repeat that character through a specified range of consecutive menory columy
locations.
There are three ways that you can change these parameters of the 64-column editor. You can enter the commands for the color combinations you want aanually from the keyboard, or you can write a word that will do the saae thing, and store it in one of your screens on disk, or you can adify certain lines in the 64 -column editor screens directly. The format of the three commands is as follows (in all cases it is assured that the necessary values will be entered in hexadecimal formatl:
b 7 WIT where "b" is the the background color of the upper portion of the editor screen

01000 fo VFIL ("f" is the hex number corresponding to the desired color of the tiny character set)

1000800 fb VFILL ("f" and " b " are the foreground and background colors of the strip at the bofton of the screen.

If you prefer, you can write a FORTH procedure using these routines, and simply execute the word or words to change the color of your editor. If you decide that you would like the change to be of a more perament nature, you can aake a couple of changes to Screen 23 on your systen disk. Line $\# 2$ of that screen begins with a definition of CINIT, which is the word that sets up all the default colors of the 64 -coluan editor every time the editor is called. Very carefully extend the definition of CINIT by adding your version of the VFILL and VHTR words mentioned earlier inta the empty space on line ${ }^{* 6}$ of screen \#2J. When you've done that, you should make sure to move the "; DECIMAL" from the end of the preceding line 50 that they fall after the aodifications you have made. If you use the ainiau of one space between words you should have no proble getting all of this to fit on the one line. The flashing cursor's color is defined by the statement in line $45: 1$ IF 50 SPRITE'. The 'F" is the hexadecimal word for 15 , which represents wite; simply change that value to whatever looks good to you with all the ofher changes you make, and that will take care of the cursor color! Once you have flushed these changes to disk, you have fade a permanent change to your 64-coluan editor's appearance, and no matter how you subsequently modify these colors in imfediate mode or frow other applications, every time you type
the word $E D^{*}$ or [screennumber]
EDIT, you will have these colors back again!

EERIMI PRIMTER ONERER

As all of you Gemini onners are probably aware, your instruction book leaves us II owners out in the cold. However, as reported in several news letters from the States, the Gewini folks have written an addendur to their manual specifically for TI/994A use. Included are deeo prograss and all the pin-outs to interface parallel or serial ports on the TI man̉2 card. Hrite to the following address requesting tnis freabie:

BEGIKNING BASIC PRGGRAMIMG

by: Bob Pass

For the beginning programer, ane of the toughest concepts to understand is the use of variable names. This is especially true for those of us who had trouble with algebra in school or for those too young to have yet been exposed to it's symbolisu.

To get started, you should read pages 13 to 17 of your Beqinner's Basic ianual which came with your computer. This month I will concentrate on numeric variables leaving string variables to a later article.

In BASIC, or for that atter any computer language, data that is to be processed must be stored in the machine's menory. The memory can be visualized as a syster of pigeon holes with each pigeon hole having a unique identifcation. In computerese, these pigeon holes are called "Memory Locations" and the identifeation is called the "Address". The computer can retrieve or write information to these locations by using the address to index it's memory store. A computer with $16,1000+$ mords (locations) of aemory would present us as programaers with quite a problem if we had to keep track of where we had stored data. For example, if we had stored two numbers and wished to add then, we would have to know the addresses (pigeon hole box numbers) of the wemory locations where the numbers were stored 50 we could tell the wachine where to get the numbers to be added.

Fortunately, a short cut has ben provided in Basic which allows the computer to adainister it's own memory Without the programer having to be concerned about it, This short cut utilizes variable nanets which are really tags that we are using to label some of those pigeon holes instead of using the mewory address. For instance, suppose that we wished to write a program that would add two numbers and print the result. The values of the numbers would be dependant on some other routines in the prograin 50 We can't fix their value at the tive the progran is written. The first tive we wish to rake a reference to one of the numbers in the prograh, we will give it a name; you can pick any name you want following a few rules which you should review by reading page II-II of your User's Reference Guide.

Let's give the first number the nawe "A" and assigna aiz to it. This can be done by using the LET, INPUT, -E:..: or (with X-BASIC) the ACCEPT AT statements. (Refer to the User's Reference Guide pages 11-45, 59, and 61 for instructions on how to correctly use these statements). For instance the BASIC statenent LET $A=14$ would cause the computer to take the following actions as it is setting up fiemory (that pause when you type "RUN"):

1. Set aside a location in meaory to hold numeric data.
2. Place the name of this area and it's address in a table of variable námes.
3. Write the value assigned (14) into the memory area.

Now, let's call the second number ' $\mathrm{B}^{\prime \prime}$ but it's value will be dependant on the user's input. Therefore, we fornt assign a value to 8 using the LET stateant. The :a:- statement will allow the user to assign a value to

BE: "EN VALUE FORB":
would cause the computer to set up memory just as it does for the LET statement. However, because there is no value for B when the variable table and newory space are set up, the computer will automatically assign Ba value of zero by writing that into the aemory space reserved
for E. During program execution, when the computer coases to the IMFIT statement, it will display the instruction "ENTER VALUE FDR g^{8} and then wait for the user to type in a value. When the computer receives this value, it will look up the name " $8^{\text {a }}$ in it's variable tatile to obtain the address of the gemory location reserved for the nution called " B ". The value entered by the user will niow be written into that location,

The two rubers are now in their respective eesory pigeon holes and they are tagged with distinctive naines of our choice. Now we can manipulate these nuabers siaply by referring to their names rather than their actual value. For instance, to add the two numbers and display the answer we could use the statement

PINT A+B

which would cause the computer to execute the following:

1. Look up the name " A " in the variable table and get the address of the memory space for "A".
2. Get the value of ${ }^{\prime \prime} A^{n}$ and place it in an adding register in the arithertic area of the computer.
Э. Repeat the above steps for " 8 ".
3. Add the two nubbers and display the result on the scroen.

The current values of A and B remain in their respective pigeon holes unchanged and can be used or modified any times under our control siaply by referencing their nawes. I hope that this will give some of you a better idea of what variable names are and how the computer uses them. Don't let the concept frighten you as you will find that it is not all that difficult once you have experimented with it for a while. The best way to learn programing is to sit down and do it! In the near future, I will do a tutorial on string variables.

LITILE GEi!

This little gem, by Jil Peterson of Tiger Cub Software, was spotted in the Miami County Area User's Group news latter:

To obtain an arcade effect in your musical tones or single note wusic, structure your CALL SDUND command as follows:

CALL SOUMD (D, N, V, H\$1.01, W)
(${ }^{\text {P }}$ is an asterisk).

DISK CATLLQGINGUTILIIES

by: Tow hall
There are perhaps two generalities which can be wade about the gajority of serious computer hobbyists (and TI ouners are certainly no exception!): (1) wost eventually purchase a disk drive of some sart; and (2) having done that, sooner or later that person will be in the market for sume neans of keeping efficient and readily accessible records of just what he has stored on his disks. Depending on individual requirements and preferences, the hobbyist may be content with the listings he can produce using his DISK MANAGER module (assuming, of course, that he okns a printer), or he way want sotething which boasts a few wore "bells and whistles." Also, for those poor souls who happen not to oan a printer, there is the need to be able to store information about library contents on disk.

There are three such disk-rataloging packages that I would like to discuss here. The first two are fron J K H

Software in Arlington, Virginia, $\because=$ is called the HULTI-DISK IMFDMER. It requires ET: \because ED BASIC and 32 K menory expansion, and retails for about $\$ 35$ U.S. it has the capability of creating disk files to store information about your cataloged disks. It comes ready-made for a wulti-drive system, and will print various sumary statistics about the disks you ara cataloging on your screen as the disks are being put through. One unique feature of this package is that it Will allow you to exclude up to 8 filenames that you don't want appearing in the final printout llike, how wany of your disks have a program called LOAD?), al though these filenames will be included for the purposes of statistical inforiation, and the printout will infor you of winch disks these excluded prograns are actually on. At the end of the cataloging process, after you've been given the option of saving all this information to one of the five pre-prepared files on disk (they come with the system and are already naned and set uph, you have the option of searching the file for a specified filename, and then you are asked if you want a printout. If you say no, the program abruptly ends, and that's that. One thing about the progras I don't like is the fact that there is no provision for listing to the screen information that is already stored on disk; the only way to see what is in the file is to print it.

Anr:th-r utility from the sante company is called SUPER CATA: : INF = $=$:ー". This program likewise requires EXTENDED BASIC and $: \therefore$ Memory Eapa be, but, unlike MULTI-DISk INFDRMER, SUPER CATAI. .-: does not create any files. It werely lets you keep caraloging your disks (until you ran out of aither disks or memoryi, and then sorts and prints the result. This program displays similar information on your screen as you catalog your disks, but that's ally once you've cataloged a disk, you won't see that information again unless you print it. About the only thing I can say for this progran is that it has a very fast sorting routine and the printout akes afficient use of paper.

I have deliberately saved the best for last: MASTER DISK FILE, from Extended Saftware, also an American company. It's only system requirement is EXTENDED BASIC, and at $\$ 15$ U.S. is, in in opinion, by far the best value $^{\text {on }}$ for your woney, and you don't even have to own a printer to make full use of it's capabilities. MASTER OISK FILE uses almost the entire qok of a single-sided diskette as virtual memory, and has the capability of storing up to 120 disk titles and/or 1100 progran titles. You can get all the information this package has to offer displayed either to your screen or to prinfer, and there are three listing options: you can have an alonabetical listing of disknames, showing the number of sectors used and available on each, as well as the number of files; or you can have an alphabetical listing of every file title displayed; or you can get a complete listing of every disk, arranged alohabetically by diskname, in a format sifilar to that wich is produced by the DISK MANAGER.

The entire program is menu-driven, and you are also given the option of storing information about your systen, such as whether you are ruming a one-, two-, or three-drive system, and the epecifications of your printer, including any special control codes unique to your particular requirenents. There is even a feature, especially useful for those without printers, which allows you to search the files for a specified disk or program title -- and lookup tine is fast!! Less than 25 seconds froma ruming program!

FUNNIES

One of the adyantages of beino disorderly is that you are constantly discovering new things!

LEITERTOTEEETIOR

Dear Editor:
I think that two articles in last onth's news letter do require soae comaents.

First, the article entitled "FLOPPY DISK STORAGE" by Thowas island is a little misleading. It actually describes a well known ethod of aking "floppies" into "flippies" to double the capacity of diskettes using single sided driyes. Well, in the Hay/84 issue of "The Smart Prograneera Craig Miller of Miller Graphics qives a very eaphatic don'T to the procedure. He explains that on single sided drives there is a felt pressure pad used on the back side of the disk to keep the disk pressed against the read/write head. This pad eventually picks up ainute specs of dust and grit which begins to grind into the disk surface. As long as this surface is never used to record data, no hara is done. Also, the inside of the disk jacket is lined with a soft fibrous aterial designed to pick up lint and dirt from the disk as it spins in the jacket. Hhen you flip the disk, it will spin in the opposit direction and trapped dirt can be pulled off the lining back onto the disk where it further contaminates the felt pressure pad and/or the head. I realize that many people are using "flippies" and report no ill effects. Bear in aind though that the dasage is accuaulative over a period of tiae and the end result can be catastrophic. Any one conteaplating this practice would be wise to check both sides of the coin.

Gecondly, the article "RADID SHACK DISK DRIVE" by the same author, Thomas Island. Some of the TI Disk Cantroller cards (PHP 1240) will support double sided drives; if you received a Disk Hanager 2 module with your disk system, you nay have double sided seciart for double sided drives. (Thus eliainating use of ": ippies'! -Ed).

I have been using non-TI drives (ie not Shuggart) winch are double sided to successfully acress both sides of ay diskettes with out any problea for soae t:pe (barring some silly and easily repaired bug in TI Fof - .'. The Disk Controller will not support double density storage. However double density drives will work at the single density level. fight now there is a double density controller available fron CorConp inc. but this card is not compatible with the Foundation 12日k Mewory Expansion card. Apparently Fondation is working on a fix.

Now the only thing we will need is a Winchester Hard Disk system for the TI and I understand somebody is garketing that beast now!

FOR EALE

Eight J'rd party qames in original cassettes with documentation. eq. Strike Force 99, Super Frogger, etc. Call Paul at 476-0669 weekdays after 3 : 30 .

LITIE GEIS

This one froa the Cental Iowa 99/4A User's Group. A new TI magazine called SUPER 99 MONTHLY will contain 12 pages published manthly starting this Septenber at a cost of 12 bucks (US?). For further information or a subscription, write to:

```
BYTEASFE Cru!u-E SERUICES
171 -
SULF: :'R. LA
\(7066{ }^{3}\)
```

If one of our aesbers does soring for the loot, how about a review for the rest of us?

MOTES FROM THE ExECUTVE WEETIWG

Meabership cards to be wailed out when printed．－－－－－ Look for a Member of the Month profile soon in news letter－－－－－－Watch for a job Sheet hhere volunteers can fight APATHY－－－－－Official letterhead being ordered for business letters．

MEXI MEETIMG YUESLAY OCI 9＇th AT 7：00

PROGRAM FEATURE

This month I a pleased to pass along a prograi written by one of our younger members．It is an interesting gane featuring good graphics and requiring skill to $\frac{1}{}$ aster．I have tested the program and found it to be bug free as listed．Be very carefull when typing in the data statements．The attached listing is in 28 colum format to aike your on screen editing easier：what you see on the sheet is what you should see on the screen．It＇s also in larger print to make thinks as siaple as possible！

Many thanks Paul for sharing this with us．Now for Paul＇s discription followed by the listing．

！MSTRUCTIDNS EDR＇THRUSTER：

On the fo＇l：n！in pages you mill find a print out for a game called ir：$\because=-$ ．The game has been tested and there are no errors；it it does not work，check your typing． （Also，rake sure ALPHA LDCK is UP－－ed）．You will need the following to run this qame：

$$
\begin{aligned}
& \text {-T1/994(A) computer } \\
& \text {-TV sat or wonitor } \\
& \text {-Joysticks cuses \#1) } \\
& \text {-T Estended Basic Module } \\
& \text {-Cassette or Disk storage device. }
\end{aligned}
$$

Just before you begin entering the progran，enter ＂Num＂and the fachine will auto－number your prograil lines for you．When you have finished tyoing the progran，save it to cassette or disk before you＂Rull it．It would be mise to save this one after about every 5 lines！The lines are so jatioded full of coding that I would hate to retype just one of them if oy system crashed during entry．－－edi．

After entering and saving，type RUN to play．There are two screens in this game and the object is to pick up all the diamonds on each screen without crashing into walls，floors，etc．Since you are lisited to the number of gen you have，you must be carafull on the Joystick． UP for thrusting，LEFT and R：Ar－for steering．The fire button is not required and the widill position is ignored． It will take you wany tries to conplete both screens． When you do succeed in getting through，try wodifying the prograw to increase the challenge by adding：

－面ore screens

－nore objects to pickup
－noving abjects to pick up
－misic or inproved graphics
guD LICK AND ENDY！
Paul Statike

$\frac{100}{110}$
$\frac{120}{140}$
$\frac{160}{170}$
$\frac{180}{290}$
$\frac{200}{220}$

FEM THFUSTEF

FEM
FEM FAUL GTAHLEE
FEM S9天2－148 AVE
FEM EDMONTON，ALEEETA
FEV CANADA TSA－1T9
FEN（4OE） $476-6667$
FEM
FEM EDMONTON $99^{\circ} E F$ FEM CUMFUTER USEF＂S
FEM SOCIETY
FEM
CALL LLEAF：CALL SCFEE
N（5）：FOF：$A=0$ TO 14 ：$:$ CALL
$\operatorname{COLOR}(A, 16,1): N E X T A$
：FANDOMIZE
2SO DISFLAY AT（11，10）：＂THFLS TEF＂：TAE（X）＂WFITTEN EY FA UL GTAHLKE＂：FOF A＝1 T
O 400：：NEXT A
 $=6:$ CALL SCFEEN（2）：DISFL AY AT（1，1）ERAGE ALL：＂HIG
H＂：HS？TAE（15）＂SCORE＂：SC
250 CALL CHAF： $96, " 181810.5 \mathrm{C} 1 \mathrm{C}$
10081E181858さCउETE10181818JC
7ESCSCIEXC＂）
260 CALL CHAF（59，＂0000001818
OOOOO＂：61，FFTt（＂0＂，16））： C
ALL COLOF（ $2,5,5$ ）
270 IF $F=1$ THEN FESTORE TOO
ELSE FESTOFE 410
230 CALL SOUND（2400， $110,30,1$
$10,50,700, ~ T O,-6,0 \%: F O F A=1$
T0 $20:$ READ A妻：$: ~ D I S$
FLAY AT（A＋2n1）：A $A: N E X T$ A
290 CALL HCHAF $(2,2,46,30):$
CALL HCHAF（ $2 \mathrm{~S}, 2,46, \mathrm{OO}$ ）：：CAL L VCHAF $(3,2,46,20):$ CAL
 CHAF（24，2．97，M）
उOQ $S=1:$ ：$T=0:$ ：CALL GFFIT E（\＃1，78，14，17，121，S，T）
उ10 CALL JOYST（1，X，Y）：CALL
FDSTTION（\＃1，F，C）： AF（INT $(F+7) / 8$, INT $(C+7) / 8$
，H）： $\mathrm{HF} H=59$ THEN 46O ELSE IF $H=46$ THEN 480
PO JF $\quad X=0 \quad A N D \quad Y=0$ AND $S \subset O$
JOF（ $x=0$ AND $Y=-4$ AND $5 \subset 10$ TH
EN S＝S＋． $5: G A L L$ MOTTON
（\＃1，S，T）：GOTD XIO ELSE IF

Z2G FEM DO NDT ENTEF LINES
3 FEM X2S TO E2B：FOF
SB FEM FAGE ARFEARANCES

[^0]

460 S，T＝0：$:$ CALL MOTION（\＃1． O，O）：FOF $A=0$ TO 20 STEF 5
：$:$ CALL SOUND $(-100,110, A$
， $8: 10):$ NEXT A ： $5 C=5 C+10$
O ：：DISFLAY AT（1，15）：＂SCOFE ＂：SC
$470 \mathrm{D}=\mathrm{D}-1:$ ：IF $\mathrm{D}=0$ THEN 540 ELSE CALL HCHAR（INT（F＋7）／E， INT $(\mathrm{C}+7) / 8,61):$ GOTO \mathbf{B} 0
490 CALL DELSFRITE（\＃1）：FOR $A=15$ TO 0 STEF $-3:$ CALL 5 OUND $(-99 ;-1, A, 110, A): N$ EXT A
490 FOR $A=0$ TO 15 STEF $3:$
CALL SOUND（－97，$-1, A, 110, A):$ NEXT A
$500 M=M-1$ ：IF $M=-1$ THEN 51
0 ELSE IF M＞－1 THEN CALL HCH
AR（24，2，97，M）：CALL HCH
$A F(24, M+2,61):$ GOTO \quad ：OO
S10 CALL CLEAF：：CALL SCREE
N（5）： $\mathrm{FOF} A=0$ TO $14:$ ： CALL $\operatorname{COLOR}(A, 1 b, 1): \operatorname{NEXT} A$
EO DISFI＿AY AT（12，10）：＂GAME
GUEF＂：：＂YOU HAVE FINISHED W
ITH A SCORE OF＂：SC：：
TAB（ 6 ）：＂FI＿AY AGAIN？（Y／N）＂
：IF SCOHS THEN HS＝SC
5この CALL ビEY（ホ，ド，S）：：IF ビ＝7
3 THEN CALL CLEAR：END ELS
E IF $\because=89$ THEN 240 ELSE
50
Fin CALL HCHAR（INT（F＋7）／B，IN $T(C+7) / B, \dot{1}):$ IF $F=1$ THEN F $=2 \mathrm{ELSE} F=1$
SGO CALL DELSFRTTE（\＃1）：FOR $A=1$ TO $200:$ NEXT A ：CAL
L SOUND $(400,262,0):$ ：CAL
L SOUND（200，196，0）
560 CALL 50 UND $(200,196,0):$
CALL SOUND（400，20日，0）：CALL SOUND（200，176，0）： FOR
$A=1$ TO 150 ：：NEXT $A:$ ：CALL SOUND（200，247，0）
$570 \mathrm{D}=27:$ FOF $A=1$ TO $90:$ NEXT A：CALL SOUND（250，26 2，0）：FOF $A=1$ TO $200:$ NEXT A ：GOTO 270

[^0]: TO IF $Y=4$ AND $5 \geqslant-10$ THEN CA LL FATTEFN（\＃1，98）：CALL SOU ND（－300，$-7,10): 5=5-.5$
 ：：CALL MOTION $(\# 1, S, T):$ GOT © 310
 340 IF $X=-4$ AND Tン－10 THEN C ALL FATTEFN（\＃1，96）：CALL SD UND $(-300,-7,10): T=T-.5$
 ：$: ~ C A L L$ MOTION（\＃1， $5, T):$ GO TO $\because 10$
 TGO IF $X=4$ AND TC10 THEN CAL L FATTEFN（\＃1，97）：：CALL SOUN $D(-509,-7,10): \quad T=T+.5:$
 ：CALL MOTION（抹：$S_{: ~ T}$ ）：：GOTO －10 ELSE -10

 ＝＝
 品（ ）DATA ：
 －
 ＂$=$ ：

 ＂

 ．．．．．
 ＂ ＝二．．．

 ．

 410 DATA $\quad=$＂

 ＂

 ＂يتي
 430 DATA $==.===.$.
 二＂

 ．．．$=$ 。 $=$ 。

