

STEUE THORPE...PRESIDENT JESSE JOLLY...UICE PRESIDENT KING FORKNER...TREASURER

SCOTTIE WILLIFORD...SECRETARY CHARLES STRINGER...LIBRARIAN GEORGE KORNFELD...EDITOR

स ********************************** \quad *********************************

PRESIDENT'S NOTES

THIS MONTH:S MEETING WILL BE ON MARCH 16, 1989 AT THE FIRST CONGREGATIONAL CHURCH. THE MEETING WILL BEGIN AT 6:3OFM. AMFLE FAFKiNg is Available on the south and west sides of the church. AFTER THE FRDGRAM IS FRESENTED, MEMEERS CAN COPY DISKS FROM THE LIERARY AND SFEND TIME SOCIALIZING WITH OTHER MEMEERS. NEXT MONTH'S MEETING WILL EE ON AFFIL 20, 1989.

THIS MONTH THE FROGRAM WILL BE ON THE FRINTER'S AFFRENTICE TOOLBOX. THE FROGRAM WILL BE USING BORDERS SECTION OF MCCANN SOFTWARE, GIVEN EY gedrge kobinfeld. he will demonstrate a friactical apflication for this GOFTWARE.
THE NEW VERSION OF TI-BASE VER.2.0 IS AVAILAELE FOR $\mathbf{\$ 7 . 9 5}$ +SHIF AND handling. all members that have furchased a ti-base will want this new UFDATE.
3.5" DRIVES ARE NOW AVAILAELE FOF THE TI-99/4A. THEY ARE FROM ALFHA SCIENTIFIC, PO EOX 626, CHESTERFIELD, MO 63006. FHONE, (314) 878-7117. THE COST: $\mathbf{0 9 3}+5 \mathrm{H}$.

FOF: SALE: CONTACT STEVE THORPE - 217-422-9859
EXFANSION BOX, TI CONTROLLER, 2DSDD $1 / 2$ HEIGHT DRIVES- $\$ 200$ TI MULTIFLAN - \$15 TI LOGO - \$15 TI WRITER - \$10 CARTRIGE EXTENDER \$15 FASCAL CARD AND MANUAL - \$65
CAFTRIGES- ADVENTURE, TI INVADERS, MUSIC MAKER, HOUSEHOLD EUDGET MANAGEMENT, HOME FINANCIAL DECISIONS; FERSONAL RECORD KEEPING, TEIIक20
1/2 HEIGHT DSDD DISK DFIVE - $\$ 45$
EXFANSION BOX, TI CONTROLLER, ISSSD DRIVE, RS232 CARD, З2K MEMORY CARD, CONGOLE $\$ 225$

IF YOU HA'VE NOT DONE SO, FLEASE RENEW YOUR MEMBERSHIP AT THIS MEETING OF SEND YOUR DUES TO OUR TREASUFEF, KING FOFKNER. THE CLUB NEEDS YOUR SUFFOFT TO CONTINUE. THANK YOU FOR THE GREAT SUFFORT AND FLEASE KEEF COMMING TO OUF MEETINGS.

STEVE THORPE

Minutes for Feburary 16,1989 Decatur g9ers

Charles Stringer
Robert Walker
Scottie Williford
Ray Henderson
King Forkner
Jenelle Dearen
Charles Rotinwell

Chris Kornfield
Aubrey Johnson
Bill Dearen
Jerry Rothwell
George Kornfield
James Freeman

OLD BUSSINESS:

Central Illinois Computerfest, gave check to $99 e r s$, for, $\$ 50.00$ as our part of the profits.

NEW BLSSINESS:

Liburary needs more input as to what is needed in our liburary. If you have not paid our dues please do so. We have $\$ 237.00$, in the club treasury.

COMMING SDON:

March: TPA(PRINTER APPRENTICE) George Kornfield
April: DATA BASE 1, Scottie Williford.
May: TELECCOMLNICATION, Scottie Williford.
June: RAM DISK, Steve Thorpe,
July: CSDG, King Forkner.
PROGRAM: TI BASE, Char les Stringer, demonstrated, how a file was created, as usual Charles did a great job.

KEEP THEM COMMING (SEC.)

Meeting was adjourned at 2130 hr .
Respectively submited, Scottie Williford
Feburary 16,1989

FOR SALE: $\$ 325.00$

> ALSO:

JERY BRUNSON
2058 W. LEAFLAND
DECATUR, ILL. 62522
$423-4377$

ANOTHER VERSION OF "MONOPOLY'--the Australian version by Ross Mudie, called 'TI-99-OPOLY'-was donated to the library at the last meeting. It's available for copying.

Also received-FUNNELWEB v4.13; this isn't likely to be of interest to the most of us, as the main change is a fix" of an incompatibility problem which occurs only if you're using 日oTH a Horizon ramdisk and a Myarc disk controller. There has been released, by the same authors, an optional go-column editor for use with the DIJIT AUPC'card. There is a review of this editor in the Lima of LG newsletter for February, as well as text-file prepared by DIJIT SYSTEMS concerning the hardware needed to generate and display an 80-column screen.

We received also from LIMA UG a neat utility for tape baged systems, called CSI FFINDEX. This program, written in BASIC (not XBASIC) will search a specially-prepared program Eape from the beginning until apecific progran is found. (the program cañ't be used to read already-existing tapes; but prograns could, of course, be read and re-recorded.) We hope that the Editor will be able to publish Charles Good's review in this ismue of the newsletter. Al though the program is being stored on disk, we will beglad to transfer it to tape for those who can't use disk. please call me at 877-2780 if you want the tape version, and i'll have it ready for the meeting. There will be a charge of \$1.25 for the cassette.

The LIMA disk also contains a MAIL LIST program written by Harry Allston, who is a correspondent of King Forkner's. Have you used this, King?

Because the existing disk is double-sided with some of the files in ARCHIVE'd format, I'm preparing a second version, which containg only the MAIL LIST and CSI \&FINDEX prograns and documents in SSSb format. Ask for LIMA/89/02.

Abstract

We've also received a disk from the TIGERCUB with a final version of the Public Domain catalog, an index of the TIGERCUB's TIPS (361 entries!!), and a number of other thing' which I haven't time to describe now. Again, the distribution disk is DSSD, so we'll put a part of it (PD catalog and the TIPS INDEX) into the library this month as disk TICUBE9/03.

If George can spare the wace, we'll follow this column with a list of the TI-PD disk numbers and titles. The disk TICUBE9/03 contains the titie (and authorehip; usually) of each program on each disk.

Q March 1989 C S Stringer

TI-PD public domain software for the TI-99/4A computer, $\$ 1.50$ per disk postpaid (minimum 8 disks please); number of sectors filled is indicated in parentheses). For a 9-page catalog listing all titles and authorm, send 1 which is deductable from first order. (specify TI-PD catalog) Offered as a copying service only, without warranty other than that copies are equal to the original. Make checks payable to Tigercub Software ino credit card orders). Send to Tigercub Softwares 156 Collingwood Ave.; Columbus OH 43213.

[^0]```
616. Some of the Best Music (343)
617. Claserical Music (340)
618. Asmorted Music (346)
619. Chopin's Polonaige (280)
620. Aseorted Music 2(351)
621. Hamilton UG Music Package .1 (346)
622. Assorted Music #2 (349)
623. A Diskfull of J.8. Bach (345)
624: Ansorted Music #4 (358)
625. Asmorted Music #5 (347)
626. J.S. Bach Music (340)
627. Asgorted Music #6 (354)
628. Some of the Very Best (349)
629. 01lie Hebert's Music (340)
630. Gregory Rashall Music Master (287)
631. Assorted Music #7 (352)
632. Sonata for Pianoforte (222)
633. Sonata for Pianoforte DS/SD
634. Strange Music (337)
635. Chuck Berry Tunes (218)
636. Christmas Songs w/Graphics (310)
637. Assorted Music %9 (337)
638: Classical Music *2 (339)
639. Assorted Music *10 (347)
640. Marches and College Songs (336)
641. Another Sing-Along (345)
642. Sing-Al ong PusiC %2 (236)
643. Chrintmas Music #2 (351)
644. Christmas Sing-Along (1) (340)
645. Claseical Music #3 {352)
646. Assorted Music %il (350)
```

647. Music Doodlers and Tinytunes (302)
648. Rhapsodie in Blue (287)
649. Assorted Music

650, Christmas Music w/Graphics 2 (357)
651. Sorgan II (145)
652. Christmas Music w/Graphics 3 (352)
653. Pop Demo V1.1 (225)
654. Chrigtmas Music w/Graphics 4 (255)
655. Assorted Music \#12 (349)
701. Musical Education (350)
702. Musical Education 2 (318)
703. Musical Education (188)
710. American Flags ( 360 )
711. Flags of the World (345)
712. Geography - U.S. States (341)
713. Geography - U.S. States *2 (212)
714. World Geography (179)
730. American Aistory (48)
750. Al phabet, w/Speech (343)
751. Children's Programs w/speech (357)
752. Al phabet for Preschool (329)
753. Children's Prog. w/Speech 2 (335)
755. Shapes, Colors, Directions (173)
760. Spelling (324)
770. Vocabulary and Reading (293)
780. Preschool Math (341)
790. Elementary Addition, Subtract (257)
791. Addition \& Subtraction (337)
796. Multiplication, Division (348)
797. Multiplication etc. (224)
800. Higher Math ( 355 )
801. Higher Math 2 (228)
810. Typing Practice (223)
815. Morse Code Teacher (155)
820. Health (354)
821. Health 2 (145)
830. Physics (111)
840. Nature (277)
850. Chemistry (277)
860. Astronomy (342)
861. Astronomy (32 (304)
870. Religion ( 346 )
871. Religion (\#2 (42)
890. Teacher's. Helpers (203)
900. Home Utilities ( 351 )
901. Home Utilities ${ }^{(32}$ ( 342 )
902. Home Utilities ${ }^{3} 3$ ( 350 )
907. Screen Drawing, Doodling (160)
909. High-Resolution Drawing (287)
910. Charts \& Graphs (178)
912. Calculators \& Converters (345)
913. Calculators \& Convert. \#2(147)
915. Financial Math (339)
916. Financial Programs (356)
918. Checkbook Prograns (203)
920. Business Programs (146)
950. Genealogy
970. Astrology, Numerology etc. (171)
980. Radio Utilities (220)
990. Sports Prograns (329)
1100. Character \& Sprite Editors (254)
1101. Programmer's Utilities (346)
1102. Sorts Scrambles Searches (228)
1105. Auto-l aaders (217)
1106. Disk Catalogers (268)
1107. Character Sets etc. (353)
1110. Assembly Utilities (357)
1111. Assembly Utilities, Routines (328)
1112. New Horizon Assembly Util. (269)
1119. Hardware Utilities (169)
1120. Sound Effects (197)
1130. Disk Labels \& Jackets (284)
1131. Gemini Printer Utilities (224)
1132. Word Processing Utilities (182)
1133. Banners, Graphs, etc. (203)
1135. Speech Utilities \& Demos (355)
1140. Music Composers (288)
1141. Assembly Music Compiler (265)

| $\begin{aligned} & 1145 . \\ & 1150 . \end{aligned}$ | Telecommunications Aids (342) Programming Tutorials (348) |
| :---: | :---: |
| 1160. | Assembly Tutorials \# ( 231 ) |
| 1161. | Assembly Tutorials \#2 (280) |
| 1162. | Assembly Tutorials \#3 ( 357 ) |
| 1163. | Assembly Tutorials \#4 (35日) |
| 1164. | Assembly Tutorials \#5 (340) |
| 1300. | Mathematical Games (133) |
| 1301. | Brain Games \#1 (344) |
| 1302. | Brain Ganes \#2 (345) |
| 1303. | Brain Games \#3 (352) |
| 1304. | Brain Games *4 (352) |
| 1305. | Two-Player Brain Games (335) |
| 1306. | Brain Games \#5 (345) |
| 1307. | Master Mind (322) |
| 1310. | Mamory Games (235) |
| 1315. | Sargon Chess (155) |
| 1320. | Mazes \#1 (342) |
| 1321. | Maze Games 2 (346) |
| 1322. | Maze Games 3 (338) |
| 1330. | Hangman Games (335) |
| 1331. | Wheel of Fortune \#1 (249) |
| 1332. | Wheel of Fortune \#2 (248) |
| 1333. | Word Games (310) |
| 1340. | Games by Rol and Trueman (333) |
| 1350. | Card Games \#1 (352) |
| 1351. | Card Ganes \#2 (348) |
| 1352. | Card Games \#3 (94) |
| 1356. | Dice Ganes (354) |
| 1360. | Board Games (321) |
| 1361. | Bingo (73) |
| 1362. | Checkers (238) |
| 1363. | Board Games \#2 (287) |
| 1367. | Gambling Games (237) |
| 1381. | Bowling (289) |
| 1382. | Golf (138) |
| 1383. | Billiards, Boxing, etc. (250) |
| 1400. | Adventure Disk \#1 (360) |
| 1401. | Adventure Disk \#2 (306) |
| 1402. | Adventure Disk \#3 (329) |
| 1403. | Adventure Disk \#4 (324) |
| 1415. | Hammurabi Games (268) |
| 1416. | Text Games 1 (313) |
| 1417. | Text Adventures (340) |
| 1425. | Graphics/Text Adventures (354) |
| 1426. | Graphics/Text Adv. ${ }^{\text {\% }}$ (322) |
| 1427. | Graphics/Text Adv. \#3 (325) |
| 1430. | Road Race Games (356) |
| 1431. | Keyboard Maneuvering (349) |
| 1432. | Road Crossing Games (344) |
| 1433. | Road Crossing Games \#2 (175) |
| 1434. | Keyboard Games (347) |
| 1435. | Keyboard Maneuvering \#2 (354) |
| 1436. | Slot Machines (343) |
| 1437. | Keyboard Games 2 (353) |
| 1438. | Kayboard Games \#3 (343) |
| 1440. | Q ${ }^{\text {a }}$ Bert Ganes (288) |
| 1445. | King Kong Type Games (351) |
| 1455. | Assembly Ganes (231) |
| 1456. | Assembly Ganes \%2 (346) |
| 1460. | Children's Prograns (345) |
| 1461. | Fun Games for Rids (353) |
| 1462. | Easy Games for Kids (346) |
| 1470. | Great Games (342) |
| 1471. | Assorted Games \#1 (348) |
| 1472. | Assorted Ganes \#2 (343) |
| 1473. | Texas Games Medley w/speech(346) |
| 1474. | Sea Battle Games (329) |
| 1475. | Joystick Games (342) |
| 1476. | Joystick Games \#2 (355) |
| 1477. | Joystick Games \#3 (346) |
| 1478. | Joystick Games \#4 (330) |
| 1479. | Two-Player Joystick Games ( 353 ) |
| 1480. | Two-Player Keyboard Games (353) |
| 1481. | Joystick Games \% ${ }^{\text {(345) }}$ |
| 1500. | Kaleidoscopes \& Displays (262) |
| 1501. | Sprite Djsplays (200) |
| 1505. | Poetry, Prose \& Nonsense (128) |

With the use of TFA TOOLEOX, of MCCANN Software, one can add a little something to a page, picture, or title. The something is a border. The border can be customized to enclose a small part to an entire page. There are two border fonts in TF'A TOOLEOX. Each contain ten different borders and each one can be changed by use variables controls.

The variable controls are density of the print, font style, extra dark: line feed size, intercharacter width, vertical size and horizontal size. Some of the controls are line feed, the vertical distances tetween Earriage return (1/216 th for Epson and 1/144 for Gemini). The intercharacter width is the distance between the horizontal elements of the border. Fixel width and height are computed automatically. The horizontal and vertical size are used to set the size of the border needed. The size of the border can be varied to a quarter of an inch.

In order to use the border font, first what size of font is needod in inches. Then setup the variables needed for project. Then select the border font that fits the needs of project. Then dump the border font to a printer to chect: size and style picted. When satified with border printed, then dump to file to dist to be used with FFINTEF'S AFFFENTICE software. Then the border can be called up with the scheduler frogram.

SINGLE DENSITY


## A review by Charles Good


#### Abstract

This one is for cassette tape users and for those interested in unusual programming techniques. Have you ever wondered if it was possible to mark with software the position of a specific program on a cassette tape full of many programs and then have the computer search the tape from the beginning until the specific desired program is found? TI did once develop such a systen for its $99 / 8$ computer, but TI's WAFERTAPE drive was never released. Coleco ADAM computers sccessfully use such a system. Not so for the Ti99/4A, according to many well respected comentators. I have read again and again in our exchange newsletters expert comment to the effect that with the TI there is no way to automatically, under software control, advance a long cassetta tape to the exact physical location wher a program starts. Well. as 1983 Joseph $E$. Bartle of Parish NY wrote a TI BASIC program that does this for the T1! I recently acguired a copy 1985 update of Joe's CSI FFINDEX progran (still entirely in TI BASIC with no assembly routines) and after removing a few bugs I am quite impressed with capability of this software.


CSI*FINDEX will do its stuff even if you don't have a printed list of which programs are on a program tape, even if you are using a tape recorder that does not have a numerical tape counter, and even if you are using a tape recorder that is not automatically controlled on/off by the 99/4A. CSIFFINDEX finds semi automatically the exact location of a progran on a long tape. The manual tape recorder operations required of the user are all prompted from the sereen. If you are using a TI compatible recorder, CSI\#FINDEX will advance the tape Eo your program's location after you press fast foreward, and then automatically stop the tape. If you are using a tape recorder that the $T$ I cannot automatically turn on and off, ESIFFINDEX will turn the screen from green to yellow and finally to red to indicate when you should manually press cassette STOP once the location of your program has been reached. Neat!

With CSI FFINDEX you can ereate a catalog of up to 10 programs you want to put on one side of a C60 tape and put this catalog at the beginning of the tape. The catalog includes program name fup to 12 characters with spaces anywhere), and there is also provision for catalog to display a 12 character comment for each of the 10 programe. You can then put your up to 10 programs onto the tape, with CSI ${ }^{2}$ INDEX advancing the tape recorder to the corract tape location where you should SAVE CSI each program. It is necessary to reload CSI:FINDEX for each of the programs you put on the tape. Thus, users with only a console/cassette system will appreciate the fact that CSI \#FINDEX is desi gned to be small enough to load into the MINIMEMORY module with SAVE MINIMEM. Then each time you need to load CSI FFINDEX, all you do is type OLD MINIMEM, and CSIFFINDEX boots in a few seconds. otherwise it takes about 90 seconds to load CSI FFINDEX from tape.

Later, when you want to use the tape you load CSI $F$ FINDEX into the computer and then load the tape's catalog from ESi. F INDEX. From the catalog di splay you select the number of the desired program on the tape. You are then instructed to rewind the tape to the beginning and press FABT FORWARD. CSI FFINDEX then advances the tape to the program's location, automatically stops the tape if you are using a TI compatible recorder, displays the name of your program on the screen, and informs you this program has been located. Then CSI 1 INDEX BREAKs to command mode and allows you to load your program in the normal way by typing OLD CSI and following all the usual screen instructions, except that you D6NDT again "rewind cassette tape". CSi\&FINDEX can easily be modified in extended basic to load the located tape program into the computer from within CSi*FINDEX rather than from command mode. Change line 1770 to read RUN "CSi".

If you already have a printed list of each progran on the tape and in which order the programs occur, you can bypass the catalog loading procedure. When you RUN CSI FFINDEX your first option is "LOCATION SEARCH (Y)N ", From here you can use CSI FFINDEX to locate the first or second or third, etc.; progran on the tape without using time to boot the catalog.

What's the secret? How does CSI\&FINDEX using only TI BASIC with no assembly routines do what all the experts say can't be done? Have you ever noticed how the tape recorder behaves when you read or write tape serial FILES (as opposed to PROGRAMSI? The recorder starts, reads in or writes what 1 presume to be a file header, then stops. Then the recorder starts again and reads or writes the first record and then stops. Then the recorder starts again and reads or
writes the second record and then stops, ete., ete. The total number of start/stop cycles equals the number of records plus one. The computer controls the turning on and off of the tape recorder motor and IT DOESN'T MATTER TO THE COMPUTER IF THE RECORDER IS SET FOR PLAY OR FOR FAST FORWARD. When searching for a program, CSI \&FINDEX writes a false file to the tape, turning the tape recorder motor on and off several times as this fileis written. The tape recorder is set for FAST FORWARD rather than for RECORD as this file is written, so the tape never receives any data. The computer cannot directly genge that the tape is not getting any data, so the computer continues to turn the recorder motor on and off as it writes its fake file to the tape. When turned on, the tape advances very rapidly because the recorder is set for FAST FORWARD. A tape file desjgned to write up to 10 records with a record length of 192 will go through up to 11 gtart/stop sequences on a C60 tape before the tape is completely wound up on the take up reel. This is how CSilfind locates physical blocks of tape space in which to insert prograns, and can later find a specific progran located at any one of these physical blocke of tape space. The firgt block (corresponding to the falge file's header) is where the catalog is stored, and the next 10 blocks (each corresponding to a false file record) are where the programs are stored. Enough space is includedin each of the program storage blocks to store the largest possible tape PRDGRAM.

## LIMITATIONS:

1--You can't use CSI*FINDEX with already existing program filled tapes. The spacing of the programs on the tape won't be right. fou need to load programs onto your program storage cassette tapes using CSIFFINDEX.

2--Problems may occur if different tape recorders are used to store and later play programs. If the FAST FORWARD speed of the two recorders differs very much cSi*FINDX will not correctly find the location of the desired program.

3--There is only roon for a short program in the last (loth) progran block before the tape runs out.

The author of CSI\#FINDEX has written some rather wordy documentation files to explain the use of CSI*FINDEX. Thege files are in PROGRAM format so that they can be loaded from tape and read by console/cassetteronly users. In general most userg can play around with the program and figure out how to use it without these docs. A sample tape program finding catalogiggpinted bel ow as is the CSi*FINDEX program isting (checksums added using EZ-KEYS PLUS) wi th permission of the author Joseph E. Bartle. It is released to the TI community as FAIRWARE. If you like it, send whatever you think it is wor th to joe at the address in the REM statements at the beginning of the program. Joe has other fairware offerings. Write or call himfor defails. User groups, not individuals, may obtain a copy of CSI;FINDX and the above mentioned dor files by sending disk and paid return mailer to the Lima User Group, P.0. Box 647, Venedocia OH 45894

SAMPLE FINDEX CASSETTE CATALOG NUM PROGRAMS


## TIPS FRDM THE TIGERCUB

## \#55

Tigercub Software 156 Collingwood Ave. Columbus OH 43213

The Tigercub has dipped a cautious paw into the cold dark mysterious waters of assembly, while still keeping a firm grip on trusty old Extended Basic. The result is an xBasic program that writes an assembly progran!

The following subprogram, when merged into any program which has reidentified characters, and called after the characters have been reidentified, will write a source code which can be assembled into object code, loaded from xBasic and linked to instantly access the character set.

The source code is based on 2FONTS/S by Barry Traver, who gives credit to Mac MéCormick, David Migicovsky and Karl Schuneman.

19000 SUB CHARSUB (HX $\$()$ )
19001 DISPLAY AT ( 12,1 ) ERASE ALL:"Source code fil ename?": "DSK" i: ACCEPT AT (13,4)SIZE (12) BEEPiF\$: OPEN W:"DSK" \&F
19002 DISPLAY AT(15,1): "LINK ABLE program name?" : ACCEP T AT(16,1)SIZE (6):P
19003 DISPLAY AT (18,1): "Rede fine characters from ASCI 1 to ASCII"
19004 ACCEPT AT (19, 7 ) VALIDAT E(DIGIT)SIZE(3):F
19005 ACCEPT AT $(19,21)$ VALIDA TE(DIGIT)SIZE(3): T
19006 PRINT "1:TAB(8) "DEF"


EQU $>2024^{\prime \prime}:$ PRINT $1:$ : STATUS EQU >837C"
$19007 \mathrm{NB}=(\mathrm{T}-\mathrm{F}+1) * 8: \mathrm{CALL} \mathrm{D}$ EC HEX(NB,H\$): : $A=768+F=8: 1$ CALL DEC HEX (A, A
19008 FOR $\mathrm{CH}=\mathrm{F}$ 个O $T$ : IF CH <144 THEN CALL CHARPAT (CH,CH \$) ELSE CH\$ $=H X$ (CH)
19009 IF FLAG=0 THEN PRINT * 1:"FONT":: FLAG=1
19010 FOR $J=1$ TO 13 STEP 4 :
 ": NEXT J : M MseSEGt (Ms, 1 ; 23) \&" *"\&CHR (CH)

19011 PRINT \#1:TAB(8);"DATA
"\&M\$ : : M\$="" : : NEXT'CH
19012 PRINT U1:P\$1TAB(B): "LI


1:TAB(8):"LI R2』)"\&H\$ 19013 PRINT $1:$ TAB (8):"BLWP GUMBW": TAB (B) "CLR ESTATUS" :TAB (8): "RT"; $\mathrm{TAB}(8)$; "END": :
CLDSE \#1
19014 SUBEND
19015 SUB DEC HEX (D,H\$)
19016 X
: : $A=D+65536$ ( $D$ >32767)
19017 H\$=SEG* (Xt (INT (A/4096 ) AND 15) $+1,1$ ) \&SEG (X (INT (A (256) AND 15) +1, 1)\&SEG ( X ( , (I NT (A/16)AND 15)+1, 1)\&SEG (X , (A AND 15)+1,1):1 SUBEND

Now to try it out. You probably know that CALL EHARSET will restore reidentified characters below ASCII 96 to normal form, but not those above, so let's write a routine to restore those. Clear the memory with NEW, merge in the above, which you should have SAVED with -
SAVE DSK1. CHARSUB, MERGE
by MERGE DSK1.CHARSUB. Add a line -
100 CALL CHARSUB(HX ()) and RUN. Answer the filename prompt with DSK1. OLDLDW/S, the next prompt with OLDLO and select ASCII 97 to 127.

When done, insert the Editor/Assembler module and its disk Part A. Salmet Assembler, $Y$ to load assenbler, give the source code DSK1. OLDLOW/S, object code DSK1.DLDLOW/O, just press Enter at next prompt, and R for options. You should get 0000 ERRORS.

Now key in this routine to test your program.
100 CALL INIT : : CALL LOAD(" DSK1. OLDLOW/O") is FOR CH=33 TO 126: CALL CHAR (CH, "FFEI 8181818181FFn): 1 PRINT CHR ( CH):I NEXT CH
101 CALL $K E Y(0, K, S): 1$ IF $5=0$ THEN 101 ELSE CALL CHARSET 102 CALL $\operatorname{KEY}(0, K, S): 1 F S=0$ THEN 102 ELSE CALL LINK("OL DLOW")
110 GOTO 110
Press any key to restore the upper case characters by CALL CHARSET, any key again to use the CALL LINK.

You are now ready to use the routine to copy all kinds of character sets from the programs in your library. You don't have any such programs? Not to worry. You don't have to reidentify characters one by one with one of those
graphics editor programs. Pou can jugt manipulate the existing hex codes of the normal characters. I have created nearly 50 different character sets by that method!

The space occupied by a character on the screen is really an $8 x 8$ square of 64 tiny dots. Various dots are turned on (colored) and off (transparent) to create a pattern - just the opposite of light bulbs on a scoreboard.

And those on-and-off dots are really the binary numbers which the computer uses. But fortunately the computer lets us uge hexadecimal numbers rather than binary. The following will print out a reference chart of decimal to binary to hexadecimal. You can easily convert it to dump to a printer.

10 DISPLAY AT ( 6,1 ) ERASE ALL: "DEC BIN HEX"
100 FOR $J=0$ TD 15 i: CALL DE C BIN(J, B $)$ : : CALL DEC HEX(J F( ) : : DISPLAY AT ( $J+8, I): J ; T$ AB (S) ; Bs ; TAB (10) ; SEG (H*, 4, 1 ):1 NEXTJ
21020 SUB DEC BIN(DE, B $\$$ ) : : D "Da 1: IF $D=0$ THEN $B \leqslant=" 0000^{"}$ is SUBEXIT
21021 IF $D=1$ THEN 21022 : $X$
 X)) imB 1 THEN 21021
21022 BGe"1"\&BQ $: 1$ B B $=$ RPT ("O",4-LEN(BQ4))\&BA i: Bas= $" " 1 i$ SUBEND
21039 SUB DEC HEX (D, H\$)
21040 X ${ }^{(3 n}{ }^{* 0123456789 A B C D E F " ~}$
:: $A=D+65536$ ( $D>32767$ )
21041 HB=SEG (X )AND 15) +1, 1)\&SEG (X (INT (A (256)AND 15) +1, 1)\&SEG ( X (1) (I NT (A/16) AND 15) +1 , 1)\&SEG $\$$ ' $X$ ( ( (A AND 15)+1,1): SUBEND

And this routine will show you how each letter is formed, by binary $0^{\prime} s$ (off) and 1's (on), for each key you press. I put it in merge format so you can MERGE it into any program and CALL it to examine the characters.

[^1]its hexcode．＂
17003 DISPLAY AT（8，1）：＂Press Enter to see the char－acter 17004 CALL $\operatorname{KEY}(0, K, 5):$ IF K $=13$ THEN 17005 ELSE IF S＝0 0 R K＜32 OR K〉143 THEN 17004 E LSE 17007
17005 CALL CHAR（48，＂FF＂\＆RPT\＄ （＂81＂，6）\＆RPT（＂FF＂，9））
17006＇CALL KEY $(0, K$ ，S）：IF S ＜1 THEN 17006 ELSE CALL CHAR （48，＂00384444444444380010301
$01010103 B^{\prime \prime}$ ）：GOTD 17004
17007 CALL CHARPAT（ $\mathrm{K}, \mathrm{CH}$（）
$17008 \mathrm{R}=12$ ： 1 FQR J＝1 TO 15
STEP 2
 $\angle$ HEX BIN（H⿻日禸 B
17010 DISPLAY AT（ $\mathrm{R}, \mathrm{B}$ ）：B
17011 H ALL HEX BIN（H\＄，B
17012 DISPLAY AT（R，12）：B ：：
DISPLAY AT（R，18）：SEG（CH
2）：R＝R＋1：NEXT J ：DIS PLAY AT $(22,6):$ CH ：：GOTO 17 004
17013 SUBEND
17014 SUB HEX BIN（H＊B ${ }^{1}$ ）I：H
 $=10000 \times 0001 \times 0010 \times 0011 \times 0100 \times 0$ $101 \times 0110 \times 0111 \times 1000 \times 1001 \times 1010$ x1011×1100×1101×1110x1111＂ 17015 FDR JIILEN（H ${ }^{2}$ ）TO 1 STEP
$-1:$ ：
$17016 \mathrm{X}=\mathrm{POS}(\mathrm{HX} \$ \mathrm{X}\{1)-1$ ：：$T$

 BEND

And to reidentify a char－ acter，you just change the numbers and letters in the 16－digit hex code which represents the binary pat－ tern．By writing little routines to switch those digits around，all kinds of things can be done．

For instance，the normal characters always have the top row of dots turned off， to provide spacing between lines of text on the screen．If you want taller characters you will have to double－space the tines，but you can create them by making the numerals and upper case characters con－ sist of the $2 n d-7$ th rows， the 7 th row again，and the 8th row－it just happens to work out．

18000 SUB HIGHCHAR ：：FOR CH －48 TO 90 ：$:$ CALL CHARPAT（CH CH\＄）：CALL CHAR（CH，SEG\＄（CH
 ：$:$ SUBEND

I made that a subprogram so you can MERGE it in and use it to modify other char－ acter sets．

If we take the hex code apart， 2 digits at a time， and reassemble it backward，

100 CALL CLEAR ：：FOR CHx33 TO 90：CALL CHARPAT（CH，CH ）：FOR $\mathrm{J}=1$ TO 15 STEP 2 ： 8 CH2＊＝SEG＊（CH EXT J ： 1 CALL CHAR（CH， CH 2 ）： ＂CH2\＄E＂＂I NEXT CH
110 DISPLAY AT（12，1）：＂？NWDD EDISPU＂，＂UT EHT DENRUT OHW： YEH＂ $1:$ GOTO 110

That one was in my first Tips newsletter，years ago， but it is much more effec－ tive at assembly speed．

This one shades characters on their left edge by turn－ on the pixel to the left of the leftmost＂on＂pixel，if any．Also try it in combina－ tion with HIGHCHAR．

18001 SUB NEWCHARS ：FOR CH $=48$ TO $122: 1$ CALL CHARPAT（C H ，CH\＄）： F （ $\mathrm{J}=1$ TO 15 STEP 2
18002 CH 2 ＝$=\mathrm{CH} 2$ \＆ 8 SEG（＂0367CD EF＂，POS（＂01234567＂，SEG（CH\＄， $\mathrm{J}, 1\}$ 1），1）\＆SEG（CH NEXł J：CALL CHAR（CH， CH 2 ）： $\mathrm{CH} 2 \$=" 1$ ：NEXT CH i：SU BEND

This one uses HIGHCHAR to heighten the character and then blanks out three rows． Try following it with
NEWCHARJ．
18030 SUB NEWCHAR10 ：：A $0^{\prime \prime}$ ： 1 FOR CH＝48 TO 90 ： 1 CAL $\angle$ CHARPAT（ $\mathrm{CH}, \mathrm{CH}$ ）I CH CHESE （CH ${ }^{2}$ 3，10）\＆RPT＊（SEG（CH 2）2）\＆SEG（CH 15,2 ）
$18031 \mathrm{CH}=5 E G{ }^{2}(\mathrm{CH}, 1,4) \& A \& S$
 2）\＆A \＆\＆EG（CH 15,2$):$ CALL CHAR（CH，CH $): 1$ NEXT CH ：：SU BEND

The next one，which works only on ASCII 97－122，makes tall characters ridiculously elongated above．

18050 SUB NEWCHAR2O ：$:$ FDR C H＝97 TO 122 I：CALL CHARPAT $\mathrm{CH}, \mathrm{CH}$ ）：：CALL CHAR（CH，SEG\＄
 4）\＆SEG（CH $\%$ ，11，6））：1 NEXt ${ }^{2}$ C＇ ：：SUBEND

This one has the chaacters raised by one line，widened one column at left and two columne at right to make a full $8 \times 8$ character which must be double－spaced horiz－ ontally and vertically．

18090 SUB NEWCHAR27 ：FOR C H＝48 TO $122:$ CALL CHARPAT（ $\mathrm{CH}_{2} \mathrm{CH}$ ）： $\mathrm{CH}=5 \mathrm{EG}(\mathrm{CH} \$ 3,10)$ \＆RT ${ }^{2}$（SEG（CH （ $\mathrm{CH}, 15,2$ ）：：FQR $3=1$ TO 15 S TEP 2
18091 CH2 $=$ CH2 $k$ SEG（＂014589 CD＂POS（＂O1234567＂SEG（CH J，1）1）1）\＆SEG（＂0129＂POS（1 $048 C^{\prime}, ~ S E G \$(C H, J+1,1)$ 1）${ }^{2}$ 1）
$18092^{\prime}$ NEXT J ：CALL CHAR（CH ， CH 2 ） $\mathrm{B}^{(1 \mathrm{CH}} \mathrm{CH}=" 1$ ： NEXT CH i：SUBEND

Those who have my Nuts \＆ Bolts disks will see how valuable this assembly can be to make instantly avail－ able the routines for double haight and double width characters，etc．，etc．And if you have Todd Kaplan＇s amazing ALSAVE routine from the Genial Traveler Vol．I No．3，you can imbed them in your XBasic program for fast loading．

And you can merge CHARSUB into any character editor or sprite defining program and， with a bit of modification， use it to convert your crea－ tions into fast－loading assembly．

These assembly loads are compatible with my BXB，so you can also load character sets into sets 15 and 16 ， ASCII 144－159．However，the CHARPAT statement cannot access ASCII above 143，so in this case you must dim－ ension an array in the pro－ gram you are copying from， as DIM $H X$（159），and place the hex codes in the array using the ASCII as the sub－ seript number，such as CALL CHAR（ $\mathrm{CH}+64, \mathrm{CH}$ ） $1:$ $\mathrm{HX}(\mathrm{CH}+64)=\mathrm{CH}$ ，so that they will be passed to the subprogram．And don＇t CALL INIT after you have called BXB！

So，now you try creating your own screen fonts！

Memory full，
Jim Peterson

| NEXT MEETING DATE: <br> THURSDAY, MARCH 16, 1989 |  |
| :---: | :---: |
|  | t ijecatur 99er home conputer users group t |
|  | : APPLICATION FOR MEMBERSHIP |
| = | $!$ ! |
|  | ( Date __ ${ }^{\text {_ }} 189$ |
| ALL HEETING DATES: | + |
| 6:30 PM T0 ???? PM | 1 ! |
| FIrsi COMGRagatiowal church | 1 BAME |
| 3465 NORTH MacARthur Rd. | 1 |
|  |  |
|  | 1 1 |
|  |  |
| DW) MAARCH MEETIMG DATE<<<<< | 1 ) |
|  | 1 PHONE |
| S H T W T F S | $t$ atil |
|  |  |
| 1234 | 1 ! |
| $\begin{array}{llllllll}5 & 6 & 7 & 8 & 8 & 10 & 11\end{array}$ | 1 DUES: MEMBERSHIP $\$ 20$ |
|  | $t$ ( |
| $\begin{array}{lllllll}19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$ | student $\$ 15$ |
| $\begin{array}{llllll}26 & 27 & 28 & 29 & 30 & 31\end{array}$ | 1 |
| - | $t$ |


[^0]:    600. Sam Moore Jr. Music \#1 (341)
    601. San Moore Jr: Music 2 (343)
    602. Sam Moore Jr. Music 3 (348)
    603. Sam Moore Jr. Music 4 (337)
    604. Bill Knecht Hymne (334)
    605. Christmas Music (318)
    606. Holiday Music (339)
    607. Great Songs by Bill Knecht (351)
    608. Music by Bill Knecht (295)
    609. March Music ( 329 )
    610. Tigercub Country Music (356)
    611. Christmas Sing-Al ong (351)
    612. J. Stephen Fonter Music 1 (332)
    613. J. Stephen Foster Music *2 (317)
    614. Bach Music Programs (338)
    615. Sing-Along Music (351)
[^1]:    17000 SUB CHARUIEW
    17001 ! programmed by Jim Pet ersan Feb 1989
    17002 DISPLAY AT ( 1,1 ) ERASE A LL: "CHARACTERS IN GINARY \& $H$ EX": : "Press any key to see the binary representation of the screen eharacter and

