
 * RXB MANUAL *

 * (C) 1 JAN 2012 *

 * by *

 * Richard Lynn Gilbertson *

 IMPORTANT NOTICE REGARDING PROGRAMS AND MANUAL MATERIALS

 The following should be read and understood before purchasing

 and/or using RXB. Richard Lynn Gilbertson does not warrant

 that the program and accompanying book materials will meet

 the specific requirements of the consumer, or that the

 programs and manual will be free from error. The consumer

 assumes complete responsibility for any decision made or

 actions taken based on information obtained using these

 programs and manual materials. Any statements made concerning

 the utility of Richard Lynn Gilbertson's programs or manual

 materials are not to be construed as express or implied

 warranties.

 RICHARD LYNN GILBERTSON MAKES NO WARRANTY, EITHER EXPRESSED

 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED

 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 PURPOSE.

 REGARDING THESE PROGRAMS OR MANUAL MATERIALS OR ANY PROGRAMS

 DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILIABLE SOLELY

 ON AN "AS IS" BASIS.

 IN NO EVENT SHALL RICHARD LYNN GILBERTSON BE LIABLE TO ANYONE

 FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE

 IN CONNECTION WITH OR ARRISING OUT OF THE PURCHASE OR USE OF

 THESE PROGRAMS OR MANUAL MATERIALS, AND THE SOLE AND

 EXCLUSIVE LIABILITY OF RICHARD LYNN GILBERTSON, REGARDLESS OF

 THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF

 THE RXB PRODUCT. MOREOVER, RICHARD LYNN GILBERTSON SHALL NOT

 BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER AGAINST THE

 USER OF THESE PROGRAMS OR MANUAL MATERIALS BY ANY OTHER

 PARTY.

 Some states do not allow the exclusion or limitation of

 implied warranties or consequential damages, so the above

 limitations or exclusions may not apply to you.

 * TABLE OF CONTENTS *

 TITLE SCREEN of RXB.....(example)...................PAGE 1

 TITLE SCREEN of RXB.....(explanations)..............PAGE 2

 SPECIAL FEATURES OF RXB (explanations)..............PAGE 3

 SUBPROGRAMS or COMMANDS (By alphabetical order)

 NAME---------------------TYPE----------ACCESS---------PAGE-##

 AMSBANK...............SUBPROGRAM........AMS............ A1

 AMSINIT...............SUBPROGRAM........AMS............ A2

 AMSMAP................SUBPROGRAM........AMS............ A3

 AMSOFF................SUBPROGRAM........AMS............ A4

 AMSON.................SUBPROGRAM........AMS............ A5

 AMSPASS...............SUBPROGRAM........AMS............ A6

 BASIC.................SUBPROGRAM........DEVICE......... B1

 BEEP..................SUBPROGRAM........SOUND.......... B2

 BIAS..................SUBPROGRAM........CONVERSION..... B3

 BLOAD.................SUBPROGRAM........DISK........... B4

 BSAVE.................SUBPROGRAM........DISK........... B5

 BYE............SUBPROGRAM or COMMAND....EXIT RXB....... B6

 CALL..................SUBPROGRAM LIST.................. C1

 CAT...................SUBPROGRAM........DISK........... C2

 CHAR..................SUBPROGRAM........SCREEN......... C3

 CHARSETALL............SUBPROGRAM........SCREEN......... C4

 CLSALL................SUBPROGRAM........DISK........... C5

 COINC.................SUBPROGRAM........SPRITE......... C6

 COLOR.................SUBPROGRAM........SPRITE......... C7

 COPY....................COMMAND.........LINES.......... C8

 CUTDIR................SUBPROGRAM........DISK........... C9

 DEL.....................COMMAND.........LINES.......... D1

 DIR...................SUBPROGRAM........DISK........... D2

 DISTANCE..............SUBPROGRAM........SPRITE......... D3

 DUPCHAR...............SUBPROGRAM........SCREEN......... D4

 DUPCOLOR..............SUBPROGRAM........SPRITE......... D5

 EA....................SUBPROGRAM........DEVICE......... E1

 EALR..................SUBPROGRAM........DISK........... E2

 EAPGM.................SUBPROGRAM........DISK........... E3

 EXECUTE...............SUBPROGRAM........ASSEMBLY........ E4

 FCOPY.................SUBPROGRAM........DISK........... F1

 FILES.................SUBPROGRAM........DISK........... F2

 GCHAR.................SUBPROGRAM........SCREEN......... G1

 GMOTION...............SUBPROGRAM........SPRITE......... G2

 HCHAR.................SUBPROGRAM........SCREEN......... H1

 HEX...................SUBPROGRAM........CONVERSION..... H2

 HGET..................SUBPROGRAM........SCREEN......... H4

 HONK..................SUBPROGRAM........SOUND.......... H5

 HPUT..................SUBPROGRAM........SCREEN......... H6

 INIT..................SUBPROGRAM........ASSEMBLY....... I1

 INVERSE...............SUBPROGRAM........SCREEN......... I2

 IO....................SUBPROGRAM........TSM9901 CHIP... I3

 ISROFF................SUBPROGRAM........INTERUPTS...... I12

 ISRON.................SUBPROGRAM........INTERUPTS...... I13

 JOYST.................SUBPROGRAM........JOYSTICKS...... J1

 KEY...................SUBPROGRAM........KEYBOARD....... K1

 LIST....................COMMAND.........DISK........... L1

 LOAD..................SUBPROGRAM........DISK/ASSEMBLY.. L2

 MKDIR.................SUBPROGRAM........DISK........... M1

 MOTION................SUBPROGRAM........SPRITE......... M2

 MOVE....................COMMAND.........LINES.......... M3

 MOVES.................SUBPROGRAM........MEMORY.(ALL)... M4

 NEW............SUBPROGRAM or COMMAND....MEMORY.(XB).... N1

 ONKEY.................SUBPROGRAM........KEYBOARD....... O1

 PEEKG.................SUBPROGRAM........GROM........... P1

 PEEKV.................SUBPROGRAM........VDP............ P2

 POKEG.................SUBPROGRAM........GRAM........... P3

 POKER.................SUBPROGRAM........VDP REGISTERS.. P4

 POKEV.................SUBPROGRAM........VDP............ P5

 PROTECT...............SUBPROGRAM........DISK........... P6

 QUITOFF...............SUBPROGRAM........KEYBOARD....... Q1

 QUITON................SUBPROGRAM........KEYBOARD....... Q2

 RENAME................SUBPROGRAM........DISK........... R1

 RES.....................COMMAND.........LINES.......... R2

 RMDIR.................SUBPROGRAM........DISK........... R3

 RMOTION...............SUBPROGRAM........SPRITE......... R4

 SCSI..................SUBPROGRAM........SCSI CONTROLLER S1

 SECTOR................SUBPROGRAM........DISK........... S2

 SIZE...........SUBPROGRAM or COMMAND....MEMORY (ALL)... S3

 SWAPCHAR..............SUBPROGRAM........SCREEN......... S4

 SWAPCOLOR.............SUBPROGRAM........SPRITE......... S5

 USER..................SUBPROGRAM........DISK........... U1

 VCHAR.................SUBPROGRAM........SCREEN......... V1

 VERSION...............SUBPROGRAM........GROM RXB....... V2

 VGET..................SUBPROGRAM........SCREEN......... V3

 VPUT..................SUBPROGRAM........SCREEN......... V4

 XB....................SUBPROGRAM........DEVICE......... X1

 XBPGM.................SUBPROGRAM........DISK........... X2

 REA DOCS... REA1

 AMS DOCS... AMS1

 PAGE 1

 This is a copy of the RXB title screen:

 FIRMWARE CONTROL

 * VERSION = 2012 *

 * R X B *

 * *

 * creator *

 * *

 * Rich Gilbertson *

 >> press ============= result <<

 ANY KEY = DSK#.LOAD

 ENTER = DSK#.UTIL1

 (COMMA) , = DSK#.BATCH

 SPACE BAR = RXB COMMAND MODE

 (PERIOD) . = EDITOR ASSEMBLER

 NOTE: 0 (ZERO) defaults to WDS1.LOAD or after pressing

 ENTER defaults to WDS1.UTIL1

 PAGE 2

 This is a explanation of the keys of the title screen:

 ANY KEY = DSK#.LOAD

 This asks for which drive number the LOAD program is on. Any

 key means just what it says. The flashing # symbol indicates

 this option is waiting for a response. If after 5 seconds

 no key is pressed a search for LOAD begins.

 Drives 1 to 9 are searched for the XB LOAD program. If the

 LOAD program cannot be found, like old XB it goes to the XB

 command mode eventually after many searches. Pressing 0

 (Zero) will default to WDS1.LOAD

 --

 ENTER = DSK#.UTIL1

 After pressing ENTER the number symbol flashes indicating

 this option has been selected. Any key will then select the

 Drive to load the UTIL1 program from. If after 5 seconds no

 key is pressed a search for UTIL1 begins. Drives 1 to 9 are

 searched for the UTIL1 program. This will only load a EA5

 program image file named UTIL1. Pressing 0 (Zero) will

 default to WDS1.UTIL1

 --

 (COMMA) , = DSK#.BATCH

 After pressing the ,(COMMA) key the number symbol flashes

 indicating this option has been selected. Any key will then

 select the Drive to load the BATCH control file from. If

 after 5 seconds no key is pressed a search for DSK1.BATCH

 begins. If the control file BATCH cannot be found on Drive

 1 it defaults to XB command mode. See CALL USER for more

 information on BATCH CONTROL FILES.

 --

 SPACE BAR = RXB COMMAND MODE

 Pressing the SPACE BAR results in XB command mode.

 --

 (PERIOD) . = EDITOR ASSEMBLER

 Pressing the . (PERIOD) key will switch to EDITOR ASSEMBLER

 menu. Pressing the . (PERIOD) key while in EDITOR ASSEMBLER

 will switch back to RXB.

 --

 (ZERO) 0 = WSD1.LOAD or WSD1.UTIL1

 Pressing the 0 (ZERO) key will start a WSD1.LOAD to execute

 from hard drive 1. If the root directory has a LOAD program.

 If a SCSI drive exists at the lowest CRU address it will load

 else a Myarc HFDC is used.

 PAGE 3

 DISK AND HARD DRIVE ACCESS

 CALL CAT catalog disk or hard drives.

 CALL DIR catalog disk or hard drives. (Requested duplicate of CAT)

 CALL FILES same as disk controller version but executes new after.

 CALL FCOPY copy's a file from device to device.

 CALL PROTECT protects or unprotects a file.

 CALL RENAME renames a file or directory.

 CALL MKDIR makes a directory on hard drives or names disks.

 CALL RMDIR deletes a directory on hard drive.

 CALL CUTDIR deletes a directory and all sub-directories.

 CALL SECTOR reads or writes disk or hard drive sectors.

 CALL XBPGM not only runs XB programs but does a CALL FILES first.

 CALL SCSI retrieves the scuzzy device ID codes. The info will

 contain the device company name, version number, revision number

 and size. Example XB program provided in SCSI documents.

 BATCH FILE SYSTEM:

 CALL USER overrides the normal edit mode by allowing a DV80 file

 to take control. This allows conversions from DV80 to XB program

 or DV80 to XB MERGE format or loading files, resequencing them,

 and saving or merging or adding lines through another DV80 file.

 All variables used through CALL USER are not affected so from a

 running program more lines or variables can be added to the size

 of the program without losing anything. Of course the RUN command

 will as always clear all variables before the program is run,

 this feature can be turned off with a CALL LOAD. (PRESCAN OFF)

 As the USER subprogram can override the Editor many features can

 be bypassed. Example:

 NEW cr

 OLD DSK1.XBPROGRAM cr

 RES 11,3 cr

 MERGE "DSK1.MERGEPGM" cr

 SAVE "DSK1.NEWPROGRAM" cr

 RUN cr

 The above is a good example of a DV80 Batch file for RXB. Note

 that there must be a CHR$(13) or Carriage Return after every input

 line. If not then RXB assumes the it is the same line. But even

 that is not much of a problem as RXB allows 21 lines of input per

 program line. You can make them even longer if you want.

 INPUT/OUTPUT ACCESS:

 --

 CALL IO controls the 9901 CRU chip. Sound lists can be played

 independently of current status. (i.e. type in a program while

 playing music from VDP/GROM.) Control Register Unit can turn

 on/off single bits of CRU address bus. (i.e. cards/chips)

 Cassette direct bus control. (i.e. no menu input/output, verify)

 --

 REDO KEY ELIMINATED: PAGE 4

 --

 The REDO (FCTN 8) no longer exists in RXB. USER needed a buffer

 that would not be molested or modified by CALL LINK, CALL LOAD

 or routines that need a buffer and usually use the same area

 that USER previously used. So to update and eliminate questions

 of compatibility the USER buffer was installed in place of the

 Edit recall buffer (REDO). The REDO key was not considered to be

 of much use anyway as the Crunch Buffer is 163 tokens long and

 in non-tokenized form the Edit recall buffer is only 152 bytes

 long. That is why when REDO is pressed only part of the line

 last typed in was recalled to screen. Additionally COPY lines,

 and MOVE lines commands can do the same thing as REDO could, so

 not much of anything is lost because it is assumed a TEXT EDITOR

 will be used to create programs in RXB then use CALL USER.

 PROGRAM DEVICE NAMES ACCESS:

 --

 New access names established as devices are now available. By

 using any TRUE DSR (Device Service Routine) you may now access

 the Editor Assembler main menu by typing 'EA' within Basic or

 RXB. Example: RUN "EA" or OLD EA or DELETE "EA"

 You may also access RXB from Editor Assembler or Basic or even

 another cartridge. Example: OLD XB or DELETE "XB" from Basic.

 At any Editor Assembler device prompt type 'XB' then enter.

 FOR ASSEMBLY LANGUAGE PROGRAMMERS:

 CALL MOVES is a new command that is a GPL command converted and

 added to RXB to give total control over every type of memory with

 in the TI-99/4A. MOVES works with address or strings to copy,

 over-write or move blocks of memory of any type of memory. RAM,

 VDP, GROM, GRAM, and ROM can be accessed by CALL MOVES.

 RXB TO ASSEMBLY DIRECT ACCESS BY ADDRESS:

 --

 EXECUTE is much faster than the traditional LINK routine built

 into XB. The main problem with LINK is it checks everything and

 pushes everything onto the VDP stack. After getting to Assembly

 it pops everything off the stack for use or pushes what is to

 be passed to XB onto the stack. EXECUTE on the other hand just

 passes a address to a 12 byte Assembly program in Fast RAM and

 RTWP ends the users program. A LINK will use up 6 bytes for the

 name, 2 bytes for the address and wastes time checking things.

 The advantage to EXECUTE is you use LOAD or MOVE or MOVES to

 place the values needed directly into the registers then do it.

 EXECUTE uses less space, is faster, and is easy to debug.

 PAGE 5

 AMS SUPPORT ROUTINES:

 --

 The AMS now has support routines built into RXB. CALL AMSMAP

 will turn the AMS mapper on. CALL AMSPASS will turn the AMS

 mapper back to pass mode. CALL AMSON will turn on the read/write

 lines of the mapper. CALL AMSOFF will turn off the read/write

 lines. With these commands pages of memory can be written with

 a CALL LOAD or read with a CALL PEEK. Also little known by users

 is the fact that if a RXB program is smaller than 10K it can be

 run from VDP not the upper 24K. So paging the upper or lower

 memory of the AMS is possible from RXB programs. RXB AMS SUPPORT

 USES NO ASSEMBLY OR CALL LINKs. That means up to 1meg of lower

 8K pages or upper 24K pages from RXB. That is impossible to do

 from XB as you have to load your normal support somewhere.

 GPL is where all the support routines are stored in RXB so not

 one byte is wasted on assembly support. That also means not one

 byte of AMS memory in wasted on control routines.

 Speaking of control CALL AMSINIT initializes the mappers and

 switches the AMS to map mode. CALL AMSBANK switches 4K pages

 in the lower half and upper half of the lower 8K.

 AMSBANK is a built in AMS memory bank switcher for the lower 8K.

 INTERUPT SERVICE ROUTINE CONTROL:

 --

 ISR (Interrupt Service Routine) like MOUSE or Screen dumps or any

 special program like XB Packer use a ISR. The problem with these

 programs is unless they are written to work with new devices, a

 lock-up occurs. EXAMPLE: running a mouse routine and XB Packer.

 They were never made to work together. RXB now has a handle on

 this. CALL ISROFF turns off the interrupt and saves the address

 for turning it back on. CALL ISRON restarts the interrupt. As

 several pages of the AMS can be used with interrupts a whole

 new world of programming is now possible.

 NO ASSEMBLY IS USED OR CALL LINKs. Absolute compatibility.

 LOWER 8K PROGRAM IMAGE FILE LOADER AND SAVER

 --

 Hidden loaders were created to overcome the slow loading speed

 of CALL LOAD. The disadvantage of a hidden loader is it can only

 load one assembly support program at a time. BLOAD loads program

 image files of the lower 8K, and BLOAD can load as many times as

 needed within one RXB program. BSAVE is the opposite and creates

 the program image files of the lower 8K support routines. Lastly

 loading 200K into the AMS card is easy with BLOAD and AMSBANK.

 A simple loop can load each AMS 8K bank with AMSBANK and BLOAD

 loads 8K at a time into the lower 8K.

 AMSBANK subprogram PAGE A1

 Format CALL AMSBANK(page-number,page-number)

 CALL AMSBANK(numeric-variable,numeric-variable)

 Description

 The AMSBANK command will only work with a AMS memory card.

 AMSBANK turns on the read/write lines of AMS mapper registers

 stores the first value into the mapper register that sets low

 half of lower 8K, then stores the second value into the mapper

 register that sets high half of lower 8K. If the page-number

 is less then 0 or larger than 239 a BAD VALUE error results.

 If page-number is larger than the AMS card size allows

 * AMS BANK NUMBER ERROR * results. Neither error will affect

 previously loaded pages. No lock-up will result.

 AMSBANK breaks the lower 8K into two halves of 4K. The lower

 4K is Hex >2000 to >2FFF and the upper is Hex >3000 to >3FFF

 so switching lower 8K requires two 4K pages to be used. This

 is the only disadvantage to AMSBANK, but flexibility does

 result. Less wasted pages results in more memory available.

 The formula is: AMS SIZE/4-16=pages.

 EXAMPLE: 256/4-16 is 48 pages.

 In other words 0 to 15 pages would be 16 pages for use.

 The odd ball numbering scheme of AMSBANK results from pages

 0 to 15 not being used in MAP mode. AMSBANK creates it's

 own numbers of pages 0 to 239 by starting actually at page

 16 of the AMS. That would be page 0 of AMSBANK. This lay out

 leaves open 8 4K pages for PASS mode, and 8 4K pages for

 future use. See docs MANUAL-AMS for additional information.

 Programs

 This sets up & starts map mode| >100 CALL AMSINIT

 This turns on the AMS mapper. | >110 CALL AMSON

 This reads low half 8K page. | >120 CALL PEEK(16388,L)

 This reads high half 8K page. | >130 CALL PEEK(16390,H)

 This shows pages used. | >140 PRINT "LOW";L;"HIGH";H

 This loads a assembly program.| >150 CALL LOAD("DSK1.CHAR")

 This changes low/high 8K pages| >160 CALL AMSBANK(16,17)

 This loads a assembly program.| >170 CALL LOAD("DSK1.DUMP")

 This changes low/high back. | >180 CALL AMSBANK(L,H)

 This uses a routine in CHAR. | >190 CALL LINK("CHAR")

 This changes low/high again. | >200 CALL AMSBANK(16,17)

 This uses a routine in DUMP. | >210 CALL LINK("DUMP")

 |

 The above example program shows one RXB program using two

 assembly programs with links for both. Thus only 16K of the

 AMS was used. 1024K would be 120 assembly support programs

 Compatibility of most software assured in RXB AMS support.

 AMSINIT subprogram PAGE A2

 Format CALL AMSINIT

 Description

 The AMSINIT command will only work with a AMS memory card.

 AMSINIT turns on the read/write lines of AMS mapper registers

 stores pages 0 to 15 into mapper registers, then turns on

 MAP mode. Essentially PASS mode and MAP mode are the same in

 that the mapper registers are exactly the same in both modes.

 That means in both modes the same memory is used. This would

 make the AMS of little use so LOAD is used to change mapper

 registers and switch pages. But if upper memory is switched

 from a XB program the page that just did this is switched out

 and a lock-up occurs. On the other hand switching pages in

 the lower 8K presents very few problems. So see AMSBANK.

 AMSINIT can also be used like AMSPASS but stays in MAP mode.

 See docs MANUAL-AMS for examples of memory maps.

 Programs

 This sets up & starts map mode| >100 CALL AMSINIT

 This turn on the AMS mapper. | >110 CALL AMSON

 This reads low half 8K page. | >120 CALL PEEK(16388,L)

 This reads high half 8K page. | >130 CALL PEEK(16390,H)

 This shows pages used. | >140 PRINT "LOW";L;"HIGH";H

 This changes low half 8K page.| >150 CALL LOAD(16388,16)

 This changes high half 8K page| >160 CALL LOAD(16390,17)

 This sets up & starts map mode| >200 CALL AMSINT

 This turns on the AMS mapper. | >210 CALL AMSON

 This reads low half 8K page. | >210 CALL PEEK(16388,L)

 This reads high half 8K page. | >220 CALL PEEK(16390,H)

 This shows pages used. | >230 PRINT "LOW";L;"HIGH";H

 This changes low/high 8K pages| >240 CALL AMSBANK(16,17)

 |

 In the above program 100 to 160 and 200 to 220 do the same

 thing. Using CALL AMSBANK is more effective than using a

 CALL LOAD to change mapper registers as a CALL AMSON is

 needed to turn on the mappers to be written or read.

 When using the AMS with RXB it is suggested to always use

 CALL AMSBANK to change pages as it is less complicated

 and faster with less wasted program lines. EXAMPLE:

 This line sets up AMS memory. | >100 CALL AMSINIT

 This line loads AMS pages 0,1. | >110 CALL AMSBANK(0,1)

 This line loads a program. | >120 CALL LOAD("DSK1.TEST")

 This line loads AMS pages 2,3 | >130 CALL AMSBANK(2,3)

 This line loads a program. | >140 CALL LOAD("DSK1.JUNK")

 AMSMAP subprogram PAGE A3

 Format CALL AMSMAP

 Description

 The AMSMAP command will only work with a AMS memory card. MAP

 MODE on the AMS card means the mapper registers are turned on

 so they can be changed. But even with the mapper on unless

 the read/write lines are on no mappers will appear to be at

 the DSR address. AMSON turns on read/write mapper registers.

 Then a LOAD or AMSBANK can change the memory pages.

 See docs MANUAL-AMS for examples of memory maps. Also run

 AMS-TEST or AMS-SAVE or AMS-LOAD programs.

 Programs

 This turns on map mode. | >100 CALL AMSMAP

 This turns on read/write. | >110 CALL AMSON

 This fetches map register 2. | >120 CALL PEEK(16388,BYTE)

 This turns off read/write. | >130 CALL AMSOFF

 This turns on pass mode. | >140 CALL AMSPASS

 This prints the page from map | >150 PRINT "Register 2 PAGE#"

 mode in register 2. | ;BYTE

 |

 The above program will print out whatever AMS page is

 presently stored in AMS map register 2.

 It is recommended that CALL AMSMAP only be used to check

 AMS pages with CALL PEEK. CALL AMSBANK is much more easy

 to use to manage AMS memory.

 AMSOFF subprogram PAGE A4

 Format CALL AMSOFF

 Description

 The AMSOFF command will only work with a AMS memory card. The

 read/write lines to the AMS mapper registers are turned off

 so they will not be changed. Any PEEK or LOAD to the DSR

 space will be zero after the AMSOFF command. They can't be

 read/written to. See docs MANUAL-AMS for examples of memory

 maps. Also run AMS-TEST or AMS-SAVE or AMS-LOAD programs.

 Programs

 This sets up & starts map mode| >100 CALL AMSINIT

 This turns on read/write. | >110 CALL AMSON

 This fetches map register 2. | >120 CALL PEEK(16388,BYTE)

 This turns off read/write. | >130 CALL AMSOFF

 This turns on pass mode. | >140 CALL AMSPASS

 This prints the page from map | >150 PRINT "Register 2 PAGE#"

 mode in register 2. | ;BYTE

 |

 The above program will print out initialized AMS page 2 in

 register 2.

 It is recommended that CALL AMSOFF only be used to protect

 the AMS mapper registers from being molested by programs

 that could access the AMS. CALL AMSBANK is more easy to use

 to manage AMS memory as AMSBANK always turns off the AMS

 read/write registers like AMSOFF does. Instead use AMSBANK.

 AMSON subprogram PAGE A5

 Format CALL AMSON

 Description

 The AMSON command will only work with a AMS memory card. The

 read/write lines to the AMS mapper registers are turned on

 so they can be changed. Any PEEK or LOAD to the DSR space can

 then be used to change the mapper registers or read them.

 See docs MANUAL-AMS for examples of memory maps. Also run

 AMS-TEST or AMS-SAVE or AMS-LOAD programs.

 Programs

 This sets up & starts map mode| >100 CALL AMSINIT

 This turns on read/write. | >110 CALL AMSON

 This loads 9 in map register 2| >120 CALL LOAD(16388,9)

 This turns off read/write. | >130 CALL AMSOFF

 This loads values in lower 8K.| >140 CALL LOAD(8192,1,2,3,4)

 This turns on pass mode. | >150 CALL AMSPASS

 This peeks values in lower 8K.| >160 CALL PEEK(8192,A,B,C,D)

 This prints values. | >170 PRINT A;B;C;D

 This turns on map mode. | >180 CALL AMSMAP

 This turns on read/write. | >190 CALL AMSON

 This loads 2 in map register 2| >200 CALL LOAD(16388,2)

 This turns off read/write. | >210 CALL AMSOFF

 This peeks values in low page.| >220 CALL PEEK(8192,A,B,C,D)

 This prints values. | >230 PRINT A;B;C;D

 |

 It is recommended to use CALL AMSON only for when a

 CALL PEEK is used to check a mapper register value.

 CALL AMSBANK manages AMS mapping much better.

 AMSPASS subprogram PAGE A6

 Format CALL AMSPASS

 Description

 The AMSPASS command will only work with a AMS memory card.

 PASS MODE on the AMS card means the mapper registers are not

 on. This is the normal mode of the AMS. No extra memory is

 is available or used. This renders the AMS like a normal 32K

 card. See docs MANUAL-AMS for examples of memory maps. Also

 run AMS-TEST or AMS-SAVE or AMS-LOAD programs.

 Programs

 This sets up & starts map mode| >100 CALL AMSINIT

 This turns on read/write. | >110 CALL AMSON

 Load 22 into map register 2. | >120 CALL LOAD(16388,22)

 This turns off read/write. | >130 CALL AMSOFF

 This turns on pass mode. | >140 CALL AMSPASS

 |

 AMSPASS is mainly used to turn off AMS or protect the AMS

 pages from being used or to behave like a normal TI99/4A

 when the AMS is not being used.

 Please note that AMSBANK does not use the AMSPASS memory

 so this area stays protected. This is by design in RXB.

 BASIC Device Service Routine (DSR) PAGE B1

 Format RUN "BASIC"

 DELETE "BASIC"

 CALL XBPGM("BASIC")

 CALL CAT("BASIC")

 OLD BASIC

 CALL BASIC

 Description

 The BASIC DSR (Device Service Routine) allows access to

 the TI BASIC . The access will work only if the DSR is the

 GPLDSR or LINK DSR. In other words, a DSR that acknowledges

 any type of DSR in RAM, ROM, GROM, GRAM, or VDP. Most DSR's

 only accept DSK or PIO. Others like the SAVE or LIST commands

 will only work with a program in the memory first. Still

 others like CALL LOAD("EA") must have the CALL INIT command

 used first.

 Keep in mind that if it does not work, the problem is the

 DSR your using. Almost all DSR's today only acknowledge the

 ROM or RAM DSR's. As the BASIC DSR is in GROM/GRAM it seems

 a bit short sighted on the part of most programmers to use

 cut down versions of a DSR. Please discourage this practice

 as it is a diservice to us all.

 Programs

 The program at the right will | >100 CALL XBPGM("BASIC")

 go to the BASIC prompt. |

 |

 This line asks for a string. | >100 INPUT A$

 This line uses the string and | >110 DELETE A$

 if you type BASIC then enter |

 will switch to BASIC. |

 |

 This line will switch to the | >CALL BASIC

 BASIC. |

 |

 This line shows even lower | >CALL EAPGM("basic")

 case works also. |

 BEEP subprogram PAGE B2

 Format CALL BEEP

 Description

 The BEEP command produces the same sound as the ACCEPT or

 INPUT, or BEEP as in DISPLAY options.

 See EXTENDED BASIC MANUAL pages 47, 48, 49, 77, 78.

 Programs

 The program to the right will | >100 CALL BEEP

 will produce a beep sound. |

 Show request. | >110 PRINT "YNyn ?"

 Key press request. | >120 CALL KEY("YNyn",0,K,S)

 The above program will BEEP then wait for a key and only

 accept Y N y n from CALL KEY into K.

 BIAS subprogram PAGE B3

 Format CALL BIAS(numeric-variable,string-variable

 [,...])

 Description

 The BIAS command adds 96 to all characters in the string or

 subtracts 96 from all characters in the string. If numeric

 variable is 0 then it subtracts the XB screen bias of 96

 from the characters, if the numeric variable is not 0 then

 it adds the XB screen bias of 96 to all the characters in

 the string. ONLY A STRING VARIBLE IS ALLOWED.

 The XB screen bias only affects characters read or written

 to the screen. See PEEKV, and POKEV.

 Programs

 The program to the right will | >100 CALL MOVES("V$",255,511

 load X$ with 255 characters | ,X$)

 off the screen. But will not |

 be readable due to a bias. |

 The bias is now subtracted | >110 CALL BIAS(0,X$)

 from the string printed. | >120 PRINT X$

 |

 The above program copies 255 bytes from screen address 511

 (511=15 rows plus 31 columns) into string X$. Then BIAS

 removes 96 from each byte in string X$. Finally X$ is

 shown on screen by PRINT X$

 BLOAD subprogram PAGE B4

 Format CALL BLOAD("access-name")

 CALL BLOAD(string-variable)

 Description

 The BLOAD subprogram loads ONLY program image files created

 by BSAVE. BLOAD is the opposite of BSAVE. BLOAD is a faster

 version of CALL LOAD. BLOAD has the speed of a hidden loader

 and is much easier to use. BLOAD only loads into lower 8K.

 Unlike CALL LOAD the BLOAD and BSAVE subprogram will work

 without CALL INIT being used first. Remember to turn on the

 interrupts if the program has them. Or the program support

 will not work. See ISROFF and ISRON.

 NOTE: 8K of VDP memory MUST be free for BLOAD to function or

 a memory full error will result. Always place the

 BLOAD command at the top of the RXB program.

 Programs

 This line loads a previously | >100 CALL BLOAD("DSK2.MOUSE")

 saved program image file. |

 This line turns on the mouse | >110 CALL LINK("MSON")

 (program would continue here)|

 |

 This line load a previously | >100 CALL BLOAD("DSK1.DUMP")

 saved program image file. |

 This line turns on interrupt | >110 CALL ISRON(16384)

 within program. |

 This line links to support. | >120 CALL LINK("DUMP")

 |

 Options

 AMS users will find this a easy way to load RXB AMS support.

 EXAMPLE:

 >100 CALL AMSINIT

 >110 FOR L=0 TO 15 STEP 2

 >120 CALL AMSBANK(L,L+1)

 >130 CALL BLOAD("DSK1.BANK"&STR$(L/2))

 >140 NEXT L

 >150 CALL XBPGM("DSK1.MAINPROGRAM",1)

 The above program would load RXB AMSBANK banks 0 to 15 into

 AMS memory from files named BANK0 to BANK7 on disk 1. Then

 would set CALL FILES 1 and RUN "DSK1.MAINPROGRAM" with

 64K of Assembly support for XB.

 See AMSINIT, AMSBANK, ISROFF, ISRON, EXECUTE, and MOVES.

 BSAVE subprogram PAGE B5

 Format CALL BSAVE("access-name")

 CALL BSAVE(string-variable)

 Description

 The BSAVE subprogram saves ONLY program image files to be

 used for BLOAD. BSAVE is the opposite of BLOAD. BSAVE has

 the speed of a hidden loader without the hassle. BSAVE saves

 ONLY lower 8K program image files for ONLY BLOAD to use.

 Unlike CALL LOAD the BLOAD and BSAVE subprogram will work

 without CALL INIT being used first.

 To save a program with hidden loaders just break program

 after loading is complete and type CALL BSAVE("DSK#.NAME")

 Remember to check for interrupts or the program will not work

 after loading with BLOAD. See ISRON and ISROFF.

 NOTE: 8K of VDP memory MUST be free for BSAVE to function or

 a memory full error will result. Always place the BSAVE

 command at the top of the RXB program.

 Programs

 Initialize lower 8K. | >100 CALL INIT

 Load the assembly support. | >110 CALL LOAD("DSK1.MSETUPO")

 Load the assembly support. | >120 CALL LOAD("DSK1.HDSR")

 Turn on the mouse setup. | >130 CALL LINK("MSETUP")

 BSAVE the whole thing. | >140 CALL BSAVE("DSK2.MOUSE")

 |

 Procedure for hidden loaders.|

 Loads program on disk 1 | >CALL XBPGM("DSK1.LOAD")

 Break program. | PRESS FCTN 4 to break program.

 Get address of interrupts. | >CALL ISROFF(I)

 See if they are on. | >PRINT I

 Save the program to disk. | >CALL BSAVE("DSK2.EXAMPLE")

 |

 Options

 AMS users will find this a easy way to save RXB AMS support.

 EXAMPLE:

 >100 CALL AMSINIT

 >110 FOR L=0 TO 15 STEP 2

 >120 CALL AMSBANK(L,L+1)

 >130 CALL BSAVE("DSK1.BANK"&STR$(L/2))

 >140 NEXT L

 The above program would save RXB AMSBANK banks 0 to 15 into

 8 program image files named BANK0 to BANK7 on disk 1.

 See AMSINIT, AMSBANK, ISROFF, ISRON, EXECUTE, and MOVES.

 BYE command or subprogram PAGE B6

 Format BYE

 CALL BYE

 Description

 The BYE command is the same as the BYE command in the

 EXTENDED BASIC MANUAL page 54. The BYE command ends the

 program and returns the system to a reset. BYE will close

 all open files before exiting to a reset.

 Command

 May only be used from command | >BYE

 mode.

 Programs

 May only be used in program | >100 CALL BYE

 mode. |

 |

 The INPUT asks for a Y to go | >110 INPUT "END PROGRAM":A$

 on, if not the loop forever. | >120 IF A$<>"Y" THEN 110

 Must be a Y so reset system. | >130 CALL BYE

 |

 CALL subprogram list of format modified PAGE C1

 CALL BYE

 CALL CLSALL

 CALL CHAR(ALL,pattern-identifier[,...])

 CALL CHARSETALL

 CALL COINC(#sprite,#sprite,tolerance,numeric-variable[,...])

 CALL COLOR(ALL,foreground,background[,...])

 CALL DISTANCE(#sprite,#sprite,numeric-variable[,...])

 CALL FILES(number)

 CALL GCHAR(row,column,numeric-variable[,...])

 CALL HCHAR(row,column,character-code,repetition[,...])

 CALL JOYST(key-unit,x-return,y-return[,...])

 CALL KEY(key-unit,return-variable,status-variable[,...])

 CALL KEY(string,key-unit,return-variable,status-variable[,...])

 CALL MOTION(ALL,row-velocity,column-velocity[,...])

 CALL NEW

 CALL ONKEY(string,key-unit,return-variable,status-variable)

 GOTO line-number[,...]

 CALL SIZE

 CALL VCHAR(row,column,character-code,repetition[,...])

 CALL VERSION(numeric-variable)

 CALL XBPGM(path-filename,file-number)

 CAT subprogram PAGE C2

 Format CALL CAT("#"[,...])

 CALL CAT("DSK#."[,...])

 CALL CAT("DSK.DISKNAME."[,...])

 CALL CAT(string-variable[,...])

 CALL CAT(number[,...])

 CALL CAT(numeric-variable[,...])

 CALL CAT(ASC II value[,...])

 Description

 The CAT command catalogs the disk drive indicated by the

 # which can be 1 to z or by path name. The path name may be

 up to 30 characters long. A numeric variable or number can

 be used for drives 1 to 9 or if higher then it is assumed

 that the numeric-variable or number is a ASCII value between

 30 to 255. This allows a catalog of a RAM-DISK designated by

 letters or control characters. RXB CAT can be used from

 program mode or command mode.

 Also CAT can catalog up to 32 drives in one command.

 The SPACE BAR will pause the catalog routine, then when the

 pressed again continues the catalog listing.

 ANY OTHER KEY WILL ABORT THE CATALOG.

 Programs

 This line has pathname in A$ | >100 A$="DSK.ADISKNAME"

 This line uses A$ for the name| >110 CALL CAT(A$)

 of the device to catalog. |

 |

 This line will catalog drive 4| >100 CALL CAT(N)

 if N=4 |

 |

 This line will catalog drive C| >100 CALL CAT(X)

 if X=67 (ASCII 67 is C) |

 |

 This line is path name. | >10 V$="WDS1.VOLUME.SUB-DIR."

 This line will catalog device | >20 CALL CAT(V$)

 WDS1 for directory VOLUME and|

 catalog SUB-DIR |

 |

 This line catalogs drives 1 | >100 CALL CAT(1,2,3,"WDS1.")

 then 2 then 3 then WDS1l |

 CHAR subprogram PAGE C3

 Format CALL CHAR(character-code,pattern-identifier

 [,...])

 CALL CHAR(ALL,pattern-identifier[,...])

 Description

 See EXTENDED BASIC MANUAL page 56 for more data. Addition

 of the ALL command allows all the characters from 32 to 127

 to be redefined all at once. Also CHAR now allows characters

 30 (CURSOR) and 31 (EDGE CHARACTER) to be redefined or 144

 to 156 may be redefined.

 Programs

 This line will define all the | >100 CALL CHAR(ALL,"")

 characters as a empty string.|

 FOR NEXT loop 30 to 127 | >110 FOR X=30 to 127

 This line prints a character. | >120 PRINT CHR$(X);

 NEXT to continue loop. | >130 NEXT X

 Reset characters 32 to 127 | >140 CALL CHARSETALL

 This line repeats the program.| >150 GOTO 100

 |

 This line sets variable A$ up.| >100 A$="FF818181818181FF"

 This line will define all the | >110 CALL CHAR(ALL,A$)

 characters as a box. |

 |

 This line defines the cursor. | >100 CALL CHAR(30,"FF81FF")

 |

 This line defines the edge | >110 CALL CHAR(31,"55")

 character. |

 Options

 Sprites may not be used if characters 144 to 156 are being

 redefined for use.

 CHARSETALL subprogram PAGE C4

 Format CALL CHARSETALL

 Description

 The CHARSETALL command is just like the CHARSET command, but

 it resets characters from 32 to 127 thus resetting characters

 95 to 127 unlike CHARSET.

 Exactly like CHARSET it also resets colors to original mode.

 Programs

 This resets all characters and| >100 CALL CHARSETALL

 colors to original. |

 Set all characters the same. | >100 CALL CHAR(ALL,"4")

 Set all colors the same. | >110 CALL COLOR(ALL,14,10)

 Reset characters and colors | >120 CALL CHARSETALL

 from character 32 to 127 |

 Go start over. | >130 GOTO 100

 |

 CLSALL subprogram PAGE C5

 Format CALL CLSALL

 Description

 The CLSALL command will find and close all open files.

 This allows programmers to save time and program space.

 Programs

 The program to the right will | >100 CALL CLSALL

 CLOSE all open files. |

 |

 This opens the printer. | >100 OPEN #9:"PIO",OUTPUT

 This opens a disk file JUNK. | >110 OPEN #2:"DSK1.JUNK",INPUT

 This closes both files. | >120 CALL CLSALL

 |

 COINC subprogram PAGE C6

 Format CALL COINC(#sprite-number,#sprite-number,

 tolerance,numeric-variable[,...])

 CALL COINC(#sprite-number,dot-row,dot-column,

 tolerance,numeric-variable[,...])

 CALL COINC(ALL,numeric-variable[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 64 for more data. The only

 difference is the use the comma has been added for

 auto-repeat. Previously a COINC only allowed one sprite

 comparison per program line.

 Programs

 * See EXTENDED BASIC MANUAL page 64

 Clear screen set and X to 190 | >100 CALL CLEAR :: X=190

 |

 Set up 3 sprites to be on | >110 CALL SPRITE(#1,65,2,9,X,

 the same vertical plane. | 20,0,#2,66,2,9,X,30,0,#3,67,

 | 2,9,X,-20,0)

 |

 COINC scans ALL sprites for a | >120 CALL COINC(ALL,A,#1,#2,1

 collision then #1,#2,#3 also. | 2,B,#1,#3,12,C,#2,#3,12,D)

 |

 Print results on screen. | >130 PRINT A;B;C;D

 Loop forever to line 120 | >140 GOTO 120

 |

 The above program in RXB will put a -1 in A,B,C,D variables

 unlike normal XB that would never detect all 4 collisions.

 Options

 While characters 144 to 159 are being used, you cannot use

 sprites. Notice the ALL option MUST ALWAY BE FIRST as it

 was given highest priority to increase the detection rate.

 Though the ALL option does not improve much, the normal

 COINC detections are slightly faster as the interpreter is

 not looking to find the next COINC command on the next line

 number. Instead the comma and the next sprite is checked.

 COLOR subprogram PAGE C7

 Format CALL COLOR(#sprite-number,foreground-color[,...])

 CALL COLOR(character-set,foreground-color,

 background-color[,...])

 CALL COLOR(ALL,foreground-color,background-color

 [,...])

 Description

 See EXTENDED BASIC MANUAL page 66 for more data. Presently

 modifications to the COLOR subprogram is ALL that will change

 all character sets from 0 to 14 to the same foreground and

 background colors and sets 0 to 16 may be individually set.

 SET NUMBER CHARACTER CODES

 0 30-31

 1 32-39

 2 40-47

 3 48-55

 4 56-63

 5 64-71

 6 72-79

 7 80-87

 8 88-95

 9 96-103

 10 104-111

 11 112-119

 12 120-127

 13 128-135

 14 136-143

 15 144-151 (RXB addition)

 16 152-159 (RXB addition)

 Programs

 This line sets all character | >100 CALL COLOR(ALL,2,11)

 sets to foreground 2 and the |

 background 11 |

 |

 Sets all to transparent, then | >100 CALL COLOR(ALL,1,2,ALL,2

 all to black on transparent. | 1)

 Go start over. | >110 GOTO 100

 |

 Options

 While characters 144 to 159 are being used, you cannot use

 sprites.

 COPY command PAGE C8

 Format COPY start line-end line,new start line,increment

 Description

 The COPY command is used to copy a program line or block of

 program lines to any other location in the program. The COPY

 does not affect the original lines and leaves them intact.

 The block to be copied is defined by start line and end line.

 If either of these numbers are omitted, the defaults are the

 first program line and the last program line. However, at least

 one number and a dash must be entered (both can't be omitted),

 and there must be at least one valid program line between start

 line and end line. To copy one line enter it as both the start

 line and end line number. If any of the above conditions are

 not met, a Bad Line Number Error will result.

 The new start line number defines the new line number of the

 first line in the block to be copied. This number must be

 entered. There is no default. The increment defines the line

 number spacing of the copied lines and may be omitted. The

 default is 10.There must be sufficient space in the program for

 the copied segment to fit between new start line number and

 the next program line following the location where the block

 will be moved. If not, a Bad Line Number Error message is

 reported. This problem can be corrected by using a smaller

 increment, or by using RES to open up space for the segment.

 A Bad Line Number Error also results if the copying process

 would result in a line number higher than 32767.

 The COPY routine does not change any program references to the

 copied lines. It is an exact copy of the source lines with new

 line numbers. A check for sufficient memory space is made

 before each line is copied. If space is not available the

 copying process is halted and a Memory Full Error is reported.

 Before the first line is copied, any open files are closed and

 all variables are lost.

 Description Addendum PLEASE NOTE:

 The COPY command copies the lines in reverse order

 If the copying process is halted due to insufficient

 memory space, any uncopied lines will be at the

 beginning of the block.

 Commands

 Lines 100 to 150 are copied to| >COPY 100-150,9000,5

 line 9000 and incremented by 5|

 |

 Line 10 is copied to line 25 | >COPY 10-10,25

 |

 Line 5 to last line are copied| >COPY 5-,99

 to 99 and incremented by 10 |

 (Default). |

 CUTDIR subprogram PAGE C9

 Format CALL CUTDIR(pathname,directory-name[,...])

 CALL CUTDIR(string-varialbe,string-variable

 [,...])

 Description

 The CUTDIR subprogram removes directories and subdirectories

 on hard drives. The pathname determines the device used and

 the pathname can be up to 255 characters in length. The

 pathname must end with a period and the directory may

 only be 10 characters in length. Only a SCSI controller

 supports this command. CUTDIR will remove a directory and

 all its sub-directories at once. BE CARFULL WITH THIS COMMAND!

 Programs

 This line removes a directory| >CALL CUTDIR("WDS1.","TEST")

 named TEST on hard drive 1. |

 |

 This line removes directory | >100 CALL CUTDIR("WDS1.","ONE

 ONE and all sub-directories | ")

 that are within it. |

 |

 This line would remove every | >100 CALL CUTDIR("WDS1.","WOW

 thing off WDS1 if WOW had | ")

 all main directories in it. |

 Options

 This command requires a updated SCSI EPROM. The original

 SCSI EPROM did not include CUT DIRECTORY SUPPORT.

 DEL command PAGE D1

 Format DEL start line-end line

 Description

 The DEL command is used to delete a line or block of lines

 from a program. Start line number and end line number define

 the lines to be deleted. If start line number is omitted,

 line deletion will begin at the first line of the program. In

 this case, end line number must be preceded by a dash. If

 end line number is omitted, line deletion will end at the last

 line of the program. If start line number and end line number

 are omitted, then the first line number of the program to the

 last line number of the program is deleted. At least one valid

 program line must exist between start line number and end line

 number or a Bad Line Number Error will be reported. If only

 one line number is given without a dash, then that one line

 will be deleted.

 After the DEL command has executed any open files are closed

 and all variables are lost.

 Commands

 Lines 100 to 150 are deleted. | >DEL 100-150

 |

 Line 10 is deleted. | >DEL 10

 |

 Line 5 to last line are | >DEL 5-

 deleted. |

 |

 First line to 80 are deleted. | >DEL -80

 |

 DIR subprogram PAGE D2

 Format CALL DIR("#"[,...])

 CALL DIR("DSK#."[,...])

 CALL DIR("DSK.DISKNAME."[,...])

 CALL DIR(string-variable[,...])

 CALL DIR(number[,...])

 CALL DIR(numeric-variable[,...])

 CALL DIR(ASC II value[,...])

 Description

 The DIR command catalogs the disk drive indicated by the

 # which can be 1 to z or by path name. The path name may be

 up to 30 characters long. A numeric variable or number can

 be used for drives 1 to 9 or if higher then it is assumed

 that the numeric-variable or number is a ASCII value between

 30 to 255. This allows a catalog of a RAM-DISK designated by

 letters or control characters.

 RXB DIR can be used from program mode or command mode. Also

 DIR can catalog up to 32 drives in one command.

 The SPACE BAR will pause the catalog routine, then when the

 pressed again continues the catalog listing.

 ANY OTHER KEY WILL ABORT THE CATALOG. See CAT for more info.

 Programs

 This line puts the pathname in| >100 A$="DSK.ADISKNAME"

 the string A$ |

 This line uses A$ for the name| >110 CALL DIR(A$)

 of the device to catalog. |

 |

 This line will catalog drive 4| >100 CALL DIR(N)

 if N=4 |

 |

 This line will catalog drive C| >100 CALL DIR(X)

 if X=67 (ASCII 67 is C) |

 |

 This line is path name. | >10 V$="WDS1.VOLUME.SUB-DIR."

 This line will catalog device | >20 CALL DIR(V$)

 WDS1 for directory VOLUME and|

 catalog SUB-DIR |

 |

 This line catalogs drives 1 | >100 CALL DIR(1,2,3,"WDS1.")

 then 2 then 3 then WDS1 |

 DISTANCE subprogram PAGE D3

 Format CALL DISTANCE(#sprite-number,#sprite-number,

 numeric-variable,[,...])

 CALL DISTANCE(#sprite-number,dot-row,

 dot-column,numeric-variable[,...])

 Description

 The only thing added by RXB to DISTANCE is the auto repeat.

 See EXTENDED BASIC MANUAL page 80 for more data.

 Program

 The program at the right will | >100 CALL CLEAR

 set up 3 sprites on screen and| >110 CALL SPRITE(#1,65,7,99,9

 start them moving. | 9,0,10,#2,66,4,99,99,10,0,#3

 | ,67,2,1,2,-50,-50)

 Scans three sprites locations | >120 CALL DISTANCE(#1,#2,D,#1

 and returns the distance from| ,#3,E,#2,#3,F)

 each other squared. | >130 DISPLAY AT(1,1):"#1/#2";

 | D:"#1/#3";E:"#2/#3";F)

 Restart loop | >140 GOTO 120

 |

 Options

 While characters 144 to 159 are being used, you cannot use

 sprites. The DISTANCE subprogram does get more accurate if

 you have more than one to check at a time, but is slightly

 faster than normal XB as DISTANCE in RXB does not require

 a search for another line number to CALL DISTANCE and find

 a value. The RXB version just goes to the comma and finds

 the next value of DISTANCE, so is much faster and saves

 program memory.

 DUPCHAR subprogram PAGE D4

 Format CALL DUPCHAR(character-code,character-code

 [,...])

 Description

 The DUPCHAR subprogram allows you to duplicate character

 definitions. You can duplicate character-codes from 30 to 159

 The first character-code specifies the character-code to be

 duplicated, and the second character-code specifies the

 destination character-code. By duplicating a character

 definition using sprites would result in duplicate sprites.

 Program

 The program at the right will | >100 CALL DUPCHAR(65,66)

 duplicate the character |

 definition of character-code |

 65 into character definition |

 of character-code 66. |

 The program at the right will | >100 FOR C=32 TO 158

 blank out all character-code | >110 PRINT CHR$(C);

 definitions from 33 to 159. | >120 CALL DUPCHAR(C,C+1)

 Line 110 is just to show what | >130 NEXT C

 the character was before the |

 DUPCHAR subprogram blanked it.|

 DUPCOLOR subprogram PAGE D5

 Format CALL DUPCOLOR(character-set,character-set

 [,...])

 CALL DUPCOLOR(#sprite-number,#sprite-number,

 [,...])

 Description

 The DUPCOLOR subprogram duplicates foreground and background

 colors of the first set into the second set. Or the first

 sprite-number color into the second sprite-number color.

 The character-set numbers are given below:

 set-number character-codes

                         ~~~~~~~~~~               ~~~~~~~~~~~~~~~ 

                               0   ---------------  30  to   31 

                               1   ---------------  32  to   39 

                               2   ---------------  40  to   47 

                               3   ---------------  48  to   55 

                               4   ---------------  56  to   63 

                               5   ---------------  64  to   71 

                               6   ---------------  72  to   79 

                               7   ---------------  80  to   87 

                               8   ---------------  88  to   95 

                               9   ---------------  96  to  103 

                              10   --------------- 104  to  111 

                              11   --------------- 112  to  119 

                              12   --------------- 120  to  127 

                              13   --------------- 128  to  135 

                              14   --------------- 136  to  143 

          (also sprite table) 15   --------------- 144  to  151 

          (also sprite table) 16   --------------- 152  to  159 

  

          Programs 

       

          The program to the right will | >100 CALL DUPCOLOR(6,9) 

          will duplicate set 6 colors in| 

          to set 9.                     | 

                                        | 

          Clear screen                  | >100 CALL CLEAR 

          Line 110 sets up two sprites  | >110 CALL SPRITE(#1,65,2,99,9 

          on screen.                    |  9,#2,66,16,88,88) 

          Delay loop.                   | >120 FOR X=1 TO 1E3 :: NEXT X 

          Line 130 duplicates the color | >130 CALL DUPCOLOR(#1,#2) 

          from sprite-number 1 into     |  

          sprite-number 2.              | 

          Loops forever.                | >140 GOTO 140 

                                        | 

 

 

 



          EA             Device Service Routine (DSR)          PAGE  E1 

          ------------------------------------------------------------- 

  

          Format         RUN "EA" 

  

                         DELETE "EA" 

  

                         CALL XBPGM("EA") 

  

                         CALL CAT("EA") 

  

                         OLD EA 

  

                         SAVE "EA"        -(Must have a program within 

                                          - memory to work at all) 

                         CALL EA       

  

          Description 

  

          The EA DSR (Device Service Routine) allows access to the 

          Editor Assembler section of RXB. The access will work only 

          if the DSR is the GPLDSR or LINK DSR. In other words, a DSR 

          that acknowledges any type of DSR in RAM, ROM, GROM, GRAM, 

          or VDP. Most DSR's only accept DSK or PIO. Others like the 

          SAVE or LIST commands will only work with a program in the 

          memory first. Still others like CALL LOAD("EA") must have the 

          CALL INIT command used first. 

           Keep in mind that if it does not work, the problem is the 

          DSR your using. Almost all DSR's today only acknowledge the 

          ROM or RAM DSR's. As the EA DSR is in GROM/GRAM it seems a 

          bit short sighted on the part of most programmers to use 

          cut down versions of a DSR. Please discourage this practice 

          as it is a disservice to us all. 

  

          Programs 

  

          Go to the Editor Assembler.   | >100 CALL XBPGM("EA") 

                                        | 

          This line asks for a string.  | >100 INPUT A$ 

          This line uses the string and | >110 DELETE A$ 

          if you type EA then enter will| 

          switch to the Editor Assembler| 

                                        | 

          This line will switch to the  | >CALL CAT("EA") 

          Editor Assembler.             | 

                                        | 

          This line shows lower case can| >call ea 

          be used.                      | 

                                        | 

          This line will have a strange | >CALL EAPGM("EA") 

          looping effect.               | 

  

          Options 

          BASIC and XB are also available. CALL EA 



          EALR           subprogram                            PAGE  E2 

          ------------------------------------------------------------- 

  

          Format         CALL EALR("access-name") 

  

          Description 

  

          The EALR subprogram is used to switch to the Editor Assembler 

          Load and Run menu screen prompt. EALR will only load and run 

          Editor Assembler DISPLAY FIXED OBJECT FILES created by the 

          Editor Assembler for the Editor Assembler environment, not 

          the EXTENDED BASIC DISPLAY FIXED OBJECT FILES. They've never 

          been compatible, hence one of RXB's reasons for existing. 

          The access-name is moved into the Editor Assembler and the 

          name is loaded onto the screen so you can see it. This gives 

          you a chance to change the disk if needed, or to see what is 

          wrong if it does not load. After the DISPLAY FIXED OBJECT 

          FILE is loaded, you will receive the normal `Program Name?' 

          prompt. This name would be the same as the link name from 

          Editor Assembler BASIC. You can ABORT the loader by holding 

          the FCTN BACK (9) key while the name is being placed onto the 

          screen. If an error occurs the code will be returned onto 

          screen and you must press ENTER to restart the loader. 

  

          Description Addendum 

  

          EALR only works from EXTENDED BASIC, not BASIC. 

  

          Programs 

  

          The program at the right will | >100 CALL EALR("DSK3.SAVE") 

          load a Display/Fixed 80 file  | 

          named SAVE from disk drive 3. | 

                                        | 

          This program loads a Display/ | >100 CALL EALR("DSK.DNAME.FNA 

          Fixed Object file named FNAME |  ME") 

          after searching all disk      | 

          drives and RAMDISKs for the   | 

          disk named DNAME.             | 

                                        | 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



          EAPGM          subprogram                            PAGE  E3 

          ------------------------------------------------------------- 

  

          Format         CALL EAPGM("access-name") 

  

          Description 

  

          The EAPGM subprogram is used to switch to the Editor Assembler 

          `Run Program file?'screen prompt. It will not run  EXTENDED 

          XB programs or BASIC programs for that see XBPGM. 

          The access-name is moved into the Editor Assembler and the 

          name is loaded onto screen so you can see it. This gives you 

          a chance to change the disk if needed, or to see what is 

          wrong if it does not load. After the Program Image file is 

          loaded, it executes the program normally. 

          You can ABORT the loader by holding down the FCTN BACK (9) 

          key while the name is being placed onto the screen. If an error 

          occurs the error code will be returned onto the screen and you 

          must press ENTER to restart the loader. 

  

          Description Addendum 

  

          EAPGM only works from EXTENDED BASIC, not BASIC. 

  

          Programs 

  

          The program at the right will | >100 CALL EAPGM("DSK2.FW") 

          load a Program Image file     | 

          named FW from disk drive 2.   | 

                                        | 

          This program loads a Program  | >100 CALL EAPGM("DSK.FW.MG") 

          Image file named MG after     | 

          searching all disk drives and | 

          and RAMDISKS for a disk named | 

          FW.                           | 

                                        | 

          This program causes a search  | >100 T$="SCS1.ART.MAXPRO" 

          for MAXPRO in directory ART   | >110 CALL EAPGM(T$) 

          on SCS1.                      | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          EXECUTE        subprogram                            PAGE  E4 

          ------------------------------------------------------------- 

  

          Format         CALL EXECUTE(cpu-address[,...]) 

  

                         CALL EXECUTE(numeric-variable[,...]) 

  

          Description 

  

          The EXECUTE subprogram directly goes to the cpu-address and 

          expects to find 4 bytes to be present. The bytes are 1 and 2 

          define the workspace register address. Bytes 3 and 4 define 

          the address to start execution at in cpu memory. Programmers 

          can see this is a BLWP at a cpu-address. The programmer is 

          responsible for keeping track of the workspace and program 

          space he is using. Also for any registers while doing a BL or 

          another context switch. A RTWP will end either a BL or a BLWP 

          as long as registers set are not changed. By using CALL LOAD 

          or CALL MOVES the programmer can set up a BLWP routine in the 

          lower 8K by filling the registers with values first, then 

          using CALL EXECUTE to directly complete these commands. This 

          is faster then CALL LINK as no interpretation of the access 

          or values are checked. 

           EXECUTE runs a XML link from GPL by moving 12 bytes from the 

          Fast RAM at HEX 8300 to VDP at HEX 03C0 then moving the value 

          in FAC passed from XB to HEX 8304 and does a GPL XML >F0 

          After a RTWP by the Assembly program, it returns VDP HEX 03C0 

          to Fast RAM HEX 8300 so the 12 bytes are restored. Thus this 

          allows programmers use of FAC and ARG areas in Fast RAM. 

           Here is the program loaded into Fast RAM by EXECUTE: 

  

                              AORG   >8300 

            CPUPGM            DATA   >8302        First address. 

                              BLWP   @>834A       Switch context 

                                                  with FAC as dummy. 

                              CLR    @>837C       Clear for GPL return. 

                              RT                  Return to GPL. 

                              END 

  

           If a programmer absolutely must use Fast RAM for his program 

          I suggest he set up a buffer for saving HEX 8300 to HEX 83FF 

          if only so it will not mess up any GPL pointers and don't go 

          and mess up the 12 bytes at VDP HEX >03C0. Then the only 

          thing to worry about is messing up something else. 

  

 

 

 

 

 

 

 

 

 



          EXECUTE                                              PAGE  E5 

          ------------------------------------------------------------- 

  

          Programs 

  

          Line 100 initializes lower 8k | >100 CALL INIT 

          Line 110 loads the assembly   | >110 CALL LOAD(9838,47,0,38,1 

          program shown below. VMBR     |  14,4,32,32,44,3,128) 

          Line 120 loads registers with | >120 CALL LOAD(12032,0,0,48,0 

          VDP address, Buffer, Length.  |  ,2,255) 

          Line 130 runs line 110 program| >130 CALL EXECUTE(9838) 

          Line 140 loads the assembly   | >140 CALL LOAD(9838,47,0,38,1 

          program shown below. VMBW     |  14,4,32,32,36,3,128) 

          Line 150 loads registers with | >150 CALL LOAD(12032,0,0,48,0 

          VDP address, Buffer, Length.  |  ,2,255) 

          Line 160 runs line 140 program| >160 CALL EXECUTE(9838) 

          Line 170 put a command in here| >170 CALL VCHAR(1,1,32,768) 

          Line 180 loops to line 160    | >180 GOTO 160 

  

          HEX ADDRESS|HEX VALUE|ASSEMBLY COMMAND EQUIVILENT 

          >266E       >2F00     DATA >2F00  (workspace area address) 

          >2670       >2672     DATA >2672  (start execution address) 

          >2672       >0420     BLWP        (first executed command) 

          >2674       >202C     @VMBR (or >2024 VMBW) 

          >2676       >0380     RTWP 

          ------------------------------------------------------------- 

          >2F00       >0000     REGISTER 0 (VDP address) 

          >2F02       >3000     REGISTER 1 (RAM buffer address) 

          >2F04       >02FF     REGISTER 2 (length of text) 

  

          Normal XB using LINK. 

          Initialize for Assembly.     | >100 CALL INIT 

          Load support routine.        | >110 CALL LOAD("DSK1.TEST") 

          LINK to program.             | >120 CALL LINK("GO") 

                                       | 

          RXB using EXECUTE.            

          Initialize for Assembly.     | >100 CALL INIT 

          Load support routine.        | >110 CALL LOAD("DSK1.TEST") 

          EXECUTE program address.     | >120 CALL EXECUTE(13842) 

          

          The difference is EXECUTE does no checking so the address 

          must be correct. The LINK method finds the name and uses 

          the 2 byte address after the name to run the Assembly.  

          EXECUTE just runs the address without looking for a name. 

          Execute using a LOAD can be up to 5 times faster than LINK. 

 

          Options. 

          Dependent on Programmers use and skill. 

 

 

 

 

 

 



          FCOPY          subprogram                            PAGE  F1 

          ------------------------------------------------------------- 

  

          Format         CALL FCOPY(master-pathname,filename, 

                         copy-pathname,filename[,...]) 

  

                         CALL FCOPY(string-variable,string-variable, 

                         string-variable,string-variable[,...]) 

  

                         CALL FCOPY(number,filename,number,filename 

                         [,...]) 

  

          Description 

  

          The FCOPY subprogram copies files from drive to drive. The 

          pathname determines the device used and the pathname can be 

          up to 255 characters in length. The Myarc HFDC can only 

          support 29 character pathnames plus the filename of 10, so 

          that would add up to 39 characters total. The pathname must 

          end with a period and the filename may only be 10 characters 

          in length. FCOPY can copy up to 12 files from 12 drives to 

          12 drives and 12 different filenames all in one command. 

          NOTE: 

          FCOPY does have a cost for existing in the TI, and the price 

          is 4K of VDP must be available for use. A *STACK OVERFLOW* 

          or *MEMORY FULL* error will result if not enough VDP memory 

          is available. Using FCOPY leaves 8K available for programs. 

          USE RUN TO RESET MEMORY FOR FEWER CRASHES! 

  

          Programs 

  

          Copies file TESTER from drive | >CALL FCOPY(1,"TESTER",2," 

          1 to drive 2 named JUNKER.    |  JUNKER") 

                                        | 

          Copies file FW from DSK.FWB.  | >CALL FCOPY("DSK.FWB.","FW"," 

          to DSK.FWB. named UTIL1       |  DSK.FWB.","UTIL1") 

                                        | 

          This next program will copy any directory to any directory. 

          Or any disk to any disk, all the files on the disk. 

                                        | 

          Name of program.              | >100 ! COPY DIR TO DIR 

          Clear the screen.             | >110 CALL CLEAR 

          Get master path of device.    | >120 INPUT "MASTER PATH:":M$ 

          Get copy path of device.      | >130 INPUT "COPY   PATH:":C$ 

          Open a Catalog of device.     | >140 OPEN #1:M$,INTERNAL,INPU 

                                        | >T,FIXED 38 

          Get a filename.               | >150 INPUT #1:A$,B,C,D 

          If first name, ignore diskname| >160 X=X+1 :: IF X=1 THEN 150 

          If filename empty end program,| >170 IF LEN(A$)=0 THEN  CALL 

          close files and restart.      | >CLSALL :: RUN 

          Count files and show pathname.| >180 PRINT X-1: :C$&A$ 

          Copy files.                   | >190 CALL FCOPY(M$,A$,C$,A$) 

          Continue endlessly.           | >200 GOTO 150 

 



          FILES          subprogram                            PAGE  F2 

          ------------------------------------------------------------- 

  

          Format         CALL FILES(number) 

  

                         CALL FILES(numeric-variable) 

  

          Description 

  

          The FILES subprogram differs from the Disk Controller FILES 

          on the CorComp, TI, Myarc or Parcom versions. All of these 

          require a NEW after CALL FILES. NEW is executed after the 

          FILES subprogram in RXB, so there is no need to use NEW. 

          Also RXB FILES accepts values from 1 to 15 unlike the other 

          FILES routines that can only accept 1 to 9. Each open file 

          reduces VDP by 534 bytes, plus each file opened will use 

          518 bytes more. 

  

          Programs 

  

          FILES opens usual buffers.    | >CALL FILES(3) 

                                        | 

          FILES ends the program and    | >100 CALL FILES(1) 

          executes NEW.                 | 

                                        |  

          Only possible in RXB          | >100 CALL FILES(15) 

                                        | >NEW 

                                        | >SIZE 

                                        | 

          Will display 5624 Bytes of Stack free and 24488 Bytes of 

          Program space free. At this point up to 15 files may be 

          open at the same time. Not recommended but possible now. 

 

          Options 

          See XBPGM for even more powerful applications made easy. 

          For example CALL XBPGM("DSK1.LOAD",2) will CALL FILES(2) 

          then NEW then RUN "DSK1.LOAD" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          GCHAR          subprogram                            PAGE  G1 

          ------------------------------------------------------------- 

  

          Format         CALL GCHAR(row,column,numeric-variable[,...]) 

  

          Description 

  

           See EXTENDED BASIC MANUAL page 88 for more data. The only 

          change to GCHAR is the auto-repeat function. 

  

          Programs 

  

          This line stores the character| >100 CALL GCHAR(4,5,A,4,6,B) 

           at row 4 column 5 in A, then | 

           stores character at row 4    | 

           column 6 in B.               | 

          Gets row 9 column 3 in Q and  | >100 CALL GCHAR(9,3,Q,9,4,R) 

           row 9 column 4 in R.         | 

          Put R at row 9 column 3 and   | >110 CALL HCHAR(9,3,R,1,9,4,Q 

           Q at row 9 column 4          |  ,1) 

          Continue loop.                | >120 GOTO 100 

  

          Options 

          CALL GCHAR in RXB is much faster than normal XB now. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          GMOTION        subprogram                            PAGE  G2 

          ------------------------------------------------------------- 

  

          Format         CALL GMOTION(#sprite-number,row-velocity, 

                         column-velocity[,...]) 

  

          Description 

  

          The GMOTION subprogram returns the row-velocity and 

          column-velocity as numbers from -128 to 127. If the sprite is 

          not defined, row-velocity and column-velocity is set to zero. 

          The sprite continues to move after its motion is returned, so 

          this must be allowed for. See EXTENDED BASIC MANUAL MOTION 

          subprogram for more data. 

  

          Program 

  

          GMOTION returns the row-      | >100 CALL GMOTION(#1,X,Y) 

          velocity into X and the       | 

          column-velocity into Y.       | 

                                        | 

          Set up screen and up,down     | >100 A(0)=-1::A(1)=1::CALL CL 

          ,left,right variables         |  EAR::CALL MAGNIFY(2)::CALL S 

          A(0) and A(1)                 |  CREEN(15) 

          Loop for 28 sprites.          | >110 FOR S=1 TO 28 

          Set up 28 random sprites      | >120 CALL SPRITE(#S,64+S,INT( 

          with random colors and        |  RND*16)+1,20+S,50+S,INT(A(RN 

          motion.                       |  D*1))*INT(RND*127),INT(A(RND 

                                        |  *1))*INT(RND*127)) 

          Loop counter.                 | >130 NEXT S 

          Random sprite selector,       | >140 S=INT(RND*28)+1::CALL GM 

          get that sprites motion,      |  OTION(#S,X,Y)::CALL HPUT(24, 

          put the values on screen.     |  3,"CALL GMOTION(#"&STR$(S)&" 

                                        |  ,"&STR$(X)&","&STR$(Y)&")") 

          Delay loop.                   | >150 FOR L=1 TO 1E3::NEXT L  

          Clear screen and Z+1.         | >160 CALL CLEAR::Z=Z+1::IF 

           Loop till Z>8                |  Z<8 THEN 140 

                                        | 

  

          Options 

          While characters 144 to 159 are being used, you cannot use 

          sprites. 

 

 

 

 

  

 

 

 

 

 

 

 



          HCHAR          subprogram                            PAGE  H1 

          ------------------------------------------------------------- 

  

          Format         CALL HCHAR(row,column,character-code) 

  

                         CALL HCHAR(row,column,character-code, 

                         repetition[,...]) 

  

          Description 

  

           See EXTENDED BASIC MANUAL page 92 for more data. The only 

          change to HCHAR is the auto-repeat function. Notice the new 

          auto-repeat must have the repetitions used or it gets row 

          confused with repetitions. 

  

          Programs 

  

          This line puts character 38 at| >100 CALL HCHAR(1,1,38,99,9,1 

           row 1 column 1 99 times, then|  ,87) 

           puts character code 87 at    | 

           row 9 column 1               | 

                                        | 

          Fills screen with characters. | >100 CALL HCHAR(1,1,32,768,1, 

                                        |  1,65,768,1,1,97,768,1,1,30,7 

                                        |  68) :: GOTO 100 

                                        |           

                                         

          Options 

          CALL HCHAR in RXB is faster than normal XB as separate line 

          numbers are needed to continue placing characters on screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          HEX            subprogram                            PAGE  H2 

          ------------------------------------------------------------- 

  

          Format         CALL HEX(string-variable,numeric-variable[,... 

                         ]) 

  

                         CALL HEX(numeric-variable,string-variable[,... 

                         ]) 

  

          Description 

  

          The HEX subprogram converts Decimal to Hexadecimal or from 

          Hexadecimal to Decimal. If a number or numeric-variable is 

          first, HEX will convert the Decimal floating point value 

          (Rounded off) to a four character sting and puts the string 

          into the string-variable. If a string or string-variable is 

          first, HEX will convert the String into a Decimal integer and 

          put it into the numeric-variable. A numeric-variable or 

          number ranges from -32768 to 32767 or the Hexadecimal 

          equivalent of >8000 to >7FFF. The > is not used in HEX. 

           When a string or string-variable is null (length of zero) 

          the numeric-variable will contain 0. The opposite is if a 

          number or numeric-variable is 0 then the string-variable will 

          contain a length of four and a value of >0000. Any time a 

          string-variable is second it will be cleared before being 

          assigned a new string value. All strings in HEX must be 

          right justified or are returned as right justified, thus each 

          string will be padded with zeros. 

           HEX will only use the first four characters of a string to 

          convert the value, it will ignore the rest of the string. 

           Errors will result if a string contains characters other 

          then 0-9 and A-F or a-f. Errors will result if a number is 

          less than -32768 or larger than 32767. 

  

          CALL HEX can be used for RXB CALL SECTOR but requires that 

          two strings be combined for Hard Drive access. A CALL HEX 

          of -1 equals >FFFF and -32768 equals >8000 thus 1 equals 

          >0001 and 32767 equals >7FFF so: 

 

          FOR SECTOR=0 to 32767 would be 0 to >7FFF 

          FOR SECTOR=-32768 to -1 would be >8000 to >FFFF 

          Only good for a 65535 sector hard drive. 

          As SECTOR was intended for Hard Drive access using a 

          normal DEC to HEX routine a preferred method over RXB 

          CALL HEX simply for ease of use is required. (SORRY) 

 

          >FFFFFFFF would require a 4294967295 sector hard drive. 

 

          CALL HEX is designed for memory access not hard drives. 

          (again sorry but this was intended) 

 

 

 

 



          HEX                                                  PAGE  H3 

          ------------------------------------------------------------- 

  

          Programs 

  

          From command mode.            | 

          Upper case                    | >CALL HEX("F",V) 

          or lower case                 | >CALL HEX("f",V) 

          will both return same result. | >PRINT V 

          V=15                          | 

                                        | 

          Line 100 sets address counter.| >100 FOR D=-32768 TO 32767 

          Line 110 converts it to HEX.  | >110 CALL HEX(D,H$) 

          Line 120 shows DEC to HEX.    | >120 PRINT D,H$ 

          Line 130 continues loop count.| >130 NEXT D 

                                        | 

          Line 100 asks for HEX number. | >100 INPUT "HEX=":H$ 

          Line 110 converts HEX to DEC. | >110 CALL HEX(H$,D) 

          Line 120 shows DEC equivalent.| >120 PRINT D: : 

          Line 130 starts program over. | >130 GOTO 100 

                                        | 

          Line 100 list of numbers.     | >100 DATA 200,124,97,249,140, 

          It takes 8 bytes to store any |  77,81,173,254,78,93,12,38,65 

          number in XB.                 |  ,55,6,0 

          Line 110 read list into N.    | >110 READ N 

          Line 120 convert to HEX.      | >120 CALL HEX(N,N$) 

          Line 130 Save into a string as| >130 S$=S$&SEG$(N$,2,2) 

          it takes 4 bytes per number.  | 

          Line 140 check for end of list| >140 IF N<>0 THEN 110 

          Line 150 show number of bytes | >150 PRINT "NORMAL:";8*16 

          used to store numbers.        | 

          Line 160 show number of bytes | >160 PRINT "USED:  ";LEN(S$)+ 

          it would have used.           |  1  

          Line 170 show number of bytes | >170 PRINT "SAVED  ";(8*16)-(       

          it saved using string instead.|  LEN(S$)+1);"BYTES" 

                                        |               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          HGET           subprogram                            PAGE  H4 

          ------------------------------------------------------------- 

  

          Format         CALL HGET(row,column,length,string-variable 

                         [,...]) 

  

          Description 

  

          The HGET subprogram returns into a string-variable from the 

          screen at row and column. Length determines how many 

          characters to put into the string-variable. Row numbers from 

          1 to 24 and column numbers from 1 to 32. Length may number 

          from 1 to 255. If HGET comes to the edge of the screen then 

          it wraps to the other side. 

  

          Programs 

  

          The program to the right will | >100 CALL HGET(5,9,11,E$) 

          put into string-variable E$   | 

          the 11 characters at row 5 and| 

          column 9.                     | 

                                        | >100 CALL HGET(1,3,5,M$,9,3,1 

          The program to the right will |  ,Q$,24,1,32,N$) 

          put into string-variable M$   | 

          the 5 characters at row 1 and | 

          column 3, then put into       | 

          string-variable Q$ the 1      | 

          character at row 9 and column | 

          3, then put into              | 

          string-variable N$ the 32     | 

          characters at row 24 and      | 

          column 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          HONK           subprogram                            PAGE  H5 

          ------------------------------------------------------------- 

  

          Format         CALL HONK 

  

  

          Description 

  

          The HONK command produces the same sound as the ACCEPT or 

          in INPUT or if a error occurs. 

  

          Programs 

  

          The program to the right will | >100 PRINT "YN ?" 

          will produce a honk sound.    | 

          Key request for YN.           | >110 CALL KEY("YN",0,K,S)  

          Indicate N was pressed.       | >120 IF K=78 THEN CALL HONK 

          Continue on with program.     | >130 GOTO 1000 

                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          HPUT           subprogram                            PAGE  H6 

          ------------------------------------------------------------- 

  

          Format         CALL HPUT(row,column,string[,...]) 

  

                         CALL HPUT(row,column,string-variable[,...]) 

  

                         CALL HPUT(row,column,number[,...]) 

  

                         CALL HPUT(row,column,numeric-variable[,...]) 

  

          Description 

  

          The HPUT subprogram puts a string, string-variable, number, 

          or numeric-variable onto the screen at row and column. The 

          The row numbers from 1 to 24 and column numbers for 1 to 32. 

          If the string, string-variable, number, or numeric-variable 

          being put onto screen goes to an edge it wraps to the other 

          side. Unlike the EXTENDED BASIC DISPLAY AT the HPUT 

          subprogram will not scroll the screen. 

  

          Programs 

  

          Line 100 puts string "THIS" on| >100 CALL HPUT(10,4,"THIS") 

          the screen at row 10 and      | 

          column 4.                     | 

                                        | 

          Line 110 sets string-variable  | >110 A$="HPUT" 

          A$ equal to string "HPUT"     | 

                                        | 

          Line 120 puts string "is" at  | >120 CALL HPUT(12,5,"is",14,4 

          row 12 and column 5, then puts|  ,A$) 

          string-variable A$ at row 14  | 

          and column 4.                 | 

                                        | 

          Line 100 puts string A$ at row| >100 CALL HPUT(16,5,A$) 

          16 and column 5.              | 

                                        | 

          Puts 456 at row 10 col 15     | >100 CALL HPUT(10,15,456) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

          INIT           subprogram                            PAGE  I1 

          ------------------------------------------------------------- 

  

          Format         CALL INIT 

  

  

          Description 

  

          The INIT command is the same as the EXTENDED BASIC MANUAL 

          page 101. Originally INIT loaded more data then actually 

          existed, this has been fixed. The other correction is that 

          you no longer have to use INIT before LINK, or LOAD. They 

          will function if INIT has been called first or not. Unless 

          loading a program that needs the INIT. 

  

          Programs 

  

          The program to the right will | >100 CALL INIT 

          initialize the lower 8K by    | 

          loading support routines for  | 

          assembly.                     | 

                                        | 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          INVERSE        subprogram                            PAGE  I2 

          ------------------------------------------------------------- 

  

          Format         CALL INVERSE(character-code[,...]) 

  

                         CALL INVERSE(ALL[,...]) 

  

          Description 

  

          The INVERSE subprogram finds the character definition of the 

          character-code and inverts all the bytes in the character 

          definition. That means it just reverses the foreground and 

          background. The ALL feature inverts characters 30 to 143 

          thus not affecting characters 144 to 159 as this would 

          destroy sprites. 

  

          Programs 

  

          The program to the right will | >100 CALL INVERSE(65) 

          INVERSE all character-code (A)| 

          in the character definition   | 

          table in memory.              | 

                                        | 

          The program to the right will | >100 CALL INVERSE(ALL) 

          INVERSE all character-codes   | 

          from 30 to 143.               | 

                                        | 

          Line 100 will ask for a string| >100 INPUT A$ 

          of characters terminated by   | 

          the ENTER key.                | 

          Line 110 is a loop to counter.| >110 FOR L=1 TO LEN(A$) 

          Line 120 singles each one of  | >120 C=ASC(SEG$(A$,L,1)) 

          the characters in A$.         | 

          Line 130 INVERSEs each one.   | >130 CALL INVERSE(C) 

          Line 140 completes the loop.  | >140 NEXT L 

          Line 150 restarts the program.| >150 GOTO 100 

          (Be sure and not enter any blank characters in this program) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          IO             subprogram                            PAGE  I3 

          ------------------------------------------------------------- 

  

          Format         CALL IO(type,address[,...]) 

  

                         CALL IO(type,bits,cru-base,variable,variable 

                         [,...]) 

  

                         CALL IO(type,length,vdp-address[,...]) 

  

          Description 

  

          The IO subprogram allows access to and control of any chip in 

          the console or peripheral cards. The type refers to different 

          access methods like playing sound from GROM or VDP memory 

          automatically. The type can also specify reading or writing 

          directly to a Control Register Unit (CRU) address. Thereby 

          allowing direct chip control, or direct chip bypass if the 

          user wishes. The IO subprogram is a Graphics Programming         

          Language (GPL) command. So the function is exactly like GPL  

          despite being run from the XB environment. As most of XB is                             

          written in GPL the user gains greater GPL like control. 

          After all the Operating System is written in GPL for a  

          good reason.*Note these docs are from GPL Manuals. 

  

                 type             address specifications 

                ~~~~~~            ~~~~~~~~~~~~~~~~~~~~~~ 

 0 ---------- GROM sound list address.

 1 ---------- VDP sound list address.

 2 ---------- CRU input.

 3 ---------- CRU output.

 4 ---------- VDP address of Cassette write list.

 5 ---------- VDP address of Cassette read list.

 6 ---------- VDP address of Cassette verify list.

 The length specifies the number of bytes. The length can be

 from -32768 to 32767 depending on the amount of VDP memory

 that is available. Of course a value of -32768 is HEX >8000

 and 32767 is HEX >7FFF and VDP normally in a TI is only 16384

 or HEX >4000 of VDP. So be careful or lock-up will result.

 The cru-base is the CRU address divided by 2 in decimal form

 as the command automatically doubles the value input. The CRU

 -base ranges from 0 to 8191 or HEX >0000 to >1FFF with a EVEN

 address for 8 bits or more being scanned. That means that a

 value of 8191 will lock-up the system as it is looking for a

 bit in 8192 that does not exist.

 The variable can input or output values ranging from 0 to 255

 as that is equivalent to a single byte value. As there are

 two variables 16 bits can be represented in the two 8 bit

 variables. If CRU input reads less than 8 bits, the unused

 bits in the byte are reset to zero. If CRU input reads less

 then 16 but more than 8 bits, the unused bits in the word

 will be reset to zero. The bits range from 1 to 16 for input

 or output.

 IO PAGE I4

 AUTO-SOUND INSTRUCTION GROM/GRAM/VDP

 Format CALL IO(type,address[,...])

 Control of the Sound Generator Chip (SGC) in the system

 console is through a pre-defined table in GROM/GRAM or VDP

 memory. Sound output is controlled by the table and the VDP

 Interrupt Service Routine (ISR). A control byte at the end of

 the table can cause control to loop back up in the table to

 continue, or end sound output. The format of the table is the

 same regardless of where it resides. The table consists of a

 series of blocks, each of which contains a series of bytes

 which are directly output to the SGC.

 Since the VDP generates 60 interrupts per second, the

 interrupt count is expressed in units of one-sixtieth of a

 second.

 When the IO command is called, upon the next occurring

 VDP interrupt, the first block of bytes is output to the SGC.

 The interpreter (Operating System) waits the requested number

 of interrupts (for example, if interrupt counts are 1, every

 interrupt causes the next block to be output). Remember that

 interpretation of XB continues normally while the SGC control

 is enabled.

 The sound control can be terminated by using an interrupt

 count of 0 in the last block of the table. Alternatively, a

 primitive looping control is provided by using a block whose

 first byte is 0, and the next 2 bytes indicate an address in

 the same memory space of the next sound block to use. (That

 means one block points to another block only in the same type

 of memory).

 If the first byte is hex FF or decimal 255, the next two

 bytes indicate an address in the other memory space. (That

 means one block points to another block but in another type

 of memory.) These allow switching sound lists from GROM/GRAM

 to VDP or VDP to GRAM/GROM. By making this the beginning of

 the entire table, the sound sequence can be made to repeat

 indefinitely.

 The type 0 indicates sound lists in GROM or GRAM and type 1

 indicates sound lists in VDP.

 Executing a sound list while table-driven sound control is

 already in progress (from a previous sound list) causes the

 old sound control to be totally supplanted by the new sound

 instruction. (That means any sound chip command will over-

 ride old sound chip commands).

 The SGC has 3 tone (square wave) generators - 0, 1, and 2

 all of which can be working simultaneously or in combination.

 The frequency (pitch) and attenuation (volume) of each

 generator can be independently controlled. In addition, there

 is a noise generator which can output white or periodic

 noise. For more information on controlling the SGC, see the

 TSM9919 SGC specification.

 IO PAGE I5

 ATTENUATION CONTROL (for generators 0, 1, 2 or 3)

 One byte must be transmitted to the SGC:

 Binary 1-REG#-1-Attenuation

 REG# = register number (0,1,2,3)

 Attenuation = Attenuation/2

 (e.g. A=0000 0 db = highest volume;

 A=1000 16 db = medium volume;

 A=1111 30 db = off.)

 EXAMPLE: 1 10 1 0000 : turn on gen. #2 highest volume.

 1 01 1 0100 : turn on gen. #1 medium high volume.

 1 11 1 1111 | turn off gen. #3 (noise generator).

 FREQUENCY CONTROL (for generators 0, 1, 2)

 Two bytes must be transmitted to the SGC for a given register

 and to compute the number of counts from the frequency F

 use: N = 111860 / F

 Binary 1-REG#-N(1s 4 bits)-00-N(ms 6 bits)

 Note that N must be split up into its least

 significant 4 bits and most significant 6

 bits (10 bits total).

 The lowest frequency possible is 110 Hz and the highest is

 55938 Hz.

 NOISE CONTROL |

 ------------- |

 One byte must be transmitted to the SGC:

 Binary 1-1-1-0-0-T-S

 T = 0 for white noise, 1 for periodic noise;

 S = Shift rate (0,1,2,3) = frequency center of noise.

 S=3=frequency dependent on the frequency of tone

 generator #3.

 IO PAGE I6

 Programs

 Line 100 clears screen. | >100 CALL CLEAR ! Chimes

 Line 110 to ... | >110 DATA 5,159,191,223,255,2

 | 27,1,9,142,1,164,2,197,1,144

 | ,182,211,6,3,145,183,212,5,3

 | ,146,184,213,4

 | >120 DATA 5,167,4,147,176,214

 | ,5,3,148,177,215,6,3,149,178

 | ,216,7

 | >130 DATA 5,202,2,150,179,208

 | ,6,3,151,180,209,5,3,152,181

 | ,210,4

 | >140 DATA 5,133,3,144,182,211

 | ,5,3,145,183,212,6,3,146,184

 | ,213,7

 | >150 DATA 5,164,2,147,176,214

 | ,6,3,148,177,215,5,3,149,178

 | ,216,4

 Line 160 ends sound list. | >160 DATA 5,197,1,150,179,208

 | ,5,3,151,180,209,6,3,152,181

 | ,210,7,3,159,191,223,0

 Line 170 reads list into B and| >170 A=A+1 :: READ B :: CALL

 A is counter | POKEV(A,B)

 Line 180 checks end of list? | >180 IF B=0 THEN 190 ELSE 170

 Line 190 shows how to access. | >190 PRINT "TYPE:": :"CALL IO(

 | 1,8192)"

 | >200 CALL IO(1,8192)

 |

 Line 310 continues AD loop. | >310 NEXT AD

 Line 320 executes sound list. | >320 CALL IO(1,4096)

 Line 330 prints out suggestion| >330 PRINT "CRASH": :"TYPE:":

 on how to test IO. | "CALL IO(1,4096)"

 IO PAGE I7

 Programs

 Line 100 clears the screen. | >100 CALL CLEAR ! CRASH

 Line 110 to ... | >110 DATA 2,228,242,5

 | >120 DATA 2,228,240,18

 | >130 DATA 2,228,241,16

 | >140 DATA 2,228,242,14

 | >150 DATA 2,228,243,12

 | >160 DATA 2,228,244,10

 | >170 DATA 2,229,245,9

 | >180 DATA 2,229,246,8

 | >190 DATA 2,229,247,7

 | >200 DATA 2,229,248,6

 | >210 DATA 2,229,249,5

 | >220 DATA 2,230,250,4

 | >230 DATA 2,230,251,3

 | >240 DATA 2,230,252,2

 | >250 DATA 2,230,253,1

 | >260 DATA 2,230,254,1

 Line 270 ends sound list. | >270 DATA 1,255,0,0

 Line 280 AD is VDP address to | >280 FOR AD=4096 TO 4160 STE

 start with and ends with. | P 4

 Line 290 reads list. | >290 READ V1,V2,V3,V4

 Line 300 moves them into VDP. | >300 CALL POKEV(AD,V1,V2,V3,V

 | 4)

 Line 310 continues AD loop. | >310 NEXT AD

 Line 320 executes sound list. | >320 CALL IO(1,4096)

 Line 330 prints out suggestion| >330 PRINT "CRASH": :"TYPE:":

 on how to test IO. | "CALL IO(1,4096)"

 All data values must converted to Binary in order to see

 what is going on. You now have all the data that I have as

 to this phase of IO types 0 and 1. See Editor Assembler

 Manual also for more data on sound lists and sound chip.

 IO PAGE I8

 Sound table creator for conversion of sound data.

 100 CALL CLEAR

 110 PRINT "*SOUND DATA TABLE CREATOR*"

 120 Q$="0123456789ABCDEF"

 130 INPUT "GENERATOR # ?":GN

 140 INPUT "DURATION ?":DUR

 150 INPUT "FREQUENCY ?":FREQ

 160 INPUT "VOLUME ?":VOL :: PRINT : : :

 170 IF DUR>17 THEN 190

 180 DUR=17

 190 REM DURATION

 200 DUR=INT((DUR*255)/4250) :: CONV=DUR

 210 GOSUB 430

 220 DUR$=SEG$(HX$,3,2) :: IF FREQ>-1 THEN 310

 230 REM NOISE FREQUENCY

 240 FR=ABS(FREQ)-1 :: FR$="E"&STR$(FR)

 250 REM NOISE VOLUME

 260 VOL=INT(VOL/2) :: CONV=VOL

 270 GOSUB 430 :: VOL$="F"&SEG$(HX$,4,1)

 280 PRINT "DATA>02";FR$;",>";VOL$;DUR$: : :

 290 GOTO 390

 300 REM TONE FREQUENCY

 310 FR=INT((111860.8/FREQ)+.5)

 320 CONV=FR :: GOSUB 430

 330 FR$=SEG$(Q$,GN*2+7,1)&SEG$(HX$,4,1)&SEG$(HX$,2,2)

 340 REM TONE VOLUME

 350 VOL=INT(VOL/2) :: CONV=VOL

 360 GOSUB 430

 370 VOL$=SEG$(Q$,GN*2+8,1)&SEG$(HX$,4,1)

 380 PRINT "DATA>03";SEG$(FR$,1,1)&SEG$(FR$,2,1);",>";

 SEG$(FR$,3,2);VOL$;",>";DUR$;"00": : :

 390 PRINT: :"ANOTHER SOUND (Y/N)?"

 400 CALL ONKEY("YN",3,K,S) GOTO 100,420

 410 GOTO 400

 420 CALL CLEAR :: END

 430 REM DECIMAL TO HEX

 440 AY=INT(CONV)/16 :: BY=INT(AY)/16

 450 CY=INT(BY)/16 :: DY=INT(CY)/16

 460 AP=(AY-INT(AY))*16 :: BP=(BY-INT(BY))*16

 470 CP=(CY-INT(CY))*16 :: DP=(DY-INT(DY))*16

 480 HX$=SEG$(Q$,DP+1,1)&SEG$(Q$,CP+1,1)&

 SEG$(Q$,BP+1,1)&SEG$(Q$,AP+1,1)

 490 RETURN

 Use this program to create Hex strings that can use

 CALL MOVES to move strings into VDP to be played from

 a CALL IO(1,VDP-address)

 IO PAGE I9

 CRU ACCESS INSTRUCTION

 Format CALL IO(type,bits,cru-base,variable,variable

 [,...])

 The IO types 2 and 3 can be used to control a variety of

 input-output devices including Speech, or CRU. IO always must

 be the CRU address divided by 2 as any value above 8192 will

 be out of range. The cru-base must be divided by 2 as the

 9901 chip ignores the least significant bits of the base

 register it uses. See Editor Assembler Manual page 61.

 The CRU data to be written should be right justified in the

 byte or word. The least significant bit will output to or

 input from the CRU address specified by the CRU base address.

 Subsequent bits will come from or go to sequentially higher

 CRU addresses. If the CRU input reads less than 8 bits, the

 unused bits in the byte are reset to zero. If the CRU input

 reads less than 16 bits but more than 8 bits, the unused bits

 in the full two 8 bit bytes will be reset to zero.

 Programs

 Line 100 display what it does | >100 DISPLAY AT(1,1)ERASE ALL

 for you. | :"THIS PROGRAM CHECKS FOR

 | UNUSUAL KEYS BEING PRESSED

 | , EVEN IF MORE THEN FOUR KEY

 | ARE BEING PRESSED AT ONCE"

 Line 110 scans CRU at >0006 | >110 CALL IO(2,16,3,A,B):: IF

 and reports keys pressed. | A=18 AND B=255 THEN 110 ELS

 | E CALL HPUT(24,3,RPT$(" ",30

 |),24,24,STR$(A)&" "&STR$(B))

 Line 120 more reports. | >120 IF A=146 THEN CALL HPUT(

 | 24,3,"FUNCTION KEY")ELSE IF

 | B=191 THEN CALL HPUT(24,3,"C

 | ONTROL KEY")ELSE IF B=223 TH

 | EN CALL HPUT(24,3,"SHIFT KEY

 | ")

 Line 130 still more reports. | >130 IF B=251 THEN CALL HPUT(

 | 24,3,"ENTER KEY")ELSE IF B=2

 | 53 THEN CALL HPUT(24,3,"SPAC

 | E BAR")ELSE IF B=254 THEN CA

 | LL HPUT(24,3,"PLUS/EQUAL KEY

 | ")

 Line start over scan of keys. | >140 GOTO 110

 |

 The above program scans CRU input/output lines for keys.

 Please note that EMULATION of the TI99/4A is never complete,

 so many CRU address in a Emulator are not fully functional.

 IO PAGE I10

 Programs

 Line 100 clears screen. | >100 CALL CLEAR

 Line 110 explains program. | >110 CALL HPUT(4,7,"This is a

 | demo of the",6,7,"CALL IO(3

 | ,8,2176,B)",8,7,"3 = TYPE(CR

 | U output)",10,7,"8 = NUMBER

 | OF BITS",12,7,"2176=address/

 | 2")

 Line 120 turn off card, show | >120 CALL IO(3,8,2176,0):: FO

 the present byte value being | R B=0 TO 255 :: CALL HPUT(14

 sent. | ,7,"B=byte (value "&STR$(B)&

 | ")")

 Line 130 display block to get | >130 CALL HPUT(18,5,"********

 attention. | ******************",19,5,"WA

 | TCH THE DRIVE LIGHTS",20,5,"

 | **************************")

 Line 140 send byte to card and| >140 CALL IO(3,8,2176,B):: NE

 when done with loop, clear for| XT B :: CALL HCHAR(14,24,32,

 starting over program. | 7):: GOTO 110

 |

 The above program will only work on a REAL TI not EMULATORS.

 Line 100 explains program. | >100 ! TURNS OFF/ON/OFF EACH

 | CARD FROM >1000 TO >1F00 BUT

 | WILL LOCKUP WITH CERTAIN

 | CARDS.

 Line 110 cru address from | >110 FOR CRU=2048 TO 3968 STE

 >1000 to >1F00 | P 128

 Line 120 turn off card, turn | >120 CALL IO(3,8,CRU,0,3,8,CR

 on card, delay for 2 seconds, | U,255)::FOR A=1 TO 200::NEXT

 turn off card. | A::CALL IO(3,8,CRU,0)

 Line 140 loop till done. | >140 NEXT CRU

 Options

 Some CRU address are used by the Operating System or XB and

 any attempt to redefine them will create problems. Also some

 of the address areas will return incorrect values as they

 have changed since IO has accessed them. These problems will

 never become completely apparent at first, so take care.

 Additionally some cards have the same problem, if the card

 has a program that has a interrupt or CRU links turned on as

 you access it, a complete lock up will result as a fight for

 control ensues. So with that happy thought, a alternate way

 is to use EXECUTE or LINK instead.

 IO PAGE I11

 CASSETTE INPUT/OUTPUT/VERIFY INSTUCTION

 Format CALL IO(type,length,vdp-address[,...])

 The three different cassette I/O instuctions use the same

 format. The write and read instructions physically perform

 Input/Output to the cassette. The verify instruction will

 read a tape and compare it, byte by byte, against what is in

 the specified vdp area. All will report an I/O error if one

 is detected.

 No prompts are present with these three formats. These three

 types control the cassette directly so no prompt will tell

 the user to turn on or off the cassette record/play buttons.

 The programmer must inform the user with his own prompt.

 Programs

 Presently I have no cassette to write programs with.

 AUDIO GATE

 CRU bit 24 is the audio gate which allows data being read to

 be heard. If the bit is set to 1, the data being read is

 heard, and if the bit is set to 0, the data is not heard.

 Setting the bit to a 0 or 1 is done with an IO instruction, or

 a Assembly instruction.

 MOTOR CONTROL

 There are two CRU bits (22 and 23) used to control cassettes

 1 and 2, respectively. When there is no Cassette IO being

 done, both motors remain on. When Cassette IO is specified,

 the DSR (Device Service Routine) will control the data being

 read. If there are two motor units connected, the data will be

 read simultaneously, or you may have the option of reading

 data from one motor unit and playing the recorded voice from

 another motor unit through the TV (Monitor) speaker.

 *NOTE:

 Compatibility with or without 32K or other devices is not a

 concern as IO needs no RAM to work with. Therefore from just

 a console all IO commands will work fine. If you only have a

 Cassette and RXB you can quickly load/save/verify without

 menus, or just make up your own.

 ISROFF subprogram PAGE I12

 Format CALL ISROFF(numeric-variable)

 Description

 The Interrupt Service Routine (ISR) is a routine that executes

 during timed intervals. The operating system of the TI is set

 up for these. Mouse or Screen dumps or Hot Key programs bring

 to mind the common uses of a ISR hook. The ISROFF routine in

 RXB does as it suggests and turns the ISR hook off. But the

 numeric-variable is used to store the address of where this

 ISR hook came from. Of course ISRON is the opposite and will

 turn it back on. Extreme care must be used when turning on or

 off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)

 will be 0 when there is no ISR. Otherwise any other value will

 mean that a ISR is being used.

 Programs

 This line checks ISR hook. | >100 CALL ISROFF(J)

 This shows if ISR is in use. | >110 IF J THEN PRINT "ISROFF"

 This line loads another file. | >120 CALL LOAD("DSK1.HOT")

 This starts another ISR. | >130 CALL LINK("START")

 This line checks ISR hook. | >140 CALL ISROFF(K)

 This shows if ISR is in use. | >150 IF K THEN PRINT "ISROFF"

 This turns first ISR back on. | >160 CALL ISRON(J)

 This turns second ISR back on.| >170 CALL ISRON(K)

 The program continues... |

 |

 Safer way to check ISRHOOK | >100 CALL PEEK(-31804,I,J)

 Check if zero then no ISR ON | >110 IF I+J THEN CALL ISROFF

 if I+J<>0 then turn off ISR | (N)

 and put into variable N |

 |

 The above program has loaded N with the ISR HOOK Address.

 ISRON subprogram PAGE I13

 Format CALL ISRON(numeric-variable)

 Description

 The Interrupt Service Routine (ISR) is a routine that executes

 during timed intervals. The operating system of the TI is set

 up for these. Mouse or Screen dumps or Hot Key programs bring

 to mind the common uses of a ISR hook. The ISRON routine in

 RXB does as it suggests and turns the ISR hook on. But the

 numeric-variable is used to load the address of where this

 ISR hook came from. Of course ISROFF is the opposite and will

 turn it back off. Extreme care must be used when turning on or

 off the ISR. A PEEK at hex >83C4 (decimal -31804 and -31805)

 will be 0 when there is no ISR. Otherwise any other value will

 mean that a ISR is being used.

 Programs

 This line peeks ISR hook. | >100 CALL PEEK(-31804,I,J)

 This checks if ISR is in use, | >110 IF I+J THEN CALL ISROFF(

 and if not 0 turn off ISR. | ADDRESS1)

 This line loads another file. | >120 CALL LOAD("DSK1.HOT")

 This starts another ISR. | >130 CALL LINK("START")

 This turns off ISR. | >140 CALL ISROFF(ADDRESS2)

 This checks if old ISR is ok, | >150 IF I+J THEN CALL ISRON(A

 if yes turn it on. | DDRESS1)

 The program continues... |

 |

 Safer way to check ISRHOOK | >100 CALL PEEK(-31804,I,J)

 Check if zero then no ISR ON | >110 IF I+J THEN CALL ISRON(N)

 if I+J<>0 then turn off ISR |

 and put into variable N |

 |

 The above program has ISR HOOK Address loaded from N.

 JOYST subprogram PAGE J1

 Format CALL JOYST(key-unit,x-return,y-return[,...])

 Description

 See EXTENDED BASIC MANUAL page 108

 Except for adding auto repeat there is no changes to JOYST

 Programs

 The program on the right will | >100 CALL CLEAR

 illustrate a use of JOYST | >110 CALL SPRITE(#1,33,5,96,1

 subprogram. It creates two | 28,#2,42,2,96,128)

 sprites and then moves them | >120 CALL JOYST(1,X1,Y1,2,X2,

 around according to the input | Y2)

 from the joysticks. | >130 CALL MOTION(#1,-Y1,X1,#2

 Two players with the same | -Y2,X2)

 input speed and motion. | >140 GOTO 120

 |

 KEY subprogram PAGE K1

 Format CALL KEY(key-unit,return-variable,

 status-variable[,...])

 CALL KEY(string,key-unit,return-variable,

 status-variable[,...])

 CALL KEY(string-variable,key-unit,return-

 variable,status-variable[,...])

 Description

 See EXTENDED BASIC MANUAL page 109

 RXB has added auto repeat features.

 Strings or string variables can now be added to KEY to lock

 out any other keys. The strings can be empty or up to 255 in

 length. The string function halts program execution unlike a

 normal key routine similar to ACCEPT or INPUT do.

 Programs

 This line scans both joysticks| >100 CALL JOYST(1,X,Y,2,XX,YY)

 This line scans both of the | >110 CALL KEY(1,F,S,2,FF,SS)

 fire buttons & split keyboard.|

 |

 Try this for fun. | >CALL KEY(CHR$(2),0,K,S)

 (HINT: FCTN 4) |

 |

 Add this line to programs. | >100 CALL KEY("YNyn",0,K,S)

 |

 Suspends program until key is| >100 CALL KEY("",0,K,S)

 pressed. (any key) |

 |

 Suspends program until ENTER | >100 CALL KEY(CHR$(13),0,K,S)

 is pressed. |

 |

 Suspends program until the | >100 A$="123"

 key from string A$ is used. | >110 CALL KEY(A$,0,KV,STATUS)

 |

 Suspends program until YES is| >100 CALL KEY("Y",0,K1,S1,"E"

 typed in. | ,0,K2,S2,"S",0,K3,S3)

 |

 LIST command PAGE L1

 Format LIST

 LIST "device name"

 LIST "device name":line length:line number-

 line number

 Description

 The LIST command is the same as per Extended Basic Manual

 page 114. The LIST routine has been modified to allow the

 line length to be output to a device. The line length can only

 be used if a device is specified. A colon (:) must follow the

 line length. If not included in the LIST command, the line

 length is set to the default of the specified output device.

 The line length can range from 1 to 255. If the length

 specified is outside this range, a Bad Line Number Error is

 reported.

 Command

 This line outputs to a device.| >LIST "PIO":80:100-120

 |

 This a dummy line. | >100 ! TEST OF LIST

 Another dummy line. | >110 ! TEST OF LIST

 |

 LOAD subprogram PAGE L2

 Format CALL LOAD("access-name"[,address,byte][,...]

 [,file-field,...])

 CALL LOAD(address,byte[,...])

 Description

 See EXTENDED BASIC MANUAL page 115 for more data. The only

 change is to allow a CALL LOAD to an address without having

 to use CALL INIT first.

 Program

 This line will load address | >100 CALL LOAD(8192,128)

 8192 with 128 |

 |

 Loads a 56 at address 8192 | >100 CALL LOAD(8192,56,"",

 then skips loading then loads | 8196,78,91)

 78 and 91 at 8196, and 8197 |

 |

 MKDIR subprogram PAGE M1

 Format CALL MKDIR(pathname,directory-name[,...])

 CALL MKDIR(string-varialbe,string-variable

 [,...])

 CALL MKDIR(number,disk-volume-name[,...])

 Description

 The MKDIR subprogram MaKes DIRectorys on hard drives or will

 name a disk. The pathname determines the device used and the

 pathname can be up to 255 characters in length. The Myarc

 HFDC can only support 29 characters pathnames plus the

 filename of 10, so that would add up to 39 characters total.

 The pathname must end with a period and the filename may only

 be 10 characters in length. MKDIR can create up to 24

 directories in 24 different drives in one command. MKDIR can

 also create directories then sub-directories in the same

 command.

 Programs

 This line names disk 1 NONE | >CALL MKDIR("DSK1.","NONE")

 |

 This line creates a directory| >CALL MKDIR("WDS1.","TEST")

 named TEST on hard drive 1. |

 |

 This line creates a directory | >100 CALL MKDIR("WDS1.","ONE"

 on hard drive 1 named ONE | ,"WDS1.ONE.","TWO","WDS1.ONE

 then creates a sub-directory | .TWO.","THREE")

 named TWO of directory ONE |

 then creates a sub-directory |

 named THREE of directory ONE |

 of sub-directory TWO |

 |

 The above program creates a directory then sub-directory then

 a sub-directory of that sub-directory.

 MOTION subprogram PAGE M2

 Format CALL MOTION(#sprite-number,row-velocity,

 column-velocity[,...])

 CALL MOTION(ALL,row-velocity,column-velocity

 [,...])

 CALL MOTION(STOP[,...])

 CALL MOTION(GO[,...])

 Description

 See EXTENDED BASIC MANUAL PAGE 125 for more data. A added

 feature to MOTION is STOP (disable sprite movement) and GO

 (enable sprite movement). Also ALL that affects all sprites.

 Programs

 * See EXTENDED BASIC MANUAL.

 The program to the right will | >100 CALL CLEAR :: X=190

 will set up 3 sprites to be on| >110 CALL SPRITE(#1,65,2,9,X,

 the same vertical plane, and | 20,0,#2,66,2,9,X,30,0,#3,67,

 MOTION will stop all sprites. | 2,9,X,-20,0)

 GO turns on sprite motion. | >120 CALL MOTION(GO)

 This is a delay loop. | >140 FOR D=1 TO 2000::NEXT D

 STOP turns off sprite motion. | >150 CALL MOTION(STOP)

 This is a delay loop. | >160 FOR D=1 TO 2000::NEXT D

 Change #3 motion direction, GO.| >170 CALL MOTION(#3,10,10,GO)

 This is a delay loop | >180 FOR D=1 TO 2000::NEXT D

 Continue program. | >190 GOTO 120

 |

 Clear screen and set up the | >100 CALL CLEAR::A(0)=-127 ::

 variables A(0) and A(1) | A(1)=127

 Loop to create sprites. | >110 FOR L=1 TO 28::CALL SPRI

 | TE(#L,L+65,2,L,L,-L,L) ::

 | NEXT L

 Use MOTION ALL to change the | >120 CALL MOTION(ALL,A(RND)*R

 sprite velocities. | ND,A(RND)*RND)::GOTO 120

 Options

 While characters 144 to 159 are being used, you cannot use

 sprites. Notice that GO or STOP can be followed by other

 motion commands i.e. CALL MOTION(STOP,#1,44,-87) is valid.

 MOVE command PAGE M3

 Format MOVE start line-end line,new start line,increment

 Description

 The MOVE command is used to move a program line or block of

 program lines to another location in the program. The block

 of lines to be moved is defined by start line number and

 end line number. If either of these numbers are omitted, the

 defaults are the first program line and the last program line.

 However, at least one number and a dash must be entered (both

 cannot be omitted), and there must be at least one valid

 program line between start line number and end line number.

 To move one both the start line number and end line number

 are the same. If any of the above conditions are not met, a

 Bad Line Number Error will be reported.

 The new start line number defines the new line number of the

 first line in the moved segment. When the block is moved it

 will be moved. If not, a Bad Line Number Error message is

 reported.

 This problem can be corrected by using a smaller increment, or

 by using RES to open up space for the segment. A Bad Line

 Number Error also results if the renumbering process would

 result in a line number higher than 32767.

 Although moving lines within the program does not increase the

 size of the program, this command does require 4 bytes of the

 program space for line moved. This memory use is temporary, but

 it must be available in order to move the block. If sufficient

 memory is not available a Memory Full Error results and no

 lines are moved. This problem can usually be worked around by

 moving the block a few lines at a time.

 Before the block of lines is moved any open files are closed

 and any variables are lost.

 Commands

 This line moves lines 100 thru| >MOVE 100-180,1000,5

 180 to line 1000, and then |

 increment by 5. |

 |

 This line moves lines 40 thru | >MOVE 40-,120,

 last line to line 120, and |

 increment by 10. (Default) |

 |

 This line moves line 150 to | >MOVE 150-150,1110

 line 1110 |

 |

 This line moves first program | >MOVE -800,32220,2

 line thru line 800 to line |

 32220, and increment by 2. |

 MOVES subprogram PAGE M4

 Format CALL MOVES(type$,bytes,string-variable,string-

 variable[,...])

 CALL MOVES(type$,bytes,from-address,to-address

 [,...])

 CALL MOVES(type$,bytes,from-address,string-

 variable[,...])

 CALL MOVES(type$,bytes,string-variable,to-

 address[,...])

 CALL MOVES(string-variable,number,string-

 variable,string-variable[,...])

 Description

 The MOVES subprogram moves (copies) from-string to-string the

 amount of bytes specified using the memory type string. MOVES

 does not physically move memory but copies it.

 MOVES can RIPPLE a byte thru memory by the from-address being

 one byte less than the to address.

 The type$ below specifies what type of memory is being

 moved and to what other type of memory it is moved into.

 The bytes are 255 maximum if being moved into a string-

 variable.

 MOVES address range is from -32768 to 0 to 32767.

 As MOVES mostly works with string-variables please see the

 the Extended Basic Manual page 41. MOVES will error out with

 BAD VALUE IN ### with-in a program if the string variable

 length exceeds 255, or if the number of bytes exceeds 255.

 type$ TYPE OF MEMORY

                      ~~~~~                ~~~~~~~~~~~~~~~ 

  

                       $   -------------   STRING-VARIABLE 

                       V   -------------   VDP ADDRESS 

                       R   -------------   RAM ADDRESS 

                       G   -------------   GRAM ADDRESS 

          *NOTE: upper case only for type as lower case are ignored.        

 

          RAM may be moved but not into RAM but not ROM, and that 

          you may move memory into GRAM but not GROM. You can copy or 

          move memory from ROM or GROM. Also note that any devices that 

          use phony GRAM will not work with MOVES as these devices 

          don't use the real GRAM/GROM addressing.  

          VDP address are from 0 to 16384 (>0 to >3FFF) 

 

 

 



          MOVES                                                PAGE  M5 

          ------------------------------------------------------------- 

  

          Programs 

  

          Line 100 has the type$ string.| >100 X$="VV" 

          Line 110 thus uses type$ 0 VDP| >110 CALL MOVES(X$,767,1,0) 

          to VDP. 767 bytes are moved. A| 

          VDP from-address of 1 and a   | 

          VDP to-address of 0. Will use | 

          a ripple effect of moving all | 

          screen bytes over one address.| 

                                        | 

          Line 100 copies entire screen | >100 CALL MOVES("VR",768,0,81 

          into lower 8K.                |  92) 

                                        | 

          Line 110 clears the screen.   | >110 CALL CLEAR 

          Line 120 copies entire screen | >120 CALL MOVES("VR",768,0,90 

          into lower 8K.                |  00) 

          Line 130 copies from lower 8K | >130 CALL MOVES("RV",768,8192 

          to screen, then again. GOTO   |  ,0,"RV",768,9000,0) :: GOTO  

          makes it an endless loop.     |  130 

                                        | 

          Line 100 sets up loop. Counts | >100 FOR G=-32768 TO 32767 

          from -32768 to 0 to 32767 or  | 

          (HEX >8000 to >0000 to >7FFF) | 

          Line 110 move GRAM/GROM to    | >110 CALL MOVES("GV",8,G,1024) 

          VDP. 8 bytes to be moved. GA  |   

          is counter. 1024 is decimal   | 

          address of space character in | 

          VDP pattern table.            | 

          Line 120 completes loop.      | >120 NEXT G 

                                        | 

                                        |      

          Loop address VDP              | >100 FOR V=0 TO 16384 

          Load that 8 bytes into space  | >110 CALL MOVES("VV",8,V,1024) 

          Loop back                     | >120 NEXT V 

                                        | 

          Loop address RAM              | >100 FOR R=_32768 to 32767 

          Load that 8 bytes into space  | >110 CALL MOVES("RV",8,R,1024) 

          Loop back                     | >120 NEXT R 

                                        | 

 

 

 

 

 

 

 

 

 

 

 

 



          MOVES                                                PAGE  M6 

          ------------------------------------------------------------- 

  

          Programs 

  

          Line 100 sets string-variable.| >100 I$=RPT$("I",255) 

          Line 120 type$ specifies I$   | >110 CALL MOVES("$V",55,I$,0) 

          to VDP. 55 bytes are moved.   | 

          Line 120 copies string J$ to  | >120 CALL MOVES("$R",255,J$,8 

          into lower 8K, then string I$ |  192,"$R",255,I$,8492) 

          into lower 8K.                | 

          Line 130 copies string I$ to  | >130 J$=I$ :: PRINT J$ : : I$ 

          into J$. Eliminates old J$.   | 

          Then prints them.             | 

          Line 150 copies from lower 8K | >140 CALL MOVES("R$",255,8192 

          to J$, then from lower 8K at  |  ,J$,"R$",255,8492,I$) :: PRI 

          8492 into I$ thus restoring   |  NT J$: :I$ 

          both strings and printing them| 

          thus a way to save stings.    | 

                                        |  

          Line 100 sets up loop. Counts | >100 FOR GA=-32768 TO 32767 

          from -32768 to 0 to 32767 or  | 

          (HEX >8000 to >0000 to >7FFF) | 

          Line 110 moves type$ GRAM/GROM| >110 CALL MOVES("G$",8,GA,H$) 

          to VDP. 8 bytes to be moved.  | 

          GA is counter. H$ is string   | 

          for storing data found.       | 

          Line 120 prints H$ on screen. | >120 PRINT H$ 

          Line 130 next loop            | >130 NEXT GA 

 

 

          Options 

          Dependent on Assembly Language programmers and the RXB 

          programs that are developed. MOVES is good for replacing those 

          CALL LOAD loops. It also provides a means to rewrite XB while 

          running XB instead of rewriting MERGE files then loading 

          them. Future devices benefit from MOVES as it can copy or move 

          different types of memory directly from or to them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          NEW            command or subprogram                 PAGE  N1 

          ------------------------------------------------------------- 

  

          Format         NEW 

  

                         CALL NEW 

  

          Description 

  

          The NEW command is the same as the EXTENDED BASIC MANUAL 

          page 126. NEW can only be used from edit mode. But now 

          CALL NEW can be called from program mode. As expected 

          all values are reset and all defined characters become 

          undefined. Any open files are closed. Characters 32 to 95 

          are reset to their standard definitions. The TRACE and 

          BREAK commands are canceled. The program is erased from 

          memory. 

  

          Command 

  

          The line to the right will    | >NEW 

          reset memory for XB.          | 

  

          Programs 

  

          The program to the right will | >100 CALL NEW 

          reset memory for XB.          | 

                                        | 

  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          ONKEY          subprogram                            PAGE  O1 

          ------------------------------------------------------------- 

 

          Format         CALL ONKEY(string,key-unit,return-variable, 

                         status-variable) GOTO line-number[,...] 

 

                         CALL ONKEY(string-variable,key-unit, 

                         return-variable,status-variable)  

                         GOTO line-number[,...]   

 

          Description 

 

          ONKEY compares a string or string-variable characters one at   

          a time to the key return-variable until a match is found.  

          The string length may be longer then the number of GOTO 

          line-number list. But a error results if that key is pressed 

          as no line-number corresponds with the position of the key. 

          If the string length is less than the number of GOTO line- 

          numbers then the extra GOTO line-numbers are not used. 

          The position of the characters in the string correspond to 

          the GOTO line-number in the list. i.e. string "12345"  

          GOTO 1,2,3,4,5 in the example: 

 

          CALL ONKEY("12345",0,K,S) GOTO 10,20,30,40,50 

          The key pressed like say 3 means line 30 will be used. 

 

          Another example:  

          10 CALL ONKEY("Crap",0,K,S) GOTO 22,29,34,41 

          If C is pressed then 22 is used. 

          If r is pressed then 29 is used. 

          If a is pressed then 34 is used. 

          If p is pressed then 41 is used. 

 

          Programs 

 

          This line accepts a key>    | >100 CALL ONKEY("123",0,K,S)   

                                      |   GOTO 120,130,140 

          Keep scanning the key.      | >110 GOTO 100 

          First line.                 | >120 PRINT "ONE"::GOTO 100 

          Second line.                | >130 PRINT "TWO"::GOTO 100 

          Third line.                 | >140 PRINT "THREE"::GOTO 100                           

                                      | 

          Using GOSUB                 | >100 GOSUB 110::GOTO 100 

          Key scan.                   | >110 CALL ONKEY("YN",3,K,S) 

                                      |   GOTO 120,130 

          First line.                 | >120 PRINT "YES"::RETURN 

          Second line.                | >130 PRINT "NO"::RETURN 

                                      |            

          The above program both act like ON GOTO with the key 

          selecting in the string the position and line number. 

 

 

 

 



          PEEKG          subprogram                            PAGE  P1 

          ------------------------------------------------------------- 

  

          Format         CALL PEEKG(address,numeric-variable-list[,...]) 

  

  

          Description 

  

          The PEEKG command reads data from GROM into the variable(s) 

          specified. It functions identical to the regular EXTENDED 

          BASIC PEEK command page 143. Except it reads from GROM/GRAM. 

          GROM or GRAM address above 32767 must be converted to a 

          negative number by subtracting 65536 from the desired 

          address. Use CALL HEX to do this. 

  

          Programs 

  

          The program to the right will | >100 CALL PEEKG(767,B) 

          read a byte from GROM.        | 

                                        | 

           Address loop counter         | >100 FOR D=-32768 TO 32767 

           PEEK Grom address value.     | >110 CALL PEEG(D,X) 

           Convert to HEX               | >120 CALL HEX(A,H$,X,B$) 

           Show address and value.      | >130 PRINT "Address:";H$, 

                                        |  D:"VALUE:";B$,X 

           Loop.                        | >140 NEXT D 

                                        |  

  

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          PEEKV          subprogram                            PAGE  P2 

          ------------------------------------------------------------- 

  

          Format         CALL PEEKV(address,numeric-variable-list[,...]) 

  

  

          Description 

  

          The PEEKV command reads data from VDP into the variable(s) 

          specified. It functions identical to the regular EXTENDED 

          BASIC PEEK command page 143. Except it reads from VDP. 

          The VDP address should not exceed 16384 in a TI with a 9918 

          VDP chip, 9938 or 9958 VDP chips can go the full 32767. 

           VDP addresses above 32767 must be converted to a negative 

          number by subtracting 65536 from the desired address. Also 

          whenever a value is peeked or poked to the screen a screen 

          offset is present. 96 must be subtracted from or added to the 

          value to correct it. 

  

          Programs 

  

          The program to the right will | >100 CALL PEEKV(767,B) 

          read a byte from VDP and put  | 

          it into variable B.           | 

          This line will print it.      | >110 PRINT B-96 

                                        | 

          Address loop counter          | >100 FOR D=0 TO 16383 

          PEEK Grom address value.      | >110 CALL PEEV(D,X) 

          Convert to HEX                | >120 CALL HEX(A,H$,X,B$) 

          Show address and value.       | >130 PRINT "Address:";H$, 

                                        |  D:"VALUE:";B$,X 

          Loop.                         | >140 NEXT D 

                                        |  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



          POKEG          subprogram                            PAGE  P3 

          ------------------------------------------------------------- 

  

          Format         CALL POKEG(address,numeric-variable-list[,...]) 

  

  

          Description 

  

          The POKEG command writes the data in the numeric variable 

          list to GRAM at the specified address. It functions identical 

          to the EXTENDED BASIC command LOAD page 115. Except that it 

          writes to GRAM. GROM or GRAM addresses above 32767 must be 

          converted to a negative number by subtracting 65536 from the 

          desired address. CALL HEX is recommended for this. 

  

          Programs 

  

          The program to the right will | >100 CALL POKEG(1001,128) 

          write 128 to GRAM address 1001| 

                                        |  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          POKER          subprogram                            PAGE  P4 

          ------------------------------------------------------------- 

  

          Format         CALL POKER(vdp-number,numeric-variable[,...]) 

  

                         CALL POKER(numeric-variable,number[,...]) 

  

  

          Description 

  

          The POKER command writes to vdp register a byte value. Only 

          registers 0 to 7 are valid. The byte value ranges 0 to 255. 

  

          Programs 

  

          This sets text mode.          | >100 CALL POKER(7,244,1,240) 

          This is a delay loop.         | >110 FOR L=1 TO 500 :: NEXT L 

          This sets multi color mode    | >120 CALL POKER(1,232) 

          This is a delay loop.         | >130 FOR L=1 TO 500 :: NEXT L 

          This sets bit map mode.       | >140 CALL POKER(0,2,1,2) 

          This is a delay loop.         | >150 FOR L=1 TO 500 :: NEXT L 

          This sets normal XB mode.     | >160 CALL POKER(0,0) 

                                        | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          POKEV          subprogram                            PAGE  P5 

          ------------------------------------------------------------- 

  

          Format         CALL POKEV(address,numeric-variable-list[,...]) 

  

  

          Description 

  

          The POKEV command writes data to VDP into the address 

          specified. It functions identical to the regular EXTENDED 

          BASIC PEEK command page 143. Except it reads from VDP. 

          The VDP address should not exceed 16384 in a TI with a 9918 

          VDP chip, 9938 or 9958 VDP chips can go the full 32767. 

           VDP addresses above 32767 must be converted to a negative 

          number by subtracting 65536 from the desired address.  

          CALL HEX is recommended for this. 

          Also whenever a value is poked or peeked to the screen a 

          screen offset is present. 96 must be subtracted from or added  

          to the value to correct it.  

  

          Programs 

  

          The program to the right will | >100 CALL POKEV(767,65+96) 

          write A at address 767.       | 

                                        | 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          PROTECT        subprogram                            PAGE  P6 

          ------------------------------------------------------------- 

  

          Format         CALL PROTECT(pathname,filename,number[,...]) 

  

                         CALL PROTECT(string-variable,string-variable, 

                         numeric-variable[,...]) 

  

                         CALL PROTECT(number,filename,number[,...]) 

  

  

          Description 

  

          The PROTECT subprogram protects programs or files. Pathname 

          may be up to 255 characters in length. Pathname must end in 

          a period.  The Myarc HFDC can only support a 29 character 

          pathname plus a 10 character filename, so that would add up 

          to 39 characters total. The pathname must end with a period 

          and filenames must only be 10 characters in length. The 

          number may be 0 to 255, any number other then 0 (zero) will 

          protect a file. 0 unprotects. Up to 14 files on 14 different 

          drives may be accessed in one command. 

           File error will be returned if the device is not accessed or 

          the file or program doesn't exist. File error will be ignored 

          when protecting a already protected file or program. File 

          error will be reported if the disk notch is covered. 

  

          Programs 

  

          This line unprotects a file   | >CALL PROTECT("DSKB.","A-FILE 

          named A-FILENAME on RAMDISK B.|  NAME,0) 

                                        | 

          Line 100 protects a file named| >100 CALL PROTECT(3,"JUNK,255 

          JUNK on disk drive 3          |  ) 

                                        | 

          Line 100 A$ is drive 2        | >100 A$="DSK2." :: O$="LOAD1" 

          String-variable O$ and N$ are |  :: N$="filename" 

          loaded with filenames.        | 

          Line 110 protects files.      | >110 CALL PROTECT(A$,O$,1,A$, 

                                        |  N$,1) 

                                        | 

          Line 110 unprotects file DIET | >110 CALL PROTECT("WDS1.FAT." 

          on hard drive 1 in directory  |  ,"DIET",0) 

          named FAT                     | 

                                        |   

       

 

 

 

 

 

 

 

 



          QUITOFF        subprogram                            PAGE  Q1 

          ------------------------------------------------------------- 

  

          Format         CALL QUITOFF 

  

  

          Description 

  

          The QUITOFF command disables the QUIT KEY. The QUIT KEY is 

          already disabled upon entering RXB. See QUITON for more data. 

  

          Programs 

  

          The program to the right will | >100 CALL QUITOFF 

          turn off the QUIT KEY.        | 

                                        | 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          QUITON         subprogram                            PAGE  Q2 

          ------------------------------------------------------------- 

  

          Format         CALL QUITON 

  

  

          Description 

  

          The QUITON command enables the QUIT KEY. The QUIT KEY is 

          already disabled upon entering RXB. QUITON makes the QUIT 

          once again functional. You may need to use this command 

          before running certain programs that use the QUIT key. 

  

          Programs 

  

          The program to the right will | >100 CALL QUITON 

          turn on the QUIT KEY.         | 

                                        | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          RENAME         subprogram                            PAGE  R1 

          ------------------------------------------------------------- 

  

          Format         CALL RENAME(pathname,old-filename,new-filename 

                         [,...]) 

  

                         CALL RENAME(pathname,old-directory-name,new-di 

                         rectory-name[,...]) 

  

                         CALL RENAME(string-variable,string-variable, 

                         string-variable[,...]) 

  

                         CALL RENAME(number,old-filename,new-filename 

                         [,...]) 

  

          Description 

  

          The RENAME subprogram renames directories or files. Pathname 

          may be up to 255 characters in length. Pathname must end in 

          a period.  The Myarc HFDC can only support a 29 character 

          pathname plus a 10 character filename, so that would add up 

          to 39 characters total. The pathname must end with a period 

          and filenames must only be 10 characters in length. RENAME 

          can rename up to 15 files or directories on 15 different 

          drives all in one command. 

           File error will be returned if the device is not accessed or 

          the file or directory doesn't exist. File error will also be 

          reported if renaming a protected file or directory. File 

          error will be reported if the disk notch is covered. File 

          error is also reported if the new-filename is already being 

          used and is protected. 

  

          Programs 

  

          This line renames a file named| >CALL RENAME("DSKC.","A-FILEN 

          A-FILENAME on RAMDISK C to the|  AME","NEWNAME-1A") 

          new filename NEWNAME-1A       | 

                                        | 

          Line 100 renames a file named | >100 CALL RENAME(2,"JUNK","JU 

          JUNK to JUNK2 on disk drive 2 |  NK2") 

                                        | 

          Line 100 pathname A$          | >100 A$="DSK.TRASH.":: O$="LO 

          String-variable O$ and N$ are |  AD1" :: N$="load1" 

          loaded with filenames.        | 

                                        | 

          Line 110 rename LOAD1 to      | >110 CALL RENAME(A$,O$,N$) 

          load1 on disk named TRASH     | 

                                        | 

          Line 110 access disk TRASH and| >120 CALL RENAME(A$,N$,O$,A$, 

          first renames load1 to LOAD1  |  O$,N$) 

          and renames LOAD1 to load1    | 

                                        | 

 

 



          RES            command                               PAGE  R2 

          ------------------------------------------------------------- 

  

          Format         RES                      (Uses default values) 

  

                         RES initial line,increment 

  

                         RES initial line,increment,start line-end line 

  

          Description 

  

          The RES command is the same as per Extended Basic Manual page 

          155. The RESEQENCE command is deleted. The abbreviation RES is 

          the only access name. The RES command now allows a portion of 

          the program to be resequenced. This RES DOES NOT REPLACE any 

          undefined line numbers with 32767. Any undefined line numbers 

          in the program are left as is. This makes it easier to fix if 

          a problem is present. 

           RES cannot be used to move lines from one location to another 

          inside a program. If the new line numbers generated by the RES 

          command would result in a line being moved, a Bad Line Number 

          Error is generated. A Bad Line Number Error is also reported 

          if there are no valid program lines between start line and 

          end line. 

  

          Command 

  

          Lines 10 to 50 are renumbered.| >RES 20,1,10-50 

          Line 10 becomes 20, increment | 

          is 1.                         | 

                                        | 

          Lines 700-800 are renumbered. | >RES ,5,700-800 

          Line 700 becomes 100,         | 

          increment is 5.               | 

                                        | 

          Lines 50-80 are renumbered.   | >RES ,,50-80 

          Line 50 becomes 100,          | 

          increment is 10. (Default)    | 

                                        | 

          Lines 1000 to last line are   | >RES 1000,,750- 

          renumbered. Line 750 becomes  | 

          1000, increment is 10.        | 

                                        | 

          Lines to 400 are renumbered.  | >RES ,20,-400 

          First Line becomes 100        | 

          (Default), increment is 20.   | 

                                        | 

          Line 40 is renumbered 20.     | >RES 20,,40 

                                        |  

 

 

 

 

 



          RMDIR          subprogram                            PAGE  R3 

          ------------------------------------------------------------- 

  

          Format         CALL RMDIR(pathname,directory-name[,...]) 

  

                         CALL RMDIR(string-varialbe,string-variable 

                         [,...]) 

  

          Description 

  

          The RMDIR subprogram ReMoves DIRectorys on hard drives. 

          The pathname determines the device used and the pathname can 

          be up to 255 characters in length. The Myarc HFDC can only 

          support 29 characters pathnames plus the filename of 10, so 

          that would add up to 39 characters total. 

          The pathname must end with a period and the directory may 

          only be 10 characters in length. RMDIR can remove up to 24 

          directories in 24 different drives in one command. RMDIR can 

          also remove sub-directories then directories in the same 

          command. Before any directory may be removed it must be 

          empty of all files, or a error will be reported. 

  

          Programs 

  

          This line removes  a directory| >CALL RMDIR("WDS1.","TEST") 

          named TEST on hard drive 1.   | 

                                        | 

          This line removes             | >100 CALL RMDIR("WDS1.ONE.TWO 

          sub-directory THREE of the    |  .","THREE","WDS1.ONE.","TWO" 

          sub-directory TWO in main     |  ,"WDS1.","ONE") 

          directory ONE then removes    | 

          sub-directory TWO of main     | 

          directory ONE then finally    | 

          removes directory ONE         | 

                                        | 

          The above line will not work if the directory has files  

          within a directory. CALL CUTDIR does not care though. 

                                             

          Options 

          HARD DRIVE ACCESS ONLY! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          RMOTION        subprogram                            PAGE  R4 

          ------------------------------------------------------------- 

  

          Format         CALL RMOTION(#sprite-number[,...]) 

  

                         CALL RMOTION(ALL[,...]) 

  

          Description 

  

          The RMOTION subprogram reverses the row-velocity and 

          column-velocity as numbers from -127 to 127. This means that 

          RMOTION simply reverses the direction of the sprite specified 

          so it goes in the opposite direction it was going in. 

          This also means RMOTION ignores 0 and -128, so you can use 

          those to bypass RMOTION if you do not want RMOTION to change 

          the sprite. The fastest and slowest sprite speeds are never 

          affected by RMOTION. This feature adds more power to RMOTION. 

          The ALL feature also allows all sprites on the screen to 

          reverse all at once. ALL may also be called as many times as 

          wanted in a single program line. 

          See EXTENDED BASIC MANUAL MOTION PAGE 125, SPRITE PAGE 173, 

          DELSPRITE PAGE 75 for more data. 

  

          Program 

  

          RMOTION reverses the row-     | >100 CALL RMOTION(#1) 

          velocity and the column-      | 

          velocity in sprite-number 1.  | 

                                        | 

          This line reverses the motion | >100 CALL RMOTION(ALL) 

          of all sprites.               | 

                                        | 

          Line 100 sets up a sprite.    | >100 CALL SPRITE(#1,33,2,96,1 

                                        |  8,99,84) 

          Line 110 waits for a number   | >110 IF RND<.8 THEN 110 

          higher than .8 randomly.      | 

          Line 120 reverses the motion  | >120 CALL RMOTION(#1) 

          of the sprite.                | 

          Continues the program.        | >130 GOTO 110 

  

  

          Options 

          While characters 144 to 159 are being used, you cannot use 

          sprites. 

 

 

 

 

 

 

 

 

  

 



          SCSI           subprogram                            PAGE  S1 

          ------------------------------------------------------------- 

  

          Format         CALL SCSI(pathname,string-variable,...]) 

  

  

          Description 

  

          The SCSI subprogram fetches a 44 byte package from the SCSI 

          card and puts it into a string variable. This 44 byte package 

          consists of 8 bytes internal, 8 bytes vendor ID, 16 bytes of 

          product ID, 4 bytes revision value, 32 bit number of sectors, 

          and 32 bit sector size. The pathname must end with a period. 

  

          Programs 

  

          This line gets the 44 byte    | >CALL SCSI("SCS1.",A$) 

          SCSI packet string from SCS1. | 

                                        | 

          This line gets the 44 byte    | >100 CALL ("SCS1.",X$,"SCS3." 

          SCSI packet string from SCS1, |  ,Y$,"SCS4.",Z$) 

          SCS3, and SCS4.               | 

  

          Options 

          SCSI will only access a SCSI controller. See RXB Disk Manager 

          program for use of SCSI subprogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          SECTOR         subprogram                            PAGE  S2 

          ------------------------------------------------------------- 

  

          Format         CALL SECTOR(pathname,read/write-flag,#sectors, 

                         sector-string,[,...]) 

  

                         CALL SECTOR(number,number,number,string 

                         [,...]) 

  

                         CALL SECTOR(string-variable,numeric-variable, 

                         numeric-variable,string-variable[,....]) 

  

          Description 

  

          The SECTOR subprogram reads or writes sectors on disk or 

          hard drives. The pathname determines the device used and the 

          pathname can be up to 255 characters in length. The Myarc 

          HFDC can only support 29 characters pathnames plus the 

          filename of 10, so that would add up to 39 characters total. 

          The pathname must end with a period and the directory may 

          only be 10 characters in length. The read/write-flag may be 

          any number to read sectors and 0 will write sectors. The 

          #sectors ranges from 1 to 32 sectors being read/written 

          at one time. The sector-string is a Hexadecimal string of 

          the sector to read or write. Sector-string may be a "0" or 

          up to "FFFFFFFF" or in other words in decimal form ranges 

          from 0 to 4294967295 sectors. (2 Terabyte Hard Drive) 

          NOTE: The lower 8K for assembly support is used as a buffer 

          for SECTOR so anything in the lower 8K will be corrupted. 

          That means two things. 

          1. AMS support can store the sectors for duplication. 

          2. SECTOR is totally compatible with CORCOMP, MYARC, PARCOM, 

             RAMDISKS, and SCSI drive controllers. 

  

          Programs 

  

          This line writes 1 sector 0 to| >CALL SECTOR("DSK1.",0,1,"0") 

          drive 1 from lower 8K.    .   | 

                                        | 

          This line reads sector 0 and  | >100 CALL SECTOR(2,1,2,"0") 

          1 from drive 2 to lower 8K.   | 

          This line puts the 2 sectors  | >110 CALL MOVE("RV",512,8192, 

          onto the screen from the lower|  0) 

          8K. (See MOVES for info)      | 

                                        | 

          This line reads sector 1048575| >100 CALL SECTOR("SCS1.",9, 

          putting 32 sectors into lower |  32,"FFFFF")      

          8K (32*256=8192)              | 

 

          Options 

          Only works when 32K available and destroys lower 8K data. 

 

 

 



          SIZE           command or subprogram                 PAGE  S3 

          ------------------------------------------------------------- 

  

          Format         SIZE 

  

                         CALL SIZE 

  

          Description 

  

          See EXTENDED BASIC MANUAL PAGE 169 for more data. 

  

          Command 

  

          May only be used from command | >SIZE 

          mode.                         | 

                                        | 

          Programs 

  

          May only be used from program | >100 CALL SIZE 

          mode.                         | 

                                        | 

          Shows memory used.            | >100 CALL SIZE 

          Set up for Assembly support.  | >110 CALL INIT 

          Shows memory used including   | >120 CALL SIZE 

          Assembly space free.          | 

          Set up for AMS switching.     | >130 CALL AMSINIT 

          Shows memory used including   | >140 CALL SIZE 

          AMS amount of K and RXB banks.| 

  

          Options 

  

          Unless you have a 32K installed Assembly support will not 

          work. Also unless a AMS card is installed CALL AMSINIT will 

          not work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          SWAPCHAR       subprogram                            PAGE  S4 

          ------------------------------------------------------------- 

  

          Format         CALL SWAPCHAR(character-code,character-code 

                         [,...]) 

  

          Description 

  

          The SWAPCHAR subprogram switches the first character-code 

          character definition with the second character-code 

          character definition. That means they swap definitions. 

          The characters range from 30 to 159. 

  

          Programs 

  

          Line 100 swaps character-code | >100 CALL SWAPCHAR(65,97) 

          65 with character-code 97.    | 

                                        | 

          Line 100 defines character-   | >100 CALL CHAR(128,"F0F0F0F0F 

          code 128 and character-code   |  0F0F0F0",159,"0F0F0F0F0F0F0F 

          159.                          |  0") 

          Line 110 swaps them, then will| >110 CALL SWAPCHAR(128,159,32 

          swap space with character 128  |  ,128) 

          Line 120 continues program.   | >120 GOTO 110 

                                        | 

          Try this one on for weird.    | >100 CALL SWAPCHAR(31,32,31,3 

                                        |  2) 

                                        | >110 CALL INVERSE(31) 

                                        | >120 GOTO 100 

                                        | 

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



          SWAPCOLOR      subprogram                            PAGE  S5 

          ------------------------------------------------------------- 

  

          Format         CALL SWAPCOLOR(character-set,character-set 

                         [,...]) 

  

                         CALL SWAPCOLOR(#sprite-number,#sprite-number 

                         [,...]) 

  

          Description 

  

          The SWAPCOLOR subprogram swaps foreground and background 

          colors of the first set with the second set. Or swaps the 

          first sprite-number color with the second sprite-number 

          color. The character-set numbers are given below: 

  

                         set-number          character-codes 

                         ~~~~~~~~~~          ~~~~~~~~~~~~~~~ 

 0 ---------- 30 to 31

 1 ---------- 32 to 39

 2 ---------- 40 to 47

 3 ---------- 48 to 55

 4 ---------- 56 to 63

 5 ---------- 64 to 71

 6 ---------- 72 to 79

 7 ---------- 80 to 87

 8 ---------- 88 to 95

 9 ---------- 96 to 103

 10 ---------- 104 to 111

 11 ---------- 112 to 119

 12 ---------- 120 to 127

 13 ---------- 128 to 135

 14 ---------- 136 to 143

 (also sprite table) 15 ---------- 144 to 151

 (also sprite table) 16 ---------- 152 to 159

 Programs

 The program to the right will | >100 CALL SWAPCOLOR(15,5)

 swap foreground and background|

 colors of set 15 with set 5. |

 |

 Line 100 sets up two sprites | >100 CALL SPRITE(#1,65,2,99,9

 on screen. | 9,9,9,#2,66,16,88,88,22,33)

 Line 110 swaps sprite #1 color| >110 CALL SWAPCOLOR(#1,#2)

 with sprite #2 color. |

 Continue program. | >120 GOTO 110

 |

 USER subprogram PAGE U1

 Format CALL USER(quoted-string)

 CALL USER(string-variable)

 Description

 The USER subprogram overrides the normal editor of edit mode

 of XB and reads a DV80 file into the key scan routine as if

 the user was keying it in.

 That means Batch Processing is creating XB programs from

 DV80 files, Editing XB programs, MERGING, Saving, and

 RUNNING XB programs. Also RESequencing, adding lines, or

 deleting lines, and re-writing lines from the DV80 file.

 Every line to be input from the DV80 file MUST END WITH A

 CARRIAGE RETURN! A line of input may be up to 588 characters

 in length. The editor will error out if the crunch buffer is

 full, reporting a *Line Too Long* error. (Over 163 tokens)

 Other errors will be reported but will not stop the process

 of USER continuing to input lines. To find errors in the DV80

 file the input lines are shown on screen as they are input

 into the editor, and errors will be reported. So you must

 observe the screen for errors to test the DV80 file.

 USER will stop after reaching the end of the file. But USER

 can have its operation suspended CALL POKEV(2242,0) will

 halt USER and CALL POKEV(2242,9) will resume USER.

 INPUT and ACCEPT will try to read from USER if it is not

 turned off. On the other hand DV80 files can go directly into

 a INPUT or ACCEPT prompts. Turn off USER to be safe though.

 USER will only report errors upon opening, thus if incorrect

 device or filename then USER reports * USER ERROR * and just

 closes the USER file, thus ending operation of USER.

 Example files are included with RXB to show and explain the

 use of USER. The batch processing USER subprogram opens a new

 world to the RXB programmer. Possibilities are almost endless!

 Programs

 This line starts USER to use | >CALL USER("DSK1.FILENAME")

 Batch processing on a file |

 called FILENAME |

 |

 Line 100 is same as above. | >100 CALL USER("DSK1.FILE")

 but within a program. |

 |

 Line 100 variable A$ equals a | >100 A$="DSK.VOLUME.FILE"

 String-variable path name. |

 Line 110 starts USER to use | >110 CALL USER(A$)

 Batch processing on A$ |

 USER PAGE U2

 Programs

 Save this program as LOAD. | >100 CALL USER("DSK1.BATCH")

 |

 Here is an example DV80 file you save with the name BATCH.

 ! BATCH file for using

 NEW and CALL FILES and RUN. cr

 cr

 CALL XBPGM("DSK1.A-PROGRAM",#) cr

 The above DV80 file uses cr to mean Carriage Return. And # is

 for the number of files you wish open. A-PROGRAM is the name of

 the XB program that needs a certain number of files open.

 Options

 To many to list out. See BATCH for demo.

 VCHAR subprogram PAGE V1

 Format CALL VCHAR(row,column,character-code)

 CALL VCHAR(row,column,character-code,

 repetition[,...])

 Description

 See EXTENDED BASIC MANUAL page 188 for more data. The only

 change to VCHAR is the auto-repeat function. Notice the new

 auto-repeat must have the repetitions used or it gets row

 confused with repetitions.

 Programs

 This line puts character 38 at| >100 CALL VCHAR(1,1,38,99,9,1

 row 1 column 1 99 times, then| ,87)

 puts character code 87 at |

 row 9 column 1 |

 |

 Fills screen with characters. | >100 CALL VCHAR(1,1,32,768,1,

 | 1,65,768,1,1,97,768,1,1,30,7

 | 68) :: GOTO 100

 |

 VERSION subprogram PAGE V2

 Format CALL VERSION(numeric-variable)

 Description

 See EXTENDED BASIC MANUAL PAGE 190 for more data. Also see

 Programs

 This line will ask for version| >CALL VERSION(X)

 and return current to numeric-|

 variable X. |

 |

 Line 100 asks for version num.| >100 CALL VERSION(V)

 Line 110 checks for version | >110 IF V>2001 THEN INPUT "DSK

 to be larger than 240 and if | NAME":D$:: INPUT "FILENAME"

 it is will ask for input to | :F$:: CALL XBPGM("DSK."&D$&

 use a new routine CALL XBPGM. | F$) ELSE END

 Options

 Will always return current version of RXB.

 VGET subprogram PAGE V3

 Format CALL VGET(row,column,length,string-variable

 [,...])

 Description

 The VGET subprogram returns into a string-variable from the

 screen at row and column. Length determines how many

 characters to put into the string-variable. Row numbers

 from 1 to 24 and column numbers from 1 to 32. Length may

 number from 1 to 255. If VGET comes to the edge of the screen

 then it wraps to the other side.

 Programs

 The program to the right will | >100 CALL VGET(5,9,11,E$)

 put into string-variable E$ |

 the 11 characters at row 5 and|

 column 9. |

 |

 The program to the right will | >100 CALL VGET(1,3,5,M$,9,3,1

 put into string-variable M$ | ,Q$,24,1,32,N$)

 the 5 characters at row 1 and |

 column 3, then put into |

 string-variable Q$ the 1 |

 character at row 9 and column |

 3, then put into |

 string-variable N$ the 32 |

 characters at row 24 and |

 column 1. |

 |

 VPUT subprogram PAGE V4

 Format CALL VPUT(row,column,string[,...])

 CALL VPUT(row,column,string-variable[,...])

 Description

 The VPUT subprogram puts a string or string-variable onto the

 screen at row and column. The row numbers from 1 to 24 and

 column numbers from 1 to 32. If the string or string-variable

 being put onto screen goes to an edge it wraps to the other

 side. Unlike the EXTENDED BASIC DISPLAY AT the VPUT

 subprogram will not scroll the screen.

 Programs

 Line 100 puts string "THIS" on| >100 CALL VPUT(10,4,"THIS")

 the screen at row 10 and |

 column 4. |

 |

 Line 110 sets string-variable | >110 A$="VPUT"

 A$ equal to string "VPUT" |

 |

 Line 120 puts string "is" at | >120 CALL VPUT(11,5,"is",10,6

 row 11 and column 5, then puts| ,A$)

 string-variable A$ at row 10 |

 and column 6. |

 Puts 456 at row 10 col 15 | >100 CALL VPUT(10,15,456)

 |

 XB Device Service Routine (DSR) PAGE X1

 Format RUN "XB"

 DELETE "XB"

 CALL CAT("XB")

 OLD XB

 SAVE XB -(Must have a program within

 -memory to work at all)

 CALL XB

 Description

 The XB DSR (Device Service Routine) allows access to the

 RXB title screen. The access will work only if the DSR is

 in the GPLDSR or LINK DSR. In other words, a DSR that

 acknowledges any type of DSR in RAM, ROM, GROM, GRAM,

 or VDP. Most DSR's only accept DSK or PIO. Others like the

 SAVE or LIST commands will only work with a program in the

 memory first. Still others like CALL LOAD("XB") must have the

 CALL INIT command used first.

 From EA option 5 you may type XB then enter, or from EA

 option 3 type XB then enter, then enter again. If the EA

 option 1 (edit), then 4 (print) type XB. From TI BASIC

 use OLD XB or DELETE "XB".

 Keep in mind that if it does not work, the problem is the

 DSR your using. Almost all DSR's today only acknowledge the

 ROM or RAM DSR's. As the XB DSR is in GROM/GRAM it seems a

 bit short sighted on the part of most programmers to use

 cut down versions of a DSR. Please discourage this as it is

 a disservice to us all.

 Programs

 The program at the right will | >100 CALL EAPGM("XB")

 turn on the AUTO SELECTOR and |

 wait 4 second before switching|

 to the AUTO LOAD. |

 |

 This line asks for a string. | >100 INPUT A$

 This line uses the string and | >110 DELETE A$

 if you type XB then enter will|

 switch to the RXB. |

 |

 This line shows the CALL XB | >CALL XB

 |

 Options

 BASIC and EA are also available.

 XBPGM subprogram PAGE X2

 Format CALL XBPGM("access-name")

 CALL XBPGM(string-variable)

 CALL XBPGM("access-name",file-number)

 CALL XBPGM(string-variable,numeric-variable)

 Description

 The XBPGM subprogram is like RUN in XB. (XB manual page 161)

 The RUN subprogram can't run strings so special XB loader

 programs were written and required. Using RUN A$ results in

 a error report of * syntax error * in normal XB.

 XBPGM uses quotes like RUN or strings unlike RUN. So XBPGM

 will run XB or BASIC programs from quoted or variables.

 The file-number or numeric-variable denote the number of

 files to be open before the XB program is loaded and run.

 XBPGM first sets the number of files open, uses a NEW and

 then runs the access string. See FILES for more info.

 If a CALL XBPGM can't find the program or disk it will close

 all files, clear all XB memory (Assembly lower 8K unaffected)

 and leave you in XB command mode. You will know this by the

 * Ready * and the cursor flashing below. This allows you to

 try again with either RUN or CALL XBPGM again.

 If an empty string is used XBPGM defaults to restart the

 RXB title screen. See XB for more info.

 Programs

 The program at the right will | >100 CALL XBPGM("DSK2.HOT")

 load a XB Program named HOT |

 from disk drive 2 then run it.|

 |

 This line loads string GZ$. | >100 GZ$="DSK.XBGAMES.FROG"

 This line uses the string path| >110 CALL XBPMG(GZ$)

 name to search all drives and |

 RAMDISKS for a disk named |

 XBGAMES and load a program |

 named FROG then run that |

 program. |

 |

 Line 100 should be added to | >100 CALL QUITON

 most RXB program to allow the | >110 CALL XBPGM("DSKR.LOAD")

 QUIT key to work for aborting |

 XBPGM loader. |

 |

 CALL FILES(1) and run DSK1.TML| >100 CALL XBPGM("DSK1.TML",1)

 |

 PAGE REA1

 * RXB Editor Assembler Version 2011 *

 REA is a new completely re-written Editor Assembler module. Any

 code not needed was removed, and this left room for many new

 features. First of these is the FCTN BACK key which is used as

 an ESCAPE key, it will in respond as soon as it is pressed.

 This is a copy of the REA title screen:

 FIRMWARE CONTROL

 RXB Editor & Assembler V=2011

 0 SCREEN COLORS

 1 EDITOR

 2 ASSEMBLER

 3 LOAD & RUN

 4 RUN

 5 RUN PROGRAM FILE

 6 RXB LOADER

 7 DIRECTORY

 . RXB

 PAGE REA2

 0 SCREEN COLORS

 F is the foreground colors and B is the background color.

 1 EDITOR

 Has a arrow to indicate which option has been selected, thus

 the user will no longer make a mistake of saving a blank file

 over the original that he actually ment to load or save.

 Also a prompt is presented asking for the disk number or letter

 used to load the Editor (EDIT1 file). The ENTER key allows the

 loading of Editor by a pathname.

 i.e. DSK.VOLUMENAME.EDIT1 or WDS1.DIRECTORY.SUBDIRECTORY.EDIT1

 The directory will load the selected file if this option is

 used. See Directory for features.

 2 ASSEMBLER

 A prompt is presented asking for the disk number or letter

 used to load the Assembler (ASSM1 file). The ENTER key allows

 the loading of Assembler by a pathname.

 i.e. DSK.VOLUMENAME.EDIT1 or WDS1.DIRECTORY.SUBDIRECTORY.ASSM1

 The directory will load the selected file if this option is

 used. See Directory for features.

 3 LOAD and RUN

 The directory will load the selected file if this option is

 used. See Directory for features.

 4 RUN

 After loading a file all link names will be displayed

 including all support routines.

 5 RUN PROGRAM FILE

 By pressing a single key then enter, DSK#.UTIL1 is displayed

 and executed. # indicates the key pressed.

 The directory will load the selected file if this option is

 used. The lower 8K support routines normally only loaded by

 the EA3 option are now loaded by this option too. So users

 can load FORTH, FORTRAM, and C programs from the EA5 prompt.

 6 R X B LOADER

 New feature that prompts for a XB program file to run. If the

 file or device errors out, then a return to RXB command mode

 is done. The * Ready * and a flashing cursor indicates the XB

 command mode. By pressing a single key then enter, DSK#.LOAD

 is displayed and executed. # indicates the key pressed.

 The directory will load the selected file if this option is

 used. See Directory for new features

 PAGE REA3

 7 DIRECTORY

 A new feature that prompts for a device name. EXAMPLE: DSK1.

 The period MUST be included if the full device name is used.

 Or type in a path name EXAMPLE: WDS1.DIRECTORY.

 The quicker way is to just type a number or letter then enter.

 Thus DSK#. is used and the key pressed represents the # used.

 While the catalog is being scrolled on screen, ANY key will

 end the display and reading of the disk, an arrow will appear

 next to the file read and the ARROW KEYS will move the arrow

 up or down. (FCNT/CTRL optional). To page forward or backward

 a screen at a time press left and right arrow keys. The file

 the arrow was last pointing to will stay at the top or bottom

 of the screen display. This in much better than other paging

 methods like DM1000 or Funnel Web Disk review.

 ONLY the SPACE BAR will pause the catalog until pressed again.

 2011 added new keys to Directory:

 V = View file.

 A = Assembler file.

 G = GPL Assembler file.

 Use ENTER to select the filename so it will be placed into

 into a buffer, the cataloger will automatically load Dis/Fix 80

 files into the EA3 menu, Programs will be EA5, and only

 Dis/Var 254 is considered to be XB programs.

 To load XB programs use the SPACE BAR to buffer the filename,

 loading is automatic from there.

 For DIS/VAR 80 or DIS/FIX 80 files to be edited or assembled

 use ENTER or SPACE BAR, then select the Edit or Assembler

 from the main menu. Loading is automatic from there.

 Directory will automatically assume you wish to catalog a

 sub-directory if a Directory was selected. To buffer anything

 else you must use the SPACE BAR, to select a filename to be

 placed into a buffer, then auto return to REA main menu. Now

 select the option to be used from this buffer.

 If you select 7 DIRECTORY again, the buffer will be used and

 the last device accessed will be used again. If you wish to

 clear the buffer just use FCTN BACK to the REA main menu.

 . R X B

 A previous feature that was optional since version 1000

 but had no menu option on screen indicating it was a option.

 (Period) . will return to RXB menu screen.

 PAGE REA4

 SYSTEM SUPPORT

 The modified version of the Editor/Assembler no longer supports

 the 99/4 computer. A 99/4A is required. All TI BASIC support

 routines (CALL INIT, CALL LINK, CALL LOAD,CALL PEEK, CALL PEEKV,

 CALL POKEV, and CALL CHARPAT) have been removed from the

 Editor/Assembler. If you have a program that must be run from TI

 BASIC and requires these routines, you must plug an

 Editor/Assembler module into the cartridge connector.

 There are some assembly language programs that access data

 internal to the Editor/Assembler cartridge. These programs will

 not run correctly due to the re-structuring of the data in the

 Editor/Assembler module. For these programs you must use your

 Editor/Assembler cartridge. On the other hand like FunnelWeb REA

 loads the support routines before EA3 or EA5 loaders to engage,

 so C, FORTRAM, and FORTH will load from the EA5 prompt.

 NO 32K NEEDED TO WHAT?

 REA has been totally re-written so the user can now use some of

 the features of REA without that nasty *NO MEMORY EXPANSION*

 error turning up. The error routine only disallows the user from

 accessing those aspects of REA that absolutely needs 32K to work.

 The user may now use the REA EDITOR PRINT FILE menu, or use the

 6 RXB file loader menu, or use the 7 DIRECTORY menu.

 That means with RXB and REA the user can now print files, view

 files, load any BASIC or XB program and catalog from REA with

 or without a 32K memory.

 PAGE AMS1

 AMS MAPPER

 **

 The AMS card has tons of documents as to its function and use.

 So to re-explain these docs would be pointless. Read the docs or

 find some, sorry but the RXB package is already huge.

 In PASS mode the mapper register setup is equivalent to:

 mapper address mapper page num address range

 -------------- ------ -------- -------------

 HEX Dec HEX Dec memory area

 --- --- --- --- -----------

 >4004 = 16388 is MR02 = >02 = 02 points to >2000 - >2FFF range

 >4006 = 16390 is MR03 = >03 = 03 points to >3000 - >3FFF range

 >4014 = 16404 is MR10 = >0A = 10 points to >A000 - >AFFF range

 >4016 = 16406 is MR11 = >0B = 11 points to >B000 - >BFFF range

 >4018 = 16408 is MR12 = >0C = 12 points to >C000 - >CFFF range

 >401A = 16410 is MR13 = >0D = 13 points to >D000 - >DFFF range

 >401C = 16412 is MR14 = >0E = 14 points to >E000 - >EFFF range

 >401E = 16414 is MR15 = >0F = 15 points to >F000 - >FFFF range

 (MR=Mapper Register)

 In MAP mode the mapper register setup is equivalent to: EXAMPLE1

 mapper address mapper page num address range

 -------------- ------ -------- -------------

 HEX Dec HEX Dec memory area

 --- --- --- --- -----------

 >4004 = 16388 is MR02 = >10 = 16 points to >2000 - >2FFF range

 >4006 = 16390 is MR03 = >11 = 17 points to >3000 - >3FFF range

 >4014 = 16404 is MR10 = >12 = 18 points to >A000 - >AFFF range

 >4016 = 16406 is MR11 = >13 = 19 points to >B000 - >BFFF range

 >4018 = 16408 is MR12 = >14 = 20 points to >C000 - >CFFF range

 >401A = 16410 is MR13 = >15 = 21 points to >D000 - >DFFF range

 >401C = 16412 is MR14 = >16 = 22 points to >E000 - >EFFF range

 >401E = 16414 is MR15 = >17 = 23 points to >F000 - >FFFF range

 (MR=Mapper Register)

 PAGE AMS2

 In MAP mode the mapper register setup is equivalent to:

 EXAMPLE2

 mapper address mapper page num address range

 -------------- ------ -------- -------------

 HEX Dec HEX Dec memory area

 --- --- --- --- -----------

 >4004 = 16388 is MR02 = >19 = 31 points to >2000 - >2FFF range

 >4006 = 16390 is MR03 = >01 = 01 points to >3000 - >3FFF range

 >4014 = 16404 is MR10 = >09 = 09 points to >A000 - >AFFF range

 >4016 = 16406 is MR11 = >00 = 00 points to >B000 - >BFFF range

 >4018 = 16408 is MR12 = >07 = 07 points to >C000 - >CFFF range

 >401A = 16410 is MR13 = >18 = 30 points to >D000 - >DFFF range

 >401C = 16412 is MR14 = >05 = 05 points to >E000 - >EFFF range

 >401E = 16414 is MR15 = >04 = 04 points to >F000 - >FFFF range

 (MR=Mapper Register)

 As you can see you can switch pages around all you want.

 Each 4K page of the AMS memory can be engaged even into every

 4K section of the 32K at once. Thus giving multiple copies of

 the same 4K in every 4K chunk. Doing this has few uses but

 it demonstrates the flexibility of the AMS mapper.

 RXB limits the ability of the AMS slightly. All the memory of

 the AMS is used like this:

 1. 32K is used for pass mode. Think of it like a normal TI.

 24K for XB programs and variables, and lower 8K assembly

 support.

 2. 32K is used for future use. Stashed away for RXB future use.

 Pages 0,1,4,5,6,7,8,9 are for future use.

 3. 4K pages of the rest of the AMS are for AMSBANK, a RXB

 routine that needs two (2) 4K pages of the AMS for the

 lower 8K of Assembly support. Pages 16 to 255 AMSBANK.

 4. If a 256K AMS is used by RXB then 32K PASS mode, 32K future

 use, and the rest for AMSBANK. So 32+32=64 and 256-64=192

 then 192K of AMS 4K pages would be 192/4=48 or 48 pages of

 AMSBANK. Now the lower 8K needs two 4K pages because of

 course 8/4=2 so 48/2=24 and that means 24 8K assembly

 support routines from one XB program.

 PAGE AMS3

 5. BSAVE and BLOAD in RXB are subroutines to save or load the

 lower 8K as Program Image files. 33 sectors in length they

 are only used by BSAVE or BLOAD. The reasons for BSAVE is

 to save the lower 8K in one easy to load chunk. ALSAVE

 that creates hidden loaders has one huge disadvantage.

 ALSAVE can only save one assembly support program at a

 time. Also it can't load more than one support routine and

 XB program to run it. BLOAD can load many support routines

 into the AMS and control them from one XB program.

 BLOAD and BSAVE can do what ALSAVE can't. Also up to 1Meg

 can be loaded into the AMS from one XB program and the

 same program run the assembly support routines.

 6. ISR (Interrupt Service Routine) hooks are used by many XB

 programs so CALL ISROFF and CALL ISRON are for RXB to

 control the problems created by them. Also compatibility

 between software packages is ensured.

 7. AMSBANK is the primary way RXB manages memory.

 pages 16 to 255 are numbers in AMSBANK as 0 to 240 so

 pages 2,3,10,11,12,13,14,15 are for pass mode and

 pages 0,1,4,5,6,7,8,9 are unused for future use.

 Thus 240*4=960K of AMS is in AMSBANK.

