
12 THREE EXAMPLES

Programming in FORTH is more of an "art" than programming in any
other language. Like painters drawing brushstrokes, FORTH
programmers have complete control over where they are going and
how they will get there. Charles Moore has written, "A good
programmer can do a fantastic job with FORTH; a bad programmer
can do a disastrous job." A good FORTH programmer must be
conscious of "style."

FORTH style is not easily taught; it's a subject that deserves a
book of its own. Some elements of good FORTH style include:

simplicity,

the use of many short definitions rather than a few longer
ones,

a correspondence between words and easy-to-understand
actions or data structures,

well-chosen names, and

well laid-out blocks, clearly commented.

One good way to learn style, aside from trial and error, is to
study existing FORTH applications, including FORTH itself. In
this book we've included the definitions of many FORTH system
words, and we encourage you to continue this study on your own.

This chapter introduces three applications which should serve as
examples of good FORTH style.

The first example will show you the typical process of
programming in FORTH: starting out with a problem and working
step-by-step towards the solution.

The second example involves a more complex application already
written: you will see the use of well-factored definitions and
the creation of an application-specific "language."

The third example demonstrates the way to translate a
mathematical equation into a FORTH definition; you will see how
speed and compactness can be increased by using fixed-point
arithmetic.

317

Starting .UORTU

MORD! Game

The example in this section is a refinement of the buzzphrase
generator which we programmed back in Chap. 10. (You might want
to review that version before reading this section.) The
previous version did not keep track of its own carriage returns,
causing us to force F7s into the definition and creating a very
ragged right margin. The job of deciding how many whole words
can fit on a line is a reasonable application for a computer and
not a trivial one.

The problem is this: to draft a "brief" which consists of four
paragraphs, each paragraph consisting of an appropriate
introduction and sentence. Each sentence will consist of four
randomly-chosen phrases linked together by fillers to create
gramatically logical sentences and a period at the end.

The words and phrases have already been edited into blocks 234,
235, and 236 in the listing at the end of this section. Look at
these blocks now, without looking at the two blocks that follow
them (we're pretending we haven't written the application yet).

Block 234 contains the four introductions. They must be used in
sequence. Block 235 contains four sets of fillers. The four sets
must be used in sequence, but any of the three versions within a
set may be chosen at random. Block 236 contains the three
columns of buzzwords from our previous version, with some added
words.

You might also look at the sample output that precedes the
listing of the application, to get a better idea of the desired
result.

"Top-down design" is a widely accepted approach to programming
that can help to reduce development time. The idea is that you,
first study your application as a whole, then break the problem
into smaller processes, then break these processes into still
smaller units. Only when you know what all the units should do,
and how they will conrect together, do you begin to write code.

The FORTH language encourages top-down design. But in FORTH you
can actually begin to write top-level definitions immediately.
Already we can ima.gine that the "ultimate word" in our
application might be called PAPER, and that it will probably be
defined something like this:

: PAPER 4 0 DO I INTRO SENTENCE LOOP ;

where INTRO uses the loop index as its argument to select the
appropriate introduction. SENTENCE could be defined

: SENTENCE 4 0 DO I FILLER PHRASE LOOP ;

12 THREE EXAMPLES 	 319

where FILLER uses the loop index as its argument to select the
appropriate set, then chooses at random one of the three versions
within the set. The function of PHRASE will be the same as
before.

Using FORTH's editor, we can enter these top-level definitions
into a block. Of course we can't load the block until we have
written our lower-level definitions.

In complicated applications, FORTH programmers often test the
logic of their top-level definitions by using "stubs" for the
lower-level words. A stub is a temporary definition. It might
simply print a message to let us know its been executed. Or it
may do nothing at all, except resolve the reference to its name
in the high-level definition.

While the top-down approach helps to organize the programming
process, it isn't always feasible to code in purely top-down
fashion. Usually we have to find out how certain low-level
mechanisms will work before we can design the higher-level
definitions.

The best compromise is to keep a perspective on the problem as a
whole while looking out for low-level problems whose solutions
may affect the entire application.

In our example application, we can see that it will no longer be
possible to force [CRIs at predictable points. Instead we've got
to invent a mechanism whereby the computer will perform carriage
returns automatically.

The only way to solve this problem is to count every character
that is typed. Before each word is typed, the application must
decide whether there is room to type it on the current line or do
a carriage return first.

So let's define the variable LINECOUNT to keep the count and the
constant RMARGIN with the value 78, to represent the maximum
count per line. Each time we type a word we will add its count
to LINECOUNT. Before typing each word we will execute this
phrase:

(length of next word) LINECOUNT @ + RMARGIN > IF CR

that is, if the length of the next word added to the current
length of the line exceeds our right margin, then we'll do a
carriage return.

But we have another problem: how do we isole4-.. words with a
known count for each word? You got it, we use 171 ,

Let's write out a "first draft" of this low-level part of our
application. It will type a single word, making appropriate

712.0 jti.u:Ling
-- 4..

,calculations--for—carriage 	 -.1711

32 WORD 	 Finds one word delimited by
a space.

COUNT DUP 	 Leaves the count and a copy
of the count on the stack,
with the address of the first
character beneath.

	—LINECOUNT @ + 	 Computes how long the
current line would be if the
word were to be included on
it.

RMARGIN > 	 Decides if it woUld eXceed
the margin.

IF CR 0 LINECOUNT !

ELSE SPACE THEN

------DUP--1+—LINECOUNT'-+!

TYPE

If so, resets the carriage
and the count., •

Otherwiser.l&aves•a space-
between the words.

. 	_
increases—the...coUnt by the
length of the word to be
typed, plus one for the
space.

Types the word using the
count and_the, address left.
by COUNT.

Now the problem is getting WORD1 to look at the strings on disk.
gets its bearings from IBLK1 and r>INJ, so if we say,

234 BLK ! 	0 >IN !

IWORD

then IWORD will begin scanning block.234, .starting at the top

(byte zero).

tFor polyFORTH Users

The user variables i>INI and [BLK are adjacent to each other in
the user table. This design allows you to fetch and store both
together with and 7.7" . For example,

234 0 >IN 2!

12 THREE EXAMPLES 	 321

This causes another problem: by storing new values into the
input stream pointers, we've destroyed the old values. If we now
execute a definition that contains the above phrase, the
interpreter will not come back to us when it's done; it will
continue trying to interpret the rest of block 234. To solve this
problem, our definition must save the pointer values somewhere
before it changes them, then restore them just before it's done.
Let's define a double-length variable called HOMEBASE, so we
have a place to save the pointers. Then let's write a word whose
job it will be to save the pointers in HOMEBASE. Finally, let's
write a word which will restore the pointers.

VARIABLE HOMEBASE 2 ALLOT
: <WRITE BLK @ >IN @ HOMEBASE 21 ;
: WRITE> HOMEBASE 2@ >IN 	BLK 1 ;

Now we have to modify our highest-level definition slightly, by
editing in <WRITE at the beginning and WRITE> at the end:

: PAPER <WRITE 4 0 DO I INTRO SENTENCE LOOP WRITE> ;

The next question is: how do we know when we've gotten to the
end of the string?

Since we are typing word by word, we have to check whether 1>INJ
has advanced sixty-four places from its starting point every time
we have found a new word. But the limit is not always sixty-four
places; in the case of the buzzwords, the limit is twenty places.

For this reason, we should probably make the limit be an argument
to a word. For example, the phrase

64 WORDS

should type out the contents of the 64-byte string, word by word,
performing carriage returns where-necessary.

How should we structure our definition of WORDS? Let's
re-examine what it must do:

1. Determine whether there is still a word in the string to
be typed.

2. If there is, type the word (with margin checking), then
repeat. If there isn't, exit.

The two art nature of this structure suggests that we need a
...IREPEAT loop. Let's write our problem this way,

if only to understand it better. .

—. BEGIN ANOTHER WHILE .WORD REPEAT —.

BEGIN

322
• 	

Starting FORTH

ANOTHER will do step 1; .WORD will do step 2.

How should ANOTHER determine whether there is still a word to be
typed from the string? It must scan for the next word in the
block, by using the phrase

32 WORD

then compare the new value of >•II\11 against the limit for r>IN1,
and finally return a "true" if the value is less than or equal to
the limit. This flag will serve as the argument for IWHILEI.

How do we compute the limit for j>INI? Before we can begin the
above loop, we have to add the argument (sixty-four or whatever)
to the beginning value of >IN and save this limit on the stack
for ANOTHER to use each time through the loop. Thus our
definition of WORDS might be

: WORDS (u) >IN @ + BEGIN ANOTHER WHILE
.WORD REPEAT 2DROP ;

We need the [2DROP1 because, when we exit the loop, we will have
the address of IWORDPs buffer and the limit for I>INI on the stack,
neither of which we need any longer.

Now we can define ANOTHER. We've already decided that the first
thing it must do is find the next word, by using the phrase

32 WORD

At this point, there will be two values on the stack:

limit adr

We can perform the comparison with the phrase

OVER >IN @ < NOT

By using IOVER we save the limit on the stack for future loops.
Remember that the phrase

< NOT

is the same as "greater than or equal to." Our definition of
ANOTHER, then, might be

32 CONSTANT BL
: ANOTHER (limit -- limit adr)

BL WORD OVER >IN @ < NOT ;

12 THREE EXAMPLES 	 323

(The abbreviation BL is a common mnemonict for "blank." We have
used it here to improve program readability.)

How'do we define .WORD? Actually, we've defined it already, a
few pages back, with the exception that

32 WORD

should be omitted from the beginning of the definition, since it
will have been performed in ANOTHER.

Now we have our word-typing mechanism. But let's see if we're
overlooking anything. For example, consider that every time we
start a new paragraph, we must remember to reset LINECOUNT to
zero. Otherwise our .WORD will think that the current line is full
when it isn't. We should ask ourselves this question: is there
ever a case in this application where we would want to perform a
[CR without resetting LINECOUNT? The answer is no, by the very
nature of the application. For this reason we can define

:-CR CR 0 LINECOUNT ! ;

to create a version of [CR1 that is appropriate for this
application. We can use this CRI in our definition of .WORD.

, We should also consider our handling of spaces between words.
By using the phrase

IF CR ELSE SPACE THEN

before typing each word, we guarantee that there will be a space
between each pair of words on the same line but no space at the
beginning of successive lines. And since we are typing a space
before each word rather than after, we can place a period
immediately after a word, as we must at the end of a sentence.

But there's still a problem with this logic: at the beginning of
, a new paragraph, we will always get one space before the first
word. Our solution: to redefine [-SPACE] so that it will be
sensitive to whether.or not we're at the beginning of a line,, and
will not space if we are:

: SPACE' LINECOUNT @ IF SPACE THEN ;

If LINECOUNT is "0" then we. know we are at the beginning of a
line, because of the way we have redefined 1CR

1-Tor Beginners

As a general term, a "mnemonic" is a symbol or abbreviation
chosen as an aid in remembering.

."."'71!"

	 atating FORTH

.

While we are redefining SPACE, it would be logical to inOlude the
phrase

1 LINECOUNT +!

in the redefinition. Again our reasoning is that we should never
;-7,-,perform a space without incrementing the count. Now we can

eliminate the word :1+ from the definition of .WORD, thereby
eliminating a bug in the previous .WORD, namely that LINECOUNT
was getting incremented even at the beginning of the line.

Let's assume that we have edited our definitions into a block.
(In fact, we've done this already in block 237.) Notice that we

—had very little typing 'to do, compared with the amount of
thinking we've done. FORTH source tends to be concise.t

Now we can define our in-between-level words--words like INTRO
and PHRASE that we have already used in our highest-level words,
but which we didn't define because we didn't have the low-level
mechanism.

-

Let's start with INTRO. First we must set our input-stream
-pointers. The introductions are all in block 234, so the phrase

, 	 .

234 BLK I

care_of_them. 	each,line is.sixty-four_bytes long,. we
can calculate the desired' Offset into the block by multi 1' ihg
the loop index by sixty-four, then storing the offset into

Now we're ready to use WORDS to type all the words in the next
sixty-four-bytes. The finished definition of IN.TRO lo.oks like
this:

: INTRO 	(u) 64 * >IN I 234 BLK 	CR 64 WORDS ;

Our mechanism has given us a very easy way to select strings.
Unfortunately we cannot test this definition by itself, because it
does not reset the input-stream pointers to their original values
when it's done. But we can get around this by writing ourselves a
definition called TEST, as follows:

: TEST CR ' <WRITE EXECUTE WRITE> SPACE.;'

Now we can say

tFor Experts

On the other hand, FORTH is not as compressed as ,APL, which in,
our opinion is not nearly as readable as FORTH.

	

12 THREE EXAMPLES 	 325

0 TEST INTRO

IN 	PAPER WE WILL DEM(. 	 ok

The "tick" in TEST will find the next word in the input stream,
INTRO, which will then be executed "between" <WRITE and WRITE>.
Notice that we put the argument to INTRO on the stack first.

The definition for FILLER will be a little more complicated.
Since we are dealing with sets, not lines, and since the sets are
four lines apart, we must multiply the loop index not by 64, but
by (64 * 4). To pick one of the 3 versions within the set, we must
choose a random number under three and multiply it by 64, then
add this result to the beginning of the set. Recalling our
discussion of compile-time arithmetic in Chap. 11., we can define

: FILLER 	(u) [4 64 *] LITERAL *
3 CHOOSE 64 * + >IN 1 235 BLK ! 64 WORDS ;

Again, we can test this definition by writing

3 TEST FILLER
TO FUNCTION AB ok

The remaining words in the application are similar to their
previous counterparts, stated in terms of the new mechanism.

Here is a sample of the output, followed by our finished listing.
(We've added block 239 as an afterthought so that we'd be able to
print the same paper more than once.)

IN THIS PAPER WE WILL DEMONSTRATE THAT BY APPLYING AVAILABLE
RESOURCES TOWARDS FUNCTIONAL DIGITAL CAPABILITY COORDINATED WITH
COMPATIBLE ORGANIZATIONAL UTILITIES IT IS POSSIBLE FOR EVEN THE
MOST RESPONSIVE DIGITAL OUTFLOW TO AVOID TRANSIENT UNILATERAL
MOBILITY.

ON THE ONE HAND, STUDIES HAVE SHOWN THAT WITH STRUCTURED DEPLOYMENT
OF TOTAL FAIL-SAFE MOBILITY BALANCED BY SYSTEMATIZED UNILATERAL
THROUGH-PUT IT BECOMES NOT UNFEASABLE FOR ALL BUT THE LEAST RANDOM
ORGANIZATIONAL PROJECTIONS TO AVOID RESPONSIVE LOGISTICAL CONCEPTS.

ON THE OTHER HAND, HOWEVER, PRACTICAL EXPERIENCE INDICATES THAT
WITH STRUCTURED DEPLOYMENT OF QUALIFIED TRANSITIONAL MOBILITY
BALANCED BY REPRESENTATIVE LOGISTICAL THROUGH-PUT IT IS NECESSARY
FOR ALL REPRESENTATIVE UNILATERAL. ENGINEERING TO FUNCTION AS
OPTIONAL DIGITAL SUPERSTRUCTURES.

IN SUMMARY, THEN, WE PROPOSE THAT WITH STRUCTURED DEPLOYMENT OF
RANDOM MANAGEMENT FLEXIBILITY BALANCED BY STAND-ALONE DIGITAL
CRITERIA IT IS NECESSARY FOR ALL QUALIFIED FAIL-SAFE OUTFLOW TO
AVOID PARTIAL UNDOCUMENTED ENGINEERING.

„tit)

8 tar ting yoRTH
	, 	 7:5 	 •

eraa.;",,,-7Z0:24=4,. 	 rtrft,

234 LIST

. ,,,,, 	 • 	 ^

O IN THIS PAPER WE WILL DEMONSTRATE THAT
1 ON THE ONE HAND, STUDIES HAVE SHOWN THAT
2 ON THE OTHER HAND, HOWEVER, PRACTICAL EXPERIENCE INDICATES THAT.

—3-1N SUMMARY, THEN, WE PROPOSE THAT
4
5
6
7

9
10
11
12
13

15

235 LIST

O BY USING
1 BY APPLYING AVAILABLE RESOURCES TOWARDS
2 WITH STRUCTURED DEPLOYMENT OF
3

— 4 COORDINATED WITH
5 TO OFFSET
6 BALANCED BY _ 	_
7
8 IT IS POSSIBLE FOR EVEN THE MOST
9-17 BECOMES-NOT—UNFEASABLE FOR ALL. BUT THE-LEASr-
10 IT IS NECESSARY FOR ALL
11
12 TO FUNCTION AS
i3 TO GENERATE A HIGH LEVEL OF
14 TO AVOID
15

236 LIST

O INTEGRATED
1 TOTAL
2 SYSTEMATIZED
3 pnRnLLEL
4 FUNCTIONAL
5 RESPONSIVE
6 OPTIMAL
7 SYNCHRONIZED
• COMPATIBLE
9 OUALIFIED
10 PARTIAL
11 STAND-ALONE
12 RANDOM
13 REPRESENTATIVE
14 OPTIONAL
15 TRANSIENT

MANAGEMENT
ORGAN/ZATIONAL
MONITORED
PECIPPOCAL
DIGITAL
LOGISTICAL
TRANSITIONAL
INCREMENTAL
THIRD GENERATION
POLICY
DECISION
UNDOCUMENTED
CONTEXT SENSITIVE
FAIL-SAFE
OMNIRANGE
UNILATERAL

CRITER/A
FLEXIBILITY
CAPABILITY
MODILITY
PROGRAMMING
CONCEPTS
TIME PHASING
PROJECTIONS
HARDWARE
THROUGH-PUT
ENGINEERING
OUTFLOW
SUPERSTRUCTURES
/NTERACTION
CONGRUENCE
UTILITIES

Copyright FORTH, Inc. 	3/06/91 11:43 	Starting FORTH

12 THREE EXAMPLES 	 327

237 LIST

O (BUZZPHRASE GENERATOR II -- MARGIN SETTING) 	EMPTY
1 181 LOAD (RANDOM NUMBERS)
2 32 CONSTANT BL 	 7B CONSTANT RMARGIN
3 VARIABLE LINECOUNT 	VARIABLE HOMEBASE 2 ALLOT
4 : <WRITE 	BLK 0 >IN e HOMEBASE 2! ;
5 : WRITE> 	HOMEBASE 20 >IN ! BLK ! ;
6
7 : CR 	CR 0 LINECOUNT I ;

8 : SPACE 	LINECOUNT 	IF SPACE 1 LINECOUNT +I THEN ;
9 : .WORD 	(adr) COUNT DUP LINECOUNT e + RMARGIN >

10 	 IF CR ELSE SPACE THEN
11 	 DUP LINECOUNT +I TYPE ;
12 : ANOTHER (adr) BL WORD OVER >IN G < NOT ;
13 : WORDS 	(u)
14 	 >IN 	+ BEGIN ANOTHER WHILE .WORD REPEAT 2DROP ;
15 238 LOAD 	239 LOAD

238 LIST

O (BUZZPHRASE GENERATOR -- HIGH LEVEL WORDS)
1
2 : BUZZ 	16 CHOOSE 64 * + >IN I 236 BLK , 	20 WORDS ;
3 : lADJ 	0 BUZZ ;
4 : 2ADJ 	20 BUZZ ;
5 : NOUN 	40 BUZZ ;
6 : PHRASE 	1ADJ 2ADJ NOUN ;
7 : FILLER 	(u) C 4 64 * 	LITERAL *
8 	3 CHOOSE 64 * + >IN I 235 BLK I 	64 WORDS ;
9 : SENTENCE 	4 0 DO I FILLER PHRASE LOOP ." ." CR ;
10 : INTRO 	(u) 	64 * >IN ! 234 BLK I CR 64 WORDS ;
11
12 : PAPER 	<WRITE CR CR 4 0 DO I INTRO SENTENCE LOOP WRITE> ;
13
14
15 : TEST 	CR ' <WRITE EXECUTE WRITE> SPACE ;

239 LIST

O (RETRIEVAL OF MORE SUCCESSFUL PAPERS)
1

2 VARIABLE SEED
3
4 : 4POSTERITY 	RND e SEED ! ;
5 (execute BEFORE producing a paper)
6
7 : REDO 	SEED e RND I ;

8 (execute AFTER a paper, to reprint it.
9 	Usage: REDO PAPER)

10

11

12
13
14

15

Copyright FORTH, Inc. 	3/06/81 11:44 	Starting FORTH

328
	

Starting FORTH

File Away!

.o 	 e

Our second example consists of a simple filing system.t It is a
powerful and useful application, and a good one to learn FORTH
style from. We have divided this section into four parts:

1. A "How to" for the end user. This will give you an idea
of what the application can do.

2. Notes on the way the application is structured and the
way certain definitions work.

A glossary of all tli'e definitions in the apPlication.

A listing of the application, including the 'blocks that
contain the files themselves.

How to Use the Simple File System

This co'mputer filing system lets you store and retrieve
information quickly and easily. At, the:::moment., it is set, up-to .
handle people's names, occupations, and phone numbers.+ Not
only does it allow you to enter, change, and remove recordsr it
also allows you to search the file for any piece of information.
For example, if you have a phone number, you can find the
person's name; or, given a name, you can find the person's job,
etc.

For each person there is a "record" which contains four "fields."
The names which specify each of these four fields are

SURNAME 	GIVEN 	JOB 	PHONE

("Given," of course, refers to the person's given name, or first
name.)

For Serious File-Users

FORTH, Inc. offers a very powerful File Management ,Option.

For Programmers

You can easily change these categories or extend the number of
fields the system will handle. '

12 THREE EXAMPLES 	 329

File Retrieval

You can search the file for the contents of any field by using
the word FIND, followed by the field-name and the contents, as in

FIND JOB NEWSCASTER= DAN RATHER ok

If any "job" field contains the string "NEWSCASTER," then the
system prints the person's full name. If no such file exists, it
prints "NOT IN FILE."

Once you have found a field, the record in which it was found
becomes "current." You can get the contents of any field in the
current record by using the word GET. For instance, having
entered the line above, you can now enter

GET PHONE= 	-9876 ok

The FIND command will only find the first instance of the field
that you are looking for. To find out if there is another
instance of the field that you last found, use the command
ANOTHER. For example, to find another person whose "job" is
"NEWSCASTER," enter

ANOTHER= JESSICA SAVITCH ok

and

ANOTHER= FRANK REYNOLDS ok

When there are no more people whose job is "NEWSCASTER" in the
file, the ANOTHER command will print "NO OTHER."

To list all names whose field contains the string that was last
found, use the command ALL:

ALLODO
I • 	'HER

SAVIT-7
.

ok

Since the surname and given name are stored separately, you can
use FIND to search the file on the basis of either one. But if
you know the person's full name, you can often save time by
locating both fields at once, by using the word FULLNAME.
FULLNAME expects the full name to be entered with the last name
first and the two names separated_by a comma, as in

FULLNAME WONDER,STEVIEGEDO STEVIE WONDER ok

330 	 Star_ting FORTH__

(There must not be a space after the comma, because the comma
marks the end of the first field and the beginning of the second

-fie-Idtr-rike-FIND and ANOTHER, FULLNAME repeats the name to
indicate that it has been found.

You can actually find any Pair of fields by using the word PAIR.
--You-must-specify-both the field names and th-eir contents,
separated by a comma. For example, to find a newscaster whose

_g_iy_en_name is Dan, enter

PAIR JOB NEWSCASTER,GIVEN DAN= DAN RATHER ok

File Maintenance

_To enter a new record, use the command ENTER, followed by the
surname, given name, job, and phone, each separated 17y a comma
only. For example,

ENTER NUREYEV,RUDOLF,BALLET DANCER,555-12340= ok

To change the contents of a single field within the current
record; use-the command- CHANGE followed by th-e nalne of the
field, then the new string. For example, _ 	_ 	_

CHANGE JOB CHOREOGRAPHER= ok

To completely'Thmo-ve'the-current record, use the cOl-m'man7d- REMOVE:*

REMOVE= ok

-After adding, changing, or removing records, and -befor-e turni-ng ^
off the computer or changing disks, be sure to use the word

FLIJSH ok

Comments

This section is meant as a guide, for the novice FORTH
programmer, to the glossary and listing which follow. We"11
describe the structure of this application and cover some of the
more complicated definitions. As you read.this section,-study the.
glossary and listing on your own, and try to understand as much
as you can.

12 THREE EXAMPLES 	 331

Turn to the listing now and look at block 242. This block
contains the definitions for all nine end-user commands we've
just discussed. Notice how simple these definitions are, compared
to their power!

This is a characteristic of a well-designed FORTH application.
Notice that the word -FIND, the elemental file-search word, is
factored in such a way that it can be used in the definitions of
FIND, ANOTHER, and ALL, as well as in the internal word, (PAIR),
which is used by PAIR and by FULLNAME.

We'll examine these definitions shortly, but first let's look at
the overall structure of this application.

One of the basic characteristics of this application is that each
of the four fields has a name which we can enter in order to
specify the particular field. For example, the phrase

SURNAME PUT

will put the character string that follows in the input stream
into the "surname" field of the current record. The phrase

SURNAME .FIELD

will print the contents of the "surname" field of the current
record, etc.

There are two pieces of information that are needed to identify
each field: the field's starting address relative to the
beginning of a record and the length of the field.

In this application, a record is laid out like this:

For
the

0 	 16 	28 	 52 	 64

surname given job phone

bytes.

16 	 12 	 24'

instance, the "job" field starts twenty-eight
beginning of every record and continues for

12

bytes in from
twenty-four

We chose to make a record exactly sixty-four b tes long so that
the fields will line up in columns when we 	the file. This
was for our convenience in programming, but this system could be

j32 	 Starting FORTH
—777- 	 3'5.-:,t7m- • 	-

modified to hold recordS of 'any'lenith. and any-number of fieids.t

We've taken the two pieces of information
for each field and put them into a
double-length table associated with each
field name. Our C,effinition of JOB,
therefore, is

CREATE JOB 28 , 24 ,

Thus when we enter the name of a field, we
are putting on the stack the address of the
table that describes the "job" field. We
can fetch either or'both pieces of
information relative to this address.

Let's call each of these entries a "field
specifying table," or a "spec table" for
short.

J
0 	, B • -

link

code pointer

28 	_
24

7 	"4'7

;a,

For Those' Who Want to McidifY. This File System

To- chalig-e—t1Te Tparimeteis of' the fields, just make sure that the
beginning byte ("tab") for each field is consistent with the
lengths of-the fields thatiprecede it. For-example, if the—first
field is thirty bytes long, as in

CREATE 1FIELD 0 , 30 ,

then make the tab for the second field thirty-, a-s in

CREATE 2FIELD 30 , 12

etc. Finally, set the value of R-LENGTH in line 4 to the length
of the entire record (the last field's tab plus its length). Using
R-LENGTH, the system automatically computes the-number of records
that can fit into a single block (1024 R-LENGTH /) and defines the
constant REC/BLK accordingly..

You may also change the location of the new.file (e.g., to create
seVeral different files) by changing the value of the constant
FILE in line 5. You may also change the maximum number of blocks
that your file can contain by replacing the "2" in the same line.'
This value will be converted into a maximum number of records, by
being multiplied by REC/BLK, and kept as-the constant MAXRECS.

12 THREE EXAMPLES 	 333

Part of the design for this application is derived from the
requirements of FIND, ANOTHER, and ALL; that is, FIND not only
has to find a given string within a given type of field, but also
needs to "remember" the string and the type of field so that
ANOTHER and ALL can search for the same thing.

We can specify the kind of field with just one value, the address
of the spec table for that type of field. This means that we can
"remember" the type of field by storing this address into KEEP.

KIND was created for this purpose, to indicate the "kind" of
field.

To remember the string, we have defined a buffer called WHAT to
which the string can be moved. (WHAT is defined relative to the
pad, where memory can be reused, so as not to waste dictionary
space.)

The word KEEP serves the dual purpose of storing the given field
type into KIND and the given character string into WHAT. If you
look at the definition of the end-user word FIND, you will see
that the first thing it does is KEEP the information on what is
being searched for. Then FIND executes the internal word -FIND,
which uses the information in KIND and WHAT to find a matching
string.

ANOTHER and ALL also use -FIND, but they don't use KEEP. Instead
they look for fields that match the one most recently "kept" by
FIND.

So that we can GET any piece of information from the record
which we have just "found," we need a pointer to the "current"
record. This need is met with the variable *RECORD. The
operations of the words TOP and DOWN in block 240 should be
fairly obvious to you.

The word RECORD uses #RECORD to compute the absolute address
(the computer-memory address, soMewhere in a disk buffer) of the
beginning of the current record. Since RECORD executes 'BLOCK,
it also guarantees that the record really is in a buffer.

Notice that RECORD allows the file to continue over a range of
blocks. /MOD] divides the value of #RECORD by the number of-
records per block (sixteen in this case, since each record is
sixty-four bytes long). The quotient indicates which block the
record will be in, relative to the first block; the remainder
indicates how far into that block this record will be.

While a spec table contains the relative address of the field and
its length, we usually need to know the field's absolute address
and length for words such as ITYPE, 'MOVE, and J-TEXT. Look at-
the definition of the word FIELD to see how it converts the
address of a spec table into an absolute address and length.

334 	 _Starting FORTU--

Then examine how FIELD is applied in the definition of .FIELD.

The word PUT also employs FIELD. Its phrase

PAD-SWAP-FIELD

-'7"leWV'es-on-th-e-stack the arguments

--for--.m.f-Tifito move the string from the pad into the appropriate,
fiel of the current record.

There are two things worth hating about the definition of FREE in
block 241. The first is the method used to determine whether a

--record is empty. We've made the assumption that if the first byte
of a record is empty, then the whole record is empty, because of

__the way ENTER works. If the first byte contains a character
whose ASCII value is less than thirty-three (thirty-two is blank),
then it is not a printing character and the line is empty.
(Sometimes an empty block will contain all nulls, other times all
blanks; either way, such records will test as "empty.") As soon
as an empty record is found, LEAVE ends the loop. #RECORD will
contain the number of the free record.

Another thing worth noting about FREE is that it aborts if the
file is full, that is, if it runs through all the necords without
finding one empty. We can use a [DOI loop to run through all the
records, but how can we tell that the loop has run out before it
has found an empty record?

The best way is to leave a "1" on the stack, to serve as a flag,
before beginning the loop. If an empty record is found, we can
change the flag to zero (with the word POTI) before we leave the
loop. When we come out of the loop, we'll have a "1" if we never
found an empty record, a "0" if we did. This flag will be the
argument for IABORT"I.

We use a similar technique in the definition of -FIND. -FIND must
return a flag to the word that executed it: FIND, ANOTHER, ALL,
or (PAIR). The flag indicates whether a match was found before
the end of the file was reached. Each of these outer words needs
to make a different decision based on the state of this flag.
This flag is a "1" if a match is not found (hence the name -FIND).
The decision to use negative logic was based on the way -FIND is
used.

Because the flag needs to be a "1" if a match is not found, the
easiest way to design this word is to start with a "1" on the
stack and change it to a "0" only if a match is found. But
notice: while the loop is running, there are two values on the__
stack: the flag we just mentioned and the spec table address for
the type of field to be searched. Since we need the address

12 THREE EXAMPLES 	 335

every time through the loop and the flag only once, if at all, we
have decided to keep the address on top of the stack and the
flag underneath. For this reason, we use the phrase

SWAP NOT SWAP

By the way, we could have avoided the problem of carrying both
values on the stack by putting the phrase

KIND @ FIELD

inside the loop, instead of

KIND @

at the beginning and

DUP FIELD

inside. But we didn't, because we always try to keep the number
of instructions inside a loop to a minimum. Naturally, it is the
loops that take the most time running.

Now that-you understand the basic design of this application, you
should have no trouble understanding the rest of the listing,
using the glossary as a guide.t

For polyFORTH Users

This type of glossary is generated by an application called
DOCUMENTOR, which is included in the File Management Option.

336 	 Starting FORTH
r•-‘, *f•

FORTH, Inc. 	 Page i 	3/06/Bi
SIMPLE FILES GLOSSARY

WORD 	 VOCABULARY 	BLOCK 	STACK EFFECTS

ORECORD 	FORTH 	 240 	f 	adr)
A variable that points to the current record.

(PAIR) 	 FORTH 	 241 	(adr)
Starting from the top, attempts to find,a match on the contents
'of WHAT, using KIND to indicate the type o; field. 	If a match
is made, then attempts to match a second field, whose type is
indicated by adr, with the contents of PPD. 	/f both match,
prints the name; otherwise repeats until a match is made or
until the end of the file is reached, in,which case prints
an error message.

—FIND 	 FORTH 	 241 	(f)
Beginning with ORECORD and proceeding down, compares the contents
of the field indicated by KIND against the contents of WHAT.

.FIELD 	FORTH 	 240 	(adr)
From the current record, types the contents of the field that is
associated with the field—specifying table at adr.

.NAME 	 FORTH 	 240
From the current record, types the name, first name first.

ALL 	 FORTH 	 242
Beginning at the top of the file, uses KIND to determine type of
field and finds all matches on WHAT. 	Types the full name(s).

ANOTHER 	FORTH 	 242
Beginning with the next record after the current one, and using
KIND to determine type oi field, attempts to find a match on WHAT.
If successful, types the name; otherwise an error message.

CHANGE 	FORTH 	 242
Changes the contents of the given field in the current record.
usage: 	CHANGE field—name new—contents

DOWN 	 FORTH 	 240
Moves the record pointer down one record.

ENTER 	 FORTH 	 242
Finds the first free record, then moves four strings separated
by commas into the surname, given, job, and phone fields of
that record.

FIELD 	 FORTH 	 240 	(adr 	adr length)
Given the address of a field—specifying table, insures that
the associated field in the current record is in a disk buffer
and returns the address of the field in the buffer along with
its length.

FILES 	 FORTH 	 240 	(u)
The number of the block where the files begin.

12 THREE EXAMPLES 	 337

FORTH, Inc. 	 Page 2 	3/06/61.
SIMPLE FILES GLOSSARY

WORD 	 VOCABULARY 	BLOCK 	STACK EFFECTS

FIND 	 FORTH 	 242
Finds the record in which there is a match between the contents
of the given field and the given string.

Usage: 	FIND field-name string

FREE 	 FORTH 	 241
Starting at the top of the file, finds the first record that is
free, that is, whose first byte contains a blank or zero.
Aborts if the file is full.

FULLNAME 	FORTH 	 242
Finds the record in which there is a match on both the first and
last names given. 	Usage: 	FULLNAME lastname,firstname

GET 	 FORTH 	 242
Prints the contents of the given type of field from the current
record.

GIVEN 	 FORTH 	 240 	(adr)
Returns the address of the field-specifying table for the
"given" (first name) field.

JOB 	 FORTH 	 240 . (adr)
Returns the address of the field-specifying table for the
"job" field.

KEEP 	 FORTH 	 241 	C adr)
Moves a character string, delimited either by a comma or by a
carr_iage return, from the input stream into WHAT, and saves the
address of the given field-specifying table in KIND, for future
use by -FIND.

KIND 	 FORTH 	 240 	 adr)
A variable that contains the address of the field-specifying
table for the type of field that was last searched for by FIND.

MAXRECS 	FORTH 	 240 	C 	u)
The maximum number of records to be allowed in the system.

. MISSING 	FORTH 	 241 	:-
Prints the message "NOT IN FILE."

PAIR 	 FORTH 	 242
Finds the record in which there is a match between both the
contents of the first given field and the first given string, and
and also the contents of the second given field and the second
given string. 	Comma is the delimiter.

Usage: 	PAIR field1 string1,field2 string2

PHONE 	 FORTH 	 240 	(adr)
Returns the address of the field-specifying table for the
"phone" field.

338 	 Starting FORTM

FORTH, Inc. 	 Page 3 	3/06/81
SIMPLE FILES GLOSSARY

WORD 	 VOCABULARY 	DLOCK 	STACK EFFECTS

PUT 	 FORTH 	 241 	(adr)
Moves 'a character string, delimited either by a comma or by a
carriage return, from the input stream into the field whose

7,--r.r—f,i,e-14-sp.e.c-i,fyd-ng-table address is given -on the stack.

R-LENGTH 	FORTH 	 240 	(u)
T—T-T—The--1-em-gth--in- bytes of a single record.

READ 	 FORTH 	 241
Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into PAD.

REC/BLK 	FORTH 	 240 	(u)
The number of records that will fit in a single block,
given MAXRECS.

RECORD 	FORTH 	 240 	(-- adr) 	 _ ___
Insures that the current record is in a disk buffer, and
returns the address of the first byte of that record.

REMOVE 	FORTH 	 242
Erases the current record.

SURNAME 	FORTH 	 240 	(adr)
Returns the address of the field-specifying table for the
"surname" (last name) field.

TOP - 	FORTH 	 240
Resets the.record pointer to the top of the file.

WHAT 	 FORTH 	 240 	(adr)
Returns the address of a buffer that contains the string that
is being searched for, or was last searched for, by FIND.

12 THREE EXAMPLES 	 339

240 LIST

O (SIMPLE FILES) 	 EMPTY
1 	 (tab length) 	 (tab length)
2 CREATE SURNAME 	3 	16 	 CREATE GIVEN 16 	12 ,

3 CREATE JOB 	28 	24 	 CREATE PHONE 52 	12
4 64 CONSTANT R-LENGTH 	1024 R-LENGTH / CONSTANT REC/BLK
5 243 CONSTANT FILES 	 2 REC/BLK * CONSTRNT MAXRECS
6 VRRIABLE #RECORD 	 URRIABLE KIND
7 : WHAT 	(adr) PAD 80 + ;
8 : RECORD 	(-- first adr of current record)
9 	#RECORD e REC/BLK /MOD FILES + BLOCK SWAP R-LENGTH * + ;
10 : FIELD 	(field --adr length) 2@ RECORD + SWAP ;
11 : TOP 	0 #RECORD ! ;
12 : DOWN 	1 #RECORD +! ;
13 : .FIELD 	(field) FIELD -TRAILING TYPE SPACE ;
14 : .NAME 	GIVEN .FIELD • SURNAME .FIELD ;
15 241 LOAD 242 LOAD

241 LIST

O C SIMPLE FILES. CONT'D)
1 : READ 	44 TEXT
2 : PUT 	(field) READ PAD SWAP FIELD MOUE UPDATE ;
3 : KEEP 	(field) DUP KIND I
4 	 2+ e READ PRD WHRT ROT MOUE ;
5 : FREE 	1 MAXRECS 0 DO I #RECORD ! RECORD C@
6 	(ASCII) 33 < IF NOT,LEAVE THEN LOOP ABORT" FILE FULL " ;
7
8 : -FIND 	(f) 	1 KIND Q MAXRECS #RECORD e DO
9 	 I #RECORD 	DUP FIELD WHAT -TEXT NOT IF

10 	 SWAP NOT SWAP LEAVE THEN LOOP DROP ;
11 : MISSING 	." NOT IN FILE " ;
12 : (PAIR) 	(field) 	MAXRECS 0 DO I #RECORD !
13 	-FIND IF MISSING LEAVE ELSE DUP FIELD PAD -TEXT NOT
14 	 IF .NRME LERVE THEN 	THEN 	LOOP DROP ;
15

242 LIST

O (SIMPLE FILES -- END USER WORDS)
1
2 : ENTER 	FREE 	SURNAME PUi 	GIVEN PUT
3 	 JOB PUT 	PHONE PUT ;
4 : REMOVE 	RECORD R-LENGTH 32 FILL UPDATE ;
5 : CHANGE 	' PUT ;
6
7 : FIND 	' KEEP TOP -FIND IF MISSING ELSE -NAME THEN ;
8 : GET 	' 	.FIELD ;
9
10 : ANOTHER 	DOWN -FIND IF ." NO OTHER " ELSE .HAME THEN ;
11 : ALL 	TOP BEGIN CR -FIND NOT WHILE .NAME DOWN REPEAT ;
12
13 : PAIR 	' KEEP 	' READ (PAIR) ;
14 : FULLNAME 	SURNAME KEEP GIUEN READ (PAIR) ;
15

Copyright FORTH. Inc. 	3/06/81 11:44 	Starting FORTH

StlarLing PORM
,

243 LIST

.-

0 FILLMORE 	MILLARD' - PRESIDENT,-- 	 NO.PHONE -.
1 LINCOLN 	 ABRAHAM 	PRESIDENT 	 NO PHONE
2 BRONTE 	 EMILY 	WRITER 	 NO PHONE
3 RATHER 	 DAN 	 NEWSCASTER 	 555-9876
4 FITZGERALD 	ELLn 	SINGER 	 555-6709
5 SAVITCH 	 JESSICA 	NEWSCASTER 	 555-9653
6 MC CARTNEY 	PAU1_ 	 SONGWRITER 	 555-1212
7 WASHINGTON 	GEORGE 	PRESIDENT 	 NO PHONE
	se—REYNOLDS 	FRANK 	NEWSCASTER 	 ' 555-8765- '
9 SILLS 	 REUERLY 	OPERA sTnR 	 555-9876
10 FORD 	 HC1,J'Y 	CAPITnLIST 	 NO PHONE
11 DEWHURST 	 COLTEN 	ACTRESS 	 555-9876
12 WONDER 	 STEV7E 	SONGWRITER 	 555-0097
13 FULLER 	 BUCKMINSTER WORLD ARCHITECT 	 555-7604
14 RAWLES 	 JOHN 	PHILOSOPHER 	 555-9721
15 TRUDEAU 	 GARflY 	CARTOONIST 	 555-9032

244 LIST

340
1777 ,r.r •

0 VAN BUREN
1 ABZUG
2 THOMPSON
3 SINATRA
4 JABDAR
5 MC GEE
6 DIDION
7 FRAZETTA
8 HENSON
9

10
11
12
13
14
15

245 LIST

0
1
2
3
4
5
6
7

9
10
11
12
13

ABIGAIL 	COLUMNIST
BELLA 	POLIT/CIAN
HUNTER S. 	GONZO JOURNALIST
FRANK 	SINGER
KARLI2M ABDULBASKETBALL PLAYER
TRAVIS 	FICTITIOUS DETECTIVE
JonN 	WRITER
FRANK 	ARTIST
JIM 	 PUPPETEER

555-8743
555-4443
555-9054
555-9412
555-4439
555-8887
555-0009
555-9991
555-0001

Copyright FORTH, Inc. 2/06/81 11:44 	Starting FORTH

14
15

12 THREE EXAMPLES 	 341

No Weighting

Our final example is a math problem which many people would
assume could only be solved by using floating point. It will
illustrate how to handle a fairly complicated equation with
fixed-point arithmetic and demonstrate that for all the
advantages of using fixed-point, range and precision need not
suffer.

In this example we will compute the weight of a cone-shaped pile
of material, knowing the height of the pile, the angle of the
slope of the pile, and the density of the material.

To make the example more "concrete," let's weigh several huge
piles of sand, gravel, and cement. The slope of each pile,
called the "angle of repose," depends on the type of material.
For example, sand piles itself more steeply than gravel.

s 0

sand loose gravel

(In reality these values vary widely, depending on many factors;
we have chosen approximate angles and densities for purposes of
illustration.)

Here is the formula for computing the weight of a conical pile h
feet tall with an angle of repose of 8 degrees, where D is the
density of the material in pounds per cubic foot:t

tFor Skeptics

The volume of a cone, V, is given by

1 	2 V = 	h

where b is the radius of the base and h is the height. We can
compute the base by knowing the angle or, more specifically, the
tangent of the angle. The tangent of an angle is simply the
ratio of the segment marked h to the segment marked b in this
drawing:

(continued...)

342 	 Starting FORTH_

Trh3D
3 tanz (8)

--This-will-be-the-formula-which we must express in-FORTH.

.....Le,t,Ls_d_esign_our_application so that we can enter the name of a
material first, such as

DRY-SAND

--th-en—e-nter the height of a pile and get the
result for dry sand.

Let's assume that for any one type of
-material the density and angle of repose

never vary. We can store both of these
values for each type of material into a
table. Since we ultimately need each
angle's tangent, rather than the number of
degrees, we will store the tangent. For
instance, the angle of repose for a pile of
cement-is 35°, for whi-ch the tangent is
.700. We will store this as the integer 700.

CEMENT

700

Bear in mind that oUr g"oal iS not just to i3et an answer; we are
programming a computer or device to get the answer for us in_the.:
fastest, most-efficient7 and most accurate-way poSsible.' As we
indicated in Chap. 5, to write equations using fixed-point
arithmetic-requir-es-an extra amount of thought..-But-the effort-
pays off in two ways:

For Skeptics (continued)

If we call this angle "0" (theta), then

tan E) =

Thus we can compute the radius of the base with

b -
h

tan e
• 	 .

When we substitute this into the expression for V, and then
multiply the result.by,the density D in pounds. per cubic foot, we.
get the formula shown above.

12 THREE EXAMPLES
	

343

1. vastly improved run-time speed, which can be very
important when there are millions of steps involved in a
single calculation, or when we must perform thousands of
calculations every minute. Also,

2. program size, which
would be critical if,
for instance, we wanted
to put this application
in a hand-held device
specifically designed
as a pile-measuring
calculator. FORTH is
often used in this type
of instrument.

Let's approach our problem by first considering scale. The
height of our piles ranges from 5 to 50 feet. By working out our
equation for a pile of cement 50 feet high, we find that the
weight will be nearly 35,000,000 pounds.

But because our piles will not be shaped as perfect cones and
because our values are averages, we cannot expect better than
four or five decimal places of accuracy.t If we scale our result
to tons, we get about 17,500. This value will comfortably fit
within the range of a single-length number. For this reason,
let's write this application entirely with single-length
arithmetic operators.

Applications which require greater accuracy can be written using
double-length arithmetic; to illustrate we've even written a
second version of this application using 32-bit math, as you'll
see later on. But we intend to show the accuracy that FORTH can
achieve even with 16-bit math.

By running another test with a pile 40 feet high, we find that a
difference of one-tenth of a foot in height can make a
difference of 25 tons in weight. So we decide to scale our input
to feet and inches rather than merely to whole feet.

For Math Experts:

In fact, since our height will be expressed in three - digits,-we
can't expect greater than three-digit precision. But for purposes
of our example, we'll keep better than four-digit precision.

344 	 Starting FORTH_ .
. 	 -

We'd like the user to be able to enter

15 FOOT 2 INCH PILE

- where the words FOOT and INCH will convert the feet and inches
into tenths of an inch, and PILE will do the calculation. Here's
how we might define FOOT and INCH:

: FOOT 10 * ;
: INCH 100 12 */ 5 + 10 / +

The use of INCH is optional.

(By the way, we could as easily have designed input to be in
tenths of an inch with a decimal point, like this:

15.2

In this case, NUMBER would convert the input as a double-length
value. Since we are only doing single-length arithmetic, PILE
could simply begin with DROP, to eliminate the high-order byte.)

In writing the definition of PILE, we must try to maintain the
maximum number of places of precision without overflowing 15
bits. According to the formula, the first thing we must do is
cube the argument. But let's remember that we will have an
argument which may be as high as 50 feet, which will be 500 as a
scaled integer. Even to square 500 produces 250,000, which
exceeds the capacity of single-length arithmetic.

We might reason that, sooner or later in this calculation, we're
going to have to divide by 2000 to yield an answer in tons. Thus
the phrase

DUP DUP 2000 */

will square the argument and convert it to tons at the same time,
taking advantage of [*/'s double-length intermediate result.
Using 500 as our test argument, the above phrase will yield 125.

But our pile may be as small as 5 feet, which when squared is only
25. To divide by 2000 would produce a zero in integer arithmetic,
which suggests that we are scaling down too much.

To retain maximum accuracy, we should scale down no more than
necessary. 250,000 can be safely accommodated by dividing by 10.
Thus we will begin our definition of PILE with the phrase

DUP DUP 10 */

The integer result at this stage will be scaled to one place to
the right of the decimal point (25000 for 2500.0).

12 THREE EXAMPLES 	 345

Now we must cube the argument. Once again, straight
multiplication will produce a double-length result, so we must use

to scale down. We find that by using 1000 as our divisor, we
can stay just within single-length range. Our result at this stage
will be scaled to one place to the left of the decimal point
(12500 for 125000.) and still accurate to 5 digits.

According to our formula, we must multiply our argument by pi. We
know that we can do this in FORTH with the phrase

355 113 */

We must also divide our argument by 3. We can do both at once
with the phrase

355 339 */

which causes no problems with scaling.

Next we must divide our argument by the tangent squared, which we
can do by dividing the argument by the tangent twice. Because
our tangent is scaled to 3 decimal places, to divide by the
tangent we multiply by 1000 and divide by the table value. Thus
we will use the phrase

1000 THETA @ */

Since we must perform this twice, let's make it a definition,
called /TAN (for divide-by-the-tangent) and use the word /TAN
twice in our definition of PILE. Our result at this point will
still be scaled to one place to the left of the decimal (26711 for
267110, using our maximum test values).

All that remains is to multiply by the density of the' material, of
which the highest is 131 pounds per cubic foot. To avoid
overflowing, let's try scaling down by two decimal places with
the phrase

DENSITY @ 100 */

But by testing, we find that the result at this point for a 50-foot
pile of cement will be 34,991, which just exceeds—the-15,bit..Limit—
Now is a good time to take the 2000 into account. Instead of_

DENSITY @ 100 */

we can say

DENSITY @ 200 V

and our answer will now be scaled to whole tons.

You will find this version in the listing of block 246 that

l */1

346 	 Starting FORTH

-77-14;+ 	'4775.

follows. As we mentioned, we have also written this application
using double-length arithmetic, in block 248. In this version you

--enter-the-height as-a double-length number scaled to tenths of a
foot, followed by the word FEET, as in 50.0 feet.

By using double-length integer arithmetic, we are able to compute
the...weight of..the pile to the nearest whole pound. The range of
double-length integer arithmetic compares with that of most
floating-point arithmetic. Below is a comparison of the results
obtained using a 10-decimal-digit calculator, single-length
FORTH, and double-length FORTH. The test assumes a 50-foot pile

" --Of-cement,- using the table values.

in pounds 	 in tons

calculator 	 34,995,634 	 17,497.817
FORTH 16-bit 	 --- 	 17,495
FORTH 32-bit 	34,995,634 	 17,497.817

Here's a sample of our application's output:
- 	 -

246 LOAD ok
CEMENT ok -
10 FOOT PILE = 138 Tc" OF CEM' 	ok
10 FOOT 3 INCH PILE -- __A TONS, 	CEMENT ok
DRY-SAND ok
10 FOOT PILE = 81 TONS OF DRY SAND ok
248 LOAD CEMENT ok
10.0 FEET = 279939 POUNDS OF CEMENT OR 139.969 Tc 	ok

A note on "

The defining word MATERIAL takes three arguments for each
material, one of which is the address of a string. .SUBSTANCE
uses this address to type the name of the material.

To put the string in the dictionary and to give an address to
MATERIAL, we have defined a word called ". As you can see frOm
its definition, " compiles the string (delimited by a second
quotation mark, ASCII 34) into the dictionary, with the count in
the first byte, and leaves its address on the stack for MATERIAL.
To compile the count and string into.the dicti • lry, we simply
have to execute IWORD, since WORD1's buffer is a get the
string's address as a fillip, since WORD also leaves ' . .

All that remains is to [ALLOTI the appropriate number of bytes.
This number is obtained by fetching the count from the first byte
of the string and adding one for the count's byte.

12 THREE EXAMPLES 	 347

246 LIST

0 	(WEIGHT OF CONICAL PILES -- SINGLE-LENGTH) 	EMPTY
1 VARIABLE DENSITY 	VARIABLE THETA 	VARIABLE STRING
2 34 CONSTANT QUOTE
3 : 	" 	QUOTE WORD 	DUP C0 	1+ ALLOT 	;
4 : 	.SUBSTANCE 	STRING COUNT 	TYPE SPACE ;
5

6 : 	MATERIAL 	(STRING DENSITY THETA) 	CREATE 	.
7 DOES> DUP Q THETA ! 	2+ DUP 	DENSITY 	! 	2+ @ STRING 	! 	;

9 : 	FOOT 	10 	* 	;

10 : 	INCH 	100 	12 	*/ 	5 + 	10 	/ 	+ 	;

11

12 : 	/TAN 	1000 THETA e */ 	;
13 : 	PILE 	DUP DUP 	10 */ 1000 */ 	355 339 */ /TAN /TAN
14 DENsITY e 	200 */ 	." 	" 	. 	." 	TONS 	OF " 	.SUBSTANCE 	;
15 247 LOAD

247 LIST

O (TABLE OF MATERIALS)
1 (STRING-ADDRESS 	DENSITY THETA)
2 " CEMENT" 	 131 	 700 	MATERIAL CEMENT
3 " LOOSE GRAVEL" 	93 	649 	MATERIAL LOOSE-GRAVEL
4 " PACKED GRAVEL" 	100 	 700 	MATERIAL PACKED-GRAVEL
5 " DRY SAND" 	 90 	754 	MATERIAL DRY-SAND
6 " WET SAND" 	 118 	 900 	MATERIAL WET-SAND
7 " CLAY" 	 120 	 727 	MATERIAL CLAY
8
9

10

11

12

13
14 CEMENT
15

248 LIST

O (WEIGHT OF CONICAL PILES -- DOUBLE-LENGTH) 	EMPTY
1 VARIABLE DENSITY 	VARIABLE THETA 	VARIABLE STRING
2 34 CONSTANT QUOTE
3 : " 	QUOTE WORD DUP ce 1+ ALLOT ;
4 : . SUBSTANCE 	STRING Q COUNT TYPE SPACE ;
5 : U.3 	<A # 	14 46 HOLD #S 14> TYPE SPACE ;
6 : MATERIAL 	(STRING DENSITY THE1A) CREATE
7 	 DOES> DUP G THETA 	2+ DUP G DENSITY 	2+ e STRING ! ;

9

•

: CUBE 	(d 	d) 2DUP OVER 10 M*/ DROP 10 M*/ ;

10 : / TAN 	(d 	d) 1000 THETA G M*/ ;

11 : FEET 	(d 	d) 	CUBE 355 339 M*/ DENSITY e 	m*/
12 	 /TAN /TAN 5 M+ 1 10 M*/
13 	 2DUP ." 	" D. ." POUNDS OF " .SUBSTANCE
14 	 1 2 M*/ 	." OR " U.3 	." TONS " ;
15 247 LOAD

Copyright FORTH. Inc. 	 3/06/81 11:45 	 Starting FORTH

348
	

Starting FORTH

Review of Terms

in FORTH, a temporary definition created
solely to allow testing of a higher-level
definition.

a programming methodology by which a large
application is divided into smaller units,
which may be further subdivided as necessary.
The design process starts with the overview, or
"top," and proceeds down to the lowest level
of detail. Coding of the low-level units
begins only after the entire structure of the
application has been designed.

__Stub

Top-down 	
*programming

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32

