
11 EXTENDING THE COMPILER;
DEFINING WORDS AND COMPILING WORDS

In comparison with traditional languages, FORTH's compiler is
completely backwards. Traditional compilers are huge programs
designed to translate any foreseeable, legal combination of
available operators into machine language. In FORTH, however,
most of the work of compilation is done by a single definition,
only a few lines long. Special structures like conditionals and
loops are not compiled by the compiler but by the words being
compiled (IF, iD01, etc.).

Lest you scoff at FORTH's simple ways, notice that FORTH is
unique among languages in the ease with which you can extend the
compiler. Defining,new, specialized compilers is as easy as
defining any other word, as you will soon see.

When you've got an extensible compiler, you've got a very
powerful language!

Just a Question of Time

Before we get fully into this chapter, let's review one particular
concept that can be a problem to beginning FORTH programmers.
It's a question of time.

We have used the term "run time" when referring to things that
occur when a word is executed and "compile time" when referring
to things that happen when a word is compiled. So far so good,—
But things get a little confusing when a single word has both a
run-time behavior and a compile-time behavior.

In general there are two classes of words which behave in both
ways. For purposes of this discussion, we'll call these two
classes "defining words" and "compiling words."

A defining word is a word which, when executed, compiles a new
definition. A defining word specifies the compile-t-i-me--a-n-d —
run-time behavior of each member of the "' ily" of words that it
defines. Using the defining word CONST1 .., as an example, when
we say

80 CONSTANT MARGIN

289

290
	

Starting FORTH...,

•••

we are executing the compile-time behavior of 	."4'2; that is,
is compiling a new constant-type d,,,..—nary entry

called MARGIN and storing the value 80 into its parameter field.
But when we say

MARGIN

!CONSTANT

we Are executing the run-time behavior of
7ANZ is pushing the value 80 onto the stack.

deLaling words further in the next few sections.

CONSTANT' ; that is,
We'll pursue

The other type of word which p'ossesses dual behavior is the
"compiling word." A compiling word is a word that we use inside

--a colon definition and that actually does something during
compilation of that definition.

One example is the word 7, which at compile time compiles a
text string into the dictionary entry with the count in the first

"byte, and at run time types it. Other examples are
control-structure words like ri-Fi and 'LOOP!, which also have
compile-time behaviors distinct from their run-time behaviors.
We'll explore compiling words after we've discussed defining
words. •

How to Define a Defining Word

He-re aie Ihe standard FORTH defining words we'v' e covered So far:

•

VARIABLE
2VARIABLE
CONSTANT
2CONSTANT
CREATE
USER

What do they all have in common? Each of them is used to define
a set of words with similar compile-time and run-time
characteristics.

And how are all these defining words defined? First we'll answer
this question metaphorically.

Let's. say you're,in the ceramic salt-shaker business. If you plan
to make enough salt shakers, you'll find it's easiest to make a
mold first. A mold will guarantee that all your shakers will be
of the same design, while allowing you to make each shaker 'a
different color.

7 E
X A

link

code pointer

'CREATE run-time
code (when
executed, pushes
the potential
pfa onto the
stack). (pfa)

11 EXTENDING THE COMPILER
	

291

In making the mold, you must consider two things:

1. How the mold will work. (E.g., how will you get the clay
into and out of the mold without breaking the mold or
letting the seams show?)

2. How the shaker will work. (E.g., how many holes should
there be? How much salt should it hold? Etc.)

To bring this analogy back to FORTH, the definition of a defining
word must specify two things: the compile-time behavior and the
run-time behavior for that type of word.

Hold that thought a moment while we look at the most basic of the
defining words in the above list: 'CREATE . At compile time,
'CREATE

takes a name from the input stream and creates a

dictionary heading for it.

ICREAT1 EXAMPLE

At run time, 'CREATE pushes the pfa of EXAMPLE onto the stack.

What happens if we use 'CREATE inside a definition? Consider
this example, which is the definition for 'VARIABLE:

: VARIABLE CREATE 2 ALLOT ;

To illustrate, the following could
{CONSTANT' (although in fact
machine code):

be a valid definition for
is usually defined in CONSTANT{

292 	 Starting FORTH

When we execute IVARIABLEJ as in

VARIA13LE ORANGES

we are indirectly using [CREATE' to create a dictionary hent9 with
the name ORANGES and a code pointer that points to [-C-R-LA-TEI's

-ruri=tirrie-code. Then we are allotting two bytes for the variable
itself.

Since the run-time behavior of a variable is identical to that of
_a word defined by CREATEI, VARIABrEL does not need to have
run-time code of its own; it can use 'CREATE 's run-time code.

-How-do-we specify a different run-time behavior in a defining
word? By using the word .1-`'''-'7771 as shown here:

: DEFINING-WORD CREATE (compile-time operations)
DOES> (run-time operations) ;

: CONSTANT CREATE , DOES> @ ;

To see how this definition works, imagine we're using it to define
a constant named TROMBONES, like this:

76 CONSTANT TROMBONES

compile-
time
portion

Marks the end of the
compile-time behavior and the
beginning of the run-time
behavior. At run time, 1DOES>l
will leave the pfa of the word
being defined on the stack.

Fetches the contents of the
constant, using the pfa that
will be on the stack at run
time.

CREATE 	Creates a new dictionary entry
(e.g., TROMBONES).

Compiles the value (e.g., 76) for
the constant from the stack
into the constant's parameter
field.

DOES>

run-
time
portion

DOES> run time:
(adr)

Used in creating a
defining word; marks
the end of its compile-
time portion and the
beginning of its run-
time portion. The run-
time operations are
stated in higher-level
FORTH. At run time, the
pfa of the defined word
will be on the stack.

Defining Words You Can Define Yourself

il EXTENDING THE COMPILER
	

293

The words that precede DOES> specify what the mold will do; the
words that follow IDOES>j specify what the product of the mold
will do.

Here are some examples of defining wordS that you can create
yourself.

Recall that in our discussion of "String Input Commands" in Chap.
10, we gave an example that employed character-string arrays
called NAME, EYES, and ME. Every time we used one of these
names, we followed it with a character count. In the input
definition, we wrote

... PAD NAME 14 MOVE ...

and in the output definition we wrote

... NAME 14 -TRAILING TYPE

and so on.

Let's eliminate the count by creating a defining word called
CHARACTERS, whose product definitions will leave the address and
count on the stack when executed.

We'll use it like this: if we say-

20 CHARACTERS ME

we will create an array called ME, with twenty bytes available
for the character string.

When we execute ME, we'll get the address of the array and the

294 	 Starting FCR'.1.1.1

count on the stack. Now we can write:

PAD ME MOVE

instead of

PAD ME 20 MOVE

_o_r__

ME -TRAILING TYPE
-

instead of

ME 20 -TRAILING TYPE

Here's how we might define CHARACTERS:

compile-
time
portion

: CHARACTERS

(CREATE

DUP , ALLOT

(DOES>

-

Creates a new dictionary
entry (e.g., ME).

_Compiles the count(e.g.,
twenty) in-to the first cell
of the array for future
reference. Then allots an
additional twenty bytes be-
yond- the'count'fol the
string.

Marks the beginning of
run-time code, leaving the
pfa of the product-word on
the stack at run time.

run-
time
portion

DUP 	 Copies the pfa.

2+ 	 Advances the address to
point past the count, .to the-
start of the character
string.

SWAP @
	

Swaps the string address with
the•count address and
fetches the count. The stack

• now holds (adr count --)..

11 EXTENDING THE COMPILER 	 295

We've just extended our compiler! Our new word CHARACTERS is a
defining word that creates a data structure and procedure that we
find useful. CHARACTERS not only simplifies our input and output
definitions, it also allows us to change the length of any string,
should the need arise, in one place only (i.e., where we define
it).

Our next example could be useful in an application where a large
number of byte arrays are needed. Let's create a defining word
called STRING as follows:

: STRING CREATE ALLOT DOES> + ;

to be used in the form

30 STRING VALVE

to create an array thirty bytes in length. To access any byte in
this array, we merely say:

6 VALVE C@

which would give us the current setting of hydraulic valve 6 at
an oil-pumping stati^,,. At run time, VALVE will add the argument
6 to the pfa left by j, producing the correct byte address.

If our application requires a large number of arrays to be
initialized to zero, we might include the initialization in an
alternate defining word called OSTRING:

: ERASED HERE OVER ERASE ALLOT ;
: OSTRING CREATE ERASED DOES> + ;

First we defjne ERASED to 7PASE the given number of bytes,
starting at R: q, before 1ALL__,:ing the given number of bytes.
Then we simply substitute ERASED for IALLOT in our new version.

By changing the definition of a defining word, you can change
the characteristics of all the member words of that family. This
ability makes program development much easier. For instance, you
can incorporate certain kinds of error checking while you are
developing the program, then eliminate them after you are sure
that the program runs correctly.

Here is a version of STRING which, at run time, guarantees that
the index into the array is valid:

: STRING CREATE DUP , ALLOT
DOES> 2DUP @ U< NOT ABORT" RANGE ERROR " + 2+ ;

296 	 St.ar,tj.,ng_FORTH„

which breaks down as follows:

DUP , ALLOT Compiles the count and
allots the given number of
bytes.

DOES> 2DUP @ At run time, given the
argument on the stack,
produces:

(arg pfa arg count --).

U< NOT Tests that the argument is
not less than the maximum,
i.e., the stored count.
Since 113< is an unsigned
compare, negative.
arguments will appear as
very high numbers and thus
will also fail the test.

•"":"•77.77- •

ABORT" RANGE ERROR" _

+2+

Aborts 	the compariso.n
check fails.

Otherwise adds the argu-
ment to the pfa, plus an
additional two to skip over
the cell that contains the
count.

Here's another way that the use of defining words can help during
development. Let's say you suddenly decide that all of the
arrays you've defined with STRING are too large to be kept in
computer memory and should be kept on disk instead. All you have
to do is redefine the run-time portion of STRING. This new
STRING will compute which block on the disk a given byte would
be contained in, read the block into a buffer using 'BLOCK', and
return the address of the desired byte within the buffer. A
string defined in this way could span many consecutive blocks
(using the same technique as in Prob. 5, Chap. 10).

You can use defining words to create all kinds of data structures.
Sometimes, for instance, it's useful to create multi-dimensional
arrays. Here's an example of a defining word which creates

Atwo-dimensional byte arrays of given size:

11 EXTENDING THE COMPILER 	 297

: ARRAY (#rows #cols)
CREATE OVER , * ALLOT
DOES> (member: row col)
DUP @ ROT * + + 2+ ;1'

columns
0 	1 	2 	3

0

1
rows

2

3

To create an array four bytes by
four bytes, we would say

4 4 ARRAY BOARD

To access, say, the byte in row 2,
column 1, we could say

2 1 BOARD C@

Here's how our ARRAY works in
general terms. Since the
computer only allows us to have
one-dimensional arrays, we must
simulate the second dimension.
While our imaginary array looks
like this:

column: 0 	1 	2 	3

0 4 8 1 2

1 5 9 	. 1 3

2 6 10 1 4

3 7 1 1 1 5

our real array looks like this:

coluran 0 	 1 	 2 	 3

0 1 	I 	2 3 4 5 6 7 8 9 10 11 12 13 14 	15

If you want the address of the byte in row 2, column 1, it can be
computed by multiplying your column number (1) by the number of
rows in each column (4) and then adding your row number (2), which
indicates that you want the sixth byte in the real array. -

I For Optimizers

This version will run even faster':

: ARRAY OVER CONSTANT HERE 2+ , * ALLOT
DOES> 2@ ROT * + + ;

Contents
Operation of Stack

row col pfa

DUP @ 	row col pfa #rows
— •

ROT 	row pfa 4rows col

row pfa col-index

+ + 	address

2+ 	 corrected-address

HtarLinw FORTH
.77

This calculation is what members of ARRAY must do at run time.
You'll notice that, to perform this calculation, each member word

_needs to know how many rows are in each column of its particular
array. For this reason, ARRAY must store this value into the
beginning of the array at compile time.

For the curious, here are the stack effects of the run-time
portion of ARRAY:

It is necessary to add two to the _computed address because the
-first cell of the array contains the number of columns.

- bur -final example is the most visually-excitihg, if not tfie most
useful.

0
1

(SHAPES, USING A DEFINING WORD) 	EMPTY

2 : 	STAR 42 	EMIT 	;
3 : 	.ROW CR 	0 DO DUP 128 AND 	-
4 IF STAR ELSE sPnce THEN

2* LOOP DROP ;
6
7 : 	SHAPE CREATE 	2 0 DO 	Cy 	LOOP
8 DOES> 	DUP 	7 + 	DO 	I 	Ce 	.ROW 	-1 +LOOP CR 	;
9

10 HEX 	le 18 3C SA 99 24 24 24 SHAPE MAN
11 01 42 24 le 18 24 42 81 SHAPE EQUIS
12 AA AA FE FE 38 38 38 FE SHAPE CASTLE -

DECIMAL

.ROW prints a pattern of stars and spaces that correspond to the,
8-bit number on the stack. For instance:-

29L1

11 EXTENDING THE COMPILER 	 299

2 BASE ! ok
00111001 .ROW_

*** * ok
DECIMAL ok

Our defining word SHAPE takes eight arguments from the stack and
defines a shape which, when executed, prints an 8-by-8 grid that
corresponds to the eight arguments. For example:

MAN
**
**

* ** *

* ** *
* 	*
* 	*
* 	*

ok

In summary, defining words can be extremely powerful tools. When
you create a new defining word, you extend your compiler.
Traditional languages do not provide this flexibility because
traditional compilers are inflexible packages that say, "Use my
instruction set or forget it!"

The real power of defining words is that they can simplify your
problem. Using them well, you can shorten your programming time,
reduce the size of your program, and improve readability.
FORTH's flexibility in this regard is so radical in comparison to
traditional languages that many people don't even believe it.
Well, now you've seen it.

The next section introduces still another way to extend the
ability of FORTH's compiler.

How to Control the Colon Compiler

Compiling words are words used inside colon definitions to do
something at compile time. The most obvious examples of
compiling words are control-structure words such as IIFI ITHENI

, !LOOP', etc. Because FORTH programmers don't often change
the way these particular words work, we're not going to study
them any further. Instead we'll examine the group of words that
control the colon compiler and thus can be used to create any
type of compiling word.

Recall that the colon compiler ordinarily looks up each word of a
source definition and compiles each word's address into the
dictionary entry--that's all. But the colon compiler does not

DO

300
	

SLarLing JNATU

compile the address of a compiling word--it executes it.

How does the colon compiler know the difference? By checking
the definition's "precedence bit." If the bit is "off," the

-address of the word is compiled. If the bit is "on," the word is'
executed immediately; such words are called "immediate" words.
—
The word !IMMEDIATE' makes a word "immediate." It is used in the
form

: name definition ; 	IMMEDIATE

that is, it is executed right after the compilation of the
definition.

To give an immediate example, let's define

:'SAY-HELLO ." HELLO " 7 IMMEDIATE

We can execute SAY-HELLO interactively, just as we could-if it
were not immediate.

SAY-HELLO HELLO ok

But if we put SAY-HELLO inside another definition, it will
execute at compile time:

: GREET SAY-HELLO ." I SPEAK FORTH " ; HELLO ok

rather than at execution time:

GREET I SPEAK FORTH ok

Before we go on, let's clarify our terminology. FORTH folks
adhere to a convention regarding the terms "run time" and
"compile time." In this example, the terms are defined relative
to GREET. Thus we would say that SAY-HELLO has a "compile-time
behavior" but no "run-time behavior." Clearly, SAY-HELLO does
have run-time behavior of its own, but relative to GREET it does
not.

To keep our levels straight, let's call GREET in this example the
"compilee"; that is, the definition whose compilation we're
referring to. SAY-HELLO has no run-time behavior in relation to
its compilee.

Here's an example of an immediate word ' 	:you're familiar with:
the definition of the compiling word T 	N. It's simpler than
you might have thought:

: BEGIN HERE ; IMMEDIATE

BEGIN simply saves the address of T at compile time on the

2>R

cOmpilee definition

11 EXTENDING THE COMPILER
	

301

stack. Why? Because sooner or later an IUNTIL1 or IREPEAT1 is
going to come along, and either has to know what address in the
dictionary to return to in the event that it must repeat. This is
the address that !BEGIN left on the stack.

BEGINt's compile-time behavior is leaving 	on the stack. But
BEGIN compiles nothing into the compile; there is no run-time
behavior for 'BEGIN

Unlike IBEGINj, most compiling words do have a run-time behavior.
To have a run-time behavior, a word has to compile into the
compilee the address of the run-time behavior, which must already
have been defined as a word.

A good example is ID01. Like 	TN1, DO must provide, at comnile
time, a [HERE] for ILOOP or HI,. , to return to. But unlike

also has a run-time behavior: it must push the limit and the
index onto the return stack.

The run-time behavior of Innl is defined by a lower-level word,
sometimes called I(D0)1 or 12=-N. The definition of DO is this:

!D OI

: DO COMPILE 2>R HERE ; IMMEDIATE

finds the address of the
in the definition (in this case

) and compiles its address into the
compilee definition, so that at run time

will be executed.t

tFor the Very Curious

The word
next word

[COMPILE!

12>R1

[2>Rj

Another example is the definition of El. At compile time, semicolon
must do two things:

1. compile the address of I-ExITI into the dictionary entry being
compiled, and

2. leave compilation mode.

Here's the definition of semicolon:

: ; COMPILE EXIT R> DROP ; IMmEDIATE

The first phrase compiles 	providing the run-time behavior. The
second phrase, which is tL ■ < compile-time behavior, gets us out of the
compiler. The top return address at this 	it is pointing inside the
colon compiler, which is simply a if 	11 loop. When semicolon
has finished being • 	ed, execL“.iun will return not to the colon
compiler, but to It,17_ 	. 	.

Don't worry about how we can use a semicolon to end the very
definition that defines it. The explanation requires an understanding
of polyFORTH's Target Compiler, which is beyond the scope of this book
(see Appendix 2).

IMMEDIATE 	() 	Marks the_rnost recently
defined word as one which,
when esico_untered _during
compilation, will be executed
rather than be compiled.

COMPILE xxx 	() 	Used in the definition of a

[COMPILE] xxx (—) 	Used in a colon definition, bracket

bracket-
Comfile-

causes the immediate word xxx 1
zo he compiled as though it
were not immediate; xxx will
be executed when the 'defini-
tion is executed. ._,

compiling word. When the -
compiling word, in turn, is
used in a source definition,
the code field address of xxx
will be compiled into the
dictionary entry so that when
the new definition is exe-
cuted, xxx will be executed.

302 	 Starting FORTH

Another compiler-controlling word is I[COMPILE] .1- This word can
be used to compile an immediate word as though it were not
immediate. Given our previous example, in which SAY-HELLO is an
immediate definition, we might define

: GREET [COMPILE] SAY-HELLO ." I SPEAK FORTH " ; ok

to force SAY-HELLO to be compiled rather than executed at
compile time. Thus:

GREET HELLO I SPEAT< FOP.TH ok

Be sure you understand the difference between [COMPILE] and
. 1COMPILEI ' compiles the address of any

(non-immediate) word into a compilee definition; think of it as
deferred compilation. !;COMPILET compiles the address of any
immediate word into the definition currently being defined; this
is ordinary compilation, but of an immediate word which otherwise
would have been executed.

To review, here are three words which are -useful in creating new
compiling words:

*0; ek,.

tFor Some Small-system, Non-polyFORTH, Users

See footnote, page 218.

I [C OMPILE]]

9

0
link

code pointer ,

(UTERAL)

4

EXIT

11 EXTENDING THE COMPILER 	 303

More Compiler-controlling Words

As you may recall, a number that appears in a colon definition is
called a "literal." An example is the "4" in the definition

: FOUR-MORE 4 + ;

The use of a literal in a colon
definition requires two cells.
The first contains the address
of a routine which, when
executed, will push the contents
of the second cell (the number
itself) onto the stack.t

The name of this routine may
vary; let's call it the "run-time
code for a literal," or simply
i(LITERAL)I . When the colon
compiler encounters a number, it
first compiles the run-time code
for a literal, then compiles the
number itself.

The word you will use 	, 	t often to compile a literal is
(no parentheses). ILia . g compiles both the run-time code
the value itself. To illustrate:

4 : FOUR-MORE LITERAL + ;

Here the word !LITERAL will compile as a literal the "4" that we
put on the stack before beginning compilation. We get a
dictionary entry that is identical to the one shown above.

For a more useful application of 'LITERAL!, recall that in Chap. 8
we created an array called LIMITS that consisted of five cells,
each of which contained the temperature limit for a different
burner. To simplify access to this array, we created a word
called LIMIT. The two definitions looked like this:

t For Memory Conservationists

While a literal requires two cells, a reference to a constant
requires only one cell. Since a constant takes only five cells
to define, you can see that if you're going to use the same value
six times or more, you will save memory by defining the value as
a constant. There is hardly any difference between the time
required to execute a constant.and a literal.

'LITERAL
and

LIMITS

old
ver.sion

new
version

5
cells

-For

LIMIT

EXIT

head for

LIMITS

cells

head for
LIMIT

304
	

Starting gom
77":"":,;"'

VARIABLE LIMITS 8 ALLOT
: LIMIT 2* LIMITS +-;

—1417:4—Te-t's assume-that we will only acc-ess th-e array throUgh the
word LIMIT. We can eliminate the head of the array (eight bytes)

—by-using- this-construction instead:

HERE 10 ALLOT
	: LIMIT 2* LITERAL + ;

In the fi rat line we put' the address of the beginning of the
array (LLD on the stack. In the second line, we compile this

—address cia a literal into the definition of LIMIT.

Because we had to
add an extra cell
for the literal to
"-the definition of
LIMITS, our net
saving is three
cells.

There are two other compiler control words you should know. The
words [I] and can be used inside a colon definition to stop
compilation and start it again, respectively. Whatever words
appear between them will be executed "immediately," i.e., at
compile time.

Consider this example:

: SAY-HELLO ." HELLO " ;
: GREET [SAY-HELLO] ." I SPEAK FORTH " ; HELLO ok
GREET I SPEAK FORTH ok

The best'solution is.to write

180 BLOCK [3 64 *] LITERAL +

Here the arithmetic is performed only once,
at compile time, and the result is compiled
as a literal.

11 EXTENDING THE COMPILER 	 305

In this example, SAY-HELLO is not an immediate word, yet when we
compile GREET, SAY-HELLO executes "immediately."

For a better example, imagine a colon definition in which we
need to type line 3 of block 180. To get the address of line 3,
we could use the phrase

180 BLOCK 3 64 * +

but it's time-consuming to execute

3 64 *

every time we use this definition. Alternatively, we could, write

180 BLOCK 192 +

but it's unclear to human readers exactly what the 192 means.

Here's a silly example which may give you some ideas for more
practical applications. This definition must be loaded from a
disk block:

: LIST-THIS [BLK @] LITERAL LIST ;

When you execute LIST-THIS, you will list whichever block
LIST-THIS is defined in. (At compile time, BLKI contains the
number of the block being loaded. [LITERAL compiles this number
into the definition as a literal, so that it will serve as the
argument for 'LIST at run time.)

By the way, here's the definition of ILITERALI:

: LITERAL COMPILE (LITERAL) , ; IMMEDIATE

First it compiles the address of the run-time code, then it
compiles the value itself (using comma).

306 	 StarLing YORTH

,
To summarize, here are the additional' coinpiler Control words we
introduced in this section:

LITERAL compile time:
(n)
run time:
(n)

Used only inside a
colon definition. At
compile time, compiles
a value from the' stack
into the definition as
a literal. At run time,
the value will be
pushed onto the stack.

Leaves compile mode.

Enters compile mode.

left-
bracke.

Kcillt-
brcicket

A Handy Hint

Entering Long Definitions from Your Terminal

Let's say you want to enter a definition from your terminal, but
the definition won't all fit on one line. The problem is, if
you hit "return" in the middle of a colon definition, you will
leayn compilation mode. (Even if_ you don't hit "return,"
FETC1_:-L1' only accepts eighty characters.)

How can you get FORTH to resume compilation as you enter
subsequent lines? By starting them with . For example:

: BOXTEST 	6 > ROT 22 > ROT 19 > AND ANDe;T:Hif;i! ok
) IF ." BIG ENOUGH " THEN ;017,1D ok

(Some FORTH systems stay in compilation mode,until a 	is
encountered; on such systems the right bracket is unnecessary.)

condition

true 	false

statement

11 EXTENDING THE COMPILER 	 307

An Introduction to FOI ..: Flowcharts

Flowcharts provide a way to visualize the logical structure of a
definition, to see where the branches branch and where the loops
loop. Old-fashioned flowcharting techniques haven't been
adequate for describing FORTH's structured organization. Instead,
various FORTH programmers have devised alternate schemes.

The question of which diagramming approach works best for FORTH
remains open; programmers use whatever methods work best for
them. The subject of flowcharting could occupy a chapter of its
own, but we're running out of chapters.

The diagrams that we will use are loosely based on a type of
flowchart called the "D-chart," invented by Prof. Edsger W.
Dijkstra. Here's how our diagrams work:

Sequential statements are written one below the other, without
lines or boxes:

statement
next statement
next statement

Lines are used to show non-sequential control paths (conditional
branches and loops). The FORTH statement

condition IF true ELSE false THEN statement

would be diagrammed

If either phrase is omitted, a vertical line is drawn in its
place: 	- 	 - -

308
	

Starting FORTH

condition

true

statement

It is immaterial whether "true" is left or right.

A 'BEGIN ..4UNTIL structure is diagrammed like this:

The entire loop structure is shifted to the right from the
"normal" flow of execution, connected by a horizontal line at
the top. If additional levels of nested loops,were to_be shown,
they would be shifted still further to the right.

The black dot is the symbol for the end of the loop. It
indicates that control is returned to the return point, symbolized
by the circled X. The condition will cause the loop either to be
repeated or to be exited. The diagonal line sloping down to the
left indicates the return to the outer level of execution.

A E=1...1wHILE,... 	„AT, loop is similar:

first phrase

condition

second phrase

11 EXTENDING THE COMPILER 	 309

We've given this brief introduction to FORTH flowcharts so that
we can visualize the structure of two very important words.

Curtain Calls

This section gives us a
chance to say "Goodbye" to
the text interpreter and the
colon compiler and perhaps
to see them in a new light.

Here is the definition of
IINTERP---J as it is found in
many Ful‘JH systems (see page
216 for a discussion of
possible variations):

: INTERPRET BEGIN -' IF NUMBER ELSE EXECUTE
?STACK ABORT" STACK EMPTY" THEN 0 UNTIL ;

We've already covered each of the words contained in this
definition; we can describe 1INTERPRET in English by simply
"translating" its definition, like this:

found

310 	 Starting FORTH

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number. If it is defined, execute it, then check to see
whether the stack is empty. (If it is, exit the loop and
print "STACK EMPTY.") Then repeat the infinite loop.

Now let's apply our flowcharting techniques to this definition.

IINTERP.7.

„I until end of line

EXECUTE
NUMBER

?STACK _

ABORT"

_
1-

As you can see, the FORTH text interpreter is a simple yet
powerful structure. Now let's compare its structure with that of
the colon compiler:

t For the Very Curious

You may have wondered, if IN'I .•. RET is an infinite loop, how do
we exit it and get back tc_, ? The answer varies for
different implementations of FORTH, but the most common answer is
this:

When you enter a line of text from the terminal and press
"return," the word !EXPECT places a "null" (zero) at the end of
the input stream. This null is nr•tually a defined FORTH wc)rd; it-s
code field points directly to .,:7171. The result: when IIN1"]
gets to the end of the line, it finds null in the dictionary aud

executes it. 'EXIT] immediately transports us up to [QUITI. Simple
and fast.

immediate

EXECUTE

?STACK

cfa
(NUMBEM

L TERAL

found

11 EXTENDING THE COMPILER 	 311

:] BEGIN -' IF (NUMBER) LITERAL
ELSE (check precedence bit) IF EXECUTE ?STACK

ABORT" STACK EMPTY"
ELSE 2- , THEN THEN 0 UNTIL ;

The first thing you probabl noticed is that the name of the
colon compiler is not E but 	The definition of 0 invokes
after creating the dictionary head and performing a few other
odd jobs.

The next thing you may have noticed is that the compiler is
somewhat similar to the interpreter. Let's translate the above
definition into English:

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number t and, if it is a number, compile it as a literal.

If it is defined, then treat it as a word. If the word is
immediate, then execute it and check to see if the stack is
empty. If it is not immediate, change the pfa to a cfa
(code-field address) and compile this address. Then repeat
the infinite loop.

Picture it this way:
until [or ;

ABORT"

For the Curious

The version of 7-C.7171t that the colon compiler uses is the-16-bit—,=
version. That'. wu:y. you can't have a double-length literal in a
colon definition (except by making it two single-length literals).

3.L2
	

Starting FORTH

-'e-ornpare this to the diagram of 'INTERPRET! and You'll see that
could be called an interpreter with the ability to decide whether

_to..,execute or to compile any given word. It is the simplicity of
this design that lets you add new compiling words so easily.

In summary, we've shown two ways to extend the FORTH compiler:

1. Add new, specialized compilers, by creating new
defining words.

2. Extend the existing colon compiler by creating new
compiling words.

_While traditional compilers .r'y to be universal tools, the FORTH
compiler is a collection of separate, simple tools ... with room
for more. Which approach seems more useful:

COMPLEXITY oR SIMPLICITY ?

11 EXTENDING THE COMPILER
	

313

Here's a summary of the words we've covered in this chapter:

DOES>. run time:
(adr)

Used in creating a de-
fining word; marks the end
of its compile-time portion
and the beginning of its
run-time portion. The run-
time operations are stated
in higher-level FORTH. At
run time, the pfa of the
defined word will be on
the stack.

IMMEDIATE 	(—) 	 Marks the most recently
defined word as one which,
when encountered during
compilation, will be exe-
cuted rather than be
compiled.

COMPILE xxx 	()

[COMPILE] xxx ()

Used in the definition of a
compiling word. When the
compiling word, in turn, is
used in a source defini-
tion, the code field ad-
dress of xxx will be com-
piled into the dictionary
entry so that when the new
definition is executed, xxx
will be executed.

Used in a colon definition,
causes the immediate word
xxx to be compiled as
though it were not imme-
diate; xxx will be executed
when the definition is
executed.

Used only inside a colon
definition. At compile
time, compiles a value
from the stack into the
definition as a literal. At
run time, the value will be
pushed onto the stack.

Leaves compile mode.

Enters compile mode.

LITERAL 	compile time:
(n)
run time:
(--n)

3.1.4 Starting FORTH

Compilee

Flowcharts

Precedence bit

Run-time
behavior

1. when referring to defining words: the
sequence of instructions which will be carried
out when the defining word is executed--these
instructions perform the compilation of the
member words;
2. when referring to compiling words: the
behavior of a compiling word, contained mithin
a colon definition, during compilation of the
definition.

a definition being compiled. In relation to a
compiling word, the compilee is the definition
whose compilation the compiling word affects.

a word used inside a colon definition to take
some action during the compilation process.

a word which, when executed, compiles a new
dictionary entry. A defining word specifies
the compile-time and run-time behavior of each,
member of the "family" of words that it
defines.

a graphic representation of the logical
structure of a program or, in FORTH, of a
definition.

in FORTH dictionary entries, a bit which
indicates whether a word should be executed
rather than be compiled when it is encountered
during compilation.

1. when referring to defining words: the
sequence of instructions which will be carried
out when any member word is executed;
2. when referring to compiling words: a
routine which will be executed when the
compilee is executed. Not all compiling words
have run-time behavior.

Review of Terms

Compile-time
behavior

_ ,
Compiling word

Defining word

would define H. to be a word which prints the top of the
stack in hex but does not permanently change [BASET

11 EXTENDING THE COMPILER 	 315

Problems -- Chapter 11

1. Define a defining word named LOADED-BY that will define
words which load a block when they are executed. Example:

6000 LOADED-BY CORRESPONDENCE

would define the word CORRESPONDENCE. When CORRESPONDENCE
is executed, block 6000 would get loaded.

2. Define a defining word BASED. which will create number
output words for specific bases. For example,

16 BASED. H.

DECIMAL
17 DUP H. .01110 11 17 ok

3. Define a defining word called PLURAL which will take the
address of a word such as ICRI or STAR and create its plural
form, such as CRS or STARS. You'll provide PLURAL with the
address of the singular word by using tick. For instance,
the phrase

' CR PLURAL CRS

will define CRS in the same way as though you had defined it

: CRS ?DUP IF 0 DO CR LOOP THEN ;

and Lr,00P1 are TOURNE and RETOURNE. 4. The French words for
Using the words [DO and 1LOOP, define TOURNE and RETOURNE
as French "aliases." Now_test them by writing yourself a
French loop.

5. The FORTH-79 Standard Reference Word Set contains a word
called ASCII that can be used to make certain definitions
more readable. Instead of using a numeric ASCII code within
a definition, such as

: STAR 42 EMIT ;

you can use

: STAR ASCII * EMIT ;

The word ASCII reads the next character in the input stream,
then compiles its ASCII equivalent into the definition as a
literal. When the definition STAR is executed, the ASCII

316 	 Starting ,,FORTII,_

value is pushed onto the stack.

--Define the word ASCII.

-6— Write a word called LOOPS which will-cause the remainder of
the input stream, up to the carriage return, to be executed
the number of times specified by the value on the stack. For
example,

7 LOOPS 42 EMIT SPACE= * * * * * * * ok

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

