
10 I/0 AND YOU

In this chapter we'll explain how FORTH handles I/Ot of
character strings to and from the block buffers and the terminal.

Specifically, we'll discuss disk-access commands, output commands,
string-manipulation commands, input commands, and number-input
conversion.

Block Buffer Basics

The FORTH system is designed so that you don't usually need to
think about the mechanics of the block buffers. But sooner or
later you will, so here's how it works.

As we mentioned earlier, each buffer is large enough to hold the
contents of one block (1024 bytes) in RAM so that it can be
edited, loaded, or generally accessed in any way. While we can
imagine that we're communicating directly to the disk, in reality,
the system brings the data from the disk into the buffer where we
can read it. We can also write data to the buffer, and the
system will send it along to the disk.

tFor Beginners

I/0 is an abbreviation for "input-output," which refers to data,
text, or signals that are sent or received by the computer. I/0
devices include terminals, printers, disk drives, push buttons,
etc.

253

201

Disk

Biock
1:,n1")

Block

9.01

254 	 Starting FORTH

This arrangement is called "virtual memory" because the mass
storage memory is made to act like computer memory.

Many FORTH systems use as few as two block buffers, even when the
system is multiprogrammed. Let's see how this is possible.

Suppose there are two buffers in your system. Now imagine the
following scenario:

First you list block 200. The system reads the disk and transfers
the block to buffer 1, from which 	displays it.

Now you list block 201. The system copies block 201 from the disk
into the other buffer.

Now you list block 202. The system copies block 202 from the disk
into the less-recently used buffer, namely buffer 1.

What happened to the former contents of buffer 1? They were
simply overwritten (erased) by the new contents. This is no loss
because block 200 is still on the disk. But what if you had
edited block 200? Would your changes be lost? No. Here's what
would happen when you listed block 202:

10 I/0 AND YOU 	 255

First the modified contents of block 200 would be sent to the disk
to update the former contents of 200 there, then the contents of
202 would be brought into the buffer.

The magic word is 'UPDATE', which sets a flag that indicates that
the contents of the most recently accessed buffer should be sent
back to disk, rather than erased, the next time that the buffer is
needed. All editor commands that change the cc--"-ents of a
block, whether adding or deleting, include 1UPDA . in their
definitions.

Every time you or the system try to access a block, the system
first checks whether the block is already in a buffer. If it is,
fine. If not, then the system finds the earliest buffer to have
been accessed. If the contents of this buffer have been
UPDATEi

d, the system copies the contents back onto disk, then

finally copies the newly-accessed block into the buffer.

This arrangement lets you modify the contents of the block any
number of times without activating the disk drive each time.
Since conversing with the disk takes longer than conversing with
RAM, this can save a lot of time.

On the other hand, when there are several users on a single
system, this arrangement allows all of them to get by with as few
as two buffers (2K of memory), even though each may be accessing
a different block.

Some FORTH systems give their owners the option to have as many
block buffers as they like, depending on the memory size and the
frequency of disk transfers in their own setups.

The word 'FLUSH t forces all updated buffers to be written to disk

TFORTH-79 Standard

The Standard's name for IF-LUSH is ISAVE-BUFFERS

256 	 Starting FORTH

immediately. ,Now that you know about the buffers, you can see-
why we need FLUSH1: merely.updating a buffer doesn't get it
written to disk.

You should also know that when you IFLE ', the system "forgets"
that it has your block in a buffer and clears the buffer's update
flag. If you list or load the block again, FORTH will have to

-read it from the disk again.

—The ettecti've opposite of FLUSH is ".' ?TY-BUFFERS which also
makes the system "forget" any block ,as and clears any update

---fla-gs-r--IEMPTY-BUFFERS1 is useful if you've accidently got
"garbage"t in a buffer (e.g., you've deleted some important lines
and forgotten what you had originally, or generally messed up)
and you don't want it to get forced onto the ''-k. When you list
your block again, after entering r.—TY-BUFFE . the system won't
know it ever had your block in and will bring it in off
the disk anew.+

Each buffer has an associated cell in memory called the "buffer
status cell." It contains the number of the block (e.g., 180).i
The system uses it to tell whether a requested block is already in
memory. When you ICOPY a block, all you are really doing is
changing the number of the block in the buffer status cell and
updating the buffer. When it's time ,for the buffer to be_written
to disk, it will be written to the new block.

The basic word that brings a block in from the drsk, after fi-rst -
finding an available buffer and storing its contents on disk if
necessary, is IBLOCK. For instance, if vou say

205 BLOCK

the system will copy block 205 from disk into one of the buffers.
BLOCK also leaves on the stack the address of the beginning of
the buffer that it used. We'll learn how to use this address in a
few sections.

tFor Beginners

"Garbage" is computer jargon for data which is wrong,
meaningless, or irrelevant for the use to which it is being put.

+For Those Using a Multiprogrammed System

Careful! IEMPTY-BUFF

For the Curious

empties everyone's buffers.

The sign bit of the buffer status cell serves as the "update
flag12 If the number in the buffer status cell tests as negati.ve.
by [0--<-1, then the buffer has been "updated."

10 I/0 AND YOU
	

257

If your application requires writing a lot of data to the disk
without reading what's on the disk already (e.g., to initialize a
disk, write rnw data, transfer tape to disk, etc.), then you'll want
to use [SUFI .

BUFFER1 is used by. PLO—. to assign a block number to the next
available buffer. 	 dr-,P.n't read the contents of the disk
into the buffer. Also, [BUFE 	doesn't check to see whether the
block number has already beeLi assigned to a buffer, so you have
to make sure that no two buffers get assigned to the same number.

UPDATE () Marks the most recently
referenced 	block 	as
modified. 	The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

EMPTY-BUFFERS () Marks all block buffers as
empty without necessarily
affecting 	their 	actual
contents. 	Updated blocks
are 	not written to mass
storage.

BLOCK (u adr) Leaves the address of the
first byte in block u. 	If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block

.;occupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

BUFFER 	 (u 	adr) 	 Obtains the next block
buffer, assigning it to
block u. The block is not
read from mass storage.

258 	 Starting FORTH
_

Output Operators

The word ITMIT1 takes a single ASCII representation on the stack,
using the low-order byte only, and prints the character at your
terminal. For examole, in decimal:

65 EMIT Aok
66 EMIT Sok

The word ITYPE prints an entire string of characters at your
terminal, given the starting address of the string in memory and
the count, in this form:

(adr u)

We've already seen [TYPE' in our number-formatting definitions
without worrying about the address and count, because they are
automatically supplied by

Let's give ITYPEI an address that we know contains a character
string. Remember that the starting address of the input message
buffer is kept by the user variable ISO ? Suppose we enter the
following command:

SO @ 12 TYPE

This will type twelve characters from the input message buffer,
which contains the command we just entered:

SO @ 12 TYPEEMOSO @ 12 TYPEok

Let's digress for a moment to look at the operation of 1."1. At
compile time, when the compiler encounters a dot-quote, it
compiles the ensuing string right into the dictionary,
letter-by-letter, up to the delimiting double-quote. To keep
track of things, it also compiles the count of characters into the
dictionary entry. Given the definition

: TEST 	." SAMPLE " ;

and looking at bytes in the dictionary horizontally rather than
vertically, here is what the compiler has compiled:

>i

WO AND YOU 	 259

we wanted to, we could type the word "SAMPLE" ourselves
(without executing TEST) with the phrase

' TEST 3 + 7 TYPE

wnere

' TEST

gives us the pfa of TEST,

3 +

offsets us past the address and the count, to the beginning of
the string (the letter "S"), and

7 TYPE

types the string "SAMPLE."

That little exercise may not seem too useful. But let's go a step
further.

Remember how we e9P'—' ad LABEL in our egg-sizing application,
using _ :ed 	. . statements? We can rework our definition
using Eff. make all the labels the same length and
"string them together" within a single definition as a string
array. (We can abbreviate the longest label to "XTRA LRG" so
that we can make each label eight characters long, including
trailing spaces.)

: "LABEL"
." REJECT SMALL MEDIUM LARGE XTRA LRGERROR 11;

Once we enter

' "LABEL" 3 +

to get the address of the start of the string, we can type any
particular label by offsetting into the array. For example, if we
want label 2, we simply add sixteen (2 x 8) to the starting
address and type the eight characters of the name:

16 + 8 TYPE

Now let's redefine LABEL so that it takes a category-number from
zero through five and uses it to index into the string array, like
this:

: LABEL 8 * ('] "LABEL" 3 + + 8 TYPE SPACE ;

Recall that the word 	is just like 	except that it may only
be used. inside a definition to compile the address of the next

260
	

Starting FORTH
7rTt'r-

word in the definition (in this case, "LABEL").t Later, when we
execute LABEL, bracket-tick-bracket will push the pfa of "LABEL"
onto the stack. The number three is added, then the string offset
is added to compute the address of the particular label name that
we want.

-111-is-kind-of-string array is sometimes called a "superstring." As
a naming convention, the name of the superstring usually has

-quotes around it.

Our new version of LABEL will run a little faster because it does
not have to perform a series of comparison tests before it hits
upon the number that matches the argument. Instead it uses the
argument to compute the address of the appropriate string to be
typed.

Notice, though, that if the argument to LABEL exceeds the range
zero through five, you'll be typing garbage. If LABEL is only
going to be used within EGGSIZE in the application, there's no
problem. But if an "end user," meaning a person, is going_to use
it, you'd better "clip" the index, like this:

: LABEL 0 MAX 5 MIN LABEL ;

TYPE 	 (adr u) 	, Transmits u characters,
beginning at address, to
the current output device.

tFORTH-79 Standard

See Appendix 3.

10 I/0 AND YOU 	 261

Outputting Strings from Disk

We mentioned before that the word !BLOCK! copies a given block
into an available buffer and leaves the address of the buffer on
the stack. Using this address as a starting-point, we can index
into one of the buffer's 1,024 bytes and type any string we care
to. For example, to print line 0 of block 214, we could say

CR 214 BLOCK 64 TYPE=
(THIS IS BLOCK 214) 	 ok

To print line eight, we could add 512 (8 x 64) to the address, like
this:

CR 214 BLOCK 512 + 64 TYPE

Before we give a more interesting example, it's time to introduce
two words that are closely associated with [TYPE!

-TRAILING 	(adr ul 	 Eliminates trailing
adr u2) blanks from the string

that starts at the
address by reducing the
count from ul (original
byte count) to u2
(shortened byte count).

not-

trailin9

>TyPEt 	 (adr u) Same as TYPE ex ceptc,cket_
that the output string ttire-
is moved to the pad %—
prior to output. Used
in multiprogrammed
systems to output
strings from disk
blocks.

can be used immediately before the TYPE! command to
adjust the count so that trailing blanks will not be printed. For
instance, inserting it into our first example above would give us

-TRAILING!

CR 214 BLOCK 64 -TRAILING TYPECIMID
(...S IS BLOCK 214) ok

tFORTH-79 Standard

j>TYPE1 is not required.

262
	

Starting YOWNI

The word 1>TYPE is only used on multiprogrammed systems to print
strings from disk buffers. Instead of typing the string directly
from the address given, it first moves the entire string into the
pad, then types it from there. Because all users share.i-he same
buffers, the system cannot guarantee that by the time , 7 has
finished typing, the buffer will still contain the same block. It

--can .guarantee, however, that the buffer will contain the same
block during the move to the pad.t Since each task has its own
pad, 1>TYPE1 can safely type from there.

The following example uses 1TYPE, but you may substitute I>TYPE if
need be.

231 LIST

0
1

BUZZPHRASE GENERATOR -- VER. 	1) 	EMPTY

2 181 LOAD 	(RANDOM NUMBERS)
3
4 : 	BUZZ 	232 BLOCK + 	10 CHOOSE 	64 * + 	20 -TRAILING TYPE ;
5 : 	1ADJ 	0 BUZZ ;

6 : 	2ADJ 	20 nuzz
7 : 	NOUN 	40 BUZZ ;

8 : 	PHRASE 	1ADJ SPACE 2ADJ SPACE NOUN ;
9 : 	PARAGRAPH

10 CR 	." 	BY USING " PHRASE 	." 	COORDINATED WITH "
11 CR 	PHRASE ." IT IS POSSIBLE FOR EVEN THE MOST "
12 CR 	PHRASE ." TO FUNCTION AS
13 CR 	PHRASE ." WITHIN THE CONSTRAINTS OF "
14 CR 	P',-2,7S,S: ." 	 . " ;

15 PARAGRAPH

(continued)

tFor Experts

In a multiprogrammed system, a task only releases control of the
CPU to the next task during I/0 or upon explicit command, a
command which is deliberately left out of the definition of the
word which moves strings.

10 I/0 AND YOU 	 263

232 LIST

0 INTEGRATED
1 TOTAL
2 SYSTEMATIZED
3 PARALLEL
4 FUNCTIONAL
5 RESPONSIVE
6 OPTIMAL
7 SYNCHRONIZED
8 COMPATIBLE
9 QUALIFIED
10 PARTIAL
11
12
13
14
15

MANAGEMENT
ORGANIZATION
MONITORED
RECIPROCAL
DIGITAL
LOGISTICAL
TRANSITIONAL
INCREMENTAL
THIRD GENERATION
POLICY
DECISION

CRITERIA
FLEXIBILITY
CAPABILITY
MOBILITY
PROGRAMMING
CONCEPTS
TIME PHASING
PROJECTIONS
HARDWARE .
THROUGH-PUT
ENGINEERING

Upon loading the application block (in this case block .231), we
get something like the following output, although some of the
words will be different every time we execute PARAGRAPH.

BY USING INTEGRATED POLICY THROUGH-PUT COORDINATED WITH
COMPATIBLE ORGANIZATION CAPABILITY IT IS POSSIBLE FOR EVEN THE MOST
OPTIMAL THIRD GENERATION PROGRAMMING TO FUNCTION AS
SYSTEMATIZED MONITORED CRITERIA WITHIN THE CONSTRAINTS OF
RESPONSIVE POLICY HARDWARE.

As ou can see, the definition of PARAGRAPH consists of a series
of strings interspersed with the word PHRASE. If we execute
PHRASE alone, we get

PHRASE SYSTEMATIZED MANAGEMENT MOBILITY ok

that is, one word chosen randomly from column 1 in block 232, one
word from column 2, and one from column 3.

Looking at the definition of PHRASE, we see that it consists of
three application words, lADJ, 2ADJ, and NOUN, each of which in
turn consists of an offset and the application word BUZZ. The
offset indicates which column we want to choose a particular word
from; that is, the number of bytes in from the left margin-of--
block 232 that the column begins. -The definition of BUZZ breaks
down as follows:

232 BLOCK

Starting-FORTH.

moves block 232 into an available buffer and returns the address
of the buffer's beginning byte.

The word

adds the offset (0, 20, or 40) to offset us into the appropriate
column in the block.

10 CHOOSE

,returns a random numbert b.etween 0 and 10 to determine,,which
line to take our word from.

64 * +

multiplies the random number by 64 (the length of one line) and
adds this number to the buffer address, to offset into the
appropriate line. The, address on the stack is the address -of •the
word we are going to ty/De.

20 -TRAILING TYPE

adjusts the maximum count of 20 downwards so that the count
excludes any trailing blanks after the character string and types
the string.

1-The random number generator is given in the following Handy
Hint.

IL) I/0 AND YOU 	 265

A Handy Hint

A Random Number Generator

This simple random number generator can be useful for games,
although for more sophisticated applications such as simulations,
better versions are available.

i181 LIST

0 C RANDOM NUMBER
1 VARIABLE RND

GENERATOR -- HIGH LEVEL)
HERE RND

2 	: RANDOM 	RND 31421 	* 8927 + DUP RND 	! 	;
3 	: CHOOSE 	(ul u2)
4 RRNDOM U* SWAP DROP ;
5
6 	(where CHOOSE returns 	a random Integer 	within the 	range
7 0 	= 	or 	< 	u2 < ui.)
8
9

Here's how to use it:

To choose a random number between zero and ten (but exclusive of
ten) simply enter

10 CHOOSE

and CHOOSE will leave the random number on the stack.

266 	 Starting FORTH

- 	 rr77-',"'".

Internal String Operators

The commands for moving character strings or data arrays are
very simple. Each requires three arguments: a source address, a
destination address, and a count.

MOVEt

CMOVE

(adrl adr2 u) Copies a region of
memory u bytes long,
cell-by-cell beginning
at adrl, to memory
beginning at adr2. The
move begins with the
contents of adrl and
proceeds toward high
memory.

(adrl adr2 u) Copies a region of
memory u bytes long,
byte-by-byte beginning
at adrl, to memory
beginning at adr2. The
move begins with the
contents of adrl and
proce'eds toward high
memory.

<CMOVE 	(adrl adr2 u Copies a region of
memory u bytes long,
beginning at adrl, to
memory beginning at
adr2, but starts at the
end of the string and
proceeds toward low
memory.

tFORTH-79 Standard

The Standard 's
required.

!MOVE expects a cell count. <CMOVEI is not

If you were to use PMOVEJ,
the first letter of the
string would get copied to
the second byte, but that
would "clobber" the second
letter of the string. The
final result would be a
string composed of a single
character.

Using I<CMOVE in this
situation keeps the string
from clobbering itself
during the move.

	

Usin9 	ICMOVEI

,,, 	 ,-1/
I§ <> 	o

H E L

HHLP
,---v,

HHHP
,---N,

H H H,H
,---N,

HHHHH

:0 I/0 AND YOU 	 267

Notice that these commands follow certain conventions we've seen
before:

1. When the arguments include a source and a destination
(as they do with COPY), the source precedes the
destination.

2. When the argi 	'its include an address and a count (as
they do with 	 the address precedes the count.

And so with these three words the arguments are

(source destination count --)

To move the entire contents of a buffer into the pad, for
example, we would write

210 BLOCK PAD 1024 CMOVE

although on cell-address machines the move might be made faster
if it were cell-by-cell, like this:

210 BLOCK PAD 1024 MOVE

The word I<CMOVE lets you move a string to a region that is
higher in memory but that overlaps the source region.t

tFor beginners

Let's say that you want to move a string one byte tolthe "right"
in memory (e.g., when you use the editor command Ei to insert a
character).

268 	 Starting FORTH„_

To blank an array, we can use the word FILL, which we introduced
earlier. For example, to store blanks into 1024 bytes of the pad,
we say

PAD 1024 32 FILL

Thirty7two is the ASCII representation-.of blank.t

"Single-character Input

The word [KEY] awaits the entry of a single key from your terminal
keyboard and leaves the character's ASCII equivalent on the
stack in the low-order byte.

To execute it directly, you must follow it with a return, like
this:

KEY=

-The -cursor -will aclva-nce a space, but the terminal -will- mit' prInt.:-
"ok"; it is waiting for your input. Press the letter "A," for
example, and the screen will "echo" the letter "A," followed by
the "ok." The ASCII value is now on the stack, so enter [1:

No.

-KEY Aok
47777 65 ok

This saves you from having to look in the table to determine a
character's ASCII code.

You can also include [KEY] inside a definition. Execution of the
definition will stoo, when [KEY1 is encountered, until an input
character is received. For example, the following definition-
will list a given number of blocks in series, starting with the
current block, and wait for you to press any key before it lists
the next one:

: BLOCKS (count --)
SCR @ + SCR @ DO I LIST KEY DROP LOOP ;

tFor polyFORTH Users

You may use the word I_BLANKj instead, as in

PAD 1024 BLANK

i0 I/0 AND YOU 	 269

A Handy Hint

Two Convenient Additions to the Editor

You might want to make the following two additions to your
editor vocabulary. The use of these words is a matter of
preference; they may or may not already be included with your
system.

EDITOR DEFINITIONS
: K #1 PAD 132 MOVE PAD #F 66 MOVE ;
: WIPE SCR @ BLOCK DUP 1024 32 FILL 0 SWAP 	UPDATE ;
FORTH DEFINITIONS

The word K will swap the contents of the find buffer with that
of the insert buffer. Here's an example of its use:

^YOU HAVF " ' 	TO SILENT REMAIN. 	 ok
DkkISILENW77-1

F AINCUMUD

YOU HAVE THE RIGHT TO REMAIN^. 	 ok

YOU HAVE THE RIGHT TO REMAIN SILENT. 	 ok

Use of D put "SILENT" in the find buffer, and K put it into, the
insert buffer so that you could insert it where it belongs.

Or if you've just inserted a string in the wrong place, you can
put the string into the find buffer with K and then erase it
from the line with a simple

The word WIPE blanks the current block and stores two nulls in
the first two character positions. (On most systems, nulls in
the block act just like the word [EXITi, to immediately terminate
interpretation of the block, should it be loaded.)

Starting_FORTH7_._

_
In this case we

-care what it is.
[DROP' the value left by !KEY1 because we do not

-Or-we might add a feature that allows us either to leave the. loop
at any time by pressing return or to continue by pressing any
.other key, such as space. In this CE.• we will perform a
conditional test on the value returned by

: BLOCKS 	(count --)
SCR @ + SCR @ DO I LIST

KEY 0= (CR) IF LEAVE THEN LOOP ;

Note that in most FORTH,systems, the carriage-return key is
received as a null (zero).

KEY 	 (c) 	 Returns the ASCII value of
the next available
character from the current
input device.

String Input Commands, from the Bottom up

There are several words involved with string input. We'll start
with the lowest-level of these and proceed to some higher-level
words. Here are the words we'll cover in this section:

-

EXPECT 	 (adr u) 	Awaits u characters (or a
carriage return) from the
terminal keyboard and
stores them, starting at

—the -address.

WORD 	 (c 	adr) 	 Reads one word from the
input stream, using the
character (usually blank)
as a delimiter. Moves the
string to the address
(HERE) with the count in
the first byte, leaving the
address on the stack.

TEXT 	 (c) 	 Reads a string from the
input stream, using the
character as a delimiter,
then sets the pad to blanks
and moves the string to the
pad.

270

10 I/0 AND YOU
	

271

The word IEXPECTI stops execution of the task and waits for input
from your keyboard. It expects a given number of keystrokes or a
carriage return, whichever comes first. The incoming text is
stored beginning at the address given as an argument.

A

3
0

5

For example, the phrase

SO @ 80 EXPECT t

will await up to eighty characters and store them in the input
message buffer.

This phrase is thP one used in the definition of IQUIT to get the
input for IIN1......

In most svqtems, when you press return or when the limit is
reached, ..:.?ECT stores a null (zero) into the string to mark the
end, then .,.‘lows execution to conti,nue.1:

t FORTH-79 Standard

This phrase is equivalent to the Standard word

tror Experts

You can use [EXPECT! to accept data from a serial line, such as a
measuring device. Since you supply the address and count,_suc_h_
data can be read directly into an array. In a single-user
environment, you may read data into a buffer for storage on disk.
In a multi-user environment, however, you must use ISOI and later
move the data into, the buffer, since another task may use "your':

-buffer.

4IERE_

WORD'S
r 	BUPPER

272
	

Starting FORTH

Let's move on to the next hLgher-level string-input operator.
We've just explained that IQUITI contains.the phrase

... SO @ 80 EXPECT INTERPRET ...

But how does the text interpreter scan the input message buffer
and pick out each individual word there? With the phrase

32 WORD

Th.= jiecimal number 32 is the ASCII representation for "space."
 scans the input stream looking for the given delimiter, in
this case space, and moves the sub-string into a different buffer
of its own, with the count in the first byte of the buffer.
F' r. Lly, it leaves the address of its buffer on the stack, so that
F.% 3RPRET1 (or anyone else) knows where to find it. IWORD1's '
buffer usually begins at sl, the dictionary pointer, so the
address given is (HERE .

STACK

INPUT
BUFFER

y i looks for the given 	 and_ zes the the sub-string -
de.L.I.miter in the input
	

to 	buffer, with the
message buffer, 	 count in the .first_byte.._...

When you are executing words directly from a terminal, [WORD! will
scan the input buffer, starting at SO1. As it goes along, it
eadvances the innut buffer pointer, called >IN, so that each time
you execute FT you scan the next word in the input stream.

is a "relative pointer"; that is, it does not contain the
actual address but rather an offset that is to,be added.to the
Ar-tual address, which in this case is [SOL For example, after

1751 has scanned the string "STAR," the value of >IN is five. _ .

I >IN

Input Messa5e B„F.Fer

NORD' ignores initial occurrences of the delimiter (until any
other character is encountered). You could type

:/0 AND YOU 	 273

SO
SO

1.>IN

5 T A
	

3 0 slp A

itikSiiVp3STAR

(that is, STAR :E-7.,:ded by several spaces) and get exactly the
same string in 	 's buffer as shown above.

When IWORDI moves the sub-string, it includes a blank at the end
but does not include it in the count.

We'll get back to [WORD! later on in thi.c chapter. For now,
though, let's look at a word that uses W.TCD1 and that is more
useful for handling string input.

,t like MORD', takes a delimiter and scans the input stream
until it finds the string delimited by it. It then moves the
string to the pad. What is especially nice about ITEXT is that
before it moves the string, it blanks the pad for at least
sivi-,,-four spaces. This makes it very convenient for use with

. Here's a simple example:

CREATE MY—NAME 40 ALLOT
: I'M 32 TEXT PAD MY-NAME 40 CMOVE ;

In the first line we define an array called MY-NAME. In the
second line we define a word called I'M which will allow us to
enter

I'M EDWARD ok

tFor Those Who Don't Seem to Have

iTE XT 1 is not required by the FORTH-79 Standard. Its definition,
however, is

: TEXT PAD 72 32 FILL WORD COUNT PAD SWAP <CMOVE ;

If you have a polyFORTH system, the electives block normally
does not load the block (usually 34) that contains ITEXTI. In this-
case you must add "34 LOAD" to your electives block and reload
it.

ITEXT1

274 	 Starting YORTI1

The definition of I'M breaks down as follows: the phrase

32 TEXT

—scans the remainder of the input stream looking for a space or
for the end of the line, whichever comes first. (The delimiter

—that—we give as an argument to TEXT is actually 	 WORD,
which is included in the definition of TEXT1.) FT. 	then moves

___the_phrase to a nice clean "pad."

The phrase

- PAD MY-NAME 40 CMOVE

moves forty bytes from the pad into the array called MY-NAME,
where it will safely stay for as long as we need it.

We could now define GREET as follows:

: GREET ." HELLO, " MY-NAME 40 -TRAILING TYPE
." , I SPEAK FORTH. " ;

so that by executing GREET, we get

GREET_ HELLO, EDWARD, I SPEAK, FORTH. ok-

Unfortunately, our definition of I'M is looking for a space as its
delimiter. This means that a person named Mary Kay will not get
her full name into MY-NAME.

To get the complete input stream, we don't want to "see" any
delimiter at all, except the end of the line. Instead of "32
TEXT," we should use the phrase

1 TEXT

ASCII 1 is a control character that can't be sent from the
keyboard and therefore won't ever appear in the input buffer.
Thus "1 TEXT" is a convention used to read the entire input
buffer, up to the carriage return. By redefining I'M in this way,
Mary Kay can get her name into MY-NAME, space and all.

By using other delimiters, such as commas, we can "expect" a
series of strings and store each of them into a different array
for different purposes. Consider this example, in which the word
VITALS uses commas as delimiters to separate three input fields:

:0 I/0 AND YOU 	 275

233 LIST

0 (FORM LOVE LETTER) 	 EMPTY
1 VARIABLE NAME 12 ALLOT 	VARIABLE EYES 10 ALLOT
2 VARIABLE ME 12 ALLOT
3 : VITALS 	44 TEXT (,) PAD NAME 14 MOVE
4 	 44 TEXT 	PAD EYES 12 MOVE
5 	 1 TEXT 	PAD ME 14 MOVE ;
6
7 : LETTER 	PAGE
8 	." DEAR " NAME 14 -TRAILING TYPE ." ,"
9 	CR ." I GO TO HEAVEN WHENEVER I SEE YOUR DEEP "

10 	 EYES 12 -TRAILING TYPE ." EYES. CAN "
11 	CR ." YOU GO TO THE MOVIES FRIDAY? "
12 	 CR 30 SPACES ." LOVE,"
13 	 CR 30 SPACES ME 14 -TRAILING TYPE
14 	CR ." P.S. WERR SOMETHING " EYES 12 -TRAILING TYPE
15 	." TO SHOW OFF THOSE EYES! " ;

which allows you to enter

VITALS ALICE,BLUE,FRED pk

then enter

LETTER

It works every time.

So far all of our input has been "FORTH style"; that is, numbers
precede commands (so that a command will find its number on the
stack) and strings follow commands (so that a command will find
its string in the input stream). This style makes use of one of
FORTH's unique features: it awaits your commands; it does not
prompt you.

But if you want to, you may put 'EXPECT! inside a definition so
that it will request input from you under control of the
definition. For example, we could combine the two words I'M and
GREET into a single word which "prompts" users to enter their
names. For example,

GREET_
WHAT'S YOUR NAME?

at which point execution stops so the user can enter a name:

GREET_
WHAT'S YOUR NI=7 TRAVIS MC GEE
HELLO, TRAVIS 	GEE, I SPEAK FORTH. ok

276

Starting FORTH

We could do this as follows:

: GREET CR ." WHAT'S YOUR NAME?" SO @ 40 EXPECT
0 >IN ! 1 TEXT CR ." HELLO, "

PAD 40 -TRAILING TYPE ." , I SPEAK FORTH. " ;

We've explained all the phrases in the above definition except
this one:

"0 >IN !

Remember that TEXT1, because it uses 'WORD!, always uses 1>IN1 as
its reference point. But when the user enters the word GREET to
execute this definition, the string "GREET" will be stored in the
''Iut message buffer ar,, r>IN will be pointing beyond "GREET".

,ECT1 does not use „r..,..„7 	as its reference, so it will store the
narr6 beginning at on top of GREET. If you were to

execute EI..X1 now, it would miss the first five letters of the
user's nam, It's necessary to reset I>INI to zero so that
will look where [EXPECT] has put the name.

TEXT

>BINARY or 	(d1 adrl 	 Converts the text be-
CONVERT d2 adr2) ginning at adr1+1 to a

binary value with re-
gard to BASE. The new
value is accumulated
into dl, being left as
d2; adr2 is the address
of the first non-
convertible character.

NUMBER 	 (adr 	n or d) 	Converts the text be-
ginning at adr+1, with
regard to BASE, to a
binary value that is
single-length if no
valid punctuation oc-
curs and double-length
if valid punctuation
does occur. The string
may contain a pre-
ceding negative sign;
adr may contain a
count, which will be
ignored.

1>BINARY1
Standard.

10 I/0 AND YOU
	

277

Number Input Conversions

When you type a number at your terminal, FORTH automatically
converts this character string into a binary value and pushes it
onto the stack. FORTH also provides two commands which let you
convert a character string that begins at _any memory location
into a binary value.t

NUMBER exists on most syst 	and is usually the simpler to use.
Here's an example that uses . :113E121:

: PLUS 32 WORD NUMBER + ." = " • ;

PLUS allows us to prove to any skeptic that FORTH could use infix
notation if it wanted to. We can enter

IFORTH-79 Standard

The Standard specifies the name CONV L.] instead of
In FORTH systems which use three-chara, •:. •nLqueness, however,
this choice conflicts with the name CI .. .:.: ; hence the name

is used instead. INUMBER is not required by the
r
	I>BINARYI

278
	

Starting-FORTH,

2 PLUS 13=3 = 15 ok

When PLUS is executed, the "2" will be on the stack in binary
_form, while the "3" will still be in the input stream as a string.

The phrase

- 32 WORD

reads the string; 	 converts it to binary and puts the
value on the stack; 	adds the two values; and 	prints the sum.

_
7. expects on the stack the address of the string that is to _ . 	.

..:,,i,verted, with the count in the first byte And one trailing
-blank, so it's most appropriate for use after MC' . NUMBERI does
not actually use the count, however; it only adds one byte to the

irAss before beginning the conversion. Thus you can use
1 on a string that does not contain the count in the first

byte, simply by subtracting one byte from the starting address of
the string.

is a 	mora nrimitive definition, being used in the
definition of INTJML . You can use I>BINARY1 to create your own
specialized number .,.1,put conversion routines. Since 1>BINARY
returns the address of the first non-convertible character, you
can make decisions based on whether the character is a hyphen,
dot, or whatever. You can also make decisions based on the

..location_of_the non-convertible character within the number: For .
instance, you can write a routine that lets you enter a number
with a decimal point in it and then scales it accordingly.

To give a good ex, 	Le of the use of 	, Figure 10-1 ,shows
a definition of i:,_MBERI. This version reads any of the
characters

: , - . /
as valid punctuation characters which cause the value to be
returned on the stack as a double-length integer. If none of
these characters appear in the string, the value is returned as
single-length.t This definition_uses the word WITHIN as we
defined it in the problems for Chap. 4.

Here we use the variable PUNCT to contain a flag that indicates
whether punctuation was encountered. We suggest that you use an
available user variable instead. •

tFor polyFORTH Users

Your version of 1\IUMBERI behaves similarly and in addition leaves
in the user variable IPTR] the number of characters that were
converted since the last punctuation was encountered.

NUMBER

>BINARYI

r>BI N ARYI

10 I/0 AND YOU 	 279

FIGURE 10-1. A DEFINITION OF NUML

VARIABLE PUNCT
	

Creates a flag that will contain true
if the number contains valid
punctuation.

: NUMBER (adr 	n or d)

0 PUNCT ! 	 Initializes flag: no punctuation has
occurred.

DUP 1+ C@ 	 Gets the first digit.

45 (-) = 	 Is it a minus sign?

DUP >R 	 Saves the flag on the return stack.

If the first character is "-", adds 1
(the flag itself) to the address,
setting it to point to the first digit.

Provides a double-length zero as an
accumulator.

Begins conversion; converts until an
invalid digit.

Fetches the invalid digit.

While it is not a blank, checks if it
is valid punctuation; that is, ,

0 0 ROT

BEGIN >BINARY

DUP C@

32 - WHILE

DUP C@ DUP 58 = 	a colon, or

SWAP 44 48 WITHIN + 	a comma, hyphen, period, or slash.

DUP PUNCT ! 	 Sets PUNCT to indicate whether valid
punctuation has occurred.

NOT ABORT" ? " 	Otherwise issues an error message.

REPEAT 	 Exits here if a blank is detected;
otherwise repeats conversion.

DROP 	 Discards the address on the stack.

R> IF DNEGATE THEN

PUNCT @ NOT IF
DROP THEN ;

If the flag on the return stack is
true, negates d.

If there was no punctuation, returns a
single-length value by dropping the
high-order cell. -

280 	 Starting FORTH

A Closer Look at WORD1

So far we have only talked about using 	to scan the input
message buffer (which holds the characters that are EXPECTfed
from the terminal). But if we recall that the phrase

32 WORD

is used by the text interpreter, we realize that IWORD actually
scans the input stream, which is either the input message buffer
or a block buffer that is being [LOAD-led.

To achieve this flexibility, WORD uses another pointer in
addition to I>INI, called IBLK (pronounced b-l-k). BLKI acts both
as a flag and as a pointer. If BLKI conf.ins zero, then
scans the input message buffer (that is, _ offset by I>IN1). But
if 1BLK contains a non-zero number, then 'WORD] is referring to a
block buffer and the number in 1BLKI is the number of the block.
Here are two examples:

contents of
BLK

address currently used by WORD:

0 SO @ 	>IN @ +
(>IN bytes into the message buffer)

200 200 BLOCK >IN @ +
(>IN bytes into the block buffer)

Every time a word is interpreted during a !LOAD] operation,
makes sure that the appropriate block is still in a buffer.

W O RDI

A useful word to use in conjunction with WORD is ICOUNT1. Recall , f that WORDI leaves the length of the word in the first byte of
1WORD is buffer and also leaves the address of this byte on the
stack.

IW ORD'

IWO RD 1

addr

0

The word COUNT puts the count on the stack and increments the
address, like this:

ICOUNTI is used in the definition of ITEXT which we gave in a
footnote earlier.

10 I/0 AND YOU 	 281

leaving the stack with a string address and a count as
appropriate arguments for ITYPEI, ICMOVE, etc.

COUNT (adr 	adr+lu) Converts a character
string, whose length is
contained in its first
byte, into the form
appropriate for TYPE, by
leaving the address of the
first character and the
length on the stack.

We will further illustrate the use of 1•E • . j in one of the examples
in Chap. 12.

String Comparisons

Here is a FORTH word that you can use to compare, character
strings:

-TEXT 	 (adrl u adr2 	Compares two strings
f) that start at adrl and

adr2, each of length u.
Returns false if they
match; true if no match
(positive if binary
string 1 > 2, negative
if 1 < 2).

282
	

S tatrti,ng_FORTH,77

E -7 LI', can be used to test either whether two character strings
_are equal or whether one is alphabetically greater or lesser than

the other.n: Chap. 12 includes an example of using I-TEXTI to
determine whether strings match exactly. ,

Since for speed 	Ej compares cell-by-cell, you must take care
on cell-address mac.iii.iies to give -TEXTI even cell addresses only.
For example, if you want to compare a string that is being

—entered as i-rrput-with a strin that is in an array, bring the
input string to the pad (using TEXT rather than 1WORD1) because

is an even address. Similarly, if you want to test a string
that is in a block buffer, you must either guarantee that the

_str_ingi_s_address is even or, if you cannot know for sure, move the
string to an even address (using iCMOVE) before making the test.

By the way, the hyphen in 1-TEXT is as close as ASCII comes to
"-1", the logical symbol meaning "not." This is why we
conventionally use this prefix for words which return a "negative
true" flag. (Negative true means that a zero represents true and

_a non-zero represents false.) We pronounce such words not-text,
 ' etc.

tFor Users of Intel, DEC, and Zilog Processors

To make the "alphabetical" test, you must first reverse the order
of bytes.

+ FORTH-79 Standard

is not included in the Standard. If your system does not
ou can load the high-level definition below. Of

course, 	 is wr'itten in assembler code on all polyFORTH
systems, for speed.

-TEXT 2DLIP + SWAP DO DROP 2+
DUP 2- @ I @ - DUP IF DUP ABS /_ LEAVE THEN.

2 +LOOP SWAP DROP 7

IPAD

10 I/0 AND YOU
	

283

Here's a list of the FORTH words covered in this chapter.

UPDATE 	 () 	 Marks the most recently
referenced block as
modified. The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

EMPTY-BUFFERS () Marks all block buffers as
empty without necessarily
affecting their actual
contents. Updated blocks
are not written to mass
storage.

BLOCK 	 (u 	adr) 	 Leaves the address of the
first byte in block u. If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block
occupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

BUFFER 	 (u 	adr) 	 Obtains the next block
buffer, assigning it to
block u. The block is not
read from mass storage.

TYPE 	 (adr u) 	Transmits u characters,
beginning at address, to
the current output device.

-TRAILING 	(adr ul 	 Eliminates trailing blanks
adr u2) from the string that starts

at the address by reducing
the count from ul (original
byte count) to u2
(shortened byte count).

284 	 Starting FORTH

MOVE 	 (adrl adr2 u

CMOVE 	 (adrl adr2 u --

KEY 	 (c)

Copies a region of memory
u bytes long, cell-by-cell
beginning at adrl, to
memory beginning at adr2.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Copies a region of memory
u bytes long, byte-by-byte
beginning at adrl, to
memory beginning at adr2.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Returns the ASCII value of
the next available
character from the current
input device.

EXPECT 	 (adr u) 	Awaits u characters (or a
carriage return) from the
terminal keyboard and
stores them, starting at
the address.

WORD 	 (c 	adr) 	 Reads one word from the
input stream, using the
character (usually blank)
as a delimiter. Moves the
string to the address
(HERE) with the count in
the first byte, leaving the
address on the stack.

TEXT 	 (c) 	 Reads a string from the
input stream, using the
character as a delimiter,
then sets the pad to blanks
and moves the string to the
nad.

>BINARY or 	(dl adrl --
CONVERT 	 d2 adr2)

Converts the text begin-
ning at adr1+1 to a binary
value with regard to BASE.
The new value is
accumulated into dl, being
left as d2; adr2 is the
address of the first
non-convertible character.

10 I/0 AND YOU
	

285

NUMBER 	 (adr 	n or d) 	Converts the text
beginning at adr+1, with
regard to BASE, to a binary
value that is single-length
if no valid punctuation
occurs, and double-length
if valid punctuation does
occur. The string may
contain a preceding
negative sign; adr may
contain a count, which will
be ignored.

COUNT 	 (adr 	adr+1 u) 	Converts a character
string, whose length is
contained in its first
byte, into the form
appropriate for TYPE, by
leaving the address of the
first character and the
length on the stack.

Additional Words Available in Some Systems

>TYPE 	 (adr u) Same as TYPE except that
the output string is moved
to the pad prior to output.
Used in multiprogrammed
systems to output strings
from disk blocks.

<CMOVE (adrl adr2 u Copies a region of memory
u bytes long, beginning at
adrl, to memory beginning
at adr2, but starts at the
e nd of the string and
proceeds toward low
memory.

-TEXT 	 (adrl u adr2 	Compares two strings
f) that start at adrl and

adr2, each of length u.
Returns false if they
match; true if no match
(positive if binary string 1
> 2, negative if 1 < 2).

BLANK 	 (adr n) 	Stores ASCII blanks into n
bytes of memory, beginning
at adr.

286 	 SLarting FORTH

Review of Terms

—Buffer
status cell
	

in the FORTH operating system, a cell in
resident memory associated with each block
buffer (usually directly preceding it in memory)

41.110014,416..... 	 --which contains the number of the block
currently stored in the buffer and a flag (the
sign bit) which indicates whether the buffer
has been updated.

RelatiVe pointer

SuperString

Virtual memory

a variable which specifies a location in
relation to the beginning of an array or string
--not the absolute address.

in FORTH,.a character array which 'contains a
number of strings. Any one string may be
accessed by indexing into the array.

the treatment of mass storage (such as the_ disk)
as though it were resident rnemory; 'also the
mechanisms of the operating system which make
this treatment possible.

10 I/0 AND YOU 	 287

Problems -- Chapter 10

1. Enter some famous quotations into an available block, say
228. Now define a word called CHANGE which takes two ASCII
values and changes all occurrences within block 228 of the
first character into the second character. For example,

65 69 CHANGE

will change all the "A"s into "E"s.

2. Define a word called FORTUNE which will print a prediction
at your terminal, such as "You will receive good news in the
mail." The prediction should be chosen at random from a
list of sixteen or fewer predictions. Each prediction is
sixty-four characters,. or less, long.

3. According to Oriental legend, Buddha endows all persons born
in each year with special, helpful characteristics
represented by one of twelve animals. A different animal
reigns over each year, and every twelve years the cycle
repeats itself. For instance, persons born in 1900 are said
to be born in the "Year of the Rat." The art of
fortune-telling based on these influences of the natal year
is called "Juneeshee."

Here is the order of the cycle:

Rat Ox Tiger Rabbit Dragon Snake
Horse Ram Monkey Cock Dog Boar

Write a word called .ANIMAL that types the name of the
animal corresponding to its position in the cycle as listed
here; e.g.,

0 .ANIMAL RAT ok

Now write a word called (JUNEESHEE) which takes as an
argument a year of birth and prints the name of the
associated animal. (1900 is the year of the Rat, 1901 is the
Ox, etc.)

Finally, write a word called JUNEESHEE which prompts the
user for his/her year of birth and prints the name of the
person's Juneeshee animal. Define it so the user won't have
to press "return" after entering the year.

4. Rewrite the definition of LETTER that appears in this
chapter so that it uses names and personal descriptions that
have been edited into a .block, rather than entered into
character arrays. In this way, you can keep a file on many
"prospects" and produce a letter for any one person with the

288 	 Starting FORTH

appropriate descriptions, just by supplying an argument to
LETTER, as in

1 LETTER

Now define LETTERS so that it prints one letter for each
person in your file.

5. 	In this exercise you will create and use a virtual array,
that is, an array which resides on the disk but which is
referenced like a memory-resident array (with @ and 11).

First select an unused block in your range of assigned
blocks. There can be no text on this block; binary data will
be stored in it. Put this block number in a variable. Then
define an access word which accepts a cell subscript from
the stack, then computes the block number corresponding to
this subscript, calls IBLOCK1 and returns the memary address
of tha subscripted cell. This access word should also call
1UPDA__, Test your work so far.

Next use the first cell as a count of how many data items are
stored in the array. Define a word PUT which will store a
value into the next available cell of the array. Define a
display routine which will print the stored elements in the
array.

Now use this virtual array facility to define a word ENTER
which will accept pairs of numbers and store them in the
array.

Finally, define TABLE to print the data entered above, eight
numbers per line.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

